WO2013042937A9 - 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기 - Google Patents

동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기 Download PDF

Info

Publication number
WO2013042937A9
WO2013042937A9 PCT/KR2012/007498 KR2012007498W WO2013042937A9 WO 2013042937 A9 WO2013042937 A9 WO 2013042937A9 KR 2012007498 W KR2012007498 W KR 2012007498W WO 2013042937 A9 WO2013042937 A9 WO 2013042937A9
Authority
WO
WIPO (PCT)
Prior art keywords
blade
wind
thickness
same width
pitch angle
Prior art date
Application number
PCT/KR2012/007498
Other languages
English (en)
French (fr)
Other versions
WO2013042937A1 (ko
Inventor
오영록
Original Assignee
Oh Young-Lok
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oh Young-Lok filed Critical Oh Young-Lok
Priority to JP2014531712A priority Critical patent/JP5918370B2/ja
Priority to US14/346,630 priority patent/US10012210B2/en
Priority to CN201280057202.9A priority patent/CN103987958B/zh
Priority to EP12834384.5A priority patent/EP2759698A4/en
Publication of WO2013042937A1 publication Critical patent/WO2013042937A1/ko
Publication of WO2013042937A9 publication Critical patent/WO2013042937A9/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/041Automatic control; Regulation by means of a mechanical governor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/72Shape symmetric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/73Shape asymmetric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/502Kinematic linkage, i.e. transmission of position involving springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/503Kinematic linkage, i.e. transmission of position using gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/71Adjusting of angle of incidence or attack of rotating blades as a function of flow velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/75Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism not using auxiliary power sources, e.g. servos
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/76Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism using auxiliary power sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/79Bearing, support or actuation arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/327Rotor or generator speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind power generator, and more specifically, by using an airfoil blade formed with the same width and thickness, by using the rotational force generated by the wind is in contact with the blade to improve the power generation efficiency and operation efficiency of the wind power generator
  • the horizontal axis wind power generator that can be made.
  • renewable energy which is defined as a new energy source that replaces fossil fuels such as petroleum, coal, nuclear power, and natural gas
  • Renewable energy refers to new energy such as liquefied coal and hydrogen energy. It refers to the integrated energy that converts environmentally friendly and renewable energy using plant organics, sunlight, wind, water and geothermal heat.
  • Wind power generation using wind is a technology that converts the rotor into mechanical energy by using the aerodynamic characteristics of the kinetic energy of the air flow and converts it into mechanical energy, and generates electrical energy using the mechanical energy.
  • the wind power generation sector is emerging as an alternative energy source and continues to grow rapidly. Growth is accelerating due to mandatory global greenhouse gas reduction and falling power generation costs due to technological advances.
  • Wind power generation uses unlimited pollution-free wind, which is scattered everywhere, so it has little impact on the environment, can effectively use the land, and the cost of power generation in large-scale power generation complexes is more efficient than conventional generation methods. It's a very useful way of developing that doesn't fall off.
  • the structure of the conventional wind turbine is composed of a high-rise tower standing on the ground, a nacelle installed on the top of the tower, and a plurality of blades installed on the outer peripheral surface of the rotary shaft and the rotary shaft coupled to the nacelle, A gearbox, a generator, and a control device are provided so that the rotational force of the blade reaches the generator through the rotation shaft.
  • the blade forms a pitch angle of about 30 °, the tip portion of about 2 ° to 3 ° in the hub portion combined with the rotating shaft, and is formed to be twisted, and the width and thickness gradually become narrower and thinner Is common.
  • the blade is rotated by the drag force generated by the blades forming the pitch angle at an angle that naturally passes through the back of the blade rotation surface, and lift is generated at the blade end according to the rotation of the blade. It will improve the rotational power of.
  • the wind blowing on the blade rotating surface transmits energy to the blade as it passes through the rotating surface, reducing wind speed by about 2/3, thus converting up to 59.26% of the wind's flow energy (Betz's law) into rotational power. Will be.
  • the wind turbine is a structure that transmits rotational power to the blade while the wind passes through the blade rotating surface, the wind speed decreases after the wind passes through the blade, and the size corresponds to the reduced speed among the flow energy of the wind. Since energy of is converted into rotational power, power conversion efficiency (Cp) was not high. Accordingly, it can be appropriately applied to large wind power generators that have lowered the share of the basic load, but small wind power generators that do not have a relatively low power conversion efficiency (Cp) of about 30%, resulting in a problem that power generation output falls.
  • the conventional wind power generator has a problem that the efficiency of use in the low wind speed region is high because the starting wind speed is required due to the structural characteristics of the blade.
  • the frequency distribution of wind speed by year considering the fact that the frequency of low wind speed of less than 4m / s occupies more than 60%, there was a problem that the operation efficiency of the actual wind turbine is very low.
  • the present invention has been made to solve the above problems of the prior art, by improving the power conversion efficiency (Cp) by using an airfoil blade formed of the same width and thickness, to provide a wind power generator with high power generation efficiency and operation efficiency Its purpose is to.
  • the present invention has a further object to provide a wind power generator that can improve the power generation efficiency, and ensure stability even in very strong winds by having a configuration that can adjust the pitch angle according to the wind speed even in a small wind power generator. .
  • the up wind method using the tail wing that can be centered in the direction of the wind and the down wind method that pushes outward without penetrating the blowing wind without including the tail wing Another purpose is to reduce the noise and vibration caused by the existing power generation method.
  • a tower installed perpendicular to the ground, a nacelle connected to be rotatable about a vertical axis on the top of the tower, and a rotating body axially coupled to the nacelle and And one or more blades coupled to each other to form a pitch angle on an outer circumferential surface of the rotating body, wherein the blades have a shape of an airfoil and are formed in the same width and thickness along a longitudinal direction to center the tip side region of the blade. It provides a horizontal axis wind power generator using an airfoil blade formed in the same width and thickness, characterized in that the rotational force is generated by the lifting force.
  • the blade of the present invention is preferably formed in a symmetrical shape of the upper surface and the lower surface to generate a rotational force by the lifting force on both the upper surface and the lower surface.
  • the blade of the present invention may be formed in an asymmetric shape of the upper and lower surfaces.
  • the present invention is to convert the flow energy of the wind to rotational power by forming the pitch angle of 0 ° so that the wind is hit by the rotating surface formed by the rotation of the blade when the blade rotates to be directed toward the circumferential edge side of the rotating surface desirable.
  • the present invention is coupled to the surface facing the wind of the rotating body is a wind speed plate to the horizontal linear motion according to the wind speed, and formed on the surface not facing the wind of the wind speed plate to perform a horizontal linear motion of the wind speed plate according to the wind speed A coil spring to be adjusted, and a first gear formed on a surface not facing the wind of the wind speed plate, and formed at the same time as the wind speed plate to perform a horizontal linear motion, and formed on a hub side of the blade, and engaged with the first gear.
  • the second gear is rotated according to the horizontal linear motion of the wind speed plate and the first gear, and further includes a second gear formed to perform a circular motion to vary the pitch angle of the blade.
  • the present invention further includes a pitch angle control motor coupled to the rotating body, and a third gear connected to the pitch angle control motor to transmit power to the blade, according to the rotation amount of the pitch angle control motor. It is preferable that the three gears can rotate and vary the pitch angle of the blade.
  • the present invention preferably further comprises a wind speed sensor on one side of the tower.
  • the present invention preferably further includes a tail wing coupled to the rear side of the nacelle, and wind is generated in an upwind manner in which the blade faces the blade before the tower.
  • the blade applied to the wind turbine is made in the form of an airfoil having the same thickness and width, lift and thrust is generated in many areas of the blade as well as the rotational force is improved, Wind does not penetrate the rotating surface formed by the pitch angle of the blade is set to 0 °, converts the current flow energy into rotational power has the effect of increasing the rotational force.
  • the pitch angle is variable, the power generation efficiency is improved by using an appropriate pitch angle according to the wind speed, thereby ensuring the stability.
  • FIG. 1 is a perspective view of a horizontal axis wind power generator using an airfoil blade formed in the same width and thickness according to an embodiment of the present invention.
  • Figure 2 is a perspective view of an airfoil blade formed of the same width and thickness in accordance with an embodiment of the present invention.
  • Figure 3 is a cross-sectional view of a symmetrical airfoil blade formed of the same width and thickness in accordance with an embodiment of the present invention.
  • Figure 4 is a perspective view showing the blade rotation surface and the flow of wind in accordance with an embodiment of the present invention.
  • FIG 5 is an exemplary view showing a configuration capable of varying the pitch angle including the wind speed plate, the first gear and the second gear according to an embodiment of the present invention.
  • Figure 6 is an exemplary view showing a configuration that can vary the pitch angle, including the pitch angle control motor and the third gear according to an embodiment of the present invention.
  • Figure 7 is a perspective view of a horizontal axis wind power generator using an airfoil blade formed in the same width and thickness further including a tail wing according to an embodiment of the present invention.
  • Figure 8 is a perspective view of a horizontal axis wind power generator using an airfoil blade formed of the same width and thickness do not include a tail wing according to an embodiment of the present invention.
  • 9 to 12 are CFD analysis results showing the streamline distribution of the surface according to the wind speed of the symmetrical airfoil blade formed with the same width and thickness.
  • 16 and 17 is an exemplary view comparing the power generation output and power conversion efficiency according to the wind tunnel test and CFD numerical analysis.
  • 18 and 19 are exemplary views comparing generation output and power conversion efficiency by CFD analysis results of symmetric airfoil blades having the same width and thickness of four different types.
  • FIG. 1 is a perspective view of a horizontal axis wind power generator using an airfoil blade formed in the same width and thickness according to an embodiment of the present invention.
  • the horizontal axis wind power generator 100 using the airfoil blades formed with the same width and thickness of the present invention includes a tower 110 vertically installed on the ground and a vertical axis at the top of the tower 110.
  • the horizontal axis wind power generator 100 using the airfoil blades formed with the same width and thickness has a method in which the rotating body 130 rotates and mechanical energy is produced by the rotational power generated while the wind is in contact with the blade 140.
  • FIG. 2 is a perspective view of an airfoil blade formed of the same width and thickness according to an embodiment of the present invention
  • Figure 3 is a cross-sectional view of a symmetrical airfoil blade formed of the same width and thickness according to an embodiment of the present invention.
  • the blade 140 is formed to have the same width and thickness, and is formed to be similar to an airfoil, that is, a wing shape of an airplane. And when looking at the longitudinal section of the blade 140 shown in Figure 3, it can be seen that the upper surface and the lower surface is formed in a symmetrical shape having the same bent shape with respect to the line A passing through the center of the cross section. However, when the B line passing through the center is a reference, it is not a symmetrical shape, and the thickness of one quarter of one end of the C line passes is the thickest.
  • the blade 140 formed with the same width and thickness of the present invention may be formed in a symmetrical shape in which the upper and lower surfaces have the same bent shape, and have an asymmetric shape in which the upper and lower surfaces have a predetermined difference. It may be formed as.
  • the blade 140 is to wind the wind through the rotation, the split wind flows along the upper surface and the lower surface of the blade 140, where a large amount of both sides of the blade 140 Lifting force is generated as the amount of air flows, thereby generating a rotational force.
  • the rotational force generated by the lifting force is generated on one side of the blade, but the lifting force and the thrust generated by the opposite side are less likely to be generated, but the rotational force and the amount of power generation are not high, but the symmetrical airfoil shape of the present invention.
  • the blade 140 Since the blade 140 generates lift and thrust on both sides, it achieves an effect of significantly improving the rotational force and the amount of power generation compared to the conventional wind turbine. This lift and thrust is increased in proportion to the rotation of the blade 140.
  • the blade 140 is formed in the same width and thickness along the longitudinal direction is preferably made so that a constant lift and thrust occurs in many areas of the blade 140, thereby bringing the effect of further increasing the rotational force .
  • the wind turbine generates lift thrust due to the high-speed air flow and the blade interaction in the region about 30% of the tip portion of the blade, and the conventional blade has a narrow width of the portion and consequently a relative area ratio.
  • Low power conversion efficiency (Cp) but the present invention has the same width and thickness of the entire blade 140, the area ratio of the area interacting with the air flow in the tip portion is relatively high, the thrust due to lift Since the efficiency can be improved.
  • Flow analysis results related thereto are shown in FIGS. 9 to 12, and a detailed description thereof will be described later.
  • the blade 140 may form a rotating surface by rotating the pitch angle is adjusted to 0 °, thereby not penetrating the blowing wind to guide the circumferential edge side of the rotating surface while the speed of the wind Increasingly, it is more effective in converting wind energy into rotational power.
  • the pitch angle formed by the blade 140 and the rotating surface formed by rotating the blade 140 has a structure that can be changed.
  • the pitch angle is changed within the range of 0 ° ⁇ 30 °, in the present invention, while maintaining a pitch angle of 0 ° to improve the power generation efficiency and operation efficiency of the wind at a high speed to the extent that the damage of the wind turbine is concerned
  • the pitch angle is increased to induce the wind to penetrate the rotating surface, thereby serving to enable stable power generation.
  • the pitch angle may be changed from time to time in order to obtain an efficient rotational force in accordance with the change of the wind speed.
  • the pitch angle is about 30 °, and when the low wind speed is converted to high wind speed, the pitch angle gradually decreases to about 0 °, and various angles are used for efficient operation of the wind turbine. Can be.
  • FIG 5 is an exemplary view showing a configuration capable of varying the pitch angle including the wind speed plate, the first gear and the second gear according to an embodiment of the present invention.
  • the present invention is coupled to a surface facing the wind of the rotating body 130 and performs a horizontal linear movement in accordance with wind speed.
  • a coil spring 210 formed on a surface not facing the wind of the wind speed plate 200 to adjust a horizontal linear motion of the wind speed plate 200 according to the wind speed, and the wind of the wind speed plate 200.
  • the second gear 230 is rotated according to the horizontal linear motion of the wind speed plate 200 and the first gear 220, further including a second gear 230 formed to engage in a circular motion, and the blade 140.
  • the wind speed plate 200 moves in a horizontal linear motion toward the front, and in the high wind speed, the wind speed plate 200 moves in a horizontal linear motion toward the rear by the pressure of the wind.
  • the second gear 230 engaged with the first gear 220 rotates to increase the pitch angle, and the wind speed plate 200 moves horizontally toward the rear side.
  • the second gear 230 engaged with the first gear 220 rotates in the opposite direction and reduces the pitch angle.
  • the pitch angle is automatically changed according to the change of the wind speed without a separate operation of the user, so that the pitch angle suitable for each wind speed can be maintained, thereby obtaining high power conversion efficiency and stability.
  • Figure 6 is an exemplary view showing a configuration that can vary the pitch angle, including the pitch angle control motor and the third gear according to an embodiment of the present invention.
  • the present invention for enabling the pitch angle conversion shown in FIG. 6 includes a pitch angle control motor coupled to the rotating body 130. And a third gear 310 connected to the pitch angle control motor 300 to transmit power to the blade 140 according to the rotation amount of the pitch angle control motor 300.
  • the third gear 310 is rotated and has a structure that can change the pitch angle of the blade 140.
  • the system senses the wind speed to operate the pitch angle adjusting motor 300, and the third gear 310 connected to the pitch angle adjusting motor 300 rotates to adjust the pitch angle of the desired proper angle.
  • the number of the third gear 310 is preferably formed to be equal to the number of blades 140 need to adjust the pitch angle.
  • the present invention further includes a wind speed sensor on one side of the tower 110. It may include. It may be provided with a system that can automatically control the pitch angle in connection with the wind speed sensor, by adjusting the pitch angle, such as operating the pitch angle control motor 300 with reference to the current wind speed obtained through the wind speed sensor Various methods are available for this purpose.
  • Figure 7 is a perspective view of a horizontal axis wind power generator using an airfoil blade formed in the same width and thickness further including a tail wing according to an embodiment of the present invention
  • Figure 8 includes a tail wing according to an embodiment of the present invention This is a perspective view of a horizontal axis wind turbine using an airfoil blade formed of the same width and thickness.
  • tail blade 500 coupled to the rear of the nacelle 120 as shown in Figure 7, it is possible to develop in a way that the wind is facing the blade 140 before the tower 110.
  • the tail wing 500 is to sense the direction in which the wind blows so that the rotating body 130 always faces the direction in which the wind blows, this power generation method is called an upwind method, the opposite of the downwind The way the wind is developed to face the tower 110 before the blade 140.
  • the downwind method illustrated in FIG. 8 does not require the tail wing 500, thereby reducing production costs and simplifying the manufacturing method.
  • a general wind power generator when the wind passes through the tower first and then flows to the blades, turbulence or eddy currents are formed, and the wind is introduced into the rotating surface, and an upwind method is used to avoid vibration and noise. .
  • the present invention by using the blade 140 of the symmetrical airfoil shape formed in the same width and thickness, both the downwind method without the tail wing 500 and the upwind method including the tail wing 500. If the power generation method can be used and the power generation method is selected in consideration of the wind characteristics, spatial characteristics and surrounding environment of the place to be installed, more efficient and effective power generation system can be formed.
  • the present invention has a certain amount of power generation output and power conversion efficiency (Cp) even at a low wind speed of less than 4m / s to effectively increase the operating efficiency of the wind turbine.
  • the present invention is a wind power generation system having the advantage of generating a good rotational force due to the approaching wind speed and the angle of attack of the rotating blade when it reaches a predetermined RPM, and has a good output. Performance can be expected.
  • the power generation output of this wind tunnel test is the actual measured value, and the rotor efficiency is calculated by applying generator efficiency and rectifier conversion efficiency, and will be compared with the result of CFD numerical analysis.
  • the blade 140 used in the CFD numerical analysis is in the form of a symmetrical airfoil having the same width and thickness of 0.75m in length (1.5m in diameter of the blade rotation surface) and a demonstration length (width of the blade) of 0.09m, and the blade 140
  • the cross section of is as shown in Figure 3, one side of the end of the cross section has a characteristic that the thickness is formed thickest.
  • the blade having the thickest point of the blade 140 has a thickness of 1.8 cm (hereinafter referred to as' first embodiment ') and a blade having 1.2 cm (hereinafter referred to as' second embodiment) And a blade of 2.1 cm (hereinafter referred to as 'third embodiment') were analyzed and compared.
  • FIG. 9 shows the surface flow of the blade 140 at a wind speed of 3.9m / s, a rotational speed of 303rpm, a tip speed ratio of 6.10
  • Figure 10 is a blade (at a wind speed of 6.14m / s, a rotational speed of 491.7rpm, a tip speed ratio of 6.29 140 shows a surface flow line
  • FIG. 11 shows a surface flow line of the blade 140 at a wind speed of 9.93 m / s, a rotational speed of 817.29 rpm, and a tip speed ratio of 6.46
  • FIG. 12 shows a wind speed of 12.36 m / s and a rotation speed of FIG.
  • the surface wires of the blade 140 are shown at 1006.8 rpm and the tip speed ratio 6.4.
  • the stall is formed in about 80% of the blade 140, except for a portion of the tip direction. After that, as the wind speed increases, the stall area is reduced in the hub direction from the tip direction of the surface of the blade 140. This can be seen that the rotational speed of the blade 140 further increases as the inflow wind speed increases, and as a result, the angle of attack decreases, thereby reducing stall.
  • the stall is a cause of lowering the output by reducing the lift generated in the blade 140.
  • the conventional blade has a non-uniform width and thickness along the longitudinal direction, and has an asymmetrical shape, whereby the stall area of the blade surface is formed relatively large, thereby reducing the rotational force due to lifting force. .
  • the area of the tip region of the blade which is subjected to the flow of wind, which generates the lift and the thrust thereby is formed to be small, thereby reducing the rotational force of the blade.
  • the blade 140 of the present invention has a small stall area causing a decrease in output on the surface, whereas a large area of the tip area of the blade 140 which receives a fluid flow of wind that generates lift and thrust is formed. This results in improved rotational force of the blade 140.
  • 13 to 15 are CFD analysis results showing pressure coefficient distribution according to positions of symmetrical airfoil blades having the same width and thickness of four different types.
  • WP-01 in the graph corresponds to the first embodiment
  • NACA 0012 corresponds to the second embodiment
  • NACA 0021 corresponds to the third embodiment.
  • the meaning of 50% means that measured at the position where the tip of the blade 140 is moved toward the tip by 50% of the length of the blade 140.
  • 10% is measured at the position where the blade 140 moves from the hub to the tip by 10% of the length of the blade 140
  • 90% is the blade 140 from the hub of the blade 140 Measured at the position where it moved toward the tip by 90% of its length.
  • the pressure coefficient 13 to 15 have a common point that the pressure coefficient converges to 0 as the blade 140 approaches the thinner direction.
  • the distribution range of the absolute value of the pressure coefficient is different depending on the positions corresponding to 10%, 50%, and 90% of the blades 140 in the tip direction at the hub. It has a value between 0.3 and a value of about -4.0 to 1.3 for the 50% position, and a value between -6.8 and 3.5 for the 90% position.
  • the rotational power obtained by the tip portion of the blade 140 is an important part of the symmetrical airfoil blade 140 formed with the same width and thickness.
  • the conventional blades are formed in a shape of decreasing width and thickness along the longitudinal direction, so that the interaction with the wind is small at the tip of the blade, and thus the lifting force and thrust generated by the blade are small and the rotational force of the blade is relatively low. There was a problem.
  • the blade 140 of the present invention is formed in a shape having a constant width and thickness along the longitudinal direction, the rotational power received from the tip portion of the blade 140 is relatively large, and accordingly the lifting force and thrust is increased to increase the rotational force There is an effect that rises drastically. Since the increase in the rotational force will soon lead to an increase in power generation output and operation efficiency, the present invention enables the construction of a more efficient wind power generation system than the prior art.
  • 16 and 17 are exemplary views comparing generation output and power conversion efficiency according to the wind tunnel test and CFD numerical analysis.
  • 18 and 19 are exemplary views comparing generation output and power conversion efficiency by CFD analysis results of symmetric airfoil blades having the same width and thickness of four different types.
  • the blade 140 having the highest generation output and power conversion efficiency Cp is the third embodiment, and accordingly, it is considered that the thickness of the blade 140 needs to be properly adjusted.
  • the wind tunnel test shows that the power output is 761.12 (w) and the power conversion efficiency (Cp) is 0.385 at 12.36m / s near the rated wind speed.
  • the output is 720.50 (w) and the power conversion efficiency (Cp) corresponds to 0.365.
  • the power generation output was 40.62 (w) and the power conversion efficiency (Cp) was 0.02. The error is within 5%.
  • the generator for converting the mechanical energy generated by the rotation of the blade 140, which is not mentioned in the present invention into electrical energy, is a well-known and public technology, which is of course required for the production of electrical energy, which is the ultimate purpose of the wind power generator.
  • the blade 140 applied to the wind turbine is formed in the same width and thickness, and is formed in the form of a symmetrical airfoil so that lift and thrust are generated on both surfaces of the blade 140.
  • the rotational force is improved, and thus the power generation efficiency and the operation efficiency are high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

본 발명은 풍력발전기에 관한 것으로, 보다 상세하게는 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용함으로써, 바람이 블레이드와 접하며 발생되는 양력에 의한 회전력을 이용하여 풍력발전기의 발전효율 및 가동효율을 향상시킬 수 있는 수평축 풍력발전기에 관한 것이다. 상술한 종래기술의 문제점을 해결하기 위한 본 발명에 의하면, 지면에 수직으로 설치되는 타워와, 상기 타워의 상단에 수직축을 중심으로 회전 가능하도록 연결되는 나셀과, 상기 나셀과 축결합되는 회전체와, 상기 회전체의 외주면에 피치각을 형성하며 결합되는 하나 이상의 블레이드를 포함하되, 상기 블레이드는 에어포일의 형상을 가지고, 길이방향을 따라 동일한 폭과 두께로 형성되어 상기 블레이드의 팁 쪽 영역을 중심으로 양력에 의한 회전력이 발생되는 것을 특징으로 하는 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기를 제공한다.

Description

동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기
본 발명은 풍력발전기에 관한 것으로, 보다 상세하게는 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용함으로써, 바람이 블레이드와 접하며 발생되는 양력에 의한 회전력을 이용하여 풍력발전기의 발전효율 및 가동효율을 향상시킬 수 있는 수평축 풍력발전기에 관한 것이다.
화석에너지로부터 발생되는 온실가스가 지구 온난화를 야기시키는 요소로 지목되면서 전 세계적으로 지구 온난화를 방지하기 위하여 국제기후변화협약이 채택되었고, 이러한 온실가스의 배출을 억제하기 위해 여러 가지 프로그램들이 시행되고 있다. 우리나라 또한 온실가스 배출감소를 위한 해결책을 찾고, 적극적으로 화석에너지의 사용을 줄이기 위한 여러 가지 대안들을 강구해야 하는 현실에 직면하고 있다.
이에 따라 석유, 석탄, 원자력, 천연가스 등의 화석연료를 대체하는 새로운 에너지원으로 정의되는 신재생에너지가 주목 받고 있으며, 신재생에너지란 액화석탄, 수소에너지 등의 신(新)에너지와 동·식물유기물, 햇빛, 바람, 물, 지열 등을 이용하여 친환경적이고 재생가능한 에너지로 변환하는 에너지를 통합해 지칭하는 말이다.
이들 신재생에너지는 재생이 가능하고, 친환경적이며, 무제한적이라는 장점이 있으나, 효율의 상승을 위한 꾸준한 연구개발 및 현재의 불확실한 시장전망의 극복이라는 과제를 안고 있다.
신재생에너지 중 하나인 바람을 이용한 풍력발전은 공기의 유동이 가진 운동에너지의 공기역학적 특성을 이용하여 회전자를 회전시켜 기계적에너지로 변환시키고, 이 기계적에너지로 전기에너지를 발생시키는 기술이다.
풍력발전분야는 최근 대체에너지원으로 부각되며 고성장세를 지속하는 산업으로, 전 세계의 온실가스 감축의 의무화, 기술의 발전으로 인한 발전단가의 하락 등의 이유로 성장이 가속화되고 있다.
풍력발전은 어느 곳에나 산재해 있는 무공해의 무한정한 바람을 이용하므로 환경에 미치는 영향이 적고, 국토를 효율적으로 이용할 수 있으며, 대규모 발전단지의 발전 단가의 경우 기존의 발전 방식과 비교하여도 효율이 떨어지지 않는 매우 유용한 발전 방법이다.
다만, 바람이 희박하여 에너지의 밀도가 낮은 경우 발전이 어려우므로 특정 지역에 한정하여 설치해야 하며, 정량의 바람이 있을 경우에만 발전이 가능하므로 안정적 전기공급을 위해서는 저장장치 등의 설비가 필요하고, 최근 풍력발전기의 대형화로 인해 소음 발생의 문제가 있으며, 초기 투자비용이 높다는 단점이 있다.
종래의 풍력발전기의 구조는 지면 상에 세워지는 고층의 타워와, 타워의 상단에 설치되는 나셀, 그리고 상기 나셀에 결합되는 회전축과 상기 회전축의 외주면에 설치되는 다수의 블레이드로 구성되며, 나셀 내부에는 증속기, 발전기 및 제어장치 등을 두어 블레이드의 회전력이 회전축을 거쳐 발전기에 이르도록 구성된다.
이때, 상기 블레이드는 상기 회전축과 결합된 허브부분에서는 약 30°, 팁부분에서는 약 2°~ 3°의 피치각을 이루며, 트위스트되도록 형성됨과 아울러 폭과 두께가 점차 좁아지며 얇아지는 형태로 형성되는 것이 일반적이다. 이 경우 피치각을 이루는 블레이드가 정면으로 불어오는 바람을 비스듬하게 받아 블레이드 회전면 뒤쪽으로 자연스럽게 통과시킴으로 인해 발생되는 항력에 의해 상기 블레이드가 회전되는 동시에 블레이드의 회전에 따라 블레이드 끝부분에 양력이 발생되어 블레이드의 회전력을 향상시키게 된다. 즉, 블레이드 회전면으로 불어오는 바람이 회전면을 통과하면서 에너지를 블레이드에 전달하므로 바람의 속도가 약 2/3 가량 줄어들고, 이에 따라 바람의 유동에너지의 최고 59.26%(Betz의 법칙)가 회전동력으로 변환되는 것이다.
그러나, 상기와 같은 풍력발전기는 바람이 블레이드 회전면을 통과하면서 블레이드에 회전동력을 전달하는 구조이기 때문에 바람이 블레이드를 통과한 후 풍속이 낮아지고, 바람이 가지고 있던 유동에너지 중 줄어든 속도에 해당하는 크기의 에너지가 회전동력으로 변환하므로 동력변환효율(Cp)이 높지 않은 한계가 있었다. 이에 따라 기본부하의 점유율을 낮춘 대형 풍력발전기에는 적절히 적용할 수 있지만, 그렇지 못한 소형 풍력발전기는 상대적으로 동력변환효율(Cp)이 약 30% 이하로 낮아져 발전출력이 떨어지는 문제점이 있게 된다.
또한, 기존의 풍력발전기는 블레이드의 구조적 특성상 요구되는 시동풍속이 높아 저풍속 영역에서 사용상의 효율이 저하되는 문제점이 있었다. 특히, 연간 바람의 풍속별 빈도 분포를 살펴봤을 때 4m/s 이하의 저풍속의 빈도가 60% 이상을 차지하는 점을 고려한다면 실질적인 풍력발전기의 가동효율이 매우 낮게 되는 문제점이 있었다.
본 발명은 전술한 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용하여 동력변환효율(Cp)을 향상시킴으로써, 발전효율 및 가동효율이 높은 풍력발전기를 제공하는데 그 목적이 있다.
또한, 본 발명은 소형의 풍력발전기에서도 풍속에 따라 피치각을 조절할 수 있는 구성을 가짐으로써, 발전효율을 향상시키고, 매우 강한 바람에도 안정성을 확보할 수 있는 풍력발전기를 제공하는데 또 다른 목적이 있다.
아울러 바람이 불어오는 방향으로 중심을 잡을 수 있는 꼬리날개를 이용한 업윈드(Up Wind)방식 및 꼬리날개를 포함하지 않은 채로 불어오는 바람을 관통시키지 않고 외측으로 밀어내는 다운윈드(Down Wind)방식을 이용하여 기존의 발전방식으로 인한 소음 및 진동을 줄이고자 하는데 또 다른 목적이 있다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 본 발명의 기재로부터 당해 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상술한 종래기술의 문제점을 해결하기 위한 본 발명에 의하면, 지면에 수직으로 설치되는 타워와, 상기 타워의 상단에 수직축을 중심으로 회전 가능하도록 연결되는 나셀과, 상기 나셀과 축결합되는 회전체와, 상기 회전체의 외주면에 피치각을 형성하며 결합되는 하나 이상의 블레이드를 포함하되, 상기 블레이드는 에어포일의 형상을 가지고, 길이방향을 따라 동일한 폭과 두께로 형성되어 상기 블레이드의 팁 쪽 영역을 중심으로 양력에 의한 회전력이 발생되는 것을 특징으로 하는 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기를 제공한다.
본 발명의 상기 블레이드는 상부면과 하부면이 대칭인 형상으로 형성되어 상기 상부면과 하부면 양면에 양력에 의한 회전력이 발생하는 것이 바람직하다.
본 발명의 상기 블레이드는 상부면과 하부면이 비대칭인 형상으로 형성될 수도 있다.
본 발명은 상기 블레이드의 회전 시 바람이 상기 블레이드의 회전으로 형성되는 회전면과 부딪혀 상기 회전면의 원주방향 가장자리측으로 유도되도록 상기 피치각을 0°로 형성하여 상기 바람의 유동에너지를 회전동력으로 변환시키는 것이 바람직하다.
본 발명은 상기 회전체의 바람과 마주하는 면에 결합되어 풍속에 따라 수평 직선운동하는 풍속판과, 상기 풍속판의 바람과 마주하지 않는 면에 형성되어 풍속에 따라 상기 풍속판의 수평 직선운동을 조절하는 코일스프링과, 상기 풍속판의 바람과 마주하지 않는 면에 형성되며, 상기 풍속판과 동시에 수평 직선운동을 하도록 형성된 제1기어와, 상기 블레이드의 허브 쪽에 형성되며, 상기 제1기어와 맞물려 원운동을 하도록 형성된 제2기어를 더 포함하여 상기 풍속판 및 제1기어의 수평 직선운동에 따라 상기 제2기어가 회전하며 상기 블레이드의 피치각을 가변시킬 수 있는 것이 바람직하다.
본 발명은 상기 회전체와 결합하는 피치각 조절모터와, 상기 피치각 조절모터에 연결되어 상기 블레이드에 동력을 전달하는 제3기어를 더 포함하여 상기 피치각 조절모터의 회전량 조절에 따라 상기 제3기어가 회전하며 상기 블레이드의 피치각을 가변시킬 수 있는 것이 바람직하다.
본 발명은 상기 타워의 일측에 풍속감지센서를 더 포함하는 것이 바람직하다.
본 발명은 상기 나셀의 후면에 결합되는 꼬리날개를 더 포함하여 바람이 상기 타워보다 먼저 상기 블레이드를 마주하게 되는 업윈드 방식으로 발전하는 것이 바람직하다.
상기와 같은 구성을 가지는 본 발명에 의하면, 풍력발전기에 적용되는 블레이드가 동일한 두께와 폭을 가지는 에어포일의 형태로 이루어짐으로써, 상기 블레이드의 많은 영역에서 양력과 추력이 발생되어 회전력이 향상됨은 물론, 바람이 블레이드의 피치각이 0°로 설정되어 형성되는 회전면을 관통하지 못하고, 가지고 있던 유동에너지를 회전동력으로 변환시키게 되어 회전력이 상승하는 효과가 있다.
또한, 피치각을 가변할 수 있도록 함으로써, 풍속에 따라 적절한 피치각을 이용하여 발전효율이 향상되고, 안정성이 확보되는 효과가 있다.
아울러 꼬리날개의 유·무에 관계없이 기존의 발전방식으로 인한 소음 및 진동을 감소시키는 효과가 있다.
그리고 저풍속에서도 높은 회전력이 발생되므로, 저풍속의 빈도가 높은 장소에도 설치할 수 있어 효용성이 뛰어나며, 이로 인해 발전기의 가동효율을 향상시키는 효과가 있다.
도 1은 본 발명의 일실시예에 따른 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기의 사시도.
도 2는 본 발명의 일실시예에 따른 동일한 폭과 두께로 형성된 에어포일 블레이드의 사시도.
도 3은 본 발명의 일실시예에 따른 동일한 폭과 두께로 형성된 대칭형 에어포일 블레이드의 단면도.
도 4는 본 발명의 일실시예에 따른 블레이드 회전면 및 바람의 흐름을 나타낸 사시도.
도 5는 본 발명의 일실시예에 따른 풍속판, 제1기어 및 제2기어를 포함하여 피치각을 가변시킬 수 있는 구성을 나타낸 예시도.
도 6은 본 발명의 일실시예에 따른 피치각 조절모터 및 제3기어를 포함하여 피치각을 가변시킬 수 있는 구성을 나타낸 예시도.
도 7 은 본 발명의 일실시예에 따른 꼬리날개를 더 포함하는 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기의 사시도.
도 8 은 본 발명의 일실시예에 따른 꼬리날개를 포함하지 않는 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기의 사시도.
도 9 내지 도 12 는 동일한 폭과 두께로 형성된 대칭형 에어포일 블레이드의 풍속에 따른 표면의 유선분포를 나타낸 CFD해석결과.
도 13 내지 도 15 는 4가지 다른 형태의 동일한 폭과 두께로 형성된 대칭형 에어포일 블레이드의 위치에 따른 압력계수분포를 나타낸 CFD해석결과.
도 16 및 도 17 은 풍동실험과 CFD수치해석에 따른 발전출력 및 동력변환효율을 비교한 예시도.
도 18 및 도 19 는 4가지 다른 형태의 동일한 폭과 두께로 형성된 대칭형 에어포일 블레이드의 CFD해석결과에 의한 발전출력 및 동력변환효율을 비교한 예시도이다.
* 도면의 주요 부분에 대한 부호의 설명 *
100 : 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기
110 : 타워
120 : 나셀
130 : 회전체
140 : 블레이드
200 : 풍속판
210 : 코일스프링
220 : 제1기어
230 : 제2기어
300 : 피치각 조절모터
310 : 제3기어
500 : 꼬리날개
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일실시예에 따른 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기의 사시도이다.
도 1에 도시된 바와 같이, 본 발명의 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기(100)는 지면에 수직으로 설치되는 타워(110)와, 상기 타워(110)의 상단에 수직축을 중심으로 회전 가능하도록 연결되는 나셀(120)과, 상기 나셀(120)과 축결합되는 회전체(130)와, 상기 회전체(130)의 외주면에 피치각을 형성하며 결합되는 하나 이상의 블레이드(140)를 포함하며, 상기 블레이드(140)는 에어포일의 형상을 가지고, 길이방향을 따라 동일한 폭과 두께로 형성된다. 상기 블레이드(140)의 팁 쪽 영역을 중심으로 양력에 의한 회전력을 발생시키기 위함이다.
상기 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기(100)는 바람이 상기 블레이드(140)에 접하며 발생되는 회전동력에 의해 상기 회전체(130)가 회전하며 기계적에너지가 생산되는 방식에 의한다.
도 2는 본 발명의 일실시예에 따른 동일한 폭과 두께로 형성된 에어포일 블레이드의 사시도이고, 도 3은 본 발명의 일실시예에 따른 동일한 폭과 두께로 형성된 대칭형 에어포일 블레이드의 단면도이다.
도 2에 도시된 바와 같이 상기 블레이드(140)는 동일한 폭과 두께로 형성되며, 에어포일 즉, 비행기의 날개 형상과 유사하도록 형성된다. 그리고 도 3에 도시된 블레이드(140)의 종단면을 보면, 단면의 중심을 지나는 A선을 기준으로 상부면 및 하부면이 동일한 굴곡 형태를 가지는 대칭의 형상으로 형성되는 것을 확인할 수 있다. 다만, 중심을 지나는 B선을 기준으로 하였을 경우에는 대칭의 형상이 아니며, C선이 지나는 일측 끝단 약 1/4 지점의 두께가 가장 두꺼운 형태를 가진다.
다만, 본 발명의 동일한 폭과 두께로 형성된 블레이드(140)는 상부면과 하부면이 동일한 굴곡 형태를 가지는 대칭의 형상으로 형성될 수도 있고, 상부면과 하부면이 소정의 차이를 갖는 비대칭의 형상으로 형성될 수도 있다.
따라서, 상기 블레이드(140)는 회전을 통해 바람을 가르게 되고, 갈라진 바람은 상기 블레이드(140)의 상부면 및 하부면을 따라 유동적으로 흐르게 되는데 이때, 상기 블레이드(140)의 양쪽 면 모두에 많은 양의 풍량이 유동되면서 양력이 발생하고 이에 의해 회전력이 발생하게 된다.
결국, 종래의 풍력발전기의 경우 블레이드의 일면에서는 양력에 의한 회전력이 발생하지만 반대면에서는 양력 및 그에 의한 추력이 발생될 여지가 적어 회전력 및 발전량이 높지 않은 문제가 있었으나, 본 발명의 대칭형 에어포일 형상의 블레이드(140)는 양쪽 면 모두에서 양력과 추력을 발생시키게 되므로 종래의 풍력발전기보다 회전력 및 발전량을 획기적으로 향상시키는 효과를 달성하게 된다. 이러한 양력과 추력은 상기 블레이드(140)의 회전과 비례하여 증가하게 된다.
또한, 상기 블레이드(140)는 길이방향을 따라 동일한 폭과 두께로 형성되어 상기 블레이드(140)의 많은 영역에서 일정한 양력과 추력이 발생되도록 이루어지는 것이 바람직한데, 이에 의해 회전력이 더욱 상승하는 효과를 가져온다.
즉, 풍력발전기는 블레이드의 팁 부분의 약 30% 영역에서 고속의 공기 유동과 블레이드의 상호작용에 따라 양력에 의한 추력이 발생하는데, 종래의 블레이드는 이 부분의 폭이 좁고 그 결과 면적비율이 상대적으로 낮아 동력변환효율(Cp)이 낮지만, 본 발명은 블레이드(140) 전체의 폭과 두께가 동일하여 팁 부분에서 공기유동과 상호작용하는 영역의 면적비율이 상대적으로 높아 양력에 의한 추력이 크게 발생하게 되므로 그 효율이 향상될 수 있다. 이와 관련된 유동 해석 결과가 도 9 내지 도 12 에 도시되어 있으며, 보다 상세한 설명은 후술한다.
아울러 상기 블레이드(140)는 피치각을 0°로 조절한 상태로 회전하여 회전면을 형성할 수 있고, 이에 따라 불어오는 바람을 관통시키는 것이 아니라 상기 회전면의 원주방향 가장자리측으로 유도하면서 상기 바람의 속도가 더욱 증가하게 되어 바람의 유동에너지를 회전동력으로 변환하는데 더욱 효과적이다.
즉, 도 4에 도시된 바와 같이 상기 블레이드(140)가 피치각을 0°로 조절한 상태로 고속 회전하게 되면 원판형상의 회전면이 형성되고, 불어오는 바람은 상기 회전면에 가로막혀 관통하지 못하며, 계속해서 불어오는 바람에 의해 회전면의 원주방향 가장자리측으로 밀려나게 된다. 따라서, 바람의 속도가 더욱 증가하게 되어 유동에너지가 회전동력으로 변환되는 힘이 커지게 되고, 그에 따라 블레이드(140)의 회전속도가 더욱 상승하여 결과적으로 높은 발전출력을 얻을 수 있게 된다.
한편, 상기 블레이드(140)와 상기 블레이드(140)가 회전하며 형성되는 회전면이 이루는 피치각은 가변시킬 수 있는 구조를 갖는다. 일반적으로 상기 피치각은 0°~ 30°의 범위 내에서 변하게 되며, 본 발명에서는 발전효율 및 가동효율의 향상을 위해 0°의 피치각을 유지하다가 풍력발전기의 손상이 우려될 정도의 초고속의 바람이 불어오는 경우 상기 피치각을 증가시킴으로써 바람이 회전면을 관통하도록 유도해 안정적인 발전을 가능하도록 하는 역할을 한다.
또한, 풍속의 변화에 따라 효율적인 회전력을 얻기 위해 피치각을 수시로 가변시킬 수도 있다. 저풍속에서는 상기 피치각이 약 30°를 이루도록 하고, 저풍속에서 고풍속으로 변환되면 상기 피치각이 점차 줄어들면서 약 0°를 이루게 하는 등 풍력발전기의 효율적 운영을 위해 다양한 각도의 피치각이 이용될 수 있다.
도 5는 본 발명의 일실시예에 따른 풍속판, 제1기어 및 제2기어를 포함하여 피치각을 가변시킬 수 있는 구성을 나타낸 예시도이다.
도 5에 도시된 바와 같이 상기 블레이드(140)의 피치각 변환을 가능케 하기 위하여 본 발명은, 상기 회전체(130)의 바람과 마주하는 면에 결합되어 풍속에 따라 수평 직선운동하는 풍속판(200)과, 상기 풍속판(200)의 바람과 마주하지 않는 면에 형성되어 풍속에 따라 상기 풍속판(200)의 수평 직선운동을 조절하는 코일스프링(210)과, 상기 풍속판(200)의 바람과 마주하지 않는 면에 형성되며, 상기 풍속판(200)과 동시에 수평 직선운동을 하도록 형성된 제1기어(220)와, 상기 블레이드(140)의 허브 쪽에 형성되며, 상기 제1기어(220)와 맞물려 원운동을 하도록 형성된 제2기어(230)를 더 포함하여 상기 풍속판(200) 및 제1기어(220)의 수평 직선운동에 따라 상기 제2기어(230)가 회전하며 상기 블레이드(140)의 피치각을 가변시킬 수 있는 구조를 갖는다.
이는 풍속에 따라 상기 풍속판(200)과 제1기어(220)가 상기 코일스프링(210)의 작용에 의해 수평 직선운동을 하면서 상기 제1기어(220)와 맞물려 원운동을 하는 제2기어(230)를 회전시켜 피치각을 조절하게 되는 방식이다.
다시 말해 저풍속에서는 상기 풍속판(200)이 전방을 향해 수평 직선운동을 하며 이동하고, 고풍속에서는 바람에 의한 압력으로 상기 풍속판(200)이 후방을 향해 수평 직선운동을 하며 이동하게 되는데, 이때 상기 풍속판(200)이 전방을 향해 수평 직선운동을 하면 상기 제1기어(220)와 맞물린 제2기어(230)가 회전하며 피치각을 증가시키고, 상기 풍속판(200)이 후방을 향해 수평 직선운동을 하면 상기 제1기어(220)와 맞물린 제2기어(230)가 반대 방향으로 회전하며 피치각을 감소시키게 된다.
따라서, 사용자의 별도의 조작 없이도 풍속의 변화에 따라 피치각이 자동적으로 변화하면서 각 풍속에 적합한 피치각을 유지할 수 있어 높은 동력변환효율과 안정성을 얻을 수 있다.
도 6은 본 발명의 일실시예에 따른 피치각 조절모터 및 제3기어를 포함하여 피치각을 가변시킬 수 있는 구성을 나타낸 예시도이다.
도 5의 풍속판(200)을 이용하여 피치각을 가변시킬 수 있는 구성과 달리 도 6에 도시된 피치각 변환을 가능케 하기 위한 본 발명은, 상기 회전체(130)와 결합하는 피치각 조절모터(300)와, 상기 피치각 조절모터(300)에 연결되어 상기 블레이드(140)에 동력을 전달하는 제3기어(310)를 더 포함하여 상기 피치각 조절모터(300)의 회전량 조절에 따라 상기 제3기어(310)가 회전하며 상기 블레이드(140)의 피치각을 가변시킬 수 있는 구조를 갖는다.
즉, 이 경우에는 시스템이 풍속을 감지하여 상기 피치각 조절모터(300)를 작동시키고, 상기 피치각 조절모터(300)와 연결된 제3기어(310)가 회전함으로 인해 원하는 적절한 각도의 피치각을 형성할 수 있게 되는데, 상기 제3기어(310)의 수는 피치각의 조절이 필요한 블레이드(140)의 수와 동일하게 형성되는 것이 바람직하다.
상기 피치각 조절모터(300)를 이용하여 피치각을 조절하기 위해서는 현재 풍력발전기를 향해 불어오는 바람의 풍속을 확인해야 하는데, 이를 위해 본 발명은 상기 타워(110)의 일측에 풍속감지센서를 더 포함할 수 있다. 상기 풍속감지센서와 연결하여 피치각을 자동으로 제어할 수 있는 시스템을 구비할 수도 있고, 상기 풍속감지센서를 통해 얻은 현재 풍속을 참고하여 피치각 조절모터(300)를 작동시키는 등 피치각의 조절을 위해 다양한 방법들을 이용할 수 있다.
도 7 은 본 발명의 일실시예에 따른 꼬리날개를 더 포함하는 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기의 사시도이고, 도 8 은 본 발명의 일실시예에 따른 꼬리날개를 포함하지 않는 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기의 사시도이다.
도 7 에 도시된 바와 같이 상기 나셀(120)의 후면에 결합되는 꼬리날개(500)를 더 포함함으로써, 바람이 타워(110)보다 먼저 블레이드(140)를 마주하게 되는 방식으로 발전할 수 있게 된다. 상기 꼬리날개(500)는 바람이 불어오는 방향을 감지하여 상기 회전체(130)가 항상 바람이 불어오는 방향을 향하도록 하기 위한 것으로, 이러한 발전 방식을 업윈드 방식이라 하는데, 이와 반대인 다운윈드 방식은 바람이 블레이드(140)보다 먼저 타워(110)를 마주하도록 발전하는 방식이다.
도 8 에 도시된 상기 다운윈드 방식은 꼬리날개(500)를 필요로 하지 않아 생산비를 절감하고, 제조방식을 단순화할 수 있다는 장점이 있다. 일반적인 풍력발전기의 경우 바람이 타워를 먼저 통과한 후 블레이드로 흘러가게 되면 이로 인한 난류 또는 와류가 형성되고, 이러한 바람이 회전면으로 유입됨으로써 진동 및 소음이 발생하는 것을 피하기 위하여 업윈드 방식을 택하고 있다. 다만, 본 발명에서는 블레이드(140)의 피치각을 0°로 설정함으로써, 바람이 상기 블레이드(140)의 회전으로 형성되는 회전면을 관통하는 것이 아니라 원주방향 가장자리측으로 유도되면서 에너지를 얻게 되기 때문에 회전면이 꼬리날개(500)의 역할을 대신하게 되고, 바람이 먼저 타워(110)를 통과하더라도 난류나 와류의 발생이 적게 되어 이로 인한 진동과 소음을 최소화할 수 있는 장점이 있다.
따라서, 본 발명은 동일한 폭과 두께로 형성된 대칭형 에어포일 형상의 블레이드(140)를 이용함으로써, 꼬리날개(500)가 필요 없는 다운윈드 방식 및 상기 꼬리날개(500)를 포함하는 업윈드 방식 모두를 이용하여 발전할 수 있고, 설치될 장소의 바람의 특성, 공간적 특징 및 주변 환경 등을 고려하여 발전방식을 선택한다면 더욱 효율적이고 효과적인 발전시스템을 형성할 수 있을 것이다.
한편, 본 발명의 기술적 구성이 적용된 수평축 풍력발전기의 실질적인 발전효율을 확인하기 위하여 풍동실험 및 CFD수치해석을 실시하였다.
먼저, 풍동실험은 2012년 1월 31일에 표 1과 같은 조건으로 실시하였고, 그 결과는 표 2와 같다.
(표 1)
[규칙 제91조에 의한 정정 14.03.2013] 
Figure WO-DOC-86
(표 2)
[규칙 제91조에 의한 정정 14.03.2013] 
Figure WO-DOC-89
상기의 실험결과에서 확인할 수 있듯이, 풍속 및 풍량이 증가함에 따라 발전출력 및 동력변환효율(Cp)이 증가함을 알 수 있다. 더 자세히 살펴보면 발전출력은 풍속의 상승에 따라 더욱 큰 폭으로 증가하는 경향을 보이나, 동력변환효율(Cp)은 약 5m/s 이하의 풍속에서는 풍속에 비례하여 증가하지만 그보다 강한 풍속에서는 증가하되, 증가율은 높지 않은 경향을 보인다.
또한, 3.25m/s의 풍속에서 4.17(w)의 발전출력 및 0.140의 동력변환효율(Cp)을, 3.90m/s의 풍속에서 11.47(w)의 발전출력 및 0.219의 동력변환효율(Cp)을 가지는 것을 확인할 수 있다.
즉, 본 발명은 4m/s 이하의 저풍속에서도 일정량의 발전출력 및 동력변환효율(Cp)을 가지게 되어 풍력발전기의 가동효율을 효과적으로 상승시키게 된다.
상기의 풍동실험을 주관한 주식회사 CKP풍공학연구소에서는 본 발명을 "일정한 RPM에 이르게 되면 접근하는 풍속과 회전하는 블레이드의 받음각으로 인해 좋은 회전력을 발생시킬 수 있는 장점을 가진 풍력발전시스템이며, 좋은 출력성능을 기대할 수 있다"라고 평가하였다.
본 풍동실험의 발전출력은 실제 측정한 값이고, 로터효율은 발전기효율과 정류기 변환효율을 적용하여 산출한 값이며, 이후 CFD수치해석의 결과값과 비교하기로 한다.
다음으로 실시한 CFD수치해석은 3차원 유동해석 및 성능평가를 위하여 상용코드인 CFX ver 13.0을 사용하여 실시하였다.
본 CFD수치해석에 이용된 블레이드(140)는 길이 0.75m(블레이드 회전면의 직경 1.5m), 시위길이(블레이드의 폭) 0.09m의 동일한 폭과 두께로 형성된 대칭형 에어포일 형태이고, 블레이드(140)의 단면은 도 3에 도시된 바와 같으며, 단면의 일측 끝단 1/4지점의 두께가 가장 두껍게 형성되는 특징을 가진다.
또한, 동일한 형태의 블레이드(140) 중에서 블레이드(140)의 두께가 가장 두꺼운 지점의 두께가 1.8cm인 블레이드(이하 '제1실시예'라고 한다), 1.2cm인 블레이드(이하 '제2실시예'라고 한다) 및 2.1cm인 블레이드(이하 '제3실시예'라고 한다)를 비교하여 해석하였다.
먼저, 풍속에 따른 동일한 폭과 두께로 형성된 대칭형 에어포일 블레이드의 표면유선을 도 9 내지 도 12 에 나타내었다.
도 9 는 풍속 3.9m/s, 회전속도 303rpm, 팁속도비율 6.10에서 블레이드(140)의 표면유선을 나타낸 것이고, 도 10 은 풍속 6.14m/s, 회전속도 491.7rpm, 팁속도비율 6.29에서 블레이드(140)의 표면유선을 나타낸 것이며, 도 11 은 풍속 9.93m/s, 회전속도 817.29rpm, 팁속도비율 6.46에서 블레이드(140)의 표면유선을 나타낸 것이고, 도 12 는 풍속 12.36m/s, 회전속도 1006.8rpm, 팁속도비율 6.4에서 블레이드(140)의 표면유선을 나타낸 것이다.
도 9 의 블레이드(140)의 유선분포를 보면 팁 방향의 일부 구간을 제외하고는 블레이드(140)의 약 80% 정도에 실속이 형성되는 것을 확인할 수 있다. 그 이후 풍속이 증가할수록 실속영역이 블레이드(140)의 표면의 팁 방향에서 허브 방향으로 축소되어 가게 된다. 이는 유입풍속이 증가함에 따라 블레이드(140)의 회전수가 더욱 증가하고, 결과적으로 받음각이 감소하게 되어 이로 인해 실속이 줄어드는 것으로 볼 수 있다. 상기 실속이란 블레이드(140)에 발생하는 양력을 감소시켜 출력을 낮게 만드는 원인이 된다.
이와 같은 결과를 참조하면, 종래의 블레이드는 길이방향을 따라 폭과 두께가 일정치 않고, 비대칭형의 형태를 가짐으로써, 블레이드 표면의 실속영역이 상대적으로 크게 형성되어 양력에 의한 회전력이 감소하게 된다. 달리 말하면, 양력과 그에 의한 추력을 발생시키는 바람의 유동적인 흐름을 받는 블레이드의 팁 영역의 면적이 작게 형성되어 블레이드의 회전력이 감소하게 되는 것이다.
그러나 본 발명의 블레이드(140)는 표면에 출력의 감소를 야기시키는 실속영역이 작고, 이에 반해 양력과 추력을 발생시키는 바람의 유동적인 흐름을 받는 블레이드(140)의 팁 영역의 면적이 크게 형성되어 블레이드(140)의 회전력이 향상되는 결과를 가져온다.
도 13 내지 도 15 는 4가지 다른 형태의 동일한 폭과 두께로 형성된 대칭형 에어포일 블레이드의 위치에 따른 압력계수분포를 나타낸 CFD해석결과이다.
상기 그래프의 WP-01은 제1실시예에 해당하고, NACA 0012는 제2실시예에, NACA 0021은 제3실시예에 해당한다. 또한, 50% 의 의미는 블레이드(140)의 허브로부터 상기 블레이드(140) 길이의 50% 만큼 팁 쪽으로 이동한 곳의 위치에서 측정한 것을 의미한다. 마찬가지로 10% 는 블레이드(140)의 허브로부터 상기 블레이드(140) 길이의 10% 만큼 팁 쪽으로 이동한 곳의 위치에서 측정한 것을 의미하며, 90% 는 블레이드(140)의 허브로부터 상기 블레이드(140) 길이의 90% 만큼 팁 쪽으로 이동한 곳의 위치에서 측정한 것을 의미한다.
상기 도 13 내지 도 15 를 살펴보면 블레이드(140)의 얇은 쪽 방향으로 근접할수록 압력계수가 0으로 수렴하는 공통점을 갖는다. 다만, 허브에서 팁 방향으로 블레이드(140)의 10%, 50%, 90% 에 해당하는 위치에 따라 압력계수의 절대값의 분포범위가 다른 차이를 갖는데, 10% 의 위치인 경우 약 -1.8 ~ 0.3 사이의 값을 가지고, 50% 의 위치인 경우 약 -4.0 ~ 1.3 사이의 값을 가지며, 90% 의 위치인 경우 -6.8 ~ 3.5 사이의 값을 가진다. 이는 상기 도 9 내지 12 에 의한 결과에서도 알 수 있듯이, 블레이드(140)의 팁 부분에 의해 얻어지는 회전동력이 동일한 폭과 두께로 형성된 대칭형 에어포일 블레이드(140)에서 중요한 부분임을 나타낸다.
즉, 종래의 블레이드는 길이방향을 따라 폭과 두께가 감소하는 형태로 형성되어 블레이드의 팁 부분에서 바람과의 상호작용이 작게 되고, 이로 인해 발생하는 양력과 추력이 작아 블레이드의 회전력이 상대적으로 낮은 문제가 있었다.
따라서, 본 발명의 블레이드(140)는 길이방향을 따라 일정한 폭과 두께를 갖는 형태로 형성되어 블레이드(140)의 팁 부분에서 받는 회전동력이 상대적으로 크게 되고, 이에 따라 양력 및 추력이 증가하여 회전력이 비약적으로 상승하게 되는 효과가 있다. 회전력의 상승은 곧 발전출력 및 가동효율의 상승을 가져오게 되므로 본 발명으로 인해 종래의 기술보다 효율적인 풍력발전시스템을 구성할 수 있게 된다.
도 16 및 도 17 은 풍동실험과 CFD수치해석에 따른 발전출력 및 동력변환효율을 비교한 예시도이다.
먼저 도 16 을 살펴보면, 풍동실험과 CFD수치해석 모두 풍속의 증가함에 따라 발전출력이 증가함을 확인할 수 있다. 그 수치 또한 매우 근사하여 오차가 거의 발생하지 않은 것으로 볼 수 있다.
그리고, 동력변환효율(Cp)을 비교한 도 17 을 살펴보면, 발전출력의 비교와는 달리 오차가 조금 증가한 것을 확인할 수 있지만, 풍속의 증가에 따라 동력변환효율(Cp) 또한 증가하는 것을 볼 수 있고, 증가하는 선의 모양도 매우 흡사하여 유사한 동력변환효율(Cp)의 특징을 가지는 것을 알 수 있다.
도 18 및 도 19 는 4가지 다른 형태의 동일한 폭과 두께로 형성된 대칭형 에어포일 블레이드의 CFD해석결과에 의한 발전출력 및 동력변환효율을 비교한 예시도이다.
먼저, 도 18 을 보면, 풍속에 따라 출력이 증가하지만, 블레이드(140)의 형태에 따라 출력의 크기가 다른 것을 알 수 있다. 결과적으로는 제3실시예, 제1실시예, 제2실시예의 순으로 발전출력이 높게 된다.
이어서, 도 19 를 보면, 전체적으로 풍속이 증가할수록 동력변환효율(Cp)이 증가하는 경향을 보이는 것을 확인할 수 있다. 다만, 블레이드(140)의 팁 방향으로 50% 에 해당하는 위치에서는 전체적으로 낮은 동력변환효율(Cp)을 가지고, 풍속이 약 5.5m/s 이하에서는 제3실시예, 제2실시예, 제1실시예의 순으로 동력변환효율(Cp)이 높으며, 그 이상의 풍속에서는 제3실시예, 제1실시예, 제2 실시예의 순으로 동력변환효율(Cp)이 높음을 알 수 있다.
결국, CFD의 수치해석 결과 가장 높은 발전출력과 동력변환효율(Cp)을 가지는 블레이드(140)는 제3실시예이고, 이에 따라 블레이드(140)의 두께를 적절히 조절할 필요가 있다고 여겨진다.
결과값을 검토하면, 풍동실험에 의한 성능결과는 정격풍속 부근의 12.36m/s에서 발전출력은 761.12(w)이고, 동력변환효율(Cp)은 0.385이며, 동일 풍속의 CFD수치해석 결과에서는 발전출력은 720.50(w)이고, 동력변환효율은(Cp) 0.365에 해당한다. 발전출력은 40.62(w), 동력변환효율(Cp)은 0.02만큼의 차이가 발생하였고, 이로 인한 오차는 5% 이내에 해당한다.
본 발명에서 언급하지 않은 블레이드(140)의 회전으로 인해 발생하는 기계적에너지를 전기에너지로 변환시키는 발전기는 공지·공용의 기술로서 풍력발전기의 궁극적 목적인 전기에너지 생산에 필요함은 물론이다.
상기한 바와 같이 본 발명은 풍력발전기에 적용되는 블레이드(140)가 동일한 폭과 두께로 형성되고, 대칭형의 에어포일의 형태로 이루어짐으로써, 상기 블레이드(140)의 양쪽 면 전체에 양력과 추력이 발생하여 회전력이 향상되고, 그로 인한 발전효율 및 가동효율이 높은 장점이 있다.
이상 본 발명의 구체적 실시형태와 관련하여 본 발명을 설명하였으나, 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 범위를 벗어나지 않고 설명된 실시형태를 변경 또는 변형할 수 있으며, 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능하다.

Claims (8)

  1. 지면에 수직으로 설치되는 타워(110);
    상기 타워(110)의 상단에 수직축을 중심으로 회전 가능하도록 연결되는 나셀(120);
    상기 나셀(120)과 축결합되는 회전체(130); 및
    상기 회전체(130)의 외주면에 피치각을 형성하며 결합되는 하나 이상의 블레이드(140); 를 포함하되,
    상기 블레이드(140)는 에어포일(airfoil)의 형상을 가지고, 길이방향을 따라 동일한 폭과 두께로 형성되어 상기 블레이드(140)의 팁 쪽 영역을 중심으로 양력에 의한 회전력이 발생되는 것을 특징으로 하는 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기(100).
  2. 제 1항에 있어서,
    상기 블레이드(140)는 상부면과 하부면이 대칭인 형상으로 형성되어 상기 상부면과 하부면 양면에 양력에 의한 회전력이 발생하는 것을 특징으로 하는 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기(100).
  3. 제 1항에 있어서,
    상기 블레이드(140)는 상부면과 하부면이 비대칭인 형상으로 형성되는 것을 특징으로 하는 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기(100).
  4. 제 1항에 있어서,
    상기 블레이드(140)의 회전 시 바람이 상기 블레이드(140)의 회전으로 형성되는 회전면과 부딪혀 상기 회전면의 원주방향 가장자리측으로 유도되도록 상기 피치각을 0°로 형성하여 상기 바람의 유동에너지를 회전동력으로 변환시키는 것을 특징으로 하는 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기(100).
  5. 제 1항에 있어서,
    상기 회전체(130)의 바람과 마주하는 면에 결합되어 풍속에 따라 수평 직선운동하는 풍속판(200);
    상기 풍속판(200)의 바람과 마주하지 않는 면에 형성되어 풍속에 따라 상기 풍속판(200)의 수평 직선운동을 조절하는 코일스프링(210);
    상기 풍속판(200)의 바람과 마주하지 않는 면에 형성되며, 상기 풍속판(200)과 동시에 수평 직선운동을 하도록 형성된 제1기어(220); 및
    상기 블레이드(140)의 허브 쪽에 형성되며, 상기 제1기어(220)와 맞물려 원운동을 하도록 형성된 제2기어(230); 를 더 포함하여 상기 풍속판(200) 및 제1기어(220)의 수평 직선운동에 따라 상기 제2기어(230)가 회전하며 상기 블레이드(140)의 피치각을 가변시킬 수 있는 것을 특징으로 하는 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기(100).
  6. 제 1항에 있어서,
    상기 회전체(130)와 결합하는 피치각 조절모터(300); 및
    상기 피치각 조절모터(300)에 연결되어 상기 블레이드(140)에 동력을 전달하는 제3기어(310); 를 더 포함하여 상기 피치각 조절모터(300)의 회전량 조절에 따라 상기 제3기어(310)가 회전하며 상기 블레이드(140)의 피치각을 가변시킬 수 있는 것을 특징으로 하는 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기(100).
  7. 제 1항에 있어서,
    상기 타워(110)의 일측에 풍속감지센서를 더 포함하는 것을 특징으로 하는 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기(100).
  8. 제 1항에 있어서,
    상기 나셀(120)의 후면에 결합되는 꼬리날개(500)를 더 포함하여 바람이 상기 타워(110)보다 먼저 상기 블레이드(140)를 마주하게 되는 업윈드(Up Wind) 방식으로 발전하는 것을 특징으로 하는 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기(100).
PCT/KR2012/007498 2011-09-21 2012-09-19 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기 WO2013042937A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014531712A JP5918370B2 (ja) 2011-09-21 2012-09-19 同一の幅と厚さで形成されたエアフォイルブレードを用いた水平軸風力発電機
US14/346,630 US10012210B2 (en) 2011-09-21 2012-09-19 Horizontal-axis wind turbine using airfoil blades with uniform width and thickness
CN201280057202.9A CN103987958B (zh) 2011-09-21 2012-09-19 利用宽度和厚度相同的翼型叶片的水平轴风力发电机
EP12834384.5A EP2759698A4 (en) 2011-09-21 2012-09-19 HORIZONTAL SHAFT WIND POWER GENERATOR USING AERODYNAMIC PROFILE BLADE WITH THE SAME WIDTH AND SAME THICKNESS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0095409 2011-09-21
KR20110095409 2011-09-21
KR1020120052457A KR101272165B1 (ko) 2011-09-21 2012-05-17 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기 및 그 피치각 제어 방법
KR10-2012-0052457 2012-05-17

Publications (2)

Publication Number Publication Date
WO2013042937A1 WO2013042937A1 (ko) 2013-03-28
WO2013042937A9 true WO2013042937A9 (ko) 2013-10-03

Family

ID=48180847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007498 WO2013042937A1 (ko) 2011-09-21 2012-09-19 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기

Country Status (6)

Country Link
US (1) US10012210B2 (ko)
EP (1) EP2759698A4 (ko)
JP (1) JP5918370B2 (ko)
KR (1) KR101272165B1 (ko)
CN (1) CN103987958B (ko)
WO (1) WO2013042937A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166373A (ja) * 2016-03-15 2017-09-21 クリーンエナジーファクトリー株式会社 風力発電機
KR101628308B1 (ko) * 2016-04-01 2016-06-08 손기태 수평축 풍력발전기용 가변 단면형 블레이드
CN106401866B (zh) * 2016-08-22 2023-06-16 内蒙古工业大学 刀锋形风力机叶片
CN109709055B (zh) * 2019-01-31 2021-07-13 遵义市精科信检测有限公司 食品添加剂检测方法及装置
CN112555100B (zh) * 2020-12-08 2022-03-11 太原科技大学 一种随风向全范围自适应调节的大型风力发电机
CN112610409A (zh) * 2021-01-12 2021-04-06 王恩芽 一种稳速变桨式风力发电机
CN113982840B (zh) * 2021-10-29 2023-01-20 西安交通大学 一种适用于山谷风的增功风力机及发电方法
KR102595849B1 (ko) 2022-01-17 2023-10-27 김태영 저풍속 풍력발전기용 블레이드 캡
KR102394699B1 (ko) 2022-01-17 2022-05-06 주식회사 케이에프컴스 저풍속 풍력발전기용 블레이드 장치
KR20240003165A (ko) 2022-06-30 2024-01-08 주식회사 티엠솔루션스 풍력발전용 이중 회전자 구조 영구자석 발전기

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985245A (en) 1958-08-01 1961-05-23 Nat Frost Prot Co Inc Propeller fan
JPS5783672A (en) * 1980-11-12 1982-05-25 Shin Meiwa Ind Co Ltd Pitch control device of propeller type wind mill
JPS57121774A (en) 1980-12-29 1982-07-29 Hitachi Koki Co Ltd Form feed controlling method
JPS57121774U (ko) * 1981-01-23 1982-07-29
JPS58140485A (ja) 1982-02-17 1983-08-20 Hitachi Ltd 風力発電装置
JPS58200083A (ja) 1982-05-18 1983-11-21 Shin Meiwa Ind Co Ltd 風向板付きプロペラ型風車
JPS5943988A (ja) 1982-09-07 1984-03-12 Masahiro Morita 揚力発電
US4844698A (en) * 1986-06-17 1989-07-04 Imc Magnetics Corp. Propeller blade
JPS63192968A (ja) 1987-02-05 1988-08-10 Mitsubishi Heavy Ind Ltd 風車の翼制御機構
JPH07324675A (ja) 1994-05-31 1995-12-12 Mitsubishi Heavy Ind Ltd 風力発電制御装置
DE19526718A1 (de) 1995-07-21 1997-01-23 Hans Dr Med Moelzer Windkonverter
US6030179A (en) * 1995-07-31 2000-02-29 Mccabe; Francis J. Airfoil structures and method
CA2359535A1 (en) * 2001-10-22 2003-04-22 Paul Stearns Wind turbine blade
DK175912B1 (da) * 2002-12-20 2005-06-20 Lm Glasfiber As Fremgangsmåde til drift af en vindmölle
US20050271508A1 (en) * 2004-06-03 2005-12-08 Asfaw Beyene Flexible turbine blade
KR20100086557A (ko) * 2009-01-23 2010-08-02 원인호 풍차용 날개판의 구성
JP2011032918A (ja) 2009-07-31 2011-02-17 Tokyo Ootomakku Kk 風車
KR100946347B1 (ko) * 2009-10-12 2010-03-08 김세빈 환체방사형 터빈블레이드 풍력발전 시스템
US8899921B2 (en) * 2010-10-08 2014-12-02 Earl McCune Wind turbine having flow-aligned blades

Also Published As

Publication number Publication date
CN103987958A (zh) 2014-08-13
KR20130031768A (ko) 2013-03-29
CN103987958B (zh) 2017-11-14
EP2759698A4 (en) 2015-05-06
WO2013042937A1 (ko) 2013-03-28
EP2759698A1 (en) 2014-07-30
JP2014526652A (ja) 2014-10-06
US10012210B2 (en) 2018-07-03
JP5918370B2 (ja) 2016-05-18
KR101272165B1 (ko) 2013-06-07
US20140234107A1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
WO2013042937A9 (ko) 동일한 폭과 두께로 형성된 에어포일 블레이드를 이용한 수평축 풍력발전기
US9677539B2 (en) Vertical axis water/wind turbine motor using flight feather opening/closing wing system
CN105863957B (zh) 一种可变桨距大功率垂直轴风力发电装置及气动启停控制方法
CN203098139U (zh) 一种适用于小型风力发电机的双叶轮对转风轮结构
WO2015168970A1 (zh) 高低风速兼容型风电机组
CN105649871B (zh) 双叶片式垂直轴风力发电机
CN102400854A (zh) 垂直轴风力发电机
CN104863792B (zh) 具有扭角的垂直轴风力机弯曲叶片
CN211082138U (zh) 一种用于风力发电机的专用调向机构
CN210239912U (zh) 一种风力发电机塔架
CN107762719A (zh) 一种太阳能移动式提灌站中的风机紧固装置
KR101236888B1 (ko) 익형 2중 블레이드를 갖는 풍력발전용 수직축 터빈
CN205503367U (zh) 一种涡轮轴流旋向增压风力发电机
CN114718806A (zh) 一种偏航调节式垂直轴风机及其工作方法
KR20140085000A (ko) 풍력발전기의 로터 록킹위치 제어시스템 및 제어방법
CN105134478A (zh) 一种整流风力发电机组及制造方法
CN207598424U (zh) 一种抗台风风力发电机
CN104595104A (zh) 一种具有柔性叶片的垂直轴风机叶轮
CN219159094U (zh) 一种能控制转速的升力型垂直轴风力发电机叶轮
CN103726991A (zh) 行星式增速风轮立轴风力发电机
CN105736248B (zh) 一种风机紧固装置
CN114087123B (zh) 无轴风力发电机、最大功率跟踪发电及并网解耦控制方法
CN218934614U (zh) 一种旋转式风电塔筒
CN203796489U (zh) 一种开合风门风力转动装置及风力发电设备
CN203488314U (zh) 一种垂直轴风力发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14346630

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014531712

Country of ref document: JP

Kind code of ref document: A