WO2013046906A1 - Inspection device - Google Patents

Inspection device Download PDF

Info

Publication number
WO2013046906A1
WO2013046906A1 PCT/JP2012/069332 JP2012069332W WO2013046906A1 WO 2013046906 A1 WO2013046906 A1 WO 2013046906A1 JP 2012069332 W JP2012069332 W JP 2012069332W WO 2013046906 A1 WO2013046906 A1 WO 2013046906A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
space
subject
inspection apparatus
examination
Prior art date
Application number
PCT/JP2012/069332
Other languages
French (fr)
Japanese (ja)
Inventor
篤 二ノ宮
横山 仁
和幸 柳瀬
学 柳本
伸 星野
Original Assignee
株式会社日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立メディコ filed Critical 株式会社日立メディコ
Priority to JP2013536026A priority Critical patent/JP5663097B2/en
Publication of WO2013046906A1 publication Critical patent/WO2013046906A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64

Definitions

  • the shape of the inspection space has been devised so far as the performance of the device is not hindered, the width is increased as much as possible, the cross-sectional shape is elliptical, and the tunnel entrance is rounded to create a feeling of blockage. It has been proposed that the shape be relaxed (Patent Documents 1, 2, etc.).
  • the distance between elements or objects is narrowest in the longitudinal direction (depth direction) of the inspection space on the insertion port side of the inspection apparatus, and widens toward the back.
  • the present invention can be applied to, for example, an MRI apparatus, a CT apparatus, and a PET apparatus.
  • FIG. 1 is an external view showing the entire MRI apparatus of this embodiment
  • FIG. 2 is a front view
  • FIG. 3 is a side view.
  • the MRI apparatus includes a gantry unit 100 and a bed unit 200.
  • dots are arranged in consideration of the average height of the subject, or the subject position (viewpoint position) before being inserted into the examination space is determined according to the arrangement of the dots. It is preferable to make it.
  • the positions of the dots in the depth direction are determined in this way, when the examination space is viewed from the viewpoint E of the subject before being inserted into the examination space, the dots appear to be arranged at substantially the same pitch, Looks shorter than the depth. As a result, the fear of the subject being inserted into a long examination space can be reduced.
  • dots that provide a visual effect on the subject are arranged on the inner cover of the gantry section.
  • One feature of dot arrangement is that at least a pair of dots are arranged in the left-right direction of the subject, and the interval between the left and right dots is reduced along the depth direction of the examination space. Thereby, when inserted into the examination space, it is possible to provide a visual effect that makes the examination space feel as if it expands upward.
  • Another feature of the dot arrangement is that the interval (arrangement pitch) in the depth direction of the dots is increased along the depth direction. With this arrangement, it is possible to give a visual effect that the depth of the examination space is shorter than the actual depth to the subject laid on the bed unit 200 before entering the examination space.
  • the method of changing the line width is not particularly limited, but the width of the narrowest line is about 50% to 75% of the width of the line closest to the entrance (first line). .
  • the line width is changed in accordance with a parabolic shape, that is, a quadratic function (a ⁇ bx 2 , x is a distance from the entrance) with respect to the width of 30 mm of the first line, and is almost at the center of the examination space 22 mm (73.3% of the first line).
  • the inner cover of the present embodiment is also designed so that the line-to-line arrangement pitch P increases in the depth direction of the inspection space. Similar to the first embodiment, this gives a visual effect that makes the user feel the space shorter than the actual depth when viewed from the outside. That is, the arrangement pitch P is determined so that the distance between the lines looks almost the same when the subject laid on the bed is viewed from a position several tens of centimeters away from the entrance of the examination space.
  • the method of changing the arrangement pitch P is the same as that described with reference to FIG. 6 for the dot arrangement pitch P of the first embodiment. However, since the line width d changes in this embodiment, the spacing between the lines is determined based on the end of the line width on the entrance side for all lines.
  • the three features of giving circumferential gradation to the lines arranged in the depth direction, narrowing the line width d in the depth direction, and widening the line pitch in the depth direction are provided.
  • the case where it has was demonstrated the case where only one of these characteristics or only two arbitrary combinations is included is also included in this invention. That is, one or both of the line width and the pitch may be constant, and a circumferential gradation may be given.
  • the width of the line may be narrowed in the depth direction or the pitch of the line may be increased in the depth direction.
  • both the width and pitch of the line are directed toward the depth direction. It may be changed. In any case, the visual effect by each feature can be obtained.
  • FIG. 8A is a diagram showing the relationship between the cross section of the examination space and the viewpoint E of the subject, as in FIGS. 5A and 7A, and a description thereof will be omitted.
  • the distance between the clouds in the depth direction is random, and the configuration for changing the arrangement pitch in the depth direction employed in the first embodiment and the second embodiment is not employed. Since the subject placed on the bed is provided with an empty pattern in the examination space, a sense of resistance can be reduced as compared with a case where the subject is inserted into an achromatic or light-colored examination space.
  • the surface of the inner gantry 140 that is, the surface constituting the inspection space is given a planar (smooth) design.
  • an optical film is used. It is used. Generally, when an object is placed inside the focal point of a convex lens, it is well known that an enlarged image (virtual image) of the object can be seen farther than the object. This embodiment uses the physical phenomenon. For this reason, an optical film in which a number of very fine convex lenses are formed on the surface is used as the optical film. A pattern such as fine dots is formed on the surface of the inner cover, and the optical film on which this convex lens is formed is laminated in close contact therewith.
  • the surface of the optical film 180 opposite to the surface on which the convex lens 181 is formed is fixed so as to be in close contact with the surface of the inner cover 140, that is, the surface on which the dot pattern 190 is formed.
  • the fixing method may be sticking using an adhesive, or the end portion may be fixed so as to be in close contact.
  • DESCRIPTION OF SYMBOLS 100 ... Gantry part, 110 ... Front panel, 120 ... Side cover, 130 ... Curved surface cover, 140 ... Inner cover (inspection space inner wall), 141 ... Flat part, 142 ... -Ellipse part, 150 ... dot, 160 ... line, 170 ... cloud pattern (object), 180 ... optical film, 181 ... convex lens, 190 ... dot, 200 ... -Bed part, 210 ... Top plate part, 220 ... Lifting mechanism, 230 ... Cart.

Abstract

The present invention mitigates a sensation of enclosure and a sensation of fear in a subject inserted into an inspection space, and increases the comfort of the subject in the inspection space. A design that imparts a visual effect on the subject is formed at the inspection space inner wall (140) of an inspection device having a tubular inspection space into which the subject is inserted. The design includes a plurality of elements (150) or objects, and of the spacing between the elements or the spacing between the objects, the spacing (W) in the circumferential direction and/or spacing (P) in the lengthwise direction of the inspection space changes from the side of subject insertion towards the far end. The elements, for example, are a geometric pattern such as dots and lines, and the objects are a design that mimics nature.

Description

検査装置Inspection device
 この発明は、MRI装置、X線CT装置、PET装置等の、トンネル状など被検体を挿入する検査空間を持つ検査装置に関し、特に検査空間の快適性を向上させた検査装置に関する。 The present invention relates to an inspection apparatus having an inspection space into which a subject such as a tunnel is inserted, such as an MRI apparatus, an X-ray CT apparatus, or a PET apparatus, and more particularly to an inspection apparatus that improves the comfort of the inspection space.
 MRI装置やX線CT装置などの画像診断装置は、その検査の特性上、被検体をトンネル状の検査空間に寝かせた状態で検査するタイプのものが広く使用されている。検査空間の広さや奥行きは、検査装置によって異なるが、例えば、水平磁場方式のMRI装置では、均一な静磁場空間の直径は約400mmであり、典型的な検査空間の大きさは、直径約500~650mm、奥行き1600~1800mm程度である。漏洩磁場を低減するためには奥行きは長いほど好ましい。CT装置は、MRI装置に比べ、奥行きは短いが、近年、X線検出器の2次元化に伴い、奥行きは長くなる傾向にある。 Image diagnostic apparatuses such as an MRI apparatus and an X-ray CT apparatus are widely used because of the characteristics of the inspection, the type in which the subject is inspected in a tunnel-like inspection space. The width and depth of the examination space vary depending on the examination apparatus. For example, in a horizontal magnetic field type MRI apparatus, the diameter of the uniform static magnetic field space is about 400 mm, and the typical examination space size is about 500 diameters. It is about 650 mm and the depth is about 1600 to 1800 mm. In order to reduce the leakage magnetic field, the longer the depth, the better. The CT apparatus has a shorter depth than the MRI apparatus, but in recent years, the depth tends to become longer as the X-ray detector becomes two-dimensional.
 全身撮影や頭胸部撮影の場合には、被検体の頭部を含む上半身を検査空間に挿入する必要があり、検査空間内に寝かせられた被検体が閉塞感や圧迫感を感じるという問題がある。この問題は、閉所恐怖症の患者の場合には特に深刻であり、閉塞された検査空間に挿入されることに対し強い忌避があり、最悪の場合には検査自体が困難になる。 In the case of whole body imaging or craniothoracic imaging, it is necessary to insert the upper body including the head of the subject into the examination space, and there is a problem that the subject laid in the examination space feels a sense of obstruction or pressure . This problem is particularly acute in the case of claustrophobic patients, where there is a strong refusal to be inserted into a closed examination space, and in the worst case the examination itself becomes difficult.
 この問題について、従来、装置の性能を阻害しない範囲で検査空間の形状を工夫して、できるだけ幅を広げる、断面の形状を楕円形にする、トンネルの入り口付近に丸みを持たせて、閉塞感を緩和する形状にする、などが提案されている(特許文献1、2など)。 In order to solve this problem, the shape of the inspection space has been devised so far as the performance of the device is not hindered, the width is increased as much as possible, the cross-sectional shape is elliptical, and the tunnel entrance is rounded to create a feeling of blockage. It has been proposed that the shape be relaxed ( Patent Documents 1, 2, etc.).
特開2010-240039号公報JP 2010-240039 A 特開2005-185387号公報JP 2005-185387 A
 物理的に検査空間の大きさを大きくすることで、ある程度閉塞感を緩和することは可能であるが、検査装置の大きさには装置の機能上の制約がある。例えば、MRI装置では、検査空間の大きさは静磁場を発生する静磁場磁石、一般には超電導磁石のボア径とその内側に配置される傾斜磁場の厚み等の制限を受ける。またCT装置では、X線管とX線検出器との距離とX線検出器の大きさで決まるX線照射範囲やコリメータの厚み等の制限を受ける。 Although it is possible to alleviate the feeling of blockage to some extent by physically increasing the size of the inspection space, the size of the inspection device has restrictions on the function of the device. For example, in the MRI apparatus, the size of the examination space is restricted by the bore diameter of a static magnetic field magnet that generates a static magnetic field, generally a superconducting magnet, and the thickness of a gradient magnetic field disposed inside thereof. In addition, the CT apparatus is limited by the X-ray irradiation range determined by the distance between the X-ray tube and the X-ray detector and the size of the X-ray detector, the thickness of the collimator, and the like.
 また従来の検査装置は、清潔感や明るさを意図して、白や薄いパステル調の色彩が施されており、検査空間内も同様の淡色一色である。従って、上記制限の範囲で空間の広さを異ならせても、被検体が受ける感覚には大きな差異のある効果は得られていない。
 そこで本発明は、検査空間に挿入される被検体の恐怖感や閉塞感を緩和し、検査空間内での被検体の快適性を向上する。
Further, the conventional inspection apparatus is given a white or light pastel color for the sake of cleanliness and brightness, and the inspection space is also a single light color. Therefore, even if the size of the space is varied within the above-mentioned limitation range, an effect having a great difference in the feeling received by the subject is not obtained.
Therefore, the present invention alleviates the fear and blockage of the subject inserted in the examination space, and improves the comfort of the subject in the examination space.
 本発明は、検査装置の検査空間内に、空間に広がりを感じさせる視覚的意匠を施すことにより上記課題を解決する。また本発明は、検査装置の検査空間の奥行きを短く感じさせる視覚的意匠を施すことにより、閉塞された空間に挿入される被検体の恐怖感等を緩和する。 The present invention solves the above-mentioned problems by applying a visual design that makes a space feel in the inspection space of the inspection apparatus. In addition, the present invention alleviates the fear of the subject inserted into the closed space by applying a visual design that makes the depth of the examination space of the examination apparatus feel short.
 即ち、本発明の検査装置は、被検体を挿入する筒状の検査空間を有する検査装置であって、前記検査空間に面する内壁に、前記被検体に対し視覚的効果を与える意匠が形成されているものであり、前記意匠は、複数の要素またはオブジェクトを含み、前記要素間の間隔または前記オブジェクト間の間隔は、前記検査空間の長手方向の間隔及び/又は周方向の間隔が、前記被検体の挿入口側から奥側に向かって変化している。
 なお本明細書では、検査空間の長短に拘わらず、被検体が挿入される方向に沿った方向を検査空間の長手方向或いは奥行き方向という。
That is, the inspection apparatus of the present invention is an inspection apparatus having a cylindrical inspection space into which a subject is inserted, and a design that gives a visual effect to the subject is formed on an inner wall facing the inspection space. The design includes a plurality of elements or objects, and the interval between the elements or the interval between the objects is the interval in the longitudinal direction of the inspection space and / or the interval in the circumferential direction. It changes from the insertion port side of the specimen toward the back side.
In this specification, regardless of the length of the examination space, the direction along the direction in which the subject is inserted is referred to as the longitudinal direction or the depth direction of the examination space.
 複数の要素は、例えば、ドット、ライン等の幾何学的模様であり、前記オブジェクトは自然を模した模様である。
 本発明の検査装置において、好適には、要素間又はオブジェクト間の間隔は、周方向の間隔が検査空間の挿入口側で最も広く、奥側(内部)に行くに従って狭まる。
The plurality of elements are, for example, geometric patterns such as dots and lines, and the object is a pattern imitating nature.
In the inspection apparatus of the present invention, preferably, the interval between elements or objects is widest in the circumferential direction on the insertion opening side of the inspection space, and narrows toward the back side (inside).
 本発明の検査装置において、好適には、要素間又はオブジェクト間の間隔は、検査空間の長手方向(奥行き方向)の間隔が検査装置の挿入口側で最も狭く、奥に行くに従って広がる。
 本発明は、例えば、MRI装置、CT装置及びPET装置に適用することができる。
In the inspection apparatus according to the present invention, preferably, the distance between elements or objects is narrowest in the longitudinal direction (depth direction) of the inspection space on the insertion port side of the inspection apparatus, and widens toward the back.
The present invention can be applied to, for example, an MRI apparatus, a CT apparatus, and a PET apparatus.
 本発明によれば、検査装置の検査空間に面する内壁に、検査空間を広く感じさせ、或いは検査空間を短く感じさせる意匠を施したことにより、検査空間に挿入される被検体の緊張感を緩和し、検査空間の内部における圧迫感や閉塞感を低減することができる。 According to the present invention, the inner wall facing the examination space of the examination apparatus is given a design that makes the examination space feel wider or feels shorter, so that the tension of the subject inserted into the examination space is increased. It can alleviate and reduce the feeling of pressure and blockage inside the examination space.
本発明が適用される検査装置(MRI装置)の一実施形態の外観を示す斜視図。The perspective view which shows the external appearance of one Embodiment of the test | inspection apparatus (MRI apparatus) to which this invention is applied. 図1の検査装置の正面図。The front view of the inspection apparatus of FIG. 図1の検査装置の側面図。The side view of the inspection apparatus of FIG. 図1の検査装置のガントリー内部の構成を示すブロック図。The block diagram which shows the structure inside the gantry of the inspection apparatus of FIG. 本発明の第一実施形態による検査空間を構成する内壁の意匠を示す図で、(a)は検査空間の断面図、(b)は内壁(内カバー)の一部を展開した図。It is a figure which shows the design of the inner wall which comprises the inspection space by 1st embodiment of this invention, (a) is sectional drawing of inspection space, (b) is the figure which expand | deployed some inner walls (inner cover). 第一実施形態におけるドットの検査空間長手方向の間隔(ピッチ)を説明する図で、(a)~(c)はそれぞれ被検体の条件を異ならせた場合を示す。FIG. 6 is a diagram for explaining the interval (pitch) of dots in the longitudinal direction of the inspection space in the first embodiment, and (a) to (c) show cases where the conditions of the subject are varied. 本発明の第二実施形態による検査空間を構成する内壁の意匠を示す図で、(a)は検査空間の断面図、(b)は内壁(内カバー)の一部を展開した図。It is a figure which shows the design of the inner wall which comprises the inspection space by 2nd embodiment of this invention, (a) is sectional drawing of inspection space, (b) is the figure which expand | deployed some inner walls (inner cover). 本発明の第三実施形態による検査空間を構成する内壁の意匠を示す図で、(a)は検査空間の断面図、(b)は内壁(内カバー)の一部を展開した図。It is a figure which shows the design of the inner wall which comprises the inspection space by 3rd embodiment of this invention, (a) is sectional drawing of inspection space, (b) is the figure which expand | deployed a part of inner wall (inner cover). 本発明の第四実施形態の内壁の要部の断面図。Sectional drawing of the principal part of the inner wall of 4th embodiment of this invention.
 以下、本発明の実施の形態を、図面を参照して説明する。本実施形態では、検査装置がMRI装置である場合を説明するが、本発明はトンネル状の検査空間を持つ検査装置、例えばCT装置やPET装置でも同様に適用できる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this embodiment, the case where the inspection apparatus is an MRI apparatus will be described. However, the present invention can be similarly applied to an inspection apparatus having a tunnel-like inspection space, for example, a CT apparatus or a PET apparatus.
 図1は、本実施形態のMRI装置の全体を示す外観図、図2は正面図、図3は側面図である。図示するように、このMRI装置は、ガントリー部100とベッド部200とを備えている。 FIG. 1 is an external view showing the entire MRI apparatus of this embodiment, FIG. 2 is a front view, and FIG. 3 is a side view. As illustrated, the MRI apparatus includes a gantry unit 100 and a bed unit 200.
 ベッド部200は、被検体を寝かせるための天板部210と、天板部210を昇降させる昇降機構220と、台車230とを備え、台車230の四隅には走行車輪231が取り付けられており、ガンドリー部100から独立して移動することができる。ベッド部200は、台車230の端部及びガントリー部100の前面に形成された連結部300によりガンドリー部100に連結される。連結時には、天板部210の下面の高さが、後述する検査空間の高さとほぼ同じ高さになるように、昇降機構220によって調整される。 The bed unit 200 includes a top plate unit 210 for laying the subject, a lifting mechanism 220 for raising and lowering the top plate unit 210, and a carriage 230, and traveling wheels 231 are attached to four corners of the carriage 230. It can move independently from the gandory unit 100. The bed part 200 is connected to the gantry part 100 by a connection part 300 formed at the end of the carriage 230 and the front surface of the gantry part 100. At the time of connection, the elevating mechanism 220 adjusts the height of the lower surface of the top plate portion 210 so as to be substantially the same as the height of the inspection space described later.
 ガントリー部100は、大きく逆U字型に湾曲した側面カバー120と、正面パネル110と、裏面パネル(不図示)と、側面カバー120と正面パネル110及び裏面パネルとをそれぞれ連結する曲面カバー130と、正面パネル110及び裏面パネルのほぼ中央に形成された開口部111を連結する内カバー140とを備えている。側面カバー120は、床面に接する端部から上側に向かって垂直に延び、その高さ方向の中央で半円形に湾曲し、ガントリー部100の上面を形成している。 The gantry unit 100 includes a side cover 120, a front panel 110, a back panel (not shown), and a curved cover 130 that connects the side cover 120, the front panel 110, and the back panel. And an inner cover 140 for connecting an opening 111 formed substantially at the center of the front panel 110 and the back panel. The side cover 120 extends vertically upward from an end in contact with the floor surface, and bends in a semicircular shape at the center in the height direction to form the upper surface of the gantry unit 100.
 正面パネル110及び裏面パネルは、ほぼ同じ形状を有しているので、以下、代表して正面パネル110の形状について説明する。正面パネル110の外周の形状は、側面カバー120の端面を正面側から見た形状と相似形で大きさは小さく、中央に略円形の開口部111が形成されている。正面パネル110の外周は、曲面カバー130によって側面カバー120に連結されている。ガントリー100を図3に示すように側面から見た場合、正面パネル110と曲面カバー130との連結部113が最も外側に位置し、正面パネル110は、連結部113から開口部111に向かって凹んだ形状になっている。この凹面形状によって、操作者の作業空間を広げている。 Since the front panel 110 and the back panel have substantially the same shape, the shape of the front panel 110 will be described below as a representative. The shape of the outer periphery of the front panel 110 is similar to the shape of the end face of the side cover 120 viewed from the front side and is small in size, and a substantially circular opening 111 is formed at the center. The outer periphery of the front panel 110 is connected to the side cover 120 by a curved cover 130. When the gantry 100 is viewed from the side as shown in FIG. 3, the connecting portion 113 between the front panel 110 and the curved cover 130 is located on the outermost side, and the front panel 110 is recessed from the connecting portion 113 toward the opening 111. It has a shape. This concave shape widens the operator's work space.
 正面パネル110は、開口部111の周囲に、検査空間の長手方向に平行な断面で見たとき丸み111a(図2)が形成されており、内カバー140に連続している。内カバー140は、断面が円形或いは楕円等の変形した円形の円筒状であり、円筒で囲まれる空間が、被検体が挿入される検査空間(ボア)となる。検査空間の、開口部111側の端部を挿入口或いは入口と呼ぶ。また検査空間の、挿入口から内部に向かう方向を奥行き方向或いは長手方向と呼ぶ。 The front panel 110 has a round 111 a (FIG. 2) formed around the opening 111 in a cross section parallel to the longitudinal direction of the inspection space, and is continuous with the inner cover 140. The inner cover 140 has a circular cylindrical shape with a circular or elliptical cross section, and a space surrounded by the cylinder is an examination space (bore) into which the subject is inserted. The end of the inspection space on the opening 111 side is called an insertion port or an entrance. A direction from the insertion port to the inside of the inspection space is called a depth direction or a longitudinal direction.
 以上説明した、正面パネル110及び裏面パネル、側面カバー120、曲面カバー130及び内カバー140によって構成されるガントリー部の内部の機構は、従来のMRI装置と同様である。MRI装置の概略構成を図4に示す。 The mechanism inside the gantry unit constituted by the front panel 110 and the back panel, the side cover 120, the curved cover 130 and the inner cover 140 described above is the same as that of the conventional MRI apparatus. A schematic configuration of the MRI apparatus is shown in FIG.
 このMRI装置は、ガントリー部100に収納される要素として、超電導磁石等の検査空間に均一な磁場を形成する静磁場発生磁石2と、静磁場発生磁石2が形成する磁場内に配置される傾斜磁場コイル9と、被検体1に対し高周波磁場を照射するためのRF送信コイル14aと、被検体1から発生するNMR信号を受信するRF受信コイル14bとを備えている。RF受信コイル14bは、通常は被検体の検査部位に近接するように配置される。RF送信コイル14aがRF受信コイル14aを兼ねる場合もある。 This MRI apparatus includes, as elements housed in the gantry unit 100, a static magnetic field generating magnet 2 that forms a uniform magnetic field in an examination space such as a superconducting magnet, and a gradient that is disposed within the magnetic field formed by the static magnetic field generating magnet 2 A magnetic field coil 9, an RF transmission coil 14 a for irradiating the subject 1 with a high-frequency magnetic field, and an RF reception coil 14 b for receiving an NMR signal generated from the subject 1 are provided. The RF receiving coil 14b is normally disposed so as to be close to the examination site of the subject. The RF transmission coil 14a may also serve as the RF reception coil 14a.
 これらコイル類を駆動するための駆動系と信号処理系7は、ガントリー部100の外側に設置される。具体的には、RF送信コイル14aは、高周波発振器11、変調器12、高周波増幅器13などの送信系5に接続されている。傾斜磁場コイル9は、X、Y、Zの3軸方向の傾斜磁場コイルからなり、それぞれ、傾斜磁場電源10に接続されている。RF受信コイル14bは、増幅器15、直交位相検波器16、A/D変換器17などからなる受信系6に接続されている。これら送信系5、傾斜磁場発生系3及び受信系6の動作は、シーケンサ4によって制御され、撮影方法によって決まる所定のパルスシーケンスに従い、RFパルスや傾斜磁場パルスの照射、NMR信号の受信が行われる。 The drive system for driving these coils and the signal processing system 7 are installed outside the gantry unit 100. Specifically, the RF transmission coil 14 a is connected to the transmission system 5 such as the high frequency oscillator 11, the modulator 12, and the high frequency amplifier 13. The gradient magnetic field coil 9 is composed of X, Y, and Z gradient magnetic field coils, and is connected to a gradient magnetic field power supply 10 respectively. The RF receiving coil 14b is connected to a receiving system 6 including an amplifier 15, a quadrature detector 16, an A / D converter 17, and the like. The operations of the transmission system 5, the gradient magnetic field generation system 3 and the reception system 6 are controlled by the sequencer 4 and perform irradiation with RF pulses and gradient magnetic field pulses and reception of NMR signals according to a predetermined pulse sequence determined by the imaging method. .
 信号処理系7は、CPU8とディスプレイ20や光ディスク19、磁気ディスク18等の外部記憶装置などからなり、CPU8はシーケンサ4を通して、上述した駆動系の動作を制御するとともに、受信系6が受信したNMR信号を処理し、被検体の画像やスペクトルを再構成し、ディスプレイ20に表示する。ディスプレイ20は、信号処理系の結果である画像等を表示するとともに、制御のGUIを表示する。なおディスプレイは、検査室外に置かれるほかに、ガントリー部100の表面カバーにも設置され、画像や操作者が検査に必要な情報を入出力するためのGUIとして機能する。 The signal processing system 7 includes a CPU 8 and an external storage device such as a display 20, an optical disk 19, and a magnetic disk 18. The CPU 8 controls the operation of the drive system described above through the sequencer 4 and receives the NMR received by the receiving system 6. The signal is processed, and the image and spectrum of the subject are reconstructed and displayed on the display 20. The display 20 displays an image and the like as a result of the signal processing system, and displays a control GUI. In addition to being placed outside the examination room, the display is also installed on the front cover of the gantry unit 100, and functions as a GUI for inputting and outputting images and information necessary for the operator to perform the examination.
 本実施形態の検査装置は、ガンドリー部100の内カバー140に特殊な視覚効果を与える意匠が施されていることが特徴である。以下、意匠の各実施形態を説明する。 The inspection apparatus of the present embodiment is characterized in that a design that gives a special visual effect is applied to the inner cover 140 of the gandory section 100. Hereinafter, each embodiment of the design will be described.
<第一実施形態>
 本実施形態は、内カバー140の表面に複数のドット状の模様(以下、ドットという)を形成したものであり、ドットの周方向の間隔及長手方向の間隔を、内カバーの長手方向(奥行き方向)に沿って変化させていることが特徴である。
<First embodiment>
In the present embodiment, a plurality of dot-like patterns (hereinafter referred to as dots) are formed on the surface of the inner cover 140, and the distance between the dots in the circumferential direction and the distance in the longitudinal direction are set in the longitudinal direction (depth) of the inner cover. It is characteristic that it is changed along the direction.
 検査空間(内カバー140)の断面形状と、検査空間の上面側となる内カバーの部分を展開した図を図5(a)、(b)に示す。図5(a)に示すように、本実施形態の内カバー140の断面形状は、楕円形の一部を平坦にした形状を有している。平坦な部分141はベッド部200の天板210が走行する走行面であり、図5(b)は、平坦部141を除く楕円形部分142を展開した図である。被検体(不図示)は、通常、天板210に仰向けに寝かせられた状態で、内カバー140で覆われた検査空間に挿入される。内カバー140の断面形状が楕円形であることにより、体格の異なる(横幅の異なる)種々の被検体に対応できるようになっている。 FIGS. 5A and 5B show a cross-sectional shape of the inspection space (inner cover 140) and an expanded view of the inner cover portion on the upper surface side of the inspection space. As shown in FIG. 5A, the cross-sectional shape of the inner cover 140 of this embodiment has a shape in which a part of an ellipse is flattened. The flat part 141 is a traveling surface on which the top plate 210 of the bed part 200 travels, and FIG. 5B is a developed view of the elliptical part 142 excluding the flat part 141. The subject (not shown) is usually inserted into the examination space covered with the inner cover 140 in a state where the subject is laid on his / her back on the top plate 210. Since the cross-sectional shape of the inner cover 140 is an ellipse, it can respond to various subjects having different physiques (different widths).
 天板に寝かせられた状態の被検体の視点の平均的な位置を、図5(a)中、Eで示している。人の左右の視野角θはほぼ135度であり、天板210に仰向けに寝かせられた被検体は、内カバー140の上面のほぼ135度の範囲を見ることになる。上面の、視点Eから135度の位置の内側に、図5(b)に示すように、2列のドット150が描画されている。ドットの形状は、図では四角形であるが、特に限定されず、円形、三角形、星型など任意の形状にすることができる。またドットの大きさは、描画されていることが明確に認識できる大きさであれば特に限定されるものではない。 The average position of the viewpoint of the subject in the state of being laid on the top is indicated by E in FIG. The viewing angle θ of the human right and left is approximately 135 degrees, and the subject laid on his back on the top board 210 sees a range of approximately 135 degrees on the upper surface of the inner cover 140. As shown in FIG. 5B, two rows of dots 150 are drawn inside the upper surface at a position of 135 degrees from the viewpoint E. The shape of the dots is a quadrangle in the figure, but is not particularly limited, and can be an arbitrary shape such as a circle, a triangle, or a star. Further, the size of the dot is not particularly limited as long as it can be clearly recognized that the drawing is performed.
 2列のドット150は、周方向(左右方向)のドット間の間隔Wが入口(正面パネルの開口側)で最も広く、裏面パネル側に向かって狭まるように配置されている。入口から挿入される被検体の目には、奥行き方向への移動に伴い、左右のドットの間隔が狭まっていくことにより、遠近感の錯覚が起り、あたかもドットが遠のいていく、つまり上側に向かっていくように感じられる。つまり、視点Eから内カバー上面までの物理的な距離は変化しないにも拘わらず、被検体には内カバー上面が高くなるような錯覚を被検体に与えることができる。これにより、閉塞感を緩和することができる。 The two rows of dots 150 are arranged such that the interval W between the dots in the circumferential direction (left-right direction) is the widest at the entrance (opening side of the front panel) and narrows toward the back panel. In the eye of the subject inserted from the entrance, as the distance between the left and right dots decreases as the movement in the depth direction, an illusion of perspective occurs, as if the dots are far away, that is, upward. It feels like going. That is, although the physical distance from the viewpoint E to the inner cover upper surface does not change, the subject can be given an illusion that the inner cover upper surface becomes higher. Thereby, a feeling of obstruction | occlusion can be relieved.
 左右のドット150間の間隔Wは、視野の範囲内で変化すればよいが、本実施形態では入口付近で視野の角度θに近く、検査空間のほぼ中央付近で左右の眼の間隔に近づくように設計されている。検査空間の中央部より裏面パネル側は等間隔としてもよい。通常、被検体が最も奥深く挿入されるのは、頭部検査の場合であり、その場合、被検体の頭部がほぼ検査空間の中央付近に位置するようにするからである。また左右のドットの間隔の変化は直線的でもよいが、本実施形態では入口から検査空間の奥行き方向中央までを放物線に沿って変化させている。放物線に沿って変化させることにより、入口に近いほど変化の度合いが大きく、奥行き方向に進むに従い変化の度合いが小さくなる。これにより挿入時に最も効果的に遠近感の錯覚を与えることができ、被検体の安心感を高めることができる。 The interval W between the left and right dots 150 may be changed within the range of the visual field, but in the present embodiment, it is close to the visual field angle θ near the entrance and approaches the distance between the left and right eyes near the center of the examination space. Designed to. The back panel side may be equally spaced from the center of the inspection space. Usually, the subject is inserted most deeply in the case of head examination, and in that case, the subject's head is positioned substantially near the center of the examination space. The change in the interval between the left and right dots may be linear, but in this embodiment, the distance from the entrance to the center in the depth direction of the examination space is changed along the parabola. By changing along the parabola, the degree of change increases as the distance from the entrance increases, and the degree of change decreases as the depth advances. Thereby, the illusion of perspective can be given most effectively at the time of insertion, and the sense of security of the subject can be enhanced.
 また本実施形態では、左右一対のドット150の奥行き方向の間隔(配列ピッチ)Pが、入口付近では狭く、奥行き方向に沿って広がっている。このドットの配置によって、検査空間を外側から見た場合に、ドットのピッチPが実際には内部に行くに従い広がっているにも拘わらず、ほぼ同ピッチに見えるので、検査空間の奥行き方向の長さが実際よりも短く見える視覚効果を与える。ドットの奥行き方向の配列ピッチPをほぼ同間隔に見せるためのピッチPの変化のさせ方は、被検体の目の高さ(天板からの垂直方向の高さ)、目の位置から検査空間の入口までの距離及び検査空間の長さによっても異なるが、奥行き方向の1列に並ぶドットの数をNとし、目の位置から検査空間の入口までの距離を100としたとき、入り口から1番目のドットまでの距離が10~20%、N-1番目のドットからN番目のドットまでの距離が25%以上、具体的には25%~40%の範囲とすることが好ましい。 In this embodiment, the distance (arrangement pitch) P in the depth direction of the pair of left and right dots 150 is narrow near the entrance and widens along the depth direction. With this dot arrangement, when the inspection space is viewed from the outside, the dot pitch P actually appears to be almost the same pitch even though it increases toward the inside. Gives a visual effect that looks shorter than it actually is. The method of changing the pitch P in order to make the arrangement pitch P in the depth direction of the dots look substantially the same is as follows: the eye height of the subject (the height in the vertical direction from the top), and the examination space from the eye position The number of dots arranged in a row in the depth direction is N, and the distance from the eye position to the entrance of the inspection space is 100. The distance from the Nth dot to the Nth dot is preferably 10% to 20%, and the distance from the (N-1) th dot to the Nth dot is preferably 25% or more, specifically 25% to 40%.
 ドットの配列ピッチP(奥行き方向)を検査対象(被検体)別に検討した結果を図6に示す。図6(a)~(b)において、それぞれ、右側の図は、図5(a)と同じ、検査空間の長手方向と直交する方向の断面であり、左側の図は検査空間の長手方向に沿った側断面である。図6(a)は、被検体の視点Eが検査空間の中心と同じ高さにあり、視点Eから入口までの距離が600mmの場合、(b)は被検体の視点Eの高さが検査空間の中心の高さより低く、視点Eから入口までの距離が800mmの場合、(c)は被検体の視点Eの高さが検査空間の中心の高さより高く、視点Eから入口までの距離が1000mmの場合である。なお、ここで入口とは、内カバーの径が一定である円筒部の被検体挿入側の端部を指している。図6に示す検査空間の側断面図上で、視点Eから検査空間(円筒)の上部両端をそれぞれ直線で結び、これら2本の直線の間に、等角度間隔で[ドット数-1]の直線を引き、これら直線と円筒が交わる点を奥行き方向のドットの位置とする。図5に示すようにドットが周方向に一対形成される場合には、直線と円筒が交わる点を中心にして、その両側にドットを配置する。左右のドットの間隔Wは上述したとおり、奥行き方向の位置によって変化する、つまり内部に行くほど狭くする。 FIG. 6 shows the result of examining the dot arrangement pitch P (depth direction) for each inspection object (subject). 6 (a) to 6 (b), the right-side view is the same as FIG. 5 (a) in the direction perpendicular to the longitudinal direction of the examination space, and the left-hand side view is in the longitudinal direction of the examination space. FIG. FIG. 6A shows that when the viewpoint E of the subject is at the same height as the center of the examination space and the distance from the viewpoint E to the entrance is 600 mm, the height of the viewpoint E of the subject is examined. When the distance from the center of the space is less than 800 mm and the distance from the viewpoint E to the entrance is 800 mm, (c) shows that the height of the viewpoint E of the subject is higher than the center height of the examination space, and the distance from the viewpoint E to the entrance is This is the case for 1000 mm. Here, the term “inlet” refers to the end of the cylindrical portion where the inner cover has a constant diameter on the subject insertion side. On the side sectional view of the inspection space shown in FIG. 6, the upper ends of the inspection space (cylinder) are connected by straight lines from the viewpoint E, and [dot number-1] is equiangularly spaced between these two straight lines. A straight line is drawn, and a point where the straight line and the cylinder intersect is defined as a dot position in the depth direction. As shown in FIG. 5, when a pair of dots are formed in the circumferential direction, the dots are arranged on both sides of the point where the straight line and the cylinder intersect. As described above, the interval W between the left and right dots varies depending on the position in the depth direction, that is, it becomes narrower as it goes inside.
 図6(a)に示す例では、N-1番目(ここでは10番目)のドットとN番目(11番目)のドットとの間隔は、1番目のドットと2番目のドットとの間隔の約6.7倍である。図6(b)に示す例では、N-1番目のドットとN番目のドットとの間隔は1番目のドットと2番目のドットの間隔の約4.8倍である。図6(c)に示す例では、N-1番目のドットとN番目のドットとの間隔は、1番目のドットと2番目のドットの間隔の約4倍である。これらの結果からもわかるように、視点から入口までの距離が短いほど、変化の度合いを大きくすることにより、ドットの間隔を同じ間隔に見せる効果が得られる。従って、実際の適用に際しては、平均的な被検体の身長を考慮してドットを配置する、或いはドットの配置に応じて、検査空間に挿入する前の被検体位置(視点の位置)を決めるようにすることが好ましい。 In the example shown in FIG. 6A, the interval between the (N−1) th (here 10th) dot and the Nth (11th) dot is about the interval between the 1st dot and the 2nd dot. It is 6.7 times. In the example shown in FIG. 6B, the interval between the (N−1) th dot and the Nth dot is about 4.8 times the interval between the first dot and the second dot. In the example shown in FIG. 6C, the interval between the (N−1) th dot and the Nth dot is about four times the interval between the first dot and the second dot. As can be seen from these results, the shorter the distance from the viewpoint to the entrance, the greater the degree of change, thereby obtaining the effect of making the dot intervals appear the same. Therefore, in actual application, dots are arranged in consideration of the average height of the subject, or the subject position (viewpoint position) before being inserted into the examination space is determined according to the arrangement of the dots. It is preferable to make it.
 このようにドットの奥行き方向の位置を決定した場合、検査空間に挿入される前の被検体の視点Eから検査空間を見た場合、ドットはほぼ同じピッチで並んでいるように見え、実際の奥行きよりも短く見える。これにより長い検査空間に挿入されるという被検体の恐怖感を和らげることができる。 When the positions of the dots in the depth direction are determined in this way, when the examination space is viewed from the viewpoint E of the subject before being inserted into the examination space, the dots appear to be arranged at substantially the same pitch, Looks shorter than the depth. As a result, the fear of the subject being inserted into a long examination space can be reduced.
 以上説明したように本実施形態の検査装置は、ガントリー部の内カバーに、被検体に対し視覚的効果をもたらすドットを配置している。ドットの配置の一つの特徴は、ドットを被検体の左右方向に少なくとも一対配置し、その左右のドットの間隔を検査空間の奥行き方向に沿って狭めるというものである。これにより、検査空間に挿入されるときに、検査空間が上方に向かって広がるように感じる視覚効果を与えることができる。ドットの配置のもう一つの特徴は、ドットの奥行き方向の間隔(配列ピッチ)を奥行き方向に沿って広げるというものである。この配置によって、検査空間に入る前にベッド部200に寝かせられた被検体に対し、検査空間の奥行きが実際よりも短く感じる視覚効果を与えることができる。 As described above, in the inspection apparatus of the present embodiment, dots that provide a visual effect on the subject are arranged on the inner cover of the gantry section. One feature of dot arrangement is that at least a pair of dots are arranged in the left-right direction of the subject, and the interval between the left and right dots is reduced along the depth direction of the examination space. Thereby, when inserted into the examination space, it is possible to provide a visual effect that makes the examination space feel as if it expands upward. Another feature of the dot arrangement is that the interval (arrangement pitch) in the depth direction of the dots is increased along the depth direction. With this arrangement, it is possible to give a visual effect that the depth of the examination space is shorter than the actual depth to the subject laid on the bed unit 200 before entering the examination space.
 なお、図5に示す実施例では、ドットを左右方向に2列配列した場合を示したが、ドットの列数は2列に限らず、3列或いはそれ以上であってもよい。また図5に示す例では、ドットの大きさは全て同じにしているが、ドットの大きさを例えば検査空間の入口側では大きく、中側に向かって小さくするなど、異ならせてもよい。 In the embodiment shown in FIG. 5, the case where dots are arranged in two rows in the left-right direction is shown, but the number of dots is not limited to two, and may be three or more. In the example shown in FIG. 5, the sizes of the dots are all the same, but the sizes of the dots may be different, for example, larger at the entrance side of the inspection space and smaller toward the middle side.
 また、第一実施形態では、上述した二つの特徴をいずれも有するドットの配置例を説明したが、いずれか一方のみの特徴を備える場合も本発明に含まれる。即ち、ドットの奥行き方向の間隔は一定として、一対のドットの周方向の間隔を検査空間の奥行き方向に沿って狭めてもよいし、一対のドットの周方向の間隔は一定とし、奥行き方向の間隔を奥に行くに従って広げるようにしてもよい。いずれの場合にもそれぞれの特徴による視覚効果を得ることができる。 In the first embodiment, the dot arrangement example having both of the above-described two features has been described. However, the present invention includes a case where only one of the features is provided. That is, the distance between the dots in the depth direction may be constant, and the distance between the pair of dots in the circumferential direction may be narrowed along the depth direction of the inspection space, or the distance between the pair of dots in the circumferential direction may be constant. The interval may be increased as it goes deeper. In any case, the visual effect by each feature can be obtained.
<第二実施形態>
 本実施形態は、内カバー140の表面に、検査空間を構成する円筒部の円周に沿って複数のライン状の模様(以下、ラインという)を形成したものであり、ライン間の間隔及びラインの太さを内カバーの長手方向に沿って変化させていること、及び、ラインの色調を周方向で変化させていることが特徴である。
<Second embodiment>
In the present embodiment, a plurality of line-like patterns (hereinafter referred to as lines) are formed on the surface of the inner cover 140 along the circumference of the cylindrical portion constituting the inspection space. The thickness is changed along the longitudinal direction of the inner cover, and the color tone of the line is changed in the circumferential direction.
 内カバー140の断面形状と上面側の部分を展開した図を図7(a)、(b)に示す。図7(a)は、図5(a)と同様であるので説明を省略し、図7(b)に示されたライン160について詳述する。ライン160の特徴の一つは、図7(b)で示す両端から中央に向かって明度が高くなっている点である。図7(b)の模様を検査空間の平坦部より上の曲面部分に施した場合、検査空間に寝かせられた被検体には、上記階調の変化は、両側では色が濃く上に行くに従って薄くなる色の変化として視認され、被検体に上側が広がっているような感覚を与える。ラインの色は、背景の色(淡色)よりも明度の低い色であれば、青、黒、緑、茶など適宜選択することができ、また複数の色を組み合わせてもよい。 7A and 7B are views in which the cross-sectional shape of the inner cover 140 and the upper surface side portion are developed. Since FIG. 7A is the same as FIG. 5A, a description thereof will be omitted, and the line 160 shown in FIG. 7B will be described in detail. One of the features of the line 160 is that the brightness increases from both ends to the center shown in FIG. When the pattern shown in FIG. 7B is applied to the curved surface portion above the flat portion of the examination space, the change in the gradation of the subject laid down in the examination space becomes darker on both sides. It is visually recognized as a color change that fades, giving the subject a feeling that the upper side is spreading. As long as the color of the line is lighter than the background color (light color), blue, black, green, brown, and the like can be selected as appropriate, and a plurality of colors may be combined.
 ライン160のもう一つの特徴は、その幅dが検査空間の奥行き方向に向かって細くなっている点である。被検体が仰向けに寝かせられた状態で検査空間内を移動させられるとき、ラインの幅dが徐々に狭まることによって、第一の実施形態においてドット間の間隔Wが奥行き方向に向かって狭まる場合と同様に、遠近感の錯覚が起り、被検体にはラインが遠のき、上昇していくような錯覚を覚え、検査空間の天井が高くなるように感じられる。これにより、閉塞感を緩和することができる。 Another feature of the line 160 is that its width d becomes narrower in the depth direction of the examination space. When the object is moved in the examination space with the subject lying on his / her back, the line width d is gradually narrowed, whereby the interval W between dots is narrowed in the depth direction in the first embodiment. Similarly, an illusion of perspective occurs, the subject feels the illusion that the line goes far and rises, and the ceiling of the examination space is felt to be high. Thereby, a feeling of obstruction | occlusion can be relieved.
 ラインの幅dを変化させる範囲は、検査空間の入口から、被検体の頭部が配置される最も深い部分即ち検査空間のほぼ中央付近まででよい。中央から裏面パネルの入口までは、ライン幅を同じにしてもよいし、同様の変化度合いで変化させてもよい。 The range in which the width d of the line is changed may be from the entrance of the examination space to the deepest part where the head of the subject is arranged, that is, near the center of the examination space. From the center to the entrance of the back panel, the line width may be the same or may be changed with the same degree of change.
 ライン幅の変化のさせ方は、特に限定されるものではないが、入口に最も近いライン(1番目のライン)の幅に対し、最も幅の狭いラインの幅を50%~75%程度とする。図7に示す例では、1番目のラインの幅30mmに対し、放物線状即ち二次関数(a-bx2,xは入口からの距離)に従ってライン幅を変化させており、検査空間のほぼ中央で22mm(1番目のラインの73.3%)となっている。 The method of changing the line width is not particularly limited, but the width of the narrowest line is about 50% to 75% of the width of the line closest to the entrance (first line). . In the example shown in FIG. 7, the line width is changed in accordance with a parabolic shape, that is, a quadratic function (a−bx 2 , x is a distance from the entrance) with respect to the width of 30 mm of the first line, and is almost at the center of the examination space 22 mm (73.3% of the first line).
 また本実施形態の内カバーにおいても、ラインとラインとの配列ピッチPが検査空間の奥行き方向に向かって広くなるように設計されている。これは、第一実施形態と同様に、検査空間を外側から見たときに、実際の奥行きよりも短く感じさせる視覚効果を与える。つまり、ベッド部に寝かせられた被検体が、検査空間の入口から数10cm離れたところから見たときに、ラインの間隔がほぼ同等に見えるように配列ピッチPが決められている。このような配列ピッチPの変化のさせ方は、第一実施形態のドットの配列ピッチPについて図6を用いて説明した場合と同様である。ただし、本実施形態ではラインの幅dが変化していくので、ライン間の間隔は、全てのラインについて、ラインの入口側の端部を基準に決定する。 The inner cover of the present embodiment is also designed so that the line-to-line arrangement pitch P increases in the depth direction of the inspection space. Similar to the first embodiment, this gives a visual effect that makes the user feel the space shorter than the actual depth when viewed from the outside. That is, the arrangement pitch P is determined so that the distance between the lines looks almost the same when the subject laid on the bed is viewed from a position several tens of centimeters away from the entrance of the examination space. The method of changing the arrangement pitch P is the same as that described with reference to FIG. 6 for the dot arrangement pitch P of the first embodiment. However, since the line width d changes in this embodiment, the spacing between the lines is determined based on the end of the line width on the entrance side for all lines.
 本実施形態においても、第一実施形態と同様に、検査空間内を移動させられるときに、検査空間が広がるように感じる視覚効果と、検査空間に入る前に検査空間の奥行きが実際よりも短く感じる視覚効果を与えることができる。 Also in the present embodiment, as in the first embodiment, when moving in the inspection space, the visual effect that makes the inspection space feel wide, and the depth of the inspection space is shorter than the actual depth before entering the inspection space. You can give the visual effect you feel.
 なお本実施形態では、奥行き方向に配置されたラインに、周方向のグラデーションを与える、ラインの幅dを奥行き方向に向かって狭める、ラインのピッチを奥行き方向に向かって広げる、という3つの特徴を有する場合を説明したが、これら特徴の一つのみ或いは任意の二つの組合せのみを備える場合も本発明に含まれる。即ち、ラインの幅及びピッチの一方又は両方を一定として、周方向のグラデーションを与えてもよい。またグラデーションはないが、ラインの幅を奥行き方向に向かって狭める或いはラインのピッチを奥行き方向に向かって広げてもよいし、グラデーションはないが、ラインの幅及びピッチの両方を奥行き方向に向かって変化させてもよい。いずれの場合にもそれぞれの特徴による視覚効果を得ることができる。 In the present embodiment, the three features of giving circumferential gradation to the lines arranged in the depth direction, narrowing the line width d in the depth direction, and widening the line pitch in the depth direction are provided. Although the case where it has was demonstrated, the case where only one of these characteristics or only two arbitrary combinations is included is also included in this invention. That is, one or both of the line width and the pitch may be constant, and a circumferential gradation may be given. Although there is no gradation, the width of the line may be narrowed in the depth direction or the pitch of the line may be increased in the depth direction. There is no gradation, but both the width and pitch of the line are directed toward the depth direction. It may be changed. In any case, the visual effect by each feature can be obtained.
<第三実施形態>
 第一実施形態及び第二実施形態では、被検体に視覚効果を与える模様として、内カバー140に幾何学的な模様を施した場合を説明したが、具象的な模様(オブジェクト)、例えば空(雲の配置、星空)や海(砂浜、海底等)や植物(木や花びら)、さらには小児を対象としてアニメーションのキャラクターなどの模様を設けることも可能である。これらの模様を、第一実施形態や第二実施形態と同様に遠近感を錯覚させる配置で配置することにより、同様の効果を得ることができる。
<Third embodiment>
In the first embodiment and the second embodiment, the case where a geometric pattern is applied to the inner cover 140 as a pattern that gives a visual effect to the subject has been described. However, a concrete pattern (object), for example, an empty ( Clouds, starry sky, sea (sand beaches, seabed, etc.), plants (trees and petals), and even animated characters for children can be provided. Similar effects can be obtained by arranging these patterns in an arrangement that gives an illusion of perspective as in the first and second embodiments.
 雲の配置の一例を図8に示す。図8(a)は、図5(a)及び図7(a)と同じく検査空間の断面と被検体の視点Eとの関係を示す図であり説明を省略する。 An example of cloud arrangement is shown in FIG. FIG. 8A is a diagram showing the relationship between the cross section of the examination space and the viewpoint E of the subject, as in FIGS. 5A and 7A, and a description thereof will be omitted.
 図8(b)に示すように、本実施形態のガンドリーは、内カバー140の表面に雲170を配置した空の模様が施されている。空の部分は青色を基調とし、検査空間に寝かせられた被検体が対面する上面が濃く、両側に向かって淡色になるように階調が設けられている。この色の変化は、第二実施形態のラインの階調の変化とは逆であるが、自然の空の色が地上に近くなるにつれて淡く白色に近づくのを模して、本実施形態では上述の構成とし、それによって被検体に上面が高いと感じさせる効果を得ている。 As shown in FIG. 8 (b), the Gandory according to the present embodiment has an empty pattern in which clouds 170 are arranged on the surface of the inner cover 140. The sky part is based on blue, and the gradation is provided so that the upper surface facing the subject laid down in the examination space is dark and lighter toward both sides. This change in color is opposite to the change in the gradation of the line in the second embodiment, but in this embodiment, the color of the natural sky approaches lighter white as it approaches the ground. Thus, the effect of making the subject feel that the upper surface is high is obtained.
 雲170の配置の基本的な考え方は、第一実施形態と同じであるが、自然の空を模すために、大きさの異なる雲をある程度ランダムに配置し、しかも点在する雲の周方向に間隔が入口では広く、検査空間の奥行き方向に沿って狭まるように、雲が配置されている。また雲は上面から両側に向かって鮮明度を低くしている。このような模様が施された検査空間内を移動させられる被検体は、空を見上げているような開放感を感じると共に、奥行き方向への移動に伴い上面(空)が高くなるような感覚を覚え、閉塞感が軽減される。また両側の雲の鮮明度が低くなっているため、視野の両側の領域(ぼんやりと見えている領域)の圧迫感が低減される。 The basic concept of the arrangement of the clouds 170 is the same as that of the first embodiment, but in order to simulate the natural sky, clouds of different sizes are arranged at random to some extent, and the circumferential direction of the scattered clouds In addition, the clouds are arranged so that the gap is wide at the entrance and narrows along the depth direction of the examination space. Also, the clouds are decreasing in sharpness from the top to both sides. The subject that can be moved in the examination space with such a pattern feels open as if looking up at the sky, and has a feeling that the upper surface (sky) becomes higher as it moves in the depth direction. Remember, the feeling of obstruction is reduced. In addition, since the clarity of the clouds on both sides is low, the feeling of pressure in the regions on both sides of the field of view (the region that is blurred) is reduced.
 本実施形態では、雲の奥行き方向の間隔はランダムであり、第一実施形態及び第二実施形態で採用している奥行き方向の配列ピッチを変化させる構成は採用していないが、検査空間の手前に寝かせられた被検体には、検査空間内に空の模様が施されていることにより、無彩色或いは淡色の検査空間に挿入される場合に比べ、抵抗感を少なくすることができる。 In the present embodiment, the distance between the clouds in the depth direction is random, and the configuration for changing the arrangement pitch in the depth direction employed in the first embodiment and the second embodiment is not employed. Since the subject placed on the bed is provided with an empty pattern in the examination space, a sense of resistance can be reduced as compared with a case where the subject is inserted into an achromatic or light-colored examination space.
 なお本実施形態では、背景となる色に自然を模したグラデーションを与える、背景に配置されるオブジェクトの密度を奥行き方向に向かって変化させる、オグジェクトの鮮明度を周方向で変化させる、という3つの特徴を備える場合を説明したが、これら特徴の一つのみ或いは任意の二つの組合せのみを備える場合にも本発明に含まれ、いずれの場合にもそれぞれの特徴による視覚効果を得ることができる。 In the present embodiment, the background color is given a gradation simulating nature, the density of objects arranged in the background is changed in the depth direction, and the sharpness of the object is changed in the circumferential direction. Although the case where the feature is provided has been described, the case where only one of these features or only a combination of any two of them is provided is also included in the present invention, and in any case, the visual effect by each feature can be obtained.
 以上、本発明の検査装置のガントリー表面に施される意匠の実施形態を説明したが、次にこれら意匠を施す手法について簡単に説明する。 As mentioned above, although the embodiment of the design given to the gantry surface of the inspection device of the present invention was explained, the technique for giving these designs is explained briefly next.
 一般に内カバーを含むガントリーは、FRP等のプラスチック材料で形成されている。このような素材に上述した模様を施す方法としては、プラスチック材料の表面に公知の印刷方法を用いた印刷、転写材料を用いた転写、或いは印刷や転写等で模様を施した紙やフィルムを内カバーの外側に貼着或いは固定する方法などを採用することができる。特に、可撓性のあるプラスチック製の薄板を着脱可能に固定するようにした場合には、模様が異なる種々の薄板を用意しておき、被検体の年齢(子供か大人か)や体格などに応じて適宜選択した意匠を備えた薄板を内カバーに固定するようにしてもよい。 Generally, the gantry including the inner cover is made of a plastic material such as FRP. As a method for applying the above-mentioned pattern to such a material, printing using a known printing method on the surface of a plastic material, transfer using a transfer material, or paper or film having a pattern formed by printing or transfer, etc. A method of sticking or fixing to the outside of the cover can be employed. In particular, when a flexible plastic thin plate is detachably fixed, various thin plates with different patterns are prepared, and the age of the subject (children or adults), physique, etc. You may make it fix the thin plate provided with the design suitably selected according to the inner cover.
<第四実施形態>
 以上説明した第一~第三実施形態は、内ガントリー140の表面即ち検査空間を構成する面に、平面的な(平滑な)意匠を施したものであるが、本実施形態では、光学フィルムを用いたことを特徴とする。一般に凸レンズの焦点の内側に物を置いた場合、その物より遠くに物の拡大された像(虚像)が見えることは良く知られている。本実施形態はその物理現象を利用する。このため光学フィルムとして、表面に非常に細かい凸レンズが多数形成された光学フィルムを用いる。内カバーの表面に細かいドット等の模様を形成し、それに密着して、この凸レンズが形成された光学フィルムを積層する。
<Fourth embodiment>
In the first to third embodiments described above, the surface of the inner gantry 140, that is, the surface constituting the inspection space is given a planar (smooth) design. In this embodiment, an optical film is used. It is used. Generally, when an object is placed inside the focal point of a convex lens, it is well known that an enlarged image (virtual image) of the object can be seen farther than the object. This embodiment uses the physical phenomenon. For this reason, an optical film in which a number of very fine convex lenses are formed on the surface is used as the optical film. A pattern such as fine dots is formed on the surface of the inner cover, and the optical film on which this convex lens is formed is laminated in close contact therewith.
 図9に、光学フィルム180と内カバーに形成された模様190との関係を示す。図示するように内カバー140の表面には、多数のドット状の模様190が形成されている。ドットの形状は、任意であるが、大きさは光学フィルムに形成されている凸レンズの幅よりも小さいほうがよい。一方、光学フィルム180の表面には、このドットの配置とほぼ対応する配置で凸レンズ181が形成されており、光学フィルムの厚みは、形成された凸レンズの表面から焦点Fまでの距離より薄い。即ち焦点位置は光学フィルムの外側にある。このような光学フィルム180の凸レンズ181が形成されている面と反対側の面を内カバー140の表面即ちドット模様190が形成された面に密着するように固定する。固定方法は接着剤を利用した貼着であってもよいし、単に密着するように端部を固定してもよい。 FIG. 9 shows the relationship between the optical film 180 and the pattern 190 formed on the inner cover. As shown in the drawing, a large number of dot-like patterns 190 are formed on the surface of the inner cover 140. The shape of the dot is arbitrary, but the size should be smaller than the width of the convex lens formed on the optical film. On the other hand, convex lenses 181 are formed on the surface of the optical film 180 in an arrangement substantially corresponding to the arrangement of the dots, and the thickness of the optical film is thinner than the distance from the surface of the formed convex lens to the focal point F. That is, the focal position is outside the optical film. The surface of the optical film 180 opposite to the surface on which the convex lens 181 is formed is fixed so as to be in close contact with the surface of the inner cover 140, that is, the surface on which the dot pattern 190 is formed. The fixing method may be sticking using an adhesive, or the end portion may be fixed so as to be in close contact.
 内カバー140の表面側(検査空間の内壁側)からドット190を見た場合、ドット190と凸レンズ181中心との距離が焦点距離よりも短いため、その虚像195が実際のドット190の位置よりも凸レンズ181から離れた位置に見えることになる。内カバーに設けられたドット全体の虚像からなる模様が、内カバーよりも遠い位置に見えるので、被検体には検査空間が半径方向に大幅に広がって見えることになる。 When the dot 190 is viewed from the surface side of the inner cover 140 (inner wall side of the inspection space), the distance between the dot 190 and the center of the convex lens 181 is shorter than the focal length, so that the virtual image 195 is smaller than the actual position of the dot 190. It will appear at a position away from the convex lens 181. Since the pattern composed of the virtual image of the entire dot provided on the inner cover appears at a position farther than the inner cover, the examination space appears to greatly expand in the radial direction to the subject.
 一例として、凸レンズの大きさを0.1mm(焦点距離5mm)、光学フィルムの厚み(凸レンズが形成されていない部分の厚み)を4mm、及びドットの大きさを0.05mmとした場合、虚像は実際のドットが形成されている位置から約20mm離れて見える。このことは検査空間が半径方向に約20mm広がって見えることを意味する。光学フィルムの厚みの分、検査空間の半径は4mm程度狭まるが、これは虚像によって広がって見える距離に対し十分に小さい。 As an example, when the size of the convex lens is 0.1 mm (focal length 5 mm), the thickness of the optical film (the thickness of the portion where the convex lens is not formed) is 4 mm, and the dot size is 0.05 mm, the virtual image is It looks about 20 mm away from the position where the actual dots are formed. This means that the examination space appears to expand about 20 mm in the radial direction. The radius of the inspection space is reduced by about 4 mm corresponding to the thickness of the optical film, but this is sufficiently smaller than the distance that appears to be spread by the virtual image.
 本実施形態によれば、実際の模様の位置よりも離れた位置に虚像を生じさせる光学フィルムを用いることにより、検査空間を大幅に広げて見せることができ、検査空間内に寝かせられた被検体の閉塞感を緩和することができる。 According to the present embodiment, by using an optical film that generates a virtual image at a position distant from the position of the actual pattern, the examination space can be shown greatly expanded, and the subject laid in the examination space The feeling of occlusion can be relieved.
 以上、本発明のMRI装置のガントリーに設けられる意匠の各実施形態を説明したが、図面や説明で示した形状やサイズは一例であり、適宜変更することが可能である。またこれら実施形態を適宜組み合わせることも可能である。 As mentioned above, although each embodiment of the design provided in the gantry of the MRI apparatus of this invention was described, the shape and size shown by drawing and description are examples, and can be changed suitably. Further, these embodiments can be appropriately combined.
 以上の第一~第四の実施形態では検査空間の断面が楕円状となっている例を示したが、これに限らず、円状であっても良いしその他形状であっても同様の効果を奏することは云うまでも無い。 In the first to fourth embodiments described above, the example in which the cross section of the examination space is elliptical is shown, but the present invention is not limited to this, and the same effect may be obtained even if it is circular or other shapes. Needless to say.
 本発明によれば、ガントリー、特に被検体が挿入される検査空間を覆う内カバーの表面に、検査空間を広く見せる視覚効果や検査空間の奥行きを短く見せる視覚効果を持つ意匠を施すことにより、検査を受ける被検体の閉塞感や圧迫感を緩和することができる。本発明は、トンネル状(筒状)の検査空間を持つ検査装置に特に有効であるが、検査空間が上下或いは左右の面で挟まれた構造を持つオープン型の検査装置にも適用することができる。 According to the present invention, on the surface of the inner cover that covers the examination space into which the subject is inserted, particularly the gantry, by applying a design having a visual effect that makes the examination space wide and a visual effect that makes the depth of the examination space short, It is possible to relieve the feeling of blockage and pressure on the subject to be examined. The present invention is particularly effective for an inspection apparatus having a tunnel-like (cylindrical) inspection space, but can also be applied to an open type inspection apparatus having a structure in which the inspection space is sandwiched between upper and lower or left and right surfaces. it can.
100・・・ガントリー部、110・・・正面パネル、120・・・側面カバー、130・・・曲面カバー、140・・・内カバー(検査空間内壁)、141・・・平坦部、142・・・楕円形部分、150・・・ドット、160・・・ライン、170・・・雲の模様(オブジェクト)、180・・・光学フィルム、181・・・凸レンズ、190・・・ドット、200・・・ベッド部、210・・・天板部、220・・・昇降機構、230・・・台車。

 
DESCRIPTION OF SYMBOLS 100 ... Gantry part, 110 ... Front panel, 120 ... Side cover, 130 ... Curved surface cover, 140 ... Inner cover (inspection space inner wall), 141 ... Flat part, 142 ... -Ellipse part, 150 ... dot, 160 ... line, 170 ... cloud pattern (object), 180 ... optical film, 181 ... convex lens, 190 ... dot, 200 ... -Bed part, 210 ... Top plate part, 220 ... Lifting mechanism, 230 ... Cart.

Claims (11)

  1.  被検体を挿入する検査空間を有する検査装置であって、
     前記検査空間に面する内壁に、前記被検体に対し視覚的効果を与える意匠が形成されているものであり、
     前記意匠は、複数の要素またはオブジェクトを含み、
     前記要素間の間隔または前記オブジェクト間の間隔は、前記検査空間の長手方向の間隔及び/又は周方向の間隔が、前記被検体の挿入口側から奥側に向かって変化していることを特徴とする検査装置。
    An inspection apparatus having an inspection space for inserting a subject,
    The inner wall facing the examination space is formed with a design that gives a visual effect to the subject,
    The design includes a plurality of elements or objects,
    As the interval between the elements or the interval between the objects, the interval in the longitudinal direction and / or the interval in the circumferential direction of the examination space changes from the insertion port side to the back side of the subject. Inspection equipment.
  2.  請求項1に記載の検査装置であって、
     前記要素またはオブジェクトの、前記検査空間における長手方向の間隔は、前記挿入口側で狭く、奥側で広いことを特徴とする検査装置。
    The inspection apparatus according to claim 1,
    The inspection apparatus according to claim 1, wherein a distance between the elements or the objects in the longitudinal direction in the inspection space is narrow on the insertion port side and wide on the back side.
  3.  請求項2に記載の検査装置であって、
     前記要素またはオブジェクトの、前記検査空間における長手方向の間隔は、前記検査空間の挿入口から所定距離離れた位置から見たときに、遠近法によりほぼ同間隔に見える視覚効果を与えることを特徴とする検査装置。
    The inspection apparatus according to claim 2,
    The distance between the elements or objects in the longitudinal direction in the examination space gives a visual effect that looks almost the same distance according to perspective when viewed from a position away from the insertion opening of the examination space by a predetermined distance. Inspection device to do.
  4.  請求項1に記載の検査装置であって、
     前記意匠を構成する複数の要素は、前記検査空間の長手方向に配列する少なくとも2列のドットであり、前記ドット列の、前記検査空間における周方向の間隔が、前記検査空間の挿入口側で広く、奥側に向かって狭まることを特徴とする検査装置。
    The inspection apparatus according to claim 1,
    The plurality of elements constituting the design are at least two rows of dots arranged in the longitudinal direction of the inspection space, and the interval between the dot rows in the circumferential direction in the inspection space is on the insertion opening side of the inspection space. An inspection device that is wide and narrows toward the back.
  5.  請求項4に記載の検査装置であって、
     前記ドット列の周方向の間隔は、前記検査空間の長手方向に沿って放物線状に変化することを特徴とする検査装置。
    The inspection apparatus according to claim 4,
    The interval between the dot rows in the circumferential direction changes in a parabolic shape along the longitudinal direction of the inspection space.
  6.  請求項4に記載の検査装置であって、
     前記ドットは、大きさが前記検査空間の挿入口側から奥側に向かって変化していることを特徴とする検査装置。
    The inspection apparatus according to claim 4,
    The size of the dots changes from the insertion port side to the back side of the inspection space.
  7.  請求項1に記載の検査装置であって、
     前記意匠を構成する複数の要素は、前記検査空間の周方向に沿って描画されたラインであり、前記ラインの幅が、前記検査空間の挿入口側で広く、奥側に向かって狭まることを特徴とする検査装置。
    The inspection apparatus according to claim 1,
    The plurality of elements constituting the design are lines drawn along the circumferential direction of the inspection space, and the width of the line is wide on the insertion opening side of the inspection space and narrows toward the back side. Characteristic inspection device.
  8.  請求項7に記載の検査装置であって、
     前記ラインは、色の濃淡が変化するグラデーション部を有することを特徴する検査装置。
    The inspection device according to claim 7,
    The inspection apparatus according to claim 1, wherein the line has a gradation portion in which color shade changes.
  9.  請求項1に記載の検査装置であって、
     前記意匠を構成するオブジェクトは、背景内に配置され、前記背景には、前記検査空間の長手方向及び/又は周方向について、濃淡が変化するグラデーションが設けられていることを特徴とする検査装置。
    The inspection apparatus according to claim 1,
    An object constituting the design is arranged in a background, and the background is provided with a gradation in which the gradation changes in the longitudinal direction and / or the circumferential direction of the inspection space.
  10.  被検体を挿入する検査空間を有する検査装置であって、
     前記検査空間に面する内壁に、前記被検体に対し視覚的効果を与える光学部材が設けられているものであり、
     前記光学部材は、前記内壁に施された模様の虚像を生じさせる光学要素を含むことを特徴とする検査装置。
    An inspection apparatus having an inspection space for inserting a subject,
    An optical member that gives a visual effect to the subject is provided on the inner wall facing the examination space,
    The inspection apparatus according to claim 1, wherein the optical member includes an optical element that generates a virtual image of a pattern formed on the inner wall.
  11.  請求項1ないし10のいずれか一項に記載の検査装置であって、
     当該検査装置が、MRI装置、CT装置およびPET装置のいずれかであることを特徴とする検査装置。
    The inspection apparatus according to any one of claims 1 to 10,
    The inspection apparatus is one of an MRI apparatus, a CT apparatus, and a PET apparatus.
PCT/JP2012/069332 2011-09-30 2012-07-30 Inspection device WO2013046906A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013536026A JP5663097B2 (en) 2011-09-30 2012-07-30 Inspection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011217715 2011-09-30
JP2011-217715 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013046906A1 true WO2013046906A1 (en) 2013-04-04

Family

ID=47994960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069332 WO2013046906A1 (en) 2011-09-30 2012-07-30 Inspection device

Country Status (2)

Country Link
JP (1) JP5663097B2 (en)
WO (1) WO2013046906A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017518839A (en) * 2014-06-26 2017-07-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Bore area illumination unit for magnetic resonance scanner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211130A (en) * 1989-02-13 1990-08-22 Toshiba Corp Mounting bed for ct
JPH04193262A (en) * 1990-11-28 1992-07-13 Toshiba Corp Mri magnet trestle apparatus
JP2558844Y2 (en) * 1990-12-07 1998-01-14 ジーイー横河メディカルシステム株式会社 NMR diagnostic equipment
JP2003180658A (en) * 2001-11-28 2003-07-02 Siemens Ag Medical examining system
US20080009696A1 (en) * 2006-05-08 2008-01-10 Eckhard Hempel Medical diagnosis or therapy apparatus with an electrochromic display for the patient
JP2008519640A (en) * 2004-11-12 2008-06-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Medical testing equipment
JP2012005684A (en) * 2010-06-25 2012-01-12 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211130A (en) * 1989-02-13 1990-08-22 Toshiba Corp Mounting bed for ct
JPH04193262A (en) * 1990-11-28 1992-07-13 Toshiba Corp Mri magnet trestle apparatus
JP2558844Y2 (en) * 1990-12-07 1998-01-14 ジーイー横河メディカルシステム株式会社 NMR diagnostic equipment
JP2003180658A (en) * 2001-11-28 2003-07-02 Siemens Ag Medical examining system
JP2008519640A (en) * 2004-11-12 2008-06-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Medical testing equipment
US20080009696A1 (en) * 2006-05-08 2008-01-10 Eckhard Hempel Medical diagnosis or therapy apparatus with an electrochromic display for the patient
JP2012005684A (en) * 2010-06-25 2012-01-12 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017518839A (en) * 2014-06-26 2017-07-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Bore area illumination unit for magnetic resonance scanner

Also Published As

Publication number Publication date
JPWO2013046906A1 (en) 2015-03-26
JP5663097B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
Jordan et al. Cortical activations during the mental rotation of different visual objects
Brown A computerized tomography-computer graphics approach to stereotaxic localization
CN1326499C (en) System for contactless moving or holding magnetic body in working space using magnet coil
US7173507B2 (en) Magnet coil system for contactless movement of a magnetic body in a working space
CN102753091A (en) Apparatus and method for influencing and/or detecting magnetic particles in a field of view having an array of single-sided transmit coil sets
Mazard et al. Impact of fMRI acoustic noise on the functional anatomy of visual mental imagery
CN105741241B (en) Tumor region image enchancing method and system based on synthesis enhancing image
US9739855B2 (en) Magnetic resonance imaging apparatus and control method for the same
Nasr et al. Visual field biases for near and far stimuli in disparity selective columns in human visual cortex
CN102727235A (en) X-ray and ct apparatus and image processing method
CN104363960B (en) For the medical apparatus heated to the heating volume limited by surface
JP2015527109A5 (en)
JP5663097B2 (en) Inspection device
CN107507278A (en) Three-dimensional entity model construction method and device based on several tomoscan images
CN107205784A (en) Local magnetic field generator
CN103316434A (en) Inflation support system for MR guided HIFU
Eichelbaum et al. Visualizing simulated electrical fields from electroencephalography and transcranial electric brain stimulation: A comparative evaluation
CN105916443A (en) X-ray emitting device with an attenuating element for an x-ray imaging apparatus
US20180192986A1 (en) Model and system for use in an imaging technique
Bair et al. Grid with a view: Optimal texturing for perception of layered surface shape
CN106028943B (en) Ultrasonic virtual endoscopic imaging system and method and device thereof
DE102012022779A1 (en) Magnetic resonance tomographic device
DE10214112B4 (en) Shim box, gradient coil system and magnetic resonance device for receiving the shim box
Sadighi et al. Low-frequency conductivity tensor imaging with a single current injection using DT-MREIT
Boyaci et al. Perceptual grouping-dependent lightness processing in human early visual cortex

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834951

Country of ref document: EP

Kind code of ref document: A1