WO2013044687A1 - 一种确定终端工作带宽的方法及终端 - Google Patents

一种确定终端工作带宽的方法及终端 Download PDF

Info

Publication number
WO2013044687A1
WO2013044687A1 PCT/CN2012/079727 CN2012079727W WO2013044687A1 WO 2013044687 A1 WO2013044687 A1 WO 2013044687A1 CN 2012079727 W CN2012079727 W CN 2012079727W WO 2013044687 A1 WO2013044687 A1 WO 2013044687A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
bandwidth
working
system bandwidth
working bandwidth
Prior art date
Application number
PCT/CN2012/079727
Other languages
English (en)
French (fr)
Inventor
邢艳萍
徐伟杰
贾民丽
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2013044687A1 publication Critical patent/WO2013044687A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and terminal for determining a working bandwidth of a terminal. Background technique
  • MTC Machine Type Communications
  • LTE Long Term Evolution
  • An MTC device may have some of the characteristics of a variety of small bandwidth systems (machine to machine), such as low mobility, small amount of transmitted data, and insensitivity to communication delays. Very low power consumption and other features.
  • Machine-to-machine (M2M) communication is a new communication concept. Its purpose is to combine many different types of communication technologies, such as: machine-to-machine communication, machine control communication, human-computer interaction communication, Mobile internet communication to promote social production and lifestyle development.
  • the time for data transmission between the MTC terminal and the network side is controllable; that is, the MTC terminal can only access during the time period specified by the network;
  • the data transmission performed by the MTC network and the network side is not required for real-time data transmission, that is: time-tolerant;
  • the MTC terminal can be managed in units of groups; an actual MTC terminal can have one or more of the above characteristics.
  • MTC devices in small-bandwidth system communication will be very large in the future, and in most cases, MTC devices have relatively simple functions and do not require very high transmission rates, so the cost of MTC devices can be further reduced.
  • Bandwidth is an important factor affecting the cost of MTC equipment. If the working bandwidth of MTC equipment can be appropriately reduced, the cost will be significantly reduced.
  • the system bandwidth of the existing LTE system has several values as shown in Table 1:
  • the network notifies the UE of the downlink system bandwidth of the cell through the master information block MIB (Master Information Block) in the system broadcast. If the uplink system bandwidth is not equal to the downlink system bandwidth, the cell is also used by SIB2 (System Information Block Type2). The uplink system bandwidth is notified to the UE.
  • MIB Master Information Block
  • the LTE downlink subframe includes a time division control area and a data area, as shown in FIG. Pass
  • the control region occupies the first 1-3 symbols of a downlink subframe, and carries downlink control signaling, including a physical control format indicator channel (PCFICH), and a physical downlink control channel (PDCCH, Physical Downlink). Control Channel) and physical hybrid automatic request retransmission indication channel (PHICH, Physical HARQ indication channel).
  • PCFICH physical control format indicator channel
  • PDCCH Physical Downlink control channel
  • PHICH Physical hybrid automatic request retransmission indication channel
  • the PCFICH is used to notify the number of symbols occupied by the downlink control region, which is mapped on four resource element groups (REGs) that are equally spaced in the entire downlink system bandwidth; the PHICH is used to carry the uplink shared channel.
  • REGs resource element groups
  • UL-SCH Packet acknowledgment (ACK/NACK) information, which is mapped on 3 REGs, and these REGs are also equally spaced as possible within the system bandwidth;
  • PDCCH is used to carry downlink control information (DCI, Downlink Control) Information), after all PDCCHs are multiplexed, interleaving and resource mapping are performed on the remaining resources of the PCFICH and PHICH in the entire control region.
  • DCI Downlink Control
  • a Physical Uplink Control Channel (PUCCH) in the LTE uplink control channel is used to transmit uplink control information related to downlink data of the user.
  • its PUCCH occupies a frequency domain resource corresponding to a Resource Block (RB) in the frequency domain; it occupies a sub-frame transmission in the time domain.
  • RB Resource Block
  • the PUCCH of the two time slots also needs to perform frequency hopping transmission.
  • the PUCCH is located at both ends of the upstream band, as shown in Figure 2.
  • the resource mapping of several main control channels of LTE is closely related to the system bandwidth.
  • the LTE standard requires all UEs to support 20M system bandwidth. That is, the bandwidth supported by the UE is always greater than or equal to the system bandwidth. Therefore, the working bandwidth of the terminal in the system is equal to the system bandwidth notified by the system broadcast.
  • the prior art is based on that the bandwidth supported by the terminal must be greater than or equal to the system bandwidth.
  • the working bandwidth of the terminal is equal to the system bandwidth notified by the system broadcast.
  • the bandwidth supported by the MTC device may be small, that is, the bandwidth supported by the terminal may be smaller than the system bandwidth. At this time, because the system bandwidth exceeds the maximum bandwidth supported by the terminal, the terminal cannot work under the system bandwidth.
  • One potential solution is to design a special control domain and other information domains for small bandwidth terminals in a large bandwidth system so that small bandwidth terminals can operate under large bandwidth systems. However, since the bandwidth of each cell may be different in actual network deployment, there is no solution for how small bandwidth terminals work under different bandwidth cells. Summary of the invention
  • the embodiment of the invention provides a method and a terminal for determining the working bandwidth of the terminal, and the terminal can determine the working bandwidth according to the system bandwidth, if the working bandwidth of the terminal is different from the system bandwidth.
  • the method for determining the working bandwidth of a terminal includes:
  • the terminal acquires system bandwidth in the system broadcast
  • the terminal compares the obtained system bandwidth with the bandwidth supported by the terminal; the terminal determines its working bandwidth according to the comparison result.
  • the terminal acquires the system bandwidth in the system broadcast;
  • a comparison module configured to compare the obtained system bandwidth with the bandwidth supported by the terminal
  • a determining module configured to determine an operating bandwidth of the terminal according to the comparison result.
  • the terminal compares the system bandwidth obtained from the system broadcast with the size of the bandwidth supported by the terminal to determine the working bandwidth of the terminal, and the working bandwidth of the terminal may be different from the system bandwidth. In the case, the terminal is determined to determine its working bandwidth according to the system bandwidth.
  • FIG. 1 is a schematic structural diagram of a downlink subframe of an LTE system in the prior art
  • FIG. 2 is a schematic diagram of a PUCCH physical resource mapping of a downlink subframe of an LTE system in the prior art
  • FIG. 3 is a schematic flowchart of determining a working bandwidth of a terminal according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of downlink resource occupation according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of uplink resource occupation according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of downlink resource occupation in Embodiment 3 of the present invention.
  • Embodiment 7 is a schematic diagram of uplink resource occupation in Embodiment 3 of the present invention.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present invention. detailed description
  • An embodiment of the present invention provides a method for determining a working bandwidth of a terminal, where the terminal reads the system bandwidth in the system broadcast, and determines the working bandwidth according to the relationship between the system bandwidth and the bandwidth supported by the terminal. Further, the terminal can also determine a data transmission mechanism according to the working bandwidth.
  • the overall process can be as shown in Figure 3, including:
  • Step 301 The terminal reads the system bandwidth in the system broadcast.
  • the terminal can read the system bandwidth information in the system broadcast according to the prior art manner.
  • the downlink system bandwidth of the cell is obtained by reading the main information block MIB in the system broadcast
  • the uplink system bandwidth of the cell is obtained by reading the SIB2 in the system broadcast.
  • Step 302 The terminal compares the system bandwidth with the bandwidth supported by the terminal. If the system bandwidth is greater than the bandwidth supported by the terminal, the process proceeds to step 303. If the system bandwidth is less than or equal to the bandwidth supported by the terminal, the process proceeds to step 304.
  • Step 303 The terminal determines that its working bandwidth is the bandwidth supported by the terminal. Further, go to step 307.
  • Step 304 The terminal selects an entry step according to a predefined rule or a system broadcast message. 305 or step 306.
  • the pre-defined rule is to use the step 305 or the step 306 when the system bandwidth is less than or equal to the bandwidth supported by the terminal.
  • the predefined manner may be defined in the protocol, and the network and the terminal understand the same.
  • the manner in which the system broadcasts a message means that the system broadcast indicates that the system bandwidth is less than or equal to the bandwidth supported by the terminal, and step 305 or step 306 is adopted. Accordingly, a bit indication needs to be added in the system broadcast.
  • Step 305 The terminal determines that its working bandwidth is a preset value smaller than the system bandwidth, and then proceeds to step 307.
  • the preset value smaller than the system bandwidth may be a predefined or system broadcast message notification.
  • the predefined mode refers to pre-establishing a mapping relationship between the preset value and the system bandwidth, and is smaller than the value of the system bandwidth, and the network and the terminal have a consistent understanding of the mapping relationship in advance.
  • the manner in which the system broadcasts a message means that the preset value is indicated by the system broadcast (if the preset value is smaller than the absolute value of the system bandwidth), and accordingly, a bit indication needs to be added in the system broadcast.
  • Step 306 The terminal determines that its working bandwidth is the system bandwidth. Further, the process proceeds to step 308.
  • Step 307 The terminal determines the location of the working bandwidth in the system bandwidth. Further, the process proceeds to step 309.
  • the location of the working bandwidth within the system bandwidth is pre-agreed by the network and the terminal or the network notifies the terminal by broadcasting or other signaling.
  • the manner in which the network notifies the working bandwidth of the terminal may be to notify the working bandwidth center frequency frequency, the working bandwidth minimum or maximum frequency, the working bandwidth center/lowest/high frequency point relative to the system bandwidth center frequency point or the frequency offset of a certain physical channel. Move and so on.
  • Step 308 The terminal works by using an existing data transmission mechanism in the determined working bandwidth.
  • the existing data transmission mechanism refers to a data transmission mechanism before the application of the present invention, for example, the 3GPP release 11 and the data transmission mechanism defined previously.
  • Step 309 The terminal works differently from the existing data transmission mechanism in the determined working bandwidth.
  • the data transmission mechanism is different from the existing data transmission mechanism in the step 308, and the data area that can be scheduled by the control signaling and the control signaling occupies the working bandwidth in the frequency domain. And the control signaling occupies the data area of the existing LTE system.
  • the data area of the existing LTE system refers to the non-PDCCH symbol area; for the uplink, the data area of the existing LTE system is the area where the PUSCH is located.
  • control channel coding and/or control channel format may further include a control channel coding and/or control channel format that is different from existing mechanisms.
  • the bandwidth supported by the terminal is 5MHz. It is pre-agreed that when the working bandwidth of the terminal is less than the system bandwidth, the center frequency of the working bandwidth of the terminal is the same as the center frequency of the system bandwidth.
  • the system bandwidth is 10MHz.
  • step 301 the terminal reads the system bandwidth in the system broadcast to be 10 MHz.
  • step 302 the terminal compares the system bandwidth with the bandwidth supported by the terminal, and the system bandwidth is greater than the bandwidth supported by the terminal.
  • step 303 the terminal determines that its working bandwidth is equal to the bandwidth supported by the terminal, that is, 5 MHz.
  • step 307 according to a pre-agreed, that is, when the working bandwidth of the terminal is less than the system bandwidth, the center frequency of the working bandwidth of the terminal is the same as the center frequency of the system bandwidth, and the terminal determines that the working bandwidth is at the center position of the system bandwidth.
  • the terminal operates differently than the existing data transmission mechanism in the determined working bandwidth. Specifically, for the downlink, within the working bandwidth, the control area of the terminal occupies the data area of the LTE system, and the control area and the data area of the terminal adopt a frequency division multiplexing manner. As shown in FIG.
  • the terminal receives and decodes control signaling at a time-frequency location where the "terminal control area" is located, and receives a data signal in a corresponding data area according to an indication of control signaling.
  • the PUCCH area of the terminal occupies the PUSCH area of the LTE system, and the PUCCH occupies the frequency resources of both ends of the working bandwidth.
  • the bandwidth supported by the terminal is 5MHz. It is pre-agreed that when the system bandwidth is less than or equal to the bandwidth supported by the terminal, the working bandwidth of the terminal is the system bandwidth.
  • the system bandwidth is 5MHz.
  • step 301 the terminal reads the downlink system bandwidth in the system broadcast to be 5 MHz.
  • step 302 the terminal compares the system bandwidth with the bandwidth supported by the terminal, and the system bandwidth is equal to the bandwidth supported by the terminal.
  • step 304 according to a pre-agreed, that is, when the system bandwidth is less than or equal to the bandwidth supported by the terminal, the working bandwidth of the terminal is the system bandwidth, and the terminal determines that the working bandwidth is equal to the system bandwidth, that is, 5 MHz.
  • step 308 the terminal operates within the bandwidth in accordance with the existing data transfer mechanism.
  • the bandwidth supported by the terminal is 5MHz.
  • the system bandwidth is 5MHz.
  • System broadcast notification When the system bandwidth is less than or equal to the bandwidth supported by the terminal, the working bandwidth of the terminal is 3MHz. The system broadcasts that when the working bandwidth is less than the system bandwidth, the center frequency of the working bandwidth is shifted downward by 1 ⁇ from the center frequency of the system bandwidth.
  • step 301 the terminal reads the downlink system bandwidth in the system broadcast to be 5 MHz.
  • step 302 the terminal compares the system bandwidth with the bandwidth supported by the terminal, and the system bandwidth is equal to the bandwidth supported by the terminal.
  • steps 304-305 according to the system broadcast notification, when the system bandwidth is less than or equal to the bandwidth supported by the terminal, the working bandwidth of the terminal is 3 MHz, and the terminal determines that its working bandwidth is equal to 3 MHz.
  • step 307 according to the system broadcast notification, when the working bandwidth is less than the system bandwidth, the center frequency of the working bandwidth is shifted downward by 1 MHz from the center frequency of the system bandwidth, and the terminal determines the working bandwidth in the system bandwidth, as shown in FIG.
  • the working bandwidth is equal to the lowest frequency of the system bandwidth.
  • the terminal operates in a different working bandwidth than the existing data transmission mechanism.
  • the control area of the terminal occupies the data area of the LTE system, and the control area and the data area of the terminal adopt a time division multiplexing manner.
  • the terminal receives and decodes the control signaling at the time-frequency location of the "terminal control area" in Fig. 6, and receives the data signal in the corresponding data area according to the indication of the control signaling.
  • the PUCCH area of the terminal occupies the PUSCH area of the LTE system, and the PUCCH occupies one end frequency resource of the working bandwidth.
  • a small bandwidth terminal can determine its working bandwidth in all cells, and the working bandwidth must be less than or equal to the bandwidth it supports.
  • the embodiment of the present invention does not need to add or modify an existing signaling message, so that the network and the terminal can determine the working bandwidth of the terminal consistently, and avoid the LTE cell with a small bandwidth, and separately need to separately configure the control signal for the small bandwidth terminal.
  • the transmission method which affects system performance.
  • an embodiment of the present invention further provides a terminal.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present invention, where the terminal may be an MTC terminal applied to an LTE system. As shown in the figure, the terminal may include: an ear module 801, the terminal acquires a system bandwidth in a system broadcast;
  • the comparison module 802 is configured to compare the obtained system bandwidth with the bandwidth supported by the terminal. Size
  • the determining module 803 is configured to determine an operating bandwidth of the terminal according to the comparison result. Specifically, when determining the working bandwidth of the terminal, if the system bandwidth is greater than the bandwidth supported by the terminal, the determining module 803 determines that the working bandwidth of the terminal is the bandwidth supported by the terminal; if the system bandwidth is less than or equal to the The bandwidth supported by the terminal determines that the working bandwidth of the terminal is less than a preset value of the system bandwidth, or is a system bandwidth.
  • the determining module 803 is further configured to: after determining that the working bandwidth of the terminal is the bandwidth supported by the terminal, determining a location of the working bandwidth of the terminal in the system bandwidth; or/and, determining the terminal After the working bandwidth is less than a preset value of the system bandwidth, the location of the working bandwidth of the terminal in the system bandwidth is determined. Specifically, the determining module 803 can determine the working bandwidth of the terminal within the system bandwidth according to a pre-agreed by the network and the terminal or a notification that the network sends to the terminal through broadcast or non-broadcast signaling.
  • the determining module 803 may determine, according to a predefined rule or a system broadcast message, that the working bandwidth of the terminal is less than a preset value of the system bandwidth, or is a system, if the system bandwidth is less than or equal to the bandwidth supported by the terminal. bandwidth.
  • the determining module 803 may further determine a data transmission mechanism according to the working bandwidth of the terminal. Specifically, the determining module 803 may determine, when the working bandwidth of the terminal is equal to the system bandwidth, that the terminal works according to an existing data transmission mechanism within the working bandwidth; and when the working bandwidth of the terminal is less than the system bandwidth, determine the The terminal is within the working bandwidth, and the data area that can be scheduled by the terminal's control signaling and control signaling occupies the data area of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种确定终端工作带宽的方法及终端,该方法包括:终端获取系统广播中的系统带宽;所述终端比较获取到的系统带宽与终端支持的带宽的大小;所述终端根据比较结果确定其工作带宽。采用本发明可针对终端的工作带宽与系统带宽有可能不相同的情况下,实现终端根据系统带宽确定其工作带宽。

Description

一种确定终端工作带宽的方法及终端 本申请要求于 2011 年 9 月 28 日提交中国专利局, 申请号为 201110298628.0, 发明名称为 "一种确定终端工作带宽的方法及终 端"的中国专利申请的优先权,其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域,特别涉及一种确定终端工作带宽的方法及 终端。 背景技术
物联网技术方兴未艾,在第三代移动通信系统以及其长期演进系 统 (Long Term Evolution, LTE ) 中需要支持 MTC ( Machine Type Communications, 机器型通信)功能。 一台 MTC设备( MTC终端) 可能具有多种小带宽系统(机器与机器, Machine to Machine )通信 特性之中的部分特性, 如低移动性、 传输数据量小、 对通信时延不敏 感、 要求极低功耗等特征。
机器间 (Machine-to-machine, M2M )通信作为一种新型的通信 理念, 其目的是将多种不同类型的通信技术有机结合, 如: 机器对机 器通信、 机器控制通信、 人机交互通信、 移动互联通信, 从而推动社 会生产和生活方式的发展。
当前的移动通信网络的许多机制是针对人与人之间的通信设计 的, 如: 网络容量的确定等。 如果希望利用移动通信网络来支持小带 宽系统通信就需要根据小带宽系统通信的特点对移动通信系统的机 制进行优化,以便能够在对传统的人与人通信不受或受较小影响的情 况下, 更好地实现小带宽系统通信。 当前认识到的 MTC通信可能存在的一些特性有:
- MTC终端具有低移动性;
- MTC终端与网络侧进行数据传输的时间是可控的; 即 MTC 终端只能在网络指定的时间段内进行接入;
- MTC 网络与网络侧进行的数据传输对数据传输对实时性要 求不高, 即: 具有时间容忍性;
- MTC终端能量受限, 要求极低的功率消耗;
- MTC终端和网络侧之间只进行小数据量的信息传输;
- MTC终端可以以组为单位进行管理; 一个实际的 MTC终端可以具有上述的一个或多个特性。
考虑到以后小带宽系统通信中的 MTC设备会非常庞大, 且绝大 部分场合 MTC设备的功能相对单一, 不需要非常高的传输速率, 因 此可以考虑将 MTC设备的成本进行进一步的降低。带宽是影响 MTC 设备成本的重要因素, 若可以适当降低 MTC设备的工作带宽, 将可 显著降低成本。
现有 LTE系统的系统带宽有如表 1所示的几种取值:
表 1
Figure imgf000004_0001
网络会通过系统广播中的主信息块 MIB ( Master Information Block )将小区的下行系统带宽通知给 UE, 若上行系统带宽与下行系 统带宽不相等, 则还会通过 SIB2 ( System Information Block Type2 ) 将小区的上行系统带宽通知给 UE。
LTE下行子帧包括时分的控制区域和数据区域, 如图 1所示。 通 常情况下,控制区域占用一个下行子帧的前 1~3个符号,承载下行控 制信令,包括物理控制格式指示信道( PCFICH, Physical control format indicator channel ), 物理下行控制信道(PDCCH, Physical Downlink Control Channel )和物理混合自动请求重传指示信道( PHICH, Physical HARQ indication channel )。 其中, PCFICH用于通知下行控制区域所 占符号个数,它映射在等间距分布在整个下行系统带宽内的 4个资源 单元组(REG, Resource element group )上; PHICH用于承载针对上 行共享信道(UL-SCH )数据包的应答(ACK/NACK )信息, 它映射 在 3个 REG上, 且这些 REG也在系统带宽内尽可能等间距分布; PDCCH用于承载下行控制信息( DCI, Downlink Control Information ), 所有 PDCCH复用后, 在整个控制区域除 PCFICH和 PHICH剩余的 资源上进行交织和资源映射。
LTE 上行控制信道中的物理上行控制信道(PUCCH, Physical Uplink Control Channel )用于传输与该用户下行数据相关的上行控制 信息。 从一个用户的角度来看, 其 PUCCH在频域上占据一个资源块 ( Resource Block, RB )对应的频域资源; 在时域上则占满一个子帧 传输。 为了获得频率分集增益, 两个时隙的 PUCCH还需进行跳频传 输。 为了获得尽可能大的频率分集增益, PUCCH位于上行频带的两 端, 如图 2所示。
从上述可以看出, LTE的几种主要的控制信道的资源映射都与系 统带宽密切相关。 为保证 UE在所有的系统带宽下均可以正确接收 / 发送控制信道, LTE标准要求所有的 UE需要支持 20M系统带宽。 即 UE支持的带宽总是大于等于系统带宽, 因此, 终端在系统中的工 作带宽就等于系统广播通知的系统带宽。
现有技术是基于终端支持的带宽一定大于等于系统带宽设计的, 终端的工作带宽就等于系统广播通知的系统带宽。 而 MTC设备支持 的带宽可能较小, 即可能出现终端支持的带宽小于系统带宽的情况。 此时, 由于系统带宽超过终端所支持的最大带宽, 终端无法工作于系 统带宽下。有一种潜在的方案是在大带宽系统中针对小带宽终端设计 特殊的控制域等信息域, 以便小带宽终端能够工作在大带宽系统下。 但由于在实际的网络部署中, 每个小区的带宽可能是不同的, 针对小 带宽终端在不同带宽的小区下如何工作并没有方案可供参考。 发明内容
本发明实施例提供了一种确定终端工作带宽的方法及终端,针对 终端的工作带宽与系统带宽有可能不相同的情况下,使终端能够根据 系统带宽确定其工作带宽。
本发明提供的确定终端工作带宽的方法, 包括:
终端获取系统广播中的系统带宽;
所述终端比较获取到的系统带宽与终端支持的带宽的大小; 所述终端根据比较结果确定其工作带宽。
本发明提供的终端, 其特征在于, 包括:
获耳^莫块, 终端获取系统广播中的系统带宽;
比较模块 , 用于比较获取到的系统带宽与终端支持的带宽的大 小;
确定模块, 用于根据比较结果确定所述终端的工作带宽。
本发明的上述实施例中,终端通过将从系统广播中获取到的系统 带宽与自己所支持的带宽的大小进行比较, 从而确定自己的工作带 宽, 针对终端的工作带宽与系统带宽有可能不相同的情况下, 实现了 终端根据系统带宽确定其工作带宽。 附图说明
图 1为现有技术中 LTE系统下行子帧结构示意图;
图 2为现有技术中 LTE系统下行子帧 PUCCH物理资源映射示意 图;
图 3为本发明实施例提供的终端确定工作带宽的流程示意图; 图 4为本发明实施例一中下行资源占用示意图;
图 5为本发明实施例一中上行资源占用示意图;
图 6为本发明实施例三中下行资源占用示意图;
图 7为本发明实施例三中上行资源占用示意图;
图 8为本发明实施例提供的终端的结构示意图。 具体实施方式
本发明实施例提供一种终端确定工作带宽的方法, 其中, 终端读 取系统广播中的系统带宽,根据系统带宽与终端支持的带宽的大小关 系确定其工作带宽。 进一步地, 终端还可以根据工作带宽确定数据传 输机制。 其总体流程可如图 3所示, 包括:
步骤 301: 终端读取系统广播中的系统带宽。
具体的,终端可按照现有技术的方式读取系统广播中的系统带宽 信息。 如, 通过读取系统广播中的主信息块 MIB获得小区的下行系 统带宽, 通过读取系统广播中的 SIB2获得小区的上行系统带宽。
步骤 302: 终端比较系统带宽与终端支持的带宽的大小, 若系统 带宽大于终端支持的带宽, 则转入步骤 303; 若系统带宽小于或等于 终端支持的带宽, 则转入步骤 304。
步骤 303: 终端确定其工作带宽为终端支持的带宽。 进一步的转 入步骤 307。
步骤 304: 终端根据预定义规则或者系统广播消息选择进入步骤 305或者步骤 306。
其中,预定义规则是指预先规定当系统带宽小于或等于终端支持 的带宽时采用步骤 305还是步骤 306, 预定义的方式可以是在协议中 定义, 且网络和终端理解一致。
系统广播消息的方式是指通过系统广播指示当系统带宽小于或 等于终端支持的带宽时采用步骤 305还是步骤 306, 相应地, 需要在 系统广播中新增比特指示。
步骤 305: 终端确定其工作带宽为小于系统带宽的预设值, 然后 转入步骤 307。
其中,所述小于系统带宽的预设值可以是预定义的或者系统广播 消息通知的。 预定义方式是指预先建立预设值与系统带宽的映射关 系, 且小于系统带宽的值, 网络和终端对于所述映射关系预先有一致 理解。 系统广播消息的方式是指通过系统广播指示预设值大小(如该 预设值大小为小于系统带宽的绝对值), 相应地, 需要在系统广播中 新增比特指示。
步骤 306: 终端确定其工作带宽为系统带宽。 进一步的, 转入步 骤 308。
步骤 307: 终端确定工作带宽在系统带宽中的位置。 进一步的, 转入步骤 309。
其中,工作带宽在系统带宽内的位置是网络与终端预先约定或者 网络通过广播或其他信令通知终端的。网络通知终端工作带宽位置的 方式可以是通知工作带宽中心频点频率、 工作带宽最低或者最高频 率、 工作带宽中心 /最低 /最高频点相对于系统带宽中心频点或者某个 物理信道的频率偏移等。
步骤 308:终端在确定的工作带宽中采用现有数据传输机制工作。 其中 , 现有数据传输机制是指本发明应用之前的数据传输机制 , 例如 3GPP release 11及之前所定义的数据传输机制。
步骤 309: 终端在确定的工作带宽中采用不同于现有数据传输机 制工作。
其中,所述不同于现有数据传输机制是与步骤 308中的现有数据 传输机制相对而言,其特征为控制信令和控制信令所能够调度的数据 区域在频域上占用工作带宽, 且控制信令占用现有 LTE 系统的数据 区域。对于下行来说,现有 LTE系统的数据区域是指非 PDCCH符号 区域; 对于上行来说, 现有的 LTE系统的数据区域为 PUSCH所在区 域。
不同于现有数据传输机制可能进一步包含不同于现有机制的控 制信道编码和 /或控制信道格式。
下面, 以具体实施例对本发明的上述流程进行详细说明。
实施例一
终端支持的带宽为 5MHz。 预先约定当终端的工作带宽小于系统 带宽时, 终端的工作带宽的中心频率与系统带宽的中心频率相同。 系 统带宽为 10MHz。
在步骤 301中, 终端读取系统广播中的系统带宽为 10MHz; 在步骤 302中, 终端比较系统带宽与终端支持的带宽, 系统带宽 大于终端支持的带宽;
在步骤 303 中, 终端确定其工作带宽等于终端支持的带宽, 即 5MHz。
进一步地, 在步骤 307中, 根据预先约定, 即终端的工作带宽小 于系统带宽时,终端的工作带宽的中心频率与系统带宽的中心频率相 同, 终端确定工作带宽在系统带宽中心位置。 在步骤 309中,终端在确定的工作带宽中采用不同于现有数据传 输机制工作。 具体的, 对于下行, 在工作带宽内, 终端的控制区域占 用 LTE 系统的数据区域, 终端的控制区域和数据区域采用频分复用 的方式。 如图 4所示, 终端在 "终端控制区域" 所在时频位置接收和 解码控制信令,并根据控制信令的指示在相应的数据区域接收数据信 号。 对于上行, 如图 5所示, 终端的 PUCCH区域占用 LTE系统的 PUSCH区域, PUCCH占用工作带宽的两端频率资源。
实施例二
终端支持的带宽为 5MHz。 预先约定当系统带宽小于或等于终端 支持的带宽时, 终端的工作带宽为系统带宽。 系统带宽为 5MHz。
在步骤 301中, 终端读取系统广播中的下行系统带宽为 5MHz; 在步骤 302中, 终端比较系统带宽与终端支持的带宽, 系统带宽 等于终端支持的带宽;
在步骤 304中, 根据预先约定, 即当系统带宽小于等于终端支持 的带宽时, 终端的工作带宽为系统带宽, 终端确定其工作带宽等于系 统带宽, 即 5MHz。
在步骤 308中, 终端在此带宽内, 按照现有数据传输机制工作。 实施例三
终端支持的带宽为 5MHz。 系统带宽为 5MHz。 系统广播通知当 系统带宽小于或等于终端支持的带宽时, 终端的工作带宽为 3MHz。 系统广播通知当工作带宽小于系统带宽时,工作带宽的中心频率相对 系统带宽的中心频率向下偏移 1ΜΗζ。
在步骤 301中, 终端读取系统广播中的下行系统带宽为 5MHz; 在步骤 302中, 终端比较系统带宽与终端支持的带宽, 系统带宽 等于终端支持的带宽; 在步骤 304~305中,根据系统广播通知当系统带宽小于等于终端 支持的带宽时, 终端的工作带宽为 3MHz, 终端确定其工作带宽等于 3MHz。
在步骤 307中, 根据系统广播通知当工作带宽小于系统带宽时, 工作带宽的中心频率相对系统带宽的中心频率向下偏移 1MHz, 终端 确定工作带宽在系统带宽中的位置, 如图 6所示, 工作带宽与系统带 宽的最低频率相等。
在步骤 309中,终端在确定的工作带宽中采用不同于现有数据传 输机制工作。 具体的, 对于下行, 在工作带宽内, 终端的控制区域占 用 LTE 系统的数据区域, 终端的控制区域和数据区域采用时分复用 的方式。 终端在图 6中的 "终端控制区域"所在时频位置接收和解码 控制信令, 并根据控制信令的指示在相应的数据区域接收数据信号。 对于上行,如图 7所示,终端的 PUCCH区域占用 LTE系统的 PUSCH 区域, PUCCH占用工作带宽的一端频率资源。
通过本发明的上述实施例可以看出, 利用本发明实施例, 小带宽 终端可以在所有的小区中确定其工作带宽,且工作带宽一定小于或等 于其支持的带宽。 此外, 本发明实施例无需新增或者修改现有的信令 消息, 即可让网络与终端一致确定终端的工作带宽, 避免对于小带宽 的 LTE小区, 也需要专门为小带宽终端单独配置控制信令传输方式, 从而对系统性能造成影响。
基于相同的技术构思, 本发明实施例还提供了一种终端。
如图 8所示, 为本发明实施例提供的终端的结构示意图, 该终端 可以是应用于 LTE系统的 MTC终端。 如图所示, 该终端可包括: 获耳 ^莫块 801 , 终端获取系统广播中的系统带宽;
比较模块 802, 用于比较获取到的系统带宽与终端支持的带宽的 大小;
确定模块 803 , 用于根据比较结果确定所述终端的工作带宽。 具体的, 确定模块 803在确定所述终端的工作带宽时, 若系统带 宽大于所述终端支持的带宽,则确定所述终端的工作带宽为所述终端 支持的带宽; 若系统带宽小于或等于所述终端支持的带宽, 则确定所 述终端的工作带宽为小于系统带宽的预设值, 或者为系统带宽。
进一步的, 确定模块 803还用于, 在确定所述终端的工作带宽为 该终端支持的带宽之后,确定所述终端的工作带宽在系统带宽中的位 置; 或 /和, 在确定所述终端的工作带宽为小于系统带宽的预设值之 后, 确定所述终端的工作带宽在系统带宽中的位置。 具体的, 确定模 块 803 可根据网络与终端预先约定或者网络通过广播或非广播信令 发送给所述终端的通知,确定所述终端的工作带宽在系统带宽内的位 置。
具体的,确定模块 803可在系统带宽小于或等于所述终端支持的 带宽的情况下,根据预定义规则或者系统广播消息确定所述终端的工 作带宽为小于系统带宽的预设值, 或者为系统带宽。
进一步的, 确定模块 803在确定所述终端的工作带宽之后, 还可 根据该终端的工作带宽确定数据传输机制。 具体的, 确定模块 803可 当所述终端的工作带宽等于系统带宽时,确定所述终端在工作带宽内 按照现有数据传输机制工作; 当所述终端的工作带宽小于系统带宽 时, 确定所述终端在工作带宽内, 终端的控制信令和控制信令所能调 度的数据区域占用系统的数据区域。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领 域的普通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出 若干改进和润饰, 这些改进和润饰也应视本发明的保护范围。

Claims

权利要求
1、 一种确定终端工作带宽的方法, 其特征在于, 包括: 终端获取系统广播中的系统带宽;
所述终端比较获取到的系统带宽与终端支持的带宽的大小; 所述终端根据比较结果确定其工作带宽。
2、 如权利要求 1所述的方法, 其特征在于, 所述终端根据比较 结果确定其工作带宽, 包括:
若系统带宽大于所述终端支持的带宽,则所述终端确定其工作带 宽为所述终端支持的带宽;
若系统带宽小于或等于所述终端支持的带宽,则所述终端确定其 工作带宽为小于系统带宽的预设值, 或者为系统带宽。
3、 如权利要求 2所述的方法, 其特征在于, 所述终端确定其工 作带宽为所述终端支持的带宽之后, 还包括: 所述终端确定其工作带 宽在系统带宽中的位置。
4、 如权利要求 2所述的方法, 其特征在于, 所述终端确定其工 作带宽为小于系统带宽的预设值之后, 还包括: 所述终端确定其工作 带宽在系统带宽中的位置。
5、 如权利要求 3或 4所述的方法, 其特征在于, 所述终端的工 作带宽在系统带宽内的位置是网络与终端预先约定或者网络通过广 播或非广播信令通知终端的。
6、 如权利要求 2所述的方法, 其特征在于, 在系统带宽小于或 等于所述终端支持的带宽的情况下,所述终端根据预定义规则或者系 统广播消息确定其工作带宽为小于系统带宽的预设值,或者为系统带 宽。
7、 如权利要求 2所述的方法, 其特征在于, 所述小于系统带宽 的预设值为预定义的或者网络侧通过广播通知的; 其中, 预定义的预 设值为与系统带宽具有固定映射关系, 且小于系统带宽的值, 网络侧 通过广播通知的预设值为小于系统带宽的绝对值。
8、 如权利要求 1所述的方法, 其特征在于, 所述终端确定其工 作带宽之后, 还包括: 根据其工作带宽确定数据传输机制。
9、 如权利要求 8所述的方法, 其特征在于, 所述终端根据其工 作带宽确定数据传输机制, 包括:
当所述终端的工作带宽等于系统带宽时,所述终端在工作带宽内 按照现有数据传输机制工作;
当所述终端的工作带宽小于系统带宽时, 所述终端在工作带宽 内,终端的控制信令和控制信令所能调度的数据区域占用系统的数据 区域。
10、 如权利要求 1-9之一所述的方法, 其特征在于, 所述系统带 宽以及工作带宽为上行带宽或 /和下行带宽。
11、 如权利要求 1-9之一所述的方法, 其特征在于, 所述终端为 机器型通信 MTC终端, 所述系统为长期演进系统 LTE。
12、 一种终端, 其特征在于, 包括:
获耳^莫块, 终端获取系统广播中的系统带宽;
比较模块 , 用于比较获取到的系统带宽与终端支持的带宽的大 小;
确定模块, 用于根据比较结果确定所述终端的工作带宽。
13、 如权利要求 12所述的终端, 其特征在于, 所述确定模块具 体用于, 若系统带宽大于所述终端支持的带宽, 则确定所述终端的工 作带宽为所述终端支持的带宽;若系统带宽小于或等于所述终端支持 的带宽, 则确定所述终端的工作带宽为小于系统带宽的预设值, 或者 为系统带宽。
14、 如权利要求 13所述的终端, 其特征在于, 所述确定模块还 用于, 在确定所述终端的工作带宽为该终端支持的带宽之后, 确定所 述终端的工作带宽在系统带宽中的位置。
15、 如权利要求 13所述的终端, 其特征在于, 所述确定模块还 用于, 在确定所述终端的工作带宽为小于系统带宽的预设值之后, 确 定所述终端的工作带宽在系统带宽中的位置。
16、 如权利要求 14或 15所述的终端, 其特征在于, 所述确定模 块具体用于,根据网络与终端预先约定或者网络通过广播或非广播信 令发送给所述终端的通知,确定所述终端的工作带宽在系统带宽内的 位置。
17、 如权利要求 13所述的终端, 其特征在于, 所述确定模块具 体用于, 在系统带宽小于或等于所述终端支持的带宽的情况下, 根据 预定义规则或者系统广播消息确定所述终端的工作带宽为小于系统 带宽的预设值, 或者为系统带宽。
18、 如权利要求 12所述的终端, 其特征在于, 所述确定模块还 用于, 在确定所述终端的工作带宽之后, 根据该终端的工作带宽确定 数据传输机制。
19、 如权利要求 18所述的终端, 其特征在于, 所述确定模块具 体用于, 当所述终端的工作带宽等于系统带宽时, 确定在工作带宽内 按照现有数据传输机制工作; 当所述终端的工作带宽小于系统带宽 时, 确定在工作带宽内, 终端的控制信令和控制信令所能调度的数据 区域占用系统的数据区域。
20、 如权利要求 12-19之一所述的终端, 其特征在于, 所述终端 为机器型通信 MTC终端, 所述系统为长期演进系统 LTE。
PCT/CN2012/079727 2011-09-28 2012-08-06 一种确定终端工作带宽的方法及终端 WO2013044687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110298628.0 2011-09-28
CN2011102986280A CN102300267A (zh) 2011-09-28 2011-09-28 一种确定终端工作带宽的方法及终端

Publications (1)

Publication Number Publication Date
WO2013044687A1 true WO2013044687A1 (zh) 2013-04-04

Family

ID=45360359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079727 WO2013044687A1 (zh) 2011-09-28 2012-08-06 一种确定终端工作带宽的方法及终端

Country Status (2)

Country Link
CN (1) CN102300267A (zh)
WO (1) WO2013044687A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9924376B2 (en) 2013-06-21 2018-03-20 Lg Electronics Inc. Method for enhancing coverage of user equipment and an apparatus using the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300267A (zh) * 2011-09-28 2011-12-28 电信科学技术研究院 一种确定终端工作带宽的方法及终端
CN103209441B (zh) * 2012-01-12 2016-04-13 电信科学技术研究院 一种数据传输方法和设备
CN103220809B (zh) * 2012-01-20 2018-08-03 中兴通讯股份有限公司 一种下行物理控制信道的发送、接收方法及相应装置
CN103220796B (zh) * 2012-01-21 2016-09-21 电信科学技术研究院 一种下行数据传输方法及其设备
US9491738B2 (en) 2012-02-03 2016-11-08 Qualcomm Incorporated Managing downlink and uplink resources for low cost user equipments
CN103428859A (zh) * 2012-05-16 2013-12-04 中兴通讯股份有限公司 下行信息传输方法、基站及用户设备
US9622230B2 (en) * 2012-05-17 2017-04-11 Qualcomm Incorporated Narrow band partitioning and efficient resource allocation for low cost user equipments
CN103533657B (zh) * 2012-07-05 2016-06-29 上海贝尔股份有限公司 在基于机器类通信的通信网中为用户设备配置带宽的方法
CN103716841A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 信息传输方法及装置
CN104885513A (zh) * 2013-01-21 2015-09-02 富士通株式会社 信息发送方法、检测方法及其装置
EP2988546A4 (en) * 2013-05-16 2016-06-01 Huawei Tech Co Ltd DATA TRANSMISSION PROCESS, DEVICE AND SYSTEM
CN104936183B (zh) * 2014-03-17 2020-06-16 中兴通讯股份有限公司 一种传输数据的方法及装置
CN105635932B (zh) * 2014-11-07 2019-07-26 上海诺基亚贝尔股份有限公司 用于带宽受限设备的传输的方法和设备
CN107113822A (zh) * 2015-01-30 2017-08-29 华为技术有限公司 一种信息指示的方法、ue及基站
CN106416341B (zh) * 2015-05-15 2019-10-22 华为技术有限公司 Lte系统的非标准带宽的下行、上行压缩方法和装置
CN108366413B (zh) * 2017-01-26 2022-01-14 华为技术有限公司 终端、网络设备和通信方法
CN111937452A (zh) * 2018-04-04 2020-11-13 华为技术有限公司 通信方法、通信装置和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005308A (zh) * 2006-01-17 2007-07-25 上海原动力通信科技有限公司 宽带时分双工移动通信系统的物理层随机接入方法
WO2009078552A1 (en) * 2007-12-17 2009-06-25 Electronics And Telecommunications Research Institute Overload control apparatus and method for use in radio communication system
CN101515821A (zh) * 2008-02-21 2009-08-26 中兴通讯股份有限公司 大带宽正交频分复用系统中的信道分配方法和交互方法
CN102300267A (zh) * 2011-09-28 2011-12-28 电信科学技术研究院 一种确定终端工作带宽的方法及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005308A (zh) * 2006-01-17 2007-07-25 上海原动力通信科技有限公司 宽带时分双工移动通信系统的物理层随机接入方法
WO2009078552A1 (en) * 2007-12-17 2009-06-25 Electronics And Telecommunications Research Institute Overload control apparatus and method for use in radio communication system
CN101515821A (zh) * 2008-02-21 2009-08-26 中兴通讯股份有限公司 大带宽正交频分复用系统中的信道分配方法和交互方法
CN102300267A (zh) * 2011-09-28 2011-12-28 电信科学技术研究院 一种确定终端工作带宽的方法及终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9924376B2 (en) 2013-06-21 2018-03-20 Lg Electronics Inc. Method for enhancing coverage of user equipment and an apparatus using the same

Also Published As

Publication number Publication date
CN102300267A (zh) 2011-12-28

Similar Documents

Publication Publication Date Title
WO2013044687A1 (zh) 一种确定终端工作带宽的方法及终端
CN109150456B (zh) 一种无线通信方法和设备
CN111263353B (zh) 空口能力交换的系统和方法
US20230019024A1 (en) Hybrid Automatic Repeat Request (HARQ) Mechanism for Multicast in NR
WO2013044771A1 (zh) 下行控制信息的传输方法和设备
US20220116875A1 (en) Wake-Up Signal (WUS) Controlled Actions
WO2018024206A1 (zh) 一种被用于低延迟通信的用户设备、基站中的方法和装置
TW202033043A (zh) 具有多個傳輸接收點的半持久排程
EP2962407A1 (en) Method and apparatus for multimedia broadcast multicast service (mbms) control information delivery
EP3874644B1 (en) Feedback signaling for sidelink
WO2012146095A1 (zh) 下行控制信息的传输方法及系统
WO2018010103A1 (zh) 传输数据的方法和终端设备
US11765722B2 (en) Corrections to limited buffer rate-matching restriction
CN113498627B (zh) 信号接收或发送方法、装置和系统
US20210392659A1 (en) Retransmission Schemes and Optimizations for Preconfigured Uplink Resources
JP2022526707A (ja) ネットワークノード、ユーザ装置(ue)、及びネットワークノードによるueのスケジューリングのための関連する方法
US20220038977A1 (en) Communication method, base station, and terminal
WO2020142987A1 (zh) 边链路信息的发送和接收方法以及装置
WO2021262071A1 (en) Enhanced hybrid arq (harq) for a wireless network
US11013018B2 (en) Data multiplexing apparatus and method and communication system
JP2023544762A (ja) データ受信方法及び装置
WO2018024151A1 (zh) 一种被用于低延迟通信的用户设备、基站中的方法和装置
WO2013181870A1 (zh) 数据的解调处理、下行资源的调度方法及装置
WO2021031029A1 (zh) 上行信号的发送和接收方法以及装置
WO2024030247A1 (en) Interlaced physical sidelink feedback channel mapping for wideband sidelink transmissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836710

Country of ref document: EP

Kind code of ref document: A1