WO2013043027A1 - 상향링크 전송 전력 제어 방법 및 장치 - Google Patents

상향링크 전송 전력 제어 방법 및 장치 Download PDF

Info

Publication number
WO2013043027A1
WO2013043027A1 PCT/KR2012/007712 KR2012007712W WO2013043027A1 WO 2013043027 A1 WO2013043027 A1 WO 2013043027A1 KR 2012007712 W KR2012007712 W KR 2012007712W WO 2013043027 A1 WO2013043027 A1 WO 2013043027A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
random access
cell
uplink
secondary cell
Prior art date
Application number
PCT/KR2012/007712
Other languages
English (en)
French (fr)
Inventor
안준기
서동연
양석철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/009,683 priority Critical patent/US9510300B2/en
Priority to EP12833663.3A priority patent/EP2760243B1/en
Priority to JP2014510266A priority patent/JP2014513505A/ja
Priority to KR1020137020123A priority patent/KR101654408B1/ko
Priority to CN201280027872.6A priority patent/CN103597886B/zh
Publication of WO2013043027A1 publication Critical patent/WO2013043027A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for controlling uplink transmission power in a wireless communication system.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • a physical channel is a downlink channel. It may be divided into a Physical Downlink Shared Channel (PDSCH), a Physical Downlink Control Channel (PDCCH), a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH) which are uplink channels.
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the terminal may be located in any region within the cell, and the arrival time until the uplink signal transmitted by the terminal reaches the base station may vary depending on the position of each terminal.
  • the arrival time of the terminal located at the cell edge is longer than the arrival time of the terminal located at the cell center. In contrast, the arrival time of the terminal located at the cell center is shorter than the arrival time of the terminal located at the cell edge.
  • the base station In order to reduce interference between terminals, the base station needs to schedule the uplink signals transmitted by the terminals in the cell to be received within a boundary (hourly) every time.
  • the base station must adjust the transmission timing of each terminal according to the situation of each terminal, this adjustment is called uplink time alignment (uplink time alignment).
  • uplink time alignment uplink time alignment
  • the random access process is one of processes for maintaining uplink time synchronization.
  • the transmission power of the terminal needs to be adjusted. If the transmission power of the terminal is too low, it is difficult for the base station to receive uplink data. If the transmission power of the terminal is too high, uplink transmission may cause too much interference in the transmission of other terminals.
  • the present invention provides a method and apparatus for controlling uplink transmission power considering a plurality of serving cells.
  • a method for controlling uplink transmission power in a wireless communication system transmits a random access preamble in a secondary cell, and the terminal receives a random access response that is a response to the random access preamble in a primary cell, wherein the random access response is uplinked with a transmit power command (TPC).
  • TPC transmit power command
  • a Timing Advance Command (TAC) indicating a time synchronization value to be sent to maintain uplink time alignment
  • the UE transmits power of an uplink channel transmitted in the secondary cell based on the TPC. Determining.
  • the random access response may further include uplink resource allocation for a scheduled message, and the uplink channel may be established by the uplink resource allocation.
  • the primary cell and the secondary cell belong to different Timing Advance (TA) groups, and all cells belonging to one TA group may be applied with the same time synchronization value.
  • TA Timing Advance
  • a terminal for controlling uplink transmission power in a wireless communication system includes an RF (radio freqeuncy) unit for transmitting and receiving a radio signal and a processor connected to the RF unit.
  • the processor transmits a random access preamble in a secondary cell and receives a random access response that is a response to the random access preamble in a primary cell, wherein the random access response is uplink time synced with a transmit power command (TPC). and a timing advance command (TAC) indicating a time synchronization value sent to maintain time alignment, and determine a transmission power of an uplink channel transmitted in the secondary cell based on the TPC.
  • TPC transmit power command
  • TAC timing advance command
  • uplink transmission power may be determined during a random access process, and interference between terminals may be reduced.
  • 1 shows a structure of a downlink radio frame in 3GPP LTE.
  • FIG. 2 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • 5 shows a UL propagation difference between a plurality of cells.
  • FIG. 6 illustrates an example in which TAs are changed between a plurality of cells.
  • FIG. 7 is a flowchart illustrating a UL transmission power control method according to an embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the wireless device may be fixed or mobile and may be called by other terms such as a user equipment (UE), a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a mobile terminal (MT).
  • a base station generally refers to a fixed station for communicating with a wireless device, and may be referred to in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • LTE includes LTE and / or LTE-A.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • R-UTRA Physical Channels and Modulation
  • the radio frame includes 10 subframes indexed from 0 to 9.
  • One subframe includes two consecutive slots.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • OFDM symbol is only for representing one symbol period in the time domain, since 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink (DL), multiple access scheme or name There is no limit on.
  • OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 resource elements (REs). It may include.
  • the DL (downlink) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • a physical downlink control channel (PDCCH) and another control channel are allocated to the control region, and a PDSCH is allocated to the data region.
  • PDCH physical downlink control channel
  • a physical channel is a physical downlink shared channel (PDSCH), a physical downlink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical channel (PCFICH). It may be divided into a Control Format Indicator Channel (PHICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the terminal first receives the CFI on the PCFICH, and then monitors the PDCCH.
  • the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for an uplink hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ uplink hybrid automatic repeat request
  • the ACK / NACK signal for uplink (UL) data on the PUSCH transmitted by the UE is transmitted on the PHICH.
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the terminal to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is a method of demasking a desired identifier in a CRC of a received PDCCH (which is called a candidate PDCCH) and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
  • the base station determines the PDCCH format according to the DCI to be sent to the terminal, attaches a cyclic redundancy check (CRC) to the DCI, and unique identifier according to the owner or purpose of the PDCCH (this is called a Radio Network Temporary Identifier) Mask to the CRC.
  • CRC cyclic redundancy check
  • the control region in the subframe includes a plurality of control channel elements (CCEs).
  • the CCE is a logical allocation unit used to provide a coding rate according to the state of a radio channel to a PDCCH and corresponds to a plurality of resource element groups (REGs).
  • the REG includes a plurality of resource elements.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • One REG includes four REs and one CCE includes nine REGs.
  • ⁇ 1, 2, 4, 8 ⁇ CCEs may be used to configure one PDCCH, and each element of ⁇ 1, 2, 4, 8 ⁇ is called a CCE aggregation level.
  • the number of CCEs used for transmission of the PDDCH is determined by the base station according to the channel state. For example, one CCE may be used for PDCCH transmission for a UE having a good downlink channel state. Eight CCEs may be used for PDCCH transmission for a UE having a poor downlink channel state.
  • a control channel composed of one or more CCEs performs interleaving in units of REGs and is mapped to physical resources after a cyclic shift based on a cell ID.
  • the terminal may be located in any area within the cell, and the arrival time until the UL signal transmitted by the terminal reaches the base station may vary depending on the location of each terminal.
  • the arrival time of the terminal located at the cell edge is longer than the arrival time of the terminal located at the cell center. In contrast, the arrival time of the terminal located at the cell center is shorter than the arrival time of the terminal located at the cell edge.
  • the base station In order to reduce the interference between the terminals, the base station needs to schedule the UL signals transmitted by the terminals in the cell to be received within the boundary (hourly) every time.
  • the base station must adjust the transmission timing of each terminal according to the situation of each terminal, and this adjustment is called time synchronization maintenance.
  • the terminal transmits a random access preamble to the base station.
  • the base station calculates a time alignment value for speeding up or slowing the transmission timing of the terminal based on the received random access preamble.
  • the base station transmits a random access response including the calculated time synchronization value to the terminal.
  • the terminal updates the transmission timing by using the time synchronization value.
  • the base station receives a sounding reference signal from the terminal periodically or arbitrarily, calculates a time synchronization value of the terminal through the sounding reference signal, and provides a MAC CE (control) to the terminal. element).
  • the time synchronization value may be referred to as information that the base station sends to the terminal to maintain uplink time synchronization, and a timing alignment command indicates this information.
  • the transmission timing of the terminal is changed according to the speed and position of the terminal. Therefore, it is preferable that the time synchronization value received by the terminal be valid for a specific time.
  • the purpose of this is the Time Alignment Timer.
  • the time synchronization timer When the terminal updates the time synchronization after receiving the time synchronization value from the base station, the time synchronization timer starts or restarts.
  • the UE can transmit uplink only when the time synchronization timer is in operation.
  • the value of the time synchronization timer may be notified by the base station to the terminal through an RRC message such as system information or a radio bearer reconfiguration message.
  • the UE When the time synchronization timer expires or the time synchronization timer does not operate, the UE assumes that the time synchronization is not synchronized with the base station, and does not transmit any uplink signal except the random access preamble.
  • the random access procedure is used for the terminal to obtain UL synchronization with the base station or to be allocated UL radio resources.
  • the terminal receives a root index and a physical random access channel (PRACH) configuration index from the base station.
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • the terminal transmits the randomly selected random access preamble to the base station (S110).
  • the terminal selects one of 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH configuration index.
  • the terminal transmits the selected random access preamble in the selected subframe.
  • the base station receiving the random access preamble sends a random access response (RAR) to the terminal (S120).
  • RAR random access response
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with a random access-RNTI (RA-RNTI). The terminal receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • the random access response may include a TAC, a UL grant, and a temporary C-RNTI.
  • the TAC is information indicating a time synchronization value sent by the base station to the terminal to maintain UL time alignment.
  • the terminal updates the UL transmission timing by using the time synchronization value.
  • the time alignment timer (Time Alignment Timer) is started or restarted.
  • the UL grant includes UL resource allocation and transmit power command (TPC) used for transmission of a scheduling message described later.
  • TPC is used to determine the transmit power for the scheduled PUSCH.
  • the terminal transmits the scheduled message to the base station according to the UL grant in the random access response (S130).
  • the random access preamble is also referred to as an M1 message, a random access response as an M2 message, and a scheduled message as an M3 message.
  • the transmission power P PUSCH (i) for PUSCH transmission in subframe i is defined as follows.
  • P CMAX is the set terminal transmission power
  • M PUSCH (i) is the bandwidth of the PUSCH resource allocation in RB unit.
  • ⁇ (j) is a parameter given to the upper layer.
  • PL is a downlink path loss estimate calculated by the terminal.
  • ⁇ TF (i) is a terminal specific parameter.
  • f (i) is a terminal specific value obtained from the TPC.
  • the transmission power P PUCCH (i) for PUCCH transmission in subframe i is defined as follows.
  • P CMAX and PL are the same as Equation 1
  • P O_PUCCH (j) is a parameter configured by the sum of the cell-specific element P O_NOMINAL_PUCCH (j) and the terminal-specific element P O_UE_PUCCH (j) given in the upper layer.
  • h (n CQI , n HARQ ) is a value dependent on the PUCCH format.
  • ⁇ F_PUCCH (F) is a parameter given by an upper layer.
  • g (i) is a terminal specific value obtained from the TPC.
  • the transmit power P SRS (i) for SRS transmission in subframe i is defined as follows.
  • P CMAX, P O_PUSCH (j ), ⁇ (j), PL and f (i) is the same as equation 1, and, P SRS_OFFSET is the UE-specific parameters, M SRS is given in the upper layer shows the bandwidth for SRS transmission .
  • the 3GPP LTE system supports a case in which downlink bandwidth and uplink bandwidth are set differently, but this assumes one component carrier (CC).
  • the 3GPP LTE system supports up to 20MHz and may have different uplink and downlink bandwidths, but only one CC is supported for each of the uplink and the downlink.
  • Spectrum aggregation supports a plurality of CCs. For example, if five CCs are allocated as granularity in a carrier unit having a 20 MHz bandwidth, a bandwidth of up to 100 MHz may be supported.
  • One DL CC or a pair of UL CC and DL CC may correspond to one cell. Accordingly, it can be said that a terminal communicating with a base station through a plurality of DL CCs receives a service from a plurality of serving cells.
  • the number of DL CCs and UL CCs is not limited.
  • PDCCH and PDSCH are independently transmitted in each DL CC, and PUCCH and PUSCH are independently transmitted in each UL CC. Since three DL CC-UL CC pairs are defined, the UE may be provided with services from three serving cells.
  • the UE may monitor the PDCCH in the plurality of DL CCs and receive DL transport blocks simultaneously through the plurality of DL CCs.
  • the terminal may transmit a plurality of UL transport blocks simultaneously through the plurality of UL CCs.
  • Each serving cell may be identified through a cell index (CI).
  • the CI may be unique within the cell or may be terminal-specific.
  • CI 0, 1, 2 is assigned to the first to third serving cells is shown.
  • the serving cell may be divided into a primary cell (pcell) and a secondary cell (scell).
  • the primary cell is a cell that operates at the primary frequency and performs an initial connection establishment process, which is a terminal, initiates a connection reestablishment process, or is designated as a primary cell in a handover process.
  • the primary cell is also called a reference cell.
  • the secondary cell operates at the secondary frequency, can be established after the RRC connection is established, and can be used to provide additional radio resources. At least one primary cell is always configured, and the secondary cell may be added / modified / released by higher layer signaling (eg, RRC message).
  • the CI of the primary cell can be fixed.
  • the lowest CI may be designated as the CI of the primary cell.
  • the CI of the primary cell is 0, and the CI of the secondary cell is sequentially assigned from 1.
  • the UE may monitor the PDCCH through a plurality of serving cells. However, even if there are N serving cells, the base station can be configured to monitor the PDCCH for M (M ⁇ N) serving cells. In addition, the base station may be configured to preferentially monitor the PDCCH for L (L ⁇ M ⁇ N) serving cells.
  • TA Timing Alignment
  • a plurality of CCs are spaced apart in the frequency domain, propagation characteristics may vary. For example, a remote radio header (RRH) and devices may be present in the area of the base station to expand coverage or to remove a coverage hole.
  • RRH remote radio header
  • 5 shows a UL propagation difference between a plurality of cells.
  • the terminal is provided with services by the primary cell and the secondary cell.
  • the primary cell is serviced by a base station
  • the secondary cell is serviced by an RRH connected to the base station.
  • the propagation delay characteristic of the primary cell and the propagation delay characteristic of the secondary cell may be different due to the distance between the base station and the RRH, the processing time of the RRH, and the like.
  • FIG. 6 illustrates an example in which TAs are changed between a plurality of cells.
  • the actual TA of the primary cell is 'TA 1'
  • the actual TA of the secondary cell is 'TA 2'. Therefore, it is necessary to apply an independent TA for each serving cell.
  • a TA group includes one or more cells to which the same TA applies.
  • TA is applied to each TA group, and the time synchronization timer also operates for each TA group.
  • the primary cell belongs to the first TA group
  • the secondary cell belongs to the second TA group.
  • the number of serving cells and TA groups is only an example.
  • the primary cell and the secondary cell are only examples, and the present invention may be applied to at least two primary cells, at least two secondary cells, and at least two TA groups.
  • FIG. 7 is a flowchart illustrating a UL transmission power control method according to an embodiment of the present invention.
  • the terminal transmits a random access preamble in the secondary cell (S510).
  • the random access preamble may be selected from a plurality of candidate random access preambles.
  • the secondary cell may be a cell activated by the primary cell.
  • the terminal receives a random access response in the primary cell (S520).
  • the UE detects a PDCCH masked with a primary cell random access-RNTI (RA-RNTI).
  • the terminal may receive a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • the random access response may include a TAC and a UL grant.
  • the UL grant may include a UL resource allocation and a TPC used for transmission of a scheduling message described later.
  • the UL grant of the random access response may only include a TPC without UL resource allocation.
  • the ambiguity whether to apply the TPC of the random access response to the cell where the random access preamble is transmitted or to the cell where the random access response is received is determined. Occurs.
  • the transmission of a random access preamble in a secondary cell is such that there is no UL transmission in the secondary cell for a relatively long time, so that a time synchronization timer expires, or after the secondary cell is activated, appropriate for UL transmission timing and UL transmission power. It can be assumed that there is no setting. Therefore, according to the proposed invention, it is proposed that the TPC in the random access response is used for transmission power control of the cell in which the random access preamble is transmitted.
  • the terminal determines the transmission power of the UL channel of the secondary cell based on the TPC in the random access response (S530).
  • the UL channel may include at least one of PUCCH, PUSCH, and SRS.
  • the terminal transmits the scheduled message in the secondary cell on the PUSCH in accordance with the UL resource allocation in the random access response (S540).
  • the transmission power of the PUSCH may be controlled based on the TPC.
  • TAC in a random access response may be applied to the secondary cell.
  • the TPC in the random access response is used to control the transmit power of the cell in which the random access preamble is transmitted and the cell of the cell in which the scheduling message is transmitted.
  • the transmission power of the UL channel may be controlled through a preset method.
  • a method of determining the transmission power of the UL channel of the secondary cell based on the TPC in the random access response is as follows.
  • the transmission power P PUSCH (i) of the PUSCH transmitted in the subframe i of the secondary cell may be determined as follows.
  • P CMAX (i) is the terminal transmission power set in subframe i
  • M PUSCH (i) is the bandwidth of PUSCH resource allocation
  • P O_PUSCH (j) and ⁇ (j) is a parameter
  • PL is calculated by the terminal Downlink path loss estimation
  • ⁇ TF (i) is a terminal specific parameter
  • f (i) is a parameter obtained based on the TPC.
  • ⁇ P rampup is a parameter representing the cumulative value of ramp-up power
  • TPC M2 c is a value indicated by the TPC in the random access response corresponding to the random access preamble sent in cell c.
  • the transmit power P PUCCH (i) of the PUCCH transmitted in subframe i of the secondary cell may be determined as follows.
  • P CMAX (i) and PL are the same as Equation 4, and P O_PUCCH (j) is a parameter composed of the sum of the cell-specific element P O_NOMINAL_PUCCH (j) and the terminal-specific element P O_UE_PUCCH (j) given in the upper layer.
  • h (n CQI , n HARQ ) is a value dependent on the PUCCH format.
  • ⁇ F_PUCCH (F) is a parameter given by an upper layer.
  • g (i) is a parameter obtained based on the TPC.
  • ⁇ P rampup is a parameter representing the cumulative value of ramp-up power
  • TPC M2, c is a value indicated by the TPC in the random access response corresponding to the random access preamble sent in cell c.
  • the transmission power P SRS (i) for SRS transmission in subframe i of the secondary cell may be determined as follows.
  • P CMAX (i), P O_PUSCH (j), ⁇ (j), PL and f (i) is the same as equation (4), and, P SRS_OFFSET is the UE-specific parameters are given in the upper layer, M SRS is for the SRS transmission Represents bandwidth.
  • the first value of f (i), f (0) ⁇ P rampup + TPC M2, c .
  • a TPC in a random access response is used for f (0) and g (0) for determining the transmit power of the PUSCH / PUCCH / SRS.
  • a TPC in the random access response is received, it can be said that it is reset to f (0) and g (0) based on this TPC.
  • the TPC in the M2 message is applied to the primary cell when the M1 message is transmitted in the primary cell, and the secondary cell when the M1 message is transmitted in the secondary cell. Applied to
  • the transmit power of the PUSCH for the M2 message may be determined according to the configuration of the cell regardless of the TPC in the M2 message.
  • f (i) for M3 is not reset to f (0), and currently accumulated f (i) may be applied.
  • the PUSCH for the M3 message may be determined based on the TPC.
  • the TAC in the M2 message may be applied to the cell in which the M1 / M3 message is transmitted. If the M3 message is transmitted in a cell other than the cell in which the M1 message is transmitted, the TAC in the M2 message may be applied to the cell in which the M1 message is transmitted.
  • FIG. 8 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 50 includes a processor 51, a memory 52, and an RF unit 53.
  • the memory 52 is connected to the processor 51 and stores various information for driving the processor 51.
  • the RF unit 53 is connected to the processor 51 and transmits and / or receives a radio signal.
  • the processor 51 implements the proposed functions, processes and / or methods. In the aforementioned embodiment of FIG. 7, the serving cell and / or the TA group may be controlled / managed by the base station, and the operation of one or more cells may be implemented by the processor 51.
  • the wireless device 60 includes a processor 61, a memory 62, and an RF unit 63.
  • the memory 62 is connected to the processor 61 and stores various information for driving the processor 61.
  • the RF unit 63 is connected to the processor 61 and transmits and / or receives a radio signal.
  • the processor 61 implements the proposed functions, processes and / or methods. In the above-described embodiment of FIG. 7, the operation of the terminal may be implemented by the processor 61.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 상향링크 전송 파워를 제어하는 방법 및 장치가 제공된다. 단말이 랜덤 액세스 프리앰블을 2차셀에서 전송하고, 1차셀에서 랜덤 액세스 응답을 수신한다. 상기 단말은 상기 랜덤 액세스 응답 내의 TPC(transmit power command)에 기반하여 상기 2차셀에서 전송되는 상향링크 채널의 전송 파워를 결정한다.

Description

상향링크 전송 전력 제어 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 무선 통신 시스템에서 상향링크 전송 전력을 제어하는 방법 및 장치에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"에 개시된 바와 같이, 3GPP LTE/LTE-A에서 물리채널은 하향링크 채널인 PDSCH(Physical Downlink Shared Channel)와 PDCCH(Physical Downlink Control Channel), 상향링크 채널인 PUSCH(Physical Uplink Shared Channel)와 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
단말들간의 상향링크 전송으로 인한 간섭을 줄이기 위해, 기지국이 단말의 상향링크 시간 동기(uplink time alignment)를 유지하는 것은 중요하다. 단말은 셀 내의 임의의 영역에 위치할 수 있고, 단말이 전송하는 상향링크 신호가 기지국에 도달하는 데까지 걸리는 도달 시간은 각 단말의 위치에 따라 다를 수 있다. 셀 가장자리(cell edge)에 위치하는 단말의 도달 시간은 셀 중앙에 위치하는 단말의 도달 시간보다 길다. 반대로, 셀 중앙에 위치하는 단말의 도달 시간은 셀 가장자리에 위치하는 단말의 도달 시간보다 짧다.
단말들간 간섭을 줄이기 위해, 기지국은 셀 내의 단말들이 전송한 상향링크 신호들이 매 시간 바운더리(boundary) 내에서 수신될 수 있도록 스케줄링하는 것이 필요하다. 기지국은 각 단말의 상황에 따라 각 단말의 전송 타이밍을 적절히 조절해야 하고, 이러한 조절을 상향링크 시간 동기(uplink time alignment)라고 한다. 랜덤 액세스 과정은 상향링크 시간 동기를 유지하기 위한 과정 중 하나이다.
또한, 상향링크 전송으로 인한 간섭을 완화하기 위해, 단말의 전송 파워가 조절될 필요가 있다. 단말의 전송 파워가 너무 낮으면, 기지국이 상향링크 데이터를 수신하기 어렵다. 단말의 전송 파워가 너무 높으면, 상향링크 전송이 다른 단말의 전송에 너무 많은 간섭을 야기할 수 있다.
최근에는 보다 높은 데이터 레이트를 제공하기 위해 복수의 서빙 셀이 도입되고 있다. 기존 랜덤 액세스 과정을 이용한 상향링크 전송 전력의 제어는 하나의 서빙 셀만을 고려하여 설계되었다.
본 발명은 복수의 서빙 셀을 고려한 상향링크 전송 전력을 제어하는 방법 및 장치를 제공한다.
일 양태에서, 무선 통신 시스템에서 상향링크 전송 파워 제어 방법이 제공된다. 상기 방법은 단말이 랜덤 액세스 프리앰블을 2차셀에서 전송하고, 상기 단말이 1차셀에서 상기 상기 랜덤 액세스 프리앰블에 대한 응답인 랜덤 액세스 응답을 수신하되, 상기 랜덤 액세스 응답은 TPC(transmit power command)와 상향링크 시간 동기(uplink time alignment)를 유지하기 위해 보내는 시간 동기 값을 지시하는 TAC(Timing Advance Command)를 포함하고, 및 상기 단말은 상기 TPC에 기반하여 상기 2차셀에서 전송되는 상향링크 채널의 전송 파워를 결정하는 것을 포함한다.
상기 랜덤 액세스 응답은 스케줄링된 메시지를 위한 상향링크 자원할당을 더 포함하고, 상기 상향링크 채널은 상기 상향링크 자원할당에 의해 설정될 수 있다.
상기 1차셀 및 상기 2차셀은 서로 다른 TA(Timing Advance) 그룹에 속하고, 하나의 TA 그룹에 속하는 모든 셀은 동일한 시간 동기 값이 적용될 수 있다.
다른 양태에서, 무선 통신 시스템에서 상향링크 전송 파워를 제어하는 단말은 무선 신호를 송신 및 수신하는 RF(radio freqeuncy)부 및 상기 RF부와 연결되는 프로세서를 포함한다. 상기 프로세서는 랜덤 액세스 프리앰블을 2차셀에서 전송하고, 1차셀에서 상기 상기 랜덤 액세스 프리앰블에 대한 응답인 랜덤 액세스 응답을 수신하되, 상기 랜덤 액세스 응답은 TPC(transmit power command)와 상향링크 시간 동기(uplink time alignment)를 유지하기 위해 보내는 시간 동기 값을 지시하는 TAC(Timing Advance Command)를 포함하고, 및 상기 TPC에 기반하여 상기 2차셀에서 전송되는 상향링크 채널의 전송 파워를 결정한다.
각 서빙셀 또는 각 서빙셀 그룹 별로 시간 동기가 적용되는 무선 통신 시스템에서 랜덤 액세스 과정 동안 상향링크 전송 파워를 결정하고, 단말 간 간섭을 줄일 수 있다.
도 1은 3GPP LTE에서 하향링크 무선 프레임의 구조를 나타낸다.
도 2는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
도 3은 랜덤 액세스 응답의 일 예를 나타낸다.
도 4는 다중 반송파의 일 예를 나타낸다.
도 5는 복수의 셀들간에 UL 전파 차이를 나타낸다.
도 6은 복수의 셀 간 TA가 달라지는 예이다.
도 7은 본 발명의 일 실시예에 따른 UL 전송 전력 제어 방법을 나타낸 흐름도이다.
도 8은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
무선기기는 고정되거나 이동성을 가질 수 있으며, 단말(User Equipment, UE), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal) 등 다른 용어로 불릴 수 있다. 기지국은 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서는 3GPP(3rd Generation Partnership Project) 3GPP LTE(long term evolution) 또는 3GPP LTE-A(LTE-Advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고, 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다. 이하에서, LTE라 함은 LTE 및/또는 LTE-A를 포함한다.
도 1은 3GPP LTE에서 하향링크 무선 프레임의 구조를 나타낸다. 이는 3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"의 6절을 참조할 수 있다.
무선 프레임(radio frame)은 0~9의 인덱스가 매겨진 10개의 서브프레임을 포함한다. 하나의 서브프레임(subframe)은 2개의 연속적인 슬롯을 포함한다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP TS 36.211 V8.7.0에 의하면, 정규 CP에서 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심벌을 포함한다.
자원블록(resource block, RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(resource element, RE)를 포함할 수 있다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 3개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH(Physical Downlink Control Channel) 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
3GPP TS 36.211 V8.7.0에 개시된 바와 같이, 3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 단말에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 단말이 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 후보(candidate) PDCCH라 함)의 CRC에 원하는 식별자를 디마스킹하고, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다.
기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC(Cyclic Redundancy Check)를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)를 CRC에 마스킹한다.
서브프레임내의 제어영역은 복수의 CCE(control channel element)를 포함한다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위로, 복수의 REG(resource element group)에 대응된다. REG는 복수의 자원요소(resource element)를 포함한다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
하나의 REG는 4개의 RE를 포함하고, 하나의 CCE는 9개의 REG를 포함한다. 하나의 PDCCH를 구성하기 위해 {1, 2, 4, 8}개의 CCE를 사용할 수 있으며, {1, 2, 4, 8} 각각의 요소를 CCE 집합 레벨(aggregation level)이라 한다.
PDDCH의 전송에 사용되는 CCE의 개수는 기지국이 채널 상태에 따라 결정한다. 예를 들어, 좋은 하향링크 채널 상태를 갖는 단말에게는 하나의 CCE를 PDCCH 전송에 사용할 수 있다. 나쁜(poor) 하향링크 채널 상태를 갖는 단말에게는 8개의 CCE를 PDCCH 전송에 사용할 수 있다.
하나 또는 그 이상의 CCE로 구성된 제어채널은 REG 단위의 인터리빙을 수행하고, 셀 ID(identifier)에 기반한 순환 쉬프트(cyclic shift)가 수행된 후에 물리적 자원에 매핑된다.
이제 3GPP LTE에서의 UL 시간 동기(uplink time alignment)의 유지에 대해 기술한다.
단말들간의 UL 전송으로 인한 간섭을 줄이기 위해, 기지국이 단말의 상향링크 시간 동기를 유지하는 것은 중요하다. 단말은 셀 내의 임의의 영역에 위치할 수 있고, 단말이 전송하는 UL 신호가 기지국에 도달하는 데까지 걸리는 도달 시간은 각 단말의 위치에 따라 다를 수 있다. 셀 가장자리(cell edge)에 위치하는 단말의 도달 시간은 셀 중앙에 위치하는 단말의 도달 시간보다 길다. 반대로, 셀 중앙에 위치하는 단말의 도달 시간은 셀 가장자리에 위치하는 단말의 도달 시간보다 짧다.
단말들간 간섭을 줄이기 위해, 기지국은 셀 내의 단말들이 전송한 UL 신호들이 매 시간 바운더리(boundary) 내에서 수신될 수 있도록 스케줄링하는 것이 필요하다. 기지국은 각 단말의 상황에 따라 각 단말의 전송 타이밍을 적절히 조절해야 하고, 이러한 조절을 시간 동기 유지라고 한다.
시간 동기를 관리하는 한가지 방법으로 랜덤 액세스 과정이 있다. 단말은 기지국으로 랜덤 액세스 프리앰블을 전송한다. 기지국은 수신한 랜덤 액세스 프리앰블을 기반으로 단말의 전송 타이밍을 빠르게 혹은 느리게 하기 위한 시간 동기 값(time alignment value)을 계산한다. 그리고, 기지국은 단말에게 계산된 시간 동기 값을 포함하는 랜덤 액세스 응답을 전송한다. 단말은 상기 시간 동기 값을 이용하여, 전송 타이밍을 갱신한다.
또 다른 방법으로는, 기지국은 단말로부터 주기적 혹은 임의적으로 사운딩 기준 신호(Sounding Reference Signal)를 수신하고, 상기 사운딩 기준 신호를 통해 상기 단말의 시간 동기 값을 계산하고, 단말에게 MAC CE(control element)를 통해 알려준다.
시간 동기값은 기지국이 단말에게 상향링크 시간 동기를 유지하기 위해 보내는 정보라 할 수 있으며, 시간 동기 명령(Timing Alignment Command)은 이 정보를 지시한다.
일반적으로 단말은 이동성을 가지므로, 단말이 이동하는 속도와 위치 등에 따라 단말의 전송 타이밍은 바뀌게 된다. 따라서, 단말이 수신한 시간 동기 값은 특정 시간 동안 유효하다고 하는 것이 바람직하다. 이를 위해 사용하는 것이 시간 동기 타이머(Time Alignment Timer)이다.
단말은 기지국으로부터 시간 동기 값을 수신한 후 시간 동기를 갱신하면, 시간 동기 타이머를 개시 또는 재시작한다. 시간 동기 타이머가 동작 중일 때만 단말은 상향링크 전송이 가능하다. 시간 동기 타이머의 값은 시스템 정보 또는 무선 베어러 재구성(Radio Bearer Reconfiguration) 메시지와 같은 RRC 메시지를 통해 기지국이 단말에게 알려줄 수 있다.
시간 동기 타이머가 만료되거나, 시간 동기 타이머가 동작하지 않는 때에는 단말은 기지국과 시간 동기가 맞지 않다고 가정하고, 랜덤 액세스 프리앰블을 제외한 어떠한 상향링크 신호도 전송하지 않는다.
도 2는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다. 랜덤 액세스 과정은 단말이 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
단말은 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 기지국으로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
아래 표는 3GPP TS 36.211 V8.7.0 (2009-05)의 5.7절에 게시된 랜덤 액세스 설정의 일 예이다.
표 1
PRACH 설정 인덱스 프리앰블 포맷 시스템 프레임 번호 서브프레임 번호
0 0 Even 1
1 0 Even 4
2 0 Even 7
3 0 Any 1
4 0 Any 4
5 0 Any 7
6 0 Any 1, 6
단말은 임의로 선택된 랜덤 액세스 프리앰블을 기지국으로 전송한다(S110). 단말은 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. 단말은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 기지국은 랜덤 액세스 응답(radom access response, RAR)을 단말로 보낸다(S120). 랜덤 액세스 응답은 2단계로 검출된다. 먼저 단말은 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. 단말은 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 3은 랜덤 액세스 응답의 일 예를 나타낸다.
랜덤 액세스 응답은 TAC, UL 그랜트, 임시 C-RNTI를 포함할 수 있다.
TAC는 기지국이 단말에게 UL 시간 동기(time alignment)를 유지하기 위해 보내는 시간 동기 값을 지시하는 정보이다. 단말은 상기 시간 동기 값을 이용하여, UL 전송 타이밍을 갱신한다. 단말이 시간 동기를 갱신하면, 시간 동기 타이머(Time Alignment Timer)를 개시 또는 재시작한다.
UL 그랜트는 후술하는 스케줄링 메시지의 전송에 사용되는 UL 자원 할당 및 TPC(transmit power command)를 포함한다. TPC는 스케줄링된 PUSCH를 위한 전송 파워의 결정에 사용된다.
다시 도 2를 참조하면, 단말은 랜덤 액세스 응답 내의 UL 그랜트에 따라 스케줄링된 메시지를 기지국으로 전송한다(S130).
이하에서는 랜덤 액세스 프리앰블을 M1 메시지, 랜덤 액세스 응답을 M2 메시지, 스케줄링된 메시지를 M3 메시지 라고도 한다.
이제 3GPP TS 36.213 V8.7.0 (2009-05)의 5절을 참조하여, 3GPP LTE에서 상향링크 전송 파워에 대해 기술한다.
서브프레임 i에서 PUSCH 전송을 위한 전송 파워 PPUSCH(i)는 다음과 같이 정의된다.
수학식 1
Figure PCTKR2012007712-appb-M000001
여기서, PCMAX는 설정된 단말 전송 파워, MPUSCH(i)는 RB 단위의 PUSCH 자원 할당의 대역폭이다. PO_PUSCH(j)는 j=0 과 1일 때 상위계층에서 주어지는 셀 특정 요소 PO_NOMINAL_PUSCH(j)와 단말 특정 요소 PO_UE_PUSCH(j)의 합으로 구성되는 파라미터이다. α(j)는 상위계층에 주어지는 파라미터이다. PL은 단말에 의해 계산되는 하향링크 경로 손실 추정이다. ΔTF(i)는 단말 특정 파라미터이다. f(i)는 TPC로부터 획득되는 단말 특정 값이다. min{A,B}는 A와 B 중 더 적은 값을 출력하는 함수이다.
서브프레임 i에서 PUCCH 전송을 위한 전송 파워 PPUCCH(i)는 다음과 같이 정의된다.
수학식 2
Figure PCTKR2012007712-appb-M000002
여기서, PCMAX와 PL은 식 1과 동일하고, PO_PUCCH(j)는 상위계층에서 주어지는 셀 특정 요소 PO_NOMINAL_PUCCH(j)와 단말 특정 요소 PO_UE_PUCCH(j)의 합으로 구성되는 파라미터이다. h(nCQI, nHARQ)는 PUCCH 포맷에 종속하는 값이다. ΔF_PUCCH(F)는 상위계층에 의해 주어지는 파라미터이다. g(i)는 TPC로부터 획득되는 단말 특정 값이다.
서브프레임 i에서 SRS 전송을 위한 전송 파워 PSRS(i)는 다음과 같이 정의된다.
수학식 3
Figure PCTKR2012007712-appb-M000003
여기서, PCMAX, PO_PUSCH(j), α(j), PL 및 f(i)은 식 1과 동일하고, PSRS_OFFSET는 상위계층에서 주어지는 단말 특정 파라미터, MSRS는 SRS 전송을 위한 대역폭을 나타낸다.
이제 다중 반송파(multiple carrier) 시스템에 대해 기술한다.
3GPP LTE 시스템은 하향링크 대역폭과 상향링크 대역폭이 다르게 설정되는 경우를 지원하나, 이는 하나의 요소 반송파(component carrier, CC)를 전제한다. 3GPP LTE 시스템은 최대 20MHz을 지원하고, 상향링크 대역폭과 하향링크 대역폭을 다를 수 있지만, 상향링크와 하향링크 각각에 하나의 CC만을 지원한다.
스펙트럼 집성(spectrum aggregation)(또는, 대역폭 집성(bandwidth aggregation), 반송파 집성(carrier aggregation)이라고도 함)은 복수의 CC를 지원하는 것이다. 예를 들어, 20MHz 대역폭을 갖는 반송파 단위의 그래뉼래리티(granularity)로서 5개의 CC가 할당된다면, 최대 100Mhz의 대역폭을 지원할 수 있는 것이다.
하나의 DL CC 또는 UL CC와 DL CC의 쌍(pair)는 하나의 셀에 대응될 수 있다. 따라서, 복수의 DL CC를 통해 기지국과 통신하는 단말은 복수의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다.
도 4는 다중 반송파의 일 예를 나타낸다.
DL CC와 UL CC가 각각 3개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 각 DL CC에서 PDCCH와 PDSCH가 독립적으로 전송되고, 각 UL CC에서 PUCCH와 PUSCH가 독립적으로 전송된다. DL CC-UL CC 쌍이 3개가 정의되므로, 단말은 3개의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다.
단말은 복수의 DL CC에서 PDCCH를 모니터링하고, 복수의 DL CC를 통해 동시에 DL 전송 블록을 수신할 수 있다. 단말은 복수의 UL CC를 통해 동시에 복수의 UL 전송 블록을 전송할 수 있다.
DL CC #1과 UL CC #1의 쌍이 제1 서빙 셀이 되고, DL CC #2과 UL CC #2의 쌍이 제2 서빙 셀이 되고, DL CC #3이 제3 서빙 셀이 된다고 하자. 각 서빙 셀은 셀 인덱스(Cell index, CI)를 통해 식별될 수 있다. CI는 셀 내에서 고유할 수 있고, 또는 단말-특정적일 수 있다. 여기서는, 제1 내지 제3 서빙셀에 CI=0, 1, 2가 부여된 예를 보여준다.
서빙 셀은 1차 셀(primary cell, pcell)과 2차 셀(secondary cell, scell)로 구분될 수 있다. 1차 셀은 1차 주파수에서 동작하고, 단말인 초기 연결 확립 과정을 수행하거나, 연결 재확립 과정을 개시하거나, 핸드오버 과정에서 1차셀로 지정된 셀이다. 1차 셀은 기준 셀(reference cell)이라고도 한다. 2차 셀은 2차 주파수에서 동작하고, RRC 연결이 확립된 후에 설정될 수 있으며, 추가적인 무선 자원을 제공하는데 사용될 수 있다. 항상 적어도 하나의 1차 셀이 설정되고, 2차 셀은 상위 계층 시그널링(예, RRC 메시지)에 의해 추가/수정/해제될 수 있다.
1차 셀의 CI는 고정될 수 있다. 예를 들어, 가장 낮은 CI가 1차 셀의 CI로 지정될 수 있다. 이하에서는 1차 셀의 CI는 0이고, 2차 셀의 CI는 1부터 순차적으로 할당된다고 한다.
단말은 복수의 서빙셀을 통해 PDCCH를 모니터링할 수 있다. 하지만, N개의 서빙 셀이 있더라도, 기지국으로 M (M≤N)개의 서빙 셀에 대해 PDCCH를 모니터링하도록 설정할 수 있다. 또한, 기지국은 L (L≤M≤N)개의 서빙 셀에 대해 우선적으로 PDCCH를 모니터링하도록 설정할 수 있다
기존 3GPP LTE에서는 단말이 복수 개의 CC를 지원하더라도, 하나의 TA(Timing Alignment) 값을 복수 개의 CC에 공통으로 적용하고 있다. 하지만, 복수의 CC가 주파수 영역에서 많이 이격되어 전파(propagation) 특성이 달라질 수 있다. 예를 들어, 커버리지를 확대하거나 커버리지 홀(Coverage hole)을 제거하기 위해 RRH(Remote Radio Header)와 장치들이 기지국의 영역에 존재할 수 있다.
도 5는 복수의 셀들간에 UL 전파 차이를 나타낸다.
단말은 1차셀과 2차셀에 의해 서비스를 제공받고 있다. 1차셀은 기지국에 의해, 2차셀은 기지국과 연결된 RRH에 의해 서비스를 제공한다. 1차셀의 전파 지연(propagation delay) 특성과 2차셀의 전파 지연 특성은 기지국과 RRH 간의 거리, RRH의 처리 시간(processing time) 등의 이유로 상이할 수 있다.
이 경우 1차셀과 2차셀에 동일한 TA 값을 적용하면, UL 신호의 동기화에 심각한 영향을 미칠 수 있다.
도 6은 복수의 셀 간 TA가 달라지는 예이다.
1차셀의 실제 TA는 'TA 1'이고, 2차셀의 실제 TA는 'TA 2'이다. 따라서, 각 서빙셀 별로 독립적인 TA를 적용할 필요가 있다.
독립적인 TA를 적용하기 위해, TA 그룹이 정의된다. TA 그룹은 동일한 TA가 적용되는 하나 또는 그 이상의 셀을 포함한다. 각 TA 그룹 별로 TA가 적용되고, 시간 동기 타이머도 각 TA 그룹별로 작동한다.
이하에서, 1차셀과 2차셀, 2개의 서빙셀을 고려하고, 1차셀은 제1 TA 그룹에 속하고, 2차셀은 제2 TA 그룹에 속한다고 한다. 서빙셀 및 TA 그룹의 개수는 예시에 불과하다. 또한, 1차셀과 2차셀은 예시에 불과하고, 적어도 2개의 1차셀, 적어도 2개의 2차셀, 적어도 2개의 TA 그룹에도 본 발명은 적용될 수 있다.
도 7은 본 발명의 일 실시예에 따른 UL 전송 전력 제어 방법을 나타낸 흐름도이다.
단말은 2차셀에서 랜덤 액세스 프리앰블을 전송한다(S510). 상기 랜덤 액세스 프리앰블은 복수의 후보 랜덤 액세스 프리앰블로부터 선택될 수 있다. 상기 2차셀은 1차셀에 의해 활성화된 셀일 수 있다.
단말은 1차셀에서 랜덤 액세스 응답을 수신한다(S520). 먼저 단말은 1차셀 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. 단말은 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신할 수 있다.
도 3에 나타난 바와 같이, 랜덤 액세스 응답은 TAC 및 UL 그랜트를 포함할 수 있다. UL 그랜트는 후술하는 스케줄링 메시지의 전송에 사용되는 UL 자원 할당 및 TPC를 포함할 수 있다. 또는, 랜덤 액세스 응답의 UL 그랜트는 UL 자원할당 없이 단지 TPC를 포함할 수 있다.
랜덤 액세스 프리앰블과 랜덤 액세스 응답이 서로 다른 셀(또는 TA 그룹)에서 수신될 때, 랜덤 액세스 응답의 TPC를 랜덤 액세스 프리앰블이 전송되는 셀에 적용할지 또는 랜덤 액세스 응답이 수신된 셀에 적용할지 모호성이 발생한다.
일반적으로 2차셀에서 랜덤 액세스 프리앰블이 전송되는 것은 상대적으로 긴 시간 동안 상기 2차셀에서의 UL 전송이 없어 시간 동기 타이머가 만료되거나, 혹은 2차셀이 활성화된 후 UL 전송 타이밍 및 UL 전송 파워에 대한 적절한 설정이 없는 상황이라고 가정할 수 있다. 따라서, 제안된 발명에 의하면, 랜덤 액세스 응답내의 TPC는 랜덤 액세스 프리앰블이 전송된 셀의 전송 파워 제어에 사용되는 것을 제안한다.
단말은 랜덤 액세스 응답내의 TPC를 기반으로 2차셀의 UL 채널의 전송 파워를 결정한다(S530). UL 채널은 PUCCH, PUSCH 및 SRS 중 적어도 어느 하나를 포함할 수 있다.
단말은 랜덤 액세스 응답 내의 UL 자원 할당에 따라 스케줄링된 메시지를 2차셀에서 PUSCH 상으로 전송한다(S540). 상기 PUSCH의 전송 파워는 상기 TPC를 기반으로 제어될 수 있다. 상기 2차셀에는 랜덤 액세스 응답내의 TAC가 적용될 수 있다.
만약 스케줄링된 메시지가 랜덤 액세스 프리앰블이 전송된 셀이 아닌 다른 셀에서 전송되면, 랜덤 액세스 응답 내의 TPC는 랜덤 액세스 프리앰블이 전송된 셀의 전송 파워를 제어하는 데 사용되고, 상기 스케줄링 메시지가 전송되는 셀의 UL 채널의 전송 파워는 미리 설정된 방법을 통해 제어될 수 있다.
랜덤 액세스 응답내의 TPC를 기반으로 2차셀의 UL 채널의 전송 파워를 결정하는 방법은 다음과 같다.
상기 2차셀의 서브프레임 i에서 전송되는 PUSCH의 전송 파워 PPUSCH(i)는 다음 식과 같이 결정될 수 있다.
수학식 4
Figure PCTKR2012007712-appb-M000004
여기서, PCMAX(i)는 서브프레임 i에서 설정된 단말 전송 파워, MPUSCH(i)는 PUSCH 자원 할당의 대역폭, PO_PUSCH(j)과 α(j)는 파라미터, PL은 상기 단말에 의해 계산되는 하향링크 경로 손실 추정, ΔTF(i)는 단말 특정 파라미터이다. f(i)는 상기 TPC를 기반으로 획득되는 파라미터이다.
보다 구체적으로, f(i)의 첫번째 값, f(0)=ΔPrampup+TPCM2,c로 나타낼 수 있다. ΔPrampup는 램프-업(ramp) 파워의 누적 값을 나타내는 파라미터, TPCM2,c는 셀 c에서 전송된 랜덤 액세스 프리앰블에 대응하는 랜덤 액세스 응답 내의 TPC에 의해 지시되는 값이다.
상기 2차셀의 서브프레임 i에서 전송되는 PUCCH의 전송 파워 PPUCCH(i)는 다음 식과 같이 결정될 수 있다.
수학식 5
Figure PCTKR2012007712-appb-M000005
여기서, PCMAX(i)와 PL은 식 4와 동일하고, PO_PUCCH(j)는 상위계층에서 주어지는 셀 특정 요소 PO_NOMINAL_PUCCH(j)와 단말 특정 요소 PO_UE_PUCCH(j)의 합으로 구성되는 파라미터이다. h(nCQI, nHARQ)는 PUCCH 포맷에 종속하는 값이다. ΔF_PUCCH(F)는 상위계층에 의해 주어지는 파라미터이다. g(i)는 상기 TPC를 기반으로 획득되는 파라미터이다.
보다 구체적으로, g(i)의 첫번째 값, g(0)=ΔPrampup+TPCM2,c로 나타낼 수 있다. ΔPrampup는 램프-업(ramp) 파워의 누적 값을 나타내는 파라미터, TPCM2,c는 셀 c에서 전송된 랜덤 액세스 프리앰블에 대응하는 랜덤 액세스 응답 내의 TPC에 의해 지시되는 값이다.
상기 2차셀의 서브프레임 i에서 SRS 전송을 위한 전송 파워 PSRS(i)는 다음과 같이 결정될 수 있다.
수학식 6
Figure PCTKR2012007712-appb-M000006
여기서, PCMAX(i), PO_PUSCH(j), α(j), PL 및 f(i)은 식 4와 동일하고, PSRS_OFFSET는 상위계층에서 주어지는 단말 특정 파라미터, MSRS는 SRS 전송을 위한 대역폭을 나타낸다. f(i)의 첫번째 값, f(0)=ΔPrampup+TPCM2,c로 나타낼 수 있다.
상기 PUSCH/PUCCH/SRS의 전송 전력을 결정하기 위한 f(0)와 g(0)에 랜덤 액세스 응답내의 TPC가 사용된다. 랜덤 액세스 응답 내의 TPC가 수신되면, 이 TPC를 기반으로 f(0)와 g(0)로 리셋된다고 할 수 있다.
만약 M3 메시지가 M1 메시지가 전송된 셀과 관계없이 항상 1차셀을 통해서만 전송된다면, M2 메시지 내의 TPC는 M1 메시지가 1차셀에서 전송되면 1차셀에 적용되고, M1 메시지가 2차셀에서 전송되면 2차셀에 적용된다고 할 수 있다.
만약 M3 메시지가 M1 메시지가 전송된 2차셀이 아닌 다른 2차셀이나 1차셀에서 전송되면, M2 메시지를 위한 PUSCH의 전송 파워는 M2 메시지 내의 TPC에 상관없이 해당 셀의 설정에 따라 결정될 수 있다. 이때, M3를 위한 f(i)는 f(0)으로 리셋되지 않고, 현재 축적된(accumulated) f(i)가 적용될 수 있다.
선택적으로, M3 메시지가 M1 메시지가 전송된 셀이 아닌 다른 셀로 전송될 경우에도 M3 메시지를 위한 PUSCH는 상기 TPC를 기반으로 결정될 수 있다. 이 때에 M1 메시지가 전송된 셀을 통해 이후에 전송되는 UL 채널의 최초 전송 파워의 설정에는 M2 메시지의 TPC를 적용하지 않고 파워 램프-업(ramp-up) 값만이 적용될 수 있다. 즉 다음과 같은 설정이 가능하다. f(0)=ΔPrampup, g(0)=ΔPrampup.
M3 메시지가 M1 메시지가 전송된 셀을 통해 전송되면, M2 메시지 내의 TAC는 M1/M3 메시지가 전송된 셀에 적용될 수 있다. M3 메시지가 M1 메시지가 전송된 셀이 아닌 셀에서 전송되면, M2 메시지 내의 TAC는 M1 메시지가 전송된 셀에 적용될 수 있다.
도 8은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
기지국(50)은 프로세서(processor, 51), 메모리(memory, 52) 및 RF부(RF(radio frequency) unit, 53)을 포함한다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)를 구동하기 위한 다양한 정보를 저장한다. RF부(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 도 7의 실시예에서 서빙셀 및/또는 TA 그룹은 기지국에 의해 제어/관리될 수 있으며, 하나 또는 그 이상의 셀의 동작은 프로세서(51)에 의해 구현될 수 있다.
무선기기(60)는 프로세서(61), 메모리(62) 및 RF부(63)을 포함한다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)를 구동하기 위한 다양한 정보를 저장한다. RF부(63)는 프로세서(61)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(61)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 도 7의 실시예에서 단말의 동작은 프로세서(61)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (15)

  1. 무선 통신 시스템에서 상향링크 전송 파워 제어 방법에 있어서,
    단말이 랜덤 액세스 프리앰블을 2차셀에서 전송하고;
    상기 단말이 1차셀에서 상기 상기 랜덤 액세스 프리앰블에 대한 응답인 랜덤 액세스 응답을 수신하되, 상기 랜덤 액세스 응답은 TPC(transmit power command)와 상향링크 시간 동기(uplink time alignment)를 유지하기 위해 보내는 시간 동기 값을 지시하는 TAC(Timing Advance Command)를 포함하고; 및
    상기 단말은 상기 TPC에 기반하여 상기 2차셀에서 전송되는 상향링크 채널의 전송 파워를 결정하는 것을 포함하는 상향링크 전송 파워 제어 방법.
  2. 제 1 항에 있어서, 상기 랜덤 액세스 응답은 스케줄링된 메시지를 위한 상향링크 자원할당을 더 포함하고,
    상기 상향링크 채널은 상기 상향링크 자원할당에 의해 설정되는 것을 특징으로 하는 상향링크 전송 파워 제어 방법.
  3. 제 1 항에 있어서, 상기 2차셀이 상기 1차셀에 의해 활성화되는 것을 특징으로 하는 상향링크 전송 파워 제어 방법.
  4. 제 3 항에 있어서, 상기 1차셀의 셀 인덱스는 0이고, 상기 2차셀의 셀 인덱스는 0보다 큰 것을 특징으로 하는 상향링크 전송 파워 제어 방법.
  5. 제 1 항에 있어서, 상기 시간 동기 값은 상기 2차셀에 적용되는 것을 특징으로 하는 상향링크 전송 파워 제어 방법.
  6. 제 1 항에 있어서, 상기 1차셀 및 상기 2차셀은 서로 다른 TA(Timing Advance) 그룹에 속하고,
    하나의 TA 그룹에 속하는 모든 셀은 동일한 시간 동기 값이 적용되는 것을 특징으로 하는 상향링크 전송 파워 제어 방법.
  7. 제 1 항에 있어서, 상기 상향링크 채널은 PUSCH(Physical Uplink Shared Channel)인 것을 특징으로 하는 상향링크 전송 파워 제어 방법.
  8. 제 7 항에 있어서, 상기 2차셀의 서브프레임 i에서 전송되는 상향링크 채널의 전송 파워 PPUSCH(i)는 다음 식과 같이 결정되고;
    Figure PCTKR2012007712-appb-I000001
    여기서, PCMAX는 서브프레임 i에서 설정된 단말 전송 파워, MPUSCH(i)는 PUSCH 자원 할당의 대역폭, PO_PUSCH(j)과 α(j)는 파라미터, PL은 상기 단말에 의해 계산되는 하향링크 경로 손실 추정, ΔTF(i)는 단말 특정 파라미터, f(i)는 상기 TPC를 기반으로 획득되는 파라미터인 것을 특징으로 하는 상향링크 전송 파워 제어 방법.
  9. 무선 통신 시스템에서 상향링크 전송 파워를 제어하는 단말에 있어서,
    무선 신호를 송신 및 수신하는 RF(radio frequency)부; 및
    상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는
    랜덤 액세스 프리앰블을 2차셀에서 전송하고;
    1차셀에서 상기 상기 랜덤 액세스 프리앰블에 대한 응답인 랜덤 액세스 응답을 수신하되, 상기 랜덤 액세스 응답은 TPC(transmit power command)와 상향링크 시간 동기(uplink time alignment)를 유지하기 위해 보내는 시간 동기 값을 지시하는 TAC(Timing Advance Command)를 포함하고; 및
    상기 TPC에 기반하여 상기 2차셀에서 전송되는 상향링크 채널의 전송 파워를 결정하는 것을 특징으로 하는 단말.
  10. 제 9 항에 있어서, 상기 랜덤 액세스 응답은 스케줄링된 메시지를 위한 상향링크 자원할당을 더 포함하고,
    상기 상향링크 채널은 상기 상향링크 자원할당에 의해 설정되는 것을 특징으로 하는 단말.
  11. 제 9 항에 있어서, 상기 2차셀이 상기 1차셀에 의해 활성화되는 것을 특징으로 하는 단말.
  12. 제 11 항에 있어서, 상기 1차셀의 셀 인덱스는 0이고, 상기 2차셀의 셀 인덱스는 0보다 큰 것을 특징으로 하는 단말.
  13. 제 9 항에 있어서, 상기 1차셀 및 상기 2차셀은 서로 다른 TA(Timing Advance) 그룹에 속하고,
    하나의 TA 그룹에 속하는 모든 셀은 동일한 시간 동기 값이 적용되는 것을 특징으로 하는 단말.
  14. 제 9 항에 있어서, 상기 상향링크 채널은 PUSCH(Physical Uplink Shared Channel)인 것을 특징으로 하는 단말.
  15. 제 14 항에 있어서, 상기 2차셀의 서브프레임 i에서 전송되는 상향링크 채널의 전송 파워 PPUSCH(i)는 다음 식과 같이 결정되고;
    Figure PCTKR2012007712-appb-I000002
    여기서, PCMAX는 서브프레임 i에서 설정된 단말 전송 파워, MPUSCH(i)는 PUSCH 자원 할당의 대역폭, PO_PUSCH(j)과 α(j)는 파라미터, PL은 상기 단말에 의해 계산되는 하향링크 경로 손실 추정, ΔTF(i)는 단말 특정 파라미터, f(i)는 상기 TPC를 기반으로 획득되는 파라미터인 것을 특징으로 하는 단말.
PCT/KR2012/007712 2011-09-25 2012-09-25 상향링크 전송 전력 제어 방법 및 장치 WO2013043027A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/009,683 US9510300B2 (en) 2011-09-25 2012-09-25 Method and apparatus for controlling uplink transmission power
EP12833663.3A EP2760243B1 (en) 2011-09-25 2012-09-25 Method and apparatus for controlling uplink transmission power
JP2014510266A JP2014513505A (ja) 2011-09-25 2012-09-25 アップリンク送信電力制御方法及び装置
KR1020137020123A KR101654408B1 (ko) 2011-09-25 2012-09-25 상향링크 전송 전력 제어 방법 및 장치
CN201280027872.6A CN103597886B (zh) 2011-09-25 2012-09-25 用于控制上行链路传输功率的方法和设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161538929P 2011-09-25 2011-09-25
US61/538,929 2011-09-25

Publications (1)

Publication Number Publication Date
WO2013043027A1 true WO2013043027A1 (ko) 2013-03-28

Family

ID=47914642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007712 WO2013043027A1 (ko) 2011-09-25 2012-09-25 상향링크 전송 전력 제어 방법 및 장치

Country Status (6)

Country Link
US (1) US9510300B2 (ko)
EP (2) EP3169119B1 (ko)
JP (1) JP2014513505A (ko)
KR (1) KR101654408B1 (ko)
CN (1) CN103597886B (ko)
WO (1) WO2013043027A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015018348A1 (zh) * 2013-08-07 2015-02-12 夏普株式会社 上行功率控制方法以及基站和用户设备
CN104363978A (zh) * 2013-06-13 2015-02-18 华为技术有限公司 一种传输功率的控制方法及装置
US10420113B2 (en) 2012-09-28 2019-09-17 Huawei Technologies Co., Ltd. Resource reconfiguration method, base station, and user equipment
CN113489522A (zh) * 2018-08-07 2021-10-08 中兴通讯股份有限公司 无线通信中的链路恢复

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162521A2 (ko) * 2010-06-21 2011-12-29 엘지전자 주식회사 다중 반송파 시스템에서 상향링크 제어 채널 전송 전력 제어 방법 및 이러한 방법을 이용하는 단말
WO2012148239A2 (ko) * 2011-04-28 2012-11-01 엘지전자 주식회사 랜덤 액세스 수행 방법 및 장치
KR20140044361A (ko) * 2011-07-11 2014-04-14 엘지전자 주식회사 무선 통신 시스템에서 랜덤 액세스를 수행하는 방법 및 장치
US8395985B2 (en) 2011-07-25 2013-03-12 Ofinno Technologies, Llc Time alignment in multicarrier OFDM network
CN105101385B (zh) * 2011-08-30 2018-10-19 华为技术有限公司 一种功率控制方法、激活管理方法、用户终端及基站
US9237537B2 (en) 2012-01-25 2016-01-12 Ofinno Technologies, Llc Random access process in a multicarrier base station and wireless device
EP3937551A3 (en) 2012-01-25 2022-02-09 Comcast Cable Communications, LLC Random access channel in multicarrier wireless communications with timing advance groups
US8526389B2 (en) 2012-01-25 2013-09-03 Ofinno Technologies, Llc Power scaling in multicarrier wireless device
US20130259008A1 (en) 2012-04-01 2013-10-03 Esmael Hejazi Dinan Random Access Response Process in a Wireless Communications
US11943813B2 (en) 2012-04-01 2024-03-26 Comcast Cable Communications, Llc Cell grouping for wireless communications
US11825419B2 (en) 2012-04-16 2023-11-21 Comcast Cable Communications, Llc Cell timing in a wireless device and base station
US11252679B2 (en) 2012-04-16 2022-02-15 Comcast Cable Communications, Llc Signal transmission power adjustment in a wireless device
US11582704B2 (en) 2012-04-16 2023-02-14 Comcast Cable Communications, Llc Signal transmission power adjustment in a wireless device
US11882560B2 (en) 2012-06-18 2024-01-23 Comcast Cable Communications, Llc Carrier grouping in multicarrier wireless networks
US9107206B2 (en) 2012-06-18 2015-08-11 Ofinne Technologies, LLC Carrier grouping in multicarrier wireless networks
US11622372B2 (en) 2012-06-18 2023-04-04 Comcast Cable Communications, Llc Communication device
WO2014056426A1 (zh) * 2012-10-08 2014-04-17 联发科技(新加坡)私人有限公司 数据传输方法
JP5980241B2 (ja) * 2014-01-14 2016-08-31 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US9398541B2 (en) * 2014-04-18 2016-07-19 Htc Corporation Communication device for handling uplink power control
JP6797807B2 (ja) * 2015-08-21 2020-12-09 株式会社Nttドコモ 端末及び無線通信方法
HUE062490T2 (hu) * 2016-02-04 2023-11-28 Ntt Docomo Inc Felhasználói készülék és véletlen hozzáférési eljárás
CN107371226A (zh) * 2016-05-13 2017-11-21 北京三星通信技术研究有限公司 传输上行信息的方法及设备
KR102270894B1 (ko) * 2017-05-08 2021-06-30 삼성전자 주식회사 무선통신 시스템에서 상향링크 전송전력 설정 방법 및 장치
KR20230129602A (ko) * 2017-08-09 2023-09-08 레노보 (싱가포르) 피티이. 엘티디. 수신된 안테나 포트 고유의 조정을 이용하여 안테나 포트를 선택하기 위한 방법 및 장치
JP6526764B2 (ja) * 2017-09-28 2019-06-05 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. リソース再構成方法、基地局、およびユーザー装置
US10887843B2 (en) * 2018-05-11 2021-01-05 Lenovo (Singapore) Pte. Ltd. Method and apparatus for transmitting an uplink transmission based on a pathloss estimate
CN111867122B (zh) * 2019-04-26 2022-08-30 中国移动通信有限公司研究院 随机接入方法、网络侧节点及终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090081311A (ko) * 2008-01-23 2009-07-28 한국전자통신연구원 셀룰라 시스템에서의 임의 접속 방법 및 장치
KR20110018780A (ko) * 2009-08-18 2011-02-24 현대자동차일본기술연구소 차량용 조작 장치
KR20110097900A (ko) * 2008-12-23 2011-08-31 엘지전자 주식회사 상향링크 전송 전력을 제어하는 방법 및 이를 위한 장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1949683B (zh) 2006-11-03 2011-11-16 上海宣普实业有限公司 基于串行干扰抵消消除同频小区信号干扰的方法和装置
GB2461158B (en) * 2008-06-18 2011-03-02 Lg Electronics Inc Method for performing random access procedures and terminal therof
KR20110040672A (ko) * 2009-10-12 2011-04-20 주식회사 팬택 무선통신 시스템에서 제어정보 송수신방법 및 장치
EP2343934A1 (en) * 2010-01-11 2011-07-13 Panasonic Corporation Transmit power control signaling for communication systems using carrier aggregation
CN105228256B (zh) * 2010-02-12 2018-11-02 富士通株式会社 无线通信装置、无线通信系统以及无线通信方法
WO2012041422A2 (en) * 2010-09-30 2012-04-05 Panasonic Corporation Timing advance configuration for multiple uplink component carriers
AU2011308916B2 (en) * 2010-10-01 2016-06-30 Interdigital Patent Holdings, Inc. Method for coordinating discontinuous reception, DRX
CN103404067A (zh) * 2011-04-08 2013-11-20 诺基亚西门子网络公司 载波聚合系统中的上行链路控制信令
US8705467B2 (en) * 2011-04-29 2014-04-22 Nokia Corporation Cross-carrier preamble responses
US20120282970A1 (en) * 2011-05-03 2012-11-08 Renesas Mobile Corporation Uplink transmission power control mechanism
JP5331161B2 (ja) * 2011-05-19 2013-10-30 シャープ株式会社 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
WO2013006111A1 (en) * 2011-07-06 2013-01-10 Telefonaktiebolaget L M Ericsson (Publ) Random access with primary and secondary component carrier communications
US9949221B2 (en) * 2011-07-27 2018-04-17 Sharp Kabushiki Kaisha Devices for multi-cell communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090081311A (ko) * 2008-01-23 2009-07-28 한국전자통신연구원 셀룰라 시스템에서의 임의 접속 방법 및 장치
KR20110097900A (ko) * 2008-12-23 2011-08-31 엘지전자 주식회사 상향링크 전송 전력을 제어하는 방법 및 이를 위한 장치
KR20110018780A (ko) * 2009-08-18 2011-02-24 현대자동차일본기술연구소 차량용 조작 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8", 3GPP TS 36.211 V8.7.0, May 2009 (2009-05-01)
3GPP TS 36.211 V8.7.0, May 2009 (2009-05-01)
3GPP TS 36.213 V8.7.0, May 2009 (2009-05-01)
See also references of EP2760243A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10420113B2 (en) 2012-09-28 2019-09-17 Huawei Technologies Co., Ltd. Resource reconfiguration method, base station, and user equipment
CN104363978A (zh) * 2013-06-13 2015-02-18 华为技术有限公司 一种传输功率的控制方法及装置
WO2015018348A1 (zh) * 2013-08-07 2015-02-12 夏普株式会社 上行功率控制方法以及基站和用户设备
CN113489522A (zh) * 2018-08-07 2021-10-08 中兴通讯股份有限公司 无线通信中的链路恢复
US12082261B2 (en) 2018-08-07 2024-09-03 Zte Corporation Link recovery in wireless communications

Also Published As

Publication number Publication date
US9510300B2 (en) 2016-11-29
EP2760243B1 (en) 2017-03-22
KR101654408B1 (ko) 2016-09-05
EP3169119A1 (en) 2017-05-17
US20140056251A1 (en) 2014-02-27
CN103597886B (zh) 2018-01-02
KR20130121144A (ko) 2013-11-05
EP2760243A4 (en) 2015-04-29
EP2760243A1 (en) 2014-07-30
JP2014513505A (ja) 2014-05-29
CN103597886A (zh) 2014-02-19
EP3169119B1 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
WO2013043027A1 (ko) 상향링크 전송 전력 제어 방법 및 장치
WO2013112029A1 (ko) 상향링크 전송 파워 제어 방법 및 이를 이용한 무선기기
WO2013048188A2 (ko) 상향링크 전송 파워 제어 방법 및 이를 이용한 무선기기
WO2014069884A1 (en) Method and apparatus for transmitting uplink signal
WO2013025009A2 (ko) 랜덤 액세스 과정을 수행하는 방법 및 이를 이용한 무선기기
WO2012148239A2 (ko) 랜덤 액세스 수행 방법 및 장치
WO2012057578A2 (ko) 사운딩 참조 신호 전송 방법 및 장치
WO2012177054A2 (ko) 랜덤 액세스 과정 수행 방법 및 장치
WO2015194849A1 (ko) 상향링크 제어 정보의 전송 방법 및 이를 위한 장치
WO2013168938A1 (en) A method and apparatus of controlling cell deactivation in a wireless communication system
WO2012134107A2 (ko) 무선 통신 시스템에서 통신 방법 및 장치
WO2013055108A2 (ko) 향상된 반송파 집적 기술을 사용하는 무선통신시스템에서 단말의 동작 방법 및 장치
WO2014109569A1 (ko) 신호 전송 방법 및 이를 위한 장치
WO2013069994A1 (ko) 무선통신 시스템에서 상향링크 전송 전력을 설정하는 방법 및 이를 위한 장치
WO2013094967A1 (ko) Tdd 기반 무선통신 시스템에서 통신 방법 및 무선기기
WO2012153993A2 (ko) 반송파 집적 기술을 사용하는 무선통신시스템에서 타임 정렬 타이머를 적용하는 방법 및 장치
WO2013035974A1 (en) Method for transmitting uplink signals from a user equipment to a base station in a wireless communication system and method for the same
WO2016021992A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013002562A2 (ko) Tdd 시스템에서 통신 방법 및 장치
WO2015005724A1 (ko) 가변 대역폭을 지원하는 통신 방법 및 무선기기
WO2019039860A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2015163748A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2015147539A1 (ko) 상향링크 전송에 대한 전력 제어를 수행하는 방법 및 사용자 장치
WO2015046749A1 (ko) 복수의 서빙셀이 설정되는 무선기기 및 이를 이용한 통신 방법
WO2013048170A2 (ko) 상향링크 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137020123

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012833663

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012833663

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14009683

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014510266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE