WO2013045792A2 - Chambre annulaire de combustion d'une turbomachine - Google Patents

Chambre annulaire de combustion d'une turbomachine Download PDF

Info

Publication number
WO2013045792A2
WO2013045792A2 PCT/FR2012/052098 FR2012052098W WO2013045792A2 WO 2013045792 A2 WO2013045792 A2 WO 2013045792A2 FR 2012052098 W FR2012052098 W FR 2012052098W WO 2013045792 A2 WO2013045792 A2 WO 2013045792A2
Authority
WO
WIPO (PCT)
Prior art keywords
orifices
bowl
fuel
air
bowls
Prior art date
Application number
PCT/FR2012/052098
Other languages
English (en)
Other versions
WO2013045792A3 (fr
Inventor
Denis Jean Maurice Sandelis
Christophe Pieussergues
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to EP12773067.9A priority Critical patent/EP2761226B1/fr
Priority to CN201280047165.3A priority patent/CN103842728B/zh
Priority to RU2014116962A priority patent/RU2606460C2/ru
Priority to CA2848629A priority patent/CA2848629C/fr
Priority to US14/344,266 priority patent/US9651260B2/en
Priority to BR112014002927-0A priority patent/BR112014002927B1/pt
Publication of WO2013045792A2 publication Critical patent/WO2013045792A2/fr
Publication of WO2013045792A3 publication Critical patent/WO2013045792A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing

Definitions

  • the present invention relates to an annular combustion chamber of a turbomachine such as a turboprop or an airplane turbojet engine.
  • an annular combustion chamber of a turbomachine receives upstream a flow of air from a high pressure compressor and delivers downstream a flow of hot gases driving the rotors of the high pressure and low pressure turbines.
  • the annular combustion chamber comprises two coaxial walls of revolution which extend one inside the other and which are interconnected at their upstream ends by an annular wall of the chamber bottom, this chamber bottom comprising mounting openings for fuel injection systems between the inner and outer annular walls.
  • Each injection system comprises means for supporting the head of a fuel injector and at least one auger which is arranged downstream of the injector head, coaxially with it, and which delivers a flow of air rotating downstream of the fuel injection to form a mixture of air and fuel to be burned in the combustion chamber.
  • the tendrils of the injection systems are fed with air from an annular diffuser mounted at the outlet of the high-pressure compressor arranged upstream of the combustion chamber.
  • Each auger opens downstream inside a mixing bowl comprising a substantially frustoconical downstream wall flared downstream and having an annular row of air injection orifices regularly distributed around the axis of the bowl.
  • the outer annular wall of the combustion chamber comprises an annular row of primary dilution orifices and at least one spark plug opening inside the combustion chamber and arranged downstream of the primary dilution orifices.
  • the air leaving the high-pressure compressor circulates inside each of the injection systems.
  • the air / fuel mixture is ejected from each injection system forming a sheet of air and substantially frustoconical fuel widening downstream.
  • the angle of opening of the ply is a function of the opening angle of the frustoconical wall of the mixing bowl and the dimensions of the air injection orifices formed in this frustoconical wall.
  • the primary dilution orifices make it possible to stabilize the combustion flame in the chamber bottom and avoid, by dilution of the air / fuel mixture, that the combustion flame does not pick up and enters the high pressure turbine and damages components such as especially the fixed vanes by formation of hot spots.
  • the injection systems are configured so that for each injection system, the air / fuel mixture web crosses or intersects circumferentially, upstream of the dilution orifices, the fuel plies of the two fuel injection systems. adjacent injection. In this way, it ensures a circumferential continuity of the air / fuel mixture between the injection systems before dilution, which ensures that the flame initiated by the spark plug (s) will spread over the entire circumference of the chamber. combustion.
  • the circumferential pitch between the adjacent injection systems is greater. It follows that the fuel plies of the adjacent injection systems are no longer circumferentially intercepted upstream of the primary dilution orifices, which leads to difficulties in circumferentially propagate the flame between the injectors and reduces the performance of the combustion chamber.
  • the invention aims in particular to provide a simple, economical and effective solution to the problems mentioned above, to avoid the disadvantages of the known technique.
  • annular combustion chamber comprising two coaxial revolution walls, respectively internal and external, connected to each other at their upstream ends by an annular chamber bottom wall having system mounting openings.
  • injection unit each comprising at least one swirler for producing a flow of air rotating downstream of a fuel injector and a substantially frustoconical walled bowl downstream of the swirler and formed with an annular row of injection orifices of air for producing a substantially frustoconical and rotating web of air and fuel mixture
  • the outer wall of revolution comprising an annular row of primary dilution orifices, characterized in that the orifices of the bowls are distributed and dimensioned by in such a way that at least some air / fuel mixture plies have at least one local expansion circumferentially intercepting a web Fuel adjacent to the primary dilution ports.
  • the invention makes it possible to maintain the same angular opening of the fuel plies by modifying certain bowls so as to form a local expansion of their fuel ply, this widening circumferentially intercepting the mixing ply. air / fuel from an injection system adjacent upstream of the primary dilution ports.
  • the orifices of the bowls being regularly distributed around the axes of the bowls, orifices of certain bowls have a smaller diameter than the other orifices of said bowls, the orifices with reduced diameter being formed on a angular sector of predetermined size and angular position so as to form a local expansion of the fuel ply.
  • the orifices of the abovementioned angular sector of each aforementioned bowl have a diameter at least 40% smaller than the diameter of the other orifices of the bowl.
  • At least some of the bowls are devoid of orifices on an angular sector of predetermined size and angular position so as to form the local expansion of the fuel ply.
  • some of the bowls comprise two angular sectors that are diametrically opposed, one to the other and including orifices with reduced diameter and / or without orifices.
  • the fuel ply formed at the outlet of each of these bowls comprises two diametrically opposite enlargements with respect to the axis of the bowl, which intercept the fuel plies generated by the two injection systems located on each side of the bowl. other of the bowl.
  • the combustion chamber comprises at least one spark plug mounted in an orifice of the outer wall of revolution and the orifices of the injection system bowl located closest to the spark plug are distributed and dimensioned so that the sheet air / fuel mixture of said injection system has another local expansion intercepting the axis of the spark plug between the radially inner end of the spark plug and a point of the outer periphery of said bowl.
  • This additional widening of the fuel ply makes it possible to locally project the fuel ply closer to the inner end of the spark plug, which further facilitates the ignition of the air / fuel mixture and the propagation of the flame.
  • the bowl located closer to the candle may comprise smaller diameter orifices than the other orifices of said bowl, these reduced diameter orifices being formed on an angular sector of predetermined size and angular position so as to form the intercepting widening the axis of the candle.
  • the bowl located closest to the candle may also be devoid of orifices on an angular sector of predetermined size and position so as to form the widening intercepting the axis of the candle.
  • the aforementioned angular sector or sectors extend over approximately 20 ° to
  • the invention also relates to a turbomachine, such as a turboprop or an airplane turbojet, comprising a combustion chamber as described above.
  • FIG. 1 is a partial schematic half-view in axial section of an annular combustion chamber of a known type
  • Figure 2 is a partial schematic view on a larger scale of the area defined in dashed lines in Figure 1;
  • FIG. 3 is a schematic side view of two injection systems according to Figure 2 and arranged side by side;
  • FIG. 4 is a diagrammatic cross-sectional view of the fuel plies of the injection systems of FIG. 3;
  • FIG. 5 is a schematic view from the downstream of a mixing bowl according to a first embodiment of the invention.
  • FIG. 6 is a schematic side view of an injection system comprising a mixing bowl according to Figure 2 and an injection system comprising the mixing bowl of Figure 5 according to the invention;
  • FIG. 7 is a diagrammatic cross-sectional view of the fuel plies of the injection systems of FIG. 6;
  • FIG. 8 is a schematic view from downstream of a mixing bowl according to a second embodiment of the invention.
  • FIG. 9 is a schematic view from the downstream of a mixing bowl according to a third embodiment of the invention.
  • FIG. 10 is a diagrammatic side view of an injection system comprising the mixing bowl of FIG. 9 according to the invention.
  • FIG. 1 1 is a schematic cross-sectional view of the fuel ply of the injection system of Figure 10;
  • FIG. 12 is a schematic view from the downstream of a mixing bowl according to a fourth embodiment of the invention.
  • FIG. 1 shows an annular combustion chamber 10 of a turbomachine such as a turbojet engine or an airplane turboprop, arranged at the outlet of a centrifugal diffuser 12 mounted at the outlet of a high-pressure compressor (not shown).
  • the combustion chamber 10 is followed by a high pressure turbine 14 of which only the inlet distributor 16 is shown.
  • the combustion chamber 10 comprises two coaxial inner and outer frustoconical walls 18, 18, arranged one inside the other and with a reduced section downstream. Such a combustion chamber is said to be convergent.
  • the inner annular walls 18 and outer 20 are connected at their upstream ends to an annular bottom wall of chamber 22 and attached downstream by inner annular flanges 24 and outer 26.
  • the outer annular flange 26 bears radially externally on a housing external 28 and in axial support on a radial flange 30 for fixing the distributor 16 of the high-pressure turbine to the outer casing 28.
  • the inner annular flange 24 of the combustion chamber bears radially and axially on an inner annular piece 32 for fixing from the distributor 16 to an inner annular wall 34.
  • the chamber bottom 22 has openings for mounting systems for injecting an air-fuel mixture into the chamber, the air coming from the centrifugal diffuser 12 and the fuel being supplied by injectors 36.
  • the injectors 36 are fixed at their radially outer ends to the outer casing 28 and are regularly distributed over a circumference around the axis of revolution 38 of the chamber.
  • Each injector 36 comprises at its radially inner end a fuel injection head 40 which is aligned with the axis of a corresponding opening of the chamber bottom 22.
  • the mixture of air and fuel injected into the chamber 10 is ignited by means of at least one spark plug 42 which extends radially outside the chamber 10.
  • the inner end of the spark plug 42 extends into an orifice of the outer wall 20 of the chamber, and its radially outer end is fixed by means appropriate to the outer housing 28 and connected to power supply means (not shown) located outside the housing 28.
  • the outer annular wall 20 of the combustion chamber comprises an annular row of primary orifices 44 for dilution of the air / fuel mixture arranged upstream of the spark plug 42.
  • Each injection system comprises two coaxial upstream and downstream turbulence swirlers 46 connected upstream to means for centering and guiding the head of the injector, and downstream to a mixing bowl 50 which is mounted axially in the opening of the chamber bottom wall 22.
  • the tendrils 46, 48 each comprise a plurality of vanes extending radially around the axis of the auger and regularly distributed around this axis to deliver a flow of air rotating downstream of the injection head.
  • the tendrils 46, 48 are separated from one another by a radial wall
  • venturi 54 which extends axially downstream inside the downstream swirler and which separates the air flows from the upstream tendrils 46 and downstream 48.
  • a first annular vein d airflow is formed within the venturi 54 and a second annular airflow vein is formed outside the venturi 54.
  • the mixing bowl 50 comprises a substantially frustoconical wall 56 flared downstream and connected at its downstream end to a cylindrical flange 58 extending upstream and axially mounted in the opening of the chamber bottom wall 22 with a Annular deflector 60.
  • the upstream end of the frustoconical wall of the bowl is fixed by an intermediate annular piece 62 to the downstream auger.
  • the frustoconical wall 56 of the bowl comprises an annular row of air injection orifices 64 regularly distributed around the axis 70 of the bowl.
  • the air passing through these orifices and the air flowing in the veins inside and outside the venturi 54 mix with the pulverized fuel by the injector to form a rotating web of air and fuel mixture having a substantially frustoconical shape 66 widening downstream.
  • the axes 68 of each of the air injection orifices 64 of the bowl are inclined with respect to the axis 70 of the bowl and converge towards it in the downstream direction.
  • a second annular row of orifices 72 is formed at the junction between the upstream end of the cylindrical flange 58 and the frustoconical wall 56. These second orifices 72 provide ventilation of the downstream face of the deflector 60 and limit heating of the chamber bottom 22 .
  • the upstream swirlers 46 and downstream 48 of the injection system induce a rotation of the flow of air and sprayed fuel and the air injection orifices 64 of the frustoconical wall 56 of the bowl 50 perform a shear of the mixture. air / fuel.
  • the larger the diameter of the air injection orifices 64 of the bowl 50 the greater the flow of air passing through these orifices is important, which decreases the opening angle 74 of the frustoconical air mixture sheet. /fuel.
  • the configuration and the number of the injection systems are determined so that the fuel plies of the adjacent injection systems are intercepted. or intersect circumferentially upstream of the primary dilution ports 44 to form a circumferentially continuous air / fuel mixture cloud.
  • FIG. 3 shows two adjacent injection systems S1 and S2 and the dashed lines represent the frustoconical fuel plies pulverized by the injection systems S1 and S2, respectively.
  • FIG. 4 represents a section of the fuel plies N1 and N2 of the injection systems S1 and S2, respectively, in a transverse plane 76 passing through the primary dilution orifices.
  • increasing the opening angle of the fuel plies is not desirable because it would lead to spraying a larger amount of fuel towards the inner annular walls 18 and outer 20, which would cause the forming hot spots on the inner annular walls 18 and outer 20 of the combustion chamber.
  • the increase in the number of injection systems is also not desirable because it would lead to an increase in the turbomachine and an increase in fuel consumption.
  • the invention provides a solution to this problem as well as to those mentioned above by realizing a distribution and dimensioning of the bowls of injection systems so as to locally expand in the circumferential direction the fuel plies so that they intercept in upstream of the primary dilution ports the fuel layers produced by the adjacent injection systems.
  • the mixing bowl 78 seen from downstream comprises a plurality of holes 80 regularly distributed around the axis 82 of the bowl.
  • the bowl 78 comprises an angular sector 84 whose orifices 86 have a diameter smaller than the diameter of the other orifices 80 of the bowl 78.
  • each particle of air and fuel of the air / fuel layer follows a substantially helical frustoconical trajectory.
  • the local enlargement takes a form corresponding to these frustoconical helical trajectories.
  • the sector 84 of the bowl 78 must be offset angularly from an angle ⁇ in the opposite direction of rotation of the air / fuel mixture, that is to say in the direction of clockwise, relative to a plane 87 containing the axis 82 of the bowl 78 and perpendicular to a radial plane 89 containing the axis 82 of the bowl 78 and the axis of the combustion chamber.
  • planes 87 and 89 are represented by lines and are perpendicular to the plane of the sheet.
  • the angle ⁇ is measured from the middle of the sector of the bowl 78 having orifices 86 of reduced diameter. This angle a determines the position (arrow A) of the widening of the fuel ply which will circumferentially circumferentially intercept the fuel ply of an adjacent injection system.
  • FIG. 6 represents two adjacent injection systems of which one S1 is identical to that of the prior art described with reference to FIG. 3 and the other S3 corresponds to the injection system described with reference to FIG.
  • Dashed lines represent the frustoconical shapes of the fuel plies N1, N3 produced by each of the injection systems S1 and S3.
  • the widening 88 of the fuel layer N3 of the injection system S3 circumferentially intersects the fuel ply N1 of the injection system S1 upstream of the primary air injection orifices.
  • FIG. 7 represents a section of the fuel plies N1 and N3 of the injection systems S1 and S3, respectively, in a transverse plane 76 passing through the primary dilution orifices.
  • the local expansion 88 of the air / fuel mixture web N3 of the injection system S3 circumferentially intersects the web N1 of the injection system S1.
  • the angular extent of the sector 84 of the bowl 78 determines the angular extent of the widening around the axis 82 of the bowl 78.
  • the sector of the bowl comprising reduced diameter orifices is replaced by a sector 90 devoid of air injection orifices as shown in FIG. 8.
  • This sector 90 without orifices is also offset by An angle ⁇ relative to the plane 87.
  • Such a bowl 92 provides a substantially identical fuel ply as that obtained with a bowl 78 having a sector 84 with orifices 86 of reduced diameter. Only the width of the widening of the fuel ply is greater because no air flow circulates through the sector 90 of the bowl 92.
  • the sector 84 of the bowl 78 comprising orifices of reduced diameter and the sector 90 of the bowl 92 without orifices extend angularly about 50 ° and the angle a is of the order of 120 °.
  • the mixing bowl 94 comprises two angular sectors 96, 98 diametrically opposite one another and devoid of air injection orifices. Arrows B and C illustrate the path traveled by the air and fuel particles passing near the first 96 and second 98 sectors of the bowl 94.
  • FIG. 10 represents an injection system S4 comprising a bowl
  • first 96 and second 98 sectors of the bowl 94 allow the formation of a first enlargement 100 and a second enlargement 102 of the fuel ply N4 (FIGS. 10 and 11). These first and second enlargements 100, 102 are diametrically opposite each other and are intended to circumferentially intercept the fuel plies. produced by the injection systems located on either side of the bowl 94.
  • each sector 98, 96 extends angularly about 20 to 30 ° and is angularly offset by an angle of about 100 ° in the opposite direction of rotation of the air / fuel mixture , that is to say in the direction of clockwise, with respect to a plane 95 containing the axis 97 of the bowl 94 and perpendicular to a radial plane 99 containing the axis 97 of the bowl 94 and the axis of the combustion chamber.
  • planes 95 and 99 are represented by lines and are perpendicular to the plane of the sheet.
  • the two diametrically opposed angular sectors may comprise reduced diameter orifices. It is also possible that one of the sectors has no openings and the other sector has small diameter orifices.
  • the mixing bowl 104 situated as close as possible to the spark plug 42 comprises two angular sectors 106, 108 devoid of orifices, one of which allows the formation of a first enlargement for circumferentially intercepting an adjacent fuel ply and the other of which allows the formation of a second enlargement intended to intercept the axis 1 10 of the candle 42 between the internal end of the candle and a stitch; the outer periphery of the bowl 104.
  • the first and second enlargements are substantially localized on the fuel ply at 90 ° from each other.
  • Arrows D and E illustrate the paths traveled by the particles of air and fuel passing in the vicinity of the first and second sectors of the bowl 104.
  • the first angular sector 106 of the bowl 104 extends angularly about 50 ° and the second angular sector 108 for effecting a fuel projection closer to the inner end of the spark plug 42 extends angularly about 40 °.
  • the injection system located closer to the candle could still comprise two diametrically opposite sectors as described with reference to Figure 10 and intended to achieve a circumferential propagation of the combustion flame and a third sector devoid of orifices or reduced diameter orifices for the projection of fuel to the candle.
  • the positioning and the angular extent of the sector comprising orifices with reduced diameter or devoid of orifices is determined by three-dimensional simulation.
  • Such a simulation takes into account many parameters such as the shape and inclination of the auger blades, the direction of rotation of the tendrils, the air flow of the high-pressure compressor and the fuel flow of the injectors, etc.
  • the mixing bowl according to the invention makes it possible to have a circumferential continuity of the air / fuel mixture between two injectors before the introduction of air through the primary dilution orifices, which ensures a good circumferential propagation of the combustion flame when the number of injection systems is reduced and / or when the circumferential pitch between these systems is greater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Nozzles (AREA)

Abstract

L'invention concerne une chambre annulaire de combustion comprenant deux parois de révolution interne et externe, reliées en amont par une paroi annulaire de fond de chambre traversée par des systèmes d'injection comprenant chacun au moins une vrille destinée à produire un flux d'air tournant en aval d'un injecteur de carburant et un bol (78) tronconique en aval de la vrille et formé avec une rangée annulaire d'orifices d'injection d'air(80, 86), la paroide révolution externe comprenant une rangée annulaire d'orifices primaires de dilution. Les orifices (80, 86) des bols (78) sont répartis et dimensionnés de manière à ce que des nappes de mélange air/carburant présentent un élargissement local interceptant circonférentiellement une nappe de carburant adjacente en amont des orifices primaires de dilution.

Description

Chambre annulaire de combustion d'une turbomachine
La présente invention concerne une chambre annulaire de combustion d'une turbomachine telle qu'un turbopropulseur ou un turboréacteur d'avion.
De manière connue, une chambre annulaire de combustion d'une turbomachine reçoit en amont un flux d'air d'un compresseur haute pression et délivre en aval un flux de gaz chauds entraînant les rotors des turbines haute pression et basse pression.
La chambre annulaire de combustion comprend deux parois de révolution coaxiales qui s'étendent l'une à l'intérieur de l'autre et qui sont reliées entre elles à leurs extrémités amont par une paroi annulaire de fond de chambre, ce fond de chambre comportant des ouvertures de montage de systèmes d'injection de carburant entre les parois annulaires interne et externe.
Chaque système d'injection comprend des moyens de support de la tête d'un injecteur de carburant et au moins une vrille qui est disposée en aval de la tête de l'injecteur, coaxialement à celle-ci, et qui délivre un flux d'air tournant en aval de l'injection de carburant afin de former un mélange d'air et de carburant destiné à être brûlé dans la chambre de combustion.
Les vrilles des systèmes d'injection sont alimentées par de l'air provenant d'un diffuseur annulaire monté en sortie du compresseur haute- pression agencé en amont de la chambre de combustion.
Chaque vrille débouche en aval à l'intérieur d'un bol mélangeur comprenant une paroi aval sensiblement tronconique évasée vers l'aval et comportant une rangée annulaire d'orifices d'injection d'air régulièrement répartis autour de l'axe du bol.
La paroi annulaire externe de la chambre de combustion comprend une rangée annulaire d'orifices primaires de dilution et au moins une bougie débouchant à l'intérieur de la chambre de combustion et agencée en aval des orifices primaires de dilution. En fonctionnement, l'air sortant du compresseur haute pression circule à l'intérieur de chacun des systèmes d'injection. Le mélange air/carburant est éjecté de chaque système d'injection en formant une nappe d'air et de carburant sensiblement tronconique s'élargissant vers l'aval. L'angle d'ouverture de la nappe est fonction de l'angle d'ouverture de la paroi tronconique du bol mélangeur et des dimensions des orifices d'injection d'air formés dans cette paroi tronconique. Ainsi, plus les orifices du bol mélangeur ont un diamètre important, plus le débit d'air passant par chacun de ces orifices est important et moins la nappe de mélange air/carburant est évasée.
Les orifices primaires de dilution permettent de stabiliser la flamme de combustion dans le fond de chambre et évitent par dilution du mélange air/carburant que la flamme de combustion ne décroche et pénètre dans la turbine haute pression et n'endommage des composants tels qu'en particulier les aubages fixes par formation de points chauds.
En pratique, les systèmes d'injection sont configurés de manière à ce que pour chaque système d'injection, la nappe de mélange air/carburant croise ou intercepte circonférentiellement, en amont des orifices de dilution, les nappes de carburant des deux systèmes d'injection adjacents. De cette manière, on assure une continuité circonférentielle du mélange air/carburant entre les systèmes d'injection avant dilution, ce qui permet de garantir que la flamme initiée par la ou les bougies d'allumage se propagera sur toute la circonférence de la chambre de combustion.
Dans certaines configurations, telles qu'en particulier dans les chambres de combustion dites convergentes dont les parois annulaires interne et externe de révolution sont des parois tronconiques à section se réduisant vers l'aval, ou lorsque le nombre de systèmes d'injection est réduit, le pas circonférentiel entre les systèmes d'injection adjacents est plus important. Il s'ensuit que les nappes de carburant des systèmes d'injection adjacents ne s'interceptent plus circonférentiellement en amont des orifices primaires de dilution, ce qui conduit à des difficultés pour propager circonférentiellement la flamme entre les injecteurs et réduit les performances de la chambre de combustion.
Pour pallier cet inconvénient, l'augmentation du nombre d'injecteurs ne serait pas souhaitable puisque cela conduirait à un alourdissement de la turbomachine. L'augmentation de l'angle d'ouverture des nappes de carburant ne serait pas non plus satisfaisant puisque cela conduirait à projeter une plus grande quantité de carburant en direction des parois annulaires interne et externe et à la formation de points chauds sur les parois annulaires interne et externe.
L'invention a notamment pour but d'apporter une solution simple, économique et efficace aux problèmes mentionnés ci-dessus, permettant d'éviter les inconvénients de la technique connue.
A cette fin, elle propose une chambre annulaire de combustion comprenant deux parois de révolution coaxiales, respectivement interne et externe, reliées l'une à l'autre à leurs extrémités amont par une paroi annulaire de fond de chambre comportant des ouvertures de montage de systèmes d'injection comprenant chacun au moins une vrille destinée à produire un flux d'air tournant en aval d'un injecteur de carburant et un bol à paroi sensiblement tronconique en aval de la vrille et formé avec une rangée annulaire d'orifices d'injection d'air destinés à produire une nappe sensiblement tronconique et tournante de mélange d'air et de carburant, la paroi de révolution externe comprenant une rangée annulaire d'orifices primaires de dilution, caractérisée en ce que les orifices des bols sont répartis et dimensionnés de manière à ce qu'au moins certaines nappes de mélange air/carburant présentent au moins un élargissement local interceptant circonférentiellement une nappe de carburant adjacente en amont des orifices primaires de dilution.
L'invention permet de conserver la même ouverture angulaire des nappes de carburant moyennant la modification de certains bols de manière à former un élargissement local de leur nappe de carburant, cet élargissement interceptant circonférentiellement la nappe de mélange air/carburant d'un système d'injection adjacent en amont des orifices primaires de dilution.
Il est ainsi possible de garantir une continuité circonférentielle du mélange air/carburant avant l'introduction d'air par les orifices primaires de dilution, ce qui assure une bonne propagation circonférentielle de la flamme de combustion sans ajout d'injecteurs supplémentaires.
Dans un premier mode de réalisation de l'invention, les orifices des bols étant régulièrement répartis autour des axes des bols, des orifices de certains bols ont un plus faible diamètre que les autres orifices desdits bols, les orifices à diamètre réduit étant formés sur un secteur angulaire de dimension et de position angulaires prédéterminées de manière à former un élargissement local de la nappe de carburant.
La réduction du diamètre des orifices sur un secteur donné de certains bols permet de réduire le débit d'air passant par ces orifices. L'air sortant par ces orifices impacte moins le mélange air/carburant issu de la vrille amont, ce qui conduit à augmenter localement l'angle d'éjection du mélange air/carburant et forme un élargissement local de la nappe de carburant.
Selon une autre caractéristique de l'invention, les orifices du secteur angulaire précité de chaque bol précité ont un diamètre inférieur d'au moins 40% au diamètre des autres orifices du bol.
Dans un second mode de réalisation de l'invention, au moins certains des bols sont dépourvus d'orifices sur un secteur angulaire de dimension et de position angulaires prédéterminées de manière à former l'élargissement local de la nappe de carburant.
La suppression sur un secteur des orifices de la paroi tronconique du bol permet d'augmenter localement l'angle d'éjection de la nappe de mélange air/carburant, ce qui forme un élargissement local de cette nappe qui intercepte la nappe de carburant d'un système d'injection adjacent.
Dans une autre réalisation de l'invention, certains des bols comprennent deux secteurs angulaires diamétralement opposés l'un à l'autre et comprenant des orifices à diamètre réduit et/ou dépourvus d'orifices.
Avec une telle configuration, la nappe de carburant formée en sortie de chacun de ces bols comprend deux élargissements diamétralement opposés par rapport à l'axe du bol, qui interceptent les nappes de carburant générées par les deux systèmes d'injection situés de part et d'autre du bol.
La chambre de combustion comprend au moins une bougie d'allumage montée dans un orifice de la paroi de révolution externe et les orifices du bol du système d'injection situé au plus près de la bougie sont répartis et dimensionnés de manière à ce que la nappe de mélange air/carburant dudit système d'injection présente un autre élargissement local interceptant l'axe de la bougie entre l'extrémité radialement interne de la bougie et un point de la périphérie externe dudit bol.
Cet élargissement additionnel de la nappe de carburant permet de projeter localement la nappe de carburant plus près de l'extrémité interne de la bougie, ce qui facilite encore l'allumage du mélange air/carburant et la propagation de la flamme.
Le bol situé au plus près de la bougie peut comprendre des orifices de plus faible diamètre que les autres orifices dudit bol, ces orifices à diamètre réduit étant formés sur un secteur angulaire de dimension et de position angulaire prédéterminées de manière à former l'élargissement interceptant l'axe de la bougie.
Le bol situé au plus près de la bougie peut également être dépourvu d'orifices sur un secteur angulaire de dimension et de position prédéterminées de manière à former l'élargissement interceptant l'axe de la bougie.
Le ou les secteurs angulaires précités s'étendent sur environ 20° à
50°.
L'invention concerne également une turbomachine, telle qu'un turbopropulseur ou un turboréacteur d'avion, comprenant une chambre de combustion telle que décrite précédemment. D'autres avantages et caractéristiques de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels :
- la figure 1 est une demi-vue schématique partielle en coupe axiale d'une chambre annulaire de combustion d'un type connu ;
- la figure 2 est une vue schématique partielle à plus grande échelle de la zone délimitée en pointillés sur la figure 1 ;
- la figure 3 est une vue schématique de côté de deux systèmes d'injection conformes à la figure 2 et agencés côte à côte ;
- la figure 4 est une vue schématique en coupe transverse des nappes de carburant des systèmes d'injection de la figure 3 ;
- la figure 5 est une vue schématique depuis l'aval d'un bol mélangeur selon une première réalisation de l'invention ;
- la figure 6 est une vue schématique de côté d'un système d'injection comportant un bol mélangeur conforme à la figure 2 et d'un système d'injection comportant le bol mélangeur de la figure 5 selon l'invention ;
- la figure 7 est une vue schématique en coupe transverse des nappes de carburant des systèmes d'injection de la figure 6 ;
- la figure 8 est une vue schématique depuis l'aval d'un bol mélangeur selon une deuxième réalisation de l'invention ;
- la figure 9 est une vue schématique depuis l'aval d'un bol mélangeur selon une troisième réalisation de l'invention ;
- la figure 10 est une vue schématique de côté d'un système d'injection comportant le bol mélangeur de la figure 9 selon l'invention ;
- la figure 1 1 est une vue schématique en coupe transverse de la nappe de carburant du système d'injection de la figure 10 ;
- la figure 12 est une vue schématique depuis l'aval d'un bol mélangeur selon une quatrième réalisation de l'invention.
On se réfère d'abord à la figure 1 qui représente une chambre annulaire de combustion 10 d'une turbomachine telle qu'un turboréacteur ou un turbopropulseur d'avion, agencée en sortie d'un diffuseur centrifuge 12 monté en sortie d'un compresseur haute pression (non représenté). La chambre de combustion 10 est suivie d'une turbine haute pression 14 dont seul le distributeur d'entrée 16 est représenté.
La chambre de combustion 10 comprend deux parois de révolution tronconiques interne 18 et externe 20 coaxiales, agencées l'une à l'intérieur de l'autre et à section se réduisant vers l'aval . Une telle chambre de combustion est dite convergente. Les parois annulaires interne 18 et externe 20 sont reliées à leurs extrémités amont à une paroi annulaire de fond de chambre 22 et fixées en aval par des brides annulaires interne 24 et externe 26. La bride annulaire externe 26 est en appui radialement externe sur un carter externe 28 et en appui axial sur une bride radiale 30 de fixation du distributeur 16 de la turbine haute pression au carter externe 28. La bride annulaire interne 24 de la chambre de combustion est en appui radial et axial sur une pièce annulaire interne 32 de fixation du distributeur 16 à une paroi annulaire interne 34.
Le fond de chambre 22 comporte des ouvertures de montage de systèmes d'injection d'un mélange air-carburant dans la chambre, l'air provenant du diffuseur centrifuge 12 et le carburant étant amené par des injecteurs 36.
Les injecteurs 36 sont fixés à leurs extrémités radialement externes sur le carter externe 28 et sont régulièrement répartis sur une circonférence autour de l'axe de révolution 38 de la chambre. Chaque injecteur 36 comprend à son extrémité radialement interne une tête d'injection 40 de carburant qui est alignée avec l'axe d'une ouverture correspondante du fond de chambre 22.
Le mélange d'air et de carburant injecté dans la chambre 10 est enflammé au moyen d'au moins une bougie d'allumage 42 qui s'étend radialement à l'extérieur de la chambre 10. L'extrémité interne de la bougie 42 s'étend dans un orifice de la paroi externe 20 de la chambre, et son extrémité radialement externe est fixée par des moyens appropriés au carter externe 28 et reliée à des moyens d'alimentation électrique (non représentés) situés à l'extérieur du carter 28.
La paroi annulaire externe 20 de la chambre de combustion comprend une rangée annulaire d'orifices primaires 44 de dilution du mélange air/carburant agencés en amont de la bougie d'allumage 42.
Chaque système d'injection, comme on le voit mieux en figure 2, comporte deux vrilles de turbulence amont 46 et aval 48 coaxiales reliées en amont à des moyens de centrage et de guidage de la tête de l'injecteur, et en aval à un bol mélangeur 50 qui est monté axialement dans l'ouverture de la paroi de fond de chambre 22.
Les vrilles 46, 48 comprennent chacune une pluralité d'aubages s'étendant radialement autour de l'axe de la vrille et régulièrement répartis autour de cet axe pour délivrer un flux d'air tournant en aval de la tête d'injection.
Les vrilles 46, 48 sont séparées l'une de l'autre par une paroi radiale
52 reliée à son extrémité radialement interne à un venturi 54 qui s'étend axialement vers l'aval à l'intérieur de la vrille aval et qui sépare les écoulements d'air issus des vrilles amont 46 et aval 48. Une première veine annulaire d'écoulement d'air est formée à l'intérieur du venturi 54 et une seconde veine annulaire d'écoulement d'air est formée à l'extérieur du venturi 54.
Le bol mélangeur 50 comprend une paroi sensiblement tronconique 56 évasée vers l'aval et reliée à son extrémité aval à un rebord cylindrique 58 s'étendant vers l'amont et monté axialement dans l'ouverture de la paroi de fond de chambre 22 avec un déflecteur annulaire 60. L'extrémité amont de la paroi tronconique du bol est fixée par une pièce annulaire intermédiaire 62 à la vrille aval.
La paroi tronconique 56 du bol comporte une rangée annulaire d'orifices 64 d'injection d'air régulièrement répartis autour de l'axe 70 du bol. L'air passant par ces orifices et l'air s'écoulant dans les veines à l'intérieur et à l'extérieur du venturi 54 se mélangent au carburant pulvérisé par l'injecteur pour former une nappe tournante de mélange d'air et de carburant ayant une forme sensiblement tronconique 66 s'élargissant vers l'aval. Les axes 68 de chacun des orifices 64 d'injection d'air du bol sont inclinés par rapport à l'axe 70 du bol et convergent vers celui-ci en direction aval.
Une seconde rangée annulaire d'orifices 72 est formée à la jonction entre l'extrémité amont du rebord cylindrique 58 et la paroi tronconique 56. Ces seconds orifices 72 assurent une ventilation de la face aval du déflecteur 60 et limitent échauffement du fond de chambre 22.
En fonctionnement, les vrilles amont 46 et aval 48 du système d'injection induisent une rotation du flux d'air et de carburant pulvérisé et les orifices d'injection d'air 64 de la paroi tronconique 56 du bol 50 réalisent un cisaillement du mélange air/carburant. Ainsi, plus le diamètre des orifices d'injection d'air 64 du bol 50 est grand, plus le débit d'air passant par ces orifices est important, ce qui diminue l'angle d'ouverture 74 de la nappe tronconique de mélange air/carburant.
Afin d'assurer une bonne propagation circonférentielle de la flamme de combustion entre les systèmes d'injection, la configuration et le nombre des systèmes d'injection sont déterminés de manière à ce que les nappes de carburant des systèmes d'injection adjacents s'interceptent ou se croisent en direction circonférentielle en amont des orifices primaires 44 de dilution de manière à former un nuage de mélange air/carburant continu circonférentiellement.
La figure 3 représente deux systèmes d'injection adjacents S1 et S2 et les traits en pointillés représentent les nappes tronconiques de carburant pulvérisées par les systèmes d'injection S1 et S2, respectivement. La figure 4 représente une coupe des nappes de carburant N1 et N2 des systèmes d'injections S1 et S2, respectivement, selon un plan transverse 76 passant par les orifices primaires de dilution.
On constate que, quand le nombre de systèmes d'injection est réduit et que le pas circonférentiel entre deux systèmes d'injection adjacents S1 et S2 augmente, il devient trop important pour que les nappes de carburant N1 et N2 s'interceptent circonférentiellement en amont des orifices primaires de dilution, ce qui conduit à des difficultés de propagation circonférentielle de la flamme de combustion.
Pour pallier cet inconvénient, l'augmentation de l'angle d'ouverture des nappes de carburant n'est pas souhaitable car cela conduirait à pulvériser une plus grande quantité de carburant en direction des parois annulaires interne 18 et externe 20, ce qui provoquerait la formation de points chauds sur les parois annulaires interne 18 et externe 20 de la chambre de combustion. L'augmentation du nombre de systèmes d'injection n'est pas non plus souhaitable car cela conduirait à un alourdissement de la turbomachine et à une augmentation de la consommation en carburant.
L'invention apporte une solution à ce problème ainsi qu'à ceux mentionnés précédemment en réalisant une répartition et un dimensionnement des orifices des bols des systèmes d'injection de manière à élargir localement en direction circonférentielle les nappes de carburant afin qu'elles interceptent en amont des orifices primaires de dilution les nappes de carburant produites par les systèmes d'injection adjacents.
Dans une première réalisation de l'invention représentée en figure 5, le bol mélangeur 78 vu depuis l'aval comprend une pluralité d'orifices 80 régulièrement répartis autour de l'axe 82 du bol. Le bol 78 comprend un secteur angulaire 84 dont les orifices 86 ont un diamètre inférieur au diamètre des autres orifices 80 du bol 78.
Lorsque le mélange air/carburant pénètre à l'intérieur du bol 78, le débit d'air passant par les orifices 86 du secteur 84 est plus faible que le débit d'air passant par les autres orifices 80 du bol 78. Il s'ensuit que les particules d'air et de carburant passant au voisinage de ce secteur 84 du bol 78 sortent du bol 78 avec une trajectoire plus évasée que les particules passant au voisinage des autres orifices 80 du bol 78. Il en résulte un élargissement local de la nappe de carburant pulvérisé.
Comme indiqué précédemment, la nappe de mélange air/carburant sortant de chaque système d'injection est tournante du fait de la rotation imposée par les vrilles amont et aval. Ainsi, chaque particule d'air et de carburant de la nappe air/carburant suit une trajectoire sensiblement hélicoïdale tronconique. L'élargissement local prend une forme correspondant à ces trajectoires hélicoïdales tronconiques.
Lorsque les vrilles amont et aval produisent un flux d'air tournant dans le sens inverse des aiguilles d'une montre lorsque l'on regarde le bol depuis l'aval, on comprend que le secteur 84 du bol 78 doit être décalé angulairement d'un angle a dans le sens inverse de rotation du mélange air/carburant, c'est-à-dire dans le sens des aiguilles d'une montre, par rapport à un plan 87 contenant l'axe 82 du bol 78 et perpendiculaire à un plan radial 89 contenant l'axe 82 du bol 78 et l'axe de la chambre de combustion. Sur la figure 5, les plans 87 et 89 sont représentés par des lignes et sont perpendiculaires au plan de la feuille. L'angle a est mesuré à partir du milieu du secteur du bol 78 comportant des orifices 86 à diamètre réduit. Cet angle a détermine la position (flèche A) de l'élargissement de la nappe de carburant qui viendra circonférentiellement intercepter la nappe de carburant d'un système d'injection adjacent.
La figure 6 représente deux systèmes d'injection adjacents dont l'un S1 est identique à celui de la technique antérieure décrite en référence à la figure 3 et l'autre S3 correspond au système d'injection décrit en référence à la figure 5. Les traits en pointillés représentent les formes tronconiques des nappes de carburant N1 , N3 produites par chacun des systèmes d'injection S1 et S3. L'élargissement 88 de la nappe N3 de carburant du système d'injection S3 intercepte circonférentiellement la nappe de carburant N1 du système d'injection S1 en amont des orifices primaires d'injection d'air. La figure 7 représente une coupe des nappes de carburant N1 et N3 des systèmes d'injection S1 et S3, respectivement, selon un plan transverse 76 passant par les orifices primaires de dilution. Sur cette figure, on observe que l'élargissement local 88 de la nappe de mélange air/carburant N3 du système d'injection S3 intercepte circonférentiellement la nappe N1 du système d'injection S1 .
L'étendue angulaire du secteur 84 du bol 78 détermine l'étendue angulaire de l'élargissement autour de l'axe 82 du bol 78.
Dans une seconde réalisation de l'invention, le secteur du bol comprenant des orifices à diamètre réduit est remplacé par un secteur 90 dépourvu d'orifices d'injection d'air comme représenté en figure 8. Ce secteur 90 sans orifices est également décalé d'un angle a par rapport au plan 87. Un tel bol 92 permet d'obtenir une nappe de carburant sensiblement de même forme que celle obtenue avec un bol 78 comportant un secteur 84 avec des orifices 86 à diamètre réduit. Seule la largeur de l'élargissement de la nappe de carburant est plus important du fait qu'aucun débit d'air ne circule à travers le secteur 90 du bol 92.
Dans une réalisation pratique des modes de réalisations représentés aux figures 5 et 8, le secteur 84 du bol 78 comprenant des orifices de diamètre réduit et le secteur 90 du bol 92 dépourvu d'orifices s'étendent angulairement sur environ 50° et l'angle a est de l'ordre de 120°.
Dans une autre réalisation de l'invention représentée en figure 9, le bol 94 mélangeur comprend deux secteurs angulaires 96, 98 diamétralement opposés l'un par rapport à l'autre et dépourvus d'orifices d'injection d'air. Les flèches B et C illustrent le trajet parcouru par les particules d'air et de carburant passant au voisinage des premier 96 et second 98 secteurs du bol 94.
La figure 10 représente un système d'injection S4 comprenant un bol
94 comportant deux secteurs précités diamétralement opposés. Les premier 96 et second 98 secteurs du bol 94 permettent la formation d'un premier élargissement 100 et d'un second élargissement 102 de la nappe N4 de carburant (figures 10 et 1 1 ). Ces premier et second élargissements 100, 102 sont diamétralement opposés l'un par rapport à l'autre et sont destinés à intercepter circonférentiellement les nappes de carburant produites par les systèmes d'injection situés de part et d'autre du bol 94.
Dans une réalisation pratique du bol de la figure 9, chaque secteur 98, 96 s'étend angulairement sur environ 20 à 30° et est décalé angulairement d'un angle d'environ 100° dans le sens inverse de rotation du mélange air/carburant, c'est-à-dire dans le sens des aiguilles d'une montre, par rapport à un plan 95 contenant l'axe 97 du bol 94 et perpendiculaire à un plan radial 99 contenant l'axe 97 du bol 94 et l'axe de la chambre de combustion. Sur la figure 9, les plans 95 et 99 sont représentés par des lignes et sont perpendiculaires au plan de la feuille.
Dans une variante de réalisation du bol de la figure 9, les deux secteurs angulaires diamétralement opposés peuvent comprendre des orifices à diamètre réduit. Il est également possible que l'un des secteurs soit dépourvu d'orifices et que l'autre secteur comprenne des orifices à diamètre réduit.
Dans encore une autre réalisation de l'invention représentée en figure 12, le bol mélangeur 104 situé au plus près de la bougie d'allumage 42 comprend deux secteurs angulaires 106, 108 dépourvus d'orifices dont l'un 106 permet la formation d'un premier élargissement destiné à intercepter circonférentiellement une nappe de carburant adjacente et dont l'autre 108 permet la formation d'un second élargissement destiné à intercepter l'axe 1 10 de la bougie 42 entre l'extrémité interne de la bougie et un point de la périphérie externe du bol 104.
Les premier et second élargissements sont sensiblement localisés sur la nappe de carburant à 90° l'un de l'autre. Les flèches D et E illustrent les trajets parcourus par les particules d'air et de carburant passant au voisinage des premiers et second secteurs du bol 104.
Le premier secteur angulaire 106 du bol 104 s'étend angulairement sur environ 50° et le second secteur angulaire 108 destiné à réaliser une projection de carburant au plus près de l'extrémité interne de la bougie 42 s'étend angulairement sur environ 40°.
Le système d'injection situé au plus près de la bougie pourrait encore comprendre deux secteurs diamétralement opposés comme décrit en référence à la figure 10 et destinés à réaliser une propagation circonférentielle de la flamme de combustion et un troisième secteur dépourvu d'orifices ou à orifices à diamètre réduit pour la projection de carburant vers la bougie.
Dans la description ci-dessus, le sens de rotation des vrilles a été donné à titre d'exemple et on comprend que le fonctionnement serait similaire dans le cas d'un mélange d'air/carburant tournant dans le sens des aiguilles d'une montre. Dans ce cas, seul le positionnement angulaire des secteurs des bols dépourvus d'orifices ou avec des orifices à diamètre réduit devrait être modifié.
En pratique, le positionnement et l'étendue angulaires du secteur comportant des orifices à diamètre réduit ou dépourvu d'orifices est déterminé par simulation tridimensionnelle. Une telle simulation prend en compte de nombreux paramètres tels que la forme et l'inclinaison des aubages des vrilles, le sens de rotation des vrilles, le débit d'air du compresseur haute pression et le débit de carburant des injecteurs, etc.
Le bol mélangeur selon l'invention permet d'avoir une continuité circonférentielle du mélange air/carburant entre deux injecteurs avant l'introduction d'air par les orifices primaires de dilution, ce qui assure une bonne propagation circonférentielle de la flamme de combustion quand le nombre de systèmes d'injection est réduit et/ou quand le pas circonférentiel entre ces systèmes est plus important.

Claims

REVENDICATIONS
1 . Chambre annulaire de combustion (10) d'une turbomachine, comprenant deux parois de révolution coaxiales, respectivement interne (18) et externe (20), reliées l'une à l'autre à leurs extrémités amont par une paroi annulaire de fond de chambre (22) comportant des ouvertures de montage de systèmes d'injection comprenant chacun au moins une vrille (46, 48) destinée à produire un flux d'air tournant en aval d'un injecteur (36) de carburant et un bol (78, 92, 94, 104) à paroi sensiblement tronconique en aval de la vrille et formé avec une rangée annulaire d'orifices (80, 86) d'injection d'air destinés à produire une nappe sensiblement tronconique et tournante de mélange d'air et de carburant, la paroi de révolution externe comprenant une rangée annulaire d'orifices (44) primaires de dilution, caractérisée en ce que les orifices (80, 86) des bols (78, 92, 94, 104) sont répartis et dimensionnés de manière à ce qu'au moins certaines nappes (N3, N4) de mélange air/carburant présentent au moins un élargissement local (88, 100, 102) interceptant circonférentiellement une nappe de carburant adjacente en amont des orifices (44) primaires de dilution.
2. Chambre selon la revendication 1 , caractérisée en ce que les orifices (80, 86) d'au moins certains bols (78) sont régulièrement répartis autour des axes (82) des bols (78) et en ce que des orifices (86) de chacun de ces bols ont un plus faible diamètre que les autres orifices (80) desdits bols, ces orifices (86) à diamètre réduit étant formés sur un secteur angulaire (84) de dimension et de position angulaires prédéterminées de manière à former l'élargissement local (88) de la nappe (N3) de carburant.
3. Chambre selon la revendication 2, caractérisée en ce que les orifices (86) du secteur angulaire précité de chaque bol ont un diamètre inférieur d'au moins 40% au diamètre des autres orifices du bol.
4. Chambre selon la revendication 1 ou 2, caractérisée en ce qu'au moins certains des bols (92, 104) sont dépourvus d'orifices sur un secteur angulaire de dimension et de position angulaires prédéterminées de manière à former l'élargissement local de la nappe de carburant.
5. Chambre selon l'une des revendications 2 à 4, caractérisée en ce que certains des bols comprennent deux secteurs angulaires (96, 98) diamétralement opposés l'un à l'autre et comprenant des orifices à diamètre réduit et/ou dépourvus d'orifices.
6. Chambre selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend au moins une bougie d'allumage (42) montée dans un orifice de la paroi de révolution externe (20) et en ce que les orifices du bol (104) du système d'injection situé au plus près de la bougie sont répartis et dimensionnés de manière à ce que la nappe de mélange air/carburant dudit système d'injection présente un autre élargissement local interceptant l'axe de la bougie entre l'extrémité radialement interne de la bougie (42) et un point de la périphérie externe dudit bol (104) .
7. Chambre selon la revendication 6, caractérisée en ce que ledit bol situé au plus près de la bougie comprend des orifices de plus faible diamètre que les autres orifices dudit bol, ces orifices à diamètre réduit étant formés sur un secteur angulaire de dimension et de position angulaire prédéterminées de manière à former l'élargissement interceptant l'axe de la bougie.
8. Chambre selon la revendication 6, caractérisée en ce que ledit bol (104) situé au plus près de la bougie est dépourvu d'orifices sur un secteur angulaire de dimension et de position prédéterminées de manière à former l'élargissement interceptant l'axe (1 10) de la bougie (42).
9. Chambre selon l'une des revendications 2 à 5, 7 et 8, caractérisée en ce que le ou les secteurs angulaires précités (84, 90, 96, 98, 106, 108) s'étendent sur environ 20° à 50°.
10. Turbomachine, telle qu'un turbopropulseur ou un turboréacteur d'avion, comprenant une chambre de combustion selon l'une des revendications précédentes.
PCT/FR2012/052098 2011-09-27 2012-09-20 Chambre annulaire de combustion d'une turbomachine WO2013045792A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12773067.9A EP2761226B1 (fr) 2011-09-27 2012-09-20 Chambre annulaire de combustion d'une turbomachine
CN201280047165.3A CN103842728B (zh) 2011-09-27 2012-09-20 用于涡轮发动机的环形燃烧室
RU2014116962A RU2606460C2 (ru) 2011-09-27 2012-09-20 Кольцевая камера сгорания турбомашины
CA2848629A CA2848629C (fr) 2011-09-27 2012-09-20 Chambre annulaire de combustion d'une turbomachine
US14/344,266 US9651260B2 (en) 2011-09-27 2012-09-20 Annular combustion chamber for a turbine engine
BR112014002927-0A BR112014002927B1 (pt) 2011-09-27 2012-09-20 câmara anular de combustão de uma turbomáquina, e, turbomáquina

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1158655 2011-09-27
FR1158655A FR2980554B1 (fr) 2011-09-27 2011-09-27 Chambre annulaire de combustion d'une turbomachine

Publications (2)

Publication Number Publication Date
WO2013045792A2 true WO2013045792A2 (fr) 2013-04-04
WO2013045792A3 WO2013045792A3 (fr) 2013-12-19

Family

ID=47023001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/052098 WO2013045792A2 (fr) 2011-09-27 2012-09-20 Chambre annulaire de combustion d'une turbomachine

Country Status (8)

Country Link
US (1) US9651260B2 (fr)
EP (1) EP2761226B1 (fr)
CN (1) CN103842728B (fr)
BR (1) BR112014002927B1 (fr)
CA (1) CA2848629C (fr)
FR (1) FR2980554B1 (fr)
RU (1) RU2606460C2 (fr)
WO (1) WO2013045792A2 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2940389A1 (fr) * 2014-05-02 2015-11-04 Siemens Aktiengesellschaft Agencement de brûleur de combustion
CN104308320B (zh) * 2014-08-27 2016-08-24 北京动力机械研究所 喷油环的钎焊定位装置
CN105841193B (zh) * 2016-05-18 2018-07-20 葛明龙 两种航空航天涡扇发动机
CN106392504B (zh) * 2016-12-21 2019-01-18 中国南方航空工业(集团)有限公司 一种航空发动机涡流器加工方法
FR3061761B1 (fr) * 2017-01-10 2021-01-01 Safran Aircraft Engines Chambre de combustion pour turbomachine
FR3080437B1 (fr) * 2018-04-24 2020-04-17 Safran Aircraft Engines Systeme d'injection pour une chambre annulaire de combustion de turbomachine
CN111396927B (zh) * 2020-03-27 2021-06-08 中国科学院工程热物理研究所 二维阵列无传统旋流器的低污染燃烧装置
US20220325891A1 (en) * 2021-04-12 2022-10-13 General Electric Company Dilution horn pair for a gas turbine engine combustor
FR3142533A1 (fr) 2022-11-28 2024-05-31 Safran Aircraft Engines Chambre de combustion pour turbomachine
DE102023102018A1 (de) * 2023-01-27 2024-08-01 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennerkopf und Brennersystem

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588919B1 (fr) * 1985-10-18 1987-12-04 Snecma Dispositif d'injection a bol sectorise
GB9023004D0 (en) * 1990-10-23 1990-12-05 Rolls Royce Plc A gas turbine engine combustion chamber and a method of operating a gas turbine engine combustion chamber
FR2753779B1 (fr) * 1996-09-26 1998-10-16 Systeme d'injection aerodynamique d'un melange air carburant
US6141967A (en) * 1998-01-09 2000-11-07 General Electric Company Air fuel mixer for gas turbine combustor
RU2215241C2 (ru) * 2002-01-23 2003-10-27 Открытое акционерное общество "Авиадвигатель" Камера сгорания газотурбинного двигателя
US6877491B2 (en) * 2002-07-31 2005-04-12 Honda Giken Kogyo Kabushiki Kaisha Air fuel injection engine
FR2856467B1 (fr) * 2003-06-18 2005-09-02 Snecma Moteurs Chambre de combustion annulaire de turbomachine
US7316117B2 (en) * 2005-02-04 2008-01-08 Siemens Power Generation, Inc. Can-annular turbine combustors comprising swirler assembly and base plate arrangements, and combinations
FR2881813B1 (fr) * 2005-02-09 2011-04-08 Snecma Moteurs Carenage de chambre de combustion de turbomachine
US8511097B2 (en) * 2005-03-18 2013-08-20 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine combustor and ignition method of igniting fuel mixture in the same
FR2901349B1 (fr) * 2006-05-19 2008-09-05 Snecma Sa Chambre de combustion d'une turbomachine
FR2925146B1 (fr) * 2007-12-14 2009-12-25 Snecma Systeme d'injection d'un melange d'air et de carburant dans une chambre de combustion de turbomachine
US8091367B2 (en) * 2008-09-26 2012-01-10 Pratt & Whitney Canada Corp. Combustor with improved cooling holes arrangement
US8966877B2 (en) * 2010-01-29 2015-03-03 United Technologies Corporation Gas turbine combustor with variable airflow

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
RU2606460C2 (ru) 2017-01-10
EP2761226A2 (fr) 2014-08-06
CN103842728A (zh) 2014-06-04
CA2848629A1 (fr) 2013-04-04
FR2980554A1 (fr) 2013-03-29
CA2848629C (fr) 2019-07-23
EP2761226B1 (fr) 2015-11-18
US20150040569A1 (en) 2015-02-12
BR112014002927A2 (pt) 2017-03-01
WO2013045792A3 (fr) 2013-12-19
US9651260B2 (en) 2017-05-16
CN103842728B (zh) 2016-01-20
BR112014002927B1 (pt) 2020-12-29
FR2980554B1 (fr) 2013-09-27
RU2014116962A (ru) 2015-11-10

Similar Documents

Publication Publication Date Title
EP2761226B1 (fr) Chambre annulaire de combustion d'une turbomachine
EP1857741B1 (fr) Chambre de combustion d'une turbomachine
CA2646959C (fr) Systeme d'injection d'un melange d'air et de carburant dans une chambre de combustion de turbomachine
EP0214003B1 (fr) Dispositif d'injection à bol elargi pour chambre de combustion de turbomachine
EP1909031B1 (fr) Injecteur de carburant pour chambre de combustion de moteur à turbine à gaz
FR2903169A1 (fr) Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
EP1923636B1 (fr) Dispositif d'injection d'un mélange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
WO2012156631A1 (fr) Chambre annulaire de combustion pour une turbomachine
FR3039254A1 (fr) Chambre de combustion comportant des dispositifs d'injection additionnels debouchant directement dans les zones de recirculation de coin, turbomachine la comprenant, et procede d'alimentation en carburant de celle-ci
EP3530908A1 (fr) Chambre de combustion comportant deux types d'injecteurs dans lesquels les organes d'étanchéité ont un seuil d'ouverture différent
FR3116592A1 (fr) Vrille pour dispositif d’injection étagé de turbomachine
EP3784958B1 (fr) Système d'injection pour une chambre annulaire de combustion de turbomachine
FR2943119A1 (fr) Systemes d'injection de carburant dans une chambre de combustion de turbomachine
FR2958373A1 (fr) Chambre de combustion dans une turbomachine
EP2771619B1 (fr) Chambre de combustion annulaire dans une turbomachine
EP4004443B1 (fr) Chambre de combustion comportant des systèmes d'injection secondaires et procédé d'alimentation en carburant
FR2948749A1 (fr) Systeme d'injection de carburant pour une chambre de combustion de turbomachine
EP3771862A1 (fr) Nez d'injecteur de carburant pour turbomachine comprenant une chambre de mise en rotation intérieurement délimitée par un pion
FR2958012A1 (fr) Chambre de combustion de turbomachine
WO2024115840A1 (fr) Chambre de combustion pour turbomachine
EP3247945A1 (fr) Systeme d'injection de carburant pour turbomachine d'aeronef, comprenant un canal de traversee d'air a section variable
FR2957659A1 (fr) Systeme d'injection pour chambre de combustion de turbomachine, comprenant des moyens d'injection de carburant en sortie d'une double vrille d'admission d'air
FR3141755A1 (fr) Chambre de combustion d’une turbomachine
FR3146493A1 (fr) Ensemble pour turbomachine et turbomachine associee
FR3113302A1 (fr) Chambre de combustion pour une turbomachine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773067

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012773067

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14344266

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2848629

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014116962

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014002927

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014002927

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140206