WO2013044786A1 - 双零位卡尺 - Google Patents

双零位卡尺 Download PDF

Info

Publication number
WO2013044786A1
WO2013044786A1 PCT/CN2012/081919 CN2012081919W WO2013044786A1 WO 2013044786 A1 WO2013044786 A1 WO 2013044786A1 CN 2012081919 W CN2012081919 W CN 2012081919W WO 2013044786 A1 WO2013044786 A1 WO 2013044786A1
Authority
WO
WIPO (PCT)
Prior art keywords
foot
sub
positioning
integer
main ruler
Prior art date
Application number
PCT/CN2012/081919
Other languages
English (en)
French (fr)
Inventor
吴大卫
Original Assignee
东莞市邦卡量具科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45483094&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013044786(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 东莞市邦卡量具科技有限公司 filed Critical 东莞市邦卡量具科技有限公司
Publication of WO2013044786A1 publication Critical patent/WO2013044786A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/20Slide gauges

Definitions

  • the invention relates to the technical field of calipers, in particular to a double zero caliper, comprising a double zero ruler and
  • the double zero caliper is a double zero mechanical caliper, a double zero electronic caliper and
  • the caliper is an age-old measuring tool whose ancient history can be traced back to the beginning of the first century AD, when China invented ancient calipers and applied them in production.
  • the ancient Chinese caliper did not measure: the mechanism, can not measure the value less than 1 mm, but it already has a fixed main ruler and a secondary ruler that can move along the main ruler.
  • the main ruler and the secondary ruler respectively have measurement claws. The two claws can move relative to each other so that the object to be measured can be caught for measurement.
  • This highly flexible structure has undergone a test of temperament and has become a classic of caliper structure. It is still beyond the reach of all modern calipers.
  • Modern calipers are just a set of measuring mechanisms: they can measure and display values less than 1 mm.
  • the caliper Due to its simple structure and little room for modification, the caliper makes the caliper update cycle very long. From the ancient caliper made in China in the year 9 AD, the first vernier caliper made in the United States in 1851, the first caliper made in Switzerland in 1973, and the electronic caliper produced in Japan in 1980, has been around for two thousand years. .
  • the present invention provides a new principle of caliper design, and a caliper ruler that can embody the new principle, and three types of gauges, electronic sensors and cursors are respectively mounted on the ruler body.
  • Different measurements a new type of caliper made of mechanism.
  • These new calipers have broken the old principles that have never changed in more than two thousand years, and completely retain the classic features of modern calipers, and can completely break through the four technical limits mentioned above.
  • the caliper ruler described and the new calipers described above are equipped with three different types of mechanisms, which are technically related, and which together constitute the present invention.
  • each measurement value is set equal to the sum of the integer value + the small value.
  • the main ruler has an original zero position, which is used to measure the integer value, and the integer value is a fractional zero, which is used to measure the small value, which is called "double zero measurement".
  • modern micrometric instruments such as cursors, gauges and electronic sensors are only used to measure small values relative to a certain integer value. Therefore, the working stroke can be greatly shortened. Theoretically, Can be shortened to a maximum of only 1 mm.
  • the meshing stroke between the rack and the gear on the caliper, the coupling stroke between the moving damper on the electronic caliper, the moving stroke between the upstream reticle of the vernier caliper and the integer reticle will be limited to at most 1 mm.
  • the calipers formed by installing different measuring mechanisms are collectively referred to as double-zero calipers, and the characteristics of the measuring mechanisms are respectively referred to as double-zero mechanical calipers, double-zero electronic calipers and double-zero vernier calipers, which are different from the conventional ones.
  • a double zero caliper comprising a double zero ruler and a measuring mechanism;
  • the double zero ruler comprises a main ruler and a secondary ruler;
  • the measuring mechanism is a mechanical gauge, or an electronic displacement a sensor, or a cursor subdivision device;
  • the main ruler has a static claw and a main ruler body, and the main ruler body is marked with an integer multiple of an integer multiple of 1 mm.
  • the starting integer inscribed line closest to the static claw is the original zero position;
  • the sub-foot includes the main ruler and can be self-locking or aligned along the integer ruler with respect to the main ruler mobile;
  • the sub-foot has a front sub-foot and a rear sub-foot, and the rear sub-foot is movable within a limited range with respect to the front sub-foot, and the moving direction is parallel to the arrangement direction of the integer engraving;
  • the front sub-foot has a momentum claw and a measurement target;
  • the front sub-foot is responsible for measuring an integer value of the measured value, and the second sub-foot is responsible for measuring a difference between the measured value and the integer value;
  • the front sub-foot is a frame, the lower part of the frame is pivotally connected with a lever, and the free end of the lever is provided with a freely rotatable roller, the roller is adjacent to a lower side of the main ruler; the lever and The rear sub-foot is provided with a cooperative clutch mechanism.
  • the roller When the roller is pressed to contact the lower side of the main ruler, the lever is deflected, and the clutch mechanism is closed.
  • the front, The rear sub-scale forms a rigid structure of synchronous displacement; the roller is released, the lever is reset, and the clutch mechanism is separated;
  • the front auxiliary ruler further has a self-locking mechanism composed of a locking shaft and a compression spring;
  • the locking shaft is provided with a locking surface closely contacting the main ruler body, thereby the front auxiliary ruler Locking on the main ruler body and not moving;
  • one end of the lock shaft abuts the lever, and the force exerted by the lever on the lock shaft causes the lock surface and the main ruler Separating the ruler such that the locking state between the front sub-foot and the main ruler is released, and the front sub-foot can be moved along the direction of the integer engraving;
  • the lever is applied to After the force on the locking shaft is revoked, the compression spring resets the locking shaft, and restores the locking shaft to a locking state closely resisting the main ruler body;
  • the rear sub-foot is also a frame body, and the rear sub-foot has a positioning shaft that can only move in the axial direction, the positioning shaft portion is received in the frame body, and the positioning shaft is provided with an elastic component.
  • the elastic element can reset the positioning shaft after the external force that causes the displacement thereof to be cancelled;
  • the main ruler is provided with a row of positioning concave and convex portions, and the shape of the positioning concave and convex is matched with the radial sectional shape of the positioning shaft, and the number of the positioning concave and convex portions can at least make the arrangement length equal to the calibration range, each of the The shape and the size of the positioning concavities and convexities are the same, and the center of each of the positioning concavities and convexities maintains a fixed correspondence relationship with the integer engraving line, and the center distances of two adjacent positioning concavities and convexities are equal;
  • the front and rear sub-foots are separated by a small distance in the direction along the integer engraving line, denoted as ⁇ '; the front sub-foot and the rear sub-foot are provided with matching limiting devices.
  • the limiting device makes the maximum displacement distance of the rear sub-scale relative to the front sub-footboard > ⁇ '; when the clutch mechanism is closed, the front and rear sub-foots are arranged along the direction of the integer engraving Separation distance, denoted as ⁇ , ⁇ ' > ⁇ > 1 mm and equal to the center distance of two adjacent positioning concavities and convexities in a row of the positioning concavities and convexities;
  • the relative moving parts of the micrometric mechanism are respectively fixed on the front sub-scale and the rear sub-foot, so that the micrometric mechanism can generate a working stroke; the measuring mechanism only measures and displays the rear pair The displacement distance of the ruler relative to the front sub-foot.
  • the clutch mechanism is a V-shaped convex portion and a V-shaped concave portion that cooperate with each other.
  • the positioning axis is a ball head shaft.
  • the positioning unevenness is a positioning hole, and the diameter of the positioning hole is smaller than the ball diameter of the ball head shaft.
  • the outer circumferential surface of the roller is flush with the edge surface of the drive rod.
  • a double zero machine chronograph caliper comprising a double zero ruler body and a measuring mechanism; the double zero ruler body comprises a main ruler and a secondary ruler; the measuring mechanism is a mechanical indicator table with a gear set;
  • the ruler has a static claw and a main ruler body, and the main ruler body is marked with an integer multiple of an integer multiple of 1 mm, and the starting integer inscribed closest to the static claw is the original zero;
  • the sub-footboard accommodates the main ruler body and can be self-locking relative to the main ruler body or move along the arrangement direction of the integer score line;
  • the sub-foot has a front sub-foot and a rear sub-foot, and the rear sub-foot is movable within a limited range with respect to the front sub-foot, and the moving direction is parallel to the arrangement direction of the integer engraving;
  • the front sub-foot has a momentum claw and a measurement target;
  • the front sub-foot is responsible for measuring an integer value of the measured value, and the second sub-foot is responsible for measuring a difference between the measured value and the integer value;
  • the front sub-foot is a frame, the lower part of the frame is pivotally connected with a lever, and the free end of the lever is provided with a freely rotatable roller, the roller is adjacent to a lower side of the main ruler;
  • the lever and The rear sub-foot is provided with a cooperative clutch mechanism.
  • the front auxiliary ruler further has a self-locking mechanism composed of a locking shaft and a compression spring;
  • the locking shaft is provided with a locking surface closely contacting the main ruler body, thereby the front auxiliary ruler Locking on the main ruler body and not moving;
  • one end of the lock shaft abuts the lever, and the force exerted by the lever on the lock shaft causes the lock surface and the main ruler Separating the ruler such that the locking state between the front sub-foot and the main ruler is released, and the front sub-foot can be moved along the direction of the integer engraving;
  • the lever is applied to After the force on the locking shaft is revoked, the compression spring resets the locking shaft, and restores the locking shaft to a locking state closely resisting the main ruler body;
  • the rear sub-foot is also a frame body, and the rear sub-foot has a positioning shaft that can only move in the axial direction, the positioning shaft portion is received in the frame body, and the positioning shaft is provided with an elastic component.
  • the elastic element can reset the positioning shaft after the external force that causes the displacement thereof to be cancelled;
  • the main ruler is provided with a row of positioning concave and convex portions, and the shape of the positioning concave and convex is matched with the radial sectional shape of the positioning shaft, and the number of the positioning concave and convex portions can at least make the arrangement length equal to the calibration range, each of the The shape and the size of the positioning concavities and convexities are the same, and the center of each of the positioning concavities and convexities maintains a fixed correspondence relationship with the integer engraving line, and the center distances of two adjacent positioning concavities and convexities are equal;
  • the front and rear sub-foots are separated by a small distance in the direction along the integer engraving line, denoted as ⁇ '; the front sub-foot and the rear sub-foot are provided with matching limiting devices.
  • the limiting device makes the maximum displacement distance of the rear sub-scale relative to the front sub-footboard > ⁇ '; when the clutch mechanism is closed, the front and rear sub-foots are arranged along the direction of the integer engraving Separation distance, denoted as ⁇ , ⁇ ' > ⁇ > 1 mm and equal to the center distance of two adjacent positioning concavities and convexities in a row of the positioning concavities and convexities;
  • the frame of the rear sub-foot extends toward the original zero position, and the protruding portion extends into the front of the front sub-foot, and a short rack is fixed on the protruding portion; a resilient spring 4 is spliced to the projection to abut the projection to the lower side of the main ruler; the mechanical watch with the gear set is fixed to the front sub-foot; the gear set and The short rack is engaged in the inner space of the front sub-foot, and the maximum value of the meshing stroke is ⁇ ';
  • the mechanical indicator with the gear set only measures and displays the displacement distance of the rear sub-scale relative to the front sub-foot.
  • a double zero electronic watch caliper comprising a double zero ruler and a measuring mechanism; the double zero ruler comprises a main ruler and a secondary ruler; the measuring mechanism is a line displacement electronic sensor; the main ruler has a static quantity a claw and a main ruler body, wherein the main ruler body is marked with an integer multiple of an integer multiple of 1 mm, and the starting integer of the nearest static stitch is the original zero;
  • the main ruler body is accommodated and movable relative to the main ruler body or in an arrangement direction of the integer score line;
  • the auxiliary ruler has a front sub-foot and a rear sub-foot, and the rear sub-foot And moving in a limited range relative to the front sub-foot, the moving direction is parallel to the arrangement direction of the integer engraving;
  • the front sub-foot has a momentum claw and a measurement; the front sub-rule is responsible for measuring an integer value of the measured value
  • the rear sub-foot is responsible for measuring a difference between the measured value and the integer value;
  • the front sub-foot is a frame, the lower part of the frame is pivotally connected with a lever, and the free end of the lever is provided with a freely rotatable roller, the roller is adjacent to a lower side of the main ruler; the lever and The rear sub-foot is provided with a cooperative clutch mechanism.
  • the roller When the roller is pressed to contact the lower side of the main ruler, the lever is deflected, and the clutch mechanism is closed.
  • the front, The rear sub-scale forms a rigid structure of synchronous displacement; the roller is released, the lever is reset, and the clutch mechanism is separated;
  • the front auxiliary ruler further has a self-locking mechanism composed of a locking shaft and a compression spring; the locking shaft is provided with a locking surface closely contacting the main ruler body, thereby the front auxiliary ruler Locking on the main ruler body and not moving; one end of the lock shaft abuts the lever, and the force exerted by the lever on the lock shaft causes the lock surface and the main ruler Separating the ruler, thereby releasing the locking state between the front sub-foot and the main ruler, and the front sub-foot can be along the integer engraving Moving in an alignment direction; after the force applied by the lever on the locking shaft is undone, the compression spring resets the locking shaft, and the locking shaft is restored to closely resist the main ruler Locked state
  • the rear sub-foot is also a frame body, and the rear sub-foot has a positioning shaft that can only move in the axial direction, the positioning shaft portion is received in the frame body, and the positioning shaft is provided with an elastic component.
  • the elastic element can reset the positioning shaft after the external force that causes the displacement thereof to be cancelled;
  • the main ruler is provided with a row of positioning concave and convex portions, and the shape of the positioning concave and convex is matched with the radial sectional shape of the positioning shaft, and the number of the positioning concave and convex portions can at least make the arrangement length equal to the calibration range, each of the The shape and the size of the positioning concavities and convexities are the same, and the center of each of the positioning concavities and convexities maintains a fixed correspondence relationship with the integer engraving line, and the center distances of two adjacent positioning concavities and convexities are equal;
  • the front and rear sub-foots are separated by a small distance in the direction along the integer engraving line, denoted as ⁇ '; the front sub-foot and the rear sub-foot are provided with matching limiting devices.
  • the limiting device makes the maximum displacement distance of the rear sub-scale relative to the front sub-footboard > ⁇ '; when the clutch mechanism is closed, the front and rear sub-foots are arranged along the direction of the integer engraving Separation distance, denoted as ⁇ , ⁇ ' > ⁇ > 1 mm and equal to the center distance of two adjacent positioning concavities and convexities in a row of the positioning concavities and convexities;
  • the drive shaft is provided with a sealed bearing at the waterproof sealing box;
  • the line displacement electronic sensor measures and displays only the displacement distance of the rear sub-scale relative to the front sub-foot.
  • a double zero electronic watch caliper comprising a double zero ruler and a measuring mechanism; the double zero ruler comprises a main ruler and a secondary ruler; the measuring mechanism: an angular displacement electronic sensor; a static claw and a main ruler body, wherein the main ruler body is marked with an integer multiple of an integer multiple of 1 mm, and the starting integer integer line closest to the static claw is the original zero position;
  • the sub-footboard accommodates the main ruler body and is movable relative to the main ruler body or moves along the arrangement direction of the integer score line; the sub-foot has a front sub-foot and a rear sub-foot, the rear
  • the auxiliary ruler is movable within a limited range with respect to the front sub-foot, and the moving direction is parallel to the arrangement direction of the integer score line; the front sub-foot has a momentum claw and a measurement mark; and the front sub-foot is responsible for measuring the measured value.
  • An integer value, the second sub-foot is responsible for measuring a difference between the measured value and the integer value;
  • the front sub-foot is a frame, the lower part of the frame is pivotally connected with a lever, and the free end of the lever is provided with a freely rotatable roller, the roller is adjacent to a lower side of the main ruler; the lever and The rear sub-foot is provided with a cooperative clutch mechanism.
  • the roller When the roller is pressed to contact the lower side of the main ruler, the lever is deflected, and the clutch mechanism is closed.
  • the front, The rear sub-scale forms a rigid structure of synchronous displacement; the roller is released, the lever is reset, and the clutch mechanism is separated;
  • the front auxiliary ruler further has a self-locking mechanism composed of a locking shaft and a compression spring;
  • the locking shaft is provided with a locking surface closely contacting the main ruler body, thereby the front auxiliary ruler Locking on the main ruler body and not moving;
  • one end of the lock shaft abuts the lever, and the force exerted by the lever on the lock shaft causes the lock surface and the main ruler Separating the ruler such that the locking state between the front sub-foot and the main ruler is released, and the front sub-foot can be moved along the direction of the integer engraving;
  • the lever is applied to After the force on the locking shaft is revoked, the compression spring resets the locking shaft, and restores the locking shaft to a locking state closely resisting the main ruler body;
  • the rear sub-foot is also a frame body, and the rear sub-foot has a positioning shaft that can only move in the axial direction, the positioning shaft portion is received in the frame body, and the positioning shaft is provided with an elastic component.
  • the elastic element can reset the positioning shaft after the external force that causes the displacement thereof to be cancelled;
  • the main ruler is provided with a row of positioning concave and convex portions, and the shape of the positioning concave and convex is matched with the radial sectional shape of the positioning shaft, and the number of the positioning concave and convex portions can at least make the arrangement length equal to the calibration range, each of the Describe the shape of the bump and The same size, the center of each of the positioning concavities and convexities maintains a fixed correspondence relationship with the integer engraving line, and the center distances of two adjacent positioning concavities and convexities are equal;
  • the roller is pressed to close the clutch mechanism, and the center of symmetry of the positioning axis coincides with the center of a certain positioning concave and convex, and the positioning concave and convex is the initial positioning unevenness;
  • the front and rear sub-foots are separated by a small distance in the direction along the integer engraving line, denoted as ⁇ '; the front sub-foot and the rear sub-foot are provided with matching limiting devices.
  • the limiting device makes the maximum displacement distance of the rear sub-scale relative to the front sub-footboard > ⁇ '; when the clutch mechanism is closed, the front and rear sub-foots are arranged along the direction of the integer engraving Separation distance, denoted as ⁇ , ⁇ ' > ⁇ > 1 mm and equal to the center distance of two adjacent positioning concavities and convexities in a row of the positioning concavities and convexities;
  • the frame of the rear sub-foot extends in a direction close to the original zero position, and the protrusion 2 extends into the front of the front sub-segment, and a resilient spring 2 abuts the protrusion
  • the second portion of the protruding portion 2 is in close contact with the lower surface of the main ruler;
  • a short rack 2 is fixed on the protruding portion 2 in the inner space of the front sub-foot;
  • the angular displacement sensor has a gear set 2 fixed to the front sub-foot, the output end of the gear set 2 is a rotating shaft 2; the gear set 2 and the short rack 2 are in the front sub-foot There is no gap engagement in the inner space, and the maximum value of the meshable stroke is ⁇ '; the angular displacement sensor further has a waterproof sealing box 2 fixed to the front sub-foot, the rotating shaft is traversed and enters the waterproof In the sealed box 2, there is a waterproof sealed bearing 2 at the crossing; the waterproof sealing box 2 is provided with a circuit board 2, and the rotating shaft 2 is fixed with a circular moving grating in the waterproof sealing box 2, the circle
  • the shape moving grid can rotate synchronously with the rotating shaft; the circular moving grating and the circuit board 2 are coupled by a circuit, and the angular position of the circular moving grating relative to the circuit board 2 is detected.
  • a double zero vernier caliper comprising a double zero ruler and a measuring mechanism; the double zero ruler comprises a main ruler and a secondary ruler; the measuring mechanism is a cursor subdivision device; the main ruler has a static claw and a main ruler body, the main ruler body is marked with an integer multiple of an integer multiple of 1 mm, and the initial integer mark from the static claw is the original zero; Depressing the main ruler body and being movable relative to the main ruler body or moving along the arrangement direction of the integer score line;
  • the sub-foot has a front sub-foot and a rear sub-foot, and the rear sub-foot is movable within a limited range with respect to the front sub-foot, and the moving direction is parallel to the arrangement direction of the integer engraving;
  • the front sub-foot has a momentum claw and a measurement target;
  • the front sub-foot is responsible for measuring an integer value of the measured value, and the second sub-foot is responsible for measuring a difference between the measured value and the integer value;
  • the front sub-foot is a frame, the lower part of the frame is pivotally connected with a lever, and the free end of the lever is provided with a freely rotatable roller, the roller is adjacent to a lower side of the main ruler; the lever and The rear sub-foot is provided with a cooperative clutch mechanism.
  • the roller When the roller is pressed to contact the lower side of the main ruler, the lever is deflected, and the clutch mechanism is closed.
  • the front, The rear sub-scale forms a rigid structure of synchronous displacement; the roller is released, the lever is reset, and the clutch mechanism is separated;
  • the front auxiliary ruler further has a self-locking mechanism composed of a locking shaft and a compression spring;
  • the locking shaft is provided with a locking surface closely contacting the main ruler body, thereby the front auxiliary ruler Locking on the main ruler body and not moving;
  • one end of the lock shaft abuts the lever, and the force exerted by the lever on the lock shaft causes the lock surface and the main ruler Separating the ruler such that the locking state between the front sub-foot and the main ruler is released, and the front sub-foot can be moved along the direction of the integer engraving;
  • the lever is applied to After the force on the locking shaft is revoked, the compression spring resets the locking shaft, and restores the locking shaft to a locking state closely resisting the main ruler body;
  • the rear sub-foot is also a frame body, and the rear sub-foot has a positioning shaft that can only move in the axial direction, the positioning shaft portion is received in the frame body, and the positioning shaft is provided with an elastic component.
  • the elastic element can reset the positioning shaft after the external force that causes the displacement thereof to be cancelled;
  • the main ruler is provided with a row of positioning concave and convex portions, and the shape of the positioning concave and convex is matched with the radial sectional shape of the positioning shaft, and the number of the positioning concave and convex portions can at least make the arrangement length equal to the calibration range, each of the The shape and the size of the positioning concave and convex are the same, and the center of each of the positioning concave and convex portions maintains a fixed correspondence with the integer inscribed line, and is adjacent to each other.
  • the center distances of the two positioning protrusions are equal; when the measurement of the front sub-scale is aligned with the original zero position, pressing the roller to close the clutch mechanism, the center of symmetry of the positioning axis and some The center of the positioning unevenness is coincident, and the positioning concave and convex is the initial positioning unevenness;
  • the front and rear sub-foots are separated by a small distance in the direction along the integer engraving line, denoted as ⁇ '; the front sub-foot and the rear sub-foot are provided with matching limiting devices.
  • the limiting device makes the maximum displacement distance of the rear sub-scale relative to the front sub-footboard > ⁇ '; when the clutch mechanism is closed, the front and rear sub-foots are arranged along the direction of the integer engraving Separation distance, denoted as ⁇ , ⁇ ' > ⁇ > 1 mm and equal to the center distance of two adjacent positioning concavities and convexities in a row of the positioning concavities and convexities;
  • the cursor subdivision device has a sliding plate fixed to the front sub-segment and a driving member fixed to the rear sub-segment; a linear displacement amplifier is fixed on the sliding plate, and the linear displacement amplifier The input end is provided with the driving member, the output end is provided with a vernier cylinder, the vernier cylinder can be slidably regulated in the sliding slot plate, and the linear displacement amplifier passes the driving member to the rear sub-foot After the displacement distance is received and amplified, the output is output to the vernier cylinder; a row of two small distances of 1 mm is engraved on the sliding plate, and a vernier line is engraved on the vernier And coplanar with the small reticle, the swimable vernier line and the relatively fixed small scribe line together form a coplanar non-parallax cursor reading device;
  • the arrangement of the 9 mm arrangement length of the small score line is equally divided into 10 equal parts, the total length of the small score lines is 10 X ( ⁇ + 1 ), and the display precision of the cursor subdivision device is 0.01 mm. ;
  • the cursor subdivision device only measures and displays the displacement distance of the rear sub-scale relative to the front sub-foot.
  • the invention has the beneficial effects that the double zero caliper of the invention breaks the old principle of the caliper design which has never changed for two thousand years, and adopts the new principle of "double zero position measurement", which can face the whole modern caliper at one time.
  • the four technical limits have resulted in unprecedented new changes in traditionally known calipers, and technological advances have been remarkable. Since the effects are multifaceted and chained, more of their effects will be presented in the specific examples.
  • FIG. 1 is a schematic diagram of the design of a double zero caliper according to the present invention.
  • FIG. 2 is a schematic structural view of a double zero ruler according to the present invention.
  • FIG 3 is another schematic structural view of the double zero ruler according to the present invention.
  • the frame cover of the frame 213 is not shown in the figure;
  • FIG. 4 is a partial structural view of the double zero ruler according to the present invention.
  • the main ruler 100 is not shown in the figure
  • FIG. 5 is a schematic structural view of the rear sub-foot according to the present invention.
  • Figure 6 is a schematic view showing the assembly structure of the front sub-foot 210 and the rear sub-foot 220.
  • the frame cover of the front sub-foot 210 and the frame cover of the rear sub-foot are not shown;
  • FIG. 7a is a schematic diagram showing the structure of the ordered relationship between the original zero position 111, the front sub-foot 210, the rear sub-foot 220, the positioning concave-convex 150, and the integer engraved line 112.
  • FIG. 7b is an enlarged view of FIG. 7a H;
  • Figure 8a is a first design schematic diagram of the double-zero scale display of the double-zero scale body. For the sake of clarity, the actual position of the spherical center is removed from the positioning hole to the upper line of the connecting line, Figure 8b ⁇ Figure 8d is the same;
  • 8b is a second design schematic diagram of the double zero scale small value display according to the present invention.
  • 8c is a third design schematic diagram of the double zero scale small value display according to the present invention.
  • 8d is a fourth design schematic diagram of the double zero scale small value display according to the present invention.
  • FIG. 9 is a schematic view showing a third structure of the double-zero gauge body according to the present invention, wherein the clutch mechanism 400 is in a closed state;
  • FIG. 10a is a schematic view showing the internal structure of the double-zero mechanical watch caliper according to the present invention.
  • Figure 10b is a schematic view showing the external structure of the double-zero mechanical watch caliper according to the present invention.
  • Figure 10c is a schematic view showing the meshing of the double zero mechanical watch caliper rack and the gear set according to the present invention.
  • FIG. 11a is a schematic diagram showing the internal structure of the double-zero electronic timepiece caliper according to the present invention
  • Figure lib is a schematic diagram showing the external structure of the double-zero electronic meter caliper according to the present invention
  • FIG. 12a is a schematic structural view of a double-zero electronic watch caliper according to the present invention, the electronic watch caliper comprising a double zero ruler and a conventionally known angular displacement electronic sensor;
  • Figure 12b is a schematic view showing the structure of the short rack 701 and the gear set 900 of the electronic watch caliper shown in Figure 12a without gap engagement
  • Figure 12c is a schematic view showing the internal structure of the waterproof seal box 2000 of the electronic watch caliper shown in Figure 12a;
  • 13a is a schematic diagram showing the external structure of the double-zero vernier caliper according to the present invention.
  • Figure 13b is an enlarged view of Figure 13a I;
  • Figure 13e is a partial structural view of the double-zero vernier caliper of the present invention. For clarity of display, the vernier cartridge 215 is not shown. detailed description
  • each of the calipers is marked with or can be marked with a set of integer reticle with a minimum unit of 1 mm, and the initial value of the integer reticle is "0", which is the present invention.
  • the caliper is always aligned or crossed over the position of an integer reticle on the main ruler, that is, the position where the measured value L is located.
  • the value indicated by the integer reticle is The integer value L1 described in the present invention.
  • the position where the integer reticle is located is the fractional zero of the present invention.
  • the distance value between the fractional zero and the measured value is the fractional value 1 of the present invention.
  • the measured value L is the sum of the integer value L1 and the small value t.
  • the core of the double zero caliper of the present invention is the measurement of the optimized fractional value t.
  • the double zero ruler includes a double zero ruler and a micrometric mechanism; and the double zero ruler includes a main ruler 100 and a secondary ruler 200 for containing the main ruler 100.
  • the main ruler 100 has a static claw 120 and a main ruler 110.
  • the main ruler 110 is marked with an integer multiple 112 of an integer multiple of 1 mm, and the integer score 112 is closest to the static claw 120.
  • the starting line is the original zero position 111.
  • the sub-foot 200 has a front sub-foot 210 and a rear sub-foot 220.
  • the front sub-foot 210 has a measuring target 211 and a momentum claw 212.
  • the rear sub-foot 220 can slide relative to the front sub-foot 210 within a certain range, and the sliding direction is an integer.
  • the alignment of the scribe lines 112 is parallel.
  • the front sub-foot 210 is responsible for measuring the integer value
  • the rear sub-foot 220 is responsible for measuring the difference between the measured value and the integer value.
  • the front sub-foot 210 is a frame 213.
  • the lower portion of the frame 213 is pivotally connected to a lever 300 which is rotatable only around the center 0.
  • the free end of the lever 300 is provided with a freely rotatable roller 310.
  • the lever 300 and the rear sub-foot 220 are provided with a cooperative clutch mechanism 400.
  • the clutch mechanism 400 is a V-shaped projection 410 and a V-shaped recess 420.
  • a small distance is separated between the front sub-foot 210 and the rear sub-foot 220, and the maximum value of the distance is denoted as ⁇ '; when the clutch mechanism 400 is tightly closed, the front sub-foot 210 and the rear sub-foot 220 form a rigidly displaceable rigidity.
  • the structure, and the relative distance between the front sub-foot 210 and the rear sub-foot 220 is a fixed value ⁇ . Obviously, ⁇ ⁇ ⁇ '.
  • the front sub-foot 210 is further provided with a self-locking mechanism 500 composed of a locking shaft 510 and a compression spring 520.
  • the locking shaft 510 has a locking surface 511 and an upper side of the main scale body 110. The 140 is tightly resisted, so that the front sub-foot 210 is locked on the main ruler 110 and cannot move freely; one end of the locking shaft 510 is sleeved with the compression spring 520, and the other end 512 abuts the lever 300.
  • the rear sub-foot 220 is also a frame 222.
  • the frame 222 incorporates a positioning shaft 600.
  • the positioning shaft 600 is a ball end shaft.
  • the positioning shaft 600 has a shaft body 610, a ball head 620 and an exposed handle 630.
  • the positioning shaft 600 can only be reciprocally displaced along its axis direction; the shaft body 610 is provided with an elastic spring piece 223, and the elastic spring piece 223 can make the positioning shaft
  • the 600 is reset with the ball head 620 after the external force that causes it to be displaced.
  • the front sub-frame body 213 is provided with a limiting block 213a
  • the rear sub-frame body 222 is provided with a limiting hole 222a.
  • the limiting block 213a and the limiting hole 222a cooperate with each other to limit the rear sub-foot 220 relative to the front.
  • the maximum moving distance of the sub-foot 210 is > ⁇ '.
  • the lower side 130 of the main ruler body 110 is provided with a row of positioning irregularities.
  • the row of positioning irregularities is a row of positioning holes 150 (for convenience of description, it is referred to as a row of holes 150);
  • Each positioning hole (referred to as a hole 150 for convenience of description) has the same shape and size, and its inner diameter is smaller than the ball diameter of the ball head 620; the center distance between each two adjacent holes 150 is equal And the center of each hole 150' is maintained with a corresponding scribe line of the integer reticle 112 - a corresponding fixed relationship, which can be selected and determined according to needs.
  • each aperture 150 preferably held in an even fixed relationship with the even number of reticle lines of the integer reticle 112, at which point the center distance between each two adjacent apertures 150 is 2 mm.
  • the total number of holes 150 is at least half of the value of the calibration range.
  • Fig. 7b is an enlarged view of Fig. 7aH.
  • the starting position of the row of holes 150 is determined such that when the momentum claw 212 of the sub-foot 200 and the static claw 120 of the main ruler 100 are closed, the measurement mark 211 of the front sub-foot 210 is aligned with the original zero position of the integer engraving 112 At 111 o'clock, the roller 310 is pressed to close the clutch mechanism 400, and the center of the ball 620 coincides exactly with the center of a certain hole 150'.
  • the position of the hole 150' is the starting position of the hole 150. .
  • the hole center of the position-determined hole 150 is equivalent to the fractional zero.
  • the hole 150 which is equivalent to the position of the decimal place, is determined to mean that: after the current sub-foot 210 and the rear sub-foot 220 are synchronously displaced and leave the original zero position 111, the front sub-foot 210 is located at the main ruler.
  • the positioning axis The radial side force of 600 must drive the rear sub-foot 220 to generate displacement relative to the front sub-foot 210, and the displacement distance ⁇ of the rear sub-foot 220 relative to the front sub-foot 210 is necessarily crossed with the index 211 of the front sub-foot 210 over a certain integer.
  • the distance t of the reticle is related to the small value to be measured. The relationship between T and t is:
  • Hypothesis 1 When the positioning shaft 600 is only unidirectionally stressed along the axis, the ball head 620 will automatically slide down into a certain hole 150 closest thereto, and the hole center of the hole 150 naturally coincides with each other. There are two situations in which two things will happen:
  • the necessary conditions for realizing this basis are: 1
  • the ball head shaft 600 must be pushed in the 3 o'clock direction to force the ball head 620 to fall into the nearest hole 150 (close to the original zero position 111)
  • 2 must have a limit device to absolutely prohibit the ball head 620 from falling into the nearest rear hole 150 (backward from the original zero position 111) and absolutely prohibit the ball head 620 from exceeding the nearest previous hole 150, and fall into the previous hole 150. Since the T value is never greater than 2 mm, the free separation distance ⁇ ' between the front sub-foot 210 and the rear sub-foot 220 is selected to be slightly larger than 2 mm.
  • Step 1 Press the thumb and tilt the roller 310 to move the sub ruler 200.
  • the lever 300 immediately deflects counterclockwise, so that the original self-locking state of the front sub-foot 210 and the main ruler 110 is released, and the front sub-foot 210 can move freely along the main ruler 110; and the V-shaped convex portion 410
  • the V-shaped recess 420 is brought closer to the close fit, and the clutch mechanism 400 is closed, so that the front and rear sub-footers 210 and 220 form a rigid whole, and the front sub-foot 210 can drive the rear sub-foot 220 to move synchronously; and the front sub-foot 210 and The separation distance between the rear sub-footers 220 is restored to the original set value ⁇ .
  • the pressing force of the thumb can be simultaneously applied to the roller 310 to be moved to displace the sub-foot 200.
  • the outer circular surface 311 of the roller 310 is designed to be flush with the edge face 301 of the lever 300.
  • Step 2 The thumb leaves the wheel 310.
  • the value represented by the integer engraved line just aligned or crossed by the index 211 of the front sub-foot 210 is the integer value L1 defined by the present invention.
  • the portion 410 is separated from the V-shaped recess 420, and the clutch mechanism 400 is separated.
  • the front sub-foot 210 and the rear sub-foot 220 are no longer a rigid unit, and the rear sub-foot 220 can be displaced relative to the self-locking front sub-foot 210.
  • Step 3 Push the ball shaft with your thumb.
  • the roller 310 After the thumb leaves the roller 310, it slides to the left and pushes and presses the exposed handle 630 of the positioning shaft 600 in the direction of 3 o'clock, so that the ball 620 is forced to enter the hole 150 closest to it in the direction of the front sub-foot 210. Until the push and press can not continue, at this time, the center of the ball 620 and the hole 150 of the hole 150 must be coaxially coincident.
  • the rear sub-foot 220 is also synchronously displaced by the same distance as the ball head 620 moves, driven by the radial force of the positioning shaft 600.
  • the measuring mechanism will be able to measure and display the displacement of the sub-foot 220 relative to the front sub-foot 210 during the third step.
  • the amount of displacement is the fractional value t defined by the present invention.
  • the integer value L1 obtained in the second step is added to the small value t to obtain a complete measured value.
  • the double zero ruler of the present invention has an action of pushing the positioning handle 600 to the exposed handle 630 more than the conventionally known caliper operation, but it can meet the requirements of the double zero position measurement and can bring unprecedented changes to the caliper. At the same time, the action itself has two other technical values that cannot be ignored: beneficial effects:
  • Double zero mechanical watch caliper according to the present invention
  • the caliper with table caliper is more efficient than the vernier caliper, and its reliability and requirements for the use environment are superior to those of the electronic caliper, so it has a large user population.
  • the calipers with the watch are all without exception: the rack is fixed on the main ruler, the indicator with the gear is fixed on the sub-foot, the gear and the rack are always engaged, and the length of the rack must be greater than the standard range.
  • the disadvantages of this configuration are: 1 The rack is difficult to manufacture and the process cost is high.
  • a metric rack with a display accuracy of 0.02 mm has a modulus of only 0.19894, a full height of only 0.45 mm, a total rack width of 3.2 mm, and a total thickness of 1.6 mm.
  • the current range with the caliper is not comparable to the vernier caliper and the electronic caliper.
  • the maximum range of the latter two has been at least 4 meters, and even the current caliper with a range of more than 1 meter is still blank. 2 Measurement accuracy is difficult to guarantee.
  • the rack as the measuring reference element is thin, narrow, and long, even if the rack is manufactured, deformation occurs during the process of turning and mounting the rack.
  • the rack deformation means that the measurement standard is deviated, and the measurement accuracy is very high. It is difficult to achieve full scale is accurate. 3 Short service life.
  • the movable surface of the movable caliper is rapidly oscillating (pulling and returning) during the long distance from the original zero to the measured point. When the return to zero is reset, the gear and the rack are again reversed and the long-distance violent meshing transmission is performed. The frequency of such violent meshing transmission is extremely high, and the ineffective wear is extremely large.
  • the ineffective wear drive of the gears and racks accounts for about 99%, which greatly shortens the effective service life of the toothed components. 4 It is common to know that the rack with the caliper is open when measuring. It has no protective ability. Small foreign objects such as iron filings and grinding particles can fall into the teeth unimpeded, and can not be used in dust occasions. The exposed racks are also prone to sludge build-up between the teeth, so that the caliper is prone to poor pulling or forced pulling. The defect of the rack opening has plagued the gauge industry for decades. Until the Chinese patent of 200620006379.8 publicized a high-protection belt gauge caliper, the problem of rack opening was solved for the first time. What is insufficient is that the invention does not solve the tooth-shaped element. The ineffective wear and tear is extremely huge.
  • the purpose of the double-zero mechanical watch caliper of the invention is to realize a pure mechanical caliper with short rack, long life, high protection, constant measuring force, self-locking and self-locking.
  • a double zero mechanical watch caliper comprising the double zero gauge body and the measuring mechanism according to the present invention, wherein the micrometric mechanism is composed of a conventionally known mechanical gauge 700;
  • the maximum meshing stroke of the required rack and pinion of 700 is ⁇ ', but much smaller than the calibrated range.
  • the frame body 222 of the rear sub-foot 220 extends out of the protrusion 224, and the protrusion 224 extends straight into the interior of the front sub-foot 210, and functions as a spring reed 225. It is next to the underside 130 of the main ruler.
  • the short rack 701 is fixed to the protruding portion 224 in the inner space of the front sub-foot 210, and meshes with the gear set 702 of the mechanical gauge 700 fixed on the front sub-foot 210, and can be meshed. Is ⁇ '. According to the working steps of the double zero ruler, the measuring operation of the double zero mechanical watch caliper can be completed.
  • the reading method of the double-zero mechanical watch caliper is exactly the same as that of the conventionally known watch caliper: first reading the integer on the main ruler, then reading the decimal number expressed by the circular scale on the dial, and then adding the two numbers, that is, the measured value .
  • the dial pointer can be rotated by only half a turn, that is, 0.5 ⁇ to complete the measurement process.
  • the rack has higher protection ability and can be sealed.
  • the protection ability against solid pollutants can be greatly improved.
  • the installation of the rack does not occupy the main ruler area, so the integer reticle plane is several times more spacious, which is clearer and easier to read.
  • the scale used in 7 does not need to be specially designed and manufactured, and the core components are highly versatile.
  • the measuring force is constant, and is not affected by the force of the measuring person. It avoids the difference of the indication value caused by the difference of the measuring force. The measurement result is more objective and consistent, and the transmission quality of the quantity is improved.
  • 9 can be used for reading and separating. It is especially convenient for depth measurement or diameter measurement in ordinary lathe operation or other difficult parts. It is not necessary to turn the head to read or not to read. 10 has a strong self-locking function. Compared with the traditional self-locking caliper, the self-locking force is more powerful, but the self-locking is relieved and the lever is far easier and labor-saving. Fourth, the double zero electronic watch caliper of the present invention
  • the waterproof electronic caliper made by the principle of the position shifting grid has not been available yet. The reason is that it is a well-recognized problem to realize a long gate dynamic water seal with the same length as the main ruler in a very limited space.
  • the linear displacement capacitive gate sensor has strong advantages in terms of technology maturity, production batch, cost performance, battery life, and diamagnetic performance. It is technically costly to give up so many advantages to achieve the single purpose of waterproofing.
  • the purpose of the double-zero electronic watch caliper of the invention is to realize a quasi-electronic waterproof caliper which can be self-locking, self-locking, and can be separated and can be made by various electronic displacement sensors.
  • a double zero electronic meter caliper comprising the double zero position body and the micrometric mechanism according to the present invention, wherein the micrometric mechanism is composed of various conventionally known various line displacement electronic sensors;
  • the line displacement electronic sensor comprises a capacitive line displacement electronic sensor; the maximum coupling stroke of the line displacement electronic sensor is slightly larger than the original set value ⁇ , but much smaller than the calibration range.
  • a waterproof sealing box 800 is fixed on the front sub-foot 210, and all electronic components such as the circuit board 801 are mounted on the waterproof sealing box 800. internal.
  • a drive shaft 225 and a rear sub-foot 220 are fixed.
  • the drive shaft 225 traverses and extends into the inner space of the waterproof sealing box 800, and drives the movable grid 802 inside the waterproof sealing box 800 to be synchronized or moved synchronously.
  • the drive shaft 225 and the waterproof sealing box 800 are provided with a sealed bearing (not shown) at the crossing portion, which is waterproof, oil-proof and dust-proof.
  • the integer bits displayed by the electronic display 803 are solidified to zero by circuit processing. According to the working steps of the double zero scale body, the measuring operation of the double zero position electronic meter caliper can be completed.
  • the reading method of the double-zero electronic meter caliper is exactly the same as the conventional known table caliper: first reading the integer on the main ruler, then reading the decimal number directly displayed by the number on the display screen, and then adding the two numbers, that is, measuring value.
  • the electronic timepiece caliper can also employ various angular displacement electronic sensors, including the angular angular displacement electronic sensor. It is realized as follows: a double zero electronic meter caliper, which is composed of a double zero scale body and a measuring mechanism according to the present invention, wherein the measuring mechanism is composed of a conventionally known angular displacement electronic sensor;
  • the frame body 222 of the rear sub-foot 220 extends out of the convex portion 224 in a direction close to the original zero position.
  • the projection 2 224' extends into the front sub-foot 210, a resilient reed 2 225' 4 splicing projection 2 224' and the projection 2 224' is in close contact with the lower side 130 of the main ruler;
  • the short racks 701' are fixed to the projections 224' in the inner space of the front sub-foot 210.
  • the angular displacement sensor has a gear set two 900 fixed to the front sub-foot, and the output end of the gear set two 900 is a rotating shaft Two 901; the gear set two 900 and the short rack two 701' have no gap engagement in the inner space of the front sub-foot 210, and the maximum value of the engageable stroke is ⁇ '; the angular displacement sensor also has a solid with the front sub-foot 210 Installed waterproof sealed box two 1000, rotating shaft two 901 through and into the waterproof sealed box two 1000 inside, there is a waterproof sealed bearing two 1001 at the crossing, can be waterproof, oil-proof, dust-proof.
  • the circular moving grid 21003 is fixed inside the waterproof sealing box II 1000 and the rotating shaft 2 901, and can rotate or rest synchronously with the rotating shaft 901.
  • the number of rotation turns generated by the movement can measure and display the linear displacement distance of the rear sub-foot 220 relative to the front sub-foot 210.
  • the integer bits displayed on the electronic display screen 1004 are solidified to 0 by circuit processing.
  • the measuring operation of the double zero position electronic meter caliper can be completed.
  • the reading method of the double-zero electronic meter caliper is exactly the same as the conventional known table caliper: first reading the integer on the main ruler, then reading the decimal number directly displayed by the number on the display screen, and then adding the two numbers, that is, measuring value.
  • a variety of line displacement and angular displacement electronic sensors including a capacitive grid can be used to make a waterproof electronic caliper, which can obtain the waterproof function of the electronic caliper at a low technical cost, and can be used for the power consumption of the capacitive sensor.
  • Comprehensive advantages such as strong ability and low price. 2
  • the vernier caliper is the most commonly used tool for accurately measuring the length by amplifying a small amount. It is reliable, but due to the dense line of the cursor, there are generally 51 vernier lines, which makes it difficult to judge and the reading efficiency is low. Traditional vernier calipers are also limited by the human eye's resolution limit. It is generally considered that the display accuracy can only be up to 0.02 mm and can no longer be high (ie, the most sophisticated caliper cursor subdivision can only be divided into 50 parts by 49 mm) . Although theoretically and manufacturingly, it is possible to set the caliper cursor subdivision device with a display accuracy of 0.01 mm (that is, to divide the 99 mm into 100 copies, as disclosed in Chinese Patent No.
  • the purpose of the double zero vernier caliper of the present invention is to: realize a new type of vernier caliper which is constant measuring force, self-locking, self-locking, and can be separated, and which is more accurate than 0.02 mm but more easily readable.
  • a double zero vernier caliper consisting of the double zero scale body and the measuring mechanism of the present invention, the micrometric mechanism being a conventionally known vernier subdivision device, and a linear displacement amplifier.
  • the maximum effective movement stroke of the cursor subdivision device is ⁇ ⁇
  • is the original set value described in the present invention
  • is the amplification factor of the linear displacement amplifier.
  • ⁇ ⁇ is much smaller than the calibrated range.
  • a driving rod 226 and a rear sub-foot 220 are fixed, and then the sub-foot 220 can be synchronized or moved synchronously; a sliding plate 214 and the front sub-foot 210 are fixed, one
  • the vernier cartridge 215 is free to slide freely within the chute of the chute plate 214; between the drive rod 226 and the vernier cartridge 215, a linear displacement amplifier 216 is attached to the chute plate 214.
  • the driving lever 226 inputs the amount of movement of the rear sub-foot 220 to the linear displacement amplifier 216, amplifies the movement amount by the linear displacement amplifier 216, and outputs it to the vernier cylinder 215 for reception, that is, when the rear sub-foot 220 moves by 0.01 mm.
  • the vernier cylinder 215 can move 0.1 mm in the same direction.
  • a row of two and two small engraved lines 217 with a distance of 1 mm On the inclined surface of the chute plate 214, a segment of the vernier line 218 is engraved on the inclined surface of the vernier cylinder 215 which is coplanar with the small engraved line 217, and the movable vernier line 218 is formed together with the relatively fixed small engraved line 217.
  • a coplanar non-parallax cursor subdivision device the maximum relative movement of the cursor subdivision device is slightly greater than 10 ⁇ .
  • the vernier line 218 on the vernier cylinder 215 is set at a display precision of 0.1 mm (that is, 9 mm of the small reticle 217 is equally divided into 10 equal parts), and since it is enlarged by 10 times, the accuracy value is reduced by 10 times. It is 0.01 mm, so the vernier line 218 is set at an accuracy of 0.1 mm, but the accuracy of the marking is 0.01 mm per grid.
  • the total length of the arrangement of the small score lines 217 is set by the maximum effective movement amount of the rear sub-foot 220 relative to the front sub-foot 210 by 2 mm plus 1 mm and then by 10 times, which is divided into A, ⁇ two-stage applications:
  • one end of the tension spring 219 is internally hooked with the vernier cylinder 215 (not shown), and the other end is hooked to the linear displacement amplifier 216, and the vernier cylinder 215 is internally abutted with the output end 216a of the linear displacement amplifier 216.
  • the vernier cylinder 215 When the output end of the linear displacement amplifier 216 protrudes in the left end direction of the figure, the vernier cylinder 215 is displaced in the same direction, and the tension spring 219 is elongated; when the force for driving the output end 216a disappears, the restoring force of the tension spring 219 drives The vernier cylinder 215 is reset to zero by the reverse displacement, and the output end 216a is also held by the vernier cylinder 2154 while being retracted and reset in the direction of the right end of the figure.
  • the measuring operation of the double zero vernier caliper can be completed.
  • the reading method of the double-zero vernier caliper is not different from the conventional known vernier caliper, and the measuring person does not need to pay attention to whether the application is A or B, and only needs to press the line reading.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Instruments Using Mechanical Means (AREA)

Abstract

一种双零位卡尺,包括双零位尺体和测微机构,双零位尺体包括主尺(100)和副尺(200)。副尺(200)具有前副尺(210)和后副尺(220),后副尺(220)可相对前副尺(210)在有限范围内移动,移动方向与主尺的尺体(110)上标有的整数刻线(112)的排列方向平行。前副尺(210)具有动量爪(212)和测标(211)。前副尺(210)负责测量测量值的整数值,后副尺(220)负责测量测量值与整数值之差。后副尺(220)中设有定位轴(600),前副尺(210)具有自锁机构(500),该卡尺还具有杠杆(300)和离合机构(400),它们共同控制前副尺(210)及后副尺(220)的位移。该双零位卡尺采用了"双零位测量"的新概念,能大幅缩短游标线、量表、电子传感器等现代测微机构的工作行程,理论上可缩短到最大仅为1毫米的程度,为突破现代卡尺的技术极限奠定了极为有利的基础。还提供了一种双零位机械表卡尺、一种双零位电子表卡尺以及一种双零位游标卡尺。

Description

双零位卡尺 技术领域
本发明涉及卡尺技术领域, 具体的, 是一种双零位卡尺, 包括双零位尺体和
测^:机构, 更具体地, 该双零位卡尺为双零位机械表卡尺、 双零位电子表卡尺和
双零位游标卡尺。 技术背景
卡尺是一种年代久远的测量工具, 其古老的历史可以追朔到公元一世纪初, 那时的中国 就已经发明了古代卡尺并应用在生产中。 尽管中国的古代卡尺没有测 :机构, 不能测量小于 1 毫米的数值, 但它已经具有了固定的主尺和能沿主尺运动的副尺, 主尺和副尺上都分别带 有测量爪, 两爪之间可以相对运动, 从而可以卡住被测物进行测量。 这一极具灵便性的结构, 经历了千锤百炼的考验, 成为卡尺结构的经典, 至今仍为一切现代卡尺所恪守享用而无法超 越。 现代卡尺只是多了一套测^:机构, 因而可以测量和显示小于 1毫米的数值。
卡尺因其结构简单、 改动余地不大, 使得卡尺的更新换代周期极其漫长。 从公元 9年中 国制造的古代卡尺算起, 历经 1851年美国制造的第一把游标卡尺、 1973年瑞士制造的第一 把带表卡尺、 1980年日本率先生产的电子卡尺, 前后至今已历时两千年。
迄今为止的所有公知卡尺, 无论是中国的古代卡尺还是世界通用的现代卡尺, 全都是按 照 "单零位" 的概念设计的, 即卡尺的测量值全都是通过离开一个位置固定的原始零位即静 量爪的测量操作而得到的, 它记录的是从原始零位到被测点的位移。 这种 "单零位" 的测量 概念沿用了两千余年, 既取得了巨大成功, 也产生了一些至今无法逾越的技术极限, 那就是: ①游标卡尺的最高显示精度只能达 0.02毫米。 ②带表卡尺的齿条长度必须大于标定量程, 进 而因此制造大于 1米的大量程带表卡尺至今仍是空白。③线位移容栅电子卡尺至今不能防水。 ④所有的公知卡尺都会因测量者用力大小的不同而引起示值差异。 这四大技术极限已成专业 定论, 它们是制造更好卡尺的障碍, 但又难以跨越。 两千年来, 积留在卡尺领域里的上述四 大技术极限, 从未有过突破。 发明内容
针对所述的四大技术极限, 本发明提供一种卡尺设计的新原理, 以及一种能体现该新原 理的卡尺尺体, 和在该尺体上分别安装量表、 电子传感器和游标三种不同测 :机构而成的新 型卡尺。 这些新型卡尺既打破了两千余年从未有变的旧原理, 又完全保留了现代卡尺的经典 特征, 可全面突破所述的四大技术极限。 需要说明, 述及的卡尺尺体和述及的分别安装了三 种不同测^:机构的新型卡尺, 具有技术上的关联性, 它们共同组成本发明内容。
所述的卡尺设计新原理是: 先设定每一个测量值都等于整数值 +小数值之和。主尺设有原 始零位, 用于测量整数值, 并以整数值为小数零位, 用于测量小数值, 简称 "双零位测量"。 根据 "双零位测量" 新原理, 游标、 量表、 电子传感器等现代测微机构都只用于测量相对某 一整数值的小数值, 因此, 其工作行程都可大幅度的缩短, 理论上可缩短到最大仅为 1毫米 的程度。 于是, 带表卡尺上齿条与齿轮之间的啮合行程、 电子卡尺上动定栅之间的耦合行程、 游标卡尺上游标线与整数刻线之间的移动行程, 都将局限在至多 1毫米的理论范围之内, 这 就使突破所述的四大技术极限成为可能。 由于 "双零位测量" 新原理必须通过尺体的改造和 创新而实现, 为此, 特将能体现该新原理的卡尺尺体简称为双零位尺体, 凡在双零位尺体上 安装不同测 机构而形成的卡尺统称为双零位卡尺, 再按测 机构的性质分别称为双零位机 械表卡尺、 双零位电子表卡尺和双零位游标卡尺, 以区别于传统公知。
本发明的技术方案如下: 一种双零位卡尺, 包括双零位尺体和测 机构; 所述双零位尺 体包括主尺和副尺; 所述测 机构为机械量表、 或电子位移传感器、 或游标细分装置; 所述 主尺具有静量爪和主尺尺体, 所述主尺尺体上标有两两距离为 1毫米的整数倍的整数刻线, 距静量爪最近的起始整数刻线为原始零位; 所述副尺包容所述主尺尺体并可相对所述主尺尺 体自锁不动或沿所述整数刻线的排列方向移动;
所述副尺具有前副尺和后副尺, 所述后副尺可相对所述前副尺在有限范围内移动, 移动 方向与所述整数刻线的排列方向平行; 所述前副尺具有动量爪和测标; 所述前副尺负责测量 测量值的整数值, 所述后副尺负责测量测量值与所述整数值之差;
所述前副尺为一框体, 所述框体下部枢接一杠杆, 该杠杆自由端设有一个能自由转动的 滚轮, 该滚轮靠近所述主尺尺体的下侧面; 所述杠杆和所述后副尺上设有相互配合的离合机 构, 按压所述滚轮使其接触所述主尺尺体的下侧面时, 所述杠杆偏转, 所述离合机构闭合, 此时, 所述前、 后副尺形成同步位移的刚性结构; 松开所述滚轮, 所述杠杆复位, 所述离合 机构分开;
所述前副尺上还具由锁紧轴和压缩弹簧组成的自锁机构; 所述锁紧轴上设有锁紧面与所 述主尺尺体紧密抵持, 从而将所述前副尺锁紧在所述主尺尺体上而不能移动; 所述锁紧轴一 端抵接所述杠杆, 所述杠杆施加在所述锁紧轴上的力使所述锁紧面与所述主尺尺体分离, 从 而使所述前副尺与所述主尺尺体之间的锁紧状态解除, 此时所述前副尺可沿所述整数刻线的 排列方向移动; 所述杠杆施加在所述锁紧轴上的力撤销后, 所述压缩弹簧令所述锁紧轴复位, 使所述锁紧轴恢复到与所述主尺尺体紧密抵持的锁紧状态;
所述后副尺也为一框体, 且后副尺具有一仅可沿轴心线方向移动的定位轴, 所述定位轴 部分容置于框体内, 所述定位轴上套装有弹性元件, 该弹性元件可使所述定位轴在令其产生 位移的外力撤销后复位;
所述的主尺上设有一排定位凹凸, 所述定位凹凸的形状与所述定位轴的径向断面形状相 匹配, 所述定位凹凸的数量至少能使其排列长度等于标定量程, 每个所述定位凹凸的形状和 大小都相同, 每个所述定位凹凸的中心都与所述整数刻线保持固定不变的对应关系, 且相邻 两个所述定位凹凸的中心距相等; 当所述前副尺的测标对准所述原始零位时, 按压所述滚轮 使所述离合机构闭合, 所述定位轴的对称中心与某个所述定位凹凸的中心重合, 该定位凹凸 即为起始定位凹凸;
所述前、 后副尺在沿所述整数刻线的排列方向上分离一小段距离, 记为 δ ' ; 所述前副尺 和所述后副尺上设有相互配合的限位装置, 所述限位装置使所述后副尺相对所述前副尺的最 大位移距离 > δ ' ; 所述离合机构闭合时, 所述前、 后副尺在沿所述整数刻线的排列方向上的 分离距离, 记为 δ , δ ' > δ > 1 毫米且等于一排所述定位凹凸中相邻两个定位凹凸的中心 距;
所述测微机构的相对运动部分分别固装在所述前副尺上和所述后副尺上, 使所述测微机 构能够产生工作行程; 所述测 机构仅测量和显示所述后副尺相对所述前副尺的位移距离。
较佳地, 所述离合机构为相互配合的 V型凸部和 V型凹部。
较佳地, 所述定位轴是一球头轴。
较佳地, 所述定位凹凸为定位孔, 定位孔的直径小于所述球头轴的球径。
较佳地, 按压所述滚轮使其接触主尺的下侧面时, 所述滚轮的外圆面与所述驱动杆的边 缘面平齐。
较佳地, 所述定位凹凸的中心与所述整数刻线的偶数刻线保持一一对应的固定关系。 一种双零位机戈表卡尺, 包括双零位尺体和测 机构; 所述双零位尺体包括主尺和副尺; 所述测 机构为带齿轮组的机械指示表; 所述主尺具有静量爪和主尺尺体, 所述主尺尺体上 标有两两距离为 1毫米的整数倍的整数刻线, 距静量爪最近的起始整数刻线为原始零位; 所 述副尺包容所述主尺尺体并可相对所述主尺尺体自锁不动或沿所述整数刻线的排列方向移 动;
所述副尺具有前副尺和后副尺, 所述后副尺可相对所述前副尺在有限范围内移动, 移动 方向与所述整数刻线的排列方向平行; 所述前副尺具有动量爪和测标; 所述前副尺负责测量 测量值的整数值, 所述后副尺负责测量测量值与所述整数值之差; 所述前副尺为一框体, 所述框体下部枢接一杠杆, 该杠杆自由端设有一个能自由转动的 滚轮, 该滚轮靠近所述主尺尺体的下侧面; 所述杠杆和所述后副尺上设有相互配合的离合机 构, 按压所述滚轮使其接触所述主尺尺体的下侧面时, 所述杠杆偏转, 所述离合机构闭合, 此时, 所述前、 后副尺形成同步位移的刚性结构; 松开所述滚轮, 所述杠杆复位, 所述离合 机构分开;
所述前副尺上还具由锁紧轴和压缩弹簧组成的自锁机构; 所述锁紧轴上设有锁紧面与所 述主尺尺体紧密抵持, 从而将所述前副尺锁紧在所述主尺尺体上而不能移动; 所述锁紧轴一 端抵接所述杠杆, 所述杠杆施加在所述锁紧轴上的力使所述锁紧面与所述主尺尺体分离, 从 而使所述前副尺与所述主尺尺体之间的锁紧状态解除, 此时所述前副尺可沿所述整数刻线的 排列方向移动; 所述杠杆施加在所述锁紧轴上的力撤销后, 所述压缩弹簧令所述锁紧轴复位, 使所述锁紧轴恢复到与所述主尺尺体紧密抵持的锁紧状态;
所述后副尺也为一框体, 且后副尺具有一仅可沿轴心线方向移动的定位轴, 所述定位轴 部分容置于框体内, 所述定位轴上套装有弹性元件, 该弹性元件可使所述定位轴在令其产生 位移的外力撤销后复位;
所述的主尺上设有一排定位凹凸, 所述定位凹凸的形状与所述定位轴的径向断面形状相 匹配, 所述定位凹凸的数量至少能使其排列长度等于标定量程, 每个所述定位凹凸的形状和 大小都相同, 每个所述定位凹凸的中心都与所述整数刻线保持固定不变的对应关系, 且相邻 两个所述定位凹凸的中心距相等; 当所述前副尺的测标对准所述原始零位时, 按压所述滚轮 使所述离合机构闭合, 所述定位轴的对称中心与某个所述定位凹凸的中心重合, 该定位凹凸 即为起始定位凹凸;
所述前、 后副尺在沿所述整数刻线的排列方向上分离一小段距离, 记为 δ ' ; 所述前副尺 和所述后副尺上设有相互配合的限位装置, 所述限位装置使所述后副尺相对所述前副尺的最 大位移距离 > δ ' ; 所述离合机构闭合时, 所述前、 后副尺在沿所述整数刻线的排列方向上的 分离距离, 记为 δ , δ ' > δ > 1 毫米且等于一排所述定位凹凸中相邻两个定位凹凸的中心 距;
所述后副尺的框体向靠近所述原始零位的方向延伸出凸出部, 该凸出部伸入到所述前副 尺内部, 在该凸出部上固装有一短齿条; 一弹压簧片 4氐接所述凸出部将所述凸出部与所述主 尺下侧面紧贴; 所述带齿轮组的机械表固装于所述前副尺; 所述齿轮组与所述短齿条在所述 前副尺的内部空间里相啮合, 啮合行程的最大值为 δ ';
所述带齿轮组的机械指示表仅测量和显示所述后副尺相对所述前副尺的位移距离。
一种双零位电子表卡尺, 包括双零位尺体和测 机构; 所述双零位尺体包括主尺和副尺; 所述测 机构为线位移电子传感器; 所述主尺具有静量爪和主尺尺体, 所述主尺尺体上标有 两两距离为 1毫米的整数倍的整数刻线, 距静量爪最近的起始整数刻线为原始零位; 所述副 尺包容所述主尺尺体并可相对所述主尺尺体自锁不动或沿所述整数刻线的排列方向移动; 所述副尺具有前副尺和后副尺, 所述后副尺可相对所述前副尺在有限范围内移动, 移动 方向与所述整数刻线的排列方向平行; 所述前副尺具有动量爪和测标; 所述前副尺负责测量 测量值的整数值, 所述后副尺负责测量测量值与所述整数值之差;
所述前副尺为一框体, 所述框体下部枢接一杠杆, 该杠杆自由端设有一个能自由转动的 滚轮, 该滚轮靠近所述主尺尺体的下侧面; 所述杠杆和所述后副尺上设有相互配合的离合机 构, 按压所述滚轮使其接触所述主尺尺体的下侧面时, 所述杠杆偏转, 所述离合机构闭合, 此时, 所述前、 后副尺形成同步位移的刚性结构; 松开所述滚轮, 所述杠杆复位, 所述离合 机构分开;
所述前副尺上还具由锁紧轴和压缩弹簧组成的自锁机构; 所述锁紧轴上设有锁紧面与所 述主尺尺体紧密抵持, 从而将所述前副尺锁紧在所述主尺尺体上而不能移动; 所述锁紧轴一 端抵接所述杠杆, 所述杠杆施加在所述锁紧轴上的力使所述锁紧面与所述主尺尺体分离, 从 而使所述前副尺与所述主尺尺体之间的锁紧状态解除, 此时所述前副尺可沿所述整数刻线的 排列方向移动; 所述杠杆施加在所述锁紧轴上的力撤销后, 所述压缩弹簧令所述锁紧轴复位, 使所述锁紧轴恢复到与所述主尺尺体紧密抵持的锁紧状态;
所述后副尺也为一框体, 且后副尺具有一仅可沿轴心线方向移动的定位轴, 所述定位轴 部分容置于框体内, 所述定位轴上套装有弹性元件, 该弹性元件可使所述定位轴在令其产生 位移的外力撤销后复位;
所述的主尺上设有一排定位凹凸, 所述定位凹凸的形状与所述定位轴的径向断面形状相 匹配, 所述定位凹凸的数量至少能使其排列长度等于标定量程, 每个所述定位凹凸的形状和 大小都相同, 每个所述定位凹凸的中心都与所述整数刻线保持固定不变的对应关系, 且相邻 两个所述定位凹凸的中心距相等; 当所述前副尺的测标对准所述原始零位时, 按压所述滚轮 使所述离合机构闭合, 所述定位轴的对称中心与某个所述定位凹凸的中心重合, 该定位凹凸 即为起始定位凹凸;
所述前、 后副尺在沿所述整数刻线的排列方向上分离一小段距离, 记为 δ ' ; 所述前副尺 和所述后副尺上设有相互配合的限位装置, 所述限位装置使所述后副尺相对所述前副尺的最 大位移距离 > δ ' ; 所述离合机构闭合时, 所述前、 后副尺在沿所述整数刻线的排列方向上的 分离距离, 记为 δ , δ ' > δ > 1 毫米且等于一排所述定位凹凸中相邻两个定位凹凸的中心 距;
所述线位移电子传感器, 具有固装于所述前副尺的防水密封盒, 所述防水密封盒内装有 线路板和动栅板, 所述线路板和动栅板通过电路耦合, 耦合行程的最大值为 δ ' ; 所述动栅板 与一驱动轴相连接, 所述驱动轴穿越并伸出到所述防水密封盒外部而与所述后副尺固接、 并 带动所述动栅板随所述后副尺同步直线移动; 所述防水密封盒表面设有电子显示屏, 所述电 子显示屏与所述线路板电连接, 其上显示的整数位在 δ =2时凝固为 0; 所述驱动轴穿越所述 防水密封盒处设有密封轴承;
所述线位移电子传感器仅测量和显示所述后副尺相对所述前副尺的位移距离。
一种双零位电子表卡尺, 包括双零位尺体和测 机构; 所述双零位尺体包括主尺和副尺; 所述测^:机构为角位移电子传感器; 所述主尺具有静量爪和主尺尺体, 所述主尺尺体上标有 两两距离为 1毫米的整数倍的整数刻线, 距静量爪最近的起始整数刻线为原始零位; 所述副 尺包容所述主尺尺体并可相对所述主尺尺体自锁不动或沿所述整数刻线的排列方向移动; 所述副尺具有前副尺和后副尺, 所述后副尺可相对所述前副尺在有限范围内移动, 移动 方向与所述整数刻线的排列方向平行; 所述前副尺具有动量爪和测标; 所述前副尺负责测量 测量值的整数值, 所述后副尺负责测量测量值与所述整数值之差;
所述前副尺为一框体, 所述框体下部枢接一杠杆, 该杠杆自由端设有一个能自由转动的 滚轮, 该滚轮靠近所述主尺尺体的下侧面; 所述杠杆和所述后副尺上设有相互配合的离合机 构, 按压所述滚轮使其接触所述主尺尺体的下侧面时, 所述杠杆偏转, 所述离合机构闭合, 此时, 所述前、 后副尺形成同步位移的刚性结构; 松开所述滚轮, 所述杠杆复位, 所述离合 机构分开;
所述前副尺上还具由锁紧轴和压缩弹簧组成的自锁机构; 所述锁紧轴上设有锁紧面与所 述主尺尺体紧密抵持, 从而将所述前副尺锁紧在所述主尺尺体上而不能移动; 所述锁紧轴一 端抵接所述杠杆, 所述杠杆施加在所述锁紧轴上的力使所述锁紧面与所述主尺尺体分离, 从 而使所述前副尺与所述主尺尺体之间的锁紧状态解除, 此时所述前副尺可沿所述整数刻线的 排列方向移动; 所述杠杆施加在所述锁紧轴上的力撤销后, 所述压缩弹簧令所述锁紧轴复位, 使所述锁紧轴恢复到与所述主尺尺体紧密抵持的锁紧状态;
所述后副尺也为一框体, 且后副尺具有一仅可沿轴心线方向移动的定位轴, 所述定位轴 部分容置于框体内, 所述定位轴上套装有弹性元件, 该弹性元件可使所述定位轴在令其产生 位移的外力撤销后复位;
所述的主尺上设有一排定位凹凸, 所述定位凹凸的形状与所述定位轴的径向断面形状相 匹配, 所述定位凹凸的数量至少能使其排列长度等于标定量程, 每个所述定位凹凸的形状和 大小都相同, 每个所述定位凹凸的中心都与所述整数刻线保持固定不变的对应关系, 且相邻 两个所述定位凹凸的中心距相等; 当所述前副尺的测标对准所述原始零位时, 按压所述滚轮 使所述离合机构闭合, 所述定位轴的对称中心与某个所述定位凹凸的中心重合, 该定位凹凸 即为起始定位凹凸;
所述前、 后副尺在沿所述整数刻线的排列方向上分离一小段距离, 记为 δ ' ; 所述前副尺 和所述后副尺上设有相互配合的限位装置, 所述限位装置使所述后副尺相对所述前副尺的最 大位移距离 > δ ' ; 所述离合机构闭合时, 所述前、 后副尺在沿所述整数刻线的排列方向上的 分离距离, 记为 δ , δ ' > δ > 1 毫米且等于一排所述定位凹凸中相邻两个定位凹凸的中心 距;
所述后副尺的框体向靠近所述原始零位的方向延伸出凸出部二, 该凸出部二伸入到所述 前副尺内部, 一弹压簧片二抵接所述凸出部二将所述凸出部二与所述主尺下侧面紧贴; 一根 短齿条二在所述前副尺的内部空间里固装在凸出部二上;
所述角位移传感器具有与前副尺固装的齿轮组二, 所述齿轮组二的输出端为一根旋转轴 二; 所述齿轮组二与所述短齿条二在所述前副尺的内部空间里无间隙啮合, 可啮合行程的最 大值为 δ ' ; 所述角位移传感器还具有与所述前副尺固装的防水密封盒二, 所述旋转轴二穿越 并进入所述防水密封盒二内, 穿越处有防水密封轴承二; 所述防水密封盒二内装有电路板二, 所述旋转轴二在所述防水密封盒二内固装一圆形动栅片, 所述圆形动栅片可随所述旋转轴二 同步转动; 所述圆形动栅片与所述电路板二通过电路禹合, 通过检测所述圆形动栅片相对所 述电路板二的角度位置和所述圆形动栅片因所述短齿条二移动而产生的旋转圏数, 而测量和 显示所述后副尺相对所述前副尺所出现的直线位移距离, 该直线位移距离的最大值为 δ ' ; 所 述防水密封盒二表面设有电子显示屏二, 所述电子显示屏二与所述线路板二电连接, 其上显 示的整数位在 δ =2时凝固为 0。
一种双零位游标卡尺, 包括双零位尺体和测 机构; 所述双零位尺体包括主尺和副尺; 所述测 机构为游标细分装置; 所述主尺具有静量爪和主尺尺体, 所述主尺尺体上标有两两 距离为 1毫米的整数倍的整数刻线, 距静量爪最近的起始整数刻线为原始零位; 所述副尺包 容所述主尺尺体并可相对所述主尺尺体自锁不动或沿所述整数刻线的排列方向移动;
所述副尺具有前副尺和后副尺, 所述后副尺可相对所述前副尺在有限范围内移动, 移动 方向与所述整数刻线的排列方向平行; 所述前副尺具有动量爪和测标; 所述前副尺负责测量 测量值的整数值, 所述后副尺负责测量测量值与所述整数值之差;
所述前副尺为一框体, 所述框体下部枢接一杠杆, 该杠杆自由端设有一个能自由转动的 滚轮, 该滚轮靠近所述主尺尺体的下侧面; 所述杠杆和所述后副尺上设有相互配合的离合机 构, 按压所述滚轮使其接触所述主尺尺体的下侧面时, 所述杠杆偏转, 所述离合机构闭合, 此时, 所述前、 后副尺形成同步位移的刚性结构; 松开所述滚轮, 所述杠杆复位, 所述离合 机构分开;
所述前副尺上还具由锁紧轴和压缩弹簧组成的自锁机构; 所述锁紧轴上设有锁紧面与所 述主尺尺体紧密抵持, 从而将所述前副尺锁紧在所述主尺尺体上而不能移动; 所述锁紧轴一 端抵接所述杠杆, 所述杠杆施加在所述锁紧轴上的力使所述锁紧面与所述主尺尺体分离, 从 而使所述前副尺与所述主尺尺体之间的锁紧状态解除, 此时所述前副尺可沿所述整数刻线的 排列方向移动; 所述杠杆施加在所述锁紧轴上的力撤销后, 所述压缩弹簧令所述锁紧轴复位, 使所述锁紧轴恢复到与所述主尺尺体紧密抵持的锁紧状态;
所述后副尺也为一框体, 且后副尺具有一仅可沿轴心线方向移动的定位轴, 所述定位轴 部分容置于框体内, 所述定位轴上套装有弹性元件, 该弹性元件可使所述定位轴在令其产生 位移的外力撤销后复位;
所述的主尺上设有一排定位凹凸, 所述定位凹凸的形状与所述定位轴的径向断面形状相 匹配, 所述定位凹凸的数量至少能使其排列长度等于标定量程, 每个所述定位凹凸的形状和 大小都相同, 每个所述定位凹凸的中心都与所述整数刻线保持固定不变的对应关系, 且相邻 两个所述定位凹凸的中心距相等; 当所述前副尺的测标对准所述原始零位时, 按压所述滚轮 使所述离合机构闭合, 所述定位轴的对称中心与某个所述定位凹凸的中心重合, 该定位凹凸 即为起始定位凹凸;
所述前、 后副尺在沿所述整数刻线的排列方向上分离一小段距离, 记为 δ ' ; 所述前副尺 和所述后副尺上设有相互配合的限位装置, 所述限位装置使所述后副尺相对所述前副尺的最 大位移距离 > δ ' ; 所述离合机构闭合时, 所述前、 后副尺在沿所述整数刻线的排列方向上的 分离距离, 记为 δ , δ ' > δ > 1 毫米且等于一排所述定位凹凸中相邻两个定位凹凸的中心 距;
所述游标细分装置具有与所述前副尺固接的滑槽板和与所述后副尺固接的驱动件; 所述 滑槽板上固装一个直线位移放大器, 所述直线位移放大器的输入端设有所述的驱动件、 输出 端设有游标筒, 所述游标筒可在所述滑槽板内规范滑动, 所述直线位移放大器通过所述驱动 件将所述后副尺的位移距离接收并放大后, 再输出给所述游标筒接收; 一排两两距离为 1毫 米的小刻线刻制在所述滑槽板上, 一段游标线刻制在所述游标筒上且与所述小刻线共面, 可 游动的所述游标线与相对固定的所述小刻线共同组成共面的无视差游标读数装置;
所述游标线相对所述小刻线的最大有效移动行程为 δ Κ, Κ为所述直线位移放大器的放 大倍数; 放大倍数 Κ可按需选取, 当 Κ = 10时: 所述游标线按将所述小刻线的 9毫米排列长 度等分成 10等份设置, 所述小刻线的排列总长度为 10 X ( δ + 1 ), 所述游标细分装置的显 示精度标识为 0.01毫米;
所述游标细分装置仅测量和显示所述后副尺相对所述前副尺的位移距离。
本发明的有益效果: 本发明所述双零位卡尺打破了两千年从未有变的卡尺设计旧原理, 釆用了 "双零位测量" 新原理, 能一次性的全面跨越现代卡尺所面临的四大技术极限, 使传 统公知卡尺产生前所未有的新变化, 技术进步显著。 由于效应是多方面、 连锁性的, 其更多 的效果内容将在具体实施例中列述。 附图说明
图 1为本发明所述双零位卡尺的设计原理图;
图 2为本发明所述双零位尺体的结构示意图;
图 3为本发明所述双零位尺体的另一结构示意图, 为了显示清楚, 图中没有显示框体 213的 框盖;
图 4为本发明所述双零位尺体的局部结构示意图, 为了显示清楚, 图中没有显示主尺 100; 图 5为本发明所述后副尺的结构示意图, 为了显示清楚, 图中没有显示框体 222的框盖; 图 6为前副尺 210和后副尺 220的组装结构示意图,为了显示清楚,图中没有显示前副尺 210 的框盖和后副尺的框盖;
图 7a为原始零位 111、 前副尺 210、 后副尺 220、 定位凹凸 150、 整数刻线 112五者之间的有 序关系结构示意图, 为了显示清楚, 图中后副尺框盖和前副尺 210的框盖被部分切除; 图 7b为图 7a H处的放大图;
图 8a为本发明所述双零位尺体小数值显示的第一设计原理图, 为了图示清楚, 图中将球心实 际位置从定位孔连心线处移离到了连心线上方, 图 8b〜图 8d均同;
图 8b为本发明所述双零位尺体小数值显示的第二设计原理图;
图 8c为本发明所述双零位尺体小数值显示的第三设计原理图;
图 8d为本发明所述双零位尺体小数值显示的第四设计原理图;
图 9为本发明所述双零位尺体的第三结构示意图, 图中离合机构 400为闭合状态; 图 10a为本发明所述双零位机械表卡尺的内部结构示意图;
图 10b为本发明所述双零位机械表卡尺的外部结构示意图;
图 10c为本发明所述双零位机械表卡尺齿条与齿轮组的啮合示意图;
图 11 a为本发明所述双零位电子表卡尺的内部结构示意图; 图 lib为本发明所述双零位电子表卡尺的外部结构示意图;
图 12a为本发明所述双零位电子表卡尺的结构示意图, 该电子表卡尺由双零位尺体和传统公 知的角位移电子传感器组成;
图 12b为图 12a所示电子表卡尺的短齿条 701和齿轮组 900无间隙啮合的结构示意图; 图 12c为图 12a所示电子表卡尺的防水密封盒二 1000的内部结构示意图;
图 13a为本发明所述双零位游标卡尺的外部结构示意图;
图 13b为图 13a I处的放大图;
图 13c为本发明所述双零位游标卡尺在 t = T时的 A段读数图;
图 13d为本发明所述双零位游标卡尺在 t = T-1时的 B段读数图;
图 13e为本发明所述双零位游标卡尺的局部结构示意图, 为了显示清楚, 图中没有显示游标 筒 215。 具体实施方式
为了便于理解本发明所述双零位卡尺的设计原理和实施方式,以下分五部分详述本发明。 一、 本发明所述双零位卡尺的设计原理
参照图 1 , 每一把卡尺的主尺上都标有或可以标有一组最小单位为 1 毫米的整数刻线, 且该整数刻线的起始值为 "0" , 即为本发明所述的原始零位。 卡尺卡住被测物进行测量时, 卡尺的测标总是恰好对准或越过主尺上的某一整数刻线的位置, 即测量值 L所在的位置, 该 整数刻线表示的数值即为本发明所述的整数值 L1。该整数刻线所在的位置即为本发明所述的 小数零位。 小数零位和测量值之间的距离值即为本发明所述的小数值1。 因此, 本发明中, 测 量值 L为整数值 L1和小数值 t之和。本发明所述双零位卡尺的核心即是优化小数值 t的测量。 二、 本发明所述双零位尺体的结构
参照图 2, 所述的双零位尺体, 包括双零位尺体和测微机构; 所述双零位尺体包括主尺 100和包容主尺 100的副尺 200。 主尺 100具有静量爪 120和主尺尺体 110, 主尺尺体 110上 标注有两两距离为 1毫米的整数倍的整数刻线 112, 整数刻线 112距静量爪 120最近的排列 起始线为原始零位 111。 所述副尺 200具有前副尺 210和后副尺 220, 前副尺 210具有测标 211和动量爪 212; 后副尺 220可相对前副尺 210在一定范围内滑动, 其滑动方向与整数刻线 112的排列方向平行。 在本发明所述的双零位尺体中, 前副尺 210 负责测量整数值, 后副尺 220负责测量测量值与所述整数值之差。
参照图 3 ,前副尺 210是一框体 213,框体 213的下部枢接一仅可绕圆心 0转动的杠杆 300 , 杠杆 300的自由端设有一个能自由转动的滚轮 310, 滚轮 310靠近主尺 100的下侧面 130。杠 杆 300和后副尺 220上设有相互配合的离合机构 400。 较佳地, 离合机构 400为 V型的凸部 410和 V型的凹部 420。 前副尺 210和后副尺 220之间分离了一小段距离, 该距离的最大值 记为 δ ';当离合机构 400紧密闭合时,前副尺 210和后副尺 220形成可同步位移的刚性结构, 且前副尺 210和后副尺 220之间的相对距离为固定值 δ。 显然, δ < δ '。
参照图 3和图 4, 前副尺 210上还设置有由锁紧轴 510和压缩弹簧 520组成的自锁机构 500, 锁紧轴 510上有锁紧面 511与主尺尺体 110的上侧面 140紧密抵持, 从而将前副尺 210 锁紧在主尺尺体 110上不能自由移动; 锁紧轴 510的一端与所述压缩弹簧 520套接, 另一端 512抵接杠杆 300。 当按压滚轮 310至其抵触主尺尺体 110的下侧面 130时, 杠杆 300逆时针 偏转, 从而推动锁紧轴 510去压缩压缩弹簧 520, 同时锁紧轴 510发生位移, 使锁紧面 511 离开主尺尺体 110的上侧面 140, 前副尺 210与主尺尺体 110之间原有的锁紧状态被解除, 此时若搓动滚轮 310, 便可带动副尺 200沿整数刻线 112的排列方向移动。 当松开滚轮 310 后, 压缩弹簧 520产生反弹力使锁紧轴 510复位, 锁紧状态恢复, 同时锁紧轴 510推动杠杆 300顺时针复位。 参照图 5, 后副尺 220也为一框体 222。 框体 222内置了一定位轴 600, 较佳地, 该定位 轴 600为球头轴。 定位轴 600具有轴体 610、 球头 620和外露的柄 630, 定位轴 600仅可沿其 轴心线方向往复位移; 轴体 610上套装有弹性簧片 223, 弹性簧片 223可使定位轴 600在使 其发生位移的外力撤销后带着球头 620复位。
参照图 6, 前副尺框体 213上设有限位块 213a, 后副尺框体 222上设有限位孔 222a, 限 位块 213a与限位孔 222a相互配合,以限制后副尺 220相对前副尺 210的最大移动距离 > δ '。
参照图 7a和图 7b, 主尺尺体 110的下侧面 130设有一排定位凹凸, 较佳地, 所述一排 定位凹凸为一排定位孔 150 (为叙述方便, 记为排孔 150 ); 每个定位孔(为叙述方便, 记为 个孔 150, ) 的形状和大小都相同, 且其内径小于球头 620的球径; 每两个相邻个孔 150,之间 的中心距都相等, 且每个个孔 150'的中心都与整数刻线 112的某根相应刻线保持——对应的 固定关系, 这种对应关系可以根据需要选取确定。 对于小量程卡尺而言, 每个个孔 150,优选 与整数刻线 112的偶数刻线保持——对应的固定关系, 此时每两个相邻个孔 150,之间的中心 距离是 2毫米,个孔 150,的总数量至少是标定量程数值的一半。为了清楚的显示所述排孔 150 和所述球头 620之间的关系, 图 7b为图 7aH处的放大图。
排孔 150的起始位置是这样确定的: 当副尺 200的动量爪 212和主尺 100的静量爪 120 闭合, 即前副尺 210的测标 211对准整数刻线 112的原始零位 111时, 按压滚轮 310使离合 机构 400紧密闭合, 球头 620的球心恰好与某个个孔 150'的中心同轴重合, 该个孔 150'的所 在位置即为排孔 150的起始位置。 此时原始零位 111、 前副尺 210、 后副尺 220、 排孔 150、 整数刻线 112这五者之间就建立了固定的有序关系, 哪怕因离合机构 400脱开致使有序关系 受到破坏, 但只要离合机构 400闭合, 这种有序关系就会恢复。 不难推理: 在这种有序关系 的约束下, 假定闭合离合机构 400, 使前副尺 210和后副尺 220作为一个整体同步移动到球 头 620的球心与图 7a所示左起第二个个孔 150,的中心同轴重合时,前副尺 210的测标 211将 恰好对准整数刻线 "2"。 以此类推, 前副尺 210和后副尺 220之间永远保持着 2毫米的设定 关系, 这 2毫米就是前副尺 210和后副尺 220之间分离距离的原始设定值 δ , 即 δ = 2, 此时 δ ' 略大于 2即可。 对于大量程卡尺而言, 每个个孔 150,可以不选取与整数刻线 112的偶数 刻线保持——对应的固定关系、 而是选取其它固定对应关系, 这时 δ及 δ ' 的值也相应有所 变化。 无论选取何种对应的固定关系, 必须保证 δ > 1。 以下所述均以 δ = 2为前提。
位置确定后的个孔 150,的孔中心等效于所述的小数零位。
个孔 150,等效于所述小数零位的位置一旦确定, 即意味着: 当前副尺 210和后副尺 220 同步位移而离开原始零位 111后, 无论前副尺 210位于主尺尺体 110上任何位置并被锁定在 该位置时, 只要定位轴 600的球头 620出现移动、 沿整数刻线 112的排列方向去与附近某个 个孔 150,的中心同轴重合时,定位轴 600的径向侧力必定带动后副尺 220产生相对前副尺 210 的位移, 且后副尺 220相对前副尺 210的位移距离 Τ, 必定与前副尺 210的测标 211越过某 根整数刻线的距离 t即所需测量的小数值相关。 T与 t的相关关系为:
假设 1: 当定位轴 600仅是沿轴线单向受力时, 球头 620会自动滑落进入距其最近的某 个个孔 150,中而与该个孔 150,的孔心自然同轴重合, 此时会出现两种情况两种结果:
参照图 8a, 当球头 620是沿接近原始零位 111方向移动去与距其最近的个孔 150,的孔心 自然同轴重合时, 因为 T+2=t+2 , 所以 t=T。
参照图 8b,当球头 620是沿背离原始零位 111方向移动去与距其最近的个孔 150,的孔心自 然同轴重合时, 因为 T=3 _ 2 _ t, 所以 t=l - T。
假设 2: 当定位轴 600是轴向和径向同时受力时, 球头 620会沿轴向力和径向力的合力 方向去与距其最近的某个个孔 150,的孔心被迫同轴重合, 此时也会出现两种情况两种结果: 参照图 8c, 当球头 620是沿背离原始零位 111方向移动去与距其最近的个孔 150,的孔心 受迫同轴重合时, 因为 t + 2=t, + 2, 所以 t=t' ; 又因为 t' =2 - T, 所以 t=2 - T。
参照图 8d, 当球头 620是沿接近原始零位 111方向移动去与距其最近的个孔 150,的孔心 被迫同轴重合时, 因为 t + 2=t, + 2, 所以 t=t'; 又因为 t' =T _ 1 , 所以 t=T - 1。 上述的 4种相关关系便是小数值 t显示的设计依据。 为兼容各种测微机构的显示特性并 兼顾操作心理, 需同时并用 t = T和 t = T - 1为设计依据。 实现该依据的必要条件是: ①必须 沿 3点钟方向去推压球头轴 600使球头 620受迫落入距其最近的前一个个孔 150, (接近原始 零位 111方向为前);②必须有限位装置以绝对禁止球头 620落入距其最近的后一个个孔 150, (背离原始零位 111方向为后),并绝对禁止球头 620超越距其最近的前一个个孔 150,而落入 更前一个个孔 150,。 由于 T值绝不会大于 2毫米, 所以前副尺 210和后副尺 220之间的自由 分离距离 δ ' 选择在略大于 2毫米范围即可。
参照图 9 , 所述双零位尺体是这样工作的:
步骤一: 拇指按压并搓动滚轮 310, 移动副尺 200。
无论副尺 200位于主尺尺体 110上的任何位置, 也无论离合机构 400的 V型凸部 410和 V型凹部 420是否偏离, 只要拇指按压滚轮 310使其接触主尺尺体 110的下侧面 130, 杠杆 300便立刻发生逆时针偏转, 使得前副尺 210与主尺尺体 110原先的自锁状态被解除, 前副 尺 210可以沿主尺尺体 110自由移动;同时 V型凸部 410向 V型凹部 420靠拢直至紧密贴合, 离合机构 400闭合, 使前、 后副尺 210和 220形成一个刚性的整体, 前副尺 210可以带动后 副尺 220同步移动; 同时前副尺 210和后副尺 220之间的分离距离被复原至原始设定值 δ。 此时前副尺 210和后副尺 220之间不能也没有相对运动。 为了使拇指的按压力能始终直接施 加在杠杆 300上, 以保证离合机构 400能充分可靠闭合, 又能使拇指的按压力同时施加在滚 轮 310上予以搓动使副尺 200出现位移。 较佳地, 滚轮 310的外圆面 311是被设计为与杠杆 300的边缘面 301平齐的。
步驟二: 拇指离开滚轮 310。
当副尺 200移动到测定位置时, 前副尺 210的测标 211恰好对准或越过的那根整数刻线 所代表的数值即为本发明所定义的整数值 Ll。 此时拇指停止搓动并离开滚轮 310, 按压力撤 销, 前副尺 210立刻又恢复自锁状态而不再能够自由移动; 与此同时, 杠杆 300发生逆时针 偏转, 离合机构 400的 V型凸部 410离开 V型凹部 420 , 离合机构 400分离。 此时的前副尺 210和后副尺 220不再是一个刚性的整体,后副尺 220可以相对已又被自锁不动的前副尺 210 出现位移。
步骤三: 拇指推压球头轴。
拇指离开滚轮 310后, 顺势滑挪到左边按 3点钟方向去推动并按压定位轴 600外露的柄 630,使球头 620沿接近前副尺 210方向受迫进入与其最接近的个孔 150,中直至不能继续推动 和按压, 此时球头 620的球心与其所进入的个孔 150,的孔心必定已经同轴重合。 后副尺 220 在定位轴 600径向力的带动下, 也会随着球头 620的移动而同步位移相同距离。
至此, 所述双零位尺体的工作过程结束。 如果前副尺 210和后副尺 220上分别安装了测 ^:机构的相对运动部分, 则所述测 :机构将能测量和显示出步骤三过程中后副尺 220相对前 副尺 210 的位移量, 该位移量即是本发明所定义的小数值 t。 将步骤二过程中所得的整数值 L1与小数值 t相加, 便得到一个完整的测量值。
本发明所述的双零位尺体虽比传统公知的卡尺操作多了一个推压定位轴 600外露柄 630 的动作, 但它能满足双零位测量的要求从而能给卡尺带来前所未有的变化, 同时这一动作本 身还另有两个不容忽视的技术价值即有益效果:
①实现恒测力测量。 无论拇指推压外露柄 630的力有多大, 都不会传递到前副尺 210的 动量爪 212上、 从而与动量爪 212接触被测面的状态无关, 且与测微机构的显示值无关, 因 而实现了恒测力测量, 避免了由于测量力不同而造成的示值差异, 使测量结果更客观一致, 由此提高了量值的传递质量, 这是任何现代卡尺都渴望实现但未实现的飞跃。
②实现测读分离。 由于前副尺 210的动量爪 212与被测面接触后, 前副尺 210处于强力 自锁状态, 此时可将动、 静量爪 212和 120轻轻移离使卡尺离开被测件, 再在最舒适的身势 下去推压外露柄 630进而读数, 由此实现了测读分离, 对习难部位的测量有利。 三、 本发明所述双零位机械表卡尺
带表卡尺的读数效率高于游标卡尺, 可靠性及对使用环境的要求都优于电子卡尺, 因而 拥有庞大的使用人群。 目前公知带表卡尺毫无例外的都是: 齿条固装在主尺上, 带齿轮的指 示表固装在副尺上, 齿轮与齿条始终保持啮合, 齿条的长度必须大于标定量程。 这种构式的 弊病在于: ①齿条制造难度大、 工艺成本高。 以显示精度 0.02毫米的公制齿条为例, 其模数 仅为 0.19894、 齿全高仅有 0.45毫米、 齿条总宽度 3.2毫米、 总厚度 1.6毫米。 对于这种又窄 又薄的精密齿条来说, 无疑是越短越容易制造、 越长越难以制造甚至无法制造。 正因如此, 目前带表卡尺的最大量程是无法与游标卡尺和电子卡尺相比的, 后两者的最大量程已经做到 了至少 4米, 而目前哪怕是超过 1米量程的带表卡尺都仍是空白。 ②测量精度难以保证。 由 于作为测量基准元件的齿条薄、 窄、 长, 即使齿条制造合格、 但在周转和安装齿条的过程中, 也会产生变形, 齿条变形即意味测量基准有偏差, 测量精度是很难达到全量程都准确的。 ③ 使用寿命短。 在带表卡尺的使用过程中, 其可动量面在从原始零位到达被测点的长距离快速 往复移动 (拉开和回送)过程中, 齿轮和齿条始终在做剧烈的啮合传动, 测量完毕归零复位 时, 齿轮和齿条再次做反向的长距离剧烈啮合传动, 这种剧烈啮合传动的出现频率极高, 无 效磨损极其巨大。 在一次测量过程中, 齿轮和齿条的无效磨损传动约占 99 % , 大大缩短了齿 形元件的有效使用寿命。 ④普遍的, 公知带表卡尺的齿条在测量时是敞露的, 没有防护能力, 细小的铁屑和磨削粒等异物可无阻挡的落入齿间, 更不能应用于粉尘场合; 敞露的齿条其齿 间还容易形成油泥积垢, 以至卡尺很容易出现拉动不畅或强行拉动致损的现象。 齿条敞露的 缺陷困扰了量具界几十年, 直到 200620006379.8号中国专利公示了一种高防护带表卡尺, 才 首次解决了齿条敞露问题, 不足的是, 该发明没有解决齿形元件的无效磨损极其巨大的问题。
本发明所述双零位机械表卡尺的目的是: 实现一种短齿条、 长寿命、 高防护、 恒测力、 能 自锁、 测读可分离的纯机械式带表卡尺。
它是这样实现的: 一种双零位机械表卡尺, 由本发明所述的双零位尺体和测 :机构, 所述 测微机构为传统公知的机械量表 700组成; 所述机械量表 700所需的齿轮齿条最大啮合行程 为 δ ' , 但远小于标定量程。
参照图 10a、 图 10b和图 10c。 在本发明所述的双零位尺体中, 后副尺 220的框体 222延 伸出凸出部 224, 凸出部 224—直延伸到前副尺 210内部, 且在弹压簧片 225的作用下与主 尺下侧面 130紧贴。 将一才艮短齿条 701在前副尺 210的内部空间里固装到凸出部 224上, 并 与固装在前副尺 210上的机械量表 700的齿轮组 702啮合, 可啮合行程为 δ '。按所述双零位 尺体的工作步骤, 可以完成所述双零位机械表卡尺的测量操作。 所述双零位机械表卡尺的读 数方法与传统公知带表卡尺完全一样: 先读主尺上的整数,再读表盘上由圆刻度表达的小数, 再将两数相加, 即为测量值。
本发明所述的双零位机械表卡尺具有如下技术效果:
①突破了齿条长度必须大于标定量程这一从上世纪 70 年代初至今从未跨越的技术禁区, 齿条大幅缩短, 制造容易, 不易变形, 安装调整方便, 卡尺精度易于保证。 ②齿轮和齿条之 间只存在极短距离的必要有效啮合传动, 因而齿形元件的无效磨损极其微小, 卡尺使用寿命 因此大幅提高。 以量程 150毫米、 显示精度 0.02毫米的传统带表卡尺测量中间值 75毫米长 度为例: 卡尺从闭合状态拉开到卡住 75毫米长度的两端, 卡尺的副尺至少需要移动 75毫米; 测量完毕后,卡尺复位到闭合状态,又需要移动至少 75毫米,两次移动共计 75毫米 X 2 = 150 毫米。显示精度 0.02毫米的量表是指针每转一圏为 2毫米, 因此量表的指针共计转了 150 ÷ 2 = 75圏。 而对于相同量程、相同显示精度、相同测量过程的双零位机械表卡尺, 当应用到 t=T 时,表盘指针至多只需转动半圏即 0.5圏便可完成测量过程。两者相比较, 75圏 ÷ 0.5圏 = 150 倍。 当应用到 t = T _ l时, 也至多仅需转动 1 圏便可完成测量过程, 两者相比较, 75 圏 ÷ 1 圏 = 75倍。 所以双零位机械表卡尺齿轮组的磨损量比传统带表卡尺大幅减少, 被测的长度越 长, 齿轮组无效磨损的减少量就越显著。 ③可以制造量程与游标卡尺和电子卡尺一样长的大 量程带表卡尺(如 3米尺、 4米尺), 填补了制造空白。 ④齿条密闭抗污染, 损害齿形的粒状 异物不能进入, 齿间距不会产生变化。 相对目前防护能力最高的 200620006379.8号中国专利 所公示的高防护带表卡尺, 本尺的齿条防护能力更高、 可以呈密封状态, 需要时, 对固体污 染物质的防护能力可以极大的提高到公知带表卡尺望尘莫及的 IP60级。⑤由于前副尺和后副 尺在主尺上被拉开、 回送和复位过程中均为相对静止状态, 量表的指针是不转的、 即齿轮和 齿条之间是没有啮合传动的, 因此拉动更加快速平稳, 测量效率因此更高。 ⑥相对传统带表 卡尺, 齿条的安装没有挤占主尺面积, 因而整数刻线平面宽敞了数倍, 更清晰、 更容易辨读。 ⑦所用的量表无需另行特别设计和制造, 核心部件的通用性强。 ⑧测量力是恒定的, 不受测 量者用力大小的影响, 避免了由于测量力不同而引起的示值差异, 测量结果更客观一致, 提 高了量值的传递质量。 ⑨可以测读分离, 对于深度测量或普通车床操作中的直径测量或其它 刁难部位的测量尤显便利, 不需歪头扭身去读数或无法读数。 ⑩具备强力自锁功能。 相对传 统自锁卡尺, 自锁力更加强大, 但解除自锁又因杠杆而远更轻松省力。 四、 本发明所述双零位电子表卡尺
电子卡尺的读数效率最高,但 IP54或更低防护级别的普通容栅电子卡尺对油水污染极为 敏感。 目前公知电子卡尺的现状是: 为了克服容栅电子卡尺怕水怕油的缺陷, 世界各国厂商 相继开发生产了防水电子卡尺。 目前已成功应用的防水电子卡尺有两类, 一类是非容栅的原 理防水电子卡尺, 另一类是以角位移容栅原理制作的结构防水电子卡尺。 前者虽然有防水的 能力, 但放弃了容栅电子传感器耗电极省、 不怕强磁的优势, 后者虽然达到了防水的目的, 但没有解决齿条的长程动态密封问题, 在粉尘环境里工况不佳, 综合防护能力不足。 用线位 移容栅原理制作的防水电子卡尺至今未见面世, 究其原因, 是因为要在很有限的空间里实现 与主尺等长的长栅条动态水封是公认的高难课题。 但是, 线位移容栅传感器在技术成熟度、 生产批量、 性价比、 电池续航力、 抗磁性能等诸方面都具有强大优势, 放弃这么多的优势去 达到防水的单一目的, 技术代价高昂。
本发明所述双零位电子表卡尺的目的是: 实现一种恒测力、 能自锁、 测读可分离、 可以 釆用各种电子位移传感器制作的准电子式防水卡尺。
它是这样实现的: 一种双零位电子表卡尺, 由本发明所述的双零位尺体和测微机构, 所 述测微机构为传统公知的各种线位移电子传感器组成; 所述的线位移电子传感器, 包括容栅 线位移电子传感器; 所述线位移电子传感器的最大耜合行程略大于所述的原始设定值 δ , 但 远小于标定量程。
参照图 11a和图 l ib ,在本发明所述的双零位尺体中, 前副尺 210上固装了一个防水密封 盒 800 , 电路板 801等所有的电子部件均安装在防水密封盒 800内部。 一根驱动轴 225与后 副尺 220固装。驱动轴 225穿越并伸入到防水密封盒 800的内部空间里,带动防水密封盒 800 内部的动栅板 802随后副尺 220同步静止或移动。动栅板 802与电路板 801之间有电路禹合, 耦合行程略大于所述的原始设定值 δ。 驱动轴 225与防水密封盒 800的穿越处装有密封轴承 (未画出), 可以防水、 防油、 防尘。 电子显示屏 803所显示的整数位通过电路处理是凝固为 0 的。 按所述双零位尺体的工作步骤, 可以完成所述双零位电子表卡尺的测量操作。 所述双 零位电子表卡尺的读数方法与传统公知带表卡尺完全一样: 先读主尺上的整数, 再读显示屏 上直接由数字显示的小数, 再将两数相加, 即为测量值。
所述电子表卡尺也可釆用各种角位移电子传感器, 所述的角位移电子传感器, 包括容栅 角位移电子传感器。 它是这样实现的: 一种双零位电子表卡尺, 由本发明所述的双零位尺体 和测 :机构, 所述测 :机构为传统公知的角位移电子传感器组成;
参照图 10a,图 12a、 图 12b和图 12c, 在本发明所述的双零位尺体中, 后副尺 220的框体 222向靠近所述原始零位的方向延伸出凸出部二 224' , 该凸出部二 224' 伸入到前副尺 210 内部, 一弹压簧片二 225' 4氐接凸出部二 224' 将凸出部二 224' 与主尺下侧面 130紧贴; 一 才艮短齿条二 701' 在前副尺 210的内部空间里固装在凸出部二 224' 上。
所述角位移传感器具有与前副尺固装的齿轮组二 900 , 齿轮组二 900的输出端为旋转轴 二 901; 齿轮组二 900与短齿条二 701' 在前副尺 210的内部空间里无间隙啮合, 可啮合行程 的最大值为 δ ' ; 所述角位移传感器还具有与前副尺 210 固装的防水密封盒二 1000, 旋转轴 二 901穿越并进入防水密封盒二 1000内部, 穿越处有防水密封轴承二 1001 , 可以防水、 防 油、 防尘。
电路板二 1002等所有的电子部件均安装在防水密封盒二 1000内部。 圆形动栅片二 1003 在防水密封盒二 1000内部与旋转轴二 901固装, 可与旋转轴二 901同步旋转或静止。 圆形动 栅片二 1003与电路板二 1002之间有电路禹合, 通过检测圆形动栅片二 1003相对电路板二 1002的角度位置和圆形动栅片二 1003因短齿条二 701,移动而产生的旋转圏数, 可以测量和 显示后副尺 220相对前副尺 210所出现的直线位移距离。电子显示屏二 1004所显示的整数位 通过电路处理是凝固为 0的。 按所述双零位尺体的工作步骤, 可以完成所述双零位电子表卡 尺的测量操作。 所述双零位电子表卡尺的读数方法与传统公知带表卡尺完全一样: 先读主尺 上的整数, 再读显示屏上直接由数字显示的小数, 再将两数相加, 即为测量值。
本发明所述的双零位电子表卡尺具有如下技术效果:
①可以釆用包括容栅在内的各种线位移和角位移电子传感器来制作防水电子卡尺, 能以 低的技术代价获得电子卡尺的防水功能, 可发挥容栅传感器耗电量省、 抗磁能力强、 价格低 廉等综合优势。 ②综合防护能力强大, 无论齿形机械元件还是电子零部件, 均能抵抗固态和 液态物质污染, 防护等级至少可达 ΙΡ65; ③兼备传统公知带表卡尺和传统公知电子卡尺的优 点, 小数值直接数字显示, 比传统公知带表卡尺的读数效率更高、 比 ΙΡ54或更低防护级别的 普通容栅电子卡尺的使用范围更广。 ④给卡尺家族增添了一个从未有过的新品种, 具有很强 的实用性, 特别适于在有油水污染的环境中快速高效测量。 ⑤测力恒定、 测读分离、 强力自 锁、 解锁轻松省力。 五、 本发明所述双零位游标卡尺
游标卡尺是通过将微小量放大从而精确测量长度的最常用工具, 它使用可靠, 但由于 游标的刻线密集,一般要有 51根游标线, 因而判断困难、 读数效率低。 传统游标卡尺还由于 受人体肉眼分辨力极限的限制, 普遍认为其显示精度最高只能达 0.02毫米而不能再高了 (即 最精密的卡尺游标细分装置只能是将 49毫米等分成 50份)。虽然理论上和制造技术上完全可 以按显示精度 0.01毫米设置卡尺游标细分装置(即将 99毫米等分成 100份,如 200710300811.3 号中国专利所公示),但由于 0.01毫米已经接近人眼分辨力极限 0.006毫米, 因而在这样的高 细分游标装置中判断哪根线最为重合对齐极其困难, 这时即使釆用放大镜, 也只不过是将线 间差距同倍放大, 对判断毫无帮助, 因而这样的高细分游标设置在卡尺上没有实用性。 也曾 有显示精度可达 0.01毫米的游标长度量具在文献中出现, 但其外形与卡尺相距甚远, 已经不 是卡尺了。 所以游标卡尺自问世以来, 没有显示精度 0.01毫米的实物产品面世。
本发明所述双零位游标卡尺的目的是: 实现一种恒测力、 能自锁、 测读可分离、 显示精 度高于 0.02毫米但更容易辨读的新型游标卡尺。
它是这样实现的: 一种双零位游标卡尺, 由本发明所述的双零位尺体和测 :机构, 所述 测微机构为传统公知的游标细分装置, 以及一个直线位移放大器组成。 所述游标细分装置的 最大有效移动行程为 δ Κ, δ为本发明所述的原始设定值, Κ 为所述直线位移放大器的放大 倍数。 δ Κ远小于标定量程。
参照图 13a、图 13b。在本发明所述的双零位尺体上,一根驱动杆 226与后副尺 220固装, 可随后副尺 220同步静止或移动; 一块滑槽板 214与前副尺 210固装, 一个游标筒 215可在 滑槽板 214的滑槽内规范的自由滑动; 在驱动杆 226与游标筒 215之间, 有一个直线位移放 大器 216固装在滑槽板 214上。 直线位移放大器 216的位移放大量 K可按需选取, 优选的位 移放大量是 K = 10。 驱动杆 226将后副尺 220的移动量输入直线位移放大器 216, 经直线位 移放大器 216将该移动量放大后, 再输出给游标筒 215接收, 也就是说, 当后副尺 220移动 了 0.01毫米时, 游标筒 215可同向移动 0.1毫米。 一排两两距离为 1毫米的小刻线 217刻制 在滑槽板 214的斜面上, 一段游标线 218刻制在游标筒 215上与小刻线 217共面的斜面上, 可游动的游标线 218与相对固定的小刻线 217共同组成共面的无视差游标细分装置, 该游标 细分装置可相对移动的最大值略大于 10 δ。 游标筒 215上的游标线 218按显示精度 0.1毫米 设置(即将小刻线 217的 9毫米等分成 10等份), 由于它是放大了 10倍的精度值, 因而该精 度值缩小 10倍后实为 0.01毫米, 所以游标线 218虽按精度 0.1毫米设置,但标示的精度却是 每格 0.01毫米。 小刻线 217的排列总长度按后副尺 220相对前副尺 210的最大有效移动量 2 毫米加 1毫米然后乘 10倍设置, 它被分成 A, Β两段应用:
参照图 13c, 当应用到 t = T时, 由于后副尺 220的移动量 T最大为 1毫米, 此时, 如 果 t = T = 0.99毫米, 则放大 10倍后为 9.9毫米, 即后副尺 220移动了 0.99毫米时, 游标筒 215将移动 9.9毫米,在游标线 218和小刻线 217组成的游标细分装置上,读出的数值为 0.99, 与实际相符。 此时应用到的是图 13c所示的 A段。
参照图 13d, 当应用到 t = T _ l时, 由于所述后副尺 200的移动量 T最大为 2毫米, 此 时, 如果 t = 0.99毫米, 贝' j T = t + 1 = 1.99毫米, 放大 10倍后为 19.9毫米, 即后副尺 220移 动了 1.99毫米时, 游标筒 215将移动 19.9毫米,在游标线 218和小刻线 217组成的游标细分 装置上, 读出的数值为 0.99, 与实际相符。 此时应用到的是图 13d所示的 B段。
参照图 13e, 拉簧 219的一端与游标筒 215在内部勾挂(未显示), 另一端与直线位移放 大器 216勾挂, 游标筒 215在内部与直线位移放大器 216的输出端 216a抵接。 当直线位移放 大器 216的输出端沿图示左端方向伸出时, 游标筒 215同向位移, 拉簧 219被拉长; 当驱使 输出端 216a伸出的力消失后, 拉簧 219的复原力驱使游标筒 215反向位移复位归零, 输出端 216a也因被游标筒 215 4氐持而同时沿图示右端方向回缩复位。
按所述双零位尺体的工作步骤, 可以完成所述双零位游标卡尺的测量操作。 所述双零位 游标卡尺的读数方法与传统公知游标卡尺没有区别,测量者无需注意应用的是 A段还是 B段, 只需按线读数即可。
本发明所述的双零位游标卡尺具有如下技术效果:
①显示精度可以高达或高于 (当 K > 10时) 0.01毫米。 ②由于游标细分装置按显示精度 0.1毫米设置, 故刻线稀少, 只有 11根游标线, 因此非常容易辨读, 比显示精度 0.02毫米的 传统游标卡尺还要容易辨读 0.1 ÷ 0.02 = 5倍。 ③测力恒定、 测读分离、 强力自锁、 解锁轻松 省力。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认定本发明 的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术人员来说, 在不脱离本 发明构思的前提下, 其架构形式能够灵活多变, 可以派生系列产品。 只是做出若干简单推演 或替换, 都应当视为属于本发明所提交的权利要求书确定的专利保护范围。

Claims

权 利 要 求
1、 一种双零位卡尺, 包括双零位尺体和测 机构; 所述双零位尺体包括主尺和副尺; 所 述测 机构为机械量表、 或电子位移传感器、 或游标细分装置; 所述主尺具有静量爪和主尺 尺体, 所述主尺尺体上标有两两距离为 1毫米的整数倍的整数刻线, 距静量爪最近的起始整 数刻线为原始零位; 所述副尺包容所述主尺尺体并可相对所述主尺尺体自锁不动或沿所述整 数刻线的排列方向移动; 其特征在于:
所述副尺具有前副尺和后副尺, 所述后副尺可相对所述前副尺在有限范围内移动, 移动 方向与所述整数刻线的排列方向平行; 所述前副尺具有动量爪和测标; 所述前副尺负责测量 测量值的整数值, 所述后副尺负责测量测量值与所述整数值之差;
所述前副尺为一框体, 所述框体下部枢接一杠杆, 该杠杆自由端设有一个能自由转动的 滚轮, 该滚轮靠近所述主尺尺体的下侧面; 所述杠杆和所述后副尺上设有相互配合的离合机 构, 按压所述滚轮使其接触所述主尺尺体的下侧面时, 所述杠杆偏转, 所述离合机构闭合, 此时, 所述前、 后副尺形成同步位移的刚性结构; 松开所述滚轮, 所述杠杆复位, 所述离合 机构分开;
所述前副尺上还具由锁紧轴和压缩弹簧组成的自锁机构; 所述锁紧轴上设有锁紧面与所 述主尺尺体紧密抵持, 从而将所述前副尺锁紧在所述主尺尺体上而不能移动; 所述锁紧轴一 端抵接所述杠杆, 所述杠杆施加在所述锁紧轴上的力使所述锁紧面与所述主尺尺体分离, 从 而使所述前副尺与所述主尺尺体之间的锁紧状态解除, 此时所述前副尺可沿所述整数刻线的 排列方向移动; 所述杠杆施加在所述锁紧轴上的力撤销后, 所述压缩弹簧令所述锁紧轴复位, 使所述锁紧轴恢复到与所述主尺尺体紧密抵持的锁紧状态;
所述后副尺也为一框体, 且后副尺具有一仅可沿轴心线方向移动的定位轴, 所述定位轴 部分容置于框体内, 所述定位轴上套装有弹性元件, 该弹性元件可使所述定位轴在令其产生 位移的外力撤销后复位;
所述的主尺上设有一排定位凹凸, 所述定位凹凸的形状与所述定位轴的径向断面形状相 匹配, 所述定位凹凸的数量至少能使其排列长度等于标定量程, 每个所述定位凹凸的形状和 大小都相同, 每个所述定位凹凸的中心都与所述整数刻线保持固定不变的对应关系, 且相邻 两个所述定位凹凸的中心距相等; 当所述前副尺的测标对准所述原始零位时, 按压所述滚轮 使所述离合机构闭合, 所述定位轴的对称中心与某个所述定位凹凸的中心重合, 该定位凹凸 即为起始定位凹凸;
所述前、 后副尺在沿所述整数刻线的排列方向上分离一小段距离, 记为 δ' ; 所述前副尺 和所述后副尺上设有相互配合的限位装置, 所述限位装置使所述后副尺相对所述前副尺的最 大位移距离 δ' ; 所述离合机构闭合时, 所述前、 后副尺在沿所述整数刻线的排列方向上的 分离距离, 记为 δ, δ' > δ≥1毫米且等于一排所述定位凹凸中相邻两个定位凹凸的中心距; 所述测微机构的相对运动部分分别固装在所述前副尺上和所述后副尺上, 使所述测微机 构能够产生工作行程; 所述测 机构仅测量和显示所述后副尺相对所述前副尺的位移距离。
2、 如权利要求 1所述的双零位卡尺, 其特征在于, 所述离合机构为相互配合的 V型凸 部和 V型凹部。
3、 如权利要求 1所述的双零位卡尺, 其特征在于, 所述定位轴是一球头轴。
4、 如权利要求 3所述的双零位卡尺, 其特征在于, 所述定位凹凸为定位孔, 定位孔的直 径小于所述球头轴的球径。
5、 如权利要求 1所述的双零位卡尺, 其特征在于, 按压所述滚轮使其接触主尺的下侧面 时, 所述滚轮的外圆面与所述驱动杆的边缘面平齐。
6、 如权利要求 1所述的双零位卡尺, 其特征在于, 所述定位凹凸的中心与所述整数刻线 的偶数刻线保持——对应的固定关系。
7、 一种双零位机戈表卡尺, 包括双零位尺体和测 机构; 所述双零位尺体包括主尺和副 尺; 所述测 机构为带齿轮组的机械指示表; 所述主尺具有静量爪和主尺尺体, 所述主尺尺 体上标有两两距离为 1毫米的整数倍的整数刻线,距静量爪最近的起始整数刻线为原始零位; 所述副尺包容所述主尺尺体并可相对所述主尺尺体自锁不动或沿所述整数刻线的排列方向移 动; 其特征在于:
所述副尺具有前副尺和后副尺, 所述后副尺可相对所述前副尺在有限范围内移动, 移动 方向与所述整数刻线的排列方向平行; 所述前副尺具有动量爪和测标; 所述前副尺负责测量 测量值的整数值, 所述后副尺负责测量测量值与所述整数值之差;
所述前副尺为一框体, 所述框体下部枢接一杠杆, 该杠杆自由端设有一个能自由转动的 滚轮, 该滚轮靠近所述主尺尺体的下侧面; 所述杠杆和所述后副尺上设有相互配合的离合机 构, 按压所述滚轮使其接触所述主尺尺体的下侧面时, 所述杠杆偏转, 所述离合机构闭合, 此时, 所述前、 后副尺形成同步位移的刚性结构; 松开所述滚轮, 所述杠杆复位, 所述离合 机构分开;
所述前副尺上还具由锁紧轴和压缩弹簧组成的自锁机构; 所述锁紧轴上设有锁紧面与所 述主尺尺体紧密抵持, 从而将所述前副尺锁紧在所述主尺尺体上而不能移动; 所述锁紧轴一 端抵接所述杠杆, 所述杠杆施加在所述锁紧轴上的力使所述锁紧面与所述主尺尺体分离, 从 而使所述前副尺与所述主尺尺体之间的锁紧状态解除, 此时所述前副尺可沿所述整数刻线的 排列方向移动; 所述杠杆施加在所述锁紧轴上的力撤销后, 所述压缩弹簧令所述锁紧轴复位, 使所述锁紧轴恢复到与所述主尺尺体紧密抵持的锁紧状态;
所述后副尺也为一框体, 且后副尺具有一仅可沿轴心线方向移动的定位轴, 所述定位轴 部分容置于框体内, 所述定位轴上套装有弹性元件, 该弹性元件可使所述定位轴在令其产生 位移的外力撤销后复位;
所述的主尺上设有一排定位凹凸, 所述定位凹凸的形状与所述定位轴的径向断面形状相 匹配, 所述定位凹凸的数量至少能使其排列长度等于标定量程, 每个所述定位凹凸的形状和 大小都相同, 每个所述定位凹凸的中心都与所述整数刻线保持固定不变的对应关系, 且相邻 两个所述定位凹凸的中心距相等; 当所述前副尺的测标对准所述原始零位时, 按压所述滚轮 使所述离合机构闭合, 所述定位轴的对称中心与某个所述定位凹凸的中心重合, 该定位凹凸 即为起始定位凹凸;
所述前、 后副尺在沿所述整数刻线的排列方向上分离一小段距离, 记为 δ' ; 所述前副尺 和所述后副尺上设有相互配合的限位装置, 所述限位装置使所述后副尺相对所述前副尺的最 大位移距离 δ' ; 所述离合机构闭合时, 所述前、 后副尺在沿所述整数刻线的排列方向上的 分离距离, 记为 δ, δ' > δ≥1毫米且等于一排所述定位凹凸中相邻两个定位凹凸的中心距; 所述后副尺的框体向靠近所述原始零位的方向延伸出凸出部, 该凸出部伸入到所述前副 尺内部, 在该凸出部上固装有一短齿条; 一弹压簧片 4氐接所述凸出部将所述凸出部与所述主 尺下侧面紧贴; 所述带齿轮组的机械表固装于所述前副尺; 所述齿轮组与所述短齿条在所述 前副尺的内部空间里相啮合, 啮合行程的最大值为 δ';
所述带齿轮组的机械指示表仅测量和显示所述后副尺相对所述前副尺的位移距离。
8、 一种双零位电子表卡尺, 双零位尺体和测 机构; 所述双零位尺体包括主尺和副尺; 所述测 机构为线位移电子传感器; 所述主尺具有静量爪和主尺尺体, 所述主尺尺体上标有 两两距离为 1毫米的整数倍的整数刻线, 距静量爪最近的起始整数刻线为原始零位; 所述副 尺包容所述主尺尺体并可相对所述主尺尺体自锁不动或沿所述整数刻线的排列方向移动; 其 特征在于:
所述副尺具有前副尺和后副尺, 所述后副尺可相对所述前副尺在有限范围内移动, 移动 方向与所述整数刻线的排列方向平行; 所述前副尺具有动量爪和测标; 所述前副尺负责测量 测量值的整数值, 所述后副尺负责测量测量值与所述整数值之差;
所述前副尺为一框体, 所述框体下部枢接一杠杆, 该杠杆自由端设有一个能自由转动的 滚轮, 该滚轮靠近所述主尺尺体的下侧面; 所述杠杆和所述后副尺上设有相互配合的离合机 构, 按压所述滚轮使其接触所述主尺尺体的下侧面时, 所述杠杆偏转, 所述离合机构闭合, 此时, 所述前、 后副尺形成同步位移的刚性结构; 松开所述滚轮, 所述杠杆复位, 所述离合 机构分开;
所述前副尺上还具由锁紧轴和压缩弹簧组成的自锁机构; 所述锁紧轴上设有锁紧面与所 述主尺尺体紧密抵持, 从而将所述前副尺锁紧在所述主尺尺体上而不能移动; 所述锁紧轴一 端抵接所述杠杆, 所述杠杆施加在所述锁紧轴上的力使所述锁紧面与所述主尺尺体分离, 从 而使所述前副尺与所述主尺尺体之间的锁紧状态解除, 此时所述前副尺可沿所述整数刻线的 排列方向移动; 所述杠杆施加在所述锁紧轴上的力撤销后, 所述压缩弹簧令所述锁紧轴复位, 使所述锁紧轴恢复到与所述主尺尺体紧密抵持的锁紧状态;
所述后副尺也为一框体, 且后副尺具有一仅可沿轴心线方向移动的定位轴, 所述定位轴 部分容置于框体内, 所述定位轴上套装有弹性元件, 该弹性元件可使所述定位轴在令其产生 位移的外力撤销后复位;
所述的主尺上设有一排定位凹凸, 所述定位凹凸的形状与所述定位轴的径向断面形状相 匹配, 所述定位凹凸的数量至少能使其排列长度等于标定量程, 每个所述定位凹凸的形状和 大小都相同, 每个所述定位凹凸的中心都与所述整数刻线保持固定不变的对应关系, 且相邻 两个所述定位凹凸的中心距相等; 当所述前副尺的测标对准所述原始零位时, 按压所述滚轮 使所述离合机构闭合, 所述定位轴的对称中心与某个所述定位凹凸的中心重合, 该定位凹凸 即为起始定位凹凸;
所述前、 后副尺在沿所述整数刻线的排列方向上分离一小段距离, 记为 δ' ; 所述前副尺 和所述后副尺上设有相互配合的限位装置, 所述限位装置使所述后副尺相对所述前副尺的最 大位移距离 δ' ; 所述离合机构闭合时, 所述前、 后副尺在沿所述整数刻线的排列方向上的 分离距离, 记为 δ, δ' > δ≥1毫米且等于一排所述定位凹凸中相邻两个定位凹凸的中心距; 所述线位移电子传感器, 具有固装于所述前副尺的防水密封盒, 所述防水密封盒内装有 线路板和动栅板, 所述线路板和动栅板通过电路耦合, 耦合行程的最大值为 δ' ; 所述动栅板 与一驱动轴相连接, 所述驱动轴穿越并伸出到所述防水密封盒外部而与所述后副尺固接、 并 带动所述动栅板随所述后副尺同步直线移动; 所述防水密封盒表面设有电子显示屏, 所述电 子显示屏与所述线路板电连接, 其上显示的整数位在 δ=2时凝固为 0; 所述驱动轴穿越所述 防水密封盒处设有密封轴承;
所述线位移电子传感器仅测量和显示所述后副尺相对所述前副尺的位移距离。
9、 一种双零位电子表卡尺, 双零位尺体和测 机构; 所述双零位尺体包括主尺和副尺; 所述测^:机构为角位移电子传感器; 所述主尺具有静量爪和主尺尺体, 所述主尺尺体上标有 两两距离为 1毫米的整数倍的整数刻线, 距静量爪最近的起始整数刻线为原始零位; 所述副 尺包容所述主尺尺体并可相对所述主尺尺体自锁不动或沿所述整数刻线的排列方向移动; 其 特征在于:
所述副尺具有前副尺和后副尺, 所述后副尺可相对所述前副尺在有限范围内移动, 移动 方向与所述整数刻线的排列方向平行; 所述前副尺具有动量爪和测标; 所述前副尺负责测量 测量值的整数值, 所述后副尺负责测量测量值与所述整数值之差;
所述前副尺为一框体, 所述框体下部枢接一杠杆, 该杠杆自由端设有一个能自由转动的 滚轮, 该滚轮靠近所述主尺尺体的下侧面; 所述杠杆和所述后副尺上设有相互配合的离合机 构, 按压所述滚轮使其接触所述主尺尺体的下侧面时, 所述杠杆偏转, 所述离合机构闭合, 此时, 所述前、 后副尺形成同步位移的刚性结构; 松开所述滚轮, 所述杠杆复位, 所述离合 机构分开;
所述前副尺上还具由锁紧轴和压缩弹簧组成的自锁机构; 所述锁紧轴上设有锁紧面与所 述主尺尺体紧密抵持, 从而将所述前副尺锁紧在所述主尺尺体上而不能移动; 所述锁紧轴一 端抵接所述杠杆, 所述杠杆施加在所述锁紧轴上的力使所述锁紧面与所述主尺尺体分离, 从 而使所述前副尺与所述主尺尺体之间的锁紧状态解除, 此时所述前副尺可沿所述整数刻线的 排列方向移动; 所述杠杆施加在所述锁紧轴上的力撤销后, 所述压缩弹簧令所述锁紧轴复位, 使所述锁紧轴恢复到与所述主尺尺体紧密抵持的锁紧状态;
所述后副尺也为一框体, 且后副尺具有一仅可沿轴心线方向移动的定位轴, 所述定位轴 部分容置于框体内, 所述定位轴上套装有弹性元件, 该弹性元件可使所述定位轴在令其产生 位移的外力撤销后复位;
所述的主尺上设有一排定位凹凸, 所述定位凹凸的形状与所述定位轴的径向断面形状相 匹配, 所述定位凹凸的数量至少能使其排列长度等于标定量程, 每个所述定位凹凸的形状和 大小都相同, 每个所述定位凹凸的中心都与所述整数刻线保持固定不变的对应关系, 且相邻 两个所述定位凹凸的中心距相等; 当所述前副尺的测标对准所述原始零位时, 按压所述滚轮 使所述离合机构闭合, 所述定位轴的对称中心与某个所述定位凹凸的中心重合, 该定位凹凸 即为起始定位凹凸;
所述前、 后副尺在沿所述整数刻线的排列方向上分离一小段距离, 记为 δ' ; 所述前副尺 和所述后副尺上设有相互配合的限位装置, 所述限位装置使所述后副尺相对所述前副尺的最 大位移距离 δ' ; 所述离合机构闭合时, 所述前、 后副尺在沿所述整数刻线的排列方向上的 分离距离, 记为 δ, δ' > δ≥1毫米且等于一排所述定位凹凸中相邻两个定位凹凸的中心距; 所述后副尺的框体向靠近所述原始零位的方向延伸出凸出部二, 该凸出部二伸入到所述 前副尺内部, 一弹压簧片二抵接所述凸出部二将所述凸出部二与所述主尺下侧面紧贴; 一根 短齿条二在所述前副尺的内部空间里固装在凸出部二上;
所述角位移传感器具有与前副尺固装的齿轮组二, 所述齿轮组二的输出端为一根旋转轴 二; 所述齿轮组二与所述短齿条二在所述前副尺的内部空间里无间隙啮合, 可啮合行程的最 大值为 δ' ; 所述角位移传感器还具有与所述前副尺固装的防水密封盒二, 所述旋转轴二穿越 并进入所述防水密封盒二内, 穿越处有防水密封轴承二; 所述防水密封盒二内装有电路板二, 所述旋转轴二在所述防水密封盒二内固装一圆形动栅片, 所述圆形动栅片可随所述旋转轴二 同步转动; 所述圆形动栅片与所述电路板二通过电路禹合, 通过检测所述圆形动栅片相对所 述电路板二的角度位置和所述圆形动栅片因所述短齿条二移动而产生的旋转圏数, 而测量和 显示所述后副尺相对所述前副尺所出现的直线位移距离, 该直线位移距离的最大值为 δ' ; 所 述防水密封盒二表面设有电子显示屏二, 所述电子显示屏二与所述线路板二电连接, 其上显 示的整数位在 δ=2时凝固为 0。
10、 一种双零位游标卡尺, 双零位尺体和测 :机构; 所述双零位尺体包括主尺和副尺; 所述测 机构为游标细分装置; 所述主尺具有静量爪和主尺尺体, 所述主尺尺体上标有两两 距离为 1毫米的整数倍的整数刻线, 距静量爪最近的起始整数刻线为原始零位; 所述副尺包 容所述主尺尺体并可相对所述主尺尺体自锁不动或沿所述整数刻线的排列方向移动; 其特征 在于:
所述副尺具有前副尺和后副尺, 所述后副尺可相对所述前副尺在有限范围内移动, 移动 方向与所述整数刻线的排列方向平行; 所述前副尺具有动量爪和测标; 所述前副尺负责测量 测量值的整数值, 所述后副尺负责测量测量值与所述整数值之差;
所述前副尺为一框体, 所述框体下部枢接一杠杆, 该杠杆自由端设有一个能自由转动的 滚轮, 该滚轮靠近所述主尺尺体的下侧面; 所述杠杆和所述后副尺上设有相互配合的离合机 构, 按压所述滚轮使其接触所述主尺尺体的下侧面时, 所述杠杆偏转, 所述离合机构闭合, 此时, 所述前、 后副尺形成同步位移的刚性结构; 松开所述滚轮, 所述杠杆复位, 所述离合 机构分开;
所述前副尺上还具由锁紧轴和压缩弹簧组成的自锁机构; 所述锁紧轴上设有锁紧面与所 述主尺尺体紧密抵持, 从而将所述前副尺锁紧在所述主尺尺体上而不能移动; 所述锁紧轴一 端抵接所述杠杆, 所述杠杆施加在所述锁紧轴上的力使所述锁紧面与所述主尺尺体分离, 从 而使所述前副尺与所述主尺尺体之间的锁紧状态解除, 此时所述前副尺可沿所述整数刻线的 排列方向移动; 所述杠杆施加在所述锁紧轴上的力撤销后, 所述压缩弹簧令所述锁紧轴复位, 使所述锁紧轴恢复到与所述主尺尺体紧密抵持的锁紧状态;
所述后副尺也为一框体, 且后副尺具有一仅可沿轴心线方向移动的定位轴, 所述定位轴 部分容置于框体内, 所述定位轴上套装有弹性元件, 该弹性元件可使所述定位轴在令其产生 位移的外力撤销后复位;
所述的主尺上设有一排定位凹凸, 所述定位凹凸的形状与所述定位轴的径向断面形状相 匹配, 所述定位凹凸的数量至少能使其排列长度等于标定量程, 每个所述定位凹凸的形状和 大小都相同, 每个所述定位凹凸的中心都与所述整数刻线保持固定不变的对应关系, 且相邻 两个所述定位凹凸的中心距相等; 当所述前副尺的测标对准所述原始零位时, 按压所述滚轮 使所述离合机构闭合, 所述定位轴的对称中心与某个所述定位凹凸的中心重合, 该定位凹凸 即为起始定位凹凸;
所述前、 后副尺在沿所述整数刻线的排列方向上分离一小段距离, 记为 δ' ; 所述前副尺 和所述后副尺上设有相互配合的限位装置, 所述限位装置使所述后副尺相对所述前副尺的最 大位移距离 δ' ; 所述离合机构闭合时, 所述前、 后副尺在沿所述整数刻线的排列方向上的 分离距离, 记为 δ, δ' > δ≥1毫米且等于一排所述定位凹凸中相邻两个定位凹凸的中心距; 所述游标细分装置具有与所述前副尺固接的滑槽板和与所述后副尺固接的驱动件; 所述 滑槽板上固装一个直线位移放大器, 所述直线位移放大器的输入端设有所述的驱动件、 输出 端设有游标筒, 所述游标筒可在所述滑槽板内规范滑动, 所述直线位移放大器通过所述驱动 件将所述后副尺的位移距离接收并放大后, 再输出给所述游标筒接收; 一排两两距离为 1毫 米的小刻线刻制在所述滑槽板上, 一段游标线刻制在所述游标筒上且与所述小刻线共面, 可 游动的所述游标线与相对固定的所述小刻线共同组成共面的无视差游标读数装置;
所述游标线相对所述小刻线的最大有效移动行程为 δΚ, Κ为所述直线位移放大器的放 大倍数; 放大倍数 Κ可按需选取, 当 Κ = 10时: 所述游标线按将所述小刻线的 9毫米排列长 度等分成 10等份设置, 所述小刻线的排列总长度为 10χ ( δ + 1 ), 所述游标细分装置的显示 精度标识为 0.01毫米;
所述游标细分装置仅测量和显示所述后副尺相对所述前副尺的位移距离。
PCT/CN2012/081919 2011-09-26 2012-09-25 双零位卡尺 WO2013044786A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110288801.9 2011-09-26
CN 201110288801 CN102331213B (zh) 2011-09-26 2011-09-26 双零位卡尺

Publications (1)

Publication Number Publication Date
WO2013044786A1 true WO2013044786A1 (zh) 2013-04-04

Family

ID=45483094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081919 WO2013044786A1 (zh) 2011-09-26 2012-09-25 双零位卡尺

Country Status (2)

Country Link
CN (1) CN102331213B (zh)
WO (1) WO2013044786A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102331213B (zh) * 2011-09-26 2013-05-01 东莞市邦卡量具科技有限公司 双零位卡尺
CN103047920B (zh) * 2012-12-18 2015-10-21 广东尚高科技有限公司 一种孔边测距仪器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB632671A (en) * 1946-12-17 1949-11-28 Hugo Nusshold A vernier calliper gauge
US3266159A (en) * 1964-03-16 1966-08-16 Jule A Scholl Dial gauge vernier caliper
GB1069238A (en) * 1966-04-28 1967-05-17 Jules Adolph Scholl Dial gauge vernier caliper
CA778069A (en) * 1968-02-13 A. Scholl Jule Dial gauge vernier caliper
JPS4856444A (zh) * 1971-11-16 1973-08-08
CN101122455A (zh) * 2007-08-10 2008-02-13 赵志强 数显测量装置
CN102331213A (zh) * 2011-09-26 2012-01-25 东莞市邦卡量具科技有限公司 双零位卡尺
CN202304657U (zh) * 2011-09-26 2012-07-04 东莞市邦卡量具科技有限公司 双零位卡尺

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190901797A (en) * 1909-01-25 1910-01-25 Arthur Edward Stewart Craig Improvements in and relating to Calliper Gauges.
JPH05803Y2 (zh) * 1985-02-04 1993-01-11
JP3546184B2 (ja) * 2001-01-31 2004-07-21 株式会社ミツトヨ ノギスおよびノギス用グリップ
SE523803C2 (sv) * 2001-09-18 2004-05-18 Hagloef Sweden Ab Klave för mätning av träds diameter
CN100383487C (zh) * 2005-03-30 2008-04-23 施晓宇 一种游标卡尺
CN101393004A (zh) * 2006-12-27 2009-03-25 刘其和 轴键槽专用卡尺
CN101210793A (zh) * 2006-12-29 2008-07-02 本溪钢铁(集团)有限责任公司 一种多功能卡尺
CN100561110C (zh) * 2006-12-29 2009-11-18 鸿富锦精密工业(深圳)有限公司 游标卡尺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA778069A (en) * 1968-02-13 A. Scholl Jule Dial gauge vernier caliper
GB632671A (en) * 1946-12-17 1949-11-28 Hugo Nusshold A vernier calliper gauge
US3266159A (en) * 1964-03-16 1966-08-16 Jule A Scholl Dial gauge vernier caliper
GB1069238A (en) * 1966-04-28 1967-05-17 Jules Adolph Scholl Dial gauge vernier caliper
JPS4856444A (zh) * 1971-11-16 1973-08-08
CN101122455A (zh) * 2007-08-10 2008-02-13 赵志强 数显测量装置
CN102331213A (zh) * 2011-09-26 2012-01-25 东莞市邦卡量具科技有限公司 双零位卡尺
CN202304657U (zh) * 2011-09-26 2012-07-04 东莞市邦卡量具科技有限公司 双零位卡尺

Also Published As

Publication number Publication date
CN102331213B (zh) 2013-05-01
CN102331213A (zh) 2012-01-25

Similar Documents

Publication Publication Date Title
US10493973B2 (en) Device for measuring the thickness of automotive disc brake rotors
CN101738152B (zh) 一种改良的用于测量空心工件壁厚的测量仪
CN104198303A (zh) 一种扭杆蠕变量测量装置
WO2013044786A1 (zh) 双零位卡尺
CN202903071U (zh) 机械归零式高度尺
CN203274643U (zh) 一种杠杆式深孔直径测量仪
CN201387309Y (zh) 浅孔孔径测量装置
CN2831042Y (zh) 带表花键实际值测量仪
CN202734695U (zh) 中心孔距数显卡尺
CN202083498U (zh) 一种带温度补偿的高精度压力表
CN201555557U (zh) 一种表面粗糙度测量装置
CN204831126U (zh) 一种测量圆柱工件内外径的装置
CN102914228B (zh) 一种双零位机械表卡尺
US9982985B2 (en) Digital comparator having a retractable anvil supported at one end of a U-shaped frame
WO2013135164A1 (zh) 一种用于便携式数显硬度计的压痕深度测量装置
CN202420335U (zh) 单杆式内径千分尺
CN102878883B (zh) 一种双零位游标卡尺
CN102878882B (zh) 一种双零位电子表卡尺
CN202304657U (zh) 双零位卡尺
CN206378066U (zh) 百分表
CN209894393U (zh) 机械式数显压力表
CN2424443Y (zh) 一种游标卡尺
CN102944152B (zh) 一种双零位电子表卡尺
CN219531914U (zh) 一种差速器球径检测装置
CN213455239U (zh) 一种建筑材料长度检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836852

Country of ref document: EP

Kind code of ref document: A1