WO2013046556A1 - Sphygmomanometer - Google Patents

Sphygmomanometer Download PDF

Info

Publication number
WO2013046556A1
WO2013046556A1 PCT/JP2012/005696 JP2012005696W WO2013046556A1 WO 2013046556 A1 WO2013046556 A1 WO 2013046556A1 JP 2012005696 W JP2012005696 W JP 2012005696W WO 2013046556 A1 WO2013046556 A1 WO 2013046556A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood pressure
pulse wave
air bag
air
armband
Prior art date
Application number
PCT/JP2012/005696
Other languages
French (fr)
Japanese (ja)
Inventor
克美 築田
剛 冨田
小澤 仁
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2013046556A1 publication Critical patent/WO2013046556A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the oscillometric method
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0406Constructional details of apparatus specially shaped apparatus housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present invention relates to a sphygmomanometer capable of measuring blood pressure even if a person to be measured (user) is a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a pulse weak person such as a person with weak pulse wave. .
  • ⁇ A problem with this type of sphygmomanometer is how to wear the armband on the arm.
  • the position of the air bag in the armband is not appropriate for the upper arm or when the wrapping strength is not appropriate for the upper arm, the pressure of the air bag in the armband is not correctly applied to the upper arm, and the blood pressure is high. May be.
  • the air bag for ischemia of the armband is automatically placed at the correct position of the arm, with the correct winding strength.
  • An electronic sphygmomanometer has been developed that integrates a sphygmomanometer body and an armband that can measure blood pressure (see Patent Document 1).
  • the arm band part into which the arm is inserted is integrated with the sphygmomanometer body, so that the position of the sphygmomanometer body is separated from the front of the person to be measured.
  • the person being measured is likely to perform measurement in a leaning state. For this reason, the abdomen of the person to be measured is compressed and the abdominal pressure increases, and as a result, a phenomenon in which the blood pressure increases may be seen. This increase in blood pressure is pointed out as the occurrence of new pseudohypertension.
  • the armband portion is formed separately from the main body of the sphygmomanometer, and the armband portion has a rigid case, and an air bag for ischemia is disposed in this case. ing.
  • This allows the armband part to be separated from the sphygmomanometer main body when the person to be measured measures blood pressure in the sitting position, so that the blood pressure meter does not lose the convenience of being able to measure by simply inserting the upper arm into the armband part. Even if the installation location of the main body is far away from the person to be measured, the blood pressure can be measured in a state where the measurer is correct and the abdominal pressure is not applied when the back is stretched.
  • the pulse wave of the weak pulse person is weak and the pulse pressure is extremely low.
  • a person with pulse weakness tries to automatically determine the blood pressure using an oscillometric sphygmomanometer that uses pulse waves, the blood pressure value cannot be determined and the blood pressure value measurement error is displayed. As a result, it is impossible to measure the blood pressure of a weak pulse person.
  • the present invention provides a blood pressure that can measure the blood pressure value even when measuring the blood pressure of a heart transplant patient transplanted with a living heart transplant, an auxiliary artificial heart, or a weak pulse person such as a person with weak pulse waves.
  • the purpose is to provide a total.
  • the sphygmomanometer according to the present invention includes an armband portion having an air bag for ischemia for compressing the upper arm of the subject and an air bag for detecting a pulse wave for detecting the pulse wave of the subject, and the air bag for ischemia
  • a sphygmomanometer having a plurality of blood pressure measurement modes, including a pressure sensor for detecting the pressure in the air bag, and a control unit for detecting a blood pressure value and a pulse wave by a signal from the pressure sensor,
  • the blood pressure measurement mode includes an average blood pressure measurement mode
  • the control unit has a pulse weakness measurement mode, and by selecting a predetermined blood pressure measurement mode from a plurality of blood pressure measurement modes, the control unit as a person to be measured as a pulse weak, A blood pressure measurement mode for measuring the mean blood pressure can be selected for a heart transplant patient or a person having a weak pulse wave transplanted with an auxiliary artificial heart.
  • the blood pressure inside the air bag for ischemia when the maximum amplitude of the pulse wave is generated Since the pressure is determined as the average blood pressure value of the person to be measured, this average blood pressure value can be used as the blood pressure value of the pulse weak person.
  • the apparatus has a memory for storing the pulse wave generated when the inside of the air bag for ischemia and the inside of the air bag for pulse wave detection is decompressed, and the control unit is configured to determine the pulse wave having an opposite phase and a predetermined value.
  • the pulse wave having a narrower width in the time axis direction than the above value is deleted from the memory as an abnormal pulse wave.
  • the pulse wave having the opposite phase and the pulse wave whose width in the time axis direction is narrower than a predetermined value can be deleted as an abnormal pulse wave, so that the amount of data in the memory can be reduced,
  • the pressure in the air bag for ischemia when the maximum amplitude of the wave is generated can be easily determined as the average blood pressure value of the measurement subject.
  • the control unit when the generation of the maximum amplitude of the pulse wave is confirmed, the control unit has the pulse wave having a smaller amplitude than the pulse wave of the maximum amplitude before and after the pulse wave of the maximum amplitude. It is characterized by confirming that each exists. According to the said structure, based on generation
  • the armband portion is separate from the blood pressure monitor main body, and the armband portion is disposed so as to face the ischemic air bag when the armband portion is attached to the upper arm.
  • a plurality of the pulse wave detection air bags are housed. According to the above configuration, one of the pulse wave detection air bags can be applied to the artery of the upper arm, and the detection of the pulse wave is facilitated.
  • the control unit determines the average blood pressure value of the measurement subject
  • the control unit includes a display unit that displays the average blood pressure value
  • the display unit is disposed in the blood pressure monitor main body.
  • a to-be-measured person can confirm an average blood pressure value visually by looking the display part of a blood pressure meter main body.
  • the armband portion of the present invention is an armband portion for blood pressure measurement, comprising a cuff cover made of an outer cloth and an inner cloth inside the outer cloth, and an air bag inside the cuff cover, A weight is provided at the terminal end where the upper end of the armband portion is wound. According to the above configuration, when the medical staff finishes wrapping the armband portion around the patient's upper arm, the weight of the weight at the end of the armband portion is applied in the direction in which the armband portion is wound. Can be wrapped around.
  • the armband portion of the present invention is also an armband portion for blood pressure measurement, comprising a cuff cover made of an outer cloth and an inner cloth inside the outer cloth, and an air bag inside the cuff cover, An anti-slip portion for stopping slipping with respect to the upper arm is provided on the inner side of the starting end portion where the arm belt portion starts to be wound around the upper arm. According to the above configuration, the armband portion can be wound around the patient's upper arm while being easily positioned.
  • the slip prevention part for stopping slipping with respect to the upper arm is provided inside the start end part of the arm band part, when the medical worker wraps the arm band part around the upper arm of the patient, the slip prevention part is The armband portion can be positioned by stopping so that the starting end portion of the armband portion does not slide with respect to the upper arm.
  • the sphygmomanometer according to the present invention includes a cuff cover made of an outer cloth and an inner cloth inside the outer cloth, an air bag inside the cuff cover, and a blood pressure provided with a weight at a terminal portion that is wound around the upper arm.
  • the medical staff when the medical staff finishes wrapping the armband portion around the patient's upper arm, the weight of the weight at the end of the armband portion is applied in the direction in which the armband portion is wound.
  • the blood pressure can be easily measured.
  • the medical worker can wrap the armband portion while easily positioning the armband portion on the upper arm with only one other hand while the medical worker has the air balloon with one hand. Winding workability can be improved.
  • the sphygmomanometer according to the present invention includes a cuff cover including an outer cloth and an inner cloth inside the outer cloth, an air bag inside the cuff cover, and a slip with respect to the upper arm on the inner side of a starting end portion where the upper arm starts to be wound.
  • An armband portion provided with an anti-slip portion for stopping the blood pressure, and a blood pressure monitor body connected to the air bag of the armband portion via a tube, And an air supply balloon that sends air to the air bag through the tube by being attached to the housing and pushed.
  • the armband portion can be wound around the patient's upper arm while being easily positioned. That is, since a slip prevention part for stopping slipping with respect to the upper arm is provided inside the start end part of the arm band part, when the medical worker wraps the arm band part around the upper arm of the patient, the slip prevention part is Since the armband portion can be positioned by being stopped without slipping with respect to the upper arm, the armband portion can be wound around the upper arm while being easily positioned. According to the above configuration, the medical worker can wrap the armband portion while easily positioning the armband portion on the upper arm with only one other hand while the medical worker has the air balloon with one hand. Winding workability can be improved.
  • the present invention relates to a sphygmomanometer capable of measuring a blood pressure value even when measuring the blood pressure of a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a pulse weak person such as a person with weak pulse wave. Can be provided.
  • FIG. 2A is a perspective view of the sphygmomanometer body of the sphygmomanometer shown in FIG. 1 as viewed from the left rear side.
  • FIG. 2B is a perspective view of the sphygmomanometer body of the sphygmomanometer shown in FIG. 1 as viewed from the right rear side.
  • 3A is a cross-sectional view showing an example of the internal structure of the armband
  • FIG. 3B is a front view showing a state in which the armband is folded
  • FIG. 3C is an arm. It is a perspective view which shows the state which folded the belt
  • FIG. 5 It is a side view which shows a mode that the folded armband part is detachably accommodated in the back side of a housing
  • FIG. 5 It is a block diagram which shows the electrical structural example of embodiment of the blood pressure meter of this invention.
  • the pressure sensor shown in FIG. 5 changes the blood pressure value obtained from the fluctuation of the air pressure of the air bag for ischemia, and the pressure sensor shown in FIG. 5 shows the pressure pulse wave obtained from the fluctuation of the air pressure of the pulse wave detection air bag. It is a figure which shows an example of appearance. It is a flowchart which shows the blood pressure measurement operation
  • FIG. 8A illustrates a normal pulse wave WW having a proper phase
  • FIG. 8B illustrates an abnormal pulse wave WW1 having an opposite phase. Illustrated in FIG. 4 is an abnormal pulse wave WW2 having a narrow width in the time axis direction even if the phase is a valid pulse wave.
  • FIG. 16A shows the inner surface side of the armband portion
  • FIG. 16B is a perspective view showing the outer surface side of the armband portion
  • FIG. 17A is a plan view showing the outer surface side of the armband portion
  • FIG. 17B shows an air bag for ischemia and an air bag for detecting arterial pulsation arranged inside the armband portion.
  • the top view which shows the example of a shape.
  • the figure which shows the example from which the pressure applied with respect to an upper arm by the air bag for ischemia changes with time passage.
  • FIG. 1 is a perspective view showing the entire embodiment of the blood pressure monitor of the present invention.
  • FIG. 2A is a perspective view of the sphygmomanometer body of the sphygmomanometer shown in FIG. 1 as viewed from the left rear side.
  • FIG. 2B is a perspective view of the sphygmomanometer body of the sphygmomanometer shown in FIG. 1 as viewed from the right rear side.
  • the sphygmomanometer 1 shown in FIGS. 1 and 2 is a preferred example of the sphygmomanometer of the present invention, and is also called an electronic sphygmomanometer.
  • the armband part 2 and the sphygmomanometer body 10 are separate, and the armband part 2 shown in FIG. 1 is used separately from the sphygmomanometer body 10 shown in FIGS. 1 and 2.
  • the blood pressure monitor 1 is different from the integrated blood pressure monitor in which the armband portion and the main body are integrated, and the place where the blood pressure monitor main body 10 is installed is forward of the measured person when the measured person measures in the sitting position.
  • the sphygmomanometer 1 can measure not only the maximum blood pressure value and the minimum blood pressure value of a normal general user's blood pressure in the same manner as an ordinary sphygmomanometer, but also a heart transplantation in which a measured person transplants an auxiliary artificial heart.
  • the patient is a weak person such as a patient or a person with weak pulse wave
  • the average blood pressure value of these persons can be measured by a method described in detail later.
  • the sphygmomanometer 1 detects pressure and a pulse wave (also referred to as a pressure pulse wave) from the artery of the upper arm T in the process of pressing the upper arm T by the armband portion 2 and releasing the compression, and from the pressure, This is a sphygmomanometer using a so-called pressure pulse wave (oscillometric) method for calculating a maximum blood pressure (systolic blood pressure) and a minimum blood pressure (diastolic blood pressure).
  • a pulse wave also referred to as a pressure pulse wave
  • the armband part 2 shown in FIG. 1 is also called a cuff, and the armband part 2 has a constant (predetermined) outer peripheral length, and is a soft cylinder body that is made of a foldable and soft material. Yes, it has two openings 11P and 11R. As shown in FIG. 1, when the armband 2 is attached to the upper arm T of the measurement subject, the opening 11P is positioned on the finger side, and the opening 11R on the opposite side is positioned on the shoulder side. The inner diameter of the opening 11R is larger than the inner diameter of the opening 11P. As a result, the finger of the person to be measured can be easily inserted from the opening 11R side to the opening 11P, and the armband 2 is held on the upper arm T above the elbow of the person to be measured and blood pressure is maintained. It comes to measure.
  • the armband portion 2 incorporates a blood-insulating air bag 14 for blood-blocking the upper arm T and a pulse-wave detecting air bag 250 for detecting a pulse wave.
  • Two pulse wave detection air bags 250 are preferably incorporated.
  • the air bag 14 for ischemia compresses the upper arm T when air is supplied from the sphygmomanometer body 10 side, and releases the air to compress the upper arm T.
  • DC direct current
  • the two pulse wave detection air bags 250 are disposed so as to face each other with the upper arm T interposed therebetween.
  • These air bags 250 for detecting pulse waves are supplied with air from the sphygmomanometer main body 10 side so as to pressurize the upper arm T and then release the air, and then pulse waves (pressure pulse waves) from the arteries of the upper arm T. It is an air bag for detecting.
  • the pulse wave detection air bag 250 detects the pressure pulse wave based on the vibration of the arterial wall due to the pulsation of the artery accompanying the change in pressure on the upper arm T in the armband portion 2.
  • the pressure pulse wave increases the internal pressure of the air bag 14 for the ischemia of the armband 2 above the maximum blood pressure and once closes the blood vessel. Then, the internal pressure is gradually decreased to the internal blood pressure below the maximum blood pressure, and the blood vessel begins to open. This is an AC (alternating current) waveform signal that can be detected until the internal pressure falls below the minimum blood pressure and the occlusion of the blood vessel disappears.
  • the air accommodation capacity of the air bag 14 for ischemia is larger than the air accommodation capacity of the air bag 250 for detecting a pulse wave in order to exert a force for pressing around the upper arm T.
  • the armband 2 and the sphygmomanometer body 10 are connected via air tubes 4 and 5 and an air plug 6.
  • the air tubes 4 and 5 are preferably flexible elastomer tubes that constitute a multiple cylinder tube (also referred to as a multiple conduit).
  • the air tubes 4 and 5 are integrally formed over the entire length (or substantially over the entire length). Thereby, when using the arm band part 2 apart from the blood pressure monitor main body 10, the air tubes 4 and 5 can be easily handled.
  • the air tube 4 as the first air tube is used for supplying and exhausting air to and from the air bag 14 for the ischemia of the armband portion 2, and the air tube 5 as the second air tube has two pulse wave detection air bags. Used to supply / exhaust air to 250.
  • the air tube 4 is a thicker tube than the air tube 5, and the inner diameter and outer diameter of the air tube 4 are set larger than the inner diameter and outer diameter of the air tube 5. As a result, the air tube 4 can quickly supply and exhaust air to and from the air bag 14 having a large air capacity.
  • FIG. 3A is a cross-sectional view showing an example of the internal structure of the armband portion 2
  • FIG. 3B is a front view showing a state in which the armband portion 2 is folded
  • FIG. It is a perspective view which shows the state which folded the armband part 2.
  • the armband portion 2 is a cylindrical member that is not cut along the outer circumferential direction, and has an outer periphery of a predetermined (constant) length.
  • the upper arm T of the person to be measured can be passed through the part 2.
  • the armband portion 2 has the flexibility that the person to be measured can easily fold, and as shown in FIG. 1 and FIG. 3 (A), For example, it has an outer cloth 16, an inner cloth 17, a hemostasis air bag 14 for isolating the upper arm T, and two pulse wave detection air bags 250.
  • the air bag 14 for ischemia of the armband portion 2 is used to compress the artery of the upper arm T, and the two pulse wave detection air bags 250 of the armband portion 2 are used for the artery. It is used to detect the pulse wave.
  • the inner surface of the outer cloth 16 and the outer surface of the inner cloth 17 enclose the air bag 14 for ischemia and the two air bags 250 for detecting pulse waves.
  • the ends of the outer cloth 16 and both ends of the inner cloth 17 are, for example, They are joined by sewing or integral molding.
  • the two pulse wave detection air bags 250 are preferably positioned closer to the opening 11P side than the intermediate position in the longitudinal direction (axial direction) of the armband portion 2 (see FIG. It is better to place it at a position closer to the finger than the shoulder side.
  • one of the two pulse wave detection air bags 250 can be applied to the portion of the upper arm T corresponding to the artery.
  • the pulse wave detection air bag 250 can detect the pulse wave in a state where the upper arm T is surely pressurized and the artery is blocked. Since the two pulse wave detection air bladders 250 are disposed at opposing positions, one of the pulse wave detection air bladders 250 can be applied to the artery of the upper arm T, and the pulse wave can be easily detected.
  • the outer cloth 16 shown in FIG. 3 (A) is a cylindrical body that covers the outer surface of the air bag 14 for ischemia, and is formed of a non-stretchable material in the circumferential direction and the longitudinal direction. It is a fabric member that has very low or no properties.
  • the outer fabric 16 supplies air into the ischemic air bladder 14 and the two pulse wave detecting air bags 250, the ischemic air bag 14 and the two pulse wave detecting air bags 250 become armbands.
  • the air bag 14 and the two pulse wave detection air bags 250 are inflated to the upper arm T side which is the inner side in the radial direction.
  • the pressure of the air bag 14 for the ischemia and the two air bags 250 for detecting the pulse wave can be applied to the upper arm T without escaping to the outside of the armband portion 2, and accurate blood pressure measurement can be performed. it can.
  • the outer fabric 16 shown in FIG. 3A for example, a fabric that is difficult to stretch (201BE) can be adopted, and the tensile strength is a value measured by the JIS L1096-A method with a warp of 1430 N / in to 1460 N / in, Is 810 N / in to 8250 N / in. Further, it is preferable that the length is 1430 N / in to 1460 N / in and the width is 810 N / in to 8250 N / in.
  • both the length and the width are smaller than this numerical range, the suppression of the outward expansion of the air bag 14 is weakened, and if it is larger than this numerical range, the insertion of the upper arm T may be affected.
  • the outer cloth 16 for example, when a 100% polyester fabric is used, the length is 1445 N / in and the width is 827 N / in.
  • the inner cloth 17 shown in FIG. 3 (A) is a cylindrical body that covers the inner surfaces of the ischemic air bladder 14 and the two pulse wave detecting air bladders 250, is deformable, has elasticity, and has an upper arm T. It is a contact cloth part contact
  • the inner fabric 17 can be a stretchable fabric member that is elastic and has elasticity, for example, and can have a tensile strength of 94.9 N / in as measured by the JIS L1096-A method.
  • the width is 1250.7 N / in.
  • the tensile elongation is 517% in length and 400% in width as measured by the JIS L1096-A method.
  • the inner fabric is, for example, a fabric made of 80% nylon and 20% polyurethane.
  • the inner cloth 17 is made of a material having elasticity so that the air bag 14 for the ischemia and the air bag 250 for detecting the pulse wave can expand toward the surface to be measured of the upper arm T, and covers the arm band portion 2. Since it is necessary to insert it from the hand of the measurer and slide it to the upper arm T above the elbow, a smooth material such as a jersey material is used.
  • the opening closing member 30 is on the opening 11P side inside the armband portion 2, and the air tube 4 and the air tube 5 are led out. It is provided on the (connected) side.
  • the opening closing member 30 can use, for example, a removable surface fastener, and has a male member 31 and a female member 32 of the surface fastener.
  • the male member 31 and the female member 32 are fixed at positions facing each other inside the armband portion 2, and the male member 31 and the female member 32 are attached and detached as shown in FIGS. 3 (B) and 3 (C).
  • the opening closing member 30 for the armband part 2, when the person to be measured tries to measure blood pressure through the hand with respect to the armband part 2, from the closed opening part 11P side. Without passing the hand, it is possible to pass the hand without getting lost from the open opening 11R side. For this reason, it can prevent that a to-be-measured person inserts a hand back into the armband part 2 accidentally from the opening part 11P side. If the measured person inserts the armband part 2 back from the opening 11P side, the pulse wave detection air bag 250 does not properly hit the artery of the upper arm T, and the pressure pulse wave is accurately measured. There is a risk that it will not be possible. Further, by providing the opening closing member 30 with respect to the armband portion 2, it can be easily folded when the armband portion 2 is not used.
  • the armband portion 2 preferably has a tag 33 that is a member for visually recognizing a direction.
  • the tag 33 is on the opening 11R side, and is fixed to the outer fabric 16 by using, for example, an adhesive or by sewing.
  • the tag 33 is provided so as to protrude along the V direction from the end of the armband portion 2 on the opening 11R side, and can be made of, for example, a cloth member or a plastic member.
  • FIG. 3A when the person to be measured inserts his left arm into the armband portion 2 and measures blood pressure, for example, the user grasps the tag 33 with the finger F of the right arm and holds the armband portion 2 in the V direction. Can be moved to.
  • the tag 33 can preferably be labeled with a “shoulder side” display 33S.
  • the measurement subject can easily attach the armband portion 2 to the upper arm T simply by grasping the tag 33 and moving in the V direction, and the attachment direction of the armband portion 2 is clear. Therefore, it is possible to pass the hand without hesitation from the opening 11R side. For this reason, it can prevent that a to-be-measured person inserts a hand back into the armband part 2 accidentally from the opening part 11P side. That is, since only the opening 11P on the side of the air tubes 4 and 5 can be closed, it is possible to easily prevent the person to be measured from wearing in the reverse direction with respect to the upper arm, and the person to be measured is against the upper arm T. Can be installed in the correct direction.
  • the sphygmomanometer body 10 includes a housing part 60, a display surface part 61, and a holding part 62 for the armband part 2.
  • the housing part 60, the display surface part 61, and the holding part 62 are made of an electrically insulating material such as plastic.
  • the display surface portion 61 is provided on the front surface side of the housing portion 60 and is inclined so that the measurement subject can easily see the display content displayed on the display portion 63.
  • the inclination angle ⁇ of the display surface portion 61 is, for example, 60 degrees. Is set to about.
  • the housing 60 includes side surfaces 68 and 69, a back surface 66, a rectangular front opening 70 indicated by a broken line, and a housing 60. It has an upper surface portion 71 projecting from the bottom portion 72 and a bottom portion 72.
  • the display surface unit 61 includes a display unit 63, a transparent protective plate 64 such as an acrylic plate, and a frame-shaped holding member 65.
  • the display unit 63 is held by a holding member 65, and the protective plate 64 is fixed to the holding member 65 to protect the surface of the display unit 63.
  • the holding member 65 is detachably attached to the front surface side opening 70 indicated by a broken line of the housing portion 60.
  • the inside of the housing unit 60 can be exposed through the front side opening 70 indicated by a broken line of the housing unit 60. Thereby, repair and replacement
  • casing part 60 can be performed easily.
  • FIG. 4 shows a state in which the folded armband portion 2 is detachably stored on the back surface 66 side of the housing portion 60 using the holding portion 62.
  • the holding part 62 of the armband part has a holding surface 62A and a leg part 62B.
  • An insertion port 67 is formed on the lower side of the housing unit 60.
  • the distal end portion 62C of the leg portion 62B is inserted into the insertion port 67, whereby the arm belt portion holding portion 62 can be detachably attached to the back surface 66 side of the housing portion 60.
  • the folded armband portion 2 can be detachably accommodated. Thereby, when the person to be measured does not use the armband portion 2, the folded armband portion 2 can be easily and reliably stored between the holding surface 62 ⁇ / b> A and the back surface 66 of the housing portion 60. it can.
  • the armband part 2 is held on the back side of the housing part 60, so that the person to be measured is not obstructed by the armband part 2, and FIG.
  • the display content of the display unit 63 such as time and room temperature can be visually confirmed.
  • the person to be measured can easily confirm whether or not the temperature is suitable for blood pressure measurement (environmental temperature) by visually observing the display temperature of the display unit 63.
  • the armband portion 2 is held on the back side of the housing portion 60, so that the appearance of the sphygmomanometer 1 can be improved. For this reason, the sphygmomanometer body 10 can be displayed in a living room or the like as a clock when not in use.
  • an air plug difference provided with an O-ring (not shown) is provided at a lower position of a side surface portion 68 (a left side surface portion facing the front surface of the housing portion 60) 68 of the housing portion 60.
  • a slot 73 is formed.
  • the air plug 6 can be detachably attached to the air plug insertion port 73.
  • the width d1 of the linear upper portion 73A is set larger than the width d2 of the semicircular lower portion 73B in accordance with the shape of the air plug 6.
  • insertion holes 73G and 73H are provided inside the air plug insertion port 73.
  • the air plug 6 is made of plastic, for example, and includes a housing 6A, connecting cylinder portions 6B and 6C, and a connecting guide portion 6F as shown in FIG.
  • the connecting cylinder portions 6B and 6C are formed to protrude in parallel from one surface of the housing 6A. These connecting cylinder portions 6B and 6C are detachably inserted into the insertion holes 73G and 73H of the air plug insertion port 73, respectively.
  • the upper part of the connection guide part 6F is guided and inserted into the upper part 73A of the air plug insertion port 73 shown in FIG. 2A, and the lower part of the connection guide part 6F is the air plug difference shown in FIG. It is inserted into the lower portion 73B of the inlet 73 while being guided.
  • the air plug 6 is prevented from being mounted upside down with respect to the air plug insertion port 73, and the blood pressure monitor body 10 side is connected to the air bag 14 for the ischemia and the air bag 250 for detecting the pulse wave. Conversely, no air is supplied.
  • the armband portion 2 connected to the air plug 6 has a plurality of sizes, for example, three sizes of large, medium and small, so that the most suitable one can be selected according to the size of the upper arm of the user. It has become.
  • the air plug 6 is provided not on the front side but on the side of the sphygmomanometer body 10, so that even if the drive pump 110 runs away and the armband part 2 is abnormally pressurized, a complicated electronic circuit or an abnormal time is required. Since the air supply can be cut off by the person to be measured withdrawing the air plug 6 without providing the switch, abnormal pressurization of the armband portion 2 can be avoided very easily.
  • a speaker 85 and an AC adapter are connected to a side surface 69 (the side opposite to the side surface 68 where the air plug insertion port 73 is formed) 69 of the housing 60.
  • a connection hole 86 is provided.
  • the connection hole 86 shown in FIG. 2B is completely different from the air plug insertion port 73 shown in FIG. Thereby, it is possible to prevent the air plug 6 from being erroneously inserted into the connection hole 86.
  • an upper surface 71 provided on the upper surface of the housing 60 projects from the right side toward the front of the housing 60, and a start / stop switch 88 and a function selection key.
  • Various operation buttons such as 400 are arranged side by side.
  • FIG. 5 is a block diagram of the sphygmomanometer 1 shown in FIG.
  • the air bag 14 for the ischemia of the armband part 2 is connected to an air filter 130 in the sphygmomanometer body 10, a pressure sensor 140 as a pressure detection unit, two drive pumps 110, a control through an air tube 4. It is connected to the valve 111 and the exhaust valve 112.
  • Two pulse wave detection air bags 250 for detecting a pulse wave are, through the air tube 5, a pressure sensor 140 as a pressure detection unit in the sphygmomanometer body 10, an air filter 130, two drive pumps 110, The control valve 111 and the exhaust valve 112 are connected.
  • the pressure sensor 140 detects a change in the air pressure of the air bag 14 for ischemia, and the pressure sensor 140 detects a change in the air pressure of the pulse wave detection air bag 250.
  • the control unit 120 calculates a maximum blood pressure value (systolic blood pressure) and a minimum blood pressure value (diastolic blood pressure) based on a DC waveform signal from the pressure sensor 140 based on a change in air pressure in the air bag 14 for ischemia.
  • the control unit 120 detects a pulse wave (pressure pulse wave) based on an AC waveform signal from the pressure sensor 140 based on a change in air pressure in the pulse wave detection air bladder 250.
  • the two drive pumps 110 shown in FIG. 5 supply air to the ischemic air bag 14 and the two pulse wave detection air bags 250 in the armband 2 to add the upper arm in the armband 2. It is a pressurizing mechanism that presses. As described above, the two drive pumps 110 are used when the size of the armband portion 2 is large, so that the two drive pumps are driven, and when the size of the armband portion 2 is small, one drive pump is used. In order to supply air to the air bag 14 for ischemia and the two air bags 250 for detecting pulse waves.
  • control valve 111 and the exhaust valve 112 are depressurization mechanisms that depressurize the upper arm T that has been pressurized by extracting air from the air bag 14 for the ischemia 14 in the armband portion 2 and the two air bags 250 for detecting the pulse wave.
  • . 5 drives two drive pumps 110 according to a command from the control unit 120
  • the drive unit 151 drives the control valve 111 and the exhaust valve 112 according to a command from the control unit 120.
  • the control unit 120 shown in FIG. 5 gives a command to the display unit 63, and for example, temperature display, time display, systolic blood pressure value, systolic blood pressure value, pulse, average blood pressure value PM, etc. as shown in FIG. Display the displayed contents.
  • a storage unit 153 and a data memory 154 are connected to the control unit 120.
  • the display unit 63 a liquid crystal display device, an organic EL device, or the like can be adopted.
  • a pre-measurement music generation mode for generating music to be heard by the measurement subject in order to put the measurement subject in a relaxed state, and the blood pressure is measured.
  • a measuring music generation mode for generating music to be heard by the measurement subject in order to bring the measurement subject into a relaxed state.
  • the music data generated in the pre-measurement music generation mode and the music data generated in the in-measurement music generation mode are stored in advance in the storage unit 153 that stores the music data. Thereby, the person to be measured can hear music before and during the measurement, and the person to be measured can be in a relaxed state.
  • the data memory 154 shown in FIG. 5 stores a program for performing a series of operations necessary for blood pressure measurement, and the control unit 120 performs a blood pressure measurement operation according to this program.
  • a start / stop switch 88 and a function selection key 400 as a function selection unit are electrically connected to the control unit 120.
  • the function selection key 400 is selected from a plurality of blood pressure measurement modes including 1) systolic blood pressure / diastolic blood pressure measurement mode, 2) systolic blood pressure / diastolic blood pressure / average blood pressure measurement mode, 3) average blood pressure measurement mode, and 4) auscultation mode.
  • the blood pressure measurement mode and the exhaust speed can be selected from a normal mode (4 mmHg / second) or a slow mode (4 mmHg / second).
  • the speaker 85 in FIG. 5 is an example of a notification unit for reporting relaxation music and voice guidance content, and is electrically connected to the control unit 120 via the filter 164.
  • the power control unit 160 is electrically connected to the battery 93 and the AC adapter 87 and supplies a predetermined DC voltage to the control unit 120.
  • the power supply control unit 160 and the pressure sensor 140 are electrically connected to the control unit 120.
  • FIG. 6A shows a change in blood pressure value obtained by the pressure sensor 140 shown in FIG. 5 from the fluctuation of the air pressure in the air bag 14 for ischemia
  • FIG. 6B shows the pressure sensor 140 shown in FIG.
  • variation of the air pressure of the air bag 250 for the pulse wave detection is shown.
  • the vertical axis indicates pressure and the peak value
  • the horizontal axis indicates time.
  • the control unit 120 detects the systolic blood pressure (systolic blood pressure) and the systolic blood pressure (diastolic blood pressure), and then operates the exhaust valve 112 to connect the air bag 14 for ischemia.
  • the air in the two pulse wave detection air bladders 250 is extracted.
  • the control unit 120 obtains a blood pressure waveform (DC waveform) WS illustrated in FIG. 6A from the pressure sensor 140.
  • FIG. 6B shows an example of an AC pulse waveform (AC waveform) WT obtained corresponding to the blood pressure waveform WS.
  • This AC pulse wave waveform WT is obtained from the change in pressure of the pulse wave detection air bladder 250 by the pressure sensor 140, and the control unit 120, for example, the pulse wave group M1 of the A group, the pulse wave group M2 of the B group, and A pulse wave group M3 of group C is obtained.
  • the pulse wave group M1 of the A group, the pulse wave group M2 of the B group, and the pulse wave group M3 of the C group each detect the maximum peak value by taking a peak from the pulse wave to form a linear spike waveform. It is made easy.
  • the blood pressure waveform WS illustrates an average pressure value PM described later.
  • This average blood pressure value PM is an average blood pressure value used when the person to be measured is a weak heart person such as a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a person with weak pulse wave, for example, This is the blood pressure on the artery on average, usually obtained from the systolic blood pressure (systolic blood pressure) and the diastolic blood pressure (diastolic blood pressure).
  • systolic blood pressure systolic blood pressure
  • diastolic blood pressure diastolic blood pressure
  • This average pressure value PM is a value corresponding to the maximum pulse wave (maximum pulse wave height value) MM of the B pulse wave group M2 of the AC pulse wave waveform WT.
  • the sphygmomanometer 1 can measure not only the maximum blood pressure value and the minimum blood pressure value of a normal general user's blood pressure in the same manner as an ordinary blood pressure meter, but also the person to be measured can receive a living heart transplant or an auxiliary artificial heart. If the patient is a pulse weak person such as a transplanted heart transplant patient or a person with weak pulse wave, the average blood pressure value of these persons can be measured.
  • FIG. 7 is a flowchart showing an example of a blood pressure measurement operation when such an average blood pressure value detection operation is performed in accordance with an instruction from the control unit 120 of the sphygmomanometer 1.
  • the measurement subject presses the start / stop switch 88 shown in FIG. 2 to start the operation of the sphygmomanometer 1.
  • the person to be measured presses the function selection key 400 shown in FIGS. 2 and 5 to 1) the maximum blood pressure / minimum blood pressure measurement mode, 2) the maximum blood pressure / minimum blood pressure / average blood pressure measurement mode, and 3) the average blood pressure measurement.
  • the average blood pressure measurement mode 3) is selected from a plurality of blood pressure measurement modes consisting of the auscultation mode.
  • the control unit 120 in FIG. 5 When the subject himself / herself or a medical worker, a caregiver or the like selects the average blood pressure measurement mode, in the blood pressure measurement operation by the sphygmomanometer 1, the control unit 120 in FIG.
  • the drive pump 110 is operated to supply air to the air bag 14 for ischemia shown in FIG. 5 to pressurize the upper arm T until the time tr shown in FIG. Thereafter, the control unit 120 in FIG. 5 instructs, and the control valve 111 is operated to reduce the air pressure so that the inclination of the air pressure in the air bag 14 is constant.
  • the control unit 120 detects the maximum blood pressure value and the minimum blood pressure value based on the appearance of the pulse wave. Thereafter, the control unit 120 operates the exhaust valve 112 to release the air in the ischemic air bag 14 and the two pulse wave detecting air bags 250.
  • step 5 determines whether or not the measurement of the highest blood pressure value and the lowest blood pressure value of the measurement subject has succeeded in the blood pressure measurement operation of step SP2. If the subject is a normal heart transplant patient who is transplanted with a living heart transplant, an auxiliary artificial heart, or a normal person who is not weak, such as a person with weak pulse waves, the pulse pressure (difference between the maximum blood pressure and the minimum blood pressure) ) And a large number of pulse waves can be detected, so that the maximum blood pressure value and the minimum blood pressure value corresponding to the detected pulse wave can be measured. That is, the pressure sensor 140 detects a change in the pressure of the air bag 14 for ischemia, and the control unit 120 obtains a blood pressure waveform (DC waveform) WS illustrated in FIG.
  • DC waveform blood pressure waveform
  • step SP3 the control unit 120 displays the systolic blood pressure value, the diastolic blood pressure value, and the pulse on the display unit 63 shown in FIG. 5, and ends the blood pressure measurement operation.
  • step SP2 if the control unit 120 in FIG. 5 determines that the measurement of the maximum blood pressure value and the minimum blood pressure value in the blood pressure measurement in step SP2 is not successful, the control unit 120 Then, it is determined that the patient is a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a person with weak pulse wave, and the process proceeds to the mean blood pressure measurement mode of step SP4.
  • the control unit 120 is a mode for detecting the maximum pulse wave MM shown in FIG. 6B, and is performed in steps SP5 to SP11 described below.
  • step SP5 the control unit 120 detects a change in the pressure of the pulse wave detection air bladder 250 of FIG. 5 and recognizes the AC pulse wave waveform WT shown in FIG. 6B.
  • the control unit 120 sets a threshold SHD in advance as illustrated in FIG. 7 with respect to the amplitude of the pulse wave (or the height of the pulse wave).
  • a pulse wave WW whose pulse wave amplitude is greater than or equal to the threshold value SHD is selected, and the data memory 154 shown in FIG. 5 is sequentially displayed corresponding to the pressure of the blood pressure waveform (DC waveform) WS illustrated in FIG. Let me remember.
  • the control unit 120 in FIG. 5 recognizes the AC pulse wave waveform WT shown in FIG.
  • step SP6 the process proceeds to step SP6, and the control unit 120 determines whether each AC pulse wave waveform WT pulse wave WW is an abnormal wave or a normal wave. Check if it is. That is, it is determined whether the phase of the pulse wave WW that is equal to or greater than the threshold value SHD stored in the data memory 154 in step SP5 is a positive phase and appropriate, or the width of the pulse wave WW is not narrow and appropriate. To do.
  • FIG. 8A illustrates a normal pulse wave WW having a positive phase and an appropriate phase
  • FIG. 8B illustrates an abnormal pulse wave WW1 having an opposite phase
  • FIG. 8C illustrates an abnormal pulse whose width (one cycle) in the time axis direction of the pulse wave is narrower than a predetermined width (one cycle) even if the pulse wave has an appropriate phase.
  • Wave WW2 As shown in FIG. 8B, in the case of the pulse wave WW1 whose phase is not valid or in the case of the pulse wave WW2 whose width shown in FIG. 8C is not valid, in step SP7 of FIG.
  • the control unit 120 deletes the pulse wave detection data from the data memory 154 shown in FIG.
  • step SP8 the pressure sensor 140 obtains, for example, pulse wave groups M1, M2, and M3 as shown in FIG. 6B, and the control unit 120 has pulse wave groups M1, M2, and so on as shown in FIG.
  • M3 it is determined from the detected pulse wave groups M1, M2, and M3 whether the maximum pulse wave amplitude (or maximum pulse wave height) has periodicity (trend). That is, as shown in FIG.
  • the control unit 120 determines whether there are pulse waves MM1 and MM2 having a pulse wave amplitude smaller than the maximum pulse wave MM at positions before and after the maximum pulse wave MM.
  • a pulse wave group M2 having pulse waves MM1 and MM2 having a pulse wave amplitude smaller than the maximum pulse wave MM at positions before and after the pulse wave MM is selected from the detected pulse wave groups M1, M2, and M3. Thereby, the position of the generated pulse wave of the maximum amplitude MM of the pulse wave can be confirmed.
  • the average blood pressure value PM of the measurement subject corresponding to MM can be accurately determined.
  • step SP10 of FIG. 7 the control unit 120 illustrates the blood pressure waveform illustrated in FIG. 6A corresponding to the generation position of the maximum pulse wave MM in the selected pulse wave group M2 illustrated in FIG.
  • the pressure in the WS (armband pressure, cuff pressure) is confirmed, and this pressure is confirmed and determined as the average blood pressure value PM for the maximum pulse wave MM.
  • the control part 120 displays the determined average blood pressure value PM with respect to a to-be-measured person in the display part 63 shown in FIG. 5 and FIG. Thereby, the person to be measured can visually confirm the average blood pressure value PM displayed on the display unit 63.
  • examples of voice guidance contents to be notified during blood pressure measurement include
  • the speaker 85 can send, for example, a notification content “measuring the average blood pressure value” in accordance with a command from the control unit 120.
  • the average blood pressure value PM can be notified to the person to be measured by voice guidance through the speaker 85 as necessary. Thereby, even if the person to be measured cannot visually confirm the average blood pressure value PM on the display unit 63, it can be confirmed by listening to the average blood pressure value PM.
  • the blood pressure measurement operation using the sphygmomanometer 1 is performed and the operation is terminated.
  • a medical worker can prescribe the measurement subject based on the value of the average blood pressure value PM.
  • the measurement subject can determine whether or not to consult a medical institution as necessary with reference to the average blood pressure value PM.
  • the present inventors have determined that an oscillometric method using a pulse wave is used even if a person to be measured is a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a person with weak pulse such as a person with weak pulse wave.
  • produces has high correlation with average blood pressure.
  • the person to be measured is a heart transplant patient transplanted with a living heart transplant or auxiliary artificial heart or a person with weak pulse such as a person with weak pulse wave
  • an oscillometric person using a pulse wave is used even for a normal subject, a heart transplant patient transplanted with a living heart transplant, an auxiliary artificial heart, or a person with weak pulse wave.
  • the blood pressure value can be determined using the method.
  • This average blood pressure value can be displayed using only the pressure pulse wave (maximum amplitude of the pulse wave) because the measured subject's pulse weakness such as a heart transplant patient who has a living heart transplant or an auxiliary artificial heart transplanted or a person with weak pulse waves Is highly effective in the medical field.
  • FIGS. 9A and 9B show, as reference examples of blood pressure measurement, changes in blood pressure obtained from fluctuations in the air pressure of the ischemic bladder 14, and the pressure sensor 140 shown in FIG.
  • variation of the air pressure of the air bag 250 is shown.
  • the blood pressure value could not be determined because only a large pulse wave MX of one beat could be detected.
  • the normal mode is a mode in which the blood pressure is automatically measured while the air introduced into the ischemic air bladder 14 and the pulse wave detecting air bladder 250 is exhausted at a predetermined exhaust speed.
  • the slow mode is a mode in which the blood pressure is automatically measured by setting the exhaust speed of the air introduced into the ischemic air bladder 14 and the pulse wave detecting air bladder 250 to approximately half the predetermined exhaust speed of the normal speed. is there.
  • FIG. 10 is a perspective view showing a second embodiment of the sphygmomanometer of the present invention.
  • the drive pump 110 automatically compresses the upper arm T by supplying air into the ischemic air bag 14 in the armband portion 2.
  • the sphygmomanometer 1 ⁇ / b> A shown in FIG. 10 includes a sphygmomanometer main body 1001, an arm band part (also referred to as a cuff) 1002, and an air balloon 1003.
  • the sphygmomanometer main body 1001 has a display unit 1063.
  • a blood-insufficiency air bag 14 and a pulse wave detection air bag 250 are arranged.
  • the ischemic air bladder 14 and the pulse wave detecting air bladder 250 in the armband 1002 are connected to the air balloon 1003 by air tubes 1004 and 1006.
  • a person to be measured or a medical worker presses the air balloon 1003 to supply air to the air bag 14 for ischemia in the arm band portion 1002 to press the upper arm, and the arm band portion 1002 Air can be supplied to the inner air bag 250 for detecting pulse waves.
  • the manual compression type sphygmomanometer 1A shown in FIG. 10 is similar to the sphygmomanometer 1 shown in FIGS. 1 to 8, and the subject is a heart transplant patient having a living heart transplant or an auxiliary artificial heart or a weak pulse wave. Even a person with weakness such as a person can obtain an average blood pressure value.
  • the sphygmomanometer 1 measures a blood pressure value even when measuring blood pressure of a heart transplant patient transplanted with a living heart transplantation or an auxiliary artificial heart or a pulse weak person such as a person with weak pulse wave. can do. That is, when the pulse weak person cannot measure the maximum blood pressure value and the minimum blood pressure value even if the blood pressure is measured, the control unit determines the pressure in the air bag for ischemia when the maximum amplitude of the pulse wave is generated. Therefore, the average blood pressure value can be used as the blood pressure value of the weak pulse person.
  • a person with weak pulse is a heart transplant patient who has been transplanted with a living heart transplant or auxiliary artificial heart or a person with weak pulse wave, but a heart transplant patient or pulse who has been transplanted with a living heart transplant or auxiliary artificial heart. Even in a person with weak waves, the pressure in the air bag for ischemia when the maximum amplitude of the pulse wave occurs is determined as the average blood pressure value of the person being measured. Can be used as
  • the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the claims.
  • a part of each configuration of the above embodiment can be omitted, or can be arbitrarily combined so as to be different from the above.
  • two pulse wave detection air bags 250 are provided in the armband part 2, but one pulse wave detection air bag 250 may be provided in the armband part 2.
  • the blood pressure monitor of the present invention can be applied to either a so-called double cuff or triple cuff.
  • the sphygmomanometer of the present invention may have a structure in which the armband portion is provided integrally with the sphygmomanometer body.
  • FIG. 11 is a perspective view showing a preferred embodiment of the sphygmomanometer of the present invention.
  • 12 is a front view of the sphygmomanometer shown in FIG.
  • the blood pressure monitor preferably measures a patient's blood pressure by pressurizing an air bag in an arm band attached to the upper arm T of a patient by a manual pressurization method by a medical staff such as a nurse. It can be performed.
  • This manual pressurization type sphygmomanometer 501 has an integrated air balloon (pressurizing unit) and a sphygmomanometer body, so that a medical worker can pressurize the air balloon with one hand, and the motor sound can be heard. Because there is no, blood pressure can be measured quietly even at night.
  • the three measurement modes are a normal mode, a slow mode, and an auscultation mode.
  • the normal mode is a mode in which blood pressure measurement can be performed more quickly by automatic measurement.
  • slow mode the decompression speed (exhaust speed) after pressurization is set to be slower than the decompression speed after pressurization in normal mode by automatic measurement, and blood pressure is measured in patients with low blood pressure or patients with weak pulses. It is a mode that can.
  • the auscultation mode is a mode in which a medical worker measures blood pressure by an auscultation method using a stethoscope without performing automatic measurement.
  • the measurement method in the sphygmomanometer 501 shown in FIGS. 11 and 12 is an oscillometric method (so-called double cuff method), and as shown in FIG. 11, the measurement target site is the upper arm T of a patient who is a subject.
  • a power source to be used for example, a dry battery is used.
  • the sphygmomanometer 501 has a sphygmomanometer body 502 and an armband 503.
  • the sphygmomanometer main body 1 includes a housing 504 and an air balloon 505.
  • the air balloon 505 is made of, for example, a material having chemical resistance and stretchability such as silicone resin so that a medical worker can pressurize the inside air.
  • the air balloon 505 is a rubber balloon, for example.
  • the housing 504 of the sphygmomanometer main body 502 shown in FIGS. 11 and 12 is made of plastic, and has a rectangular display portion 508, a power switch 509, a mode switch 510, and an exhaust switch 511.
  • the display unit 508 is, for example, a liquid crystal display device or an organic EL (electroluminescence) display device, and may be a single color display or a color display.
  • the display unit 508 can display the maximum blood pressure value, the minimum blood pressure value, the pulse rate, and which of the three measurement modes described above is selected.
  • the power switch 509 can be turned on or off by the medical staff when pressed.
  • the mode switch 510 can switch the measurement mode to any of the above-described normal mode, slow mode, and auscultation mode when pressed by a medical staff.
  • a medical worker By pressing the exhaust switch 511, a medical worker can forcibly exhaust the air in the air bag for ischemia and the air bag for detecting arterial pulsation in the armband 503 described later.
  • the two tubes 506 and 507 are flexible tubes that connect the housing 504 and the armband 503 of the sphygmomanometer main body 502.
  • the tube 506 is thicker than the tube 507.
  • One end portion 506 ⁇ / b> B of the tube 506 is connected to the upper portion of the housing 504 via the connector portion 512.
  • One end portion 507B of the tube 507 is connected to the upper portion of the housing 504 via a plug 50507C and a connector portion 512.
  • the ends 506B and 7B side of the tubes 506 and 507 are fixed by a holder 513.
  • the tubes 506 and 507 are fixed by the holder 513 so that the tubes 506 and 507 are not separated, but one end portion 507B of the thin tube 507 is connected to one end portion 506B of the thick tube 506.
  • the length of the tube 506 is provided with a margin so that the movement of the tube 507 can follow the movement of the tube 506 by loosening it. As a result, even if the thick tube 506 is pulled in a somewhat unreasonable direction by pulling the thick tube 506, the thin tube 507 is not pulled by being pulled by the thick tube 506.
  • an extension 514 protrudes downward from the lower portion of the housing 504.
  • the extension portion 514 is a thin plate-like member that covers a part of the front portion 50505S of the air balloon 505.
  • the medical staff repeats the operation of grasping or releasing the air balloon 505 while supporting the extension 514 with the finger of the hand H, so that the air from the air balloon 505 is contained in the blood pressure monitor main body 502.
  • the air bag for ischemia and the air bag for detecting arterial pulsation in the armband portion 503 can be supplied through the pipe and the tubes 506 and 507. Projections 4T are formed on both sides of the housing 504.
  • FIG. 13 shows an example of display items that can be displayed by the display unit 508.
  • the display unit 508 includes a maximum blood pressure value display area 508A, a minimum blood pressure value display area 508B, a pulse display area 508C, a pulse wave signal display area 508D, a previous value display area 508E, and a display area during exhaust. 508F, underpressurized display area 508G, overpressurized display area 508H, and selected mode display area 508K.
  • the maximum blood pressure value display area 508A displays the instantaneous blood pressure during pressurization and decompression, and finally displays the maximum blood pressure value.
  • the lowest blood pressure value display area 508B displays the lowest blood pressure value finally determined.
  • surrounding brightness may be automatically detected, and the display unit 508 may be brightened with a backlight during measurement at night.
  • the pulse display area 508C shown in FIG. 13 displays the measured pulse value.
  • the pulse wave signal display area 508D displays the magnitude of the detected pulse wave signal, and the magnitude of the pulse wave signal is displayed in a bar shape that moves to the left and right.
  • the display of the magnitude of the pulse wave signal rhythmically increases or decreases from side to side, but in the case of a patient with arrhythmia, the display of the magnitude of the pulse wave signal Rhythmically does not increase or decrease from side to side.
  • the previous value display area 508E shown in FIG. 13 blinks or lights up when the power switch 509 is pressed to activate the operation of the sphygmomanometer main body 502, and the highest blood pressure value, the lowest blood pressure value, and the pulse value measured last time are the highest blood pressure.
  • the values are displayed in a value display area 508A, a minimum blood pressure value display area 508B, and a pulse display area 508C. Then, after a while or when air is supplied by operating the air balloon 505, the display of the previously measured maximum blood pressure value, minimum blood pressure value, and pulse value disappears, and the previous value display area 508E is displayed.
  • the display area 508 ⁇ / b> F during exhausting blinks when the air of the air bag for ischemia in the armband 503 and the air bag for detecting arterial pulsation is rapidly exhausted.
  • the display area 508F during exhaust also blinks when the exhaust switch 511 is pressed.
  • the underpressurized display area 5050508G shown in FIG. 13 When the underpressurized display area 5050508G shown in FIG. 13 is lit or flashing, it indicates that the pressure in the armband 503 has not reached a level sufficient for blood pressure measurement. The air balloon 505 can be further urged to send air.
  • the overpressurization display area 508H When the overpressurization display area 508H is lit or blinking, it indicates that the pressure in the armband 503 is equal to or higher than a predetermined pressure (for example, 320 mmHg or higher), By confirming the display area 508H, it is possible to prompt the user to stop the pressurizing operation.
  • a predetermined pressure for example, 320 mmHg or higher
  • the selected mode display area 508K displays which mode is selected from the normal mode, the slow mode and the auscultation mode by pressing the mode switch 510. By selecting this mode, the exhaust (decompression) speed can be changed.
  • the exhaust speed is set to about 4 to 6 mmHg / second, for example. In the normal mode, there is an advantage that the measurement time can be made relatively short because the exhaust speed is relatively fast.
  • the increment of the pressure change measurement is large, there is no particular problem when measuring a person with stable pulse, but when measuring the blood pressure of a person with arrhythmia, the pulse is easily lost. Measurement error may increase.
  • a slow mode is provided.
  • the exhaust speed is set to approximately half of the normal mode, for example, 2 to 3 mmHg / sec.
  • the quick mode the exhaust speed is set to 6 to 8 mmHg / second, for example.
  • the auscultation mode is a mode in which measurement is performed manually using a stethoscope.
  • the exhaust speed is set to about half of the normal mode, for example, 2.0 to 3.0 mmHg / sec. The user may arbitrarily change the setting between 2 and 6 mmHg / sec depending on the patient.
  • FIG. 14 shows a control circuit block example arranged in the sphygmomanometer body 502 and a configuration example of the armband 503.
  • a control unit 600 is arranged inside a housing 504 of the sphygmomanometer main body 502 shown in FIG. 14, and the control unit 600 has a central processing unit (CPU) 601.
  • CPU central processing unit
  • the control unit 600 includes a display unit 508, a power control unit 602, a power switch 509, a mode switch 510, an exhaust switch 511, a pressure sensor 610, a ROM (read only memory) 611, and a RAM (random access memory). ) 112, the driving unit 613, and the buzzer 614.
  • the power of the battery 615 shown in FIG. 14 is supplied to the controller 600 by being controlled by the power controller 602.
  • the battery 615 may be a dry battery or a secondary battery (rechargeable battery).
  • the power consumption during measurement is Since it is about 0.5 W, as a power source to be used, for example, only one AA dry battery (DC1.5V) or AA rechargeable battery (DC1.5V) is used. Therefore, when a new AA battery (DC1.5V) is used, blood pressure can be measured about 1000 times, and the entire sphygmomanometer 501 can be reduced in size and weight (about 135 g).
  • the display unit 508 displays the display items described with reference to FIG.
  • the pressure sensor 610 detects the pressure in the air bag 520 for ischemia of the armband 503 and the pressure in the air bag 540 for detecting arterial pulsation, which will be described later.
  • the pressure sensor 610 detects a change in pressure in the air bag for ischemia 520.
  • the pressure in the air bag for detecting arterial pulsation (referred to as “arterial pulsation detecting air bag”) 540 is caused by vibration of the arterial wall due to arterial pulsation of the upper arm T during blood pressure measurement, that is, the upper arm. Although it fluctuates due to the pulse wave of the T artery, the pressure sensor 610 detects this pressure fluctuation.
  • the air bag for ischemia 520 is also called a large cuff, and the air bag for detecting arterial pulsation 540 is also called a small cuff.
  • the pressure sensor 610 detects a change in the air pressure of the ischemic air bladder 520, and the pressure sensor 610 detects a change in the air pressure of the pulse wave detecting air bladder 540.
  • the control unit 600 calculates a maximum blood pressure value (systolic blood pressure) and a minimum blood pressure value (diastolic blood pressure) based on a DC waveform signal from the pressure sensor 610 based on a change in air pressure in the air bag 520 for ischemia.
  • the controller 600 detects a pulse wave (pressure pulse wave) based on an AC waveform signal from the pressure sensor 600 based on a change in air pressure of the pulse wave detection air bladder 540.
  • the ROM 611 stores a control program and various data in advance.
  • the RAM 612 temporarily stores calculation results and measurement results.
  • the drive unit 613 drives the electromagnetic valve 616 according to a command from the control unit 600.
  • the control unit 600 determines that the pressure fluctuation value detected by the pressure sensor 610 is equal to or greater than a predetermined value, the control unit 600 determines that the pressurization is currently being performed and instructs the drive unit 613 to Valve 616 is closed.
  • the control unit 600 determines that the pressure fluctuation value (increase value) is substantially zero or in a reduced pressure state within a predetermined period with respect to the pressure detected by the pressure sensor 610, the control unit 600 instructs the drive unit 613 to Then, the electromagnetic valve 616 is opened so that the pressure reduction speed becomes a predetermined value.
  • the operation of the sphygmomanometer 501 shifts from the pressurization mode to the measurement mode.
  • the forced exhaust valve 617 is opened by a command from the control unit 600 when the exhaust switch 511 is pressed.
  • the buzzer 614 generates a predetermined warning sound according to a command from the control unit 600.
  • the 14 is arranged between one end 506B of the tube 506 and the conducting tube 120.
  • the air supply bulb 505 is connected to one end 506B of the tube 506 through the manifold 618, the branching portion 619, the conducting tube 120, and the forced exhaust valve 617.
  • the other end 506A of the tube 506 is connected to the air bag 520 for ischemia.
  • the air balloon 505 is connected to the pressure sensor 610 via a manifold 618, a branch portion 619, a manifold 621, and a branch portion 622.
  • the branch portion 622 is connected to one end portion 507B of the tube 507.
  • the other end 507A of the tube 507 is connected to an air bag 540 for detecting arterial pulsation.
  • the pressure sensor 610 can detect the fluctuation of the pressure in the air bag 520 for ischemia and the fluctuation of the pressure in the air bag 540 for detecting arterial pulsation.
  • a medical worker grasps or releases the air balloon 505
  • the air enters the ischemic bladder 520 through the manifold 618, the branch 619, the conducting tube 120, the forced exhaust valve 617, and the tube 506.
  • air can be sent into the air bag 540 for detecting arterial pulsation through the manifold 618, the branching part 619, the manifold 621, the branching part 622, and the tube 507.
  • the sphygmomanometer according to the third embodiment has the following configuration in order to realize a measurement mode similar to the measurement mode according to the first embodiment.
  • a storage unit 702 and a data memory 701 are connected to the control unit 600.
  • the display unit 508 a liquid crystal display device, an organic EL device, or the like can be used.
  • a pre-measurement music generation mode for generating music to be heard by the measurement subject in order to put the measurement subject in a relaxed state
  • a blood pressure measurement during measurement for example, a pre-measurement music generation mode for generating music to be heard by the measurement subject in order to put the measurement subject in a relaxed state
  • a measurement-in-progress music generation mode for generating music to be heard by the measurement subject in order to put the measurement person in a relaxed state.
  • the music data generated in the pre-measurement music generation mode and the music data generated in the in-measurement music generation mode are stored in advance in the storage unit 153 that stores the music data. Thereby, the person to be measured can hear music before and during the measurement, and the person to be measured can be in a relaxed state.
  • the data memory 701 stores a program for performing a series of operations necessary for blood pressure measurement, and the control unit 600 performs a blood pressure measurement operation according to the program.
  • the mode switch 510 is electrically connected to the control unit 600.
  • a predetermined blood pressure measurement mode is selected from a plurality of blood pressure measurement modes including 1) systolic blood pressure / diastolic blood pressure measurement mode, 2) systolic blood pressure / diastolic blood pressure / average blood pressure measurement mode, 3) average blood pressure measurement mode, and 4) auscultation mode.
  • the exhaust speed can be selected from a normal mode (4 mmHg / sec) and a slow mode (4 mmHg / sec).
  • the speaker 704 is an example of an informing unit for informing relaxing music and voice guidance contents, and is electrically connected to the control unit 600 via the filter 703.
  • FIG. 15 is a perspective view showing a state in which the armband portion 503 is about to be wound.
  • FIG. 16A shows the inner surface side of the armband portion 503, and
  • FIG. 16B is a perspective view showing the outer surface side of the armband portion 503.
  • FIG. 17A is a plan view showing the outer surface side of the armband portion 503, and
  • FIG. 17B is a diagram showing an air bag for ischemia 520 disposed inside the armband portion 503 and for detecting arterial pulsation.
  • 5 is a plan view showing a shape example of an air bag 540.
  • the armband 503 includes a cuff cover 550, a blood cuff 520 for ischemia that is a large cuff, and an air bag 540 for detecting arterial pulsation that is a small cuff. have.
  • the cuff cover 550 covers the ischemic air bladder 520 and the arterial pulsation detecting air bladder 540 in a detachable manner.
  • the cuff cover 550 includes an outer cloth 551 and an inner cloth 552, and the outer cloth 551 and the inner cloth 552 are rectangular. The end of the outer cloth 551 and the end of the inner cloth 552 are fixed by, for example, sewing with a thread.
  • an air bag for ischemia 520 and an arterial pulsation detection are provided in the outer cloth 551 and the inner cloth 552.
  • the air bag 540 can be detachably stored.
  • the cuff cover 550 can be removed from the air bag for ischemia 520 and the air bag for detecting arterial pulsation 540 for replacement or disinfection.
  • the outer cloth 551 and the inner cloth 552 of the cuff cover 550 shown in FIGS. 15, 16, and 17 (A) constitute a storage body that covers the outer surface of the air bag for ischemia and are not stretched in the circumferential direction and the longitudinal direction. It is a cloth member that is made of a flexible material and is deformable but has very low or almost no stretchability. Accordingly, when the outer cloth 551 and the inner cloth 552 supply air into the ischemic air bladder 520 and the arterial pulsation detecting air bladder 540, the ischemic air bladder 520 and the arterial pulsating air bladder are detected. It is possible to prevent 540 from expanding outward in the radial direction of the armband portion 503.
  • the ischemic air bladder 520 and the arterial pulsation detecting air bladder 540 can apply pressure to the upper arm T side, which is the inner side in the radial direction, and the pressure generated by the ischemic air bladder 520 and arterial pulsation detection.
  • the pressure generated by the air bag 540 can be pressurized against the upper arm T without escaping to the outside of the armband 503, and accurate blood pressure measurement can be performed.
  • the cuff cover 550 has an opening 550P for taking out.
  • the opening 550P for taking out is a gap between the outer cloth 551 and the inner cloth 552, and is used to take out the air bag 520 for detecting ischemia and the air bag 540 for detecting arterial pulsation housed in the cuff cover 550.
  • it is provided to be inserted into the cuff cover 550.
  • a rectangular blood bag for ischemia is used.
  • 520 has a trapezoidal extension 521.
  • the trapezoidal extension portion 521 is located at a position corresponding to the opening portion 550P, and has an inclined portion 522 so that the extension portion 521 decreases in width toward the outside.
  • the extended portion 521 is formed so that its position is slightly shifted from the center with respect to the longitudinal direction of the air bag 520 for ischemia. For this reason, when the air bag for ischemia 520 and the air bag for detecting arterial pulsation 540 are inserted into the cuff cover 550 from the opening portion 550P, they are prevented from being inserted in the opposite directions. That is, if the ischemic bladder 520 and the arterial pulsation detecting bladder 540 are inserted in the cuff cover 550 from the opening portion 550P in the correct direction, the extension portion 521 coincides with the position of the opening portion 550P.
  • the extension portion 521 does not coincide with the position of the opening portion 550P. From this, the medical staff can determine whether or not the ischemic air bladder 520 and the arterial pulsation detecting air bladder 540 are correctly inserted into the cuff cover 550.
  • the size of the armband 503 is, for example, from small to large, SS size (applicable to upper arm circumference 13 to 20 cm), S size (applicable to upper arm circumference 17 to 26 cm), M size (upper arm circumference 24 to 32 cm), L size (applicable to upper arm circumference 32 to 42 cm), and LL size (applicable to upper arm circumference 42 to 50 cm).
  • SS size applicable to upper arm circumference 13 to 20 cm
  • S size applicable to upper arm circumference 17 to 26 cm
  • M size upper arm circumference 24 to 32 cm
  • L size applicable to upper arm circumference 32 to 42 cm
  • LL size applicable to upper arm circumference 42 to 50 cm
  • the lateral length L1 and width W1 of the cuff cover 550 of the SS size armband 503 are (345 ⁇ 5 mm, 100 ⁇ 4 mm), and the lateral length L2 and width W2 of the ischemic air bladder 520 are (130).
  • the lateral length L3 and the width W3 of the air bag 540 for detecting arterial pulsation are (30 ⁇ 1 mm, 20 ⁇ 1 mm).
  • the lateral length L1 and width W1 of the cuff cover 550 of the armband 503 are (435 ⁇ 5 mm, 130 ⁇ 4 mm), and the lateral length L2 and width W2 of the air bag 520 for ischemia.
  • the lateral length L3 and width W3 of the air bag 540 for detecting arterial pulsation are (40 ⁇ 1 mm, 25 ⁇ 1 mm).
  • the lateral length L1 and width W1 of the cuff cover 550 of the armband 503 are (520 ⁇ 5 mm, 150 ⁇ 4 mm), and the lateral length L2 and width W2 of the air bag 520 for ischemia.
  • the lateral length L3 and the width W3 of the air bag 540 for detecting arterial pulsation are (60 ⁇ 1 mm, 30 ⁇ 1 mm).
  • the lateral length L1 and width W1 of the cuff cover 550 of the armband 503 are (640 ⁇ 5 mm, 190 ⁇ 4 mm), and the lateral length L2 and width W2 of the air bag 520 for ischemia. (320 ⁇ 10 mm, 170 ⁇ 5 mm), the lateral length L3 and width W3 of the air bag 540 for detecting arterial pulsation are (80 ⁇ 1 mm, 40 ⁇ 1 mm).
  • the lateral length L1 and width W1 of the cuff cover 550 of the armband portion 503 are (220 ⁇ 4 mm, 830 ⁇ 5 mm), and the lateral length L2 and width W2 of the air bag 520 for ischemia. (420 ⁇ 10 mm, 200 ⁇ 5 mm), the lateral length L3 and width W3 of the air bag 540 for detecting arterial pulsation are (100 ⁇ 1 mm, 50 ⁇ 1 mm).
  • the outer cloth 551 of the cuff cover 550 is provided with a female (loop) portion 553 of a hook-and-loop fastener.
  • the female portion 553 of the surface fastener is a rectangular member, and is arranged from the start end 554 side of the outer cloth 551 to the substantially central position of the outer cloth 551.
  • Two recognition marks 555 indicating the start end portion 554 are provided on the start end portion 554 side of the outer cloth 551.
  • the two recognition marks 555 are triangular, for example.
  • a ring-shaped recognition mark 556 is provided in the vicinity of the opening 550P of the outer cloth 551.
  • This recognition mark 556 indicates a position where the artery of the patient's upper arm T shown in FIG. 11 is compressed. For this reason, as shown in FIG. 15, when the arm band portion 503 is wound around the upper arm T and fixed, the recognition mark 556 is positioned on the artery of the upper arm T. Accordingly, the air bag 540 for detecting arterial pulsation can be accurately positioned on the artery, and accurate blood pressure measurement can be performed.
  • the inner cloth 552 of the cuff cover 550 is provided with a male portion 557 of a hook-and-loop fastener.
  • the male (hook) portion 557 of the hook-and-loop fastener is attached to and detached from the female portion 553 of the hook-and-loop fastener described above.
  • the arm band portion 503 can be formed in a cylindrical shape by being attached so that the arm band portion 503 is not displaced with respect to the upper arm T.
  • the male portion 557 of the surface fastener is provided at a position closer to the end portion 558 side of the inner cloth 552.
  • two arrow marks 559 are provided at the center position of the inner cloth 552. Two arrow marks 559 indicate that the armband portion 503 is a surface that is in direct contact with the upper arm T and the direction in which the armband portion 503 is wound.
  • a weight 560 is disposed inside the cuff cover 550 on the end portion 558 side.
  • the weight 560 is a member made of, for example, a metal round bar, and is fixed along the direction of the end portion 558 so that the end portion 558 of the cuff cover 550 is not sandwiched between the outer cloth 551 and the inner cloth 552 and moved. Has been. Since the air bag 520 for ischemia is not disposed in the terminal portion 558, the weight 560 can be easily accommodated in the terminal portion 558.
  • the weight of the weight 560 is used when the medical worker wraps and fixes the upper arm T of the patient as shown in FIG.
  • the male part 557 of the hook and loop fastener can be detachably attached to the female part 553 of the hook and loop fastener described above. That is, when the medical staff finishes wrapping the armband portion 503 around the patient's upper arm T, the weight of the weight 560 at the terminal portion 558 of the armband portion 503 is applied in the direction in which the armband portion 503 is wound. Can be easily wound. For this reason, it is possible to increase the efficiency of wrapping and fixing the arm band 503 of the medical staff, particularly for a patient whose upper arm circumference is greater than 42 cm.
  • the weight 560 is disposed inside the end portion 558 of the cuff cover 550, a protruding portion can be formed on the end portion 558 of the cuff cover 550, and a medical worker can serve as a handle for gripping the weight 560 with a finger. Can also fulfill. For this reason, since a medical worker can hold the terminal portion 558 of the arm band portion 503 with his / her hand, the terminal portion 558 of the arm band portion 503 is not detached from the hand. For this reason, the winding fixing work efficiency of the arm band part 503 of a medical worker can be raised.
  • the weight 560 is made of a metal bar having a circular cross section (outside diameter of about 3 to 5 mm), the length is slightly shorter than the width of the cuff cover 550, and 15% of the weight of the arm band portion 503 of about 150 g. By setting it to less than about 18 to 22 g, the patient will not feel uncomfortable when the armband 503 is attached to the upper arm.
  • an anti-slip portion 561 is preferably attached to the start end portion 554 side of the inner cloth 552 of the cuff cover 550, for example, using an adhesive. Is fixed.
  • the anti-slip portion 561 is, for example, a belt-like thin member, and can be made of, for example, synthetic rubber, polyurethane, elastomer, or the like, which is a material that is difficult to slip by being in close contact with the upper arm T.
  • the material of the non-slip portion 561 is a material that exhibits a high frictional force against the skin surface of the upper arm T and does not impose a burden on the skin surface of the upper arm T.
  • the medical worker winds the armband portion 503 around the upper arm T of the patient.
  • the start end portion 554 of the armband portion 503 can be prevented from slipping from the bare skin of the upper arm T, and the air bag 540 for detecting arterial pulsation can be prevented from being displaced from the artery of the upper arm T. For this reason, accurate blood pressure measurement can be performed.
  • the air bag for ischemia 520 and the air bag for detecting arterial pulsation 540 shown in FIG. 17B are bag-like members formed of a flexible material.
  • the air bag for ischemia 520 is made of natural rubber, synthetic rubber, elastomer, or the like.
  • the air bag 540 for detecting arterial pulsation is made of polyurethane or the like.
  • a hard plate 65 is disposed between the air bag 520 for ischemia and the air bag 540 for detecting arterial pulsation. By arranging the hard plate 65, minute pressure fluctuations in the air bag 540 for detecting arterial pulsation can be detected without being influenced by large pressure fluctuations in the air bag 520 for ischemia. .
  • the extended portion 521 of the ischemic bladder 520 is connected to the other end 506A of the tube 506, and the arterial pulsation detecting bladder 540 is connected to the other end 507A of the tube 507. ing. Since the other end 507A of the tube 507 having a small diameter is loosened with respect to the other end 506A of the tube 506 having a large diameter, the air bag for ischemia 520 and arterial pulsation detection are provided through the opening 550P of the cuff cover 550.
  • the other end 507A of the tube 507 having a small diameter is large when the air bag 540 and the air bag 540 for detecting arterial pulsation are accommodated through the opening portion 550P of the cuff cover 550.
  • the tube 506 is prevented from being damaged by being pulled by the other end 506A of the tube 506.
  • FIG. 18 shows an example of a procedure for winding the armband 503 directly around the skin of the upper arm T of the patient.
  • the arm band portion 503 to be wound around the upper arm T has the outer cloth 551 side down and the inner cloth 552 up.
  • FIG. 18B to 18B the inner cloth 552 side is applied from the lower side of the upper arm T.
  • the medical worker holds the start end portion 554 of the armband portion 503 by hand and winds the armband portion 503 around the upper arm T along the R1 direction.
  • the recognition mark 556 shown in FIGS. 15 and 16A is positioned according to the position of the artery of the upper arm T as shown in FIG. 540 can be accurately positioned relative to the artery of the upper arm T.
  • the anti-slip portion 561 on the start end portion 554 side directly contacts the bare skin of the upper arm T, so that the start end portion 554 can be held so as not to be displaced from the upper arm T.
  • the anti-slip portion 561 exhibits a high frictional force against the skin surface of the upper arm T, and the medical staff slips from the bare skin of the upper arm T when the arm band portion 503 is wound around the upper arm T of the patient. prevent.
  • the air bag 540 for detecting arterial pulsation can be prevented from deviating from the artery of the upper arm T, and the pressure sensor 610 shown in FIG. 14 accurately detects the fluctuation of the air pressure in the air bag 540 for detecting arterial pulsation. Therefore, accurate blood pressure measurement can be performed.
  • the medical worker holds the end portion 558 of the armband portion 503 by hand and winds the armband portion 503 around the upper arm T along the R2 direction.
  • the arm band portion 503 is provided inside the end portion 558.
  • the male part 557 of the surface fastener on the terminal end 558 side is detachably attached to the female part 553 of the surface fastener described above. Therefore, the medical staff wraps the end portion 558 of the armband portion 503 around the upper arm T until the end, and holds the end portion 558 of the armband portion 503 by hand and holds the male portion 557 of the fastener and the hook-and-loop fastener. Since the labor of attaching the knife portion 553 is eliminated, the work of the medical staff can be reduced.
  • the arm band portion 503 can be directly wound around the skin of the upper arm T and fixed so as not to be displaced.
  • the weight 560 is disposed at the end portion 558 of the cuff cover 550, the weight 560 is a protruding portion at the end portion 558 of the cuff cover 550.
  • the medical staff can also play a role as a handle for gripping the protruding portion of the cuff cover 550 covering the weight 560 with a finger.
  • the medical staff can surely have the protruding portion of the cuff cover 550 covering the weight 560, so that the end portion 558 of the armband portion 503 can be removed from the hand. It will not come off.
  • the medical staff presses the power switch 509 shown in FIG. 13 and further presses the mode switch 510 with the armband 503 held in the correct posture with respect to the upper arm T. Select the desired mode with.
  • the air from the air balloon 505 is exchanged with a pipe and a tube in the sphygmomanometer body 502 by repeating the operation of grasping or separating the air balloon 505 while supporting the extension 514 with the finger of the hand H. Air is fed into the air bag 520 for ischemia and the air bag 540 for detecting arterial pulsation in the armband 503 through 506 and 507, respectively.
  • FIG. 19 shows an example in which the pressure applied to the upper arm T by the air bag for ischemia 520 changes with time.
  • air is sent into the air bag 520 for detecting ischemia and the air bag 540 for detecting arterial pulsation shown in FIG. Therefore, as shown in FIG. 19, the pressure in the air bag for ischemia 520 in the armband 503 increases during the pressure increase period t1.
  • the control unit 600 in FIG. 14 determines that the pressurization is currently being performed, and instructs the drive unit 613 to close the electromagnetic valve 616. And the operation
  • the controller 600 waits for the natural pressure reduction period t2 and then determines that the pressure detected by the pressure sensor 610 in FIG. 14 is in the pressure reduction state in the optimum speed pressure reduction period t3.
  • the unit 613 is instructed to open the electromagnetic valve 616 so that the pressure reduction speed becomes a predetermined value.
  • the control unit 600 shown in FIG. 14 receives a maximum blood pressure value (SYS) based on a signal from the pressure sensor 610.
  • SYS maximum blood pressure value
  • a minimum blood pressure value (D1A) and a pulse value are acquired.
  • the control unit 600 in FIG. 14 operates the forced exhaust valve 617 to force the air in the air bag 520 for ischemia in the armband 503 and the air bag 540 for detecting arterial pulsation. Evacuate to eliminate pressure.
  • the medical staff may remove the armband 503 from the patient's upper arm T in the order of FIG. 18C, FIG. 18B, and FIG. That is, as shown in FIG. 18C, the medical worker holds the portion of the weight 560 of the end portion 558 of the arm band portion 503 by hand, and peels off the end portion 558 of the arm band portion 503 along the R3 direction. . Accordingly, as shown in FIG. 18B, the male part 557 of the surface fastener on the terminal end 558 side of the armband part 503 is peeled off from the female part 553 of the surface fastener on the start end part 554 side of the armband part 503.
  • the end portion 558 side of the armband portion 503 can be easily separated from the upper arm T.
  • the medical staff holds the starting end portion 554 of the armband portion 503 by hand and separates it from the upper arm T in the R4 direction, so that the anti-slip portion 561 on the starting end portion 554 side becomes the upper arm.
  • the arm band portion 503 can be easily detached from the upper arm T as shown in FIG.
  • the sphygmomanometer 501 of the embodiment of the present invention has an armband portion 503.
  • the armband portion 503 When the blood pressure is measured by winding the armband portion 503 around the patient's upper arm T, which is a patient, and pressurizing the armband portion 503, the armband portion 503 starts to be wound around the upper arm T.
  • An anti-slip portion 561 is provided for stopping the upper arm T from slipping. For this reason, the armband 503 can be wound around the patient's upper arm T while being easily positioned. That is, an anti-slip portion 561 for stopping slipping on the upper arm T is provided inside the start end portion 554 of the arm band portion 503.
  • the anti-slip portion 561 can stop the start end portion 554 of the armband portion 503 so as not to slide with respect to the upper arm T.
  • the belt 503 can be wound around the upper arm T while being easily positioned. Therefore, blood pressure can be accurately measured.
  • a weight 560 is provided at the terminal end 558 where the arm band 503 is wound around the upper arm T. For this reason, when the medical staff wraps the arm band 503 around the patient's upper arm T and finishes wrapping, the weight of the weight 560 at the terminal portion 558 of the arm band 503 is applied in the direction in which the arm band 503 is wound. Can be easily wound.
  • the armband portion 503 includes an air bag 520 for blocking the upper arm T by supplying air, and an air bag 540 for detecting arterial pulsation that detects the pulsation of the artery of the upper arm T by supplying air.
  • the arm cloth portion cover 50 is composed of an outer cloth 551 and an inner cloth on the inner side of the outer cloth 52 and accommodates an air bag 520 for ischemia and an air bag 540 for detecting arterial pulsation. For this reason, even if it is the arm band part 503 which accommodated the air bag 520 for ischemia and the air bag 540 for arterial pulsation detection in the arm band part cover 50, it can wind around, positioning easily. Therefore, blood pressure can be accurately measured.
  • the non-slip portion is disposed on the inner cloth of the armband portion cover. For this reason, it is possible to stop the start end portion 554 of the arm band portion 503 so that the anti-slip portion 561 does not slip with respect to the upper arm T only by arranging the anti-slip portion 561 on the inner cloth 552.
  • the weight 560 is disposed between the outer cloth 551 and the inner cloth 552 at the end portion 558 of the armband portion 503. For this reason, the weight 560 can be easily provided only by arranging the weight 560 between the outer cloth 551 and the inner cloth 552. For this reason, the blood pressure monitor main body 502 that supplies air to the air bag 520 for ischemia of the armband 503 and the air bag 540 for detecting arterial pulsation is provided.
  • the blood pressure monitor main body 502 includes a housing 504 and a housing 504. , And the tubes 506 and 507 for sending air to the ischemic air bladder 520 and the arterial pulsation detecting bladder 540 by manually pressing the air balloon 505. Therefore, in a state where the medical worker holds the air balloon 505 with one hand, the medical worker can wrap the armband portion 503 around the upper arm 5 with only the other hand while winding the armband portion. The winding workability of 503 can be improved.
  • the maximum blood pressure value and the minimum blood pressure value are measured in the same manner as an ordinary sphygmomanometer for the blood pressure of a normal general user.
  • the person being measured is a heart transplant patient with a living heart transplant, an auxiliary artificial heart, or a pulse weak person such as a person with weak pulse waves it can. This point will be described with reference to the contents of FIGS. FIG.
  • step SP1 the person to be measured presses the mode switch 510 described in FIG. 14, 1) the maximum blood pressure / minimum blood pressure measurement mode, 2) the maximum blood pressure / minimum blood pressure / average blood pressure measurement mode, 3) the average blood pressure measurement mode, 4 3)
  • the average blood pressure measurement mode 3) is selected from a plurality of blood pressure measurement modes including the auscultation mode.
  • the control unit 600 in FIG. 14 instructs and uses the air balloon 505 in FIG. Air is supplied to the air bag 550 shown in FIG. 14 to pressurize the upper arm T until the time tr shown in FIG. Thereafter, the control unit 600 in FIG. 14 instructs to reduce the air pressure so that the inclination of the air pressure in the ischemic bladder 520 becomes constant. In the process of reducing the air pressure, the control unit 600 detects the maximum blood pressure value and the minimum blood pressure value based on the appearance of the pulse wave. Thereafter, the control unit 600 removes the air in the ischemic air bag 520 and the pulse wave detecting air bag 540.
  • step SP2 determines whether the measurement of the highest blood pressure value and the lowest blood pressure value of the measurement subject has succeeded in the blood pressure measurement operation of step SP2. If the subject is a normal heart transplant patient who is transplanted with a living heart transplant, an auxiliary artificial heart, or a normal person who is not weak, such as a person with weak pulse waves, the pulse pressure (difference between the maximum blood pressure and the minimum blood pressure) ) And a large number of pulse waves can be detected, so that the maximum blood pressure value and the minimum blood pressure value corresponding to the detected pulse wave can be measured. That is, the pressure sensor 610 detects a change in the pressure of the air bag 520 for ischemia, the control unit 600 obtains a blood pressure waveform (DC waveform) WS illustrated in FIG.
  • DC waveform blood pressure waveform
  • step SP3 the control unit 600 displays the highest blood pressure value, the lowest blood pressure value, and the pulse on the display unit 508 shown in FIG. 14, and ends the blood pressure measurement operation.
  • step SP2 when the control unit 600 in FIG. 14 determines that the measurement of the maximum blood pressure value and the minimum blood pressure value in the blood pressure measurement in step SP2 is not successful, the control unit 600 determines that the measurement subject has Then, it is determined that the patient is a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a person with weak pulse wave, and the process proceeds to the mean blood pressure measurement mode of step SP4.
  • the control unit 600 is a mode for detecting the maximum pulse wave MM shown in FIG. 6B, and is performed in steps SP5 to SP11 described below.
  • control unit 600 detects a change in pressure of pulse wave detection air bladder 540 and recognizes AC pulse wave waveform WT shown in FIG. 6B.
  • the control unit 600 sets a threshold value SHD in advance as illustrated in FIG. 7 for the amplitude of the pulse wave (or the height of the pulse wave).
  • a pulse wave WW whose pulse wave amplitude is greater than or equal to the threshold value SHD is selected, and sequentially corresponds to the pressure of the blood pressure waveform (DC waveform) WS illustrated in FIG. Let me remember.
  • controller 600 in FIG. 14 recognizes AC pulse wave waveform WT shown in FIG.
  • step SP6 controller 600 determines whether each AC pulse wave waveform WT pulse wave WW is an abnormal wave or a normal wave. Check if it is. That is, it is determined whether the phase of the pulse wave WW that is equal to or greater than the threshold value SHD stored in the data memory 701 in step SP5 is a positive phase and valid, or the width of the pulse wave WW is not narrow and valid. To do.
  • FIG. 8A illustrates a normal pulse wave WW having a positive phase and an appropriate phase
  • FIG. 8B illustrates an abnormal pulse wave WW1 having an opposite phase
  • FIG. 8C illustrates an abnormal pulse whose width (one cycle) in the time axis direction of the pulse wave is narrower than a predetermined width (one cycle) even if the pulse wave has an appropriate phase.
  • Wave WW2 As shown in FIG. 8B, in the case of the pulse wave WW1 whose phase is not valid or in the case of the pulse wave WW2 whose width shown in FIG. 8C is not valid, in step SP7 of FIG.
  • the control unit 600 deletes the pulse wave detection data from the data memory 701 shown in FIG.
  • step SP8 the pressure sensor 610 obtains, for example, pulse wave groups M1, M2, and M3 as shown in FIG. 6B, and the control unit 600 causes the pulse wave groups M1, M2, and so on as shown in FIG.
  • M3 it is determined from the detected pulse wave groups M1, M2, and M3 whether the maximum pulse wave amplitude (or maximum pulse wave height) has periodicity (trend). That is, as shown in FIG.
  • the control unit 600 determines whether there are pulse waves MM1 and MM2 having a pulse wave amplitude smaller than the maximum pulse wave MM at positions before and after the maximum pulse wave MM.
  • a pulse wave group M2 having pulse waves MM1 and MM2 having a pulse wave amplitude smaller than the maximum pulse wave MM at positions before and after the pulse wave MM is selected from the detected pulse wave groups M1, M2, and M3. Thereby, the position of the generated pulse wave of the maximum amplitude MM of the pulse wave can be confirmed.
  • the average blood pressure value PM of the measurement subject corresponding to MM can be accurately determined.
  • step SP10 of FIG. 7 the control unit 600 illustrates the blood pressure waveform illustrated in FIG. 6A corresponding to the generation position of the maximum pulse wave MM in the selected pulse wave group M2 illustrated in FIG.
  • the pressure in the WS (armband pressure, cuff pressure) is confirmed, and this pressure is confirmed and determined as the average blood pressure value PM for the maximum pulse wave MM.
  • the control part 600 displays the determined average blood pressure value PM with respect to a to-be-measured person in the display part 508 shown in FIG. Thereby, the measurement subject can visually confirm the average blood pressure value PM displayed on the display unit 508.
  • examples of voice guidance contents to be notified during blood pressure measurement include
  • the speaker 704 can send a notification content such as “measuring the average blood pressure value”, for example, according to a command from the control unit 600.
  • the average blood pressure value PM can be notified to the person to be measured by voice guidance through the speaker 704 as necessary. Thereby, even if the person to be measured cannot visually confirm the average blood pressure value PM on the display unit 508, it can be confirmed by listening to the average blood pressure value PM.
  • the blood pressure measurement operation using the sphygmomanometer 501 is performed and the operation is terminated.
  • a medical worker can prescribe the measurement subject based on the value of the average blood pressure value PM.
  • the measurement subject can determine whether or not to consult a medical institution as necessary with reference to the average blood pressure value PM.
  • the present inventors have determined that an oscillometric method using a pulse wave is used even if a person to be measured is a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a person with weak pulse such as a person with weak pulse wave.
  • the pressure at which the maximum pulse wave MM is generated has a high correlation with the average blood pressure.
  • the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the claims.
  • the illustrated sphygmomanometer is of a manual pressurization type, but the sphygmomanometer of the present invention is not limited to this.
  • the automatic sphygmomanometer 501 has an arm band portion 503 and the arm band portion 503 has a separate sphygmomanometer body 502, and the arm band portion is wound around the upper arm of a patient (a person to be measured).
  • the pressurized air from the sphygmomanometer body 502 is passed through the tubes 506 and 507. 520 and the arterial pulse detection air bag 540 (see FIG. 14).
  • a power source to be used for example, about four AA dry batteries (DC1.5V) or AA rechargeable batteries (DC1.5V) are used, or a nickel-cadmium rechargeable battery is used.
  • a microphone (not shown) is provided, and by detecting the Korotkoff sound, the maximum blood pressure (systolic blood pressure) and the minimum blood pressure (diastolic blood pressure) are calculated. It may be.
  • a circuit for detecting a pulse wave from the pressure pulse wave from the ischemic air bag 520 is provided without providing the air bag 540 for detecting the arterial pulsation, and the highest blood pressure (systolic blood pressure), the lowest blood pressure is detected from the detected pulse wave. Blood pressure (diastolic blood pressure) may be calculated.
  • the round bar-shaped weight 560 is housed and disposed inside the terminal portion 558 of the cuff cover 550, but this is an example, and the shape of the weight can be arbitrarily selected.
  • a metal weight 560M is exposed to the outside of the end portion 558 of the cuff cover 550, and this weight 560M is used by a medical worker to hold it with a finger. It also plays the role of a handle. Thereby, the medical staff can also play a role as a handle for grasping the weight 560 with a finger.
  • an anti-slip portion 561 is preferably attached to the start end portion 554 side of the inner cloth 552 of the cuff cover 550, for example, using an adhesive. Is fixed.
  • the present invention is not limited to this, and the anti-slip portion 561 can be made of a material having an anti-slip ability at the start end portion 554 of the inner cloth 552 itself. A part of each configuration of the above embodiment can be omitted, or can be arbitrarily combined so as to be different from the above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Artificial Intelligence (AREA)
  • Dentistry (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

Provided is a sphygmomanometer by which the blood pressure of a subject can be measured even in a case where the subject is a person with weak pulse, for example, a vital heart transplant patient, an auxiliary artificial heart transplant patient or a pulsus debilis patient. The sphygmomanometer (1) which comprises an arm band part (2) provided with an ischemic air bag (14) for pressing the upper arm of a subject and a pulse wave detection air bag (250) for detecting the pulse wave of the subject, a pressurizing mechanism (110) for pressurizing the inside of the ischemic air bag and pulse wave detection air bag, depressurizing mechanisms (111, 112) for depressurizing the inside of the ischemic air bag and pulse wave detection air bag, a pressure sensor (140) for detecting the pressure in the ischemic air bag and the pressure in the pulse wave detection air bag, and a control part (120) for detecting the blood pressure and pulse wave on the basis of signals from the pressure sensor, wherein, in the case where the subject is a person with weak pulse, the control part (120) determines the mean blood pressure (PM) of the subject as the pressure in the ischemic air bag (14) at the point when the maximum magnitude (MM) of the pulse wave occurs in the course of depressurizing the inside of the ischemic air bag and pulse wave detection air bag.

Description

血圧計Sphygmomanometer
 本発明は、被測定者(使用者)が生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱者であっても血圧測定を行うことができる血圧計に関する。 The present invention relates to a sphygmomanometer capable of measuring blood pressure even if a person to be measured (user) is a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a pulse weak person such as a person with weak pulse wave. .
 近年、医療機関で行われている高血圧治療向けの血圧測定において、白衣性高血圧症による擬似高血圧が問題にされている。この擬似高血圧症の原因としては、病院内での医師の前での緊張、不安等の精神面での不安定が考えられている。これに対して、被測定者が精神的に安定している家庭にて測定した血圧値に注目が集まっている。このため、この家庭での血圧測定に用いる電子血圧計が注目されている。 In recent years, pseudohypertension due to white coat hypertension has been a problem in blood pressure measurement for hypertension treatment performed in medical institutions. As a cause of this pseudohypertension, mental instability such as tension and anxiety in front of a doctor in a hospital is considered. On the other hand, attention is focused on blood pressure values measured at home where the measurement subject is mentally stable. For this reason, an electronic sphygmomanometer used for blood pressure measurement at home is drawing attention.
 このタイプの血圧計で測定上問題となるのが、腕帯部の腕への装着の仕方である。腕帯部内の空気袋の位置が上腕に対して適当でない場合や、上腕に対して巻き付け強さが適当でない場合に、腕帯部の空気袋の圧迫が上腕に正しく行われず、血圧が高く測定される場合がある。近年、これを解決するために、筒状の腕帯部に腕を挿入するだけで、自動的に腕帯部の阻血用の空気袋を腕の正しい位置に配置し、正しい巻き付け強さにて血圧測定を行うことができるようにした血圧計本体と腕帯部を一体とした電子血圧計が開発されている(特許文献1を参照)。 ¡A problem with this type of sphygmomanometer is how to wear the armband on the arm. When the position of the air bag in the armband is not appropriate for the upper arm or when the wrapping strength is not appropriate for the upper arm, the pressure of the air bag in the armband is not correctly applied to the upper arm, and the blood pressure is high. May be. In recent years, in order to solve this, simply by inserting the arm into the cylindrical armband, the air bag for ischemia of the armband is automatically placed at the correct position of the arm, with the correct winding strength. An electronic sphygmomanometer has been developed that integrates a sphygmomanometer body and an armband that can measure blood pressure (see Patent Document 1).
 しかし、被測定者が上記血圧計を使用すると、腕を挿入する腕帯部が血圧計本体と一体となっているので、血圧計本体の位置が被測定者の前方に離れていた場合には、被測定者は前かがみ状態での測定となり易い。このため、被測定者の腹部が圧迫されて腹圧が上昇し、その結果血圧が上昇する現象が見られる場合がある。この血圧上昇は、新たな擬似高血圧症の発生として指摘されている。 However, when the person to be measured uses the above sphygmomanometer, the arm band part into which the arm is inserted is integrated with the sphygmomanometer body, so that the position of the sphygmomanometer body is separated from the front of the person to be measured. The person being measured is likely to perform measurement in a leaning state. For this reason, the abdomen of the person to be measured is compressed and the abdominal pressure increases, and as a result, a phenomenon in which the blood pressure increases may be seen. This increase in blood pressure is pointed out as the occurrence of new pseudohypertension.
 そこで、腕帯部が血圧計本体とは別体に形成されているものが提案されており、腕帯部は剛体のケースを有しており、このケース内に阻血用の空気袋が配置されている。これにより、被測定者が座位にて血圧測定する場合に、血圧計本体から腕帯部を分離できるので、上腕を腕帯部に挿入するだけで測定可能となる利便性を損なわず、血圧計本体の設置場所が被測定者から前方に離れていても、測定者が正しく、背を伸ばした状態にて腹圧の掛からない状態で血圧測定をすることが可能である。 Therefore, it has been proposed that the armband portion is formed separately from the main body of the sphygmomanometer, and the armband portion has a rigid case, and an air bag for ischemia is disposed in this case. ing. This allows the armband part to be separated from the sphygmomanometer main body when the person to be measured measures blood pressure in the sitting position, so that the blood pressure meter does not lose the convenience of being able to measure by simply inserting the upper arm into the armband part. Even if the installation location of the main body is far away from the person to be measured, the blood pressure can be measured in a state where the measurer is correct and the abdominal pressure is not applied when the back is stretched.
特開2005―237427号公報JP 2005-237427 A
 ところで、被測定者が生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱者である場合には、脈弱者の脈波が弱く脈圧が極端に少ないために、脈弱者が脈波を利用したオシロメトリック法による血圧計を用いて血圧を自動的に決定しようとした場合には、脈弱者の血圧値の決定ができずに、血圧値測定エラーを表示してしまい、脈弱者の血圧測定を行うことができない。
 そこで、本発明は、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱者の血圧を測定する場合であっても、血圧値を測定することができる血圧計を提供することを目的とする。
By the way, if the person being measured is a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a pulse weak person such as a person with weak pulse wave, the pulse wave of the weak pulse person is weak and the pulse pressure is extremely low. In addition, if a person with pulse weakness tries to automatically determine the blood pressure using an oscillometric sphygmomanometer that uses pulse waves, the blood pressure value cannot be determined and the blood pressure value measurement error is displayed. As a result, it is impossible to measure the blood pressure of a weak pulse person.
Therefore, the present invention provides a blood pressure that can measure the blood pressure value even when measuring the blood pressure of a heart transplant patient transplanted with a living heart transplant, an auxiliary artificial heart, or a weak pulse person such as a person with weak pulse waves. The purpose is to provide a total.
 本発明の血圧計は、被測定者の上腕を圧迫する阻血用空気袋と前記被測定者の脈波を検出する脈波検出用空気袋とを有する腕帯部と、前記阻血用空気袋と前記脈波検出用空気袋内を加圧する加圧機構と、前記阻血用空気袋と前記脈波検出用空気袋内を減圧する減圧機構と、前記阻血用空気袋内の圧力と前記脈波検出用空気袋内の圧力を検出する圧力センサと、前記圧力センサからの信号により血圧値と脈波の検出をする制御部とを有し、複数の血圧測定モードを備えた血圧計であって、前記血圧測定モードが平均血圧測定モードを含む時、前記阻血用空気袋と前記脈波検出用空気袋を減圧する際に、前記脈波の最大振幅が発生した時の前記阻血用空気袋の圧力を、前記被測定者の平均血圧値として決定する前記制御部を備えることを特徴とする。 The sphygmomanometer according to the present invention includes an armband portion having an air bag for ischemia for compressing the upper arm of the subject and an air bag for detecting a pulse wave for detecting the pulse wave of the subject, and the air bag for ischemia A pressurizing mechanism for pressurizing the inside of the air bag for pulse wave detection, a pressure reducing mechanism for depressurizing the inside of the air bag for isolating blood and the air bag for detecting pulse wave, a pressure in the air bag for isolating blood pressure, and the detection of the pulse wave A sphygmomanometer having a plurality of blood pressure measurement modes, including a pressure sensor for detecting the pressure in the air bag, and a control unit for detecting a blood pressure value and a pulse wave by a signal from the pressure sensor, When the blood pressure measurement mode includes an average blood pressure measurement mode, the pressure of the air bag for ischemia when the maximum amplitude of the pulse wave is generated when the air bag for ischemia and the air bag for pulse wave detection are decompressed Including the control unit that determines the average blood pressure value of the person being measured That.
 好ましくは、前記制御部が脈弱測定モードを有しており、複数の血圧測定モードから所定の血圧測定モードの選択により、前記制御部が脈弱者としての前記被測定者として、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人について、前記平均血圧を測定する血圧測定モードを選択できるようにしたことを特徴とする。
 上記構成によれば、被測定者が生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人であっても、脈波の最大振幅が発生した時の阻血用空気袋内の圧力を、被測定者の平均血圧値として決定するので、この平均血圧値を脈弱者の血圧値として用いることができる。
Preferably, the control unit has a pulse weakness measurement mode, and by selecting a predetermined blood pressure measurement mode from a plurality of blood pressure measurement modes, the control unit as a person to be measured as a pulse weak, A blood pressure measurement mode for measuring the mean blood pressure can be selected for a heart transplant patient or a person having a weak pulse wave transplanted with an auxiliary artificial heart.
According to the above configuration, even if the person to be measured is a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a person with weak pulse wave, the blood pressure inside the air bag for ischemia when the maximum amplitude of the pulse wave is generated Since the pressure is determined as the average blood pressure value of the person to be measured, this average blood pressure value can be used as the blood pressure value of the pulse weak person.
 好ましくは、前記阻血用空気袋内と前記脈波検出用空気袋内を減圧する際に生じる前記脈波を記憶するメモリを有し、前記制御部は、逆位相の前記脈波と、予め定めた値よりも時間軸方向の幅が狭い前記脈波を、異常脈波として前記メモリから削除することを特徴とする。
 上記構成によれば、逆位相の脈波と、予め定めた値よりも時間軸方向の幅が狭い脈波を、異常脈波として削除できるので、メモリ内のデータ量を減らすことができ、脈波の最大振幅が発生した時の阻血用空気袋内の圧力を、被測定者の平均血圧値として容易に決定することができる。
Preferably, the apparatus has a memory for storing the pulse wave generated when the inside of the air bag for ischemia and the inside of the air bag for pulse wave detection is decompressed, and the control unit is configured to determine the pulse wave having an opposite phase and a predetermined value. The pulse wave having a narrower width in the time axis direction than the above value is deleted from the memory as an abnormal pulse wave.
According to the above configuration, the pulse wave having the opposite phase and the pulse wave whose width in the time axis direction is narrower than a predetermined value can be deleted as an abnormal pulse wave, so that the amount of data in the memory can be reduced, The pressure in the air bag for ischemia when the maximum amplitude of the wave is generated can be easily determined as the average blood pressure value of the measurement subject.
 好ましくは、前記制御部は、前記脈波の最大振幅の発生を確認する際に、前記最大振幅の前記脈波の前後には、前記最大振幅の前記脈波に比べて振幅の小さい前記脈波がそれぞれ存在することを確認することを特徴とする。
 上記構成によれば、脈波の最大振幅の発生に基づいて被測定者の平均血圧値を正確に決定できる。
Preferably, when the generation of the maximum amplitude of the pulse wave is confirmed, the control unit has the pulse wave having a smaller amplitude than the pulse wave of the maximum amplitude before and after the pulse wave of the maximum amplitude. It is characterized by confirming that each exists.
According to the said structure, based on generation | occurrence | production of the maximum amplitude of a pulse wave, a to-be-measured person's average blood pressure value can be determined correctly.
 好ましくは、前記腕帯部は、血圧計本体とは別体になっており、前記腕帯部は、前記阻血用空気袋と、前記上腕に装着された時に対向位置になるように配置された複数の前記脈波検出用空気袋とを収納していることを特徴とする。
 上記構成によれば、いずれかの脈波検出用空気袋を上腕の動脈に当てることができ、脈波の検出が容易になる。
Preferably, the armband portion is separate from the blood pressure monitor main body, and the armband portion is disposed so as to face the ischemic air bag when the armband portion is attached to the upper arm. A plurality of the pulse wave detection air bags are housed.
According to the above configuration, one of the pulse wave detection air bags can be applied to the artery of the upper arm, and the detection of the pulse wave is facilitated.
 好ましくは、前記制御部が前記被測定者の前記平均血圧値を決定した時に、前記平均血圧値を表示する表示部を有し、前記表示部は前記血圧計本体に配置されていることを特徴とする。
 上記構成によれば、被測定者は血圧計本体の表示部を見ることで、平均血圧値を目視で確認できる。
Preferably, when the control unit determines the average blood pressure value of the measurement subject, the control unit includes a display unit that displays the average blood pressure value, and the display unit is disposed in the blood pressure monitor main body. And
According to the said structure, a to-be-measured person can confirm an average blood pressure value visually by looking the display part of a blood pressure meter main body.
 また、本発明の腕帯部は、血圧測定用の腕帯部であって、外布と前記外布の内側にある内布とからなるカフカバーと、前記カフカバーの内部に空気袋を備え、前記腕帯部の上腕に巻き終わる終端部には、錘が設けられていることを特徴とする。
上記構成によれば、医療従事者が腕帯部を患者の上腕に巻き付けて巻き付け終わる際に、腕帯部の終端部にある錘の重さが腕帯部を巻き付ける方向に掛かることから、容易に巻き付けることができる。
The armband portion of the present invention is an armband portion for blood pressure measurement, comprising a cuff cover made of an outer cloth and an inner cloth inside the outer cloth, and an air bag inside the cuff cover, A weight is provided at the terminal end where the upper end of the armband portion is wound.
According to the above configuration, when the medical staff finishes wrapping the armband portion around the patient's upper arm, the weight of the weight at the end of the armband portion is applied in the direction in which the armband portion is wound. Can be wrapped around.
 本発明の腕帯部は、また、血圧測定用の腕帯部であって、外布と前記外布の内側にある内布とからなるカフカバーと、前記カフカバーの内部に空気袋を備え、前記腕帯部の上腕に巻き始める始端部の内側には、前記上腕に対する滑りを止めるための滑り止め部が設けられていることを特徴とする。
 上記構成によれば、腕帯部を患者の上腕に対して、容易に位置決めしながら巻き付けることができる。すなわち、腕帯部の始端部の内側には、上腕に対する滑りを止めるための滑り止め部が設けられているので、医療従事者が腕帯部を患者の上腕に巻き付ける際に、滑り止め部は腕帯部の始端部を上腕に対して滑らないようにして止めて位置決めすることができる。
The armband portion of the present invention is also an armband portion for blood pressure measurement, comprising a cuff cover made of an outer cloth and an inner cloth inside the outer cloth, and an air bag inside the cuff cover, An anti-slip portion for stopping slipping with respect to the upper arm is provided on the inner side of the starting end portion where the arm belt portion starts to be wound around the upper arm.
According to the above configuration, the armband portion can be wound around the patient's upper arm while being easily positioned. That is, since a slip prevention part for stopping slipping with respect to the upper arm is provided inside the start end part of the arm band part, when the medical worker wraps the arm band part around the upper arm of the patient, the slip prevention part is The armband portion can be positioned by stopping so that the starting end portion of the armband portion does not slide with respect to the upper arm.
 本発明の血圧計は、外布と前記外布の内側にある内布とからなるカフカバーと、前記カフカバーの内部に空気袋を備え、上腕に巻き終わる終端部には、錘が設けられた血圧測定用の腕帯部と、前記腕帯部の前記空気袋に対してチューブを介して接続された血圧計本体を有し、前記血圧計本体は、筐体と、前記筐体に取り付けられて押されることにより前記チューブを通じて空気を前記空気袋に送る送気球と、を有することを特徴とする。 The sphygmomanometer according to the present invention includes a cuff cover made of an outer cloth and an inner cloth inside the outer cloth, an air bag inside the cuff cover, and a blood pressure provided with a weight at a terminal portion that is wound around the upper arm. An armband portion for measurement, and a blood pressure monitor body connected to the air bag of the armband portion via a tube, the blood pressure monitor body is attached to the housing and the housing And a balloon for sending air through the tube to the air bag when pushed.
 上記構成によれば、医療従事者が腕帯部を患者の上腕に巻き付けて巻き付け終わる際に、腕帯部の終端部にある錘の重さが腕帯部を巻き付ける方向に掛かることから、容易に巻き付けることができ、血圧測定が容易に行ええる。
 上記構成によれば、医療従事者が一方の手で送気球を持った状態で、医療従事者は他方の片手だけで腕帯部を上腕に容易に位置決めしながら巻き付けることができ、腕帯部の巻き付け作業性を向上できる。
According to the above configuration, when the medical staff finishes wrapping the armband portion around the patient's upper arm, the weight of the weight at the end of the armband portion is applied in the direction in which the armband portion is wound. The blood pressure can be easily measured.
According to the above configuration, the medical worker can wrap the armband portion while easily positioning the armband portion on the upper arm with only one other hand while the medical worker has the air balloon with one hand. Winding workability can be improved.
 本発明の血圧計は、外布と前記外布の内側にある内布とからなるカフカバーと、前記カフカバーの内部に空気袋を備え、上腕に巻き始める始端部の内側には、前記上腕に対する滑りを止めるための滑り止め部が設けられた腕帯部と、前記腕帯部の前記空気袋に対してチューブを介して接続された血圧計本体を有し、前記血圧計本体は、筐体と、前記筐体に取り付けられて押されることにより前記チューブを通じて空気を前記空気袋に送る送気球と、を有することを特徴とする。 The sphygmomanometer according to the present invention includes a cuff cover including an outer cloth and an inner cloth inside the outer cloth, an air bag inside the cuff cover, and a slip with respect to the upper arm on the inner side of a starting end portion where the upper arm starts to be wound. An armband portion provided with an anti-slip portion for stopping the blood pressure, and a blood pressure monitor body connected to the air bag of the armband portion via a tube, And an air supply balloon that sends air to the air bag through the tube by being attached to the housing and pushed.
 上記構成によれば、腕帯部を患者の上腕に対して、容易に位置決めしながら巻き付けることができる。すなわち、腕帯部の始端部の内側には、上腕に対する滑りを止めるための滑り止め部が設けられているので、医療従事者が腕帯部を患者の上腕に巻き付ける際に、滑り止め部は腕帯部の始端部を上腕に対して滑らないようにして止めて位置決めすることができるので、腕帯部を上腕に対して、容易に位置決めしながら巻き付けることができる。
 上記構成によれば、医療従事者が一方の手で送気球を持った状態で、医療従事者は他方の片手だけで腕帯部を上腕に容易に位置決めしながら巻き付けることができ、腕帯部の巻き付け作業性を向上できる。
According to the above configuration, the armband portion can be wound around the patient's upper arm while being easily positioned. That is, since a slip prevention part for stopping slipping with respect to the upper arm is provided inside the start end part of the arm band part, when the medical worker wraps the arm band part around the upper arm of the patient, the slip prevention part is Since the armband portion can be positioned by being stopped without slipping with respect to the upper arm, the armband portion can be wound around the upper arm while being easily positioned.
According to the above configuration, the medical worker can wrap the armband portion while easily positioning the armband portion on the upper arm with only one other hand while the medical worker has the air balloon with one hand. Winding workability can be improved.
 本発明は、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱者の血圧を測定する場合であっても、血圧値を測定することができる血圧計を提供することができる。 The present invention relates to a sphygmomanometer capable of measuring a blood pressure value even when measuring the blood pressure of a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a pulse weak person such as a person with weak pulse wave. Can be provided.
本発明の血圧計の実施形態の全体を示す斜視図である。It is a perspective view showing the whole embodiment of a sphygmomanometer of the present invention. 図2(A)は、図1に示す血圧計の血圧計本体を左後ろ側から見た斜視図である。図2(B)は、図1に示す血圧計の血圧計本体を右後ろ側から見た斜視図である。FIG. 2A is a perspective view of the sphygmomanometer body of the sphygmomanometer shown in FIG. 1 as viewed from the left rear side. FIG. 2B is a perspective view of the sphygmomanometer body of the sphygmomanometer shown in FIG. 1 as viewed from the right rear side. 図3(A)は、腕帯部の内部構造例を示す断面図であり、図3(B)は、腕帯部を折り畳んだ状態を示す正面図であり、図3(C)は、腕帯部を折り畳んだ状態を示す斜視図である。3A is a cross-sectional view showing an example of the internal structure of the armband, FIG. 3B is a front view showing a state in which the armband is folded, and FIG. 3C is an arm. It is a perspective view which shows the state which folded the belt | band | zone part. 折り畳まれた腕帯部が筐体部の背面側に保持部を用いて着脱可能に収納される様子を示す側面図である。It is a side view which shows a mode that the folded armband part is detachably accommodated in the back side of a housing | casing part using a holding | maintenance part. 本発明の血圧計の実施形態の電気的な構成例を示すブロック図である。It is a block diagram which shows the electrical structural example of embodiment of the blood pressure meter of this invention. 図5に示す圧力センサが阻血用空気袋のエア圧の変動から得られる血圧値の変化と、図5に示す圧力センサが脈波検出用空気袋のエア圧の変動から得られる圧脈波の出現例を示す図である。The pressure sensor shown in FIG. 5 changes the blood pressure value obtained from the fluctuation of the air pressure of the air bag for ischemia, and the pressure sensor shown in FIG. 5 shows the pressure pulse wave obtained from the fluctuation of the air pressure of the pulse wave detection air bag. It is a figure which shows an example of appearance. 平均血圧値の検出動作例を含む血圧測定動作を示すフロー図である。It is a flowchart which shows the blood pressure measurement operation | movement including the detection operation example of an average blood pressure value. 図8(A)に例示するのは、位相が妥当な正常の脈波WWを示し、図8(B)に例示するのは、逆位相の異常な脈波WW1を示し、図8(C)に例示するのは、位相が妥当な脈波であってもその脈波の時間軸方向の幅が狭い異常な脈波WW2を示すである。FIG. 8A illustrates a normal pulse wave WW having a proper phase, and FIG. 8B illustrates an abnormal pulse wave WW1 having an opposite phase. Illustrated in FIG. 4 is an abnormal pulse wave WW2 having a narrow width in the time axis direction even if the phase is a valid pulse wave. 血圧測定の参考例を示す図。The figure which shows the reference example of a blood pressure measurement. 本発明の第2の実施形態を示す斜視図。The perspective view which shows the 2nd Embodiment of this invention. 本発明の血圧計の第3の実施形態を示す斜図。The oblique view which shows 3rd Embodiment of the blood pressure meter of this invention. 図11に示す血圧計の正面図。The front view of the sphygmomanometer shown in FIG. 第3の実施形態の血圧計の表示部が表示できる表示項目の例を示す図。The figure which shows the example of the display item which the display part of the blood pressure meter of 3rd Embodiment can display. 血圧計本体内に配置されている制御回路ブロック例と、腕帯部の構成例を示す図。The figure which shows the example of a control circuit block arrange | positioned in the blood pressure meter main body, and the structural example of an armband part. 腕帯部が巻かれようとする状態を示す斜視図。The perspective view which shows the state which an arm band part is going to wind. 図16(A)は、腕帯部の内面側を示し、図16(B)は、腕帯部の外面側を示す斜視図。FIG. 16A shows the inner surface side of the armband portion, and FIG. 16B is a perspective view showing the outer surface side of the armband portion. 図17(A)は、腕帯部の外面側を示す平面図であり、図17(B)は、腕帯部の内部に配置される阻血用空気袋と動脈拍動検出用の空気袋の形状例を示す平面図。FIG. 17A is a plan view showing the outer surface side of the armband portion, and FIG. 17B shows an air bag for ischemia and an air bag for detecting arterial pulsation arranged inside the armband portion. The top view which shows the example of a shape. 腕帯部を患者の上腕Tの素肌に直接巻く手順の例を示す図。The figure which shows the example of the procedure which winds an arm belt part directly on the bare skin of the upper arm T of a patient. 阻血用空気袋により上腕に対して加えられる圧力が、時間経過により変化する例を示す図。The figure which shows the example from which the pressure applied with respect to an upper arm by the air bag for ischemia changes with time passage. 本発明の第4の実施形態を示す図The figure which shows the 4th Embodiment of this invention
 以下に、本発明の好ましい実施形態を、図面を参照して詳しく説明する。
 尚、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
 図1は、本発明の血圧計の実施形態の全体を示す斜視図である。図2(A)は、図1に示す血圧計の血圧計本体を左後ろ側から見た斜視図である。図2(B)は、図1に示す血圧計の血圧計本体を右後ろ側から見た斜視図である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
The embodiments described below are preferred specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. Unless otherwise stated, the present invention is not limited to these embodiments.
FIG. 1 is a perspective view showing the entire embodiment of the blood pressure monitor of the present invention. FIG. 2A is a perspective view of the sphygmomanometer body of the sphygmomanometer shown in FIG. 1 as viewed from the left rear side. FIG. 2B is a perspective view of the sphygmomanometer body of the sphygmomanometer shown in FIG. 1 as viewed from the right rear side.
 図1と図2に示す血圧計1は、本発明の血圧計の好ましい一例であり、電子血圧計とも言う。この血圧計1では、腕帯部2と血圧計本体10は別体になっており、図1と図2に示す血圧計本体10から図1に示す腕帯部2を分離して使用する。これにより、この血圧計1は、腕帯部と本体が一体となった一体型血圧計と違い、被測定者が座位にて測定する時に、血圧計本体10の設置場所が被測定者から前方に離れていても、腕帯部2を上腕Tに装着することで、背を伸ばして腹圧の掛からない状態で血圧測定が可能である。
 この血圧計1は、通常の一般利用者の血圧について、その最大血圧値と最低血圧値とを普通の血圧計と同様に測定できるだけでなく、被測定者が、補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱者である場合に、これらの人の平均血圧値について、後で詳しく説明する手法により測定することができるようになっている。
 この血圧計1は、腕帯部2により上腕Tを圧迫してその圧迫を解除する過程で、上腕Tの動脈から圧力と脈波(圧脈波ともいう)とを検出して、圧力からは最高血圧(収縮期血圧)、最低血圧(拡張期血圧)を演算する、いわゆる圧脈波(オシロメトリック)法を利用した血圧計である。
The sphygmomanometer 1 shown in FIGS. 1 and 2 is a preferred example of the sphygmomanometer of the present invention, and is also called an electronic sphygmomanometer. In this sphygmomanometer 1, the armband part 2 and the sphygmomanometer body 10 are separate, and the armband part 2 shown in FIG. 1 is used separately from the sphygmomanometer body 10 shown in FIGS. 1 and 2. As a result, the blood pressure monitor 1 is different from the integrated blood pressure monitor in which the armband portion and the main body are integrated, and the place where the blood pressure monitor main body 10 is installed is forward of the measured person when the measured person measures in the sitting position. Even if they are separated from each other, blood pressure can be measured in a state where the back is stretched and abdominal pressure is not applied by attaching the armband portion 2 to the upper arm T.
The sphygmomanometer 1 can measure not only the maximum blood pressure value and the minimum blood pressure value of a normal general user's blood pressure in the same manner as an ordinary sphygmomanometer, but also a heart transplantation in which a measured person transplants an auxiliary artificial heart. When the patient is a weak person such as a patient or a person with weak pulse wave, the average blood pressure value of these persons can be measured by a method described in detail later.
The sphygmomanometer 1 detects pressure and a pulse wave (also referred to as a pressure pulse wave) from the artery of the upper arm T in the process of pressing the upper arm T by the armband portion 2 and releasing the compression, and from the pressure, This is a sphygmomanometer using a so-called pressure pulse wave (oscillometric) method for calculating a maximum blood pressure (systolic blood pressure) and a minimum blood pressure (diastolic blood pressure).
 図1に示す腕帯部2はカフともいい、腕帯部2は一定(所定)の外周長さを有しており、折り畳み可能で柔らかな材質で作られた切れ目の無いソフトな筒体であり、2つの開口部11P、11Rを有している。
 図1に示すように、被測定者の上腕Tに腕帯部2を装着すると、開口部11Pは手指側に位置され、反対側の開口部11Rは肩側に位置される。開口部11Rの内径は、開口部11Pの内径よりも大きい。これにより、被測定者の手指は、開口部11R側から開口部11Pにかけて容易に挿入することができ、腕帯部2は、被測定者の肘よりも上の上腕Tに保持して血圧を測定するようになっている。
The armband part 2 shown in FIG. 1 is also called a cuff, and the armband part 2 has a constant (predetermined) outer peripheral length, and is a soft cylinder body that is made of a foldable and soft material. Yes, it has two openings 11P and 11R.
As shown in FIG. 1, when the armband 2 is attached to the upper arm T of the measurement subject, the opening 11P is positioned on the finger side, and the opening 11R on the opposite side is positioned on the shoulder side. The inner diameter of the opening 11R is larger than the inner diameter of the opening 11P. As a result, the finger of the person to be measured can be easily inserted from the opening 11R side to the opening 11P, and the armband 2 is held on the upper arm T above the elbow of the person to be measured and blood pressure is maintained. It comes to measure.
 図1に示すように、腕帯部2は、上腕Tを阻血するための阻血用空気袋14と、脈波を検出するための脈波検出用空気袋250を内蔵している。脈波検出用空気袋250は、好ましくは2つの内蔵している。腕帯部2が上腕Tに装着された状態では、この阻血用空気袋14は、血圧計本体10側からエアが供給されると上腕Tを圧迫し、エアを解放して上腕Tの圧迫を解放する過程で、上腕Tの動脈から血圧のDC(直流)波形信号を検出するための空気袋である。
 図1に示す例では、腕帯部2が上腕Tに装着された状態では、2つの脈波検出用空気袋250は、上腕Tを挟むようにして対向位置になるように配置されている。これらの脈波検出用空気袋250は、血圧計本体10側からエアを供給されることで上腕Tを圧迫してからエアを解放する過程で、上腕Tの動脈から脈波(圧脈波)を検出するための空気袋である。脈波検出用空気袋250は、腕帯部2における上腕Tに対する圧力の変化に伴う動脈の拍動による動脈壁の振動に基づいて、圧脈波を検出する。圧脈波は、腕帯部2の阻血用空気袋14の内圧を最高血圧以上に上げて血管を一旦圧閉した後、内圧を徐々に下げて内圧が最高血圧以下になり、血管が開き始めると発生し、内圧が最低血圧以下になり、血管の圧閉が消失するまでの間に検出できるAC(交流)波形信号である。
 阻血用空気袋14の空気収容容量は、上腕Tの周囲を圧迫するための力を発揮するために、脈波検出用空気袋250の空気収容容量に比べて大きい。
As shown in FIG. 1, the armband portion 2 incorporates a blood-insulating air bag 14 for blood-blocking the upper arm T and a pulse-wave detecting air bag 250 for detecting a pulse wave. Two pulse wave detection air bags 250 are preferably incorporated. In a state where the armband portion 2 is attached to the upper arm T, the air bag 14 for ischemia compresses the upper arm T when air is supplied from the sphygmomanometer body 10 side, and releases the air to compress the upper arm T. It is an air bag for detecting a DC (direct current) waveform signal of blood pressure from the artery of the upper arm T during the releasing process.
In the example shown in FIG. 1, in a state where the armband portion 2 is attached to the upper arm T, the two pulse wave detection air bags 250 are disposed so as to face each other with the upper arm T interposed therebetween. These air bags 250 for detecting pulse waves are supplied with air from the sphygmomanometer main body 10 side so as to pressurize the upper arm T and then release the air, and then pulse waves (pressure pulse waves) from the arteries of the upper arm T. It is an air bag for detecting. The pulse wave detection air bag 250 detects the pressure pulse wave based on the vibration of the arterial wall due to the pulsation of the artery accompanying the change in pressure on the upper arm T in the armband portion 2. The pressure pulse wave increases the internal pressure of the air bag 14 for the ischemia of the armband 2 above the maximum blood pressure and once closes the blood vessel. Then, the internal pressure is gradually decreased to the internal blood pressure below the maximum blood pressure, and the blood vessel begins to open. This is an AC (alternating current) waveform signal that can be detected until the internal pressure falls below the minimum blood pressure and the occlusion of the blood vessel disappears.
The air accommodation capacity of the air bag 14 for ischemia is larger than the air accommodation capacity of the air bag 250 for detecting a pulse wave in order to exert a force for pressing around the upper arm T.
 図1に示すように、腕帯部2と血圧計本体10とは、エアチューブ4,5とエアプラグ6を介して接続されている。エアチューブ4,5は、好ましくは複胴管(複導管ともいう)を構成しているフレキシブルなエラストマチューブである。エアチューブ4,5は、全長に渡って(あるいはほぼ全長に渡って)一体的に形成されている。これにより、腕帯部2を血圧計本体10から離して使用する際に、エアチューブ4,5の取り扱いが容易である。第1エアチューブとしてのエアチューブ4は、腕帯部2の阻血用空気袋14へのエアの給排気に用いられ、第2エアチューブとしてのエアチューブ5は、2つの脈波検出用空気袋250へのエアの給排気に用いられる。エアチューブ4はエアチューブ5に比べてより太いチューブであり、エアチューブ4の内径と外径は、エアチューブ5の内径と外径に比べて大きく設定されている。これにより、エアチューブ4は空気容量の大きい阻血用空気袋14に対するエアの給排気を迅速に行える。 As shown in FIG. 1, the armband 2 and the sphygmomanometer body 10 are connected via air tubes 4 and 5 and an air plug 6. The air tubes 4 and 5 are preferably flexible elastomer tubes that constitute a multiple cylinder tube (also referred to as a multiple conduit). The air tubes 4 and 5 are integrally formed over the entire length (or substantially over the entire length). Thereby, when using the arm band part 2 apart from the blood pressure monitor main body 10, the air tubes 4 and 5 can be easily handled. The air tube 4 as the first air tube is used for supplying and exhausting air to and from the air bag 14 for the ischemia of the armband portion 2, and the air tube 5 as the second air tube has two pulse wave detection air bags. Used to supply / exhaust air to 250. The air tube 4 is a thicker tube than the air tube 5, and the inner diameter and outer diameter of the air tube 4 are set larger than the inner diameter and outer diameter of the air tube 5. As a result, the air tube 4 can quickly supply and exhaust air to and from the air bag 14 having a large air capacity.
 図1と図3を参照して、腕帯部2の構造例を説明する。
 図3(A)は、腕帯部2の内部構造例を示す断面図であり、図3(B)は、腕帯部2を折り畳んだ状態を示す正面図であり、図3(C)は、腕帯部2を折り畳んだ状態を示す斜視図である。
 図1と図3に示すように、腕帯部2は、外周方向に沿っては切れ目のない筒状の部材であり、所定(一定)の長さの外周を有していて、この腕帯部2の中に被測定者の上腕Tを通すことができるようになっている。図3(B)と図3(C)に示すように、腕帯部2は被測定者が簡単に折り畳むことができる柔軟性を有し、図1と図3(A)に示すように、例えば外布16と、内布17と、上腕Tを阻血するための阻血用空気袋14と、2つの脈波検出用空気袋250を有している。
 図1に示す血圧計1は、腕帯部2の阻血用空気袋14は、上腕Tの動脈を圧迫するために用いられ、腕帯部2の2つの脈波検出用空気袋250は、動脈から脈波の検出をするために用いられる。
With reference to FIG. 1 and FIG. 3, the structural example of the armband part 2 is demonstrated.
3A is a cross-sectional view showing an example of the internal structure of the armband portion 2, FIG. 3B is a front view showing a state in which the armband portion 2 is folded, and FIG. It is a perspective view which shows the state which folded the armband part 2. FIG.
As shown in FIGS. 1 and 3, the armband portion 2 is a cylindrical member that is not cut along the outer circumferential direction, and has an outer periphery of a predetermined (constant) length. The upper arm T of the person to be measured can be passed through the part 2. As shown in FIG. 3 (B) and FIG. 3 (C), the armband portion 2 has the flexibility that the person to be measured can easily fold, and as shown in FIG. 1 and FIG. 3 (A), For example, it has an outer cloth 16, an inner cloth 17, a hemostasis air bag 14 for isolating the upper arm T, and two pulse wave detection air bags 250.
In the sphygmomanometer 1 shown in FIG. 1, the air bag 14 for ischemia of the armband portion 2 is used to compress the artery of the upper arm T, and the two pulse wave detection air bags 250 of the armband portion 2 are used for the artery. It is used to detect the pulse wave.
 図3(A)に示すように、外布16の内側面と内布17の外側面は、阻血用空気袋14と2つの脈波検出用空気袋250を包んでおり、外布16と内布17は、阻血用空気袋14と2つの脈波検出用空気袋250が収納可能なド-ナツ状の空間を作るために、外布16の端部と内布17の両端部は、例えば縫製または一体成形により接合している。なお、図3(A)に例示するように、2つの脈波検出用空気袋250は、好ましくは腕帯部2の長手方向(軸方向)の中間位置よりも開口部11P側寄りの位置(肩側寄りではなく、手指より側の位置)に配置するのが良い。このようにすることで、2つの脈波検出用空気袋250のいずれかを上腕Tの動脈に対応する部分に当てることができる。これにより、上腕Tを確実に加圧して動脈を阻血した状態で、脈波検出用空気袋250は脈波を検出できる。2つの脈波検出用空気袋250が対向する位置に配置されているので、いずれかの脈波検出用空気袋250を上腕Tの動脈に当てることができ、脈波の検出が容易になる。 As shown in FIG. 3A, the inner surface of the outer cloth 16 and the outer surface of the inner cloth 17 enclose the air bag 14 for ischemia and the two air bags 250 for detecting pulse waves. In order to create a doughnut-shaped space in which the cloth 17 can store the air bag 14 for ischemia and the two air bags 250 for detecting pulse waves, the ends of the outer cloth 16 and both ends of the inner cloth 17 are, for example, They are joined by sewing or integral molding. As shown in FIG. 3A, the two pulse wave detection air bags 250 are preferably positioned closer to the opening 11P side than the intermediate position in the longitudinal direction (axial direction) of the armband portion 2 (see FIG. It is better to place it at a position closer to the finger than the shoulder side. In this way, one of the two pulse wave detection air bags 250 can be applied to the portion of the upper arm T corresponding to the artery. Thereby, the pulse wave detection air bag 250 can detect the pulse wave in a state where the upper arm T is surely pressurized and the artery is blocked. Since the two pulse wave detection air bladders 250 are disposed at opposing positions, one of the pulse wave detection air bladders 250 can be applied to the artery of the upper arm T, and the pulse wave can be easily detected.
 図3(A)に示す外布16は、阻血用空気袋14の外面を覆う筒体でなり、円周方向及び長手方向に非伸縮性の材料で形成されており、変形可能であるが伸縮性が非常に低いかほとんど無い布部材である。これにより、外布16は、阻血用空気袋14と2つの脈波検出用空気袋250内にエアを供給した際に、阻血用空気袋14と2つの脈波検出用空気袋250が腕帯部2の半径方向の外側に膨れないようにすることができ、阻血用空気袋14と2つの脈波検出用空気袋250は半径方向の内側である上腕T側に膨れることになる。このため、阻血用空気袋14と2つの脈波検出用空気袋250の圧力は、腕帯部2の外側へは逃げずに上腕Tに対して加圧でき、正確な血圧測定をすることができる。
 図3(A)に示す外布16は、例えば伸びにくい生地(201BE)を採用でき、引張強度は、JIS L1096-A法で測定した値として、タテが1430N/in~1460N/inで、ヨコが810N/in~8250N/inである。さらには、タテが1430N/in~1460N/inで、ヨコが810N/in~8250N/inであることが好ましい。タテとヨコともに、この数値範囲よりも小さいと阻血用空気袋14の外側への膨らみの抑制が弱くなり、また、この数値範囲よりも大きいと上腕Tの挿入に影響が出る可能性がある。外布16としては、例えば、ポリエステル100%の生地を用いると、タテが1445N/inで、ヨコが827N/inである。
The outer cloth 16 shown in FIG. 3 (A) is a cylindrical body that covers the outer surface of the air bag 14 for ischemia, and is formed of a non-stretchable material in the circumferential direction and the longitudinal direction. It is a fabric member that has very low or no properties. As a result, when the outer fabric 16 supplies air into the ischemic air bladder 14 and the two pulse wave detecting air bags 250, the ischemic air bag 14 and the two pulse wave detecting air bags 250 become armbands. The air bag 14 and the two pulse wave detection air bags 250 are inflated to the upper arm T side which is the inner side in the radial direction. For this reason, the pressure of the air bag 14 for the ischemia and the two air bags 250 for detecting the pulse wave can be applied to the upper arm T without escaping to the outside of the armband portion 2, and accurate blood pressure measurement can be performed. it can.
As the outer fabric 16 shown in FIG. 3A, for example, a fabric that is difficult to stretch (201BE) can be adopted, and the tensile strength is a value measured by the JIS L1096-A method with a warp of 1430 N / in to 1460 N / in, Is 810 N / in to 8250 N / in. Further, it is preferable that the length is 1430 N / in to 1460 N / in and the width is 810 N / in to 8250 N / in. If both the length and the width are smaller than this numerical range, the suppression of the outward expansion of the air bag 14 is weakened, and if it is larger than this numerical range, the insertion of the upper arm T may be affected. As the outer cloth 16, for example, when a 100% polyester fabric is used, the length is 1445 N / in and the width is 827 N / in.
 一方、図3(A)に示す内布17は、阻血用空気袋14と2つの脈波検出用空気袋250の内面を覆う筒体でなり、変形可能で伸縮性を有し、上腕Tの被測定面に当接する当接布部である。内布17は、弾性を備えていてしかも伸縮性を有する布部材である例えば伸びやすい生地を採用でき、引張強度は、JIS L1096-A法で測定した値として、タテが94.9N/inで、ヨコが1250.7N/inである。引張伸度は、JIS L1096-A法で測定した値として、タテが517%で、ヨコが400%である。内布としては、例えば、ナイロン80%、ポリウレタン20%の生地である。内布17は、阻血用空気袋14と脈波検出用空気袋250が上腕Tの被測定面に向けて膨張できるように伸縮性を持たせた素材にて、かつ、腕帯部2を被測定者の手先から挿入して、肘の上部の上腕Tまでスライドさせて装着させる必要があるので、スベリの良い材質、例えば、ジャ-ジ素材を使用している。 On the other hand, the inner cloth 17 shown in FIG. 3 (A) is a cylindrical body that covers the inner surfaces of the ischemic air bladder 14 and the two pulse wave detecting air bladders 250, is deformable, has elasticity, and has an upper arm T. It is a contact cloth part contact | abutted to a to-be-measured surface. The inner fabric 17 can be a stretchable fabric member that is elastic and has elasticity, for example, and can have a tensile strength of 94.9 N / in as measured by the JIS L1096-A method. The width is 1250.7 N / in. The tensile elongation is 517% in length and 400% in width as measured by the JIS L1096-A method. The inner fabric is, for example, a fabric made of 80% nylon and 20% polyurethane. The inner cloth 17 is made of a material having elasticity so that the air bag 14 for the ischemia and the air bag 250 for detecting the pulse wave can expand toward the surface to be measured of the upper arm T, and covers the arm band portion 2. Since it is necessary to insert it from the hand of the measurer and slide it to the upper arm T above the elbow, a smooth material such as a jersey material is used.
 図1と図3(A)~図3(C)に示すように、開口閉鎖部材30は、腕帯部2の内部において、開口部11P側であってしかもエアチューブ4とエアチューブ5が導出(接続)されている側に設けられている。この開口閉鎖部材30は、例えば着脱可能な面ファスナーを用いることができ、面ファスナーのオス部材31とメス部材32を有している。オス部材31とメス部材32は、腕帯部2の内側において対面する位置に固定されており、図3(B)と図3(C)に示すように、オス部材31とメス部材32を着脱可能に連結することにより、腕帯部2の開口部11P側だけを閉じて、開口部11Rは開放した状態に維持することができる。 As shown in FIG. 1 and FIGS. 3 (A) to 3 (C), the opening closing member 30 is on the opening 11P side inside the armband portion 2, and the air tube 4 and the air tube 5 are led out. It is provided on the (connected) side. The opening closing member 30 can use, for example, a removable surface fastener, and has a male member 31 and a female member 32 of the surface fastener. The male member 31 and the female member 32 are fixed at positions facing each other inside the armband portion 2, and the male member 31 and the female member 32 are attached and detached as shown in FIGS. 3 (B) and 3 (C). By connecting in a possible manner, only the opening 11P side of the armband portion 2 can be closed, and the opening 11R can be kept open.
 これにより、腕帯部2に対して開口閉鎖部材30を設けることで、被測定者が腕帯部2に対して手先を通して血圧測定をしようとする際に、閉じている開口部11P側からは手先を通すことが無く、開いている開口部11R側から迷わずに手先を通すことができる。このため、被測定者が腕帯部2に対して誤って手先を開口部11P側から逆挿入してしまうことを防止することができる。もし、被測定者が腕帯部2に対して開口部11P側から逆挿入してしまうと、脈波検出用空気袋250が上腕Tの動脈に適切に当たらなくなり、正確に圧脈波の測定ができなくなるおそれがある。また、腕帯部2に対して開口閉鎖部材30を設けることで、腕帯部2を使用しない時に折り畳むのが容易にできる。 Thereby, by providing the opening closing member 30 for the armband part 2, when the person to be measured tries to measure blood pressure through the hand with respect to the armband part 2, from the closed opening part 11P side. Without passing the hand, it is possible to pass the hand without getting lost from the open opening 11R side. For this reason, it can prevent that a to-be-measured person inserts a hand back into the armband part 2 accidentally from the opening part 11P side. If the measured person inserts the armband part 2 back from the opening 11P side, the pulse wave detection air bag 250 does not properly hit the artery of the upper arm T, and the pressure pulse wave is accurately measured. There is a risk that it will not be possible. Further, by providing the opening closing member 30 with respect to the armband portion 2, it can be easily folded when the armband portion 2 is not used.
 図1と図3に示すように、腕帯部2は、好ましくは方向視認用部材であるタグ33を有している。このタグ33は、開口部11R側であって、外布16に対して例えば接着剤を用いるか、縫製により固定されている。タグ33は、腕帯部2の開口部11R側の端部からV方向に沿って突出して設けられており、例えば布部材あるいはプラスチック部材により作ることができる。図3(A)に示すように、被測定者が例えば腕帯部2に左腕を挿入して血圧測定をする際には、タグ33を右腕の指Fでつかんで腕帯部2をV方向に移動することができる。このタグ33には、好ましくは「肩側」表示33Sを表記することができる。 As shown in FIGS. 1 and 3, the armband portion 2 preferably has a tag 33 that is a member for visually recognizing a direction. The tag 33 is on the opening 11R side, and is fixed to the outer fabric 16 by using, for example, an adhesive or by sewing. The tag 33 is provided so as to protrude along the V direction from the end of the armband portion 2 on the opening 11R side, and can be made of, for example, a cloth member or a plastic member. As shown in FIG. 3A, when the person to be measured inserts his left arm into the armband portion 2 and measures blood pressure, for example, the user grasps the tag 33 with the finger F of the right arm and holds the armband portion 2 in the V direction. Can be moved to. The tag 33 can preferably be labeled with a “shoulder side” display 33S.
 これにより、被測定者は、このタグ33をつかんでV方向に移動するだけで上腕Tに対して腕帯部2の装着動作が容易にできるばかりでなく、腕帯部2の装着方向が明確になるので、開口部11R側から迷わずに手先を通すことができる。このため、被測定者が腕帯部2に対して誤って手先を開口部11P側から逆挿入してしまうことを防止することができる。すなわち、エアチューブ4,5側の開口部11Pだけを閉じることができるので、被測定者が上腕に対して誤って逆方向に装着することを容易に防止でき、被測定者が上腕Tに対して正しい方向に装着することができる。 As a result, the measurement subject can easily attach the armband portion 2 to the upper arm T simply by grasping the tag 33 and moving in the V direction, and the attachment direction of the armband portion 2 is clear. Therefore, it is possible to pass the hand without hesitation from the opening 11R side. For this reason, it can prevent that a to-be-measured person inserts a hand back into the armband part 2 accidentally from the opening part 11P side. That is, since only the opening 11P on the side of the air tubes 4 and 5 can be closed, it is possible to easily prevent the person to be measured from wearing in the reverse direction with respect to the upper arm, and the person to be measured is against the upper arm T. Can be installed in the correct direction.
 次に、図1と図2を参照して、血圧計本体10の構造例について説明する。
 図1と図2に示すように、血圧計本体10は、筐体部60と、表示面部61と、腕帯部2の保持部62を有している。筐体部60と表示面部61と保持部62は、電気絶縁性を有する材料、例えばプラスチックにより作られている。表示面部61は、筐体部60の前面側に設けられ、被測定者が表示部63に表示される表示内容が見やすいように傾斜されており、この表示面部61の傾斜角度θが例えば60度程度に設定されている。
Next, a structural example of the sphygmomanometer body 10 will be described with reference to FIGS. 1 and 2.
As shown in FIGS. 1 and 2, the sphygmomanometer body 10 includes a housing part 60, a display surface part 61, and a holding part 62 for the armband part 2. The housing part 60, the display surface part 61, and the holding part 62 are made of an electrically insulating material such as plastic. The display surface portion 61 is provided on the front surface side of the housing portion 60 and is inclined so that the measurement subject can easily see the display content displayed on the display portion 63. The inclination angle θ of the display surface portion 61 is, for example, 60 degrees. Is set to about.
 図2(A)と図2(B)に示すように、筐体部60は、側面部68,69と、背面66と、破線で示す長方形状の前面側開口部70と、筐体部60から突出して設けられた上面部71と、底部72を有している。
 図1に示すように、表示面部61は、表示部63と、透明な例えばアクリル板のような保護板64と、枠状の保持部材65を有している。表示部63は保持部材65により保持され、保護板64は保持部材65に固定されて表示部63の表面を保護している。この保持部材65は、筐体部60の破線で示す前面側開口部70に対して着脱可能に装着されている。この保持部材65を筐体部60から取り外すことにより、筐体部60の破線で示す前面側開口部70を通じて筐体部60の内部を露出させることができる。これにより、筐体部60内に配置されている回路基板等の修理や交換を容易に行うことができる。
As shown in FIGS. 2A and 2B, the housing 60 includes side surfaces 68 and 69, a back surface 66, a rectangular front opening 70 indicated by a broken line, and a housing 60. It has an upper surface portion 71 projecting from the bottom portion 72 and a bottom portion 72.
As shown in FIG. 1, the display surface unit 61 includes a display unit 63, a transparent protective plate 64 such as an acrylic plate, and a frame-shaped holding member 65. The display unit 63 is held by a holding member 65, and the protective plate 64 is fixed to the holding member 65 to protect the surface of the display unit 63. The holding member 65 is detachably attached to the front surface side opening 70 indicated by a broken line of the housing portion 60. By removing the holding member 65 from the housing unit 60, the inside of the housing unit 60 can be exposed through the front side opening 70 indicated by a broken line of the housing unit 60. Thereby, repair and replacement | exchange of the circuit board etc. which are arrange | positioned in the housing | casing part 60 can be performed easily.
 図2に示すように、腕帯部の保持部62は、筐体部60の背面側に着脱可能に取り付けられている。これにより、保持部62が不要の場合には、筐体部60から取り外すことができる。図4には、折り畳まれた腕帯部2が、筐体部60の背面66側に保持部62を用いて着脱可能に収納される様子を示している。
 図2に示すように、腕帯部の保持部62は、保持面62Aと脚部62Bを有している。筐体部60の下部側には、差込口67が形成されている。脚部62Bの先端部62Cは、この差込口67に挿入されることにより、腕帯部の保持部62は、筐体部60の背面66側に着脱可能に取り付けることができる。保持面62Aと筐体部60の背面66の間には、折り畳まれた腕帯部2を着脱可能に収納することができる。これにより、被測定者が腕帯部2を使用しない場合には、折り畳まれた腕帯部2を保持面62Aと筐体部60の背面66の間に、容易にしかも確実に収納することができる。
As shown in FIG. 2, the arm belt holding portion 62 is detachably attached to the back side of the housing portion 60. Thereby, when the holding | maintenance part 62 is unnecessary, it can remove from the housing | casing part 60. FIG. FIG. 4 shows a state in which the folded armband portion 2 is detachably stored on the back surface 66 side of the housing portion 60 using the holding portion 62.
As shown in FIG. 2, the holding part 62 of the armband part has a holding surface 62A and a leg part 62B. An insertion port 67 is formed on the lower side of the housing unit 60. The distal end portion 62C of the leg portion 62B is inserted into the insertion port 67, whereby the arm belt portion holding portion 62 can be detachably attached to the back surface 66 side of the housing portion 60. Between the holding surface 62A and the back surface 66 of the housing portion 60, the folded armband portion 2 can be detachably accommodated. Thereby, when the person to be measured does not use the armband portion 2, the folded armband portion 2 can be easily and reliably stored between the holding surface 62 </ b> A and the back surface 66 of the housing portion 60. it can.
 このように、被測定者が血圧測定しない場合に、腕帯部2が筐体部60の背部側に保持されるので、被測定者は、腕帯部2により邪魔されることなく、図1の表示部63の表示内容例えば時間や室温等を目視で確認できる。このため、被測定者は、表示部63の表示温度を目視することで、血圧測定に適した温度(環境温度)であるか否か容易に確認できる。被測定者が血圧測定しない場合に、腕帯部2が筐体部60の背部側に保持されるので、血圧計1の見栄えを良くすることができる。このため、血圧計本体10は、使用しない時には例えば時計としてリビングルーム等に飾っておくことができる。 Thus, when the person to be measured does not measure blood pressure, the armband part 2 is held on the back side of the housing part 60, so that the person to be measured is not obstructed by the armband part 2, and FIG. The display content of the display unit 63 such as time and room temperature can be visually confirmed. For this reason, the person to be measured can easily confirm whether or not the temperature is suitable for blood pressure measurement (environmental temperature) by visually observing the display temperature of the display unit 63. When the person to be measured does not measure blood pressure, the armband portion 2 is held on the back side of the housing portion 60, so that the appearance of the sphygmomanometer 1 can be improved. For this reason, the sphygmomanometer body 10 can be displayed in a living room or the like as a clock when not in use.
 図2(A)に示すように、筐体部60の側面部(筐体部60の正面に向かって左側側面部)68の下部位置には、O-リング(不図示)を備えたエアプラグ差込口73が形成されている。このエアプラグ差込口73には、エアプラグ6が着脱可能に装着できる。エアプラグ差込口73は、エアプラグ6の形状に合わせて、直線状の上部分73Aの幅d1は、半円形状の下部分73Bの幅d2に比べて大きく設定されている。エアプラグ差込口73の内部には、差し込み穴73G、73Hを有している。
 エアプラグ6は例えばプラスチックにより作られており、図2(A)に示すように、筐体6Aと、接続筒部6B、6Cと、接続ガイド部6Fを有する。接続筒部6B、6Cは、筐体6Aの一方の面から平行に突出して形成されている。これらの接続筒部6B、6Cは、エアプラグ差込口73の差し込み穴73G、73Hにそれぞれ着脱可能に挿入される。接続ガイド部6Fの上部分は、図2(A)に示すエアプラグ差込口73の上部分73Aに案内して挿入され、接続ガイド部6Fの下部分は、図2(A)に示すエアプラグ差込口73の下部分73Bに案内して挿入されるようになっている。
As shown in FIG. 2A, an air plug difference provided with an O-ring (not shown) is provided at a lower position of a side surface portion 68 (a left side surface portion facing the front surface of the housing portion 60) 68 of the housing portion 60. A slot 73 is formed. The air plug 6 can be detachably attached to the air plug insertion port 73. In the air plug insertion port 73, the width d1 of the linear upper portion 73A is set larger than the width d2 of the semicircular lower portion 73B in accordance with the shape of the air plug 6. Inside the air plug insertion port 73, insertion holes 73G and 73H are provided.
The air plug 6 is made of plastic, for example, and includes a housing 6A, connecting cylinder portions 6B and 6C, and a connecting guide portion 6F as shown in FIG. The connecting cylinder portions 6B and 6C are formed to protrude in parallel from one surface of the housing 6A. These connecting cylinder portions 6B and 6C are detachably inserted into the insertion holes 73G and 73H of the air plug insertion port 73, respectively. The upper part of the connection guide part 6F is guided and inserted into the upper part 73A of the air plug insertion port 73 shown in FIG. 2A, and the lower part of the connection guide part 6F is the air plug difference shown in FIG. It is inserted into the lower portion 73B of the inlet 73 while being guided.
 これにより、エアプラグ6は、エアプラグ差込口73に対して上下逆に装着されることを防止しており、血圧計本体10側から阻血用空気袋14と脈波検出用空気袋250に対して逆にエア供給されることはない。なお、エアプラグ6に接続される腕帯部2は、複数のサイズ、例えば、大、中、小の3サイズがあり、使用者の上腕の大きさに合わせて最も適合したものを選択できるようになっている。エアプラグ6は、血圧計本体10の正面側ではなく側面側に設けることで、駆動ポンプ110が万一暴走して異常に腕帯部2が加圧された場合でも、複雑な電子回路や異常時のスイッチを設けたりすることなく、被測定者がエアプラグ6を引き抜くことでエアの供給を断絶できることから、腕帯部2の異常加圧を極めて容易に回避できる。 As a result, the air plug 6 is prevented from being mounted upside down with respect to the air plug insertion port 73, and the blood pressure monitor body 10 side is connected to the air bag 14 for the ischemia and the air bag 250 for detecting the pulse wave. Conversely, no air is supplied. The armband portion 2 connected to the air plug 6 has a plurality of sizes, for example, three sizes of large, medium and small, so that the most suitable one can be selected according to the size of the upper arm of the user. It has become. The air plug 6 is provided not on the front side but on the side of the sphygmomanometer body 10, so that even if the drive pump 110 runs away and the armband part 2 is abnormally pressurized, a complicated electronic circuit or an abnormal time is required. Since the air supply can be cut off by the person to be measured withdrawing the air plug 6 without providing the switch, abnormal pressurization of the armband portion 2 can be avoided very easily.
 図2(B)に示すように、筐体部60の側面部(エアプラグ差込口73が形成された側面部68とは反対側)69には、スピーカ85と、ACアダプタを接続するための接続穴86が設けられている。この接続穴86には、ACアダプタ87の接続ジャック87Aが接続されることで、血圧計本体10には商用電源から電源供給できる。図2(B)に示す接続穴86は、図2(A)に示すエアプラグ差込口73とは、設けられている配置位置も大きさも形状も全く異なる。これにより、エアプラグ6を接続穴86に対して間違えて差し込むことを防止することができる。
 図2(A)に示すように、筐体部60の上面に突出して設けられた上面部71には、筐体部60の正面に向かって、右側から、開始/停止スイッチ88、機能選択キー400等の各種の操作ボタンが並べて配置されている。
As shown in FIG. 2B, a speaker 85 and an AC adapter are connected to a side surface 69 (the side opposite to the side surface 68 where the air plug insertion port 73 is formed) 69 of the housing 60. A connection hole 86 is provided. By connecting a connection jack 87A of an AC adapter 87 to the connection hole 86, the sphygmomanometer body 10 can be supplied with power from a commercial power source. The connection hole 86 shown in FIG. 2B is completely different from the air plug insertion port 73 shown in FIG. Thereby, it is possible to prevent the air plug 6 from being erroneously inserted into the connection hole 86.
As shown in FIG. 2A, an upper surface 71 provided on the upper surface of the housing 60 projects from the right side toward the front of the housing 60, and a start / stop switch 88 and a function selection key. Various operation buttons such as 400 are arranged side by side.
 図5は、図1に示す血圧計1のブロック構成図である。図5に示すように、腕帯部2の阻血用空気袋14は、エアチューブ4を通じて、血圧計本体10内のエアフィルタ130、圧力検出部としての圧力センサ140、2つの駆動ポンプ110、制御バルブ111、そして排気バルブ112に接続されている。脈波を検出するための2つの脈波検出用空気袋250は、エアチューブ5を通じて、血圧計本体10内の圧力検出部としての圧力センサ140と、エアフィルタ130と、2つの駆動ポンプ110、制御バルブ111、そして排気バルブ112に接続されている。
 圧力センサ140は、阻血用空気袋14のエア圧の変化を検出し、しかも圧力センサ140は、脈波検出用空気袋250のエア圧の変化を検出する。制御部120は、阻血用空気袋14のエア圧の変化に基づく圧力センサ140からのDC波形信号により、最高血圧値(収縮期血圧)、最低血圧値(拡張期血圧)を演算する。制御部120は、脈波検出用空気袋250のエア圧の変化に基づく圧力センサ140からのAC波形信号により、脈波(圧脈波)を検出するようになっている。
FIG. 5 is a block diagram of the sphygmomanometer 1 shown in FIG. As shown in FIG. 5, the air bag 14 for the ischemia of the armband part 2 is connected to an air filter 130 in the sphygmomanometer body 10, a pressure sensor 140 as a pressure detection unit, two drive pumps 110, a control through an air tube 4. It is connected to the valve 111 and the exhaust valve 112. Two pulse wave detection air bags 250 for detecting a pulse wave are, through the air tube 5, a pressure sensor 140 as a pressure detection unit in the sphygmomanometer body 10, an air filter 130, two drive pumps 110, The control valve 111 and the exhaust valve 112 are connected.
The pressure sensor 140 detects a change in the air pressure of the air bag 14 for ischemia, and the pressure sensor 140 detects a change in the air pressure of the pulse wave detection air bag 250. The control unit 120 calculates a maximum blood pressure value (systolic blood pressure) and a minimum blood pressure value (diastolic blood pressure) based on a DC waveform signal from the pressure sensor 140 based on a change in air pressure in the air bag 14 for ischemia. The control unit 120 detects a pulse wave (pressure pulse wave) based on an AC waveform signal from the pressure sensor 140 based on a change in air pressure in the pulse wave detection air bladder 250.
 図5に示す2つの駆動ポンプ110は、腕帯部2内の阻血用空気袋14と2つの脈波検出用空気袋250に対してエアを供給して、腕帯部2内の上腕を加圧する加圧機構である。このように、2つの駆動ポンプ110を用いるのは、腕帯部2のサイズが大きい場合には、2つの駆動ポンプを駆動させ、腕帯部2のサイズが小さい場合には、1つの駆動ポンプを駆動させて、阻血用空気袋14と2つの脈波検出用空気袋250にエアを供給できるようにするためである。
 一方、制御バルブ111と排気バルブ112は、腕帯部2内の阻血用空気袋14と2つの脈波検出用空気袋250内のエアを抜いて加圧した上腕Tを減圧する減圧機構である。
 図5の駆動部150は、制御部120の指令により2つの駆動ポンプ110を駆動し、駆動部151は、制御部120の指令により制御バルブ111と排気バルブ112を駆動する。図5に示す制御部120は、表示部63に指令を与えて、例えば図1に示すような温度表示、時刻表示、最高血圧値、最低血圧値、脈拍、平均血圧値PM等の必要とされる表示内容を表示させる。制御部120には、記憶部153とデータ用メモリ154が接続されている。表示部63としては、液晶表示装置や有機EL装置等を採用できる。
The two drive pumps 110 shown in FIG. 5 supply air to the ischemic air bag 14 and the two pulse wave detection air bags 250 in the armband 2 to add the upper arm in the armband 2. It is a pressurizing mechanism that presses. As described above, the two drive pumps 110 are used when the size of the armband portion 2 is large, so that the two drive pumps are driven, and when the size of the armband portion 2 is small, one drive pump is used. In order to supply air to the air bag 14 for ischemia and the two air bags 250 for detecting pulse waves.
On the other hand, the control valve 111 and the exhaust valve 112 are depressurization mechanisms that depressurize the upper arm T that has been pressurized by extracting air from the air bag 14 for the ischemia 14 in the armband portion 2 and the two air bags 250 for detecting the pulse wave. .
5 drives two drive pumps 110 according to a command from the control unit 120, and the drive unit 151 drives the control valve 111 and the exhaust valve 112 according to a command from the control unit 120. The control unit 120 shown in FIG. 5 gives a command to the display unit 63, and for example, temperature display, time display, systolic blood pressure value, systolic blood pressure value, pulse, average blood pressure value PM, etc. as shown in FIG. Display the displayed contents. A storage unit 153 and a data memory 154 are connected to the control unit 120. As the display unit 63, a liquid crystal display device, an organic EL device, or the like can be adopted.
 図5の血圧計本体10では、血圧を測定する前に、例えば被測定者をリラックス状態にさせるために被測定者に聞かせる音楽を発生するための測定前音楽発生モードと、そして血圧を測定中に被測定者をリラックス状態にさせるために被測定者に聞かせる音楽を発生するための測定中音楽発生モードと、を備えている。これらの測定前音楽発生モードで発生する音楽データと測定中音楽発生モードで発生する音楽データは、音楽データを記憶する記憶部153に予め記憶されている。これにより、被測定者は、測定前と測定中に音楽を聞かせることができ、被測定者をリラックス状態にすることができる。 In the sphygmomanometer body 10 of FIG. 5, before measuring the blood pressure, for example, a pre-measurement music generation mode for generating music to be heard by the measurement subject in order to put the measurement subject in a relaxed state, and the blood pressure is measured. A measuring music generation mode for generating music to be heard by the measurement subject in order to bring the measurement subject into a relaxed state. The music data generated in the pre-measurement music generation mode and the music data generated in the in-measurement music generation mode are stored in advance in the storage unit 153 that stores the music data. Thereby, the person to be measured can hear music before and during the measurement, and the person to be measured can be in a relaxed state.
 図5に示すデータ用メモリ154には、血圧測定に必要な一連の動作を行うためのプログラムが記憶されており、制御部120はこのプログラムに従って、血圧測定動作を実施する。図5では、開始/停止スイッチ88と、機能選択部としての機能選択キー400が、制御部120に電気的に接続されている。機能選択キー400は、1)最高血圧・最低血圧測定モード,2)最高血圧・最低血圧・平均血圧測定モード,3)平均血圧測定モード,4)聴診モードからなる複数の血圧測定モードから所定の血圧測定モードの選択や排気速度をノーマルモード(4mmHg/秒)かスローモード(4mmHg/秒)のいずれかを選択できるようになっている。
 図5のスピーカ85は、リラックス用の音楽や音声ガイダンス内容を報知するための報知部の一例であり、フィルタ164を介して制御部120に電気的に接続されている。電源コントロール部160は、電池93とACアダプタ87に電気的に接続され、所定の直流電圧を制御部120に供給する。電源コントロール部160と圧力センサ140が、制御部120に電気的に接続されている。
The data memory 154 shown in FIG. 5 stores a program for performing a series of operations necessary for blood pressure measurement, and the control unit 120 performs a blood pressure measurement operation according to this program. In FIG. 5, a start / stop switch 88 and a function selection key 400 as a function selection unit are electrically connected to the control unit 120. The function selection key 400 is selected from a plurality of blood pressure measurement modes including 1) systolic blood pressure / diastolic blood pressure measurement mode, 2) systolic blood pressure / diastolic blood pressure / average blood pressure measurement mode, 3) average blood pressure measurement mode, and 4) auscultation mode. The blood pressure measurement mode and the exhaust speed can be selected from a normal mode (4 mmHg / second) or a slow mode (4 mmHg / second).
The speaker 85 in FIG. 5 is an example of a notification unit for reporting relaxation music and voice guidance content, and is electrically connected to the control unit 120 via the filter 164. The power control unit 160 is electrically connected to the battery 93 and the AC adapter 87 and supplies a predetermined DC voltage to the control unit 120. The power supply control unit 160 and the pressure sensor 140 are electrically connected to the control unit 120.
 図6(A)は、図5に示す圧力センサ140が阻血用空気袋14のエア圧の変動から得られる血圧値の変化を示し、図6(B)は、図5に示す圧力センサ140が脈波検出用空気袋250のエア圧の変動から得られる脈波の出現例を示している。図6における縦軸は圧力と波高値を示し、横軸は時間を示している。
 図1に示す血圧計1による血圧測定動作では、制御部120が指令すると、図5の制御バルブ111と2つの駆動ポンプ110を作動して、図5に示す阻血用空気袋14にエアを供給して上腕Tを、図6に示す時点trまで加圧して、その後制御バルブ111が作動して阻血用空気袋14内のエア圧を傾きが一定になるようにエア圧を減圧させていく。このようにエア圧を減圧させる過程では、制御部120は、最高血圧(収縮期血圧)と最低血圧(拡張期血圧)を検出して、その後排気バルブ112を作動して阻血用空気袋14と2つの脈波検出用空気袋250内のエアを抜くようになっている。このように、阻血用空気袋14の圧力が一定の傾きで減少する際に、制御部120は、圧力センサ140から図6(A)に例示する血圧波形(DC波形)WSを得る。
6A shows a change in blood pressure value obtained by the pressure sensor 140 shown in FIG. 5 from the fluctuation of the air pressure in the air bag 14 for ischemia, and FIG. 6B shows the pressure sensor 140 shown in FIG. The example of the appearance of the pulse wave obtained from the fluctuation | variation of the air pressure of the air bag 250 for the pulse wave detection is shown. In FIG. 6, the vertical axis indicates pressure and the peak value, and the horizontal axis indicates time.
In the blood pressure measurement operation by the sphygmomanometer 1 shown in FIG. 1, when the control unit 120 instructs, the control valve 111 and the two drive pumps 110 shown in FIG. 5 are operated to supply air to the air bag 14 for ischemia shown in FIG. Then, the upper arm T is pressurized until time tr shown in FIG. 6, and then the control valve 111 is operated to reduce the air pressure so that the inclination of the air pressure in the air bag 14 is constant. In the process of reducing the air pressure in this way, the control unit 120 detects the systolic blood pressure (systolic blood pressure) and the systolic blood pressure (diastolic blood pressure), and then operates the exhaust valve 112 to connect the air bag 14 for ischemia. The air in the two pulse wave detection air bladders 250 is extracted. Thus, when the pressure of the air bag 14 for ischemia decreases with a constant inclination, the control unit 120 obtains a blood pressure waveform (DC waveform) WS illustrated in FIG. 6A from the pressure sensor 140.
 図6(B)は、血圧波形WSに対応して得られるAC脈波波形(AC波形)WTの例を示している。このAC脈波波形WTは、圧力センサ140が脈波検出用空気袋250の圧力の変化から得られ、制御部120は、例えばA群の脈波群M1、B群の脈波群M2、そしてC群の脈波群M3を得る。A群の脈波群M1、B群の脈波群M2、そしてC群の脈波群M3は、それぞれ脈波からピークを取って線状のスパイク波形にすることで、最大波高値を検出し易いようにしている。
 血圧波形WSには、後で説明する平均圧力値PMを例示している。この平均血圧値PMは、被測定者が、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱者である場合に用いられる平均の血圧値であり、例えば、通常は最高血圧(収縮期血圧)と最低血圧(拡張期血圧)から求められる、平均して動脈にかかっている血圧であり、目安として、〔(最高血圧+最低血圧)×2÷3〕である。この平均圧力値PMは、AC脈波波形WTのB群の脈波群M2の最大脈波(脈波の最大波高値)MMに対応した値である。
FIG. 6B shows an example of an AC pulse waveform (AC waveform) WT obtained corresponding to the blood pressure waveform WS. This AC pulse wave waveform WT is obtained from the change in pressure of the pulse wave detection air bladder 250 by the pressure sensor 140, and the control unit 120, for example, the pulse wave group M1 of the A group, the pulse wave group M2 of the B group, and A pulse wave group M3 of group C is obtained. The pulse wave group M1 of the A group, the pulse wave group M2 of the B group, and the pulse wave group M3 of the C group each detect the maximum peak value by taking a peak from the pulse wave to form a linear spike waveform. It is made easy.
The blood pressure waveform WS illustrates an average pressure value PM described later. This average blood pressure value PM is an average blood pressure value used when the person to be measured is a weak heart person such as a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a person with weak pulse wave, for example, This is the blood pressure on the artery on average, usually obtained from the systolic blood pressure (systolic blood pressure) and the diastolic blood pressure (diastolic blood pressure). As a guideline, [(maximum blood pressure + minimum blood pressure) × 2 ÷ 3] It is. This average pressure value PM is a value corresponding to the maximum pulse wave (maximum pulse wave height value) MM of the B pulse wave group M2 of the AC pulse wave waveform WT.
 次に、上述した構成を有する血圧計1による平均血圧値の検出動作例を、図7を参照して説明する。この血圧計1は、通常の一般利用者の血圧について、その最大血圧値と最低血圧値とを普通の血圧計と同様に測定できるだけでなく、被測定者が、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱者である場合に、これらの人の平均血圧値について測定することができる。
 図7は、血圧計1の制御部120の指示により、このような平均血圧値の検出動作を行う場合の血圧測定動作の一例を示すフロー図である。
 図7において、被測定者が、図2に示す開始/停止スイッチ88を押して血圧計1の動作を開始する。ステップSP1において、被測定者が図2と図5に示す機能選択キー400を押して、1)最高血圧・最低血圧測定モード,2)最高血圧・最低血圧・平均血圧測定モード,3)平均血圧測定モード,4)聴診モードからなる複数の血圧測定モードの中から3)の平均血圧測定モードを選択する。被測定者自身または医療従事者,介護者などが平均血圧測定モードを選択すると、血圧計1による血圧測定動作では、図5の制御部120が指令して、図5の制御バルブ111と2つの駆動ポンプ110を作動して、図5に示す阻血用空気袋14にエアを供給して上腕Tを、図6に示す時点trまで加圧する。その後、図5の制御部120が指令して、制御バルブ111が作動して阻血用空気袋14内のエア圧を傾きが一定になるようにエア圧を減圧させていく。このエア圧を減圧させる過程では、制御部120は、最高血圧値と最低血圧値を、脈波の出現に基づいて検出する。その後制御部120は、排気バルブ112を作動して、阻血用空気袋14と2つの脈波検出用空気袋250内のエアを抜く。
Next, an example of an operation for detecting an average blood pressure value by the sphygmomanometer 1 having the above-described configuration will be described with reference to FIG. The sphygmomanometer 1 can measure not only the maximum blood pressure value and the minimum blood pressure value of a normal general user's blood pressure in the same manner as an ordinary blood pressure meter, but also the person to be measured can receive a living heart transplant or an auxiliary artificial heart. If the patient is a pulse weak person such as a transplanted heart transplant patient or a person with weak pulse wave, the average blood pressure value of these persons can be measured.
FIG. 7 is a flowchart showing an example of a blood pressure measurement operation when such an average blood pressure value detection operation is performed in accordance with an instruction from the control unit 120 of the sphygmomanometer 1.
In FIG. 7, the measurement subject presses the start / stop switch 88 shown in FIG. 2 to start the operation of the sphygmomanometer 1. In step SP1, the person to be measured presses the function selection key 400 shown in FIGS. 2 and 5 to 1) the maximum blood pressure / minimum blood pressure measurement mode, 2) the maximum blood pressure / minimum blood pressure / average blood pressure measurement mode, and 3) the average blood pressure measurement. Mode, 4) The average blood pressure measurement mode 3) is selected from a plurality of blood pressure measurement modes consisting of the auscultation mode. When the subject himself / herself or a medical worker, a caregiver or the like selects the average blood pressure measurement mode, in the blood pressure measurement operation by the sphygmomanometer 1, the control unit 120 in FIG. The drive pump 110 is operated to supply air to the air bag 14 for ischemia shown in FIG. 5 to pressurize the upper arm T until the time tr shown in FIG. Thereafter, the control unit 120 in FIG. 5 instructs, and the control valve 111 is operated to reduce the air pressure so that the inclination of the air pressure in the air bag 14 is constant. In the process of reducing the air pressure, the control unit 120 detects the maximum blood pressure value and the minimum blood pressure value based on the appearance of the pulse wave. Thereafter, the control unit 120 operates the exhaust valve 112 to release the air in the ischemic air bag 14 and the two pulse wave detecting air bags 250.
 図5の制御部120は、ステップSP2の血圧測定動作において、被測定者の最高血圧値と最低血圧値の測定が成功したかどうかを判断する。被測定者が、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱者でない通常の人である場合には、脈圧(最高血圧と最低血圧との差)が大きく、脈波が数多く検出できるので、検出した脈波に対応した最高血圧値と最低血圧値を測定することができる。すなわち、圧力センサ140が阻血用空気袋14の圧力の変化を検出し、制御部120は、図6(A)に例示する血圧波形(DC波形)WSを得るとともに、圧力センサ140が脈波検出用空気袋250の圧力の変化を検出して、AC脈波波形を得る。これにより、制御部120は、血圧波形(DC波形)WSから、出現した強い脈波に対応する位置の最高血圧値と最低血圧値を得るとともに、AC脈波波形から脈拍を得る。このように、被測定者が、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人でなく、脈波を利用したオシロメトリック法により正常に最高血圧値と最低血圧値を測定できる人であった場合には、ステップSP3に移る。ステップSP3では、制御部120は、図5に示す表示部63には、最高血圧値と最低血圧値と、脈拍を表示させて、血圧測定動作を終了する。 5 determines whether or not the measurement of the highest blood pressure value and the lowest blood pressure value of the measurement subject has succeeded in the blood pressure measurement operation of step SP2. If the subject is a normal heart transplant patient who is transplanted with a living heart transplant, an auxiliary artificial heart, or a normal person who is not weak, such as a person with weak pulse waves, the pulse pressure (difference between the maximum blood pressure and the minimum blood pressure) ) And a large number of pulse waves can be detected, so that the maximum blood pressure value and the minimum blood pressure value corresponding to the detected pulse wave can be measured. That is, the pressure sensor 140 detects a change in the pressure of the air bag 14 for ischemia, and the control unit 120 obtains a blood pressure waveform (DC waveform) WS illustrated in FIG. 6A, and the pressure sensor 140 detects a pulse wave. A change in pressure of the air bladder 250 is detected to obtain an AC pulse waveform. Thus, the control unit 120 obtains the maximum blood pressure value and the minimum blood pressure value at the position corresponding to the strong pulse wave that has appeared from the blood pressure waveform (DC waveform) WS, and also obtains the pulse from the AC pulse wave waveform. In this way, the person being measured is not a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a person with weak pulse wave, but the normal blood pressure value and the minimum blood pressure value are normally measured by the oscillometric method using the pulse wave. If the person can be measured, the process proceeds to step SP3. In step SP3, the control unit 120 displays the systolic blood pressure value, the diastolic blood pressure value, and the pulse on the display unit 63 shown in FIG. 5, and ends the blood pressure measurement operation.
 そうでなく、ステップSP2において、図5の制御部120が、ステップSP2の血圧測定における最高血圧値と最低血圧値の測定が成功しないと判断した場合には、制御部120は、被測定者が、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人であると判断して、ステップSP4の平均血圧測定モードに移る。
 ステップSP4の平均血圧測定モードでは、制御部120は、図6(B)に示す最大脈波MMを検出するモードであり、次に説明するステップSP5からステップSP11で行われる。
Otherwise, in step SP2, if the control unit 120 in FIG. 5 determines that the measurement of the maximum blood pressure value and the minimum blood pressure value in the blood pressure measurement in step SP2 is not successful, the control unit 120 Then, it is determined that the patient is a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a person with weak pulse wave, and the process proceeds to the mean blood pressure measurement mode of step SP4.
In the average blood pressure measurement mode in step SP4, the control unit 120 is a mode for detecting the maximum pulse wave MM shown in FIG. 6B, and is performed in steps SP5 to SP11 described below.
 ステップSP5では、制御部120は、図5の脈波検出用空気袋250の圧力の変化を検出して、図6(B)に示すAC脈波波形WTを認識する。制御部120がAC脈波波形WTを認識する場合には、制御部120は、脈波の振幅(または脈波の高さ)に関して、図7に例示するように予め閾値SHDを設定しておき、脈波の振幅がこの閾値SHD以上である脈波WWを選び出して、図6(A)に例示する血圧波形(DC波形)WSの圧力に対応して、順次図5に示すデータ用メモリ154に記憶させていく。
 図5の制御部120が図6(B)に示すAC脈波波形WTを認識すると、ステップSP6に移り、制御部120は、AC脈波波形WT各脈波WWが異常波であるか正常波であるかを確認する。すなわち、ステップSP5においてデータ用メモリ154に記憶させた閾値SHD以上である脈波WWの位相が、正位相であって妥当であるか、脈波WWの幅が狭くなくて妥当であるかを判断する。
In step SP5, the control unit 120 detects a change in the pressure of the pulse wave detection air bladder 250 of FIG. 5 and recognizes the AC pulse wave waveform WT shown in FIG. 6B. When the control unit 120 recognizes the AC pulse wave waveform WT, the control unit 120 sets a threshold SHD in advance as illustrated in FIG. 7 with respect to the amplitude of the pulse wave (or the height of the pulse wave). A pulse wave WW whose pulse wave amplitude is greater than or equal to the threshold value SHD is selected, and the data memory 154 shown in FIG. 5 is sequentially displayed corresponding to the pressure of the blood pressure waveform (DC waveform) WS illustrated in FIG. Let me remember.
When the control unit 120 in FIG. 5 recognizes the AC pulse wave waveform WT shown in FIG. 6B, the process proceeds to step SP6, and the control unit 120 determines whether each AC pulse wave waveform WT pulse wave WW is an abnormal wave or a normal wave. Check if it is. That is, it is determined whether the phase of the pulse wave WW that is equal to or greater than the threshold value SHD stored in the data memory 154 in step SP5 is a positive phase and appropriate, or the width of the pulse wave WW is not narrow and appropriate. To do.
 図8(A)に例示するのは、位相が正位相であって妥当な正常の脈波WWであり、図8(B)に例示するのは、逆位相の異常な脈波WW1であり、図8(C)に例示するのは、位相が妥当な脈波であってもその脈波の時間軸方向の幅(1周期)が、予め定めた幅(1周期)よりも狭い異常な脈波WW2である。
 図8(B)に示すように、位相が妥当ではない脈波WW1の場合や図8(C)に示す幅が妥当でない脈波WW2の場合には、図7のステップSP7では、図5の制御部120は、これらの脈波WW1、WW2を、被測定者の身体が動いた(体動)ことによるアーチファクトとして、図5に示すデータ用メモリ154から脈波検出データを削除して、ステップSP5に戻る。これにより、図5のデータ用メモリ154内のデータ量を減らすことができる。そして、図6に示す脈波の最大振幅MMが発生した時の阻血用空気袋内の圧力を、被測定者の平均血圧値PMとして容易に決定することができる。
FIG. 8A illustrates a normal pulse wave WW having a positive phase and an appropriate phase, and FIG. 8B illustrates an abnormal pulse wave WW1 having an opposite phase. FIG. 8C illustrates an abnormal pulse whose width (one cycle) in the time axis direction of the pulse wave is narrower than a predetermined width (one cycle) even if the pulse wave has an appropriate phase. Wave WW2.
As shown in FIG. 8B, in the case of the pulse wave WW1 whose phase is not valid or in the case of the pulse wave WW2 whose width shown in FIG. 8C is not valid, in step SP7 of FIG. The control unit 120 deletes the pulse wave detection data from the data memory 154 shown in FIG. 5 as artifacts caused by the movement of the body of the person to be measured (body movement) using the pulse waves WW1 and WW2 as a step. Return to SP5. Thereby, the data amount in the data memory 154 of FIG. 5 can be reduced. Then, the pressure in the air bag for ischemia when the maximum amplitude MM of the pulse wave shown in FIG. 6 is generated can be easily determined as the average blood pressure value PM of the measurement subject.
 そうでなく、ステップSP6において、制御部120が図8(B)と図8(C)に示すような脈波の異常波を検出しなかった場合には、ステップSP8に移る。
 ステップSP8では、圧力センサ140が例えば図6(B)に示すような脈波群M1、M2、M3を得て、制御部120が図6(B)に示すような脈波群M1、M2、M3を認識すると、ステップSP9では、検出した脈波群M1、M2、M3から最大の脈波振幅(または最大の脈波高さ)に周期性(トレンド)があるかを判断する。すなわち、図6(B)に示すように、制御部120は、最大脈波MMの前後位置に最大脈波MMよりも小さい脈波振幅の脈波MM1、MM2があるかを判断して、最大脈波MMの前後位置に最大脈波MMよりも小さい脈波振幅の脈波MM1、MM2がある脈波群M2を、検出した脈波群M1、M2、M3から選別する。これにより、脈波の最大振幅MMの発生脈波の位置を確認でき、脈波の最大振幅MMの発生に基づいて、図6(A)NO血圧波形(DC波形)WSにおいて脈波の最大振幅MMに対応する被測定者の平均血圧値PMを正確に決定できる。
On the other hand, when the control unit 120 does not detect the abnormal pulse wave as shown in FIGS. 8B and 8C in step SP6, the process proceeds to step SP8.
In step SP8, the pressure sensor 140 obtains, for example, pulse wave groups M1, M2, and M3 as shown in FIG. 6B, and the control unit 120 has pulse wave groups M1, M2, and so on as shown in FIG. When M3 is recognized, in step SP9, it is determined from the detected pulse wave groups M1, M2, and M3 whether the maximum pulse wave amplitude (or maximum pulse wave height) has periodicity (trend). That is, as shown in FIG. 6B, the control unit 120 determines whether there are pulse waves MM1 and MM2 having a pulse wave amplitude smaller than the maximum pulse wave MM at positions before and after the maximum pulse wave MM. A pulse wave group M2 having pulse waves MM1 and MM2 having a pulse wave amplitude smaller than the maximum pulse wave MM at positions before and after the pulse wave MM is selected from the detected pulse wave groups M1, M2, and M3. Thereby, the position of the generated pulse wave of the maximum amplitude MM of the pulse wave can be confirmed. Based on the generation of the maximum amplitude MM of the pulse wave, the maximum amplitude of the pulse wave in the NO blood pressure waveform (DC waveform) WS in FIG. The average blood pressure value PM of the measurement subject corresponding to MM can be accurately determined.
 その後、図7のステップSP10では、制御部120は、図6(B)に示す選択した脈波群M2の内の最大脈波MMの発生位置に対応する図6(A)に例示する血圧波形WSにおける圧力(腕帯部圧力、カフ圧力)を確認して、この圧力を最大脈波MMに対する平均血圧値PMとして確認して決定する。
 そして、ステップSP11では、制御部120は、図5と図1に示す表示部63において、決定した平均血圧値PMを、被測定者に対して表示する。これにより、被測定者は、表示部63に表示された平均血圧値PMを目視で確認することができる。被測定者が、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱者である場合には、血圧測定中に報知される音声ガイダンス内容例としては、被測定者の平均血圧値の測定を開始する際に、スピーカ85が、制御部120の指令により、例えば「平均血圧値を測定しています」という報知内容を流すことができる。
 必要に応じて平均血圧値PMは、スピーカ85を通じて音声ガイダンスで被測定者に報知することができる。これにより、被測定者が仮に表示部63において目視で平均血圧値PMを確認できなくても、平均血圧値PMを聞くことで確認できる。
Thereafter, in step SP10 of FIG. 7, the control unit 120 illustrates the blood pressure waveform illustrated in FIG. 6A corresponding to the generation position of the maximum pulse wave MM in the selected pulse wave group M2 illustrated in FIG. The pressure in the WS (armband pressure, cuff pressure) is confirmed, and this pressure is confirmed and determined as the average blood pressure value PM for the maximum pulse wave MM.
And in step SP11, the control part 120 displays the determined average blood pressure value PM with respect to a to-be-measured person in the display part 63 shown in FIG. 5 and FIG. Thereby, the person to be measured can visually confirm the average blood pressure value PM displayed on the display unit 63. When the person being measured is a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a pulse weak person such as a person with weak pulse waves, examples of voice guidance contents to be notified during blood pressure measurement include When the measurement of the average blood pressure value of the measurer is started, the speaker 85 can send, for example, a notification content “measuring the average blood pressure value” in accordance with a command from the control unit 120.
The average blood pressure value PM can be notified to the person to be measured by voice guidance through the speaker 85 as necessary. Thereby, even if the person to be measured cannot visually confirm the average blood pressure value PM on the display unit 63, it can be confirmed by listening to the average blood pressure value PM.
 以上の手順により、血圧計1を用いた血圧測定動作を行いその動作を終了する。
 このように、被測定者の平均血圧値PMが決定したら、例えば医療従事者は、この平均血圧値PMの値に基づいて、被測定者に対して処方することができる。あるいは、例えば被測定者の平均血圧値PMが決定したら、被測定者は、平均血圧値PMを参考にして、必要に応じて医療機関に受診するかどうかを判断できる。
 本発明者らは、被測定者が、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱の人であっても、脈波を利用したオシロメトリック法では、最大脈波MMが発生する圧力が平均血圧と相関性が高いことを発見した。
 従来、被測定者が、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱の人であると、脈圧が極端に少ないために、オシロメトリック法を用いた血圧計により最高血圧値と最低血圧値を決定しようとしても、最高血圧値と最低血圧値を決定することができず、エラー表示になってしまっていた。
According to the above procedure, the blood pressure measurement operation using the sphygmomanometer 1 is performed and the operation is terminated.
In this way, when the average blood pressure value PM of the measurement subject is determined, for example, a medical worker can prescribe the measurement subject based on the value of the average blood pressure value PM. Alternatively, for example, when the average blood pressure value PM of the measurement subject is determined, the measurement subject can determine whether or not to consult a medical institution as necessary with reference to the average blood pressure value PM.
The present inventors have determined that an oscillometric method using a pulse wave is used even if a person to be measured is a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a person with weak pulse such as a person with weak pulse wave. Then, it discovered that the pressure which the maximum pulse wave MM generate | occur | produces has high correlation with average blood pressure.
Conventionally, if the person to be measured is a heart transplant patient transplanted with a living heart transplant or auxiliary artificial heart or a person with weak pulse such as a person with weak pulse wave, the pulse pressure is extremely low. Even if the maximum blood pressure value and the minimum blood pressure value were determined by the blood pressure monitor used, the maximum blood pressure value and the minimum blood pressure value could not be determined and an error display was displayed.
 しかし、本発明の実施形態では、通常の被測定者であっても、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人であっても、脈波を利用したオシロメトリック法を用いて、血圧値を求めることができる。
 被測定者が生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱の人であって脈圧が極端に少ない場合であっても、平均血圧値付近の圧脈波(脈波の最大振幅)のみでも、この平均血圧値を表示できることは、被測定者が生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱の人に関して、医療現場において有効性が高い。
However, in the embodiment of the present invention, an oscillometric person using a pulse wave is used even for a normal subject, a heart transplant patient transplanted with a living heart transplant, an auxiliary artificial heart, or a person with weak pulse wave. The blood pressure value can be determined using the method.
Even if the subject is a heart transplant patient transplanted with a living heart transplant or assistive artificial heart or a person with weak pulse such as a person with weak pulse wave and the pulse pressure is extremely low, This average blood pressure value can be displayed using only the pressure pulse wave (maximum amplitude of the pulse wave) because the measured subject's pulse weakness such as a heart transplant patient who has a living heart transplant or an auxiliary artificial heart transplanted or a person with weak pulse waves Is highly effective in the medical field.
 図9(A)と図9(B)は、血圧測定の参考例として、阻血用空気袋14のエア圧の変動から得られる血圧の変化と、図5に示す圧力センサ140が脈波検出用空気袋250のエア圧の変動から得られる脈波の結果例を示している。
 図9(A)のノーマルモードの結果例では、1拍の大きな脈波MXしか検出できなかったために、血圧値を決定できなかった。このノーマルモードとは、阻血用空気袋14と脈波検出用空気袋250に導入されたエアを、予め定めた排気スピードで排気しながら、血圧を自動測定するモードである。
 図9(B)のスローモードの結果例では、最大振幅の脈波MYの後に、脈波の減衰を確認するための脈波検出ができていない。全般に脈波が弱く、アーチファクトが混入していると思われる。このスローモードとは、阻血用空気袋14と脈波検出用空気袋250に導入されたエアの排気スピードを、ノーマルスピードの予め定めた排気スピードのほぼ半分にして、血圧を自動測定するモードである。
FIGS. 9A and 9B show, as reference examples of blood pressure measurement, changes in blood pressure obtained from fluctuations in the air pressure of the ischemic bladder 14, and the pressure sensor 140 shown in FIG. The example of the result of the pulse wave obtained from the fluctuation | variation of the air pressure of the air bag 250 is shown.
In the example of the result of the normal mode in FIG. 9A, the blood pressure value could not be determined because only a large pulse wave MX of one beat could be detected. The normal mode is a mode in which the blood pressure is automatically measured while the air introduced into the ischemic air bladder 14 and the pulse wave detecting air bladder 250 is exhausted at a predetermined exhaust speed.
In the example of the result of the slow mode in FIG. 9B, the pulse wave detection for confirming the attenuation of the pulse wave cannot be performed after the pulse wave MY having the maximum amplitude. In general, the pulse wave is weak, and it seems that artifacts are mixed. The slow mode is a mode in which the blood pressure is automatically measured by setting the exhaust speed of the air introduced into the ischemic air bladder 14 and the pulse wave detecting air bladder 250 to approximately half the predetermined exhaust speed of the normal speed. is there.
 図10は、本発明の血圧計の第2の実施形態を示す斜視図である。
 図1に示す血圧計1では、駆動ポンプ110が、腕帯部2内の阻血用空気袋14内にエアを供給することで、上腕Tを自動的に圧迫する構造である。
 これに対して、図10に示す血圧計1Aは、血圧計本体1001と、腕帯部(カフともいう)1002と、送気球1003を有している。血圧計本体1001は、表示部1063を有している。腕帯部1002内には、阻血用空気袋14と脈波検出用空気袋250が配置されている。腕帯部1002内の阻血用空気袋14と脈波検出用空気袋250は、エアチューブ1004,1006により送気球1003に接続されている。この血圧計1Aでは、被測定者もしくは医療従事者が、送気球1003を押圧することで、腕帯部1002内の阻血用空気袋14にエアを供給して上腕を圧迫し、腕帯部1002内の脈波検出用空気袋250にエアを供給できる。
 図10に示す手動圧迫式の血圧計1Aは、図1から図8に示す血圧計1と同様にして、被測定者が生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱の人であっても、平均血圧値を求めることができる。
FIG. 10 is a perspective view showing a second embodiment of the sphygmomanometer of the present invention.
In the sphygmomanometer 1 shown in FIG. 1, the drive pump 110 automatically compresses the upper arm T by supplying air into the ischemic air bag 14 in the armband portion 2.
On the other hand, the sphygmomanometer 1 </ b> A shown in FIG. 10 includes a sphygmomanometer main body 1001, an arm band part (also referred to as a cuff) 1002, and an air balloon 1003. The sphygmomanometer main body 1001 has a display unit 1063. In the armband portion 1002, a blood-insufficiency air bag 14 and a pulse wave detection air bag 250 are arranged. The ischemic air bladder 14 and the pulse wave detecting air bladder 250 in the armband 1002 are connected to the air balloon 1003 by air tubes 1004 and 1006. In this sphygmomanometer 1A, a person to be measured or a medical worker presses the air balloon 1003 to supply air to the air bag 14 for ischemia in the arm band portion 1002 to press the upper arm, and the arm band portion 1002 Air can be supplied to the inner air bag 250 for detecting pulse waves.
The manual compression type sphygmomanometer 1A shown in FIG. 10 is similar to the sphygmomanometer 1 shown in FIGS. 1 to 8, and the subject is a heart transplant patient having a living heart transplant or an auxiliary artificial heart or a weak pulse wave. Even a person with weakness such as a person can obtain an average blood pressure value.
 本発明の実施形態の血圧計1は、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱者の血圧を測定する場合であっても、血圧値を測定することができる。すなわち、脈弱者が血圧測定しても最大血圧値と最低血圧値を測定できない場合に、制御部が脈波の最大振幅が発生した時の前記阻血用空気袋内の圧力を、前記被測定者の平均血圧値として決定するので、この平均血圧値を脈弱者の血圧値として用いることができる。脈弱者は、被測定者が生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人であるが、被測定者が生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人であっても、脈波の最大振幅が発生した時の阻血用空気袋内の圧力を、被測定者の平均血圧値として決定するので、この平均血圧値を脈弱者の血圧値として用いることができる。 The sphygmomanometer 1 according to the embodiment of the present invention measures a blood pressure value even when measuring blood pressure of a heart transplant patient transplanted with a living heart transplantation or an auxiliary artificial heart or a pulse weak person such as a person with weak pulse wave. can do. That is, when the pulse weak person cannot measure the maximum blood pressure value and the minimum blood pressure value even if the blood pressure is measured, the control unit determines the pressure in the air bag for ischemia when the maximum amplitude of the pulse wave is generated. Therefore, the average blood pressure value can be used as the blood pressure value of the weak pulse person. A person with weak pulse is a heart transplant patient who has been transplanted with a living heart transplant or auxiliary artificial heart or a person with weak pulse wave, but a heart transplant patient or pulse who has been transplanted with a living heart transplant or auxiliary artificial heart. Even in a person with weak waves, the pressure in the air bag for ischemia when the maximum amplitude of the pulse wave occurs is determined as the average blood pressure value of the person being measured. Can be used as
 本発明は、上記実施形態に限定されず、特許請求の範囲を逸脱しない範囲で種々の変更を行うことができる。上記実施形態の各構成は、その一部を省略したり、上記とは異なるように任意に組み合わせることができる。
 図1では、2つの脈波検出用空気袋250を腕帯部2内に設けているが、1つの脈波検出用空気袋250を腕帯部2内に設けるようにしても良い。また、腕帯部2の外布のほぼ全体を、剛性を有し取っ手を備えたプラスチック製の筐体で包むようにしてもよい。これより、血圧測定時に、上腕Tに腕帯部2が装着しやすくなる。
 本発明の血圧計は、いわゆるダブルカフ、トリプルカフのどちらでも適用できる。本発明の血圧計は、腕帯部が血圧計本体に対して一体的に設けられる構造のものであっても良い。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the claims. A part of each configuration of the above embodiment can be omitted, or can be arbitrarily combined so as to be different from the above.
In FIG. 1, two pulse wave detection air bags 250 are provided in the armband part 2, but one pulse wave detection air bag 250 may be provided in the armband part 2. Moreover, you may make it wrap almost the whole outer cloth of the armband | band | zone part 2 with the plastic-made housing | casing which has rigidity and was provided with the handle. As a result, the arm band 2 is easily attached to the upper arm T during blood pressure measurement.
The blood pressure monitor of the present invention can be applied to either a so-called double cuff or triple cuff. The sphygmomanometer of the present invention may have a structure in which the armband portion is provided integrally with the sphygmomanometer body.
(第3の実施形態)
 図11は、本発明の血圧計の好ましい実施形態を示す斜視図である。図12は、図11に示す血圧計の正面図である。
 図11に示すように、血圧計は、好ましくは看護師等の医療従事者により手動加圧方式で患者の上腕Tに装着された腕帯内の空気袋を加圧することで、患者の血圧測定を行うことができる。この手動加圧方式の血圧計501は、送気球(加圧部)と血圧計本体とが一体化されており、医療従事者は片手で送気球を加圧操作することができ、モータ音が無いために、夜間でも静かに血圧測定を行うことができる。
(Third embodiment)
FIG. 11 is a perspective view showing a preferred embodiment of the sphygmomanometer of the present invention. 12 is a front view of the sphygmomanometer shown in FIG.
As shown in FIG. 11, the blood pressure monitor preferably measures a patient's blood pressure by pressurizing an air bag in an arm band attached to the upper arm T of a patient by a manual pressurization method by a medical staff such as a nurse. It can be performed. This manual pressurization type sphygmomanometer 501 has an integrated air balloon (pressurizing unit) and a sphygmomanometer body, so that a medical worker can pressurize the air balloon with one hand, and the motor sound can be heard. Because there is no, blood pressure can be measured quietly even at night.
 医療従事者は、この血圧計501を用いる際には、患者の病態に応じて3つの測定モードを選択することができる。3つの測定モードとは、ノーマルモード、スローモード、そして聴診モードである。ノーマルモードは、自動測定により血圧測定をよりスピーディーに行うことができるモードである。スローモードは、自動測定により加圧後の減圧速度(排気速度)を、ノーマルモードの加圧後の減圧速度に比べて遅く設定して、低血圧の患者や脈拍の弱い患者の血圧測定を行うことができるモードである。そして、聴診モードは、自動測定は行わずに、医療従事者が聴診器を用いた聴診法により血圧測定をするモードである。
 なお、ノーマルモードより、さらに加圧後の減圧速度を速くしたクイックモードを設けてもよい。このモードを設けることで、血圧測定時間(分)が短くなり、患者の上腕への負担が少なくなる。
When using the sphygmomanometer 501, a medical worker can select three measurement modes according to the patient's condition. The three measurement modes are a normal mode, a slow mode, and an auscultation mode. The normal mode is a mode in which blood pressure measurement can be performed more quickly by automatic measurement. In slow mode, the decompression speed (exhaust speed) after pressurization is set to be slower than the decompression speed after pressurization in normal mode by automatic measurement, and blood pressure is measured in patients with low blood pressure or patients with weak pulses. It is a mode that can. The auscultation mode is a mode in which a medical worker measures blood pressure by an auscultation method using a stethoscope without performing automatic measurement.
In addition, you may provide the quick mode which made the decompression speed after pressurization faster than the normal mode. By providing this mode, the blood pressure measurement time (minutes) is shortened, and the burden on the patient's upper arm is reduced.
 図11と図12に示す血圧計501における測定方式は、オシロメトリック法(いわゆるダブルカフ方式)であり、図11に示すように測定対象部位は、被測定者である患者の上腕Tである。使用する電源としては、例えば乾電池を用いている。
 図11と図12に示すように、血圧計501は、血圧計本体502と、腕帯部503を有している。血圧計本体1は、筺体504と送気球505を有している。送気球505は、医療従事者が加圧操作することで内部の空気を送ることができるように、例えば、シリコン樹脂のような耐薬品性と伸縮性を有する材料で作られている。送気球505は、この例えばゴム気球である。
The measurement method in the sphygmomanometer 501 shown in FIGS. 11 and 12 is an oscillometric method (so-called double cuff method), and as shown in FIG. 11, the measurement target site is the upper arm T of a patient who is a subject. As a power source to be used, for example, a dry battery is used.
As shown in FIGS. 11 and 12, the sphygmomanometer 501 has a sphygmomanometer body 502 and an armband 503. The sphygmomanometer main body 1 includes a housing 504 and an air balloon 505. The air balloon 505 is made of, for example, a material having chemical resistance and stretchability such as silicone resin so that a medical worker can pressurize the inside air. The air balloon 505 is a rubber balloon, for example.
 図11と図12に示す血圧計本体502の筺体504は、プラスチック製であり、長方形状の表示部508と、電源スイッチ509と、モードスイッチ510と、排気スイッチ511を有している。この表示部508は、例えば液晶表示装置や有機EL(エレクトロルミネッセンス)表示装置等であり、単色表示であっても、カラー表示であっても良い。この表示部508は、最高血圧値、最低血圧値、脈拍数、そして上述した3つの測定モードのどのモードが選択されているかを表示することができる。
 電源スイッチ509は、医療従事者が押すことで、血圧計本体502の電源をオンしたり、オフすることができる。モードスイッチ510は、医療従事者が押すことで、測定モードを上述したノーマルモード、スローモード、そして聴診モードの内の任意のモードに切り替えることができる。排気スイッチ511は、医療従事者が押すことで、後で説明する腕帯部503内の阻血用空気袋と動脈拍動検出用の空気袋内の空気を強制的に排出することができる。
The housing 504 of the sphygmomanometer main body 502 shown in FIGS. 11 and 12 is made of plastic, and has a rectangular display portion 508, a power switch 509, a mode switch 510, and an exhaust switch 511. The display unit 508 is, for example, a liquid crystal display device or an organic EL (electroluminescence) display device, and may be a single color display or a color display. The display unit 508 can display the maximum blood pressure value, the minimum blood pressure value, the pulse rate, and which of the three measurement modes described above is selected.
The power switch 509 can be turned on or off by the medical staff when pressed. The mode switch 510 can switch the measurement mode to any of the above-described normal mode, slow mode, and auscultation mode when pressed by a medical staff. By pressing the exhaust switch 511, a medical worker can forcibly exhaust the air in the air bag for ischemia and the air bag for detecting arterial pulsation in the armband 503 described later.
 2本のチューブ506,507は、血圧計本体502の筺体504と腕帯部503とを接続しているフレキシブルなチューブである。チューブ506はチューブ507に比べて太い。チューブ506の一端部506Bは、コネクタ部512を介して筺体504の上部に対して接続されている。チューブ507の一端部507Bは、プラグ50507Cとコネクタ部512を介して筺体504の上部に対して接続されている。チューブ506,507の一端部506B、7B側付近は、ホルダー513により固定されている。このように、チューブ506,507がホルダー513により固定されていることにより、チューブ506,507が分離しないようにまとめているが、細いチューブ507の一端部507Bは、太いチューブ506の一端部506Bに比べて弛ませることで、チューブ506の動きにチューブ507の動きが追従できるように、チューブ506の長さには余裕を持たせてある。これにより、太いチューブ506を引き回したことで太いチューブ506が多少無理な方向に引っ張られたとしても、細いチューブ507が太いチューブ506につられて抜けてしまわない。 The two tubes 506 and 507 are flexible tubes that connect the housing 504 and the armband 503 of the sphygmomanometer main body 502. The tube 506 is thicker than the tube 507. One end portion 506 </ b> B of the tube 506 is connected to the upper portion of the housing 504 via the connector portion 512. One end portion 507B of the tube 507 is connected to the upper portion of the housing 504 via a plug 50507C and a connector portion 512. The ends 506B and 7B side of the tubes 506 and 507 are fixed by a holder 513. As described above, the tubes 506 and 507 are fixed by the holder 513 so that the tubes 506 and 507 are not separated, but one end portion 507B of the thin tube 507 is connected to one end portion 506B of the thick tube 506. The length of the tube 506 is provided with a margin so that the movement of the tube 507 can follow the movement of the tube 506 by loosening it. As a result, even if the thick tube 506 is pulled in a somewhat unreasonable direction by pulling the thick tube 506, the thin tube 507 is not pulled by being pulled by the thick tube 506.
 図11に示すように、筺体504の下部には、延長部514が下方に突出して形成されている。この延長部514は、送気球505の正面部50505Sの一部を覆っている薄板状の部材である。医療従事者が図12に示すように、延長部514を手Hの指で支えながら送気球505を握ったり離したりする動作を繰り返すことにより、送気球505からの空気は、血圧計本体502内の配管とチューブ506,507を通じて腕帯部503内の阻血用空気袋と動脈拍動検出用の空気袋に供給することができる。筺体504の両側には突出部4Tが形成されている。 As shown in FIG. 11, an extension 514 protrudes downward from the lower portion of the housing 504. The extension portion 514 is a thin plate-like member that covers a part of the front portion 50505S of the air balloon 505. As shown in FIG. 12, the medical staff repeats the operation of grasping or releasing the air balloon 505 while supporting the extension 514 with the finger of the hand H, so that the air from the air balloon 505 is contained in the blood pressure monitor main body 502. The air bag for ischemia and the air bag for detecting arterial pulsation in the armband portion 503 can be supplied through the pipe and the tubes 506 and 507. Projections 4T are formed on both sides of the housing 504.
 図13には、表示部508が表示できる表示項目の例を示している。
 図13に示すように、表示部508は、最高血圧値表示領域508A、最低血圧値表示領域508B、脈拍表示領域508C、脈波信号表示領域508D、前回値の表示領域508E、排気中の表示領域508F、加圧不足の表示領域508G、過加圧の表示領域508H、選択中のモード表示領域508Kを有している。
 最高血圧値表示領域508Aは、加圧中および減圧中にあっては血圧の瞬時圧を表示し、最終的には最高血圧値を表示する。最低血圧値表示領域508Bは、最終的に決定された最低血圧値を表示する。
 なお、周辺の明るさ(照度)を自動検出し、夜間の測定時に表示部508をバックライトで明るくするようにしてもよい。
FIG. 13 shows an example of display items that can be displayed by the display unit 508.
As shown in FIG. 13, the display unit 508 includes a maximum blood pressure value display area 508A, a minimum blood pressure value display area 508B, a pulse display area 508C, a pulse wave signal display area 508D, a previous value display area 508E, and a display area during exhaust. 508F, underpressurized display area 508G, overpressurized display area 508H, and selected mode display area 508K.
The maximum blood pressure value display area 508A displays the instantaneous blood pressure during pressurization and decompression, and finally displays the maximum blood pressure value. The lowest blood pressure value display area 508B displays the lowest blood pressure value finally determined.
In addition, surrounding brightness (illuminance) may be automatically detected, and the display unit 508 may be brightened with a backlight during measurement at night.
 図13に示す脈拍表示領域508Cは、測定された脈拍値を表示する。脈波信号表示領域508Dは、検出された脈波信号の大きさを表示し、脈波信号の大きさは左右に移動するバー状に表示する。通常の脈を持つ患者の場合には、脈波信号の大きさの表示はリズミカルに左右に増加したり減少したりするが、不整脈を持つ患者の場合には、脈波信号の大きさの表示はリズミカルに左右に増加したり減少することはない。この脈波信号表示領域508Dを備えることで、被測定者である患者が不整脈を有するか否かを視覚的に判断することができる。 The pulse display area 508C shown in FIG. 13 displays the measured pulse value. The pulse wave signal display area 508D displays the magnitude of the detected pulse wave signal, and the magnitude of the pulse wave signal is displayed in a bar shape that moves to the left and right. In the case of a patient with a normal pulse, the display of the magnitude of the pulse wave signal rhythmically increases or decreases from side to side, but in the case of a patient with arrhythmia, the display of the magnitude of the pulse wave signal Rhythmically does not increase or decrease from side to side. By providing this pulse wave signal display area 508D, it is possible to visually determine whether or not the patient who is the subject has arrhythmia.
 図13に示す前回値の表示領域508Eは、電源スイッチ509を押して血圧計本体502の動作を立ち上げると点滅または点灯し、前回に測定した最高血圧値、最低血圧値、脈拍値が、最高血圧値表示領域508A、最低血圧値表示領域508B、脈拍表示領域508Cにそれぞれ表示される。そして、しばらく経過するか、あるいは送気球505を操作して送気が行われると、前回に測定した最高血圧値、最低血圧値、脈拍値の表示が消滅して、前回値の表示領域508Eは、電源スイッチ509を押して血圧計本体502の動作を立ち上げると点滅または点灯も消滅する。排気中の表示領域508Fは、腕帯部503内の阻血用空気袋と動脈拍動検出用の空気袋の空気を急速に排気する際に点滅する。また、排気中の表示領域508Fは、排気スイッチ511が押された場合にも点滅する。 The previous value display area 508E shown in FIG. 13 blinks or lights up when the power switch 509 is pressed to activate the operation of the sphygmomanometer main body 502, and the highest blood pressure value, the lowest blood pressure value, and the pulse value measured last time are the highest blood pressure. The values are displayed in a value display area 508A, a minimum blood pressure value display area 508B, and a pulse display area 508C. Then, after a while or when air is supplied by operating the air balloon 505, the display of the previously measured maximum blood pressure value, minimum blood pressure value, and pulse value disappears, and the previous value display area 508E is displayed. When the power switch 509 is pressed to activate the operation of the sphygmomanometer main body 502, the blinking or lighting also disappears. The display area 508 </ b> F during exhausting blinks when the air of the air bag for ischemia in the armband 503 and the air bag for detecting arterial pulsation is rapidly exhausted. The display area 508F during exhaust also blinks when the exhaust switch 511 is pressed.
 図13に示す加圧不足の表示領域5050508Gが、点灯または点滅している時には、腕帯部503内の圧力が血圧測定をするのに十分なレベルまで達していないことを示すので、医療従事者に対してさらに送気球505を用いて空気を送るように促すことができる。
 過加圧の表示領域508Hが、点灯または点滅している時には、腕帯部503内の圧力が所定の圧力以上(例えば、320mmHg以上)になっていることを示し、医療従事者は過加圧の表示領域508Hを確認することで、加圧動作を止めるように促すことができる。
When the underpressurized display area 5050508G shown in FIG. 13 is lit or flashing, it indicates that the pressure in the armband 503 has not reached a level sufficient for blood pressure measurement. The air balloon 505 can be further urged to send air.
When the overpressurization display area 508H is lit or blinking, it indicates that the pressure in the armband 503 is equal to or higher than a predetermined pressure (for example, 320 mmHg or higher), By confirming the display area 508H, it is possible to prompt the user to stop the pressurizing operation.
 選択中のモード表示領域508Kは、モードスイッチ510を押すことで、ノーマルモード、スローモード、そして聴診モードの内のどのモードが選択されているかを表示している。このモード選択によって、排気(減圧)スピードを変えることができるようになっている。ノーマルモードが選択されると、排気スピードは例えば約4~6mmHg/秒に設定される。ノーマルモードでは、排気スピードが比較的速いので測定時間を比較的短くできるという利点がある。その一方で、圧力変化測定の刻みが大きいことになるので、脈拍が安定した人を測定する場合には特に問題はないが、不整脈の人の血圧を測定する場合には、脈が抜けやすいので測定誤差が大きくなる可能性がある。 The selected mode display area 508K displays which mode is selected from the normal mode, the slow mode and the auscultation mode by pressing the mode switch 510. By selecting this mode, the exhaust (decompression) speed can be changed. When the normal mode is selected, the exhaust speed is set to about 4 to 6 mmHg / second, for example. In the normal mode, there is an advantage that the measurement time can be made relatively short because the exhaust speed is relatively fast. On the other hand, since the increment of the pressure change measurement is large, there is no particular problem when measuring a person with stable pulse, but when measuring the blood pressure of a person with arrhythmia, the pulse is easily lost. Measurement error may increase.
 そこで、スローモードが設けられており、このスローモードが選択された場合には、排気スピードをノーマルモード時の略半分付近、例えば2~3mmHg/秒に設定している。このように「スロー」モードでは通常よりゆっくり減圧することにより詳細に圧力変化を見ることができるので、脈が抜けやすい不整脈の人の測定がより正確に行うことができる。なお、クイックモードを設ける場合、排気スピードは例えば6~8mmHg/秒に設定される。
 さらに、聴診モードは、聴診器を使ってマニュアルで測定するモードであるが、この場合も予め、通常モードの略半分程度の排気スピード、例えば2.0~3.0mmHg/秒に設定されるが、2~6mmHg/秒の間で、使用者が、患者に応じて、任意に適宜設定変更できるようにしてもよい。
Therefore, a slow mode is provided. When this slow mode is selected, the exhaust speed is set to approximately half of the normal mode, for example, 2 to 3 mmHg / sec. In this manner, in the “slow” mode, the pressure change can be seen in detail by reducing the pressure more slowly than usual, so that the person with an arrhythmia that is likely to lose a pulse can be measured more accurately. When the quick mode is provided, the exhaust speed is set to 6 to 8 mmHg / second, for example.
Furthermore, the auscultation mode is a mode in which measurement is performed manually using a stethoscope. In this case, the exhaust speed is set to about half of the normal mode, for example, 2.0 to 3.0 mmHg / sec. The user may arbitrarily change the setting between 2 and 6 mmHg / sec depending on the patient.
 次に、図14を参照して、血圧計501の血圧計本体502内に配置されている制御回路ブロック例について説明する。図14は、血圧計本体502内に配置されている制御回路ブロック例と、腕帯部503の構成例を示している。
 図14に示す血圧計本体502の筺体504の内部には、制御部600が配置されており、この制御部600は中央処理装置(CPU)601を有している。制御部600は、表示部508と、電源コントロール部602と、電源スイッチ509と、モードスイッチ510と、排気スイッチ511と、圧力センサ610と、ROM(読み出し専用メモリ)611と、RAM(ランダムアクセスメモリ)112と、駆動部613と、ブザー614に電気的に接続されている。
Next, an example of a control circuit block arranged in the sphygmomanometer body 502 of the sphygmomanometer 501 will be described with reference to FIG. FIG. 14 shows a control circuit block example arranged in the sphygmomanometer body 502 and a configuration example of the armband 503.
A control unit 600 is arranged inside a housing 504 of the sphygmomanometer main body 502 shown in FIG. 14, and the control unit 600 has a central processing unit (CPU) 601. The control unit 600 includes a display unit 508, a power control unit 602, a power switch 509, a mode switch 510, an exhaust switch 511, a pressure sensor 610, a ROM (read only memory) 611, and a RAM (random access memory). ) 112, the driving unit 613, and the buzzer 614.
 図14に示す電池615の電源は、電源コントロール部602によりコントロールされることで、制御部600に供給される。電池615としては、乾電池であっても、2次電池(充電池)であっても良いが、好ましくは、医療従事者が片手で送気球の加圧操作を行なうため、測定時の消費電力は0.5W程度であるため、使用する電源としては、例えば単3形乾電池(DC1.5V)または単3形充電池(DC1.5V)を1本のみ用いる。このため新品の単3形乾電池(DC1.5V)を使用する場合、1000回程度の血圧測定が可能となり、血圧計501全体の小型化,軽量化(135g程度)が図られる。表示部508は、制御部600の指令により図13を参照しながら説明した表示項目を表示する。
 圧力センサ610は、後で説明する腕帯部503の阻血用空気袋520内の圧力と、動脈拍動検出用の空気袋540内の圧力を検出する。圧力センサ610は、阻血用空気袋520内の圧力の変化を検出する。しかも、動脈拍動検出用の空気袋(「動脈拍動検出用の空気袋」とのいう)540内の圧力は、血圧測定中に上腕Tの動脈拍動による動脈壁の振動により、すなわち上腕Tの動脈の脈波により変動するが、圧力センサ610はこの圧力の変動を検出する。阻血用空気袋520は大カフともいい、動脈拍動検出用の空気袋540は小カフともいう。
 ここで、圧力センサ610は、阻血用空気袋520のエア圧の変化を検出し、しかも圧力センサ610は、脈波検出用空気袋540のエア圧の変化を検出する。制御部600は、阻血用空気袋520のエア圧の変化に基づく圧力センサ610からのDC波形信号により、最高血圧値(収縮期血圧)、最低血圧値(拡張期血圧)を演算する。制御部600は、脈波検出用空気袋540のエア圧の変化に基づく圧力センサ600からのAC波形信号により、脈波(圧脈波)を検出するようになっている。
The power of the battery 615 shown in FIG. 14 is supplied to the controller 600 by being controlled by the power controller 602. The battery 615 may be a dry battery or a secondary battery (rechargeable battery). However, preferably, since a medical worker performs a pressurizing operation of the air balloon with one hand, the power consumption during measurement is Since it is about 0.5 W, as a power source to be used, for example, only one AA dry battery (DC1.5V) or AA rechargeable battery (DC1.5V) is used. Therefore, when a new AA battery (DC1.5V) is used, blood pressure can be measured about 1000 times, and the entire sphygmomanometer 501 can be reduced in size and weight (about 135 g). The display unit 508 displays the display items described with reference to FIG.
The pressure sensor 610 detects the pressure in the air bag 520 for ischemia of the armband 503 and the pressure in the air bag 540 for detecting arterial pulsation, which will be described later. The pressure sensor 610 detects a change in pressure in the air bag for ischemia 520. Moreover, the pressure in the air bag for detecting arterial pulsation (referred to as “arterial pulsation detecting air bag”) 540 is caused by vibration of the arterial wall due to arterial pulsation of the upper arm T during blood pressure measurement, that is, the upper arm. Although it fluctuates due to the pulse wave of the T artery, the pressure sensor 610 detects this pressure fluctuation. The air bag for ischemia 520 is also called a large cuff, and the air bag for detecting arterial pulsation 540 is also called a small cuff.
Here, the pressure sensor 610 detects a change in the air pressure of the ischemic air bladder 520, and the pressure sensor 610 detects a change in the air pressure of the pulse wave detecting air bladder 540. The control unit 600 calculates a maximum blood pressure value (systolic blood pressure) and a minimum blood pressure value (diastolic blood pressure) based on a DC waveform signal from the pressure sensor 610 based on a change in air pressure in the air bag 520 for ischemia. The controller 600 detects a pulse wave (pressure pulse wave) based on an AC waveform signal from the pressure sensor 600 based on a change in air pressure of the pulse wave detection air bladder 540.
 ROM611は、制御プログラムや各種のデータを予め格納している。RAM612は、演算結果や測定結果を一時的に格納する。駆動部613は、制御部600の指令により電磁バルブ616を駆動する。腕帯部503が上腕Tを加圧している場合には、圧力センサ610により検出される圧力の変動値は、測定時である減圧時の圧力の変動値に比べてかなり大きい。このため圧力センサ610が検出する圧力の変動値が所定値以上であると、制御部600が判断すると、制御部600は現在加圧中であると判断して駆動部613に指令をして電磁バルブ616を閉める。 The ROM 611 stores a control program and various data in advance. The RAM 612 temporarily stores calculation results and measurement results. The drive unit 613 drives the electromagnetic valve 616 according to a command from the control unit 600. When the armband portion 503 pressurizes the upper arm T, the fluctuation value of the pressure detected by the pressure sensor 610 is considerably larger than the fluctuation value of the pressure at the time of pressure reduction at the time of measurement. For this reason, when the control unit 600 determines that the pressure fluctuation value detected by the pressure sensor 610 is equal to or greater than a predetermined value, the control unit 600 determines that the pressurization is currently being performed and instructs the drive unit 613 to Valve 616 is closed.
 これに対して、圧力センサ610が検出する圧力について、所定期間内に圧力変動値(上昇値)がほぼゼロもしくは減圧状態であると制御部600が判断すると、制御部600は駆動部613に指令をして電磁バルブ616を減圧スピードが所定値になるように開く。そして血圧計501の動作は、加圧モードから測定モードに移行することになる。
 強制排気弁617は、排気スイッチ511が押されると、制御部600の指令により開くようになっている。
 ブザー614は、制御部600の指令により所定の警告音を発生する。例えば、ブザー614は、血圧計本体502の電源スイッチ509を押して表示部508が表示可能な状態になった時、モードスイッチ510を押すことによるモードの切り替え時、血圧値が決定した時、エラーが発生した時等に警告音を発生する。
On the other hand, when the control unit 600 determines that the pressure fluctuation value (increase value) is substantially zero or in a reduced pressure state within a predetermined period with respect to the pressure detected by the pressure sensor 610, the control unit 600 instructs the drive unit 613 to Then, the electromagnetic valve 616 is opened so that the pressure reduction speed becomes a predetermined value. The operation of the sphygmomanometer 501 shifts from the pressurization mode to the measurement mode.
The forced exhaust valve 617 is opened by a command from the control unit 600 when the exhaust switch 511 is pressed.
The buzzer 614 generates a predetermined warning sound according to a command from the control unit 600. For example, when the buzzer 614 presses the power switch 509 of the sphygmomanometer body 502 and the display unit 508 becomes displayable, when the mode is switched by pressing the mode switch 510, an error occurs when the blood pressure value is determined. A warning sound is generated when it occurs.
 図14に示す強制排気弁617は、チューブ506の一端部506Bと導通管120の間に配置されている。送気球505は、マニホールド618と、分岐部619と、導通管120と、強制排気弁617を通じて、チューブ506の一端部506Bに接続されている。チューブ506の他端部506Aは、阻血用空気袋520に接続されている。また、送気球505は、マニホールド618と、分岐部619と、マニホールド621と、分岐部622を介して、圧力センサ610に接続されている。分岐部622は、チューブ507の一端部507Bに接続されている。チューブ507の他端部507Aは、動脈拍動検出用の空気袋540に接続されている。 14 is arranged between one end 506B of the tube 506 and the conducting tube 120. The forced exhaust valve 617 shown in FIG. The air supply bulb 505 is connected to one end 506B of the tube 506 through the manifold 618, the branching portion 619, the conducting tube 120, and the forced exhaust valve 617. The other end 506A of the tube 506 is connected to the air bag 520 for ischemia. The air balloon 505 is connected to the pressure sensor 610 via a manifold 618, a branch portion 619, a manifold 621, and a branch portion 622. The branch portion 622 is connected to one end portion 507B of the tube 507. The other end 507A of the tube 507 is connected to an air bag 540 for detecting arterial pulsation.
 これにより、圧力センサ610は、阻血用空気袋520内の圧力の変動と、動脈拍動検出用の空気袋540内の圧力の変動を検出することができる。医療従事者が送気球505を握ったり離したりすることで、空気は、マニホールド618と、分岐部619と、導通管120と、強制排気弁617と、チューブ506を通じて、阻血用空気袋520内に送り込むことができるとともに、空気は、マニホールド618と、分岐部619と、マニホールド621と、分岐部622と、チューブ507を通じて、動脈拍動検出用の空気袋540に送り込むことができる。 Thereby, the pressure sensor 610 can detect the fluctuation of the pressure in the air bag 520 for ischemia and the fluctuation of the pressure in the air bag 540 for detecting arterial pulsation. When a medical worker grasps or releases the air balloon 505, the air enters the ischemic bladder 520 through the manifold 618, the branch 619, the conducting tube 120, the forced exhaust valve 617, and the tube 506. While being able to send in, air can be sent into the air bag 540 for detecting arterial pulsation through the manifold 618, the branching part 619, the manifold 621, the branching part 622, and the tube 507.
 さらに、第3の実施形態の血圧計では、第1の実施形態における測定モードと同様な測定モードを実現するために以下のような構成を備えている。
制御部600には、記憶部702とデータ用メモリ701が接続されている。表示部508としては、液晶表示装置や有機EL装置等を採用できる。
Furthermore, the sphygmomanometer according to the third embodiment has the following configuration in order to realize a measurement mode similar to the measurement mode according to the first embodiment.
A storage unit 702 and a data memory 701 are connected to the control unit 600. As the display unit 508, a liquid crystal display device, an organic EL device, or the like can be used.
 血圧計本体502では、血圧を測定する前に、例えば被測定者をリラックス状態にさせるために被測定者に聞かせる音楽を発生するための測定前音楽発生モードと、そして血圧を測定中に被測定者をリラックス状態にさせるために被測定者に聞かせる音楽を発生するための測定中音楽発生モードと、を備えている。これらの測定前音楽発生モードで発生する音楽データと測定中音楽発生モードで発生する音楽データは、音楽データを記憶する記憶部153に予め記憶されている。これにより、被測定者は、測定前と測定中に音楽を聞かせることができ、被測定者をリラックス状態にすることができる。 In the sphygmomanometer main body 502, before measuring the blood pressure, for example, a pre-measurement music generation mode for generating music to be heard by the measurement subject in order to put the measurement subject in a relaxed state, and a blood pressure measurement during measurement. A measurement-in-progress music generation mode for generating music to be heard by the measurement subject in order to put the measurement person in a relaxed state. The music data generated in the pre-measurement music generation mode and the music data generated in the in-measurement music generation mode are stored in advance in the storage unit 153 that stores the music data. Thereby, the person to be measured can hear music before and during the measurement, and the person to be measured can be in a relaxed state.
データ用メモリ701には、血圧測定に必要な一連の動作を行うためのプログラムが記憶されており、制御部600はこのプログラムに従って、血圧測定動作を実施する。この図では、モードスイッチ510が、制御部600に電気的に接続されている。これにより、1)最高血圧・最低血圧測定モード,2)最高血圧・最低血圧・平均血圧測定モード,3)平均血圧測定モード,4)聴診モードからなる複数の血圧測定モードから所定の血圧測定モードの選択や排気速度をノーマルモード(4mmHg/秒)かスローモード(4mmHg/秒)のいずれかを選択できるようになっている。
スピーカ704は、リラックス用の音楽や音声ガイダンス内容を報知するための報知部の一例であり、フィルタ703を介して制御部600に電気的に接続されている。
The data memory 701 stores a program for performing a series of operations necessary for blood pressure measurement, and the control unit 600 performs a blood pressure measurement operation according to the program. In this figure, the mode switch 510 is electrically connected to the control unit 600. Accordingly, a predetermined blood pressure measurement mode is selected from a plurality of blood pressure measurement modes including 1) systolic blood pressure / diastolic blood pressure measurement mode, 2) systolic blood pressure / diastolic blood pressure / average blood pressure measurement mode, 3) average blood pressure measurement mode, and 4) auscultation mode. And the exhaust speed can be selected from a normal mode (4 mmHg / sec) and a slow mode (4 mmHg / sec).
The speaker 704 is an example of an informing unit for informing relaxing music and voice guidance contents, and is electrically connected to the control unit 600 via the filter 703.
 次に、図11に示す腕帯部503の構造例を説明する。
 この腕帯部503は、患者(被測定者)の上腕Tの素肌に直接巻かれるものであり、詳しい構造例は、図15から図17に示している。
 図15は、腕帯部503が巻かれようとする状態を示す斜視図である。図16(A)は、腕帯部503の内面側を示し、図16(B)は、腕帯部503の外面側を示す斜視図である。図17(A)は、腕帯部503の外面側を示す平面図であり、図17(B)は、腕帯部503の内部に配置される阻血用空気袋520と動脈拍動検出用の空気袋540の形状例を示す平面図である。
Next, a structural example of the armband portion 503 shown in FIG. 11 will be described.
The arm band portion 503 is directly wound around the bare skin of the upper arm T of a patient (a person to be measured), and detailed structural examples are shown in FIGS.
FIG. 15 is a perspective view showing a state in which the armband portion 503 is about to be wound. FIG. 16A shows the inner surface side of the armband portion 503, and FIG. 16B is a perspective view showing the outer surface side of the armband portion 503. FIG. 17A is a plan view showing the outer surface side of the armband portion 503, and FIG. 17B is a diagram showing an air bag for ischemia 520 disposed inside the armband portion 503 and for detecting arterial pulsation. 5 is a plan view showing a shape example of an air bag 540. FIG.
 図15と図16と図17(A)に示すように、腕帯部503は、カフカバー550と、大カフである阻血用空気袋520と、小カフである動脈拍動検出用の空気袋540を有している。カフカバー550は、阻血用空気袋520と動脈拍動検出用の空気袋540を着脱可能に収納することで覆っている。
 カフカバー550は、外布551と内布552から成り、外布551と内布552は長方形状である。外布551の端部と内布552の端部は例えば糸で縫製することで固定されており、外布551と内布552の中には、阻血用空気袋520と動脈拍動検出用の空気袋540が着脱可能に収納することができる。これにより、カフカバー550は、阻血用空気袋520と動脈拍動検出用の空気袋540から外して取り替えたり、消毒を行うことができる。
As shown in FIGS. 15, 16, and 17A, the armband 503 includes a cuff cover 550, a blood cuff 520 for ischemia that is a large cuff, and an air bag 540 for detecting arterial pulsation that is a small cuff. have. The cuff cover 550 covers the ischemic air bladder 520 and the arterial pulsation detecting air bladder 540 in a detachable manner.
The cuff cover 550 includes an outer cloth 551 and an inner cloth 552, and the outer cloth 551 and the inner cloth 552 are rectangular. The end of the outer cloth 551 and the end of the inner cloth 552 are fixed by, for example, sewing with a thread. In the outer cloth 551 and the inner cloth 552, an air bag for ischemia 520 and an arterial pulsation detection are provided. The air bag 540 can be detachably stored. Thus, the cuff cover 550 can be removed from the air bag for ischemia 520 and the air bag for detecting arterial pulsation 540 for replacement or disinfection.
 図15と図16と図17(A)に示すカフカバー550の外布551と内布552は、阻血用空気袋の外面を覆う収納体を構成しており、円周方向及び長手方向に非伸縮性の材料で形成されており、変形可能であるが伸縮性が非常に低いかほとんど無い布部材である。これにより、外布551と内布552は、阻血用空気袋520と動脈拍動検出用の空気袋540内に空気を供給した際に、阻血用空気袋520と動脈拍動検出用の空気袋540が腕帯部503の半径方向の外側に膨れないようにすることができる。したがって、阻血用空気袋520と動脈拍動検出用の空気袋540は半径方向の内側である上腕T側に加圧力をかけることができ、阻血用空気袋520が発生する圧力と動脈拍動検出用の空気袋540が発生する圧力は、腕帯部503の外側へは逃げずに上腕Tに対して加圧でき、正確な血圧測定をすることができる。 The outer cloth 551 and the inner cloth 552 of the cuff cover 550 shown in FIGS. 15, 16, and 17 (A) constitute a storage body that covers the outer surface of the air bag for ischemia and are not stretched in the circumferential direction and the longitudinal direction. It is a cloth member that is made of a flexible material and is deformable but has very low or almost no stretchability. Accordingly, when the outer cloth 551 and the inner cloth 552 supply air into the ischemic air bladder 520 and the arterial pulsation detecting air bladder 540, the ischemic air bladder 520 and the arterial pulsating air bladder are detected. It is possible to prevent 540 from expanding outward in the radial direction of the armband portion 503. Therefore, the ischemic air bladder 520 and the arterial pulsation detecting air bladder 540 can apply pressure to the upper arm T side, which is the inner side in the radial direction, and the pressure generated by the ischemic air bladder 520 and arterial pulsation detection. The pressure generated by the air bag 540 can be pressurized against the upper arm T without escaping to the outside of the armband 503, and accurate blood pressure measurement can be performed.
 図17(A)に示すように、カフカバー550は、取り出し用の開口部分550Pを有している。この取り出し用の開口部分550Pは、外布551と内布552との間の隙間であり、カフカバー550内に収納されている阻血用空気袋520と動脈拍動検出用の空気袋540を取り出したり、逆にカフカバー550内に入れ込むために設けられている。この開口部分550Pからカフカバー550内に阻血用空気袋520と動脈拍動検出用の空気袋540を取り出したり、逆にカフカバー550内に入れ込むことを容易するために、長方形状の阻血用空気袋520は台形状の延長部分521を有している。台形状の延長部分521は、開口部分550Pに対応した位置にあり、延長部分521が外側に向けて幅が小さくなるように傾斜部522を有している。これにより、医療従事者がこの延長部分521を手で掴むことにより、阻血用空気袋520と動脈拍動検出用の空気袋540は開口部分550Pを通じて、取り出したり、逆にカフカバー550内に入れ込むことを容易に行える。 As shown in FIG. 17A, the cuff cover 550 has an opening 550P for taking out. The opening 550P for taking out is a gap between the outer cloth 551 and the inner cloth 552, and is used to take out the air bag 520 for detecting ischemia and the air bag 540 for detecting arterial pulsation housed in the cuff cover 550. On the contrary, it is provided to be inserted into the cuff cover 550. In order to easily take out the air bag 520 and the air bag 540 for detecting arterial pulsation from the opening portion 550P into the cuff cover 550, or conversely, to insert into the cuff cover 550, a rectangular blood bag for ischemia is used. 520 has a trapezoidal extension 521. The trapezoidal extension portion 521 is located at a position corresponding to the opening portion 550P, and has an inclined portion 522 so that the extension portion 521 decreases in width toward the outside. As a result, when the medical staff grasps the extension portion 521 by hand, the ischemic air bladder 520 and the arterial pulsation detecting air bladder 540 are taken out through the opening portion 550P or conversely inserted into the cuff cover 550. Can be done easily.
 しかも、この延長部分521は、図17(A)と図17(B)に示すように、阻血用空気袋520の長手方向に関して中央から少し位置がずれるように形成されている。このため、開口部分550Pからカフカバー550内に阻血用空気袋520と動脈拍動検出用の空気袋540を入れ込む際に、逆方向に入れ込んでしまうことを防止している。すなわち、開口部分550Pからカフカバー550内に阻血用空気袋520と動脈拍動検出用の空気袋540が正確な方向に入れ込まれれば、延長部分521が開口部分550Pの位置に一致するが、逆方向に入れ込まれれば、延長部分521が開口部分550Pの位置に不一致となる。このことから、医療従事者は、カフカバー550内に阻血用空気袋520と動脈拍動検出用の空気袋540が正確に入れ込まれたかどうかを判断できる。 Moreover, as shown in FIGS. 17A and 17B, the extended portion 521 is formed so that its position is slightly shifted from the center with respect to the longitudinal direction of the air bag 520 for ischemia. For this reason, when the air bag for ischemia 520 and the air bag for detecting arterial pulsation 540 are inserted into the cuff cover 550 from the opening portion 550P, they are prevented from being inserted in the opposite directions. That is, if the ischemic bladder 520 and the arterial pulsation detecting bladder 540 are inserted in the cuff cover 550 from the opening portion 550P in the correct direction, the extension portion 521 coincides with the position of the opening portion 550P. If inserted in the direction, the extension portion 521 does not coincide with the position of the opening portion 550P. From this, the medical staff can determine whether or not the ischemic air bladder 520 and the arterial pulsation detecting air bladder 540 are correctly inserted into the cuff cover 550.
 図17(A)に示す腕帯部503としては、患者の腕周り寸法を考慮して異なるサイズを用意することができる。腕帯部503のサイズは、例えば小さいものから大きいものにかけて、SSサイズ(上腕周長13~20cmに適用)、Sサイズ(上腕周長17~26cmに適用)、Mサイズ(上腕周長24~32cmに適用)、Lサイズ(上腕周長32~42cmに適用)、そしてLLサイズ(上腕周長42~50cmに適用)である。図17(A)に示す腕帯部503では、横方向の長さL1と幅W1を示しており、各サイズの寸法例を挙げると次の通りである。
 例えば、SSサイズの腕帯部503のカフカバー550の横方向の長さL1と幅W1は(345±5mm,100±4mm)、阻血用空気袋520の横方向の長L2と幅W2は(130±10mm,80±5mm)、動脈拍動検出用の空気袋540の横方向の長L3と幅W3は(30±1mm,20±1mm)である。
Sサイズのカフについて、例えば、腕帯部503のカフカバー550の横方向の長さL1と幅W1は(435±5mm,130±4mm)、阻血用空気袋520の横方向の長L2と幅W2は(170±10mm,110±5mm)、動脈拍動検出用の空気袋540の横方向の長L3と幅W3は(40±1mm,25±1mm)である。
Mサイズのカフについて、例えば、腕帯部503のカフカバー550の横方向の長さL1と幅W1は(520±5mm,150±4mm)、阻血用空気袋520の横方向の長L2と幅W2は(240±10mm,130±5mm)、動脈拍動検出用の空気袋540の横方向の長L3と幅W3は(60±1mm,30±1mm)である。
Lサイズのカフについて、例えば、腕帯部503のカフカバー550の横方向の長さL1と幅W1は(640±5mm,190±4mm)、阻血用空気袋520の横方向の長L2と幅W2は(320±10mm,170±5mm)、動脈拍動検出用の空気袋540の横方向の長L3と幅W3は(80±1mm,40±1mm)である。
LLサイズのカフについて、例えば、腕帯部503のカフカバー550の横方向の長さL1と幅W1は(220±4mm,830±5mm)、阻血用空気袋520の横方向の長L2と幅W2は(420±10mm,200±5mm)、動脈拍動検出用の空気袋540の横方向の長L3と幅W3は(100±1mm,50±1mm)である。
As the arm band portion 503 shown in FIG. 17A, different sizes can be prepared in consideration of the dimensions of the patient's arm. The size of the armband 503 is, for example, from small to large, SS size (applicable to upper arm circumference 13 to 20 cm), S size (applicable to upper arm circumference 17 to 26 cm), M size (upper arm circumference 24 to 32 cm), L size (applicable to upper arm circumference 32 to 42 cm), and LL size (applicable to upper arm circumference 42 to 50 cm). In the arm band portion 503 shown in FIG. 17A, the length L1 and the width W1 in the horizontal direction are shown. The following are examples of dimensions of each size.
For example, the lateral length L1 and width W1 of the cuff cover 550 of the SS size armband 503 are (345 ± 5 mm, 100 ± 4 mm), and the lateral length L2 and width W2 of the ischemic air bladder 520 are (130). The lateral length L3 and the width W3 of the air bag 540 for detecting arterial pulsation are (30 ± 1 mm, 20 ± 1 mm).
For the S size cuff, for example, the lateral length L1 and width W1 of the cuff cover 550 of the armband 503 are (435 ± 5 mm, 130 ± 4 mm), and the lateral length L2 and width W2 of the air bag 520 for ischemia. (170 ± 10 mm, 110 ± 5 mm), the lateral length L3 and width W3 of the air bag 540 for detecting arterial pulsation are (40 ± 1 mm, 25 ± 1 mm).
For the M size cuff, for example, the lateral length L1 and width W1 of the cuff cover 550 of the armband 503 are (520 ± 5 mm, 150 ± 4 mm), and the lateral length L2 and width W2 of the air bag 520 for ischemia. (240 ± 10 mm, 130 ± 5 mm), the lateral length L3 and the width W3 of the air bag 540 for detecting arterial pulsation are (60 ± 1 mm, 30 ± 1 mm).
For the L size cuff, for example, the lateral length L1 and width W1 of the cuff cover 550 of the armband 503 are (640 ± 5 mm, 190 ± 4 mm), and the lateral length L2 and width W2 of the air bag 520 for ischemia. (320 ± 10 mm, 170 ± 5 mm), the lateral length L3 and width W3 of the air bag 540 for detecting arterial pulsation are (80 ± 1 mm, 40 ± 1 mm).
For the LL size cuff, for example, the lateral length L1 and width W1 of the cuff cover 550 of the armband portion 503 are (220 ± 4 mm, 830 ± 5 mm), and the lateral length L2 and width W2 of the air bag 520 for ischemia. (420 ± 10 mm, 200 ± 5 mm), the lateral length L3 and width W3 of the air bag 540 for detecting arterial pulsation are (100 ± 1 mm, 50 ± 1 mm).
 次に、図15と図16と図17(A)を参照して、腕帯部503のカフカバー550の構造について説明する。
 図15と図16(B)と図17(A)に示すように、カフカバー550の外布551には、面ファスナのメス(ループ)部分553が設けられている。この面ファスナのメス部分553は、長方形状の部材であり、外布551の始端部554側から外布551のほぼ中央位置まで配置されている。外布551の始端部554側には、始端部554を示す2つの認識マーク555が設けられている。2つの認識マーク555は例えば三角形状である。また、外布551の開口部分550P付近には、リング状の認識マーク556が設けられている。この認識マーク556は、図11に示す患者の上腕Tの動脈を圧迫する位置を示す。このため、図15に示すように、腕帯部503を上腕Tに巻き付けて固定する場合には、この認識マーク556が上腕Tの動脈の上に位置決めする。これにより、動脈拍動検出用の空気袋540は動脈の上に正確に位置決めすることができ、正確な血圧測定が行える。
Next, the structure of the cuff cover 550 of the armband portion 503 will be described with reference to FIGS. 15, 16, and 17 (A).
As shown in FIGS. 15, 16B, and 17A, the outer cloth 551 of the cuff cover 550 is provided with a female (loop) portion 553 of a hook-and-loop fastener. The female portion 553 of the surface fastener is a rectangular member, and is arranged from the start end 554 side of the outer cloth 551 to the substantially central position of the outer cloth 551. Two recognition marks 555 indicating the start end portion 554 are provided on the start end portion 554 side of the outer cloth 551. The two recognition marks 555 are triangular, for example. A ring-shaped recognition mark 556 is provided in the vicinity of the opening 550P of the outer cloth 551. This recognition mark 556 indicates a position where the artery of the patient's upper arm T shown in FIG. 11 is compressed. For this reason, as shown in FIG. 15, when the arm band portion 503 is wound around the upper arm T and fixed, the recognition mark 556 is positioned on the artery of the upper arm T. Accordingly, the air bag 540 for detecting arterial pulsation can be accurately positioned on the artery, and accurate blood pressure measurement can be performed.
 一方、図15と図16(A)に示すように、カフカバー550の内布552には、面ファスナのオス部分557が設けられている。図15に示すように、腕帯部503が上腕Tに対して巻き付けて固定される際には、この面ファスナのオス(フック)部分557は、上述した面ファスナのメス部分553に対して着脱可能に貼り付けられることで腕帯部503を筒状にして、腕帯部503が上腕Tに対してずれないように固定することができる。この面ファスナのオス部分557は、内布552の終端部558側寄りの位置に設けられている。図16(A)に示すように、内布552の中央位置には、2つの矢印マーク559が設けられている。2つの矢印マーク559は、腕帯部503が上腕Tに直接接する面であることと、腕帯部503の巻き付ける方向を示している。 On the other hand, as shown in FIGS. 15 and 16A, the inner cloth 552 of the cuff cover 550 is provided with a male portion 557 of a hook-and-loop fastener. As shown in FIG. 15, when the armband portion 503 is wound around and fixed to the upper arm T, the male (hook) portion 557 of the hook-and-loop fastener is attached to and detached from the female portion 553 of the hook-and-loop fastener described above. The arm band portion 503 can be formed in a cylindrical shape by being attached so that the arm band portion 503 is not displaced with respect to the upper arm T. The male portion 557 of the surface fastener is provided at a position closer to the end portion 558 side of the inner cloth 552. As shown in FIG. 16A, two arrow marks 559 are provided at the center position of the inner cloth 552. Two arrow marks 559 indicate that the armband portion 503 is a surface that is in direct contact with the upper arm T and the direction in which the armband portion 503 is wound.
 図15と図16と図17(A)に示すように、カフカバー550の終端部558側の内側には、錘560が配置されている。この錘560は、例えば金属製の丸棒状の部材であり、カフカバー550の終端部558において、外布551と内布552の間に挟み込んで動かないように、終端部558の方向に沿って固定されている。この終端部558の中には、阻血用空気袋520は配置されていないので、錘560は簡単に終端部558の中に収納することができる。
 このように錘560がカフカバー550の終端部558に配置されているので、図11に示すように医療従事者が患者の上腕Tに対して巻き付けて固定する際に、錘560の重さを利用して面ファスナのオス部分557は、上述した面ファスナのメス部分553に対して着脱可能に貼り付けることができる。すなわち、医療従事者が腕帯部503を患者の上腕Tに巻き付けて巻き付け終わる際に、腕帯部503の終端部558にある錘560の重さが腕帯部503を巻き付ける方向に掛かることから、容易に巻き付けることができる。このため、特に上腕周長が42cmより大きい患者に対して、医療従事者の腕帯部503の巻き付け固定作業効率を上げることができる。
As shown in FIGS. 15, 16, and 17 (A), a weight 560 is disposed inside the cuff cover 550 on the end portion 558 side. The weight 560 is a member made of, for example, a metal round bar, and is fixed along the direction of the end portion 558 so that the end portion 558 of the cuff cover 550 is not sandwiched between the outer cloth 551 and the inner cloth 552 and moved. Has been. Since the air bag 520 for ischemia is not disposed in the terminal portion 558, the weight 560 can be easily accommodated in the terminal portion 558.
Since the weight 560 is thus disposed at the end portion 558 of the cuff cover 550, the weight of the weight 560 is used when the medical worker wraps and fixes the upper arm T of the patient as shown in FIG. The male part 557 of the hook and loop fastener can be detachably attached to the female part 553 of the hook and loop fastener described above. That is, when the medical staff finishes wrapping the armband portion 503 around the patient's upper arm T, the weight of the weight 560 at the terminal portion 558 of the armband portion 503 is applied in the direction in which the armband portion 503 is wound. Can be easily wound. For this reason, it is possible to increase the efficiency of wrapping and fixing the arm band 503 of the medical staff, particularly for a patient whose upper arm circumference is greater than 42 cm.
 しかも、錘560がカフカバー550の終端部558の内部に配置されているので、カフカバー550の終端部558には突起部分が形成でき、医療従事者はこの錘560を指で掴む持ち手としての役割も果たすことができる。このため、医療従事者は腕帯部503の終端部558を手で持つ際に、確実に持つことができるので、腕帯部503の終端部558が手から外れてしまうことが無くなる。このため、医療従事者の腕帯部503の巻き付け固定作業効率を上げることができる。なお、この錘560は、断面が円形(外径3~5mm程度)の金属製で棒状とし、長さはカフカバー550の幅よりやや短くし、150g程度の腕帯部503の重さの15%未満(18~22g程度)とすることで、腕帯部503が上腕に装着された時に患者に違和感を与えないようになる。 In addition, since the weight 560 is disposed inside the end portion 558 of the cuff cover 550, a protruding portion can be formed on the end portion 558 of the cuff cover 550, and a medical worker can serve as a handle for gripping the weight 560 with a finger. Can also fulfill. For this reason, since a medical worker can hold the terminal portion 558 of the arm band portion 503 with his / her hand, the terminal portion 558 of the arm band portion 503 is not detached from the hand. For this reason, the winding fixing work efficiency of the arm band part 503 of a medical worker can be raised. The weight 560 is made of a metal bar having a circular cross section (outside diameter of about 3 to 5 mm), the length is slightly shorter than the width of the cuff cover 550, and 15% of the weight of the arm band portion 503 of about 150 g. By setting it to less than about 18 to 22 g, the patient will not feel uncomfortable when the armband 503 is attached to the upper arm.
 また、図15と図16(A)と図17(A)に示すように、カフカバー550の内布552の始端部554側には、好ましくは滑り止め部561が例えば接着剤を用いて貼り付けて固定されている。この滑り止め部561は、例えば帯状の薄い部材であり、上腕Tに対して密着することで滑り難い材質である、例えば合成ゴム、ポリウレタン、エラストマー等を用いることができる。この滑り止め部561の材質は、上腕Tの肌面に対して高摩擦力を発揮して、上腕Tの肌面に負担にならない材料である。この滑り止め部561が腕帯部503の内面側である内布552の始端部554側に対して配置されることにより、医療従事者が患者の上腕Tに対して腕帯部503を巻き付ける際に、腕帯部503の始端部554が上腕Tの素肌から滑ることを防いで、動脈拍動検出用の空気袋540が上腕Tの動脈上からずれてしまうことを防止できる。このため、正確な血圧測定を行うことができる。 Further, as shown in FIGS. 15, 16A, and 17A, an anti-slip portion 561 is preferably attached to the start end portion 554 side of the inner cloth 552 of the cuff cover 550, for example, using an adhesive. Is fixed. The anti-slip portion 561 is, for example, a belt-like thin member, and can be made of, for example, synthetic rubber, polyurethane, elastomer, or the like, which is a material that is difficult to slip by being in close contact with the upper arm T. The material of the non-slip portion 561 is a material that exhibits a high frictional force against the skin surface of the upper arm T and does not impose a burden on the skin surface of the upper arm T. When the non-slip portion 561 is disposed on the start end portion 554 side of the inner cloth 552 that is the inner surface side of the armband portion 503, the medical worker winds the armband portion 503 around the upper arm T of the patient. In addition, the start end portion 554 of the armband portion 503 can be prevented from slipping from the bare skin of the upper arm T, and the air bag 540 for detecting arterial pulsation can be prevented from being displaced from the artery of the upper arm T. For this reason, accurate blood pressure measurement can be performed.
 図17(B)に示す阻血用空気袋520と動脈拍動検出用の空気袋540は、可撓性を有する材料で形成されている袋状の部材である。例えば、阻血用空気袋520は、天然ゴム、合成ゴム、エラストマー等により作られている。動脈拍動検出用の空気袋540は、ポリウレタン等により作られている。
 阻血用空気袋520と動脈拍動検出用の空気袋540の間には、硬質板65が配置されている。この硬質板65が配置されていることにより、動脈拍動検出用の空気袋540内の微小な圧力変動が、阻血用空気袋520内の大きな圧力変動に影響されること無く検出することができる。
The air bag for ischemia 520 and the air bag for detecting arterial pulsation 540 shown in FIG. 17B are bag-like members formed of a flexible material. For example, the air bag for ischemia 520 is made of natural rubber, synthetic rubber, elastomer, or the like. The air bag 540 for detecting arterial pulsation is made of polyurethane or the like.
A hard plate 65 is disposed between the air bag 520 for ischemia and the air bag 540 for detecting arterial pulsation. By arranging the hard plate 65, minute pressure fluctuations in the air bag 540 for detecting arterial pulsation can be detected without being influenced by large pressure fluctuations in the air bag 520 for ischemia. .
 図16に示すように、阻血用空気袋520の延長部分521は、チューブ506の他端部506Aに接続され、動脈拍動検出用の空気袋540は、チューブ507の他端部507Aに接続されている。直径の小さいチューブ507の他端部507Aが直径の大きいチューブ506の他端部506Aに対して弛ませるようにしてあるので、カフカバー550の開口部分550Pを通じて阻血用空気袋520と動脈拍動検出用の空気袋540を取り出し、あるいはカフカバー550の開口部分550Pを通じて阻血用空気袋520と動脈拍動検出用の空気袋540を収納する場合に、直径の小さいチューブ507の他端部507Aが直径の大きいチューブ506の他端部506Aにつられて破損してしまうことを防いでいる。 As shown in FIG. 16, the extended portion 521 of the ischemic bladder 520 is connected to the other end 506A of the tube 506, and the arterial pulsation detecting bladder 540 is connected to the other end 507A of the tube 507. ing. Since the other end 507A of the tube 507 having a small diameter is loosened with respect to the other end 506A of the tube 506 having a large diameter, the air bag for ischemia 520 and arterial pulsation detection are provided through the opening 550P of the cuff cover 550. The other end 507A of the tube 507 having a small diameter is large when the air bag 540 and the air bag 540 for detecting arterial pulsation are accommodated through the opening portion 550P of the cuff cover 550. The tube 506 is prevented from being damaged by being pulled by the other end 506A of the tube 506.
 次に、上述した血圧計501の使用例を説明する。
 医療従事者は、図11に示す患者の上腕Tの素肌に対して直接腕帯部503を、次のようにして巻き付けて固定する。図18は、腕帯部503を患者の上腕Tの素肌に直接巻く手順の例を示している。
 図18(A)と図16(A)に示すように、上腕Tに巻こうとする腕帯部503は、外布551側を下側にして内布552を上側にし、まず図18(A)から図18(B)に示すように、内布552側を上腕Tの下側から当てる。医療従事者は、手で腕帯部503の始端部554を持ってR1方向に沿って腕帯部503を上腕Tに対して巻き付ける。この際に、図15と図16(A)に示す認識マーク556は、図18(B)に示すように上腕Tの動脈の位置に合わせて位置決めすることで、動脈拍動検出用の空気袋540が上腕Tの動脈に対して正確に位置決めできる。
Next, a usage example of the above-described blood pressure monitor 501 will be described.
The medical staff directly wraps and fixes the arm band 503 around the bare skin of the upper arm T of the patient shown in FIG. 11 as follows. FIG. 18 shows an example of a procedure for winding the armband 503 directly around the skin of the upper arm T of the patient.
As shown in FIGS. 18 (A) and 16 (A), the arm band portion 503 to be wound around the upper arm T has the outer cloth 551 side down and the inner cloth 552 up. First, FIG. 18B to 18B, the inner cloth 552 side is applied from the lower side of the upper arm T. The medical worker holds the start end portion 554 of the armband portion 503 by hand and winds the armband portion 503 around the upper arm T along the R1 direction. At this time, the recognition mark 556 shown in FIGS. 15 and 16A is positioned according to the position of the artery of the upper arm T as shown in FIG. 540 can be accurately positioned relative to the artery of the upper arm T.
 これにより、始端部554側の滑り止め部561が上腕Tの素肌に直接接触するので、始端部554は上腕Tからずれない様にして保持することができる。この滑り止め部561は、上腕Tの肌面に対して高摩擦力を発揮して、医療従事者が患者の上腕Tに対して腕帯部503を巻く際に、上腕Tの素肌から滑ることを防ぐ。動脈拍動検出用の空気袋540が上腕Tの動脈上からずれてしまうことを防止でき、図14に示す圧力センサ610は、動脈拍動検出用の空気袋540内の空気圧力の変動を正確に検出できるので、正確な血圧測定を行うことができる。 Thereby, the anti-slip portion 561 on the start end portion 554 side directly contacts the bare skin of the upper arm T, so that the start end portion 554 can be held so as not to be displaced from the upper arm T. The anti-slip portion 561 exhibits a high frictional force against the skin surface of the upper arm T, and the medical staff slips from the bare skin of the upper arm T when the arm band portion 503 is wound around the upper arm T of the patient. prevent. The air bag 540 for detecting arterial pulsation can be prevented from deviating from the artery of the upper arm T, and the pressure sensor 610 shown in FIG. 14 accurately detects the fluctuation of the air pressure in the air bag 540 for detecting arterial pulsation. Therefore, accurate blood pressure measurement can be performed.
 次に、図18(C)に示すように、医療従事者は手で腕帯部503の終端部558を持ってR2方向に沿って腕帯部503を上腕Tに対して巻き付ける。このように腕帯部503の終端部558を持ってR2方向に沿って腕帯部503を上腕Tに対して巻き付ける作業を行う際には、腕帯部503の終端部558の内側に設けられた錘560の重さを利用することで、錘560が設けられていない場合に比べて、終端部558を持ってR2方向に沿って腕帯部503を上腕Tに対して巻き付ける作業が容易に効率よく行える。終端部558側の面ファスナのオス部分557は、上述した面ファスナのメス部分553に対して着脱可能に貼り付ける。このため、医療従事者は、最後まで腕帯部503の終端部558を上腕Tに巻き付けて、腕帯部503の終端部558を手で持って保持しながらファスナのオス部分557と面ファスナのメス部分553を貼り付けるといった作業の手間が無くなるので、医療従事者の作業の低減を図ることができる。面ファスナのメス部分553と面ファスナのオス部分557が着脱可能にかみ合うので、腕帯部503は上腕Tの素肌に対して直接巻き付けてずれない様に固定することができる。 Next, as shown in FIG. 18C, the medical worker holds the end portion 558 of the armband portion 503 by hand and winds the armband portion 503 around the upper arm T along the R2 direction. As described above, when the arm band portion 503 is wound around the upper arm T along the R2 direction while holding the end portion 558 of the arm band portion 503, the arm band portion 503 is provided inside the end portion 558. By using the weight of the weight 560, it is easier to wrap the armband portion 503 around the upper arm T along the R2 direction with the terminal portion 558 as compared with the case where the weight 560 is not provided. It can be done efficiently. The male part 557 of the surface fastener on the terminal end 558 side is detachably attached to the female part 553 of the surface fastener described above. Therefore, the medical staff wraps the end portion 558 of the armband portion 503 around the upper arm T until the end, and holds the end portion 558 of the armband portion 503 by hand and holds the male portion 557 of the fastener and the hook-and-loop fastener. Since the labor of attaching the knife portion 553 is eliminated, the work of the medical staff can be reduced. Since the female part 553 of the hook-and-loop fastener and the male part 557 of the hook-and-loop fastener are detachably engaged with each other, the arm band portion 503 can be directly wound around the skin of the upper arm T and fixed so as not to be displaced.
 錘560がカフカバー550の終端部558に配置されているので、カフカバー550の終端部558には錘560が突起部分となっている。このため、医療従事者はこの錘560を覆っているカフカバー550の突起部分が指で掴むための持ち手としての役割も果たすことができる。医療従事者は腕帯部503の終端部558を手で持つ際に、錘560を覆っているカフカバー550の突起部分を確実に持つことができるので、腕帯部503の終端部558が手から外れてしまうことが無くなる。 Since the weight 560 is disposed at the end portion 558 of the cuff cover 550, the weight 560 is a protruding portion at the end portion 558 of the cuff cover 550. For this reason, the medical staff can also play a role as a handle for gripping the protruding portion of the cuff cover 550 covering the weight 560 with a finger. When a medical worker holds the end portion 558 of the armband portion 503 by hand, the medical staff can surely have the protruding portion of the cuff cover 550 covering the weight 560, so that the end portion 558 of the armband portion 503 can be removed from the hand. It will not come off.
 次に、図11に示すように腕帯部503が上腕Tに対して正しい姿勢で保持された状態で、医療従事者は、図13に示す電源スイッチ509を押し、しかもモードスイッチ510を押すことで任意のモードを選択する。
 図12に示すように、延長部514を手Hの指で支えながら送気球505を握ったり離したりする動作を繰り返すことにより、送気球505からの空気は、血圧計本体502内の配管とチューブ506,507を通じて腕帯部503内の阻血用空気袋520と動脈拍動検出用の空気袋540内に空気をそれぞれ送り込まれる。
Next, as shown in FIG. 11, the medical staff presses the power switch 509 shown in FIG. 13 and further presses the mode switch 510 with the armband 503 held in the correct posture with respect to the upper arm T. Select the desired mode with.
As shown in FIG. 12, the air from the air balloon 505 is exchanged with a pipe and a tube in the sphygmomanometer body 502 by repeating the operation of grasping or separating the air balloon 505 while supporting the extension 514 with the finger of the hand H. Air is fed into the air bag 520 for ischemia and the air bag 540 for detecting arterial pulsation in the armband 503 through 506 and 507, respectively.
 図19は、阻血用空気袋520により上腕Tに対して加えられる圧力が、時間経過により変化する例を示している。
 図11に示す送気球505を握ったり離したりする動作を繰り返すことにより、図15に示す腕帯部503内の阻血用空気袋520と動脈拍動検出用の空気袋540内には空気を送るので、図19に示すように、腕帯部503内の阻血用空気袋520内の圧力は、圧力上昇期間t1において上昇する。この圧力上昇期間t1では、図14の制御部600は現在加圧中であると判断して駆動部613に指令をして電磁バルブ616を閉める。そして、医療従事者が送気球505を握ったり離したりする動作を停止して加圧を終了する。
FIG. 19 shows an example in which the pressure applied to the upper arm T by the air bag for ischemia 520 changes with time.
By repeating the operation of grasping or releasing the air balloon 505 shown in FIG. 11, air is sent into the air bag 520 for detecting ischemia and the air bag 540 for detecting arterial pulsation shown in FIG. Therefore, as shown in FIG. 19, the pressure in the air bag for ischemia 520 in the armband 503 increases during the pressure increase period t1. In the pressure increase period t1, the control unit 600 in FIG. 14 determines that the pressurization is currently being performed, and instructs the drive unit 613 to close the electromagnetic valve 616. And the operation | movement which a medical worker grasps or separates the air balloon 505 is stopped, and pressurization is complete | finished.
 ゴム球である送気球505を使用しているので、図19の自然減圧期間t2では、圧力は自然に少し低下する。この自然減圧期間t2の間待機して、その後、最適な速度減圧期間t3では、図14の圧力センサ610が検出する圧力について、減圧状態であると制御部600が判断すると、制御部600は駆動部613に指令をして電磁バルブ616を減圧スピードが所定値になるように開く。これにより、腕帯部503内の阻血用空気袋520内の圧力が減少され、この減圧の間に、図14に示す制御部600は、圧力センサ610からの信号により、最高血圧値(SYS)と最低血圧値(D1A)と脈拍値を取得する。その後、排気期間t4では、図14の制御部600は強制排気弁617を作動することで、腕帯部503内の阻血用空気袋520と動脈拍動検出用の空気袋540内の空気を強制排気することで、圧力を無くす。 Since the air balloon 505, which is a rubber ball, is used, the pressure naturally decreases a little during the natural decompression period t2 in FIG. The controller 600 waits for the natural pressure reduction period t2 and then determines that the pressure detected by the pressure sensor 610 in FIG. 14 is in the pressure reduction state in the optimum speed pressure reduction period t3. The unit 613 is instructed to open the electromagnetic valve 616 so that the pressure reduction speed becomes a predetermined value. As a result, the pressure in the air bag 520 for ischemia in the armband 503 is reduced, and during this pressure reduction, the control unit 600 shown in FIG. 14 receives a maximum blood pressure value (SYS) based on a signal from the pressure sensor 610. And a minimum blood pressure value (D1A) and a pulse value are acquired. Thereafter, in the exhaust period t4, the control unit 600 in FIG. 14 operates the forced exhaust valve 617 to force the air in the air bag 520 for ischemia in the armband 503 and the air bag 540 for detecting arterial pulsation. Evacuate to eliminate pressure.
 血圧を測定後、医療従事者は腕帯部503を、図18(C)、図18(B)、そして図18(A)の順番に患者の上腕Tから取り外せばよい。すなわち、図18(C)に示すように、医療従事者は手で腕帯部503の終端部558の錘560の部分を持って、R3方向に沿って腕帯部503の終端部558を剥がす。これにより、図18(B)に示すように、腕帯部503の終端部558側の面ファスナのオス部分557は、腕帯部503の始端部554側の面ファスナのメス部分553から剥がすことができるので、腕帯部503の終端部558側は上腕Tから簡単に離すことができる。
 そして、医療従事者は、図18(B)に示すように腕帯部503の始端部554を手で持ってR4方向に上腕Tから離すことにより、始端部554側の滑り止め部561が上腕Tに直接接触してはいるが、図18(A)に示すように腕帯部503は上腕Tから取り外すことが簡単にできる。
After measuring the blood pressure, the medical staff may remove the armband 503 from the patient's upper arm T in the order of FIG. 18C, FIG. 18B, and FIG. That is, as shown in FIG. 18C, the medical worker holds the portion of the weight 560 of the end portion 558 of the arm band portion 503 by hand, and peels off the end portion 558 of the arm band portion 503 along the R3 direction. . Accordingly, as shown in FIG. 18B, the male part 557 of the surface fastener on the terminal end 558 side of the armband part 503 is peeled off from the female part 553 of the surface fastener on the start end part 554 side of the armband part 503. Therefore, the end portion 558 side of the armband portion 503 can be easily separated from the upper arm T.
Then, as shown in FIG. 18B, the medical staff holds the starting end portion 554 of the armband portion 503 by hand and separates it from the upper arm T in the R4 direction, so that the anti-slip portion 561 on the starting end portion 554 side becomes the upper arm. Although it is in direct contact with T, the arm band portion 503 can be easily detached from the upper arm T as shown in FIG.
 本発明の実施形態の血圧計501は、腕帯部503を有する。腕帯部503を患者である被測定者の上腕Tに巻いて加圧することで血圧を測定する際に、腕帯部503を上腕Tに巻き始める腕帯部503の始端部554の内側には、上腕Tに対する滑りを止めるための滑り止め部561が設けられている。このため、腕帯部503を患者の上腕Tに対して、容易に位置決めしながら巻き付けることができる。すなわち、腕帯部503の始端部554の内側には、上腕Tに対する滑りを止めるための滑り止め部561が設けられている。したがって、医療従事者が腕帯部503を患者の上腕Tに巻き付ける際に、滑り止め部561は上腕Tに対して滑らないように腕帯部503の始端部554を止めることができるので、腕帯部503を上腕Tに対して、容易に位置決めしながら巻き付けることができる。したがって、血圧測定を正確に行うことができる。 The sphygmomanometer 501 of the embodiment of the present invention has an armband portion 503. When the blood pressure is measured by winding the armband portion 503 around the patient's upper arm T, which is a patient, and pressurizing the armband portion 503, the armband portion 503 starts to be wound around the upper arm T. An anti-slip portion 561 is provided for stopping the upper arm T from slipping. For this reason, the armband 503 can be wound around the patient's upper arm T while being easily positioned. That is, an anti-slip portion 561 for stopping slipping on the upper arm T is provided inside the start end portion 554 of the arm band portion 503. Therefore, when the medical staff wraps the armband portion 503 around the upper arm T of the patient, the anti-slip portion 561 can stop the start end portion 554 of the armband portion 503 so as not to slide with respect to the upper arm T. The belt 503 can be wound around the upper arm T while being easily positioned. Therefore, blood pressure can be accurately measured.
 腕帯部503を上腕Tに巻き終わる終端部558には、錘560が設けられている。このため
医療従事者が腕帯部503を患者の上腕Tに巻き付けて巻き付け終わる際に、腕帯部503の終端部558にある錘560の重さが腕帯部503を巻き付ける方向に掛かることから、容易に巻き付けることができる。
 腕帯部503は、空気を供給することで上腕Tを阻血する阻血用空気袋520と、空気を供給することで上腕Tの動脈の拍動を検出する動脈拍動検出用の空気袋540と、外布551と外布52の内側にある内布とから成り、阻血用空気袋520と動脈拍動検出用の空気袋540を収容する腕帯部カバー50を有する。このため、阻血用空気袋520と動脈拍動検出用の空気袋540を腕帯部カバー50に収容した腕帯部503であっても、容易に位置決めしながら巻き付けることができる。したがって、血圧測定を正確に行うことができる。
A weight 560 is provided at the terminal end 558 where the arm band 503 is wound around the upper arm T. For this reason, when the medical staff wraps the arm band 503 around the patient's upper arm T and finishes wrapping, the weight of the weight 560 at the terminal portion 558 of the arm band 503 is applied in the direction in which the arm band 503 is wound. Can be easily wound.
The armband portion 503 includes an air bag 520 for blocking the upper arm T by supplying air, and an air bag 540 for detecting arterial pulsation that detects the pulsation of the artery of the upper arm T by supplying air. The arm cloth portion cover 50 is composed of an outer cloth 551 and an inner cloth on the inner side of the outer cloth 52 and accommodates an air bag 520 for ischemia and an air bag 540 for detecting arterial pulsation. For this reason, even if it is the arm band part 503 which accommodated the air bag 520 for ischemia and the air bag 540 for arterial pulsation detection in the arm band part cover 50, it can wind around, positioning easily. Therefore, blood pressure can be accurately measured.
 滑り止め部は、腕帯部カバーの内布に配置されている。このため、滑り止め部561は内布552に配置するだけで、滑り止め部561は上腕Tに対して滑らないように腕帯部503の始端部554を止めることができる。
 錘560は、腕帯部503の終端部558において外布551と内布552の間に配置されている。このため、錘560は外布551と内布552の間に配置するだけで、簡単に錘560を設けることができる。このため、腕帯部503の阻血用空気袋520と動脈拍動検出用の空気袋540に対して空気を供給する血圧計本体502を有し、血圧計本体502は、筺体504と、筺体504に取り付けられた送気球505と、送気球505を手動により押圧することにより阻血用空気袋520と動脈拍動検出用の空気袋540に空気を送るチューブ506,507を有する。このため、医療従事者が一方の手で送気球505を持った状態で、医療従事者は他方の片手だけで腕帯部503を上腕5に容易に位置決めしながら巻き付けることができ、腕帯部503の巻き付け作業性を向上できる。
The non-slip portion is disposed on the inner cloth of the armband portion cover. For this reason, it is possible to stop the start end portion 554 of the arm band portion 503 so that the anti-slip portion 561 does not slip with respect to the upper arm T only by arranging the anti-slip portion 561 on the inner cloth 552.
The weight 560 is disposed between the outer cloth 551 and the inner cloth 552 at the end portion 558 of the armband portion 503. For this reason, the weight 560 can be easily provided only by arranging the weight 560 between the outer cloth 551 and the inner cloth 552. For this reason, the blood pressure monitor main body 502 that supplies air to the air bag 520 for ischemia of the armband 503 and the air bag 540 for detecting arterial pulsation is provided. The blood pressure monitor main body 502 includes a housing 504 and a housing 504. , And the tubes 506 and 507 for sending air to the ischemic air bladder 520 and the arterial pulsation detecting bladder 540 by manually pressing the air balloon 505. Therefore, in a state where the medical worker holds the air balloon 505 with one hand, the medical worker can wrap the armband portion 503 around the upper arm 5 with only the other hand while winding the armband portion. The winding workability of 503 can be improved.
 次に本実施形態の血圧計においても、第1の実施形態と血圧計と同様に、通常の一般利用者の血圧について、その最大血圧値と最低血圧値とを普通の血圧計と同様に測定できるだけでなく、被測定者が、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱者である場合に、これらの人の平均血圧値について測定することができる。
 この点について、図6ないし図8の内容を参照して説明する。
 図7は、血圧計501の制御部600の指示により、このような平均血圧値の検出動作を行う場合の血圧測定動作の一例を示すフロー図である。
 図7において、被測定者が、図14で説明した電源スイッチ509を操作し、血圧計501の動作を開始する。ステップSP1において、被測定者が図14で説明したモードスイッチ510を押して、1)最高血圧・最低血圧測定モード,2)最高血圧・最低血圧・平均血圧測定モード,3)平均血圧測定モード,4)聴診モードからなる複数の血圧測定モードの中から3)の平均血圧測定モードを選択する。被測定者自身または医療従事者,介護者などが平均血圧測定モードを選択すると、血圧計501による血圧測定動作では、図14の制御部600が指令して、図14の送気球505を使って図14に示す阻血用空気袋550にエアを供給して上腕Tを、図6に示す時点trまで加圧する。その後、図14の制御部600が指令して、阻血用空気袋520内のエア圧を傾きが一定になるようにエア圧を減圧させていく。このエア圧を減圧させる過程では、制御部600は、最高血圧値と最低血圧値を、脈波の出現に基づいて検出する。その後制御部600は、阻血用空気袋520と脈波検出用空気袋540内のエアを抜く。
Next, in the sphygmomanometer of this embodiment, as in the first embodiment and the sphygmomanometer, the maximum blood pressure value and the minimum blood pressure value are measured in the same manner as an ordinary sphygmomanometer for the blood pressure of a normal general user. In addition to being able to measure the average blood pressure of these individuals if the person being measured is a heart transplant patient with a living heart transplant, an auxiliary artificial heart, or a pulse weak person such as a person with weak pulse waves it can.
This point will be described with reference to the contents of FIGS.
FIG. 7 is a flowchart showing an example of a blood pressure measurement operation when such an average blood pressure value detection operation is performed according to an instruction from the control unit 600 of the sphygmomanometer 501.
In FIG. 7, the measurement subject operates the power switch 509 described with reference to FIG. 14 to start the operation of the sphygmomanometer 501. In step SP1, the person to be measured presses the mode switch 510 described in FIG. 14, 1) the maximum blood pressure / minimum blood pressure measurement mode, 2) the maximum blood pressure / minimum blood pressure / average blood pressure measurement mode, 3) the average blood pressure measurement mode, 4 3) The average blood pressure measurement mode 3) is selected from a plurality of blood pressure measurement modes including the auscultation mode. When the subject himself / herself or a medical worker, a caregiver or the like selects the average blood pressure measurement mode, in the blood pressure measurement operation by the sphygmomanometer 501, the control unit 600 in FIG. 14 instructs and uses the air balloon 505 in FIG. Air is supplied to the air bag 550 shown in FIG. 14 to pressurize the upper arm T until the time tr shown in FIG. Thereafter, the control unit 600 in FIG. 14 instructs to reduce the air pressure so that the inclination of the air pressure in the ischemic bladder 520 becomes constant. In the process of reducing the air pressure, the control unit 600 detects the maximum blood pressure value and the minimum blood pressure value based on the appearance of the pulse wave. Thereafter, the control unit 600 removes the air in the ischemic air bag 520 and the pulse wave detecting air bag 540.
 図14の制御部600は、ステップSP2の血圧測定動作において、被測定者の最高血圧値と最低血圧値の測定が成功したかどうかを判断する。被測定者が、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱者でない通常の人である場合には、脈圧(最高血圧と最低血圧との差)が大きく、脈波が数多く検出できるので、検出した脈波に対応した最高血圧値と最低血圧値を測定することができる。すなわち、圧力センサ610が阻血用空気袋520の圧力の変化を検出し、制御部600は、図6(A)に例示する血圧波形(DC波形)WSを得るとともに、圧力センサ610が脈波検出用空気袋540の圧力の変化を検出して、AC脈波波形を得る。これにより、制御部600は、血圧波形(DC波形)WSから、出現した強い脈波に対応する位置の最高血圧値と最低血圧値を得るとともに、AC脈波波形から脈拍を得る。このように、被測定者が、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人でなく、脈波を利用したオシロメトリック法により正常に最高血圧値と最低血圧値を測定できる人であった場合には、ステップSP3に移る。ステップSP3では、制御部600は、図14に示す表示部508には、最高血圧値と最低血圧値と、脈拍を表示させて、血圧測定動作を終了する。 14 determines whether the measurement of the highest blood pressure value and the lowest blood pressure value of the measurement subject has succeeded in the blood pressure measurement operation of step SP2. If the subject is a normal heart transplant patient who is transplanted with a living heart transplant, an auxiliary artificial heart, or a normal person who is not weak, such as a person with weak pulse waves, the pulse pressure (difference between the maximum blood pressure and the minimum blood pressure) ) And a large number of pulse waves can be detected, so that the maximum blood pressure value and the minimum blood pressure value corresponding to the detected pulse wave can be measured. That is, the pressure sensor 610 detects a change in the pressure of the air bag 520 for ischemia, the control unit 600 obtains a blood pressure waveform (DC waveform) WS illustrated in FIG. 6A, and the pressure sensor 610 detects a pulse wave. A change in pressure of the air bladder 540 is detected to obtain an AC pulse waveform. Thereby, the control unit 600 obtains the maximum blood pressure value and the minimum blood pressure value at the position corresponding to the strong pulse wave that has appeared from the blood pressure waveform (DC waveform) WS, and also obtains the pulse from the AC pulse wave waveform. In this way, the person being measured is not a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a person with weak pulse wave, but the normal blood pressure value and the minimum blood pressure value are normally measured by the oscillometric method using the pulse wave. If the person can be measured, the process proceeds to step SP3. In step SP3, the control unit 600 displays the highest blood pressure value, the lowest blood pressure value, and the pulse on the display unit 508 shown in FIG. 14, and ends the blood pressure measurement operation.
 そうでなく、ステップSP2において、図14の制御部600が、ステップSP2の血圧測定における最高血圧値と最低血圧値の測定が成功しないと判断した場合には、制御部600は、被測定者が、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人であると判断して、ステップSP4の平均血圧測定モードに移る。
ステップSP4の平均血圧測定モードでは、制御部600は、図6(B)に示す最大脈波MMを検出するモードであり、次に説明するステップSP5からステップSP11で行われる。
Otherwise, in step SP2, when the control unit 600 in FIG. 14 determines that the measurement of the maximum blood pressure value and the minimum blood pressure value in the blood pressure measurement in step SP2 is not successful, the control unit 600 determines that the measurement subject has Then, it is determined that the patient is a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a person with weak pulse wave, and the process proceeds to the mean blood pressure measurement mode of step SP4.
In the average blood pressure measurement mode in step SP4, the control unit 600 is a mode for detecting the maximum pulse wave MM shown in FIG. 6B, and is performed in steps SP5 to SP11 described below.
 ステップSP5では、制御部600は、脈波検出用空気袋540の圧力の変化を検出して、図6(B)に示すAC脈波波形WTを認識する。制御部600がAC脈波波形WTを認識する場合には、制御部600は、脈波の振幅(または脈波の高さ)に関して、図7に例示するように予め閾値SHDを設定しておき、脈波の振幅がこの閾値SHD以上である脈波WWを選び出して、図6(A)に例示する血圧波形(DC波形)WSの圧力に対応して、順次図14に示すデータ用メモリ701に記憶させていく。
 図14の制御部600が図6(B)に示すAC脈波波形WTを認識すると、ステップSP6に移り、制御部600は、AC脈波波形WT各脈波WWが異常波であるか正常波であるかを確認する。すなわち、ステップSP5においてデータ用メモリ701に記憶させた閾値SHD以上である脈波WWの位相が、正位相であって妥当であるか、脈波WWの幅が狭くなくて妥当であるかを判断する。
In step SP5, control unit 600 detects a change in pressure of pulse wave detection air bladder 540 and recognizes AC pulse wave waveform WT shown in FIG. 6B. When the control unit 600 recognizes the AC pulse wave waveform WT, the control unit 600 sets a threshold value SHD in advance as illustrated in FIG. 7 for the amplitude of the pulse wave (or the height of the pulse wave). A pulse wave WW whose pulse wave amplitude is greater than or equal to the threshold value SHD is selected, and sequentially corresponds to the pressure of the blood pressure waveform (DC waveform) WS illustrated in FIG. Let me remember.
When controller 600 in FIG. 14 recognizes AC pulse wave waveform WT shown in FIG. 6B, the process proceeds to step SP6, and controller 600 determines whether each AC pulse wave waveform WT pulse wave WW is an abnormal wave or a normal wave. Check if it is. That is, it is determined whether the phase of the pulse wave WW that is equal to or greater than the threshold value SHD stored in the data memory 701 in step SP5 is a positive phase and valid, or the width of the pulse wave WW is not narrow and valid. To do.
 図8(A)に例示するのは、位相が正位相であって妥当な正常の脈波WWであり、図8(B)に例示するのは、逆位相の異常な脈波WW1であり、図8(C)に例示するのは、位相が妥当な脈波であってもその脈波の時間軸方向の幅(1周期)が、予め定めた幅(1周期)よりも狭い異常な脈波WW2である。
 図8(B)に示すように、位相が妥当ではない脈波WW1の場合や図8(C)に示す幅が妥当でない脈波WW2の場合には、図7のステップSP7では、図14の制御部600は、これらの脈波WW1、WW2を、被測定者の身体が動いた(体動)ことによるアーチファクトとして、図14に示すデータ用メモリ701から脈波検出データを削除して、ステップSP5に戻る。これにより、図5のデータ用メモリ701内のデータ量を減らすことができる。そして、図6に示す脈波の最大振幅MMが発生した時の阻血用空気袋内の圧力を、被測定者の平均血圧値PMとして容易に決定することができる。
FIG. 8A illustrates a normal pulse wave WW having a positive phase and an appropriate phase, and FIG. 8B illustrates an abnormal pulse wave WW1 having an opposite phase. FIG. 8C illustrates an abnormal pulse whose width (one cycle) in the time axis direction of the pulse wave is narrower than a predetermined width (one cycle) even if the pulse wave has an appropriate phase. Wave WW2.
As shown in FIG. 8B, in the case of the pulse wave WW1 whose phase is not valid or in the case of the pulse wave WW2 whose width shown in FIG. 8C is not valid, in step SP7 of FIG. The control unit 600 deletes the pulse wave detection data from the data memory 701 shown in FIG. 14 as artifacts caused by the movement of the body of the person being measured (body movement) using the pulse waves WW1 and WW2 as a step. Return to SP5. As a result, the amount of data in the data memory 701 in FIG. 5 can be reduced. Then, the pressure in the air bag for ischemia when the maximum amplitude MM of the pulse wave shown in FIG. 6 is generated can be easily determined as the average blood pressure value PM of the measurement subject.
 そうでなく、ステップSP6において、制御部600が図8(B)と図8(C)に示すような脈波の異常波を検出しなかった場合には、ステップSP8に移る。
 ステップSP8では、圧力センサ610が例えば図6(B)に示すような脈波群M1、M2、M3を得て、制御部600が図6(B)に示すような脈波群M1、M2、M3を認識すると、ステップSP9では、検出した脈波群M1、M2、M3から最大の脈波振幅(または最大の脈波高さ)に周期性(トレンド)があるかを判断する。すなわち、図6(B)に示すように、制御部600は、最大脈波MMの前後位置に最大脈波MMよりも小さい脈波振幅の脈波MM1、MM2があるかを判断して、最大脈波MMの前後位置に最大脈波MMよりも小さい脈波振幅の脈波MM1、MM2がある脈波群M2を、検出した脈波群M1、M2、M3から選別する。これにより、脈波の最大振幅MMの発生脈波の位置を確認でき、脈波の最大振幅MMの発生に基づいて、図6(A)NO血圧波形(DC波形)WSにおいて脈波の最大振幅MMに対応する被測定者の平均血圧値PMを正確に決定できる。
On the other hand, if the controller 600 does not detect the abnormal pulse wave as shown in FIGS. 8B and 8C in step SP6, the process proceeds to step SP8.
In step SP8, the pressure sensor 610 obtains, for example, pulse wave groups M1, M2, and M3 as shown in FIG. 6B, and the control unit 600 causes the pulse wave groups M1, M2, and so on as shown in FIG. When M3 is recognized, in step SP9, it is determined from the detected pulse wave groups M1, M2, and M3 whether the maximum pulse wave amplitude (or maximum pulse wave height) has periodicity (trend). That is, as shown in FIG. 6B, the control unit 600 determines whether there are pulse waves MM1 and MM2 having a pulse wave amplitude smaller than the maximum pulse wave MM at positions before and after the maximum pulse wave MM. A pulse wave group M2 having pulse waves MM1 and MM2 having a pulse wave amplitude smaller than the maximum pulse wave MM at positions before and after the pulse wave MM is selected from the detected pulse wave groups M1, M2, and M3. Thereby, the position of the generated pulse wave of the maximum amplitude MM of the pulse wave can be confirmed. Based on the generation of the maximum amplitude MM of the pulse wave, the maximum amplitude of the pulse wave in the NO blood pressure waveform (DC waveform) WS in FIG. The average blood pressure value PM of the measurement subject corresponding to MM can be accurately determined.
 その後、図7のステップSP10では、制御部600は、図6(B)に示す選択した脈波群M2の内の最大脈波MMの発生位置に対応する図6(A)に例示する血圧波形WSにおける圧力(腕帯部圧力、カフ圧力)を確認して、この圧力を最大脈波MMに対する平均血圧値PMとして確認して決定する。
 そして、ステップSP11では、制御部600は、図14に示す表示部508において、決定した平均血圧値PMを、被測定者に対して表示する。これにより、被測定者は、表示部508に表示された平均血圧値PMを目視で確認することができる。被測定者が、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱者である場合には、血圧測定中に報知される音声ガイダンス内容例としては、被測定者の平均血圧値の測定を開始する際に、スピーカ704が、制御部600の指令により、例えば「平均血圧値を測定しています」という報知内容を流すことができる。
 必要に応じて平均血圧値PMは、スピーカ704を通じて音声ガイダンスで被測定者に報知することができる。これにより、被測定者が仮に表示部508において目視で平均血圧値PMを確認できなくても、平均血圧値PMを聞くことで確認できる。
Thereafter, in step SP10 of FIG. 7, the control unit 600 illustrates the blood pressure waveform illustrated in FIG. 6A corresponding to the generation position of the maximum pulse wave MM in the selected pulse wave group M2 illustrated in FIG. The pressure in the WS (armband pressure, cuff pressure) is confirmed, and this pressure is confirmed and determined as the average blood pressure value PM for the maximum pulse wave MM.
And in step SP11, the control part 600 displays the determined average blood pressure value PM with respect to a to-be-measured person in the display part 508 shown in FIG. Thereby, the measurement subject can visually confirm the average blood pressure value PM displayed on the display unit 508. When the person being measured is a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a pulse weak person such as a person with weak pulse waves, examples of voice guidance contents to be notified during blood pressure measurement include When the measurement of the average blood pressure value of the measurer is started, the speaker 704 can send a notification content such as “measuring the average blood pressure value”, for example, according to a command from the control unit 600.
The average blood pressure value PM can be notified to the person to be measured by voice guidance through the speaker 704 as necessary. Thereby, even if the person to be measured cannot visually confirm the average blood pressure value PM on the display unit 508, it can be confirmed by listening to the average blood pressure value PM.
 以上の手順により、血圧計501を用いた血圧測定動作を行いその動作を終了する。
 このように、被測定者の平均血圧値PMが決定したら、例えば医療従事者は、この平均血圧値PMの値に基づいて、被測定者に対して処方することができる。あるいは、例えば被測定者の平均血圧値PMが決定したら、被測定者は、平均血圧値PMを参考にして、必要に応じて医療機関に受診するかどうかを判断できる。
 本発明者らは、被測定者が、生体心臓移植,補助人工心臓を移植した心臓移植患者あるいは脈波の弱い人のような脈弱の人であっても、脈波を利用したオシロメトリック法では、最大脈波MMが発生する圧力が平均血圧と相関性が高いことは、第1の実施形態でも説明したとおりである。
With the above procedure, the blood pressure measurement operation using the sphygmomanometer 501 is performed and the operation is terminated.
In this way, when the average blood pressure value PM of the measurement subject is determined, for example, a medical worker can prescribe the measurement subject based on the value of the average blood pressure value PM. Alternatively, for example, when the average blood pressure value PM of the measurement subject is determined, the measurement subject can determine whether or not to consult a medical institution as necessary with reference to the average blood pressure value PM.
The present inventors have determined that an oscillometric method using a pulse wave is used even if a person to be measured is a heart transplant patient transplanted with a living heart transplant or an auxiliary artificial heart or a person with weak pulse such as a person with weak pulse wave. As described in the first embodiment, the pressure at which the maximum pulse wave MM is generated has a high correlation with the average blood pressure.
 本発明は、上記実施形態に限定されず、特許請求の範囲を逸脱しない範囲で種々の変更を行うことができる。
(第4の実施形態)
 図示した血圧計は、手動加圧式のものであるが、本発明の血圧計はこれに限らない。
自動式の血圧計501は、腕帯部503と、腕帯部503は別体の血圧計本体502を有し、腕帯部は患者(被測定者)の上腕に対して巻き付ける。そして、送気求5に代えて血圧計本体502内のポンプ(不図示)を制御部600の制御で駆動すると、血圧計本体502から加圧された空気がチューブ506,507を通じて阻血用空気袋520と動脈拍動検出用の空気袋540に送ることができる(図14参照)。この場合、使用する電源としては、例えば単3形乾電池(DC1.5V)または単3形充電池(DC1.5V)を4本程度用いるか、ニッカド充電池を使用する。
 また、動脈拍動検出用の空気袋540に代えて、マイクロフォン(不図示)を設け、コロトコフ音を検出することで、最高血圧(収縮期血圧)、最低血圧(拡張期血圧)を算出するようにしてもよい。
また、動脈拍動検出用の空気袋540を設けずに、阻血用空気袋520からの圧脈波から脈波を検出する回路を設け、検出した脈波から最高血圧(収縮期血圧)、最低血圧(拡張期血圧)を算出するようにしてもよい。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the claims.
(Fourth embodiment)
The illustrated sphygmomanometer is of a manual pressurization type, but the sphygmomanometer of the present invention is not limited to this.
The automatic sphygmomanometer 501 has an arm band portion 503 and the arm band portion 503 has a separate sphygmomanometer body 502, and the arm band portion is wound around the upper arm of a patient (a person to be measured). When a pump (not shown) in the sphygmomanometer body 502 is driven by the control of the control unit 600 instead of the air supply request 5, the pressurized air from the sphygmomanometer body 502 is passed through the tubes 506 and 507. 520 and the arterial pulse detection air bag 540 (see FIG. 14). In this case, as a power source to be used, for example, about four AA dry batteries (DC1.5V) or AA rechargeable batteries (DC1.5V) are used, or a nickel-cadmium rechargeable battery is used.
Further, in place of the air bag 540 for detecting arterial pulsation, a microphone (not shown) is provided, and by detecting the Korotkoff sound, the maximum blood pressure (systolic blood pressure) and the minimum blood pressure (diastolic blood pressure) are calculated. It may be.
In addition, a circuit for detecting a pulse wave from the pressure pulse wave from the ischemic air bag 520 is provided without providing the air bag 540 for detecting the arterial pulsation, and the highest blood pressure (systolic blood pressure), the lowest blood pressure is detected from the detected pulse wave. Blood pressure (diastolic blood pressure) may be calculated.
 図16に示すように、丸棒状の錘560がカフカバー550の終端部558の内部に収納して配置されているが、これは一例であり、錘の形状は任意に選択することができる。例えば、図20に示す本発明の第4の実施形態では、金属製の錘560Mがカフカバー550の終端部558の外部に露出しており、この錘560Mは、医療従事者が指で掴むための取っ手の役割も果たしている。
 これにより、医療従事者は、この錘560を指で掴む持ち手としての役割も果たすことができる。このため、医療従事者は腕帯部503の終端部558を手で持つ際に、確実に持つことができるので、腕帯部503の終端部558が手から外れてしまうことが無くなる。
 また、図15と図16(A)と図17(A)に示すように、カフカバー550の内布552の始端部554側には、好ましくは滑り止め部561が例えば接着剤を用いて貼り付けて固定されている。しかしこれに限らず、滑り止め部561は、内布552の始端部554自体を滑り止め能力のある材料で作ることもできる。
 上記実施形態の各構成は、その一部を省略したり、上記とは異なるように任意に組み合わせることができる。
As shown in FIG. 16, the round bar-shaped weight 560 is housed and disposed inside the terminal portion 558 of the cuff cover 550, but this is an example, and the shape of the weight can be arbitrarily selected. For example, in the fourth embodiment of the present invention shown in FIG. 20, a metal weight 560M is exposed to the outside of the end portion 558 of the cuff cover 550, and this weight 560M is used by a medical worker to hold it with a finger. It also plays the role of a handle.
Thereby, the medical staff can also play a role as a handle for grasping the weight 560 with a finger. For this reason, since a medical worker can hold the terminal portion 558 of the arm band portion 503 with his / her hand, the terminal portion 558 of the arm band portion 503 is not detached from the hand.
Further, as shown in FIGS. 15, 16A, and 17A, an anti-slip portion 561 is preferably attached to the start end portion 554 side of the inner cloth 552 of the cuff cover 550, for example, using an adhesive. Is fixed. However, the present invention is not limited to this, and the anti-slip portion 561 can be made of a material having an anti-slip ability at the start end portion 554 of the inner cloth 552 itself.
A part of each configuration of the above embodiment can be omitted, or can be arbitrarily combined so as to be different from the above.
 1・・・血圧計、2・・・腕帯部、10・・・血圧計本体、14・・・阻血用空気袋、63・・・表示部、110・・・駆動ポンプ(加圧機構の一例)、111・・・制御バルブ(減圧機構の一例)、112・・・排気バルブ(減圧機構の一例)、120・・・制御部、154・・・データ用メモリ(メモリの一例)、250・・・脈波検出用空気袋、MM・・・脈波の最大振幅、PM・・・被測定者の平均血圧値、501・・・血圧計、503・・・腕帯部、502・・・血圧計本体、504・・・筐体、505・・・送気球、506,507・・・チューブ、520・・・阻血用空気袋、540・・・動脈拍動検出用の空気袋、550・・・腕帯部カバー、551・・・外布、552・・・内布、558・・・腕帯部の終端部、560・・・錘、561・・・滑り止め部、T・・・上腕
 
DESCRIPTION OF SYMBOLS 1 ... Blood pressure monitor, 2 ... Arm band part, 10 ... Blood pressure monitor main body, 14 ... Air bag for ischemia, 63 ... Display part, 110 ... Drive pump (of pressurization mechanism) Example), 111... Control valve (example of pressure reducing mechanism), 112... Exhaust valve (example of pressure reducing mechanism), 120... Control unit, 154. ... pulse wave detection air bag, MM ... maximum amplitude of pulse wave, PM ... average blood pressure value of subject, 501 ... sphygmomanometer, 503 ... arm band, 502 ... Sphygmomanometer body, 504... Casing, 505... Air balloon, 506, 507... Tube, 520. ... armband cover, 551 ... outer cloth, 552 ... inner cloth, 558 ... terminal end of armband, 560 Weight, 561 ... non-slip unit, T ··· upper arm

Claims (10)

  1.  被測定者の上腕を圧迫する阻血用空気袋と前記被測定者の脈波を検出する脈波検出用空気袋とを有する腕帯部と、前記阻血用空気袋と前記脈波検出用空気袋内を加圧する加圧機構と、前記阻血用空気袋と前記脈波検出用空気袋内を減圧する減圧機構と、前記阻血用空気袋内の圧力と前記脈波検出用空気袋内の圧力を検出する圧力センサと、前記圧力センサからの信号により血圧値と脈波の検出をする制御部とを有し、複数の血圧測定モードを備えた血圧計であって、
     前記血圧測定モードが平均血圧測定モードを含む時、前記阻血用空気袋と前記脈波検出用空気袋を減圧する際に、前記脈波の最大振幅が発生した時の前記前記阻血用空気袋の圧力を、前記被測定者の平均血圧値として決定する前記制御部を備える
     ことを特徴とする血圧計。
    An armband having an air bag for ischemia that compresses the upper arm of the subject and an air bag for detecting a pulse wave that detects the pulse wave of the subject; the air bag for ischemia and the air bag for detecting the pulse wave A pressurizing mechanism for pressurizing the inside, a decompression mechanism for depressurizing the inside of the blood bag for ischemia and the air bag for pulse wave detection, a pressure in the air bag for ischemia and a pressure in the air bag for pulse wave detection A sphygmomanometer having a plurality of blood pressure measurement modes, including a pressure sensor to detect and a control unit that detects a blood pressure value and a pulse wave by a signal from the pressure sensor;
    When the blood pressure measurement mode includes an average blood pressure measurement mode, the decompression air bag and the pulse wave detection air bag are decompressed when the maximum amplitude of the pulse wave is generated. The sphygmomanometer comprising the control unit that determines a pressure as an average blood pressure value of the measurement subject.
  2.  前記阻血用空気袋内と前記脈波検出用空気袋内を減圧する際に生じる前記脈波を記憶するメモリを有し、
     前記制御部は、逆位相の前記脈波と、予め定めた値よりも時間軸方向の幅が狭い前記脈波を、異常脈波として前記メモリから削除することを特徴とする請求項1に記載の血圧計。
    A memory for storing the pulse wave generated when the inside of the air bag for ischemia and the inside of the air bag for pulse wave detection are decompressed;
    2. The control unit according to claim 1, wherein the control unit deletes the pulse wave having an opposite phase and the pulse wave having a narrower width in a time axis direction than a predetermined value from the memory as an abnormal pulse wave. Blood pressure monitor.
  3.  前記制御部は、前記脈波の最大振幅の発生を確認する際に、前記最大振幅の前記脈波の前後には、前記最大振幅の前記脈波に比べて振幅の小さい前記脈波がそれぞれ存在することを確認することを特徴とする請求項2に記載の血圧計。 When the controller checks the occurrence of the maximum amplitude of the pulse wave, the pulse wave having a smaller amplitude than the pulse wave of the maximum amplitude is present before and after the pulse wave of the maximum amplitude, respectively. The sphygmomanometer according to claim 2, wherein the sphygmomanometer is confirmed.
  4.  前記腕帯部は、血圧計本体とは別体になっており、
     前記腕帯部は、前記阻血用空気袋と、前記上腕に装着された時に対向位置になるように配置された複数の前記脈波検出用空気袋とを収納していることを特徴とする請求項3に記載の血圧計。
    The armband part is separate from the blood pressure monitor body,
    The armband portion houses the air bag for ischemia and a plurality of the air bags for detecting pulse waves arranged so as to face each other when attached to the upper arm. Item 4. The blood pressure monitor according to Item 3.
  5.  前記制御部が前記被測定者の前記平均血圧値を決定した時に、前記平均血圧値を表示する表示部を有し、前記表示部は前記血圧計本体に配置されていることを特徴とする請求項4に記載の血圧計。 The control unit includes a display unit for displaying the average blood pressure value when the average blood pressure value of the measurement subject is determined, and the display unit is disposed in the sphygmomanometer body. Item 5. The blood pressure monitor according to Item 4.
  6.  前記腕帯部が、外布と前記外布の内側にある内布とからなるカフカバーと、前記カフカバーの内部に空気袋を備え、前記腕帯部の上腕に巻き終わる終端部には、錘が設けられていることを特徴とする請求項1に記載の血圧計。 The armband part includes a cuff cover made of an outer cloth and an inner cloth inside the outer cloth, and an air bag inside the cuff cover. The sphygmomanometer according to claim 1, wherein the sphygmomanometer is provided.
  7.  前記腕帯部が、血圧測定用の腕帯部であって、外布と前記外布の内側にある内布とからなるカフカバーと、前記カフカバーの内部に空気袋を備え、前記腕帯部の上腕に巻き始める始端部の内側には、前記上腕に対する滑りを止めるための滑り止め部が設けられていることを特徴とする請求項6に記載の血圧計。 The armband portion is an armband portion for blood pressure measurement, comprising a cuff cover made of an outer cloth and an inner cloth inside the outer cloth, and an air bag inside the cuff cover, The sphygmomanometer according to claim 6, wherein an anti-slip portion for stopping slippage with respect to the upper arm is provided inside a starting end portion that starts to wind around the upper arm.
  8.  前記空気袋は、空気を供給することで前記上腕を阻血する阻血用空気袋と、前記空気を供給することで前記上腕の動脈の拍動を検出する動脈拍動検出用の空気袋であることを特徴とする請求項6に記載の血圧計。 The air bag is an air bag for ischemia for blocking the upper arm by supplying air, and an air bag for detecting arterial pulsation for detecting the pulsation of the artery of the upper arm by supplying air. The sphygmomanometer according to claim 6.
  9.  前記錘は、前記腕帯部の終端部において前記外布と前記内布の間に配置されていることを特徴とする請求項1に記載の血圧計。 The sphygmomanometer according to claim 1, wherein the weight is disposed between the outer cloth and the inner cloth at a terminal portion of the armband portion.
  10.  前記滑り止め部は、前記腕帯部カバーの前記内布に配置されていることを特徴とする請求項7に記載の血圧計。 The sphygmomanometer according to claim 7, wherein the anti-slip portion is disposed on the inner cloth of the armband portion cover.
PCT/JP2012/005696 2011-09-26 2012-09-07 Sphygmomanometer WO2013046556A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-209502 2011-09-26
JP2011209502 2011-09-26

Publications (1)

Publication Number Publication Date
WO2013046556A1 true WO2013046556A1 (en) 2013-04-04

Family

ID=47994647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005696 WO2013046556A1 (en) 2011-09-26 2012-09-07 Sphygmomanometer

Country Status (2)

Country Link
JP (1) JPWO2013046556A1 (en)
WO (1) WO2013046556A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343912A (en) * 2017-09-14 2020-06-26 皇家飞利浦有限公司 Inflation device for inflation-based non-invasive blood pressure monitor and method of operating the same
CN111426004A (en) * 2020-03-25 2020-07-17 江苏安捷鹿检测科技有限公司 Distributed indoor air monitoring method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03121045A (en) * 1989-10-05 1991-05-23 Terumo Corp Electronic hemadynamometer
JPH04152933A (en) * 1990-10-16 1992-05-26 Omron Corp Electronic sphygmomanometer
JP2002369803A (en) * 2001-06-15 2002-12-24 Omron Corp Cuff for sphygmomanometer
JP2006334153A (en) * 2005-06-02 2006-12-14 Shibuya Kogyo Co Ltd Sphygmomanometer
JP2010069196A (en) * 2008-09-22 2010-04-02 Omron Healthcare Co Ltd Cuff for sphygmomanometer, and sphygmomanometer
JP2011167424A (en) * 2010-02-22 2011-09-01 Panasonic Corp Blood pressure monitoring apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4151586B2 (en) * 2004-02-24 2008-09-17 松下電工株式会社 Sphygmomanometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03121045A (en) * 1989-10-05 1991-05-23 Terumo Corp Electronic hemadynamometer
JPH04152933A (en) * 1990-10-16 1992-05-26 Omron Corp Electronic sphygmomanometer
JP2002369803A (en) * 2001-06-15 2002-12-24 Omron Corp Cuff for sphygmomanometer
JP2006334153A (en) * 2005-06-02 2006-12-14 Shibuya Kogyo Co Ltd Sphygmomanometer
JP2010069196A (en) * 2008-09-22 2010-04-02 Omron Healthcare Co Ltd Cuff for sphygmomanometer, and sphygmomanometer
JP2011167424A (en) * 2010-02-22 2011-09-01 Panasonic Corp Blood pressure monitoring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343912A (en) * 2017-09-14 2020-06-26 皇家飞利浦有限公司 Inflation device for inflation-based non-invasive blood pressure monitor and method of operating the same
US20200275847A1 (en) * 2017-09-14 2020-09-03 Koninklijke Philips N.V. Inflation apparatus for an inflation-based non-invasive blood pressure monitor and a method of operating the same
CN111426004A (en) * 2020-03-25 2020-07-17 江苏安捷鹿检测科技有限公司 Distributed indoor air monitoring method

Also Published As

Publication number Publication date
JPWO2013046556A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
JP2018536448A (en) Wrist blood pressure monitor
JP5470025B2 (en) Electronic blood pressure monitor
JP5470024B2 (en) Electronic blood pressure monitor
JP6688874B2 (en) Simple automatic electronic tourniquet
JP5536597B2 (en) Sphygmomanometer
JP2013027633A (en) Sphygmomanometer
WO2013046556A1 (en) Sphygmomanometer
WO2024098809A1 (en) Intelligent human body self-powered regional blood flow control device
WO2014102871A1 (en) Blood pressure meter
JP5933301B2 (en) Blood pressure monitor and control method thereof
JP2013192877A (en) Arm band part and sphygmomanometer provided with the same
WO2014102870A1 (en) Sphygmomanometer
JP5909118B2 (en) Sphygmomanometer
WO2014102874A1 (en) Blood pressure meter
JP2013169420A (en) Arm band part and sphygmomanometer including the same
CN108451579B (en) Pneumatic blood drawing device and using method thereof
WO2014102873A1 (en) Method for producing blood pressure meter and cuff of blood pressure meter
JP2012065806A (en) Sphygmomanometer
JP5769441B2 (en) Sphygmomanometer
JP2013192878A (en) Sphygmomanometer
JP2012000292A (en) Sphygmomanometer
JP2012000254A (en) Sphygmomanometer
JP2013027632A (en) Sphygmomanometer
WO2014102872A1 (en) Blood pressure meter
JP2013034499A (en) Sphygmomanometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013535854

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837526

Country of ref document: EP

Kind code of ref document: A1