WO2013044563A1 - 一种双室多重吸收湿法烟气脱硫装置 - Google Patents

一种双室多重吸收湿法烟气脱硫装置 Download PDF

Info

Publication number
WO2013044563A1
WO2013044563A1 PCT/CN2011/084778 CN2011084778W WO2013044563A1 WO 2013044563 A1 WO2013044563 A1 WO 2013044563A1 CN 2011084778 W CN2011084778 W CN 2011084778W WO 2013044563 A1 WO2013044563 A1 WO 2013044563A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
atomization
chamber
slurry
absorption
Prior art date
Application number
PCT/CN2011/084778
Other languages
English (en)
French (fr)
Inventor
刘定平
余海龙
刘畅
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to KR1020147011498A priority Critical patent/KR20140091538A/ko
Priority to EP11873165.2A priority patent/EP2762221B1/en
Publication of WO2013044563A1 publication Critical patent/WO2013044563A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/12Methods and means for introducing reactants
    • B01D2259/124Liquid reactants

Definitions

  • the invention relates to the field of large-scale flue gas desulfurization, in particular to a double-chamber multiple absorption wet flue gas desulfurization device.
  • SO2 pollution is the main problem of atmospheric pollution in China, and it is an important environmental factor that restricts the coordinated and stable development of China's economy.
  • the source of SO2 in China's atmosphere is mainly coal combustion, and its emissions account for more than 90% of the total emissions, which has caused the area of acid rain in China to expand.
  • researchers in various countries have studied many of the SO2 control technologies developed, among which the lime/limestone-gypsum wet flue gas desulfurization technology is the most mature technology at present.
  • the method has many performances, stable operation and high desulfurization efficiency, and has been widely accepted and applied by various industries.
  • it also has some shortcomings, mainly because of high investment costs, large requirements for liquid-gas ratio during operation, and high consumption of water and electricity.
  • the main reaction of the process is carried out in the absorption tower, and the desulfurization agent-limestone slurry sent to the absorption tower is mixed with the flue gas which enters the absorption tower after being cooled by GGH.
  • the SO2 in the flue gas reacts with CaC03 in the desulfurizer slurry and 02 in the air that is blown in to form gypsum (CaSO4•2H20); the flue gas after desulfurization is sequentially removed by the mist eliminator to remove the droplets, and the GGH is heated to heat up. After that, it is discharged into the atmosphere through the chimney.
  • the core part of the wet desulfurization process is an absorption tower.
  • the layout of the absorption tower is divided into an absorption zone, a desulfurization product oxidation zone and a defogging zone according to specific functions.
  • the SO2 in the flue gas is absorbed in contact with the absorption liquid in the absorption zone; the defogging zone separates the flue gas from the droplets; the calcium sulfite product formed after the absorption of SO2 is further oxidized into the calcium sulfate in the oxidation zone by the air that is bubbled into the tower.
  • Different reaction towers are designed with different absorption zones to achieve different desulfurization effects.
  • the absorption zone of the existing reaction tower is usually arranged by spraying the slurry from the upper part, arranging the grid in the tower, arranging the tray in the tower, jet bubbling or bottom liquid column spraying, wherein the spray desulfurization absorption tower is matured and not easy to scale. Blocked and widely used.
  • a large-capacity absorption tower in order to meet the high efficiency of desulfurization, on the one hand, a large-capacity absorption tower must be built to ensure sufficient residence and reaction time of the flue gas in the tower; on the other hand, a plurality of large-scale slurry circulation pumps and Multiple mechanical nozzles. Since the atomization particle size of the desulfurizing agent is generally 1000 ⁇ m-3000 ⁇ m when mechanical atomization is used, a plurality of spray layers and nozzles must be arranged, and the desulfurizing agent is repeatedly sprayed by the slurry circulation pump, resulting in high desulfurization energy consumption.
  • the present invention provides a dual-chamber multiple absorption wet flue gas desulfurization device capable of reducing the number and output of the slurry circulation pump and increasing the flow rate of the flue gas without reducing the desulfurization efficiency. Reduce the volume of the desulfurization tower and increase the residence time of the flue gas.
  • a dual-chamber multiple absorption wet flue gas desulfurization device comprises a slurry tank and an atomization absorption chamber disposed above the slurry tank, the slurry tank and the atomization absorption chamber are connected to each other, and the atomization absorption chamber comprises a first mist
  • the first atomizing absorption chamber has an inner cavity smaller than the inner cavity of the second atomizing absorption chamber, and the upper space of the slurry pool constitutes the first atomizing absorption chamber and a flue gas turning passage of the second atomizing absorption chamber, a top of the first atomizing absorption chamber is provided with a flue gas inlet, and a top end of the second atomizing absorption chamber is provided with a flue gas outlet.
  • the slurry pool further includes an oxidizing air inlet, a desulfurization slurry inlet, an oxidation product discharge port; the oxidizing air inlet, The desulfurization slurry inlet is opened on the side wall of the slurry tank at the lower end of the first atomization absorption chamber; the oxidation product discharge port is opened on the side wall of the slurry pool at the lower end of the second atomization absorption chamber.
  • a first atomizing spray layer is disposed in the first atomization absorption chamber, and an injection direction of the first atomization spray layer is upward or downward; and the first atomization spray layer adopts atomized particles.
  • a second atomizing spray layer is disposed in the second atomization absorption chamber, and the second atomization spray layer and the flue gas outlet are provided with a mist eliminator.
  • a baffle is disposed between the second atomized spray layer and the flue gas turning passage of the slurry pool.
  • the first atomized spray layer and the second atomized spray layer are connected to the slurry spray system.
  • the slurry tank is provided with a slurry agitator.
  • the oxidizing air inlet is connected to an oxidation system
  • the desulfurization slurry inlet is connected to a slurry replenishing system
  • the oxidation product discharge port is connected to the oxidation product separation system.
  • the contact specific surface area of the absorbent and the flue gas is increased, the chemical reaction speed is increased, the time required for the reaction of the flue gas in the tower can be reduced, and the height of the absorption tower can be lowered;
  • Adjustable baffle plate is arranged at the bottom of the second atomization absorption chamber to make the smoke distribution uniform, improve the flow and reaction dynamic field, reduce the dead angle of the atomization absorption chamber, and increase the effective utilization space of the absorption chamber;
  • the second atomization absorption chamber has multiple functions of spray absorption, capturing ultrafine particles and reducing fog;
  • the patent has simple structure, low height, small number of nozzles, low power requirement of slurry circulating pump and greatly reduced number of slurry circulation, and has the characteristics of low investment, high desulfurization efficiency and low energy consumption. It can be seen that the technical means of the patent is simple and easy to implement, and has a positive technical effect.
  • Figure 1 is a schematic view of the structure of the present invention.
  • the dual-chamber multiple absorption wet flue gas desulfurization device of the present invention comprises a slurry tank 8 and an atomization absorption chamber disposed above the slurry tank 8, wherein the slurry tank 8 and the atomization absorption chamber are connected to each other.
  • the atomization absorption chamber includes a first atomization absorption chamber 4 and a second atomization absorption chamber 14.
  • the internal cavity of the first atomization absorption chamber 4 is smaller than the internal cavity of the second atomization absorption chamber 14,
  • the upper space of the slurry tank 8 constitutes a flue gas turning passage 3 of the first atomizing absorption chamber 4 and the second atomizing absorption chamber 14, and the first atomizing absorption chamber 4
  • the top end of the second atomizing absorption chamber 14 is provided with a flue gas outlet 13 at the top end.
  • the slurry tank 8 is provided with a slurry agitator 10.
  • the first atomized spray layer 2 and the second atomized spray layer 11 are connected to a slurry spray system.
  • the spray system is connected to the slurry tank 8, and the slurry tank 8 is provided with a desulfurizing agent.
  • the slurry tank 8 further includes an oxidizing air inlet 5, a desulfurization slurry inlet 6, an oxidation product discharge port 7; the oxidizing air inlet 5,
  • the desulfurization slurry inlet 6 is opened in the first atomization absorption chamber 4
  • the side wall of the slurry tank 8 at the lower end; the oxidation product discharge port 7 is opened on the side wall of the slurry tank 8 at the lower end of the second atomization absorption chamber 14.
  • the oxidizing air inlet 5 is connected to an oxidation system
  • the desulfurization slurry inlet 6 is connected to a slurry replenishing system
  • the oxidizing product discharge port 7 is connected to an oxidation product separation system.
  • a first atomizing spray layer 2 is disposed in the first atomization absorption chamber 4, and an injection direction of the first atomization spray layer 2 is upward or downward; the first atomization spray layer 2
  • the ultrasonic atomizing nozzle is used, and the particle diameter of the sprayed particles is 300 ⁇ m or less.
  • a second atomizing spray layer 11 is disposed in the second atomization absorption chamber 14 , and the second atomization spray layer 11 and the flue gas outlet 13 are provided with a mist eliminator 12 .
  • a baffle 9 is disposed between the second atomized spray layer 11 and the flue gas turning passage 3 of the slurry tank 8.
  • the working process of the invention is as follows: the flue gas enters the first atomization absorption chamber 4 through the flue gas inlet 1, and the first atomization spray layer 2 is arranged in the first atomization absorption chamber 4, which is arranged upward (also downward) ) Ultrasonic atomizing nozzle (jet desulfurizing agent) sprayed.
  • the flue gas reacts with the atomized desulfurizing agent in the countercurrent flow in the first atomizing absorption chamber 4, where the first desulfurization absorption takes place.
  • the flue gas After the flue gas is first desulfurized in the first atomizing absorption chamber 4, it passes between the two chambers (the first atomizing absorption chamber 4 and the second atomizing absorption chamber 14) in the upper portion of the slurry pool (liquid level of the slurry).
  • the flue gas turning passage 3 enhances the disturbance, on the one hand, increases the liquid gas contact time, on the other hand increases the sedimentation of the product, and also increases the absorption reaction area with the slurry liquid level in the slurry pool.
  • the secondary desulfurization is completed in the flue gas turning passage 3, the flue gas reaches the bottom of the second atomizing absorption chamber 14.
  • the flue gas After the flue gas passes through the baffle 9 of the adjustable angle of the bottom of the second atomizing absorption chamber 14, it flows evenly upward, and is in full contact with the desulfurizing agent sprayed from the second atomized spray layer 11, and the second atomizing absorption chamber 14 Conventional mechanical atomizing nozzles are provided with upper and lower bidirectional (up or down) sprays. Under the washing action of the second atomization absorption chamber 14, the flue gas is desulfurized on the one hand, and the ultrafine mist droplets having a particle size of 300 ⁇ m or less carried by the primary atomization in the flue gas are partially carried out on the other hand. Capture.
  • the flue gas after the triple desulfurization reaches the top defogging zone of the second atomization absorption chamber 14, and the defogging zone 12 is disposed in the defogging zone. Finally, the clean flue gas leaves the flue gas outlet 13 from the desulfurization tower (i.e., the second atomization absorption chamber 14).
  • high-pressure flushing water is separately provided above and below, and the high-pressure flushing water is supplied through a high-pressure water pump.
  • the slurry agitator 10 serves to agitate and oxidize.
  • the slurry in the slurry tank 8 is continuously replenished by the desulfurizer inlet 6, and the desulfurization product reacts with the air entering the oxidizing air inlet 5 to form a desulfurization product oxide, and finally discharged from the oxidation product discharge port 7 of the slurry pool 8 to complete the entire Desulfurization process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种双室多重吸收湿法烟气脱硫装置,主要包括第一雾化吸收室(4)、第二雾化吸收室(14)、烟气转折通道(3)和浆液池(8)。第一雾化吸收室(4)内部设有第一雾化喷淋层(2),喷射出的超细脱硫剂对烟气中的802进行首次精脱;烟气转折通道(3)在联通烟气的基础上增加了液气吸收面,强化了烟气中杂质的沉降率;第二雾化吸收室(14)在其底部装有导流板(9)以改善烟气流动状况,减少流动死区,在其中部设有第二雾化喷淋层(11),一方面进行烟气二次脱硫,另一方面对烟气中的细微雾滴进行捕捉;除雾器(12)能够对最终除硫烟气进行除雾,并经烟气出口(13)排出脱硫塔。

Description

一种双室多重吸收湿法烟气脱硫装置
技术领域
本发明涉及大型烟气脱硫领域,具体涉及一种双室多重吸收湿法烟气脱硫装置。
背景技术
SO2污染是我国大气环境污染的主要问题,是制约我国经济协调稳定发展的重要环境因素。我国大气中的SO2的来源主要是煤炭燃烧,其排放量占总排放量的90%以上,由此引起我国酸雨的面积不断扩大。到目前为止,各国研究人员已经研究发展的许多SO2控制技术,其中石灰/石灰石-石膏湿法烟气脱硫技术是目前最为成熟的技术。该方法使用业绩多,运行稳定,脱硫效率高,已被各行各业广泛接受与应用。但是其也存在一些缺点,主要是投资费用较高,运行中对液气比要求大,水和电的消耗多。
根据对火力发电厂湿法烟气脱硫技术分析可知,该工艺的主要反应是在吸收塔中进行的,送入吸收塔的脱硫剂—石灰石浆液与经GGH冷却后进入吸收塔的烟气接触混合,烟气中的SO2与脱硫剂浆液中的CaC03以及鼓入的空气中的02发生化学反应,生成石膏(CaSO4•2H20);脱硫后的烟气依次经过除雾器除去雾滴、GGH加热升温后,经烟囱排入大气。
湿法脱硫工艺的核心部分为吸收塔,吸收塔的布局根据具体功能分为吸收区、脱硫产物氧化区和除雾区。烟气中的SO2在吸收区与吸收液接触被吸收;除雾区将烟气与液滴分离;吸收SO2后生成的亚硫酸钙产物在氧化区进一步被鼓入塔内的空气氧化为硫酸钙。不同的反应塔采用不同的吸收区设计,达到不同的脱硫效果。现有反应塔吸收区通常采用浆液从上部喷淋、塔内布置格栅、塔内布置托盘、射流鼓泡或底部液柱喷射等布置方式,其中喷淋脱硫吸收塔因技术成熟、不易结垢堵塞而被广泛使用。
但在喷淋过程中,为了满足脱硫的高效率,一方面必须建大容量的吸收塔以保证烟气在塔内有足够的停留与反应时间;另一方面必须设置多台大型浆液循环泵和多个机械喷嘴。由于采用机械雾化时脱硫剂雾化粒径一般在1000μm-3000μm,必须布置多个喷淋层和喷嘴,并且通过浆液循环泵将脱硫剂多次循环喷雾,导致脱硫能耗居高不下。
发明内容
为了克服现有技术的缺点和不足,本发明提供一种双室多重吸收湿法烟气脱硫装置,在不降低脱硫效率的前提下,能够减少浆液循环泵的数量及出力,提高烟气流速,减少脱硫塔的体积,增加烟气的停留反应时间。
本发明通过下述技术方案实现:
一种双室多重吸收湿法烟气脱硫装置,包括浆液池以及设置在浆液池上方的雾化吸收室,所述浆液池、雾化吸收室相互连通,所述雾化吸收室包括第一雾化吸收室、第二雾化吸收室,所述第一雾化吸收室的内部腔体小于第二雾化吸收室的内部腔体,所述浆液池的上部空间构成第一雾化吸收室与第二雾化吸收室的烟气转折通道,所述第一雾化吸收室的顶端设有烟气入口,所述第二雾化吸收室的顶端设有烟气出口。
所述浆液池还包括有氧化空气入口、 脱硫浆液入口、 氧化生成物排出口;所述氧化空气入口、 脱硫浆液入口开设在第一雾化吸收室下端的浆液池的侧壁上;所述氧化生成物排出口开设在第二雾化吸收室下端的浆液池的侧壁上。
所述第一雾化吸收室内设置有第一雾化喷淋层,所述第一雾化喷淋层的喷射方向为向上或者向下;所述第一雾化喷淋层采用雾化微粒的粒径为300μm以下的喷嘴。
所述第二雾化吸收室内设置有第二雾化喷淋层,所述第二雾化喷淋层与烟气出口设置有除雾器。
所述第二雾化喷淋层与浆液池的烟气转折通道之间设置有导流板。
所述第一雾化喷淋层、第二雾化喷淋层与浆液喷淋系统连接。
所述浆液池设置有浆液搅拌器。
所述氧化空气入口与氧化系统连接,所述脱硫浆液入口与浆液补充系统连接,氧化生成物排出口与氧化生成物分离系统连接。
本发明的有益效果是:
1、通过第一雾化吸收室、第二雾化吸收室以及烟气转折通道,可实现三次脱硫吸收反应;
2、由于第一雾化吸收室的存在,增加了吸收剂与烟气的接触比表面积,提高了化学反应速度,可以减少烟气在塔内反应所需时间,从而可以降低吸收塔高度;
3、烟气与雾化后的粒径为300μm以下的微粒形成的混合气流经转折烟气通道时,增强了气体紊流,一方面增大了液气接触时间,另一方面增加了生成物的沉降,还新增加了与浆池液面的吸收反应面积,进而提高了脱硫效率;
4、在第二雾化吸收室底部设置可调的导流板,可使烟气分布均匀,改善流动与反应动力场,减少雾化吸收室死角,增大吸收室有效利用空间;
5、第二雾化吸收室兼备有喷雾吸收、捕捉超细颗粒、降雾的多重功能;
6、本专利结构简单,高度低,喷嘴数量少,浆液循环泵功率要求低且浆液循环次数大大减少,具有投资省、脱硫效率高、能耗低的特点。可见,本专利技术手段简便易行,具有积极的技术效果。
附图说明
图1是本发明结构示意图。
具体实施方式
下面对本发明的具体实施方式作进一步详细的说明,但本发明的实施方式不限于此。
如图1所示,本发明双室多重吸收湿法烟气脱硫装置,包括浆液池8以及设置在浆液池8上方的雾化吸收室,所述浆液池8、雾化吸收室相互连通,所述雾化吸收室包括第一雾化吸收室4、第二雾化吸收室14,所述第一雾化吸收室4的内部腔体小于第二雾化吸收室14的内部腔体,所述浆液池8的上部空间构成第一雾化吸收室4与第二雾化吸收室14的烟气转折通道3,所述第一雾化吸收室4 的顶端设有烟气入口1,所述第二雾化吸收室14的顶端设有烟气出口13。所述浆液池8设置有浆液搅拌器10。所述第一雾化喷淋层2、第二雾化喷淋层11与浆液喷淋系统连接。所述喷淋系统连通浆液池8,浆液池8内装有脱硫剂。
所述浆液池8还包括有氧化空气入口5、 脱硫浆液入口6、 氧化生成物排出口7;所述氧化空气入口5、 脱硫浆液入口6开设在第一雾化吸收室4 下端的浆液池8的侧壁上;所述氧化生成物排出口7开设在第二雾化吸收室14下端的浆液池8的侧壁上。所述氧化空气入口5与氧化系统连接,所述脱硫浆液入口6与浆液补充系统连接,氧化生成物排出口7与氧化生成物分离系统连接。
所述第一雾化吸收室4内设置有第一雾化喷淋层2,所述第一雾化喷淋层2的喷射方向为向上或者向下;所述第一雾化喷淋层2采用超声波雾化喷嘴,其喷喷射微粒的粒径为300μm以下。
所述第二雾化吸收室14内设置有第二雾化喷淋层11,所述第二雾化喷淋层11与烟气出口13设置有除雾器12。所述第二雾化喷淋层11与浆液池8的烟气转折通道3之间设置有导流板9。
本发明工作过程如下:烟气经过烟气入口1进入第一雾化吸收室4,在第一雾化吸收室4内装有第一雾化喷淋层2,其布置有向上(也可以向下)喷射的超声波雾化喷嘴(喷射脱硫剂)。烟气在第一雾化吸收室4与逆流而上的雾化的脱硫剂反应,在此进行首次脱硫吸收。
烟气在第一雾化吸收室4初次经脱除硫后,经过浆液池(浆液的液面)上部的两室(第一雾化吸收室4、第二雾化吸收室14)之间的烟气转折通道3,增强了扰动,一方面增大了液气接触时间,另一方面增加了生成物的沉降,还新增加了与浆液池内浆液液面的吸收反应面积。烟气在烟气转折通道3内完成二次脱硫后,到达第二雾化吸收室14的底部。
烟气通过第二雾化吸收室14的底部的可调动角度的导流板9后,均匀向上流动,与第二雾化喷淋层11喷出的脱硫剂充分接触,第二雾化吸收室14布置有上下双向(向上或向下)喷淋的常规机械式雾化喷嘴。烟气在第二雾化吸收室14的洗涤作用下,一方面对烟气进行再次脱硫,另一方面对烟气中的因初次雾化携带的粒径为300μm以下的超细雾滴进行部分捕捉。
经过三重脱硫后的烟气到达第二雾化吸收室14的顶部除雾区,除雾区布置有除雾器12。最后洁净的烟气从烟气出口13离开脱硫塔(即第二雾化吸收室14)。为了防止除雾器12堵塞,在其上下分别设置了高压冲洗水,该高压冲洗水通过高压水泵供给。
浆液搅拌器10,起到搅拌氧化作用。浆液池8中浆液由脱硫剂入口6不断补入,其脱硫生成物与氧化空气入口5进入的空气反应生成脱硫生成物氧化物,最后由浆液池8的氧化生成物排出口7排出,完成整个脱硫过程。
如上所述便可较好地实现本专利。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

  1. 一种双室多重吸收湿法烟气脱硫装置,包括浆液池以及设置在浆液池上方的雾化吸收室,所述浆液池、雾化吸收室相互连通,其特征在于:所述雾化吸收室包括第一雾化吸收室、第二雾化吸收室,所述第一雾化吸收室的内部腔体小于第二雾化吸收室的内部腔体,所述浆液池的上部空间构成第一雾化吸收室与第二雾化吸收室的烟气转折通道,所述第一雾化吸收室的顶端设有烟气入口,所述第二雾化吸收室的顶端设有烟气出口。
  2. 根据权利1所述的双室多重吸收湿法烟气脱硫装置,其特征在于:所述浆液池还包括有氧化空气入口、 脱硫浆液入口、 氧化生成物排出口;所述氧化空气入口、 脱硫浆液入口开设在第一雾化吸收室下端的浆液池的侧壁上;所述氧化生成物排出口开设在第二雾化吸收室下端的浆液池的侧壁上。
  3. 根据权利1所述的双室多重吸收湿法烟气脱硫装置,其特征在于:所述第一雾化吸收室内设置有第一雾化喷淋层,所述第一雾化喷淋层的喷射方向为向上或者向下;所述第一雾化喷淋层的喷射微粒的粒径为300μm以下。
  4. 根据权利1所述的双室多重吸收湿法烟气脱硫装置,其特征在于:所述第二雾化吸收室内设置有第二雾化喷淋层,所述第二雾化喷淋层与烟气出口设置有除雾器。
  5. 根据权利1所述的双室多重吸收湿法烟气脱硫装置,其特征在于:所述第二雾化喷淋层与浆液池的烟气转折通道之间设置有导流板。
  6. 根据权利1所述的双室多重吸收湿法烟气脱硫装置,其特征在于:所述第一雾化喷淋层、第二雾化喷淋层与浆液喷淋系统连接。
  7. 根据权利1所述的双室多重吸收湿法烟气脱硫装置,其特征在于:所述浆液池设置有浆液搅拌器。
  8. 根据权利7所述的双室多重吸收湿法烟气脱硫装置,其特征在于:所述氧化空气入口与氧化系统连接,所述脱硫浆液入口与浆液补充系统连接,氧化生成物排出口与氧化生成物分离系统连接。
PCT/CN2011/084778 2011-09-28 2011-12-28 一种双室多重吸收湿法烟气脱硫装置 WO2013044563A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147011498A KR20140091538A (ko) 2011-09-28 2011-12-28 더블 챔버형 다중 습식배연탈황장치
EP11873165.2A EP2762221B1 (en) 2011-09-28 2011-12-28 Dual-chamber multi-absorption wet flue desulfurization device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011102980829A CN102343215B (zh) 2011-09-28 2011-09-28 一种双室多重吸收湿法烟气脱硫装置
CN201110298082.9 2011-09-28

Publications (1)

Publication Number Publication Date
WO2013044563A1 true WO2013044563A1 (zh) 2013-04-04

Family

ID=45542512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084778 WO2013044563A1 (zh) 2011-09-28 2011-12-28 一种双室多重吸收湿法烟气脱硫装置

Country Status (4)

Country Link
EP (1) EP2762221B1 (zh)
KR (1) KR20140091538A (zh)
CN (1) CN102343215B (zh)
WO (1) WO2013044563A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107321157A (zh) * 2017-07-19 2017-11-07 北京北科环境工程有限公司 一种卧式湿法脱硫装置
CN108273351A (zh) * 2018-03-08 2018-07-13 乐山倍创机械制造有限公司 低温低压脱硫装置
CN110180370A (zh) * 2019-05-10 2019-08-30 华电电力科学研究院有限公司 一种鼓泡喷淋一体化协同脱除多种污染物的系统与方法
CN110465178A (zh) * 2018-05-09 2019-11-19 新疆北方建设集团有限公司 烟气脱硫装置
CN111760433A (zh) * 2020-08-05 2020-10-13 四川省达科特能源科技股份有限公司 一种湿法脱硫装置及工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108636065B (zh) * 2018-06-28 2023-11-14 珠海恒基达鑫国际化工仓储股份有限公司 一种废气脱硫除臭装置
CN111545022A (zh) * 2020-06-04 2020-08-18 深圳前海巨能环保科技有限公司 一种脱硫塔及其脱硫方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201085986Y (zh) * 2007-09-10 2008-07-16 中电投远达环保工程有限公司 双回路双向吸收装置
CN201445907U (zh) * 2009-06-30 2010-05-05 青岛华拓科技股份有限公司 湿法烟气脱硫双塔联合处理装置
CN201510842U (zh) * 2009-09-16 2010-06-23 张波 双回路空塔喷淋、塔体除雾烟道一体化装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0882487T3 (da) * 1996-02-01 2003-08-04 Mitsubishi Heavy Ind Ltd Apparat til afsvovling af udblæsningsgas
US5840263A (en) * 1996-05-30 1998-11-24 Mitsubishi Heavy Industries, Ltd. Flue gas treating process and system
JPH1094714A (ja) * 1996-09-20 1998-04-14 Mitsubishi Heavy Ind Ltd 排煙処理方法
EP0937491A3 (en) * 1998-02-23 1999-10-13 Mitsubishi Heavy Industries, Ltd. Flue gas treating process and apparatus
JP2004358294A (ja) * 2003-06-02 2004-12-24 Kawasaki Heavy Ind Ltd 湿式排煙脱硫方法及び湿式排煙脱硫装置
CN201135854Y (zh) * 2007-12-24 2008-10-22 同方环境股份有限公司 适用于湿法烟气脱硫的脱硫装置
CN101703861B (zh) * 2009-08-24 2012-07-04 李鹏举 一种石灰-石膏法烟气脱硫工艺及装置
CN202237782U (zh) * 2011-09-28 2012-05-30 华南理工大学 一种双室多重吸收湿法烟气脱硫装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201085986Y (zh) * 2007-09-10 2008-07-16 中电投远达环保工程有限公司 双回路双向吸收装置
CN201445907U (zh) * 2009-06-30 2010-05-05 青岛华拓科技股份有限公司 湿法烟气脱硫双塔联合处理装置
CN201510842U (zh) * 2009-09-16 2010-06-23 张波 双回路空塔喷淋、塔体除雾烟道一体化装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107321157A (zh) * 2017-07-19 2017-11-07 北京北科环境工程有限公司 一种卧式湿法脱硫装置
CN108273351A (zh) * 2018-03-08 2018-07-13 乐山倍创机械制造有限公司 低温低压脱硫装置
CN110465178A (zh) * 2018-05-09 2019-11-19 新疆北方建设集团有限公司 烟气脱硫装置
CN110465178B (zh) * 2018-05-09 2024-02-27 新疆北方建设集团有限公司 烟气脱硫装置
CN110180370A (zh) * 2019-05-10 2019-08-30 华电电力科学研究院有限公司 一种鼓泡喷淋一体化协同脱除多种污染物的系统与方法
CN111760433A (zh) * 2020-08-05 2020-10-13 四川省达科特能源科技股份有限公司 一种湿法脱硫装置及工艺

Also Published As

Publication number Publication date
KR20140091538A (ko) 2014-07-21
CN102343215A (zh) 2012-02-08
EP2762221A4 (en) 2015-09-02
EP2762221A1 (en) 2014-08-06
CN102343215B (zh) 2013-07-24
EP2762221B1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
WO2013044563A1 (zh) 一种双室多重吸收湿法烟气脱硫装置
CN205700119U (zh) 一种高效脱硫塔
CN201880482U (zh) 氨法脱硫阶梯喷淋塔
CN104399367B (zh) 一种带有缩放形孔板的烟气洗涤装置
CN202823161U (zh) 一种u型复合湿法脱硫装置
CN206642515U (zh) 脱硫脱酸除尘装置及含该装置的脱硫脱酸除尘系统
CN105854551A (zh) 双碱双循环脱硫吸收系统及方法
CN110898584A (zh) 低温湿式烟气除尘消白装置及其使用方法
CN1895748A (zh) 一种采用贴壁直流风的半干法烟气脱硫方法及装置
CN205586763U (zh) 一种方箱式脱硫塔
CN101342455A (zh) 一种喷淋旋流组合脱硫装置
WO2005030368A1 (fr) Procede de desulfuration par voie seche a grande echelle du gaz de combustion selon une technologie de fluidisation a circulatin dans une tour-multilit
CN205796897U (zh) 双循环变径脱硫吸收系统
CN108619885A (zh) 一种烟气脱硫塔和烟气除尘、脱硫及废水处理方法
CN201263964Y (zh) 一种喷淋旋流组合脱硫装置
CN105879588A (zh) 双循环变径脱硫吸收系统及方法
CN215585974U (zh) 分层脱硫塔
CN206355763U (zh) 风帽式废气洗涤塔
CN206027417U (zh) 一种脱硫喷淋塔
CN205252873U (zh) 单塔双工艺高效脱硫除尘设备
CN2564237Y (zh) 强化湿式石灰石烟气脱硫喷淋塔
CN207654934U (zh) 一种自动配制Fenton试剂去除VOCs的净化装置
CN203090739U (zh) 一种脱硫吸收塔
CN207024943U (zh) 一种高效旋流板脱硫除尘器
CN107569983B (zh) 烟气湿法脱硫设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147011498

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011873165

Country of ref document: EP