WO2013042928A1 - 부분방전 결함유형 판정 방법 및 그 장치 - Google Patents

부분방전 결함유형 판정 방법 및 그 장치 Download PDF

Info

Publication number
WO2013042928A1
WO2013042928A1 PCT/KR2012/007482 KR2012007482W WO2013042928A1 WO 2013042928 A1 WO2013042928 A1 WO 2013042928A1 KR 2012007482 W KR2012007482 W KR 2012007482W WO 2013042928 A1 WO2013042928 A1 WO 2013042928A1
Authority
WO
WIPO (PCT)
Prior art keywords
partial discharge
defect type
defect
types
type determination
Prior art date
Application number
PCT/KR2012/007482
Other languages
English (en)
French (fr)
Inventor
한기선
윤진열
주형준
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to GB1404833.4A priority Critical patent/GB2508560B/en
Priority to US14/345,163 priority patent/US9658272B2/en
Publication of WO2013042928A1 publication Critical patent/WO2013042928A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/065Means for detecting or reacting to mechanical or electrical defects

Definitions

  • the present invention relates to a method for determining a partial discharge defect type and a device thereof (Method for deciding defect type of partial discharge and apparatus), and more particularly to a new defect type determination method for reinforcing the weakness of the neural network defect type determination method.
  • the present invention relates to a partial discharge defect type determination method and apparatus therefor.
  • Ultra high frequency (UHF) partial discharge diagnosis online system and portable equipment which are currently used to prevent gas insulated switchgear (GIS) failure, are equipped with the determination method for recognizing the type of defect as the core of the software.
  • GIS gas insulated switchgear
  • This defect recognition judgment method uses a neural network to display the results in the form of probabilities that match with a predefined defect type, and the neural network calculates hundreds of calculations based on phase, discharge amount, and discharge frequency. More than one learning data are used to determine the defect type of the detected partial discharge signal.
  • the Neural Network judgment method currently used has a fundamental problem that the accuracy of the defect type determination is significantly lowered and the other defects are judged in the parameter by the unlearned pattern. do.
  • the present invention provides an applied partial discharge defect type determination method and apparatus.
  • another object of the present invention is to provide a partial discharge defect type determination method and apparatus for improving the accuracy of the defect type determination by giving a weight to use in parallel with the neural network determination method in use.
  • Partial discharge defect type determination method for achieving the above object, to form a virtual space corresponding to the n parameters generated based on the defect types that generate partial discharge, each of the defect types Arranging defect type models in the virtual space by combining parameter values of the n parameters with respect to the n-parameters; Extracting and arranging the partial discharge model in the virtual space by combining the parameter values, comparing the location information of the defect type models with the location information of the partial discharge model, and comparing the defect type models with the partial discharge model.
  • the virtual space is characterized in that the n-dimensional space consisting of n axes corresponding to each of the n parameters.
  • the disposing of the defect types may include arranging the parameter values for each defect type in the virtual space, and if the parameter values form a cluster having a constant distribution, the coordinate values of the intermediate positions of the clusters are determined for each defect type. And calculating the coordinate values calculated for each defect type as position information of each defect type model.
  • the calculating of the probability values of the defect types may include calculating the probability value by calculating a ratio of relative distances for each of the defect types based on the total distance values with the defect types.
  • the probability value is characterized in that the closer the distance value between the partial discharge model and the defect type model, the higher the probability value.
  • the determining of the defect type may include determining a defect type for the partial discharge signal event by combining the probability values of the defect types and the probability values from the neural network based defect type determination result.
  • the determining of the defect type may be performed by assigning different weights to probability values of the defect types and probability values from the neural network based defect type determination result.
  • the determining of the defect type may include determining a defect type for the partial discharge signal event by adding a probability value of the defect types to which the weight is different and a probability value from the result of the neural network based defect type determination. It is characterized by.
  • the parameters are generated based on the phase, the amount of discharge, and the number of discharges of the partial discharge signal measured corresponding to the defect types.
  • the parameters are classified into three types of two-dimensional distributions of phase-discharge amount, phase-discharge frequency, and discharge-discharge frequency, with the phase, the discharge amount, and the discharge frequency as variables. do.
  • phase-discharge amount and the phase-discharge frequency type parameters are classified as positive and negative since phases are dependent variables.
  • the discharge amount-discharge frequency type parameters may be normalized by setting the maximum value to 100.
  • the partial discharge defect type may include at least one of particles, floating, corona, cavities, and noise.
  • the partial discharge defect type determination apparatus for achieving the above object, the virtual space implementation unit for forming a virtual space corresponding to the n parameters generated based on the defect types for generating a partial discharge, A partial discharge signal analysis unit extracting parameter values corresponding to the n parameters based on the partial discharge signal generated when the partial discharge signal event occurs; combining parameter values of the n parameters for each of the defect types By comparing the position information of the defect type models disposed in the virtual space and the parameter values of the n parameters for the partial discharge signal to compare the position information of the partial discharge model disposed in the virtual space to determine the defect type model Calculates a distance value between the field and the partial discharge model, and calculates the partial discharge from the distance value. And a calculation unit for calculating a probability value of the defect types for a signal event, and a defect type determination unit for determining a defect type for the partial discharge signal event based on the probability values of the defect types for the partial discharge signal event. It is done.
  • the defect type determining unit receives a neural network based defect type determination result for the defect types and the partial discharge signal event, and determines a probability value of the defect types and probability values from the neural network based defect type determination result. Combine to determine a defect type for the partial discharge signal event.
  • the defect type determination unit may assign different weights to probability values of the defect types and probability values from the neural network based defect type determination result.
  • the defect type determining unit may determine a defect type for the partial discharge signal event by summing a probability value of the defect types to which the different weights are assigned and probability values from the neural network based defect type determination result. do.
  • FIG. 1 is a diagram showing the basic concept of the partial discharge defect type determination apparatus according to the present invention.
  • Fig. 2 is a block diagram showing the configuration of the partial discharge defect type determining apparatus according to the present invention.
  • FIG 3 is an exemplary view showing an embodiment of parameters according to the present invention.
  • FIG. 4 is an exemplary diagram referred to for describing an operation of calculating a parameter value for each defect type according to the present invention.
  • FIG. 5 is an exemplary view showing a parameter value for each defect type according to the present invention.
  • FIG. 6 is an exemplary view showing a defect type model disposed in a virtual space according to the present invention.
  • FIG. 7 is an exemplary diagram referred to for explaining an operation of calculating a parameter value of a partial discharge signal according to the present invention.
  • FIG 8 is an exemplary view showing a partial discharge model disposed in the virtual space according to the present invention.
  • FIG 9 is an exemplary view referred to for explaining the operation of determining the partial discharge defect type according to the present invention.
  • 10 and 11 are flowcharts showing an operation flow for determining a partial discharge defect type according to the present invention.
  • the apparatus for determining a partial discharge defect type according to the present invention includes a sensor connected to a transformer externally, and determines a partial discharge defect type by analyzing signals detected by the sensors.
  • Fig. 2 is a block diagram showing the configuration of the partial discharge defect type determining apparatus according to the present invention.
  • the partial discharge defect type determining apparatus includes a sensor unit 110, an interface unit 120, a controller 130, a storage unit 140, and a defect type analysis unit 160. , A virtual space implementation unit 160, a partial discharge signal analysis unit 170, a calculation unit 180, and a defect type determination unit 180.
  • the sensor unit 110 is connected to a transformer as shown in FIG. 1, and includes a plurality of sensors that detect a partial discharge signal from the transformer.
  • the sensor detecting the partial discharge signal transmits the partial discharge signal event to the controller 130 together with the corresponding partial discharge signal.
  • the defect type analyzing unit 160 generates n parameters for at least one or more defect types as a means for setting a reference value for determining a defect type of the partial discharge.
  • the defect type analysis unit 160 generates n parameters based on the phase Phi, the discharge amount q, and the number of discharges n of the partial discharge signal measured corresponding to the defect types. The related detailed description will be described with reference to FIG. 3.
  • the defect type analyzer 160 calculates n parameter values for each defect type by using the information of the defect types and the n parameters stored in the storage 140.
  • a configuration for calculating n parameter values for each defect type will be described in more detail with reference to FIG. 4. Refer to FIG. 5 for parameter values for each defect type calculated through the process as shown in FIG. 4. Similarly, the parameter values for each defect type shown in FIG. 5 are stored in the storage 140.
  • the virtual space implementation unit 150 forms a virtual space corresponding to the n parameters generated based on the defect types causing the partial discharge.
  • the virtual space refers to an n-dimensional space composed of n axes corresponding to each of the n parameters.
  • the virtual space implementation unit 150 forms a 25-dimensional virtual space consisting of 25 axes corresponding to each parameter. At this time, different parameters correspond to each of the 25 axes.
  • the virtual space implementation unit 150 arranges the defect type models in the virtual space by combining parameter values corresponding to the n parameters for each of the defect types. At this time, the virtual space implementation unit 150 arranges each parameter value for each defect type in the virtual space, and calculates a coordinate value of an intermediate position for the cluster for each defect type when a cluster having a constant distribution of each parameter value is formed. . At this time, the defect type model is disposed at the coordinate value of the intermediate position.
  • the virtual space implementation unit 150 stores the coordinate values calculated for each defect type in the storage unit 140 as position information of each defect type model.
  • the defect type model is arranged for each defect type. Defect type model arrangement operation for each defect type will be described in more detail with reference to FIG. 6.
  • the partial discharge signal analysis unit 170 analyzes the generated partial discharge signal when the partial discharge signal event occurs, and extracts parameter values corresponding to n parameters based on the analysis result. A detailed operation description thereof will be described with reference to FIG. 7.
  • the virtual space implementation unit 150 combines the n parameter values extracted by the partial discharge signal analysis unit 170 to place the partial discharge model on the nth virtual space.
  • a partial discharge model arrangement operation according to the partial discharge signal event will be described in more detail with reference to FIG. 8.
  • the calculation unit 180 calculates a distance value between the defect type models and the partial discharge model by comparing the position information of the defect type models and the position information of the partial discharge model.
  • the equation for calculating the distance value between the defect type models and the partial discharge model is shown in Equation 1 below.
  • Equation 1 calculates the distance between the Corona defect type model and the partial discharge model, and c0p1, c0p2, c0p3, ..., c0p25 are intermediate in each parameter dimension of the Corona defect type. It shows the position coordinate value.
  • e1p1, e1p2, e1p3, ..., e1p25 represent intermediate position coordinate values in each parameter dimension of the first partial discharge signal.
  • the calculator 180 calculates a probability value of defect types for the partial discharge signal event from the calculated distance value.
  • the equation for calculating the probability of defect types for the partial discharge signal event from the distance value is shown in Equation 2 below.
  • Dp, Df, Dc, Dv, and Dn are distance values between the partial discharge model and each defect type model
  • D major is a distance value between the partial discharge model and the major defect type.
  • Equation 2] is not an absolute equation, and the probability value according to the present invention may be calculated based on the ratio of the distance values.
  • the calculation unit 180 calculates a probability value by calculating a ratio of relative distances for each defect type based on the total distance values with the defect types.
  • the defect type determination unit 180 determines a defect type for the partial discharge signal event based on the probability values of the defect types for the partial discharge signal event.
  • the defect type determination unit 180 may determine a defect type for partial discharge by combining with a neural network based defect type determination technique.
  • the defect type determination unit 180 receives a neural network-based defect type determination result for the partial discharge signal event from the outside, and calculates a probability value and a calculation unit 180 from the received neural network-based defect type determination result.
  • the defect type for the partial discharge signal event can be determined by combining the probability values calculated by.
  • the defect type determination unit 180 assigns different weights to the probability values of the defect types and the probability values from the neural network based defect type determination result, and assigns the weights to the probability values from the neural network based defect type determination result.
  • the defect type for the partial discharge signal event is determined by adding the applied probability value and the probability value weighted to the probability values of the defect types calculated by the operation unit 180. In this regard, a more detailed configuration description will be referred to the embodiment of FIG. 9.
  • FIG 3 is an exemplary view showing an embodiment of parameters according to the present invention.
  • the defect type analysis unit 160 sets parameters based on the phase Phi, the discharge amount q, and the number of discharges n of the partial discharge signal measured corresponding to the defect types. Create
  • the defect type analysis unit 160 uses the phase, the discharge amount, and the discharge frequency as variables, and includes the phase-discharge amount (Phi-q), the phase-discharge frequency (Phi-n), and the discharge amount-discharge It is classified into three types of two-dimensional distribution of the number qn.
  • the parameters of the phase-discharge amount (Phi-q) and the phase-discharge frequency (Phi-n) type are classified into positive and negative since the phase is a dependent variable.
  • the defect type analysis unit 160 sets the phase-discharge amount Phi-q and the phase-discharge frequency Phi-n to be positive and negative, respectively. Classify the maximum, minimum, and std. For each of the positive and negative characteristics. Create parameters for Dev., Skewness, and Kurtosis.
  • the parameters of the discharge amount-discharge frequency (q-n) type do not consider the polarity since the dependent variable has a linear characteristic.
  • the maximum value is set to 100 to normalize.
  • the defect type analysis unit 160 does not classify the discharge amount-discharge frequency (q-n) type without any polarity classification. Create parameters for Dev., Skewness, and Kurtosis.
  • the positive and negative polarities of the phase-discharge amount Phi-q, the positive and negative polarities of the phase-discharge frequency Phi-n, and the discharge amount are as follows. -Maximum, Minimum, Std. For each discharge frequency (qn). Generates parameters of Dev., Skewness, Kurtosis, so a total of 25 parameters are created.
  • parameter generation criteria or the number of generated parameters can be changed according to the setting, and is not limited to any one criterion.
  • FIG. 4 is an exemplary diagram referred to for describing an operation of calculating a parameter value for each defect type according to the present invention.
  • the defect type analyzer 160 generates parameter values by applying a partial discharge signal based on a defect type stored in the storage 140 to each parameter.
  • the signal is first related to the particle defect type. Apply to each parameter, and as a result yield n parameter values such as p1, p2, p3, ..., pn.
  • This process performs the same process for each of Floating, Corona, Viod, and Noise, thereby calculating n parameter values for each defect type.
  • FIG. 5 is an exemplary view showing a parameter value for each defect type according to the present invention.
  • the defect type analysis unit 160 has parameter values corresponding to n parameters from the partial discharge signal based on particles, that is, p1, p2, p3, ..., pn. To calculate. Similarly, the defect type analyzing unit 160 calculates parameter values corresponding to n parameters, that is, f1, f2, f3,..., Fn, from the partial discharge signal based on floating. In addition, the defect type analysis unit 160 calculates n parameter values, that is, c1, c2, c3, ..., cn from the partial discharge signal based on corona, and the partial discharge based on the cavity.
  • N parameter values i.e., v1, v2, v3, ..., vn
  • n parameter values i.e., n1, n2, n3, ..., from the partial discharge signal based on noise.
  • FIG. 6 is an exemplary view showing a defect type model disposed in a virtual space according to the present invention. As shown in FIG. 6, assuming that the number of parameters generated in FIG. 3 is 25, 25 axes in the virtual space do.
  • the virtual space implementing unit 150 arranges 25 parameter values calculated for the particle defect type on each of 25 axes, and sets the parameter values on each axis. Place the particle defect type model at the combined intermediate position coordinates.
  • Particle defect type model is denoted by p0.
  • the virtual space implementation unit 150 arranges 25 parameter values calculated for the floating defect type in each of 25 axes, and sets parameter values in each axis. Place the floating defect type model at the combined intermediate position coordinates. Floating defect type models are denoted by f0.
  • the virtual space implementation unit 150 performs the same process for each of Corona, Viod, and Noise, such as a Corona defect type model, a Viod defect type model, And a noise defect type model are placed in the virtual space, respectively.
  • a Corona defect type model is represented by c0
  • the void defect type model is represented by v0
  • the noise defect type model is represented by n0.
  • FIG. 7 is an exemplary diagram referred to for explaining an operation of calculating a parameter value of a partial discharge signal according to the present invention.
  • the partial discharge signal analyzer 170 generates the parameter values by applying the partial discharge signal detected by the sensors to the respective parameters.
  • the partial discharge signal analyzer 170 applies the corresponding partial discharge signals to n parameters, respectively, and calculates n parameter values such as e1, e2, e3, ..., en as a result.
  • the virtual space implementation unit 150 combines n parameters for the partial discharge signal calculated in FIG. 7 and arranges a partial discharge model corresponding to the corresponding partial discharge signal event in the n-dimensional virtual space. An embodiment related to this will refer to FIG. 8.
  • FIG 8 is an exemplary view showing a partial discharge model disposed in the virtual space according to the present invention.
  • the virtual space implementation unit 150 includes a particle defect type model, a floating defect type model, a corona defect type model, a void defect type model, Then, the partial discharge model is disposed in the virtual space where the noise defect type models are arranged.
  • the virtual space implementation unit 150 arranges the 25 parameter values calculated for the partial discharge signal on each of the 25 axes, and places the partial discharge model on the intermediate position coordinate values combining the parameter values on each axis.
  • the partial discharge model is denoted by e0.
  • the calculation unit 180 may determine a particle defect type model, a floating defect type model, a corona defect type model, a cavity defect type model based on a partial discharge model disposed in a virtual space. And distance values between noise defect type models.
  • the distance value between the partial discharge model and each defect type model is calculated using Equation 1 described above.
  • the distance value between the partial discharge model and the particle defect type model is Dp
  • the distance value between the partial discharge model and the floating defect type model is Df
  • the distance value between the partial discharge model and the Corona defect type model is defined as Dc
  • the distance value between the partial discharge model and the void defect type model is Dv
  • the distance value between the partial discharge model and the noise defect type model is defined as Dn.
  • the distance values Dp, Df, Dc, Dv, and Dn between the partial discharge model and each defect type model are applied to calculate the probability value of each defect type for the partial discharge signal.
  • FIG 9 is an exemplary view referred to for explaining the operation of determining the partial discharge defect type according to the present invention.
  • the partial discharge defect type determining apparatus may determine a defect type for partial discharge in combination with a neural network based defect type determination technique. .
  • the apparatus for determining the partial discharge defect type receives a neural network based defect type determination result for the corresponding partial discharge signal event from the outside, and calculates the received neural network based defect type determination result and the calculation unit 180.
  • the probability type can be combined to determine the defect type for the partial discharge signal event.
  • the neural network-based defect type determination result is described as being externally received, but the neural network-based defect type determination result is not received externally, and in the partial discharge defect type determination apparatus according to the present invention. It may be performed separately.
  • the defect type determining unit 180 combines the probability values of the defect types calculated by the calculating unit 180 and the probability values from the neural network based defect type determination result to determine a defect type for the partial discharge signal event. Determine.
  • the defect type determination unit 180 may assign different weights to the probability values of the defect types and the probability values from the neural network based defect type determination result.
  • the defect type determination unit 180 may assign a weight of 0.6 to a probability value from a neural network-based defect type determination result and 0.4 to a probability value of defect types calculated by the calculator 180.
  • the probability value from the neural network-based defect type determination result is 55% noise and the floating 45%
  • the probability values of the defect types calculated by the calculation unit 180 are 70% floating
  • the noise is 30%
  • the probability value from the neural network based defect type determination result is 33% noise and 27% floating.
  • the probability values of the defect types calculated by the calculator 180 may be 28% floating and 12% noise.
  • the defect type determination unit 180 sums 27% of a floating value, which is a probability value from a neural network-based defect type determination result, and 28% of a floating value, which is a probability value of defect types calculated by the calculation unit 180. Finally, it determines 55% of floating.
  • the defect type determination unit 180 sums a noise of 33%, which is a probability value from a neural network-based defect type determination result, and 12% of a noise, which is a probability value of defect types calculated by the calculation unit 180. Finally, the noise is determined to be 45%.
  • 10 and 11 are flowcharts showing an operation flow for determining a partial discharge defect type according to the present invention.
  • the partial discharge defect type determining apparatus generates a criterion for determining a defect type for partial discharge (S100).
  • a defect type for partial discharge S100
  • at least one of a particle, a floating, a corona, a cavity, and a noise may be included as a defect type standard.
  • the apparatus for determining a partial discharge defect type generates a parameter for determining a defect type determined in step S100 (S110), and implements a virtual space having an axis corresponding to the number of parameters generated in step S110 (S120). .
  • the apparatus for determining the partial discharge defect type is based on the partial discharge signal for the defect types such as Particle, Floating, Corona, Viod, and Noise.
  • Parameter values are calculated for the parameters generated in the process (S130), and the corresponding defect type models are arranged in the virtual space of the process 'S120' by combining the respective parameter values (S140).
  • the partial discharge defect type determination device calculates parameter values of parameters of the 'S110' process from the partial discharge signal (S210).
  • the apparatus for determining the partial discharge defect type arranges the partial discharge model in the virtual space of the 'S120' process by combining each parameter value calculated in the 'S210' process (S220).
  • the apparatus for determining the partial discharge defect type calculates a distance value between each of the defect type models disposed in the virtual space and the partial discharge model in step S140 (S230), and calculates a probability value for each defect type from the calculated distance value. To calculate (S240).
  • the partial discharge defect type determination apparatus receives a neural network based defect type determination result (S250), and calculates a probability value for each defect type from the neural network based defect type determination result (S260).
  • the apparatus for determining the partial discharge defect type assigns different weights to the probability values based on the neural network based determination result and the probability values calculated in the 'S240' process (S270), and thus the probability values based on the neural network based determination result and 'S240'.
  • S280 the probability values calculated in the process
  • S290 a defect type determination result for the partial discharge is generated (S290).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

본 발명은 부분방전 결함유형 판정 방법 및 그 장치에 관한 것으로, 부분방전을 발생시키는 결함유형들을 기준으로 생성된 n개의 파라미터들에 대응하는 가상 공간을 형성하고, 상기 결함유형들 각각에 대한 상기 n개의 파라미터들의 파라미터 값들을 조합하여 상기 가상 공간상에 결함유형모델들을 배치하는 단계, 부분방전신호 이벤트 발생 시, 발생된 부분방전신호에 근거하여 상기 n개의 파라미터들에 해당하는 파라미터 값들을 추출하고, 상기 파라미터 값들을 조합하여 상기 가상 공간상에 부분방전모델을 배치하는 단계, 상기 결함유형모델들의 위치 정보와 상기 부분방전모델의 위치 정보를 비교하여 상기 결함유형모델들과 상기 부분방전모델 사이의 거리값을 산출하는 단계, 상기 산출하는 단계에서 산출된 상기 거리값으로부터 상기 부분방전신호 이벤트에 대한 상기 결함유형들의 확률값을 산출하는 단계, 및 상기 부분방전신호 이벤트에 대한 상기 결함유형들의 확률값에 근거하여 상기 부분방전신호 이벤트에 대한 결함유형을 판정하는 단계를 포함한다.

Description

부분방전 결함유형 판정 방법 및 그 장치
본 발명은 부분방전 결함유형 판정 방법 및 그 장치(Method for deciding defect type of partial discharge and apparatus thereof)에 관한 것으로, 더욱 상세하게는 뉴럴 네트워크 결함유형 판정 기법의 취약점을 보강하기 위한 새로운 결함유형 판정 기법을 적용한 부분방전 결함유형 판정 방법 및 그 장치에 관한 것이다.
현재 GIS(Gas Insulated Switchgear) 고장예방을 위해 사용하고 있는 UHF(Ultra High Frequency) 부분방전 진단 온라인 시스템과 포터블 장비에는 결함의 종류를 인식하기 위한 판정방법이 소프트웨어의 핵심 내용으로 탑재되어 있다.
이 결함 인식용 판정방법은 신경망(Neural Network)을 이용하여 기 정의된 결함의 종류와 일치될 확률의 형태로 결과를 표시하며, Neural Network는 위상, 방전량, 방전횟수 등을 기준으로 산출된 수백 개 이상의 학습 데이터를 이용하여 검출된 부분방전신호의 결함유형을 판정한다.
현재 사용하고 있는 Neural Network 판정방법은 학습되지 않은 패턴에 의한 파라미터에서는 결함유형 판정의 정확도가 현저히 떨어지고 다른 결함으로 판정하게 되는 원천적인 문제점을 내포하고 있어, 발생할 수 있는 모든 결함에 대하여 모의하고 학습시켜야 한다.
특히 온라인 시스템은 매우 많은 양의 이벤트가 발생되어 이를 개별적으로 확인, 분석하는데 많은 인력과 시간이 소요되고 있으며 포터블 장비도 다른 결함의 형태를 결과물로 나타내는 경우가 많은데, 이러한 경우 온라인 시스템과 마찬가지로 기기 상태를 판단하는데 많은 인력과 시간이 소요되며 잘못된 대처가 이루어 질 수 있는 개연성이 있어 결함을 노이즈로 판정할 경우 사전에 고장 발생을 예방할 수 없으며, 노이즈를 결함으로 판정할 경우 과잉 점검에 따른 경제적 손실을 수반하고 있는 실정이다.
본 발명의 목적은, 기존에 사용하고 있는 부분방전 진단시스템 및 장비의 뉴럴 네트워크 결함유형 판정방법이 판정의 정확도가 현저히 떨어지고 다른 결함으로 판정하게 되는 원천적인 취약점을 보강하기 위한 새로운 결함유형 판정 기법을 적용한 부분방전 결함유형 판정 방법 및 그 장치를 제공함에 있다.
또한, 본 발명의 다른 목적은 기 사용중인 뉴럴 네트워크 판정방법과 병행하여 사용하도록 가중치를 주어 결함유형 판정의 정확도를 향상시키기 위한 부분방전 결함유형 판정 방법 및 그 장치를 제공함에 있다.
상기의 목적을 달성하기 위한 본 발명에 따른 부분방전 결함유형 판정 방법은, 부분방전을 발생시키는 결함유형들을 기준으로 생성된 n개의 파라미터들에 대응하는 가상 공간을 형성하고, 상기 결함유형들 각각에 대한 상기 n개의 파라미터들의 파라미터 값들을 조합하여 상기 가상 공간상에 결함유형모델들을 배치하는 단계, 부분방전신호 이벤트 발생 시, 발생된 부분방전신호에 근거하여 상기 n개의 파라미터들에 해당하는 파라미터 값들을 추출하고, 상기 파라미터 값들을 조합하여 상기 가상 공간상에 부분방전모델을 배치하는 단계, 상기 결함유형모델들의 위치 정보와 상기 부분방전모델의 위치 정보를 비교하여 상기 결함유형모델들과 상기 부분방전모델 사이의 거리값을 산출하는 단계, 상기 산출하는 단계에서 산출된 상기 거리값으로부터 상기 부분방전신호 이벤트에 대한 상기 결함유형들의 확률값을 산출하는 단계, 및 상기 부분방전신호 이벤트에 대한 상기 결함유형들의 확률값에 근거하여 상기 부분방전신호 이벤트에 대한 결함유형을 판정하는 단계를 포함하는 것을 특징으로 한다.
상기 가상 공간은 상기 n개의 파라미터들 각각에 대응하는 n개의 축으로 이루어진 n차원 공간인 것을 특징으로 한다.
상기 결함유형들을 배치하는 단계는, 상기 가상 공간상에서 상기 결함유형별로 상기 파라미터 값들을 배치하고, 상기 파라미터 값들이 일정한 분포를 갖는 군집을 형성하면 상기 결함유형별로 해당 군집에 대한 중간 위치의 좌표값을 산출하는 단계, 및 상기 결함유형별로 산출된 좌표값을 상기 각 결함유형모델의 위치 정보로 저장하는 단계를 포함하는 것을 특징으로 한다.
상기 결함유형들의 확률값을 산출하는 단계는, 상기 결함유형들과의 전체 거리값을 기준으로 상기 각 결함유형별로 상대적인 거리의 비를 계산하여 상기 확률값을 산출하는 것을 특징으로 한다.
상기 확률값은, 상기 부분방전모델과 상기 결함유형모델 사이의 거리값이 가까울수록 높은 확률값을 갖는 것을 특징으로 한다.
상기 결함유형들과 상기 부분방전신호 이벤트에 대한 뉴럴 네트워크 기반의 결함유형 판정 결과를 수신하는 단계를 더 포함하는 것을 특징으로 한다.
상기 결함유형을 판정하는 단계는, 상기 결함유형들의 확률값과, 상기 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값들을 조합하여 상기 부분방전신호 이벤트에 대한 결함유형을 판정하는 것을 특징으로 한다.
상기 결함유형을 판정하는 단계는, 상기 결함유형들의 확률값과, 상기 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값들에 서로 다른 가중치를 부여하는 것을 특징으로 한다.
상기 결함유형을 판정하는 단계는, 상기 서로 다른 가중치를 부여한 상기 결함유형들의 확률값과, 상기 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값들을 각각 합산하여 상기 부분방전신호 이벤트에 대한 결함유형을 판정하는 것을 특징으로 한다.
상기 파라미터들은, 상기 결함유형들에 대응하여 측정된 부분방전신호의 위상, 방전량, 및 방전횟수를 기초로 하여 생성된 것을 특징으로 한다.
상기 파라미터들은, 상기 위상, 상기 방전량, 및 상기 방전횟수를 변수로 하여, 위상-방전량, 위상-방전횟수, 및 방전량-방전횟수의 세 가지 타입의 2차원 분포로 분류되는 것을 특징으로 한다.
상기 위상-방전량 및 상기 위상-방전횟수 타입의 파라미터들은 위상이 종속변수이므로 정극성과 부극성으로 분류되는 것을 특징으로 한다.
상기 방전량-방전횟수 타입의 파라미터들은 종속변수가 선형 특성을 가지므로 최대값을 100으로 하여 노멀라이징(Normalizing)하는 것을 특징으로 한다.
상기 부분방전 결함유형은, 입자(Particle), 플로팅(Floating), 코로나(Corona), 공동(Viod), 및 노이즈(Noise) 중 적어도 어느 하나를 포함하는 것을 특징으로 한다.
한편, 상기의 목적을 달성하기 위한 본 발명에 따른 부분방전 결함유형 판정 장치는, 부분방전을 발생시키는 결함유형들을 기준으로 생성된 n개의 파라미터들에 대응하는 가상 공간을 형성하는 가상공간 구현부, 부분방전신호 이벤트 발생 시, 발생된 부분방전신호에 근거하여 상기 n개의 파라미터들에 해당하는 파라미터 값들을 추출하는 부분방전신호 분석부, 상기 결함유형들 각각에 대한 상기 n개의 파라미터들의 파라미터 값들을 조합하여 상기 가상 공간상에 배치된 결함유형모델들의 위치 정보와 부분방전신호에 대한 상기 n개의 파라미터들의 파라미터 값들을 조합하여 상기 가상 공간상에 배치된 부분방전모델의 위치 정보를 비교하여 상기 결함유형모델들과 상기 부분방전모델 사이의 거리값을 산출하고, 상기 거리값으로부터 상기 부분방전신호 이벤트에 대한 상기 결함유형들의 확률값을 산출하는 연산부, 및 상기 부분방전신호 이벤트에 대한 상기 결함유형들의 확률값에 근거하여 상기 부분방전신호 이벤트에 대한 결함유형을 판정하는 결함유형 판정부를 포함하는 것을 특징으로 한다.
상기 결함유형 판정부는, 상기 결함유형들과 상기 부분방전신호 이벤트에 대한 뉴럴 네트워크 기반의 결함유형 판정 결과를 수신하고, 상기 결함유형들의 확률값과, 상기 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값들을 조합하여 상기 부분방전신호 이벤트에 대한 결함유형을 판정하는 것을 특징으로 한다.
상기 결함유형 판정부는, 상기 결함유형들의 확률값과, 상기 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값들에 서로 다른 가중치를 부여하는 것을 특징으로 한다.
상기 결함유형 판정부는, 상기 서로 다른 가중치를 부여한 상기 결함유형들의 확률값과, 상기 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값들을 각각 합산하여 상기 부분방전신호 이벤트에 대한 결함유형을 판정하는 것을 특징으로 한다.
본 발명에 따르면, 기존에 사용하고 있는 뉴럴 네트워크 기반의 결함유형 판정기법의 취약점을 보강하고, 결함유형 판정의 정확도를 향상시킬 수 있는 이점이 있다.
본 발명에 따르면, 실제 결함을 노이즈로 판정하는 오류를 최소화하여 고장발생을 예방하고, 과잉 점검에 따른 경제적 손실을 감소시킬 수 있는 이점이 있다.
도 1은 본 발명에 따른 부분방전 결함유형 판정 장치의 기본 개념을 도시한 도이다.
도 2는 본 발명에 따른 부분방전 결함유형 판정 장치의 구성을 도시한 블록도이다.
도 3은 본 발명에 따른 파라미터들의 실시예를 나타낸 예시도이다.
도 4는 본 발명에 따른 결함유형별 파라미터 값을 산출하는 동작을 설명하는데 참조되는 예시도이다.
도 5는 본 발명에 따른 결함유형별 파라미터 값을 나타낸 예시도이다.
도 6은 본 발명에 따른 가상공간에 배치된 결함유형모델을 나타낸 예시도이다.
도 7은 본 발명에 따른 부분방전신호의 파라미터 값을 산출하는 동작을 설명하는데 참조되는 예시도이다.
도 8은 본 발명에 따른 가상공간에 배치된 부분방전모델을 나타낸 예시도이다.
도 9는 본 발명에 따른 부분방전 결함유형을 판정하는 동작을 설명하는데 참조되는 예시도이다.
도 10 및 도 11은 본 발명에 따른 부분방전 결함유형을 판정하는 동작 흐름을 도시한 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명한다.
도 1은 본 발명에 따른 부분방전 결함유형 판정 장치의 기본 개념을 도시한 도이다. 도 1에 도시된 바와 같이, 본 발명에 따른 부분방전 결함유형 판정 장치는 외부에 변전기기와 연결된 센서를 구비하고, 각 센서들에 의해 검출되는 신호를 분석하여 부분방전 결함유형을 판정한다.
본 발명에 따른 부분방전 결함유형 판정 장치에 대한 세부 구성은 도 2를 참조하여 설명하도록 한다.
도 2는 본 발명에 따른 부분방전 결함유형 판정 장치의 구성을 도시한 블록도이다.
도 2에 도시된 바와 같이, 본 발명에 따른 부분방전 결함유형 판정 장치는, 센서부(110), 인터페이스부(120), 제어부(130), 저장부(140), 결함유형 분석부(160), 가상공간 구현부(160), 부분방전신호 분석부(170), 연산부(180), 및 결함유형 판정부(180)를 포함한다.
먼저, 센서부(110)는 도 1에서와 같이 변전기기에 연결되어, 변전기기로부터의 부분방전신호를 검출하는 복수의 센서들을 포함한다. 이때, 부분방전신호를 검출한 센서는 해당 부분방전신호와 함께 부분방전신호 이벤트를 제어부(130)로 송신한다.
결함유형 분석부(160)는 부분방전의 결함유형을 판정하기 위한 기준값을 설정하는 수단으로서, 적어도 하나 이상의 결함유형들에 대한 n개의 파라미터들을 생성한다.
이때, 결함유형 분석부(160)는 결함유형들에 대응하여 측정된 부분방전신호의 위상(Phi), 방전량(q), 및 방전횟수(n)를 기초로 n개의 파라미터들을 생성하는데, 이와 관련된 구체적인 설명은 도 3을 참조하도록 한다.
결함유형들 각각에 대한 정보 및, 결함유형 분석부(160)에 의해 생성된 n개의 파라미터들은 저장부(140)에 저장된다.
또한, 결함유형 분석부(160)는 저장부(140)에 저장된 결함유형들의 정보 및 n개의 파라미터를 이용하여, 각 결함유형들에 대한 n개의 파라미터 값들을 산출한다. 각각의 결함유형들에 대한 n개의 파라미터 값들을 산출하는 구성은 도 4를 참조하여 보다 상세히 설명하고자 한다. 도 4와 같은 과정을 통해 산출된 각 결함유형별 파라미터 값들은 도 5를 참조하도록 한다. 마찬가지로 도 5에 도시된 각 결함유형별 파라미터 값들은 저장부(140)에 저장된다.
가상공간 구현부(150)는 부분방전을 발생시키는 결함유형들을 기준으로 생성된 n개의 파라미터들에 대응하는 가상 공간을 형성한다. 이때, 가상 공간은 n개의 파라미터들 각각에 대응하는 n개의 축으로 이루어진 n차원 공간을 말한다.
본 발명에서는 도 3의 실시예를 토대로 하여 가상 공간을 설명하고자 한다. 다시 말해, 도 3에서 생성된 파라미터의 개수는 25개이다. 따라서, 가상공간 구현부(150)는 각 파라미터들에 대응하는 25개의 축으로 이루어진 25차원의 가상공간을 형성한다. 이때, 25개의 각 축에는 서로 다른 파라미터들이 각각 대응된다.
또한, 가상공간 구현부(150)는 결함유형들 각각에 대한 n개의 파라미터들에 대응하는 파라미터 값들을 조합하여 가상 공간상에 결함유형모델들을 배치한다. 이때, 가상공간 구현부(150)는 가상 공간상에서 결함유형별로 각 파라미터 값들을 배치하고, 각 파라미터 값들이 일정한 분포를 갖는 군집이 형성되면 결함유형별로 해당 군집에 대한 중간 위치의 좌표값을 산출한다. 이때, 결함유형모델은 중간 위치의 좌표값에 배치된다.
따라서, 가상공간 구현부(150)는 결함유형별로 산출된 좌표값을 각 결함유형모델의 위치 정보로 저장부(140)에 저장한다. 결함유형모델은 각 결함유형별로 배치된다. 각각의 결함유형들에 대한 결함유형모델 배치 동작은 도 6을 참조하여 보다 상세히 설명하도록 한다.
한편, 부분방전신호 분석부(170)는 부분방전신호 이벤트 발생 시, 발생된 부분방전신호를 분석하고, 분석 결과에 근거하여 n개의 파라미터들에 대응하는 파라미터 값들을 추출한다. 이와 관련된 구체적인 동작 설명은 도 7을 참조한다.
이때, 가상공간 구현부(150)는 부분방전신호 분석부(170)에 의해 추출된 n개의 파라미터 값들을 조합하여 n차 가상 공간상에 부분방전모델을 배치한다. 부분방전신호 이벤트에 따른 부분방전모델 배치 동작은 도 8을 참조하여 보다 상세히 설명하도록 한다.
연산부(180)는 결함유형모델들의 위치 정보와 부분방전모델의 위치 정보를 비교하여 결함유형모델들과 부분방전모델 사이의 거리값을 산출한다. 결함유형모델들과 부분방전모델 사이의 거리값을 산출하는 식은 아래 [수학식 1]과 같다.
수학식 1
Figure PCTKR2012007482-appb-M000001
[수학식 1]은 코로나(Corona) 결함유형모델과 부분방전모델 간 거리를 산출하는 식으로, c0p1, c0p2, c0p3, ..., c0p25는 코로나(Corona) 결함유형의 각 파라미터 차원에서의 중간 위치 좌표값을 나타낸 것이다. 또한 e1p1, e1p2, e1p3, ..., e1p25는 첫 번째 부분방전신호의 각 파라미터 차원에서의 중간 위치 좌표값을 나타낸 것이다.
또한, 연산부(180)는 산출된 거리값으로부터 부분방전신호 이벤트에 대한 결함유형들의 확률값을 산출한다. 거리값으로부터 부분방전신호 이벤트에 대한 결함유형들의 확률값을 산출하는 식은 아래 [수학식 2]와 같다.
수학식 2
Figure PCTKR2012007482-appb-M000002
여기서, Dp, Df, Dc, Dv, 및 Dn은 부분방전모델과 각 결함유형모델들 사이의 거리값이고, Dmajor은 부분방전모델과 주요 결함유형 간 거리값이다. 상기의 수학식 2]는 절대적인 식은 아니며, 본 발명에 따른 확률값은 각 거리값들의 비율에 근거하여 산출될 수 있다.
이때, 연산부(180)는 결함유형들과의 전체 거리값을 기준으로 각 결함유형별로 상대적인 거리의 비를 계산하여 확률값을 산출한다. 여기서, 확률값은 부분방전모델과 결함유형모델 사이의 거리값이 가까울수록 높은 확률값을 갖는다. 다시 말해, P 값이 작을수록 높은 확룔값을 갖는 것으로 한다. 예를 들어, P=0일 때, 확률값은 100%가 된다.
결함유형 판정부(180)는 부분방전신호 이벤트에 대한 결함유형들의 확률값에 근거하여 부분방전신호 이벤트에 대한 결함유형을 판정한다.
또한, 결함유형 판정부(180)는 기존에 이용되고 있는 뉴럴 네트워크(Neural Network) 기반의 결함유형 판정 기법과 결합하여 부분방전에 대한 결함유형을 판정할 수 있다.
다시 말해, 결함유형 판정부(180)는 외부로부터 해당 부분방전신호 이벤트에 대한 뉴럴 네트워크 기반의 결함유형 판정 결과를 수신하고, 수신된 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값과 연산부(180)에 의해 산출된 확률값을 조합하여 부분방전신호 이벤트에 대한 결함유형을 판정할 수 있다.
이때, 결함유형 판정부(180)는 결함유형들의 확률값과, 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값들에 서로 다른 가중치를 부여하고, 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값에 가중치를 적용한 확률값과 연산부(180)에 의해 산출된 결함유형들의 확률값에 가중치를 부여한 확률값을 합산하여 부분방전신호 이벤트에 대한 결함유형을 판정한다. 이와 관련하여 보다 상세한 구성 설명은 도 9의 실시예를 참조하도록 한다.
도 3은 본 발명에 따른 파라미터들의 실시예를 나타낸 예시도이다.
도 3에 도시된 바와 같이, 결함유형 분석부(160)는 결함유형들에 대응하여 측정된 부분방전신호의 위상(Phi), 방전량(q), 및 방전횟수(n)를 기초로 파라미터들을 생성한다.
이때, 결함유형 분석부(160)는 위상, 상기 방전량, 및 상기 방전횟수를 변수로 하여, 위상-방전량(Phi-q), 위상-방전횟수(Phi-n), 및 방전량-방전횟수(q-n)의 세가지 타입의 2차원 분포로 분류한다. 여기서, 위상-방전량(Phi-q) 및 위상-방전횟수(Phi-n) 타입의 파라미터들은 위상이 종속변수이므로 정극성(Positive)과 부극성(Negative)으로 분류된다.
따라서, 도 3의 실시예에서, 결함유형 분석부(160)는 위상-방전량(Phi-q)과 위상-방전횟수(Phi-n)을 각각 정극성(Positive)과 부극성(Negative)으로 분류하고, 정극성(Positive)과 부극성(Negative) 각각의 특성에 대하여 Maximum, Minimum, Std. Dev., Skewness, Kurtosis의 파라미터들을 생성한다.
한편, 방전량-방전횟수(q-n) 타입의 파라미터들은 종속변수가 선형 특성을 가지므로 극성은 고려하지 않는다. 다만, 최대값을 100으로하여 노멀라이징(Normalizing)하도록 한다.
따라서, 결함유형 분석부(160)는 방전량-방전횟수(q-n) 타입에 대해 별도의 극성 분류 없이 Maximum, Minimum, Std. Dev., Skewness, Kurtosis의 파라미터들을 생성한다.
이와 같이, 위상-방전량(Phi-q)의 정극성(Positive)과 부극성(Negative), 위상-방전횟수(Phi-n)의 정극성(Positive)과 부극성(Negative), 그리고 방전량-방전횟수(q-n) 각각에 대하여 Maximum, Minimum, Std. Dev., Skewness, Kurtosis의 파라미터들을 생성하므로, 총 25개의 파라미터들을 생성한다.
물론, 파라미터 생성 기준이나, 생성되는 파라미터들의 개수는 설정에 따라 변경 가능하며, 어느 하나의 기준에 한정되는 것은 아니다.
도 4는 본 발명에 따른 결함유형별 파라미터 값을 산출하는 동작을 설명하는데 참조되는 예시도이다.
도 4에 도시된 바와 같이, 결함유형 분석부(160)는 저장부(140)에 저장된 결함유형에 근거한 부분방전신호를 각각의 파라미터에 적용하여 파라미터 값들을 생성한다.
일 예로서, 결함유형이 입자(Particle), 플로팅(Floating), 코로나(Corona), 공동(Viod), 및 노이즈(Noise)라고 한다면, 먼저 입자(Particle) 결함유형과 관련하여 해당 신호를 n개의 파라미터에 각각 적용하고, 그 결과로서 p1, p2, p3, ..., pn과 같은 n개의 파라미터 값들을 산출한다.
이와 같은 과정은 플로팅(Floating), 코로나(Corona), 공동(Viod), 및 노이즈(Noise) 각각에 대해서도 동일한 과정을 수행함으로써, 각 결함유형마다 n개의 파라미터 값을 산출하게 된다.
각 결함유형에 대해 생성된 파라미터 값들은 도 5와 같다.
도 5는 본 발명에 따른 결함유형별 파라미터 값을 나타낸 예시도이다.
앞서, 도 4에서 설명한 바와 같이, 결함유형 분석부(160)는 입자(Particle)에 근거한 부분방전신호로부터 n개의 파라미터들에 해당되는 파라미터 값들, 즉, p1, p2, p3, ..., pn을 산출한다. 마찬가지로, 결함유형 분석부(160)는 플로팅(Floating)에 근거한 부분방전신호로부터 n개의 파라미터들에 해당되는 파라미터 값들, 즉, f1, f2, f3, ..., fn을 산출한다. 또한, 결함유형 분석부(160)는 코로나(Corona)에 근거한 부분방전신호로부터 n개의 파라미터 값들, 즉, c1, c2, c3, ..., cn을 산출하고, 공동(Viod)에 근거한 부분방전신호로부터 n개의 파라미터 값들, 즉, v1, v2, v3, ..., vn을 산출하고, 노이즈(Noise)에 근거한 부분방전신호로부터 n개의 파라미터 값들, 즉, n1, n2, n3, ..., nn을 산출한다.
도 6은 본 발명에 따른 가상공간에 배치된 결함유형모델을 나타낸 예시도이다.도 6에 도시된 바와 같이, 도 3에서 생성된 파라미터들의 개수가 25개라고 가정하면, 가상공간상의 축은 25개가 된다.
여기서, 가상공간 구현부(150)는 입자(Particle) 결함유형모델을 배치하기 위해서는 입자(Particle) 결함유형에 대하여 산출된 25개의 파라미터 값들을 25개의 각 축에 배치하고, 각 축에서 파라미터 값들을 조합한 중간 위치 좌표값에 입자(Particle) 결함유형모델을 배치한다. 입자(Particle) 결함유형모델은 p0으로 표기한다.
한편, 가상공간 구현부(150)는 플로팅(Floating) 결함유형모델을 배치하기 위해서는 플로팅(Floating) 결함유형에 대하여 산출된 25개의 파라미터 값들을 25개의 각 축에 배치하고, 각 축에서 파라미터 값들을 조합한 중간 위치 좌표값에 플로팅(Floating) 결함유형모델을 배치한다. 플로팅(Floating) 결함유형모델은 f0으로 표기한다.
또한, 가상공간 구현부(150)는 코로나(Corona), 공동(Viod), 및 노이즈(Noise) 각각에 대해서도 동일한 과정을 수행함으로써, 코로나(Corona) 결함유형모델, 공동(Viod) 결함유형모델, 및 노이즈(Noise) 결함유형모델을 가상공간상에 각각 배치한다. 이때, 코로나(Corona) 결함유형모델은 c0, 공동(Viod) 결함유형모델은 v0, 그리고 노이즈(Noise) 결함유형모델은 n0으로 표기한다.
도 7은 본 발명에 따른 부분방전신호의 파라미터 값을 산출하는 동작을 설명하는데 참조되는 예시도이다.
도 7에 도시된 바와 같이, 부분방전신호 분석부(170)는 센서들에 의해 검출된 부분방전신호를 각각의 파라미터들에 각각 적용하여 파라미터 값들을 생성한다.
일 예로서, 부분방전신호 분석부(170)는 해당 부분방전신호를 n개의 파라미터에 각각 적용하고, 그 결과로서 e1, e2, e3, ..., en과 같은 n개의 파라미터 값들을 산출한다.
여기서, 가상공간 구현부(150)는 도 7에서 산출된 부분방전신호에 대한 n개의 각 파라미터들을 조합하여 n차원의 가상공간 상에 해당 부분방전신호 이벤트에 대응하는 부분방전모델을 배치한다. 이와 관련된 실시예는 도 8을 참조하도록 한다.
도 8은 본 발명에 따른 가상공간에 배치된 부분방전모델을 나타낸 예시도이다.
도 8의 실시예도 도 6의 실시예와 마찬가지로 생성된 파라미터들의 개수가 25개라고 가정하면, 가상공간상의 축은 25개가 된다.
여기서, 가상공간 구현부(150)는 부분방전신호 이벤트가 발생하면, 입자(Particle) 결함유형모델, 플로팅(Floating) 결함유형모델, 코로나(Corona) 결함유형모델, 공동(Viod) 결함유형모델, 그리고 노이즈(Noise) 결함유형모델들이 배치된 가상공간 상에 부분방전모델을 배치한다.
이때, 가상공간 구현부(150)는 부분방전신호에 대하여 산출된 25개의 파라미터 값들을 25개의 각 축에 배치하고, 각 축에서 파라미터 값들을 조합한 중간 위치 좌표값에 부분방전모델을 배치한다. 부분방전모델은 e0으로 표기한다.
이후, 연산부(180)는 가상공간 상에 배치된 부분방전모델을 기준으로 입자(Particle) 결함유형모델, 플로팅(Floating) 결함유형모델, 코로나(Corona) 결함유형모델, 공동(Viod) 결함유형모델, 그리고 노이즈(Noise) 결함유형모델 사이의 거리값을 산출한다.
부분방전모델과 각 결함유형모델들 사이의 거리값은 상기한 [수학식 1]을 이용하여 산출하도록 한다.
이때, 부분방전모델과 입자(Particle) 결함유형모델 사이의 거리값을 Dp, 부분방전모델과 플로팅(Floating) 결함유형모델 사이의 거리값을 Df, 부분방전모델과 코로나(Corona) 결함유형모델 사이의 거리값을 Dc, 부분방전모델과 공동(Viod) 결함유형모델 사이의 거리값을 Dv, 그리고 부분방전모델과 노이즈(Noise) 결함유형모델 사이의 거리값을 Dn으로 정의한다.
부분방전모델과 각 결함유형모델들 사이의 거리값 Dp, Df, Dc, Dv, 및 Dn은 부분방전신호에 대한 각 결함유형들의 확률값을 산출하는데 적용된다.
도 9는 본 발명에 따른 부분방전 결함유형을 판정하는 동작을 설명하는데 참조되는 예시도이다.
도 9에 도시된 바와 같이, 본 발명에 따른 부분방전 결함유형 판정 장치는 기존에 이용되고 있는 뉴럴 네트워크(Neural Network) 기반의 결함유형 판정 기법과 결합하여 부분방전에 대한 결함유형을 판정할 수 있다.
다시 말해, 부분방전 결함유형 판정 장치는 외부로부터 해당 부분방전신호 이벤트에 대한 뉴럴 네트워크 기반의 결함유형 판정 결과를 수신하고, 수신된 뉴럴 네트워크 기반의 결함유형 판정 결과와 연산부(180)에 의해 산출된 확률값을 조합하여 부분방전신호 이벤트에 대한 결함유형을 판정할 수 있다.
본 발명의 실시예에서는 뉴럴 네트워크 기반의 결함유형 판정 결과를 외부에서 수신하는 것으로 기재하였으나, 뉴럴 네트워크 기반의 결함유형 판정 결과를 외부에서 수신하지 않고, 본 발명에 따른 부분방전 결함유형 판정 장치 내에서 별도로 수행될 수도 있다.
더욱 상세하게는, 결함유형 판정부(180)는 연산부(180)에 의해 산출된 결함유형들의 확률값과, 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값들을 조합하여 부분방전신호 이벤트에 대한 결함유형을 판정한다. 이때, 결함유형 판정부(180)는 결함유형들의 확률값과, 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값들에 서로 다른 가중치를 부여할 수 있다.
일 예로서, 결함유형 판정부(180)는 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값에는 0.6, 연산부(180)에 의해 산출된 결함유형들의 확률값에는 0.4의 가중치를 부여할 수 있다.
이 경우, 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값이 노이즈(Noise) 55%, 플로팅(Floating) 45%이고, 연산부(180)에 의해 산출된 결함유형들의 확률값이 플로팅(Floating) 70%, 노이즈(Noise) 30%라고 한다면, 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값은 노이즈(Noise) 33%, 플로팅(Floating) 27%가 된다. 한편, 연산부(180)에 의해 산출된 결함유형들의 확률값은 플로팅(Floating) 28%, 노이즈(Noise) 12%가 된다.
이때, 결함유형 판정부(180)는 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값인 플로팅(Floating) 27%와 연산부(180)에 의해 산출된 결함유형들의 확률값인 플로팅(Floating) 28%를 합산하여 최종적으로 플로팅(Floating) 55%로 판정한다.
또한, 결함유형 판정부(180)는 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값인 노이즈(Noise) 33%와 연산부(180)에 의해 산출된 결함유형들의 확률값인 노이즈(Noise) 12%를 합산하여 최종적으로 노이즈(Noise) 45%로 판정한다.
도 10 및 도 11은 본 발명에 따른 부분방전 결함유형을 판정하는 동작 흐름을 도시한 순서도이다.
도 10에 도시된 바와 같이, 부분방전 결함유형 판정 장치는 부분방전에 대한 결함유형을 판단하기 위한 기준을 생성한다(S100). 이때, 결함유형 기준으로 입자(Particle), 플로팅(Floating), 코로나(Corona), 공동(Viod), 및 노이즈(Noise) 중 적어도 어느 하나가 포함될 수 있다.
부분방전 결함유형 판정 장치는 'S100' 과정에서 결정된 결함유형을 판단하기 위한 파라미터를 생성하고(S110), 'S110' 과정에서 생성된 파라미터들의 개수에 대응하는 축을 갖는 가상공간을 구현한다(S120).
또한, 부분방전 결함유형 판정 장치는 입자(Particle), 플로팅(Floating), 코로나(Corona), 공동(Viod), 및 노이즈(Noise) 등의 결함유형에 대한 부분방전신호를 기초로 하여 'S110' 과정에서 생성된 파라미터들에 대하여 파라미터 값들을 각각 산출하고(S130), 각 파라미터 값을 조합하여 'S120' 과정의 가상공간에 해당 결함유형모델들을 배치한다(S140).
이후, 도 11에서와 같이,부분방전 결함유형 판정 장치는 부분방전신호가 입력되면(S200), 부분방전신호로부터 'S110' 과정의 파라미터들에 대한 파라미터 값을 산출한다(S210). 부분방전 결함유형 판정 장치는 'S210' 과정에서 산출된 각 파라미터 값들을 조합하여 'S120' 과정의 가상공간 상에 부분방전모델을 배치한다(S220).
이때, 부분방전 결함유형 판정 장치는 'S140' 과정에서 가상공간 상에 배치된 각각의 결함유형모델들과 부분방전모델 사이의 거리값을 산출하고(S230), 산출된 거리값으로부터 각 결함유형별 확률값을 산출한다(S240).
이후, 부분방전 결함유형 판정 장치는 뉴럴 네트워크 기반 결함유형 판정결과를 수신하고(S250), 뉴럴 네트워크 기반 결함유형 판정 결과로부터 각 결함유형별 확률값을 산출한다(S260).
또한, 부분방전 결함유형 판정 장치는 뉴럴 네트워크 기반 판정 결과에 의한 확률값들과 'S240' 과정에서 산출된 확률값에 서로 다른 가중치를 부여하여(S270), 뉴럴 네트워크 기반 판정 결과에 의한 확률값들과 'S240' 과정에서 산출된 확률값을 각각 결합함으로써(S280), 부분방전에 대한 결함유형 판정 결과를 생성한다(S290).
이상과 같이 본 발명에 의한 부분방전 결함유형 판정 방법 및 그 장치는 예시된 도면을 참조로 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명은 한정되지 않고, 기술사상이 보호되는 범위 이내에서 응용될 수 있다.

Claims (18)

  1. 부분방전을 발생시키는 결함유형들을 기준으로 생성된 n개의 파라미터들에 대응하는 가상 공간을 형성하고, 상기 결함유형들 각각에 대한 상기 n개의 파라미터들의 파라미터 값들을 조합하여 상기 가상 공간상에 결함유형모델들을 배치하는 단계;
    부분방전신호 이벤트 발생 시, 발생된 부분방전신호에 근거하여 상기 n개의 파라미터들에 해당하는 파라미터 값들을 추출하고, 상기 파라미터 값들을 조합하여 상기 가상 공간상에 부분방전모델을 배치하는 단계;
    상기 결함유형모델들의 위치 정보와 상기 부분방전모델의 위치 정보를 비교하여 상기 결함유형모델들과 상기 부분방전모델 사이의 거리값을 산출하는 단계;
    상기 산출하는 단계에서 산출된 상기 거리값으로부터 상기 부분방전신호 이벤트에 대한 상기 결함유형들의 확률값을 산출하는 단계; 및
    상기 부분방전신호 이벤트에 대한 상기 결함유형들의 확률값에 근거하여 상기 부분방전신호 이벤트에 대한 결함유형을 판정하는 단계;를 포함하는 것을 특징으로 하는 부분방전 결함유형 판정 방법.
  2. 청구항 1에 있어서,
    상기 가상 공간은,
    상기 n개의 파라미터들 각각에 대응하는 n개의 축으로 이루어진 n차원 공간인 것을 특징으로 하는 부분방전 결함유형 판정 방법.
  3. 청구항 1에 있어서,
    상기 결함유형들을 배치하는 단계는,
    상기 가상 공간상에서 상기 결함유형별로 상기 파라미터 값들을 배치하고, 상기 파라미터 값들이 일정한 분포를 갖는 군집을 형성하면 상기 결함유형별로 해당 군집에 대한 중간 위치의 좌표값을 산출하는 단계; 및
    상기 결함유형별로 산출된 좌표값을 상기 각 결함유형모델의 위치 정보로 저장하는 단계;를 포함하는 것을 특징으로 하는 부분방전 결함유형 판정 방법.
  4. 청구항 1에 있어서,
    상기 결함유형들의 확률값을 산출하는 단계는,
    상기 결함유형들과의 전체 거리값을 기준으로 상기 각 결함유형별로 상대적인 거리의 비를 계산하여 상기 확률값을 산출하는 것을 특징으로 하는 부분방전 결함유형 판정 방법.
  5. 청구항 1에 있어서,
    상기 확률값은,
    상기 부분방전모델과 상기 결함유형모델 사이의 거리값이 가까울수록 높은 확률값을 갖는 것을 특징으로 하는 부분방전 결함유형 판정 방법.
  6. 청구항 1에 있어서,
    상기 결함유형들과 상기 부분방전신호 이벤트에 대한 뉴럴 네트워크 기반의 결함유형 판정 결과를 수신하는 단계;를 더 포함하는 것을 특징으로 하는 부분방전 결함유형 판정 방법.
  7. 청구항 6에 있어서,
    상기 결함유형을 판정하는 단계는,
    상기 결함유형들의 확률값과, 상기 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값들을 조합하여 상기 부분방전신호 이벤트에 대한 결함유형을 판정하는 것을 특징으로 하는 부분방전 결함유형 판정 방법.
  8. 청구항 6에 있어서,
    상기 결함유형을 판정하는 단계는,
    상기 결함유형들의 확률값과, 상기 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값들에 서로 다른 가중치를 부여하는 것을 특징으로 하는 부분방전 결함유형 판정 방법.
  9. 청구항 8에 있어서,
    상기 결함유형을 판정하는 단계는,
    상기 서로 다른 가중치를 부여한 상기 결함유형들의 확률값과, 상기 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값들을 각각 합산하여 상기 부분방전신호 이벤트에 대한 결함유형을 판정하는 것을 특징으로 하는 부분방전 결함유형 판정 방법.
  10. 청구항 1에 있어서,
    상기 파라미터들은,
    상기 결함유형들에 대응하여 측정된 부분방전신호의 위상, 방전량, 및 방전횟수를 기초로 하여 생성된 것을 특징으로 하는 부분방전 결함유형 판정 방법.
  11. 청구항 1에 있어서,
    상기 파라미터들은,
    상기 위상, 상기 방전량, 및 상기 방전횟수를 변수로 하여, 위상-방전량, 위상-방전횟수, 및 방전량-방전횟수의 세가지 타입의 2차원 분포로 분류되는 것을 특징으로 하는 부분방전 결함유형 판정 방법.
  12. 청구항 11에 있어서,
    상기 위상-방전량 및 상기 위상-방전횟수 타입의 파라미터들은 위상이 종속변수이므로 정극성과 부극성으로 분류되는 것을 부분방전 결함유형 판정 방법.
  13. 청구항 11에 있어서,
    상기 방전량-방전횟수 타입의 파라미터들은 종속변수가 선형 특성을 가지므로 최대값을 100으로 하여 노멀라이징(Normalizing)하는 것을 특징으로 하는 부분방전 결함유형 판정 방법.
  14. 청구항 1에 있어서,
    상기 부분방전 결함유형은,
    입자(Particle), 플로팅(Floating), 코로나(Corona), 공동(Viod), 및 노이즈(Noise) 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 부분방전 결함유형 판정 방법.
  15. 부분방전을 발생시키는 결함유형들을 기준으로 생성된 n개의 파라미터들에 대응하는 가상 공간을 형성하는 가상공간 구현부;
    부분방전신호 이벤트 발생 시, 발생된 부분방전신호에 근거하여 상기 n개의 파라미터들에 해당하는 파라미터 값들을 추출하는 부분방전신호 분석부;
    상기 결함유형들 각각에 대한 상기 n개의 파라미터들의 파라미터 값들을 조합하여 상기 가상 공간상에 배치된 결함유형모델들의 위치 정보와 부분방전신호에 대한 상기 n개의 파라미터들의 파라미터 값들을 조합하여 상기 가상 공간상에 배치된 부분방전모델의 위치 정보를 비교하여 상기 결함유형모델들과 상기 부분방전모델 사이의 거리값을 산출하고, 상기 거리값으로부터 상기 부분방전신호 이벤트에 대한 상기 결함유형들의 확률값을 산출하는 연산부; 및
    상기 부분방전신호 이벤트에 대한 상기 결함유형들의 확률값에 근거하여 상기 부분방전신호 이벤트에 대한 결함유형을 판정하는 결함유형 판정부;를 포함하는 것을 특징으로 하는 부분방전 결함유형 판정 장치.
  16. 청구항 15에 있어서,
    상기 결함유형 판정부는,
    상기 결함유형들과 상기 부분방전신호 이벤트에 대한 뉴럴 네트워크 기반의 결함유형 판정 결과를 수신하고, 상기 결함유형들의 확률값과, 상기 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값들을 조합하여 상기 부분방전신호 이벤트에 대한 결함유형을 판정하는 것을 특징으로 하는 부분방전 결함유형 판정 장치.
  17. 청구항 16에 있어서,
    상기 결함유형 판정부는,
    상기 결함유형들의 확률값과, 상기 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값들에 서로 다른 가중치를 부여하는 것을 특징으로 하는 부분방전 결함유형 판정 장치.
  18. 청구항 15에 있어서,
    상기 결함유형 판정부는,
    상기 서로 다른 가중치를 부여한 상기 결함유형들의 확률값과, 상기 뉴럴 네트워크 기반의 결함유형 판정 결과로부터의 확률값들을 각각 합산하여 상기 부분방전신호 이벤트에 대한 결함유형을 판정하는 것을 특징으로 하는 부분방전 결함유형 판정 장치.
PCT/KR2012/007482 2011-09-19 2012-09-19 부분방전 결함유형 판정 방법 및 그 장치 WO2013042928A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1404833.4A GB2508560B (en) 2011-09-19 2012-09-19 Method and device for determining the defect type of a partial discharge
US14/345,163 US9658272B2 (en) 2011-09-19 2012-09-19 Method and device for determining the defect type of a partial discharge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0094159 2011-09-19
KR1020110094159A KR101268761B1 (ko) 2011-09-19 2011-09-19 부분방전 결함유형 판정 방법 및 그 장치

Publications (1)

Publication Number Publication Date
WO2013042928A1 true WO2013042928A1 (ko) 2013-03-28

Family

ID=47914616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007482 WO2013042928A1 (ko) 2011-09-19 2012-09-19 부분방전 결함유형 판정 방법 및 그 장치

Country Status (4)

Country Link
US (1) US9658272B2 (ko)
KR (1) KR101268761B1 (ko)
GB (1) GB2508560B (ko)
WO (1) WO2013042928A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101515231B1 (ko) * 2013-11-22 2015-04-24 주식회사 효성 가스 절연 기기의 부분방전 진단 방법
CN103777123A (zh) * 2014-01-27 2014-05-07 国家电网公司 用于gis设备的局部放电故障综合诊断方法
JP6548454B2 (ja) * 2015-05-28 2019-07-24 株式会社日立パワーソリューションズ 電気機器の診断装置、電気機器の診断システム、電気機器の診断方法およびプログラム
JP6952575B2 (ja) * 2017-10-31 2021-10-20 株式会社東芝 部分放電診断装置
CN109991519B (zh) * 2019-03-08 2021-11-16 上海交通大学 基于神经网络和无线传感阵列的局部放电测向方法及系统
CN111157850B (zh) * 2020-01-15 2022-06-21 上海电力大学 一种基于均值聚类的电网线路故障识别方法
CN111932493B (zh) * 2020-06-28 2024-06-07 北京国网富达科技发展有限责任公司 一种配电网局部放电超声波检测方法及系统
CN112684311B (zh) * 2021-01-30 2023-04-07 国网上海市电力公司 用于变压器油纸绝缘局部放电类型识别的特征量提取方法
KR102621378B1 (ko) * 2021-07-06 2024-01-08 한국전력공사 Hvdc 케이블 부분방전 진단 시스템 및 방법
CN113533921B (zh) * 2021-09-15 2021-12-17 北京普源瑞新仿真科技有限公司 局部放电检测方法及局部放电检测装置
CN114091340B (zh) * 2021-11-26 2024-08-02 华中科技大学 一种基于多物理场直流局部放电模型的构建与判别方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120000228A (ko) * 2010-06-25 2012-01-02 주식회사 케이디파워 부분방전 검출장치 및 검출방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120000228A (ko) * 2010-06-25 2012-01-02 주식회사 케이디파워 부분방전 검출장치 및 검출방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEONG-IL, KIM ET AL.: "A Study on Optimization of Partial Discharge Pattern Recognition using Genetic Algorithm", THE KOREAN INSTITUTE OF ELECTRICAL ENGINEERS, ELECTRICAL PROPERTY, APPLICATION PART SOCIETY, JOURNAL OF FALL CONFERENCE, 2006, pages 145 - 146 *
SUN-GEUN, GOO ET AL.: "Auto-classification of UHF partial discharge signal without phase signal", THE KOREAN INSTITUTE OF ELECTRICAL ENGINEERS, JOURNAL OF SUMMER CONFERENCE, 2005, pages 2208 - 2210 *

Also Published As

Publication number Publication date
GB201404833D0 (en) 2014-04-30
KR101268761B1 (ko) 2013-05-29
KR20130030585A (ko) 2013-03-27
GB2508560A (en) 2014-06-04
GB2508560B (en) 2017-05-03
US9658272B2 (en) 2017-05-23
US20140372052A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
WO2013042928A1 (ko) 부분방전 결함유형 판정 방법 및 그 장치
WO2021002549A1 (ko) 딥러닝 기반의 자동차 부위별 파손정도 자동 판정 시스템 및 방법
WO2022114653A1 (ko) 데이터 경계 도출 시스템 및 방법
WO2014193040A1 (ko) 센싱 데이터 분석 시스템 및 방법
WO2014204179A1 (en) Method for verifying bad pattern in time series sensing data and apparatus thereof
WO2010041836A2 (en) Method of detecting skin-colored area using variable skin color model
WO2022240163A1 (ko) Mems 기반 보조 지진 관측망에서 지진을 감지하는 방법, 이를 수행하기 위한 기록 매체 및 장치
WO2023043215A1 (ko) 표준 운용 수준 평가 기반 산업 설비 운용 제어 장치 및 그 동작 방법
CN111443091B (zh) 电缆线路隧道工程缺陷判断方法
WO2019045147A1 (ko) 딥러닝을 pc에 적용하기 위한 메모리 최적화 방법
WO2020032506A1 (ko) 시각 감지 시스템 및 이를 이용한 시각 감지 방법
WO2023128669A1 (ko) 부분방전 모니터링 시스템 및 부분방전 모니터링 방법
WO2021033969A1 (en) Apparatus and method for detecting defective component using infrared camera
WO2021040396A1 (ko) 온도 추정 모델 결정 방법 및 장치, 온도 추정 모델이 적용된 배터리 관리 시스템
WO2020050456A1 (ko) 설비 데이터의 이상 정도 평가 방법
WO2015126058A1 (ko) 암 예후 예측 방법
WO2023163305A1 (ko) 딥러닝 기반의 보행 패턴 검출 방법 및 이를 수행하는 컴퓨터 프로그램
WO2023282500A1 (ko) 슬라이드 스캔 데이터의 자동 레이블링 방법, 장치 및 프로그램
WO2022181919A1 (ko) 가상 현실 기반의 수술 환경을 제공하는 장치 및 방법
WO2020209513A1 (ko) 부분방전 진단 및 위치 검출 방법
WO2020222373A1 (ko) 실내 측위 장치 및 방법
WO2022075516A1 (ko) 절리면 안전성 평가 장치
WO2020045903A1 (ko) Cnn을 이용하여 크기 독립적으로 물체를 검출하는 방법 및 장치
WO2023282620A1 (ko) Hvdc 케이블 부분방전 진단 시스템 및 방법
WO2023128668A1 (ko) 부분방전 모니터링 시스템 및 부분방전 모니터링 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834066

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14345163

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1404833

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20120919

WWE Wipo information: entry into national phase

Ref document number: 1404833.4

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834066

Country of ref document: EP

Kind code of ref document: A1