WO2013042705A1 - Liquid crystal display device and method for manufacturing liquid crystal display device - Google Patents

Liquid crystal display device and method for manufacturing liquid crystal display device Download PDF

Info

Publication number
WO2013042705A1
WO2013042705A1 PCT/JP2012/073996 JP2012073996W WO2013042705A1 WO 2013042705 A1 WO2013042705 A1 WO 2013042705A1 JP 2012073996 W JP2012073996 W JP 2012073996W WO 2013042705 A1 WO2013042705 A1 WO 2013042705A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
fluorescent
layer
film
Prior art date
Application number
PCT/JP2012/073996
Other languages
French (fr)
Japanese (ja)
Inventor
康 浅岡
寿史 渡辺
坂井 彰
裕一 居山
亜希子 宮崎
佐藤 英次
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013042705A1 publication Critical patent/WO2013042705A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a liquid crystal display device and a method for manufacturing the liquid crystal display device.
  • the liquid crystal display device has advantages such as light weight, thinness and low power consumption, and is used not only as a large television but also as a small display device such as a display unit of a mobile phone.
  • the liquid crystal display device includes a liquid crystal display panel, a backlight, a circuit and a power source for supplying various electric signals to the liquid crystal display panel, and a housing for housing these.
  • the liquid crystal display device has a display area in which a plurality of pixels are arranged, and a frame area that is located around the display area and does not contribute to display.
  • a display area (active area) of a general liquid crystal display panel In a display area (active area) of a general liquid crystal display panel, a pixel electrode, a thin film transistor (TFT), and the like are provided, and an image, a video, or the like is displayed.
  • a liquid crystal material is connected to a seal portion for bonding substrates so as to seal between substrates, wiring connected to a gate electrode and a source electrode of a TFT, and an external drive circuit for inputting a signal / scanning voltage. Terminals for the purpose are arranged.
  • a region where wirings connected to a gate electrode and a source electrode of a TFT, a terminal for connecting to an external drive circuit for inputting a signal / scanning voltage, and the like are sometimes referred to as a connection region.
  • a black mask (light shielding member) is usually provided in the frame area. ing.
  • the frame area is an area that does not contribute to display (invalid display portion). The narrowing of the frame of a liquid crystal display panel is progressing year by year, but it is difficult to eliminate the frame area.
  • FIG. 23 is a schematic plan view of a general liquid crystal display device (for example, a TN (Twisted Nematic) type liquid crystal display device) 500.
  • a general liquid crystal display device for example, a TN (Twisted Nematic) type liquid crystal display device 500.
  • the liquid crystal display device 500 includes a display area 85 that performs display and a frame area 87 that is positioned at the periphery of the display area 85.
  • a plurality of pixels are formed in the display area 85.
  • the frame region 87 has a seal portion (not shown) formed so as to surround the liquid crystal layer when viewed from the normal direction.
  • the sealing portion is formed by applying the sealing material to form a predetermined pattern on the substrate by a dispenser device, a screen printing machine, or the like, and bonding the other material to the other substrate, and then curing the sealing material. .
  • the width of the seal portion thus formed is about 1 mm or more. For this reason, the width W of the frame region 87 is set to be at least larger than the width of the seal portion.
  • Patent Document 1 manufactures a plurality of liquid crystal display panels by bonding a pair of substrates through a sealing material provided so as to form a predetermined pattern, and then dividing the substrate together with the sealing material. The method of doing is disclosed. According to this method, since the width of the seal portion can be reduced to about 1 mm or less, the width of the frame region can be made smaller than that in the prior art.
  • Patent Document 2 discloses a liquid crystal display panel provided with a polymer dispersed liquid crystal (PDLC) layer using a curable vinyl compound.
  • PDLC polymer dispersed liquid crystal
  • Patent Document 2 describes that a polymer-dispersed liquid crystal layer formed using a curable vinyl compound has an adhesive effect and can eliminate the need for a seal portion.
  • Patent Document 2 does not disclose any method for manufacturing a liquid crystal display panel having no seal portion.
  • the frame area can be made narrower than before.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a liquid crystal display device capable of performing high-quality display with uniform brightness over the entire display area even when the frame area is narrowed. Is to provide.
  • a liquid crystal display device is a liquid crystal display device including a liquid crystal display panel including a display region having a plurality of pixels, and a backlight disposed on the back side of the liquid crystal display panel,
  • the liquid crystal display panel includes a plurality of liquid crystal regions, a liquid crystal layer having a polymer-containing wall between adjacent liquid crystal regions of the plurality of liquid crystal regions, and a liquid crystal layer disposed on an observer side of the liquid crystal layer.
  • the backlight includes light having the predetermined wavelength.
  • the at least one side of the outer edge of the fluorescent layer is aligned with one side of the outer edge of the liquid crystal layer.
  • the backlight includes a light guide plate
  • the light irradiation unit is disposed on a surface of the light guide plate facing the fluorescent layer, and in the display region, a part of the fluorescent layer is the light guide. It does not overlap with the light irradiation part of the light plate.
  • the fluorescent material includes a dichroic fluorescent dye, and in the fluorescent layer, the direction of the transition moment of the dichroic fluorescent dye is parallel to the direction of the transmission axis of the second polarizing plate. .
  • the liquid crystal display panel further includes a reflective portion disposed on at least a part of a side surface of the liquid crystal display panel, and the reflective portion is viewed from a normal direction of the liquid crystal display panel. And arranged along the at least one side of the outer edge of the fluorescent layer.
  • the thickness of the fluorescent layer is larger at the first portion located at the periphery of the fluorescent layer than at the central portion.
  • the concentration of the fluorescent substance in the fluorescent layer is higher in the first part located at the periphery of the fluorescent layer than in the central part.
  • the first part of the fluorescent layer does not overlap the light irradiation part, and the central part of the fluorescent layer overlaps the light irradiation part.
  • the liquid crystal display device is formed between the liquid crystal layer and the first substrate and the second substrate, respectively, and the first alignment film and the first alignment film are formed so as to be in contact with the liquid crystal layer, respectively. It further has a bi-alignment film.
  • the liquid crystal display device is not provided with a seal portion along at least one side of the outer edge of the liquid crystal layer when viewed from the normal direction of the liquid crystal display panel, and is provided with the seal portion.
  • the at least one side of the outer edge of the liquid crystal layer that is not aligned with the at least one side of the outer edge of the fluorescent layer.
  • a fluorescent film containing a fluorescent material that emits visible light when excited by absorbing light having a predetermined wavelength is formed on the surface of a polarizing film.
  • a step of obtaining a laminated film including a polarizing plate film and the fluorescent film is obtained;
  • a step of forming a first panel structure including: (C) placing the laminate on the second substrate of the first panel structure so that the polarizing plate is on the first panel structure side; And another polarizing film on the first substrate.
  • a fluorescent film containing a fluorescent substance that emits visible light when excited by absorbing light of a predetermined wavelength is formed on the surface of the polarizing film, and the polarizing film and the fluorescent film are A step of obtaining a laminated film including, (A2) a step of obtaining a laminated body including a polarizing plate and a fluorescent layer by cutting the laminated film, (B) a first substrate and a second substrate, and the first substrate.
  • a first panel structure including a plurality of liquid crystal regions and a liquid crystal layer having a polymer-containing wall between adjacent liquid crystal regions of the plurality of liquid crystal regions.
  • Front to be on the body side A step of obtaining a liquid crystal display panel by installing a laminate and disposing another polarizing plate on the first substrate; and (E) emitting light of the predetermined wavelength on the back side of the liquid crystal display panel. And a step of disposing a backlight having a light irradiating unit for irradiating the display panel.
  • the fluorescent material includes a dichroic fluorescent dye
  • the step (A1) includes the step of transmitting the direction of the transmission axis of the polarizing film and the dichroic fluorescent dye on the surface of the polarizing film. Forming the phosphor film so that the direction of the transition moment is parallel.
  • the step (A1) includes a step of preparing a fluorescent film containing the dichroic fluorescent dye, a step of stretching the fluorescent film in a predetermined direction, the stretching direction, and the polarizing film. Forming the phosphor film by bonding the phosphor film to the surface of the polarizing film so that the transmission axis of the phosphor film is parallel.
  • the step (A1) includes a step of rubbing a surface of the polarizing film in a direction parallel to a transmission axis of the polarizing film, and the surface on which the rubbing is performed. And a step of forming the fluorescent film by applying a resin containing the fluorescent dye and then curing the resin.
  • the step (A1) includes a step of forming the phosphor film such that a thickness of the phosphor film is increased in a predetermined portion, and the predetermined portion is the liquid crystal display panel, Located on the periphery of the phosphor layer.
  • the step (A1) includes a step of forming the fluorescent film so that the concentration of the fluorescent substance in the fluorescent film is high at a predetermined portion, and the predetermined portion includes the liquid crystal display. In the panel, it is located at the periphery of the fluorescent layer.
  • the method further includes a step of forming a reflection portion so as to cover at least a part of the side surface of the liquid crystal display panel.
  • the width of the frame region is smaller than the conventional one, it is possible to suppress a decrease in display characteristics (brightness and visibility) at the peripheral portion of the display region, and uniform brightness in the entire display region. High quality display can be realized. Therefore, it is possible to achieve both high display characteristics and narrowing of the frame area.
  • (A) is a schematic plan view of the liquid crystal display device 200A of the first embodiment according to the present invention, and (b) and (c) are respectively a line II ′ and a line II— of (a). It is typical sectional drawing of 200 A of liquid crystal display devices along an II 'line. It is typical sectional drawing of 200 A of liquid crystal display devices.
  • (A) is a schematic cross-sectional view for explaining a method of forming a polarizing plate and a fluorescent layer in the first embodiment, and (b) to (d) are respectively a polarizing plate and a fluorescent layer. It is an expanded sectional view for demonstrating the edge part (cut surface) of the laminated body 50 which becomes.
  • FIG. 1 is a typical perspective view explaining the manufacturing method of liquid crystal display panel 100A in 1st Embodiment
  • (b) is a typical perspective view of one TFT substrate 44.
  • FIG. FIG. 6C is a schematic cross-sectional view of the TFT substrate 44 taken along line III-III ′ in FIG.
  • (A) is a typical perspective view explaining the manufacturing method of liquid crystal display panel 100A in 1st Embodiment
  • (b) is typical sectional drawing in alignment with the IV-IV 'line of (a).
  • FIGS. 5A to 5G are schematic cross-sectional views illustrating a method for manufacturing the liquid crystal display panel 100A in the first embodiment. It is typical sectional drawing of the TFT substrate 44 for demonstrating the other manufacturing method of 100 A of liquid crystal display panels.
  • (A) is sectional drawing for demonstrating the drive system of 100 A of liquid crystal display panels in 1st Embodiment
  • (b) is an enlarged plan view of the liquid crystal layer 10 shown to (a).
  • (A) is sectional drawing for demonstrating the other drive system of the other liquid crystal display panel 100B in 1st Embodiment
  • (b) is an enlarged plan view of the liquid crystal layer 10 shown to (a). is there.
  • (A) is a perspective view for demonstrating the fluorescent layer 12 in 2nd Embodiment by this invention
  • (b) and (c) are respectively the dichroism fluorescent dyes contained in the fluorescent layer 12 It is a figure which shows an absorption characteristic and a light emission characteristic.
  • (D) is a graph showing the wavelength dependence of absorption and fluorescence intensity of a dichroic fluorescent dye. It is typical sectional drawing for demonstrating the formation method of the polarizing plate and fluorescent layer in 2nd Embodiment. It is typical sectional drawing for demonstrating the other formation method of the polarizing plate and fluorescent layer in 2nd Embodiment. It is a typical sectional view of liquid crystal display device 200C of a 3rd embodiment by the present invention.
  • (A) And (b) is a figure for demonstrating the effect of the reflection part 24 in 3rd Embodiment, (a) is a liquid crystal display panel which does not have a reflection part, (b) has a reflection part. It is typical sectional drawing of a liquid crystal display panel.
  • FIG. It is typical sectional drawing for demonstrating the formation method of the polarizing plate and fluorescent layer in 4th Embodiment.
  • (A) And (b) is sectional drawing and the enlarged plan view for demonstrating the drive system of the liquid crystal display panel 100E in 5th Embodiment, respectively. It is an enlarged plan view for demonstrating the drive system of the other liquid crystal display panel 100F in 5th Embodiment.
  • FIG. 11 is a schematic plan view of a conventional liquid crystal display device 500. It is sectional drawing which shows the liquid crystal display device 700 of a reference example.
  • FIG. 24 is a cross-sectional view showing a reference example of a liquid crystal display device.
  • the liquid crystal display device 700 of the reference example includes a liquid crystal display panel 600 and a backlight 610 provided on the back side thereof.
  • the liquid crystal display device 700 has a display region 85 and a region (frame region) 87 other than the display region 85.
  • the frame area 87 is a non-display area.
  • the width of the seal portion is reduced by using the method disclosed in Patent Document 1, and as a result, the width W2 of the non-display area in the liquid crystal display panel 600 is smaller than the conventional one.
  • the width W2 of the non-display area may be reduced using other methods.
  • the backlight 610 is an edge light type backlight using a light guide plate, for example.
  • the backlight 610 in the illustrated reference example includes a light guide plate 612, an optical film sheet 614 for uniformly scattering light emitted from the light guide plate 612, and a bezel 616 for fixing the optical film sheet 614. ing.
  • a portion of the upper surface of the backlight 610 that does not overlap the display area 85 is provided with a light shielding portion 618 so that the backlight light does not enter the display area 85 from the outside of the display area 85.
  • the backlight 610 is disposed so that the end of the display area 85 and the end of the light guide plate 612 and the optical film sheet 614 are substantially aligned when viewed from the viewer side.
  • the width W1 of the frame region 87 is larger than the width W2 of the non-display region defined by the frame light shielding portion or the seal portion formed by the black matrix of the color filter (CF), and the thickness of the side wall of the bezel 616.
  • the length corresponding to the length increases. Therefore, even if the width of the seal portion is reduced, the width of the frame region 87 is equal to or greater than the thickness of the bezel 616. Therefore, the width of the frame region 87 is reduced to less than the thickness of the side wall of the bezel 616, or It is difficult to eliminate 87.
  • the edge of the light guide plate 612 is visible at the peripheral edge of the display area 85, which may cause display unevenness.
  • the peripheral area 85P of the display area 85 is darker than the central area of the display area 85, and display defects are likely to occur, and the display area 85 has a uniform brightness over the entire display area 85. I found it difficult to display. As shown in the drawing, a part of light 620 that travels through the light guide plate 612 to the end of the light guide plate 612 is reflected by the end surface of the light guide plate 612 and is emitted from the inside of the display area 85. For this reason, it is considered that light from the light guide plate 612 does not easily enter the portion 85P of the display area 85 located on the end of the light guide plate 612.
  • the light guide plate 612 In order to irradiate the entire display region 85 uniformly, for example, it is conceivable to provide a light guide plate 612 that is slightly larger in size than the display region 85 when viewed from the observer side of the liquid crystal display device 700. However, when the light guide plate 612 is enlarged, the backlight 610 is also enlarged, so that the frame area 87 cannot be sufficiently narrowed. Further, when the light guide plate 612 is enlarged, it is necessary to increase the width of the light shielding portion 618 for shielding the backlight light passing outside the display area 85, and the width of the frame area 87 is further increased.
  • the inventor has intensively studied the problems associated with the narrowing of the frame area as described above.
  • a fluorescent layer is provided between the back substrate and the backlight of the liquid crystal display panel, and at least a part of the end of the fluorescent layer is aligned with the end of the substrate or polarizing plate when viewed from the observer side.
  • the frame area can be narrowed while uniformly illuminating the entire display area, and the present invention has been achieved.
  • FIGS. 1B and 1C are diagrams illustrating a liquid crystal display device 200A according to an embodiment of the present invention.
  • FIG. 1A is a schematic plan view of the liquid crystal display device 200A
  • FIGS. 1B and 1C are the II ′ and II-II ′ lines in FIG. 1A, respectively. It is typical sectional drawing of 200 A of liquid crystal display devices along line.
  • the liquid crystal display device 200A has a display area 25 including a plurality of pixels (not shown) and a frame area 27.
  • the frame region 27 includes a connection region 26 where a mounting portion such as a chip or FPC is formed, and a region where a seal portion 8 or a light shielding portion (not shown) is formed.
  • the frame region 27 is formed along only one side of the sides constituting the outer edge (for example, substantially square) of the display region 25, and the frame region 27 is not formed along the other sides.
  • the frame area 27 may be formed so as to surround the display area 25.
  • the liquid crystal display device 200A includes a liquid crystal display panel 100A and a backlight 110.
  • the liquid crystal display panel 100A includes a liquid crystal layer 10, a first substrate 1 disposed on the viewer side of the liquid crystal layer 10, a second substrate 2 disposed on the back side of the liquid crystal layer 10, a second substrate 2 and a back. It has a fluorescent layer (fluorescent light emitting layer) 12 formed between the light 110.
  • the first substrate 1 and the second substrate 2 are provided with polarizing plates 4 and 6, respectively.
  • the liquid crystal layer 10 is sandwiched between the first substrate 1 and the second substrate 2. Further, a seal portion 8 is formed between the first substrate 1 and the second substrate 2 so as to be in contact with a part of the side surface of the liquid crystal layer 10.
  • the fluorescent layer 12 is formed on the surface of the polarizing plate 6 on the backlight 110 side.
  • the fluorescent layer 12 contains a fluorescent material, and emits light (here, visible light) having a longer wavelength than the excitation light when irradiated with light having a predetermined wavelength (excitation light).
  • the backlight 110 has a light irradiation unit (not shown) that emits the excitation light to the fluorescent layer 12.
  • the excitation light is, for example, UV light.
  • the fluorescent dye is not particularly limited.
  • a dichroic benzothiadiazole fluorescent dye for example, a dichroic benzothiadiazole fluorescent dye, a coumarin fluorescent dye, a cyanine fluorescent dye, a pyridine fluorescent dye, a rhodamine fluorescent dye, a styryl fluorescent dye, an anthraquinone fluorescent dye, etc. It may be.
  • the fluorescent layer 12 when the fluorescent layer 12 is irradiated with excitation light (for example, UV light) from the backlight 110, the fluorescent layer 12 emits light, and display can be performed using the light from the fluorescent layer 12. .
  • excitation light for example, UV light
  • the liquid crystal layer 10 has, for example, a plurality of liquid crystal regions having a nematic liquid crystal material and a wall containing a polymer between adjacent liquid crystal regions of the plurality of liquid crystal regions.
  • the wall containing the polymer can contribute to the adhesion between the first substrate 1 and the second substrate 2, and can maintain the distance between the first substrate 1 and the second substrate 2. Therefore, as shown in the drawing, at least a part of the side surface of the liquid crystal layer 10 can be aligned with the side surface of the first substrate 1 and the side surface of the second substrate 2.
  • the seal portion 8 when viewed from the normal direction of the liquid crystal layer 10, the seal portion 8 does not have to be formed so as to surround the entire liquid crystal layer 10. The width can be reduced.
  • the seal portion 8 is a member that is formed of a seal material and does not include a liquid crystal material, and is formed separately from the liquid crystal layer.
  • the outer edge of the fluorescent layer 12 when viewed from the normal direction of the liquid crystal display panel 100A, at least a part of the outer edge of the fluorescent layer 12 includes the outer edges of the polarizing plate 4 and the polarizing plate 6, and the first substrate 1 and the second substrate. Aligned with the outer edge of the two. This will be described more specifically with reference to FIG. In FIG. 1A, the edges (outer edges) of the first substrate 1, the second substrate 2, the polarizing plates 4 and 6, the seal portion 8, and the fluorescent layer 12 are respectively connected to lines 1e, 2e, 4e, 6e, 8e and 12e.
  • the side of the outer edge 12e of the fluorescent layer 12 extends along the first substrate 1 along at least one side (three sides in this example) of the sides constituting the outer edge (for example, substantially square) of the display region 25. It is aligned with the sides of the outer edges 1e, 2e, 4e and 6e of the second substrate 2 and the polarizing plates 4 and 6. In other words, the positions of the end portions of the fluorescent layer 12, the first and second substrates 1 and 2, and the polarizing plates 4 and 6 are aligned.
  • edge S a portion of the outer edge 12e of the fluorescent layer 12 that is aligned with the outer edges 1e, 2e, 4e, and 6e of the first and second substrates 1 and 2 and the polarizing plates 4 and 6 is abbreviated as “edge S”.
  • edge S a portion of the outer edge 12e of the fluorescent layer 12 that is aligned with the outer edges 1e, 2e, 4e, and 6e of the first and second substrates 1 and 2 and the polarizing plates 4 and 6.
  • the edge S of the fluorescent layer 12 is also aligned with the outer edge of the liquid crystal layer 10. That is, the seal part is not formed along the edge part S. Therefore, it is not necessary to provide the frame area along the edge S, which is advantageous.
  • a frame region may be formed along the edge S. In that case, since it is not necessary to set the width of the frame region in consideration of the seal portion 8 and the backlight 110, the width of the frame region along the edge S is set to the width of the frame region along the portion other than the edge S. Can be smaller than the width.
  • the entire backlight 110 is not shown, but instead, the light guide plate 112 in the backlight 110 and the light emitting unit 111 that is arranged at the end of the light guide plate 112 and emits, for example, UV light are shown. ing.
  • the light guide plate 112 has a light irradiation part 112 s on the surface facing the fluorescent layer 12.
  • the light emitting unit 111 includes, for example, a light emitting diode (LED).
  • UV light emitted from the light emitting unit 111 travels in the light guide plate 112. A part of the light traveling in the light guide plate 112 enters the fluorescent layer 12 from the light irradiation unit 112s. At this time, as shown in the drawing, even when the light 120 is incident on the fluorescent layer 12 from the vertical direction or the light 122 is incident from the inclined direction, the incident light 120, 122 becomes excitation light, and the fluorescent layer 12 emits light in all directions.
  • Light (visible light) from the fluorescent layer 12 enters the liquid crystal display panel 100A from the polarizing plate 6.
  • the liquid crystal display panel 100A performs display by adjusting the amount of light transmitted through the two polarizing plates 4 and 6 by electrically driving the liquid crystal held between the polarizing plates 4 and 6.
  • the fluorescent layer 12 in the present embodiment can emit light in all directions without depending on the incident direction of the excitation light with respect to the fluorescent layer 12. Therefore, when viewed from the viewer side, even if a part of the fluorescent layer 12 (for example, a peripheral portion) does not overlap the light guide plate 112, the excitation light is obliquely directed from the light guide plate 112 to the portion of the fluorescent layer 12. , The fluorescent layer 12 can irradiate light (visible light) uniformly over the entire display region 25. Therefore, the size of the light guide plate 112 (the size of the backlight 110) can be made smaller than before. For example, the size of the light guide plate 112 when viewed from the viewer side may be equal to or smaller than the size of the display region 25 or the fluorescent layer 12.
  • the frame area can be made narrower than before without deteriorating the display characteristics.
  • the structure of the optical system such as the light guide plate 112 and the light scattering sheet (not shown) is simplified. Can also be designed.
  • “there is no frame area” means that the distance between the end of the display area 25 and the end of the liquid crystal display device 200A is less than 0.2 mm, which is the resolution of the human eye. means. This is because if the distance is less than 0.2 mm, the human eye cannot recognize the frame area and it appears that there is no frame area.
  • the “end of the display region” here means strictly the end of the pixel located at the outermost edge among the plurality of pixels as viewed from the observer side.
  • the distance between the side surface of the liquid crystal layer and the end portion of the pixel located at the outermost edge can be suppressed to less than 0.2 mm (for example, 0.15 mm or less).
  • the frame area can be substantially eliminated.
  • the liquid crystal display device 200 ⁇ / b> A of the present embodiment includes the fluorescent layer 12 that emits light by UV light (excitation light) incident from the backlight 110.
  • the entire fluorescent layer 12 emits light substantially uniformly without depending on the incident direction of UV light. Therefore, even when the width of the frame region is small or the frame region is not formed, the fluorescent layer 12 allows the same amount of light to be incident on the peripheral portion of the display region 25 as the other portions.
  • a brighter display can be realized even at the periphery of the region 25. Moreover, even when the light guide plate 112 of the backlight 110 is smaller than the display area 25 when viewed from the observer side, it is possible to perform display with more uniform brightness over the entire display area 25. .
  • the light guide plate 112 When viewed from the observer side, if the light guide plate 112 is made smaller than the display area 25, there are the following advantages. Conventionally, it has been necessary to form a light shielding portion for shielding light emitted from the light guide plate through the region other than the display region to the viewer side. However, according to the present embodiment, the light is emitted from the light guide plate 112. Since the emitted light is UV light, it does not cause deterioration in display quality even when emitted to the viewer side. Accordingly, since it is not necessary to provide a light shielding portion at the peripheral edge of the display area 25, the display area can be further enlarged. Further, it is advantageous because display unevenness due to the edge of the light guide plate 112 being visible at the periphery of the display area 25 can be suppressed.
  • the fluorescent layer 12 is formed up to the end of the polarizing plate 6 along at least one side of the peripheral edge of the display region 25, and light is also incident in the vicinity of the end of the polarizing plate 6. be able to. For this reason, a favorable display can be performed also in the area
  • FIG. More preferably, the end of the fluorescent layer 12 and the end of the polarizing plate 6 are aligned over the entire outer edge of the fluorescent layer 12. Thereby, since light can be incident on the entire surface of the polarizing plate 6, it is possible to perform good display in a region having the same size as the surface of the polarizing plate 6.
  • a method of printing a paint containing a fluorescent substance or attaching a fluorescent film can be used.
  • deviation occurs at the ends of the polarizing plate and the fluorescent layer, and it is difficult to align these ends.
  • a display region is formed in a portion where the polarizing plate and the fluorescent layer overlap, and a portion of the polarizing plate or the fluorescent layer that protrudes from the display region constitutes a frame region. Therefore, there is a problem that the panel size becomes large with respect to the display area.
  • the fluorescent layer 12 and the polarizing plate 6 having a predetermined size are obtained by cutting a polarizing plate film having a phosphor film formed on the surface thereof. According to this method, the end of the fluorescent layer 12 and the end of the polarizing plate 6 can be easily aligned.
  • the edges along the three sides excluding the side adjacent to the frame region 27 among the sides constituting the outer edge of the display region 25 (I side, II).
  • the outer edges of the polarizing regions 4 and 6 defining the display area 25 and the outer edges of the first and second substrates 1 and 2 are aligned with the outer edge of the display area 25. The distance from the outer edge of the liquid crystal display panel can be reduced.
  • the liquid crystal layer 10 is preferably not surrounded by the seal portion 8.
  • the seal portion 8 may be disposed only along one or two sides of the rectangle.
  • the seal portion 8 is formed along one side that forms the outer edge of the liquid crystal layer 10, but is not disposed along the other side. If the seal portion is not formed, the frame region can be narrowed. Therefore, when the end of the fluorescent layer 12 and the end of the polarizing plate 6 are aligned at this portion, the brightness at the peripheral portion of the display region is further reduced. It can be effectively suppressed.
  • the liquid crystal display device 200 ⁇ / b> A may not have a seal portion including a seal material.
  • the liquid crystal display panel 100A when the liquid crystal display panel 100A is viewed from the observer side, at least one side of the outer edges of the liquid crystal layer 10 is preferably aligned with the outer edges of the first substrate 1 and the second substrate 2. That is, it is preferable that a portion of the side surface of the liquid crystal layer 10 not in contact with the seal portion is continuous with the side surfaces of the first substrate 1 and the second substrate 2. This makes it possible to further reduce the width of the frame region or eliminate the frame region along the portion of the outer edge of the liquid crystal layer 10 aligned with the substrates 1 and 2.
  • the edge S of the fluorescent layer 12 when viewed from the normal direction of the liquid crystal display panel 100A, is not only the outer edges of the substrates 1 and 2 and the polarizing plates 4 and 6, It is also aligned with the outer edge side of the liquid crystal layer 10. This is advantageous because the frame region need not be provided along the edge S.
  • the backlight 110 only needs to irradiate the fluorescent layer 12 with UV light so that the portion of the fluorescent layer 12 positioned in the display region 25 can emit light substantially uniformly.
  • the backlight 110 is preferably substantially aligned with the outer edge of the liquid crystal display panel 100A or on the inner side of the outer edge of the liquid crystal display panel 100A. Thereby, it is possible to prevent the frame area from increasing due to the size of the backlight 110.
  • such a configuration can be realized by making the size of the light guide plate 112 in the backlight 110 when viewed from the viewer side smaller than the size of the fluorescent layer 12.
  • the liquid crystal layer 10 can be formed using the same material as the polymer dispersed liquid crystal.
  • the polymer-dispersed liquid crystal may be PDLC (Polymer Dispersed Liquid Crystal) having a structure in which water-drop-like liquid crystal is dispersed in a polymer, or PNLC (Polymer) having a structure in which a polymer network is stretched around a liquid crystal layer. (Network Liquid Crystal).
  • PDLC Polymer Dispersed Liquid Crystal
  • PNLC Polymer having a structure in which a polymer network is stretched around a liquid crystal layer.
  • the liquid crystal layer 10 is compatible with, for example, a mixture of a nematic liquid crystal material (that is, a low molecular liquid crystal composition) and a photocurable resin (monomer and / or oligomer). It is obtained by polymerizing a photocurable resin after being arranged between transparent substrates.
  • a photocurable resin is not specifically limited, Preferably an ultraviolet curable resin is used.
  • an ultraviolet curable resin is used, there is no need to heat the mixture when polymerization is performed, so that adverse effects due to heat on other members can be prevented.
  • Monomers and oligomers may be monofunctional or polyfunctional. Since the liquid crystal layer 10 has a continuous polymer wall, the distance between the first substrate 1 and the second substrate 2 can be stably maintained without forming a seal portion.
  • the liquid crystal When a panel structure is formed by holding a liquid crystal layer having no polymer wall with a pair of mother substrates, the liquid crystal is held in a region defined by the seal portion in the panel structure. When the panel structure is cut at a portion other than the seal portion, the liquid crystal flows out between the substrates. On the other hand, when the panel structure is formed using the liquid crystal layer in the present embodiment, the liquid crystal can be held between the first substrate 1 and the second substrate 2 by the polymer wall. Even if cut, the liquid crystal does not flow out between the substrates 1 and 2. Therefore, as will be described later, the frame region can be eliminated by cutting the peripheral edge of the panel structure.
  • a liquid crystal display panel in which the frame area is narrowed (or the frame area is eliminated) can be realized by using the same material as the polymer dispersed liquid crystal.
  • the detailed structure and manufacturing method of such a liquid crystal display panel are described in unpublished patent applications (PCT / JP2012 / 068843, PCT / JP2012 / 068835) by the present applicant.
  • the liquid crystal display panel 100A includes a thin film transistor (TFT) and a pixel electrode formed for each pixel on the second substrate 2, a color filter layer formed on the first substrate 1, and a color filter layer.
  • TFT thin film transistor
  • the pixel electrode may be formed up to the vicinity of the side surface of the second substrate 2.
  • the common electrode may be formed over almost the entire surface of the first substrate 1.
  • a drive circuit electrically connected to the TFT is formed on the second substrate 2.
  • the drive circuits are formed in the connection regions 26 located outside the display region 25, respectively.
  • the drive circuit is connected to an external circuit in the connection region 26 via, for example, FPC (Flexible Printed Circuits).
  • FPC Flexible Printed Circuits
  • the drive circuit may be connected to an external circuit through an LSI (Large Scale Integration) driver, TAB (Tape Automated Bonding), or COF (Chip On Film).
  • a seal portion 8 for bonding the first substrate 1 and the second substrate 2 is formed between the display region 25 and the connection region 26.
  • the seal portion 8 is made of, for example, a photo-curing resin (for example, product name: Photorec S-WB manufactured by Sekisui Chemical Co., Ltd.). By forming the seal portion 8, it is possible to prevent the liquid crystal material from leaking into the connection region 26 when the liquid crystal display panel 100A is manufactured.
  • the width of the seal portion 8 is about 1 mm, for example.
  • a side sealing resin portion may be formed on the side surface of the liquid crystal display panel 100A.
  • the side surface sealing resin portion may be formed of, for example, an ultraviolet curable resin.
  • FIG. 3A is a diagram for explaining an example of a method of forming a polarizing plate used in this embodiment
  • FIGS. 3B to 3D are cross-sectional views illustrating the shape of the edge of the polarizing plate, respectively.
  • FIG. 3A is a diagram for explaining an example of a method of forming a polarizing plate used in this embodiment
  • FIGS. 3B to 3D are cross-sectional views illustrating the shape of the edge of the polarizing plate, respectively.
  • a fluorescent film 12a containing a fluorescent light-emitting substance is bonded to the surface of the polarizing film 6a to obtain a laminated film.
  • the laminated film is cut to a predetermined size.
  • the laminated body 50 which consists of the polarizing plate 6 and the fluorescent layer 12 is obtained.
  • the cut surfaces of the polarizing film 6 and the fluorescent layer 12 are continuous. For example, as shown in FIG. 3B, it may be cut in a direction perpendicular to the surface of the polarizing plate 6. Or you may cut
  • the fluorescent layer 12 may be cut so that the cut surface has a tapered shape located inside the cut surface of the polarizing plate 6, or as shown in FIG. Thus, you may cut
  • the effect of the present invention can be obtained if the cutting surfaces of the polarizing plate 6 and the fluorescent layer 12 are continuous.
  • “when viewed from the normal direction of the liquid crystal display panel 100A, the outer edge of the polarizing plate 6 and the outer edge of the fluorescent layer 12 are aligned” includes the case where the cutting direction is inclined. .
  • the formation method of the fluorescent layer 12 is not limited to the above. After applying a paint containing a fluorescent light-emitting substance on the surface of the polarizing film 6a, the polarizing film 6a may be cut.
  • FIGS. 6A to 6G are schematic cross-sectional views illustrating a method for manufacturing the liquid crystal display panel 100A.
  • a first mother substrate 42 and a second mother substrate 43 are prepared.
  • a plurality of TFT substrates 44 are formed on the first mother substrate 42.
  • a p-Si TFT is formed for each pixel by a known method, and a horizontal alignment film is formed by a known method over almost the entire TFT substrate 44.
  • a plurality of color filter substrates 45 having color filter layers are formed on the second mother substrate 43 by a known method, and a horizontal alignment film is formed by a known method over almost the entire color filter substrate 45.
  • a sealing material (for example, an ultraviolet curable resin) 8 is applied to each TFT substrate 44 (for the sake of simplicity, the same reference numerals as those of the sealing portion 8 are used. ).
  • the sealing material 8 is applied so as to surround the display area 25 in which the plurality of pixel electrodes 46 are formed. At this time, a part of the sealing material 8 is formed between the display area 25 and the connection area 26, and the other part is separated from the display area 25 (for example, separated by 0.2 mm or more). .
  • a mixed liquid in which a nematic liquid crystal material and a monomer are mixed is dropped into an area surrounded by the sealing material 8 by an ODF (One Drop Fill) method.
  • the mass ratio is not limited to this, and a mixed solution having a monomer concentration of 10% by mass to 30% by mass may be used.
  • the polymer wall formed from the monomer is a region that does not contribute to display. Therefore, when the monomer concentration is less than 10% by mass, the transmittance of the liquid crystal display panel 100A, that is, the luminance of display increases, but the mechanical strength of the liquid crystal display panel 100A decreases.
  • the sealing material 8 is provided so as to surround the display region 25, the dropped mixed liquid does not leak out of the sealing material 8.
  • the sealing material 8 and the display area 25 Each monomer is irradiated with ultraviolet rays to be cured.
  • a liquid crystal layer 10 including a wall including a polymer and a liquid crystal region in a region surrounded by the sealant 8 is obtained.
  • the integrated light amount for curing the sealing material 8 and the monomer is about 1 to 4 J / cm 2 for light having a wavelength of 365 nm, depending on the material.
  • the polarizing plate 4 is attached to the surface on the observer side (the surface of the first substrate 1) of the first panel structure. Further, the laminate 50 formed by the method described above with reference to FIG. 3 on the surface on the back side of the first panel structure (the surface of the second substrate 2), the polarizing plate 6 is on the second substrate 2 side. Paste like so. At this time, it is preferable to align and bond the edges of the first panel structure and the edges of the polarizing plates 4 and 6 when viewed from the normal direction of the first panel structure. Thereby, the 2nd panel structure 60 is obtained. Then, the 2nd panel structure 60 and the polarizing plates 4 and 6 are made to adapt with an autoclave.
  • the polarizing plates 4 and 6 are cut using a blade 61 and the like, and the substrates 1 and 2 are cut using a glass cutter 63 and the like.
  • the substrates 1 and 2 are pulled in the in-plane direction.
  • the 2nd panel structure 60 can be divided
  • liquid crystal layer 10 in this embodiment has the liquid crystal region 11 partitioned by the wall containing the polymer, even if a part of the wall located between the adjacent liquid crystal regions is broken by the division, the liquid crystal layer 10 is broken.
  • the liquid crystal material in the liquid crystal region 11 in contact with the wall only leaks out, and not all the liquid crystal material in the liquid crystal layer 10 leaks out.
  • the side surface sealing resin is made of, for example, an ultraviolet curable resin. In this way, the liquid crystal display panel 100A is obtained.
  • the liquid crystal display device 200A can be manufactured by disposing the backlight 110 on the back side of the liquid crystal display panel 100A.
  • a liquid crystal display panel is manufactured using a method in which a liquid mixture containing a nematic liquid crystal material and a monomer is dropped by an ODF method, but a method in which the liquid mixture is injected between substrates by a vacuum injection method is used. May be. In that case, after dividing the 2nd panel structure 60 after bonding the polarizing plates 4 and 6, and forming a subpanel structure, you may inject
  • the liquid crystal layer including the polymer wall is formed in the entire display region.
  • the liquid crystal layer 10 may be formed so as to include the polymer wall only in the peripheral region of the liquid crystal layer 10.
  • a mixed liquid 30 in which a nematic liquid crystal material (for example, a negative nematic liquid crystal material) and a monomer are mixed is applied to each TFT substrate 44 of the first mother substrate by the ODF method. .
  • the mixed liquid 30 is applied in the vicinity of the outer edge of the region where the pixel electrode of each TFT substrate 44 is formed.
  • a weight ratio is not limited to this, You may use the liquid mixture whose monomer concentration is 10 mass% or more and 30 mass% or less.
  • the monomer concentration is less than 10% by mass, the display contrast ratio of the liquid crystal display panel 100A increases, but the mechanical strength of the liquid crystal display panel 100A decreases.
  • the monomer concentration is more than 30% by mass, the mechanical strength of the liquid crystal display panel 100A increases, but the display contrast ratio and luminance of the liquid crystal display panel 100A decrease.
  • a nematic liquid crystal material for example, a negative nematic liquid crystal material
  • ODF ODF
  • the first mother substrate including the TFT substrate 44 and the second mother substrate are bonded to each other by a known method, and then the monomer in the mixed solution 30 is irradiated with ultraviolet rays to be cured.
  • a liquid crystal layer including a polymer wall only in the peripheral region is formed in each display region.
  • a polarizing plate and a fluorescent layer are formed by the same method as described above with reference to FIG. 5 to obtain a panel structure.
  • a plurality of liquid crystal display panels can be obtained by dividing the panel structure. At this time, if the peripheral region including the polymer wall in the liquid crystal layer is divided, the liquid crystal material can be prevented from leaking from the side surface of the liquid crystal display panel.
  • a polarizing plate is not used in a liquid crystal display device (polymer dispersion type liquid crystal display device) using PDLC or PNLC.
  • PDLC polymer dispersion type liquid crystal display device
  • PNLC PNLC
  • PDLC can switch the optical characteristics between a scattering state and a light transmission state by applying a voltage to the liquid crystal layer, it is possible to perform display without using a polarizing plate when PDLC is used. is there.
  • this embodiment uses the same material as PDLC but uses a polarizing plate.
  • the polarizing plate may be a circular polarizing plate or a linear polarizing plate.
  • the structure and driving method of the liquid crystal display panel 100A having a linear polarizing plate will be described.
  • FIGS. 8A and 8B are a cross-sectional view and a partial plan view of the liquid crystal display panel 100A for explaining an example of a driving method.
  • the liquid crystal layer 10 includes a plurality of liquid crystal regions 11 and polymer walls 13.
  • a liquid crystal material having a positive dielectric anisotropy is used as the material of the liquid crystal layer 10.
  • a first horizontal alignment film is formed on the first substrate 1 so as to be in contact with the liquid crystal layer 10
  • a second horizontal alignment film is formed on the second substrate 2 so as to be in contact with the liquid crystal layer 10.
  • Each liquid crystal region 11 is arranged in contact with these horizontal alignment films.
  • a first polarizing plate is disposed on the first substrate 1, and a second polarizing plate is disposed on the second substrate 2.
  • polarizing plates are linear polarizing plates, and are arranged so that their absorption axes are orthogonal to each other (crossed Nicols).
  • the first horizontal alignment film and the second horizontal alignment film are each subjected to an alignment process (for example, a rubbing process).
  • the directions D1 and D2 of the alignment treatment of the first horizontal alignment film and the second horizontal alignment film are orthogonal to each other.
  • the alignment treatment direction D1 applied to the first horizontal alignment film is parallel to the transmission axis of the first polarizing plate
  • the alignment treatment direction D2 applied to the second horizontal alignment film is the transmission axis of the second polarizing plate.
  • An electrode (for example, a common electrode) 15 is provided between the liquid crystal layer 10 and the first substrate 1, and an electrode (for example, a plurality of pixel electrodes) 14 is disposed between the liquid crystal layer 10 and the second substrate 2. Is provided.
  • a liquid crystal display panel (TN (Twisted Nematic) type liquid crystal display panel) having such a configuration is disclosed in International Publication No. 2010/044246 by the present applicant.
  • FIGS. 9A and 9B are a partial cross-sectional view and a plan view of a liquid crystal display panel 100B for explaining a driving method in the case of having a circularly polarizing plate.
  • the first and second polarizing plates linear polarizing plates arranged so that the absorption axes are orthogonal to each other are used, and between the first polarizing plate and the first substrate 1, A ⁇ / 4 plate is disposed between the second polarizing plate and the second substrate 2.
  • Each of the ⁇ / 4 plate and the linearly polarizing plate functions as a circularly polarizing plate.
  • the first and second horizontal alignment films on the first and second substrates are not subjected to alignment treatment.
  • the liquid crystal region 11 included in the liquid crystal layer 10 is in contact with only the horizontal alignment film formed on one of the substrates 1 and 2.
  • Other configurations are the same as those shown in FIG.
  • liquid crystal display device of this embodiment is different from the above-described embodiment in that a fluorescent layer containing a fluorescent dichroic dye is used.
  • FIG. 10A is a perspective view showing the fluorescent layer 12 and the polarizing plate 6 in the present embodiment.
  • the fluorescent layer 12 is formed on the surface of a polarizing plate 6 that is a linear polarizing plate, and is disposed on the back side of the liquid crystal display panel.
  • the fluorescent layer 12 has the dichroic fluorescent dye 22 uniaxially oriented so that the direction T of the transition moment of the dichroic fluorescent dye 22 is parallel to the direction P of the transmission axis of the polarizing plate 6. A method for controlling the orientation of the fluorescent dye will be described later.
  • Fluorescent substances other than dichroic fluorescent dyes for example, transition metal ion-based rare earth ions, CaS-based, ZnS-based inorganic fluorescent substances, coumarin-based, cyanine-based, pyridine-based organic fluorescent dyes that do not have dichroism
  • the phosphor layer emits isotropically. For this reason, only the light having an amplitude in the direction parallel to the transmission axis of the polarizing plate out of the light emitted from the fluorescent layer is transmitted through the polarizing plate and incident on the liquid crystal layer and used for display. Therefore, about half of the light incident on the polarizing plate from the fluorescent layer is not used for display, and it is difficult to increase the light use efficiency.
  • the fluorescent layer 12 in the present embodiment mainly emits light that oscillates in a direction parallel to the transition moment of the dichroic fluorescent dye 22. For this reason, most of the light emitted from the fluorescent layer 12 is transmitted through the polarizing plate 6 and can be used for display. Therefore, it is possible to increase the utilization efficiency of light (fluorescent light).
  • the fluorescent dye represented by the chemical formula (1) is 4,7 bisparamethoxyphenyl 2,1,3 benzothiadiazole (4,7-bis (p-methoxyphenyl) -2,1,3-benzothiadiazoles).
  • This fluorescent dye has an absorption wavelength ⁇ A of 409 nm and a fluorescence emission wavelength ⁇ F of 542 nm.
  • the fluorescent dye represented by the chemical formula (2) is 4,7 bisparamethoxymethylphenyl 2,1,3 benzothiadiazole (4,7-bis (p-methoxymethylphenyl) -2,1,3-benzothiadiazoles).
  • This fluorescent dye has an absorption wavelength ⁇ A of 384 nm and a fluorescence emission wavelength ⁇ F of 505 nm.
  • the fluorescent dye represented by the chemical formula (3) is 4,7 bisparamethoxycarbonylphenyl 2,1,3 benzothiadiazole (4,7-bis (p-methoxycarbenylphenyl) -2,1,3-benzothiadiazoles).
  • This fluorescent dye has an absorption wavelength ⁇ A of 376 nm and a fluorescence emission wavelength ⁇ F of 464 nm. Each wavelength value is a value measured in dichloromethane.
  • FIGS. 10B and 10C are diagrams for explaining the absorption characteristics and emission characteristics of the P-type dichroic fluorescent dye, respectively.
  • the molecular axis of the P-type dichroic fluorescent dye 22 and the transition moment of absorption (absorption axis) are in the same direction T.
  • the absorption coefficient (A //) of light whose polarization direction is parallel to the molecular axis is larger than the absorption coefficient (A ⁇ ) of light whose polarization direction is perpendicular to the molecular axis.
  • the molecular axis of the P-type dichroic fluorescent dye 22 and the transition moment (luminescence axis) of fluorescence emission are directed in the same direction T.
  • the fluorescence emission coefficient (F //) of light whose polarization direction is parallel to the molecular axis is larger than the fluorescence emission coefficient (F ⁇ ) of light whose polarization direction is perpendicular to the molecular axis.
  • FIG. 10 (d) is a diagram showing the wavelength dependence of the light absorption / emission intensity by the P-type dichroic fluorescent dye.
  • the horizontal axis represents the light wavelength
  • the vertical axis represents the intensity of the absorbed light and the emission intensity. Represents. From this figure, it can be seen that the dichroic fluorescent dye selectively absorbs light of a specific polarization direction (here, parallel to the molecular axis) and strongly emits fluorescence of the specific polarization direction.
  • the laminated body 50 which provided the fluorescent film 12a on the surface of the polarizing plate film 6a is formed, and a liquid crystal display device is obtained using this laminated body 50.
  • FIG. 1 the laminated body 50 which provided the fluorescent film 12a on the surface of the polarizing plate film 6a is formed, and a liquid crystal display device is obtained using this laminated body 50.
  • a fluorescent film 12a containing a dichroic fluorescent dye is produced.
  • the fluorescent film 12a is stretched, and the fluorescent dichroic dye contained in the fluorescent film 12a is aligned in the uniaxial direction (stretching direction) T.
  • these films are bonded together to obtain a laminated film so that the transmission axis of the polarizing film 6a and the stretching direction T of the fluorescent film 12a are parallel to each other.
  • the laminated film is cut into a predetermined size to obtain a laminated body 50.
  • the polarizing film 6a preferably has a transmission axis in the longitudinal direction of the polarizing film 6a.
  • the stretching process and the bonding process of the fluorescent film 12a may be performed continuously.
  • a liquid crystal display device can be manufactured by using the laminate 50 thus obtained by the same method as described above with reference to FIGS.
  • the formation method of the fluorescent layer 12 in this embodiment is not limited to the above method.
  • the fluorescent layer 12 can be formed by applying a resin containing a dichroic fluorescent dye to the polarizing film 6a.
  • FIG. 12 is a diagram for explaining another method for forming the laminate 50 including the fluorescent layer 12 in the present embodiment.
  • the surface of the polarizing film 6a is rubbed in a direction P parallel to the transmission axis of the polarizing film 6a.
  • a resin for example, a UV curable liquid crystalline polymer resin
  • a dichroic fluorescent dye is applied to the rubbed surface of the polarizing film 6a to obtain a resin film 12b '.
  • the molecular axes of the dichroic fluorescent dye and the liquid crystalline polymer can be aligned in the rubbing direction P.
  • the resin film 12b 'containing the liquid crystalline polymer resin and the dichroic fluorescent dye is cured by, for example, UV light irradiation. Thereby, the fluorescent film 12b is formed on the polarizing film 6a.
  • the polarizing film 6a preferably has a transmission axis in the longitudinal direction of the polarizing film 6a. As shown in the figure, the rubbing process of the polarizing film 6a, the resin coating process on the polarizing film 6a, and the curing process of the resin film 12b 'may be performed continuously.
  • a liquid crystal display device can be manufactured by using the laminate 50 thus obtained by the same method as described above with reference to FIGS.
  • the liquid crystal display device of the present embodiment is different from the above-described embodiment in that the liquid crystal display device has a reflection portion on at least a part of the side surface of the liquid crystal display panel.
  • FIG. 13 is a cross-sectional view of the liquid crystal display device 200C of the present embodiment.
  • the liquid crystal display device 200C includes a liquid crystal display panel 100C and a backlight 110.
  • the liquid crystal display panel 100C is viewed from the viewer side, at least a part of the outer edge of the fluorescent layer 12 is aligned with the outer edges of the first substrate 1, the second substrate 2, the polarizing plates 4 and 6, and the liquid crystal layer 10. Yes.
  • a reflecting portion 24 is provided along the aligned edge portion S.
  • the reflection unit 24 is disposed so as to cover the side surfaces of the first substrate 1, the second substrate 2, the polarizing plates 4 and 6, the liquid crystal layer 10, and the fluorescent layer 12.
  • the reflection part 24 is arrange
  • the reflection unit 24 may be provided on at least a part of the outer edge of the liquid crystal display panel 100C when the liquid crystal display panel 100C is viewed from the observer side.
  • the reflection part 24 may be provided along at least one side among the sides constituting the outer edge (for example, a substantially square shape) of the liquid crystal display panel 100C.
  • the reflection part 24 should just contain the material which reflects visible light, and the material and formation method are not specifically limited.
  • a high dielectric film or a metal film having a high reflectance may be formed as a part of the side surface of the liquid crystal display panel 100C as the reflection part 24.
  • a high dielectric film or a metal film may be formed on at least a part of the cut surface of the liquid crystal display panel.
  • the reflecting portion 24 can be formed by applying a paint containing metal flakes to at least a part of the side surface (or cut surface) of the liquid crystal display panel 100C.
  • a reflective film may be attached to the side surface (or cut surface) of the liquid crystal display panel 100C.
  • the light emitted from the fluorescent layer 12 by the excitation light 120 from the backlight 110 can be prevented from leaking from the side surface of the liquid crystal display panel 100C to the outside of the liquid crystal display panel 100C (light leakage). Further, even when the frame area is narrowed, display defects at the peripheral edge of the display area 25 can be reduced.
  • the effects of the present embodiment will be described in more detail with reference to the drawings.
  • the width of the “display darkening range” 25P in the display area 25 that is, the distance x from the outer edge of the liquid crystal display panel to the innermost portion of the range 25P is the refraction of the liquid crystal display panel.
  • the light L2 traveling from the side surface of the liquid crystal display panel 100C to the outside of the liquid crystal display panel 100C is reflected inside the liquid crystal display panel 100C. it can. Accordingly, it is possible to improve the brightness shortage at the peripheral edge of the liquid crystal display panel 100C. As a result, even when the frame region is not provided or the width of the frame region is less than the distance x, display unevenness in the peripheral portion of the display region 25 can be reduced, and display is performed with more uniform brightness in the entire display region 25. It becomes possible.
  • the liquid crystal display device of this embodiment is different from the above-described embodiment in that the amount of the fluorescent material contained in the peripheral portion of the fluorescent layer is larger than the amount contained in the central portion.
  • the “amount of the fluorescent substance” here means the mass of the fluorescent substance per unit area of the fluorescent layer when viewed from the normal direction of the fluorescent layer.
  • 15A and 15B are a cross-sectional view and a plan view of the liquid crystal display device 200D of the present embodiment, respectively.
  • the liquid crystal display device 200D includes a liquid crystal display panel 100D and a backlight 110.
  • the density of the fluorescent material in the fluorescent layer 12 is substantially uniform, but the thickness of the fluorescent layer 12 is larger at the peripheral part than at the central part.
  • the amount of the fluorescent material can be increased at the peripheral portion of the fluorescent layer 12 as compared with the central portion, the light emission amount from the fluorescent layer 12 can be increased at the peripheral portion as compared with the central portion. Accordingly, display brightness non-uniformity due to light leakage on the side surface of the panel (FIG. 14A) can be reduced.
  • the light guide plate 112 of the backlight 110 is smaller than the fluorescent layer 12, and the peripheral portion of the fluorescent layer 12 is the light guide plate. 112 does not have to overlap.
  • the region of the fluorescent layer 12 that is located within the display region 25 and does not overlap the light guide plate 112 (the light irradiating part of the light guide plate 112) is the region Z, it is included in the region Z of the fluorescent layer 12. It is preferable to increase the amount of the fluorescent substance more than the amount contained in other regions.
  • the amount of excitation light incident on the region Z of the fluorescent layer 12 is the amount of excitation light incident on another region (for example, the central portion) of the fluorescent layer 12. Less than.
  • the amount of the fluorescent substance contained in the region Z is increased, it is possible to emit the same amount of light as other regions even with a small amount of excitation light. For this reason, light can be emitted more uniformly over the entire surface of the fluorescent layer 12 regardless of the size and position of the light guide plate 112.
  • FIG. 16 is a cross-sectional view for explaining an example of a method for forming the fluorescent layer 12.
  • the fluorescent layer 12 in the present embodiment includes, for example, a liquid crystalline polymer resin and a dichroic fluorescent dye.
  • rubbing is performed on the surface of the polarizing film 6a in a direction parallel to the transmission axis of the polarizing film 6a.
  • a UV curable liquid crystalline polymer resin containing a dichroic fluorescent dye is applied to the rubbed surface of the polarizing film 6a to obtain a resin film 12c '.
  • the molecular axes of the dichroic fluorescent dye and the liquid crystalline polymer can be aligned in the rubbing direction.
  • the thickness of the resin film 12c ' is changed by controlling the coating amount. In this embodiment, it controls so that it may become thick in the part corresponding to the peripheral part of a panel.
  • the resin film 12c 'containing the liquid crystalline polymer resin and the dichroic fluorescent dye is cured by, for example, irradiation with UV light, thereby forming the fluorescent film 12c on the polarizing film 6a.
  • the fluorescent film 12c and the polarizing film 6a are simultaneously cut to obtain a laminate 50 having a predetermined size.
  • the polarizing film 6a preferably has a transmission axis in the longitudinal direction of the polarizing film 6a.
  • the rubbing step of the polarizing film 6a, the step of applying the resin to the polarizing film 6a, and the curing step of the resin film 12c ' may be performed successively.
  • the laminated body 50 obtained in this way is bonded so that the thick part of the fluorescent layer 12 and the end of the liquid crystal display panel overlap.
  • the liquid crystal display device 200D can be manufactured by using a method similar to the method described above with reference to FIGS.
  • the concentration of the fluorescent substance in the fluorescent layer 12 may be higher at the peripheral portion than at the central portion. Therefore, since the quantity of a fluorescent substance can be increased in a peripheral part, the effect which suppresses the display nonuniformity by the light leakage from a panel side surface is acquired. In particular, by increasing the concentration of the fluorescent substance in the region Z in the fluorescent layer 12 as compared with other regions, display unevenness due to non-uniformity in the amount of excitation light can be improved.
  • the fluorescent layers 12 having different concentrations can be formed by the following method, for example.
  • the liquid crystal display device of this embodiment is different from the above-described embodiment in that a method different from the driving method described above with reference to FIGS. 8 and 9 is used.
  • a driving method called an IPS (In Plane Switching) method and a FFS (Fringe Field Switching) method as a driving method of the liquid crystal display panel in the present embodiment will be described with reference to the drawings.
  • FIGS. 17A and 17B are a partial cross-sectional view and a partial plan view of a liquid crystal display panel 100E using the IPS method.
  • the same components as those in FIGS. 8 and 9 are denoted by the same reference numerals, and description thereof is omitted.
  • a pair of comb electrodes 16a and 16b are formed on the second substrate 2 on the back side of the liquid crystal layer 10.
  • No electrode is formed on the first substrate 1 on the viewer side of the liquid crystal layer 10.
  • a horizontal alignment film (not shown) is formed on the surface of the first and second substrates 1 and 2 on the liquid crystal layer side. These alignment films are subjected to an alignment process (for example, a rubbing process) so as to be parallel to each other when viewed from the normal direction of the panel.
  • the orientation direction D3 is shown in FIG.
  • the liquid crystal layer 10 includes a liquid crystal region 11 and a polymer wall 13. Each liquid crystal region 11 is preferably in contact with both the horizontal alignment films of the first and second substrates 1 and 2.
  • linear polarizers (not shown) are provided on the viewer side of the first substrate 1 and the back side of the second substrate 2, respectively. These linearly polarizing plates are arranged so that their absorption axes are orthogonal to each other (crossed Nicols). Further, either one of the absorption axes may coincide with the rubbing direction. In this method, the alignment state of the liquid crystal region 11 is controlled by a lateral electric field.
  • a vertical alignment film may be formed on the first substrate 1 and the second substrate 2 instead of forming the horizontal alignment film.
  • the vertical alignment film is not subjected to alignment treatment.
  • a liquid crystal material having a positive dielectric anisotropy is used as the material of the liquid crystal layer 10.
  • a partial plan view of the liquid crystal display panel 100F in this case is shown in FIG. The cross-sectional view is the same as FIG.
  • 19 (a) and 19 (b) are a partial cross-sectional view and a partial plan view of a liquid crystal display panel 100G using the FFS method.
  • the same components as those in FIGS. 8 and 9 are denoted by the same reference numerals, and description thereof is omitted.
  • the liquid crystal display panel 100G includes a lower electrode 17 formed over almost the entire display area of the first substrate 1, an insulating layer 18 formed on the lower electrode 17, and a comb electrode 19 formed on the insulating layer 18. And have. No electrode is formed on the second substrate 2 on the viewer side of the liquid crystal layer 10.
  • a horizontal alignment film (not shown) is formed on the surface of the first and second substrates 1 and 2 on the liquid crystal layer side. These alignment films are subjected to an alignment process (for example, a rubbing process) so as to be parallel to each other when viewed from the normal direction of the panel.
  • the orientation direction D4 is shown in FIG.
  • the liquid crystal layer 10 includes a liquid crystal region 11 and a polymer wall 13.
  • Each liquid crystal region 11 is preferably in contact with both the horizontal alignment films of the first and second substrates 1 and 2.
  • linear polarizers (not shown) are provided on the viewer side of the first substrate 1 and the back side of the second substrate 2, respectively. These linearly polarizing plates are arranged so that their absorption axes are orthogonal to each other (crossed Nicols). Further, either one of the absorption axes may coincide with the rubbing direction. In this method, as in the IPS method, the alignment state of the liquid crystal region 11 is controlled by a lateral electric field.
  • a vertical alignment film may be formed on the first substrate 1 and the second substrate 2 instead of forming the horizontal alignment film.
  • the vertical alignment film is not subjected to alignment treatment.
  • a liquid crystal material having a positive dielectric anisotropy is used as the material of the liquid crystal layer 10.
  • a partial plan view of the liquid crystal display panel 100H in this case is shown in FIG. The cross-sectional view is the same as FIG.
  • the liquid crystal display device of the present invention is not limited to the liquid crystal display device of the above-described embodiment.
  • a fluorescent layer containing a dichroic fluorescent dye may be applied to the third to fifth embodiments.
  • the fall of the display characteristic in the peripheral part of a display area can be suppressed more effectively.
  • the drive system and electrode structure described in the fifth embodiment can be applied to the liquid crystal display device of any other embodiment.
  • the liquid crystal display device can be suitably applied to a multi-display system.
  • a large display system 300 can be manufactured by arranging a plurality of liquid crystal display panels 101 to 104 side by side and providing a backlight (not shown) on the back side thereof.
  • a backlight not shown
  • the liquid crystal display panels 101 to 104 may be any of the liquid crystal display panels 100A to 100H described above.
  • the electronic device 400 includes, for example, two liquid crystal display devices 201 and 202 having the same configuration.
  • the liquid crystal display devices 201 and 202 may be the liquid crystal display device of any of the above-described embodiments. These liquid crystal display devices 201 and 202 are arranged so that side surfaces having no frame region are in contact with each other. Thereby, continuous display is realizable. Further, if the folding between the two liquid crystal display devices 201 and 202 can be folded, the portability of the electronic device 400 can be improved.
  • Embodiments of the present invention are applicable not only to liquid crystal display devices and various electronic devices having the liquid crystal display devices, for example, small and medium devices such as electronic books, mobile phones, and smartphones, but also large devices such as multi-display systems. Can be done.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A liquid crystal display device (200A) comprises a liquid crystal display panel (100A) and a backlight (110). The liquid crystal display panel (100A) has a liquid crystal layer (10) having a plurality of liquid crystal regions and walls including a polymer between adjacent liquid crystal regions, first and second substrates (1, 2) disposed on the observer-side and the back side of the liquid crystal layer, a first polarizing plate (4) formed on the surface of the first substrate on the observer side, a second polarizing plate (6) formed on the surface of the second substrate (2) on the back side thereof, and a fluorescence layer (12) disposed between the second polarizing plate and a backlight and including a fluorescent substance which excites and generates visible light upon absorbing light of a predetermined wavelength. The backlight (110) has a photoirradiation part for irradiating light of a predetermined wavelength to the fluorescence layer (12), and when viewed from the direction of the line normal to the liquid crystal display panel, at least one side of the outer edge (12e) of the fluorescence layer aligns with one side of the outer edges (4e, 6e) of the first and second polarizing plates and one side of the outer edges (1e, 2e) of the first and second substrates.

Description

液晶表示装置および液晶表示装置の製造方法Liquid crystal display device and method of manufacturing liquid crystal display device
 本発明は、液晶表示装置および液晶表示装置の製造方法に関する。 The present invention relates to a liquid crystal display device and a method for manufacturing the liquid crystal display device.
 液晶表示装置は、軽量、薄型および低消費電力等の利点を有しており、大型テレビジョンだけでなく携帯電話の表示部等の小型の表示装置としても利用されている。 The liquid crystal display device has advantages such as light weight, thinness and low power consumption, and is used not only as a large television but also as a small display device such as a display unit of a mobile phone.
 液晶表示装置は、液晶表示パネル、バックライト、液晶表示パネルに各種の電気信号を供給する回路や電源、およびこれらを収容する筐体を備えている。液晶表示装置は、複数の画素が配列された表示領域と、その周辺に位置し、表示に寄与しない額縁領域とを有している。 The liquid crystal display device includes a liquid crystal display panel, a backlight, a circuit and a power source for supplying various electric signals to the liquid crystal display panel, and a housing for housing these. The liquid crystal display device has a display area in which a plurality of pixels are arranged, and a frame area that is located around the display area and does not contribute to display.
 一般的な液晶表示パネルの表示領域(アクティブエリア)には、画素電極や薄膜トランジスタ(TFT)などが設けられており、画像や映像などが表示される。一方、額縁領域には、液晶材料を基板間封止するように基板を貼り合わせるシール部、TFTのゲート電極やソース電極に繋がる配線、および、信号/走査電圧を入力する外部駆動回路に接続させるための端子などが配置されている。本明細書において、TFTのゲート電極やソース電極に繋がる配線、および、信号/走査電圧を入力する外部駆動回路に接続させるための端子などが配置されている領域を接続領域という場合がある。バックライトからの光漏れや、液晶分子の配向の乱れなどに起因する表示領域の外周部での表示品位の低下を防止するために、通常、額縁領域にはブラックマスク(遮光部材)が設けられている。このように、額縁領域は表示に寄与しない領域(無効表示部分)である。液晶表示パネルの狭額縁化は年々進んでいるが、額縁領域をなくすことは困難である。 In a display area (active area) of a general liquid crystal display panel, a pixel electrode, a thin film transistor (TFT), and the like are provided, and an image, a video, or the like is displayed. On the other hand, in the frame region, a liquid crystal material is connected to a seal portion for bonding substrates so as to seal between substrates, wiring connected to a gate electrode and a source electrode of a TFT, and an external drive circuit for inputting a signal / scanning voltage. Terminals for the purpose are arranged. In this specification, a region where wirings connected to a gate electrode and a source electrode of a TFT, a terminal for connecting to an external drive circuit for inputting a signal / scanning voltage, and the like are sometimes referred to as a connection region. In order to prevent deterioration of display quality at the outer periphery of the display area due to light leakage from the backlight or disorder of alignment of liquid crystal molecules, a black mask (light shielding member) is usually provided in the frame area. ing. Thus, the frame area is an area that does not contribute to display (invalid display portion). The narrowing of the frame of a liquid crystal display panel is progressing year by year, but it is difficult to eliminate the frame area.
 図23は、一般的な液晶表示装置(例えば、TN(Twisted Nematic)型の液晶表示装置)500の模式的な平面図である。 FIG. 23 is a schematic plan view of a general liquid crystal display device (for example, a TN (Twisted Nematic) type liquid crystal display device) 500.
 液晶表示装置500は、表示を行う表示領域85と、表示領域85の周縁に位置する額縁領域87とを含んでいる。表示領域85には、複数の画素(図示せず)が形成されている。額縁領域87には、法線方向から見たときに液晶層を囲むように形成されたシール部(図示せず)を有している。シール部は、シール材をディスペンサ装置やスクリーン印刷機などによって基板上に所定のパターンを形成するように付与され、もう一枚の基板と貼り合わせた後、シール材を硬化することによって形成される。このようにして形成されたシール部の幅は約1mm以上である。このため、額縁領域87の幅Wは少なくともシール部の幅よりも大きくなるように設定される。 The liquid crystal display device 500 includes a display area 85 that performs display and a frame area 87 that is positioned at the periphery of the display area 85. A plurality of pixels (not shown) are formed in the display area 85. The frame region 87 has a seal portion (not shown) formed so as to surround the liquid crystal layer when viewed from the normal direction. The sealing portion is formed by applying the sealing material to form a predetermined pattern on the substrate by a dispenser device, a screen printing machine, or the like, and bonding the other material to the other substrate, and then curing the sealing material. . The width of the seal portion thus formed is about 1 mm or more. For this reason, the width W of the frame region 87 is set to be at least larger than the width of the seal portion.
 これに対し、特許文献1は、一対の基板を所定のパターンを形成するように付与されたシール材を介して貼り合わせた後、シール材とともに基板を分断して、複数の液晶表示パネルを製造する方法を開示している。この方法によれば、シール部の幅を約1mm以下に低減できるので、額縁領域の幅を従来よりも小さくできる。 On the other hand, Patent Document 1 manufactures a plurality of liquid crystal display panels by bonding a pair of substrates through a sealing material provided so as to form a predetermined pattern, and then dividing the substrate together with the sealing material. The method of doing is disclosed. According to this method, since the width of the seal portion can be reduced to about 1 mm or less, the width of the frame region can be made smaller than that in the prior art.
 一方、特許文献2は、硬化性ビニル化合物を用いた高分子分散型液晶(PDLC)層を備える液晶表示パネルを開示している。特許文献2には、硬化性ビニル化合物を用いて形成された高分子分散型液晶層には接着効果があり、シール部を不要にできる旨が記載されている。しかしながら、特許文献2には、シール部を有しない液晶表示パネルの製造方法については何ら開示されていない。 On the other hand, Patent Document 2 discloses a liquid crystal display panel provided with a polymer dispersed liquid crystal (PDLC) layer using a curable vinyl compound. Patent Document 2 describes that a polymer-dispersed liquid crystal layer formed using a curable vinyl compound has an adhesive effect and can eliminate the need for a seal portion. However, Patent Document 2 does not disclose any method for manufacturing a liquid crystal display panel having no seal portion.
特許第3389461号公報Japanese Patent No. 3389461 特許第2550627号公報Japanese Patent No. 2550627
 特許文献1に開示された方法によると、額縁領域を従来よりも狭くできる。しかしながら、本発明者が検討したところ、額縁領域を狭小化すると、表示領域の周縁部において、表示領域の中央部と同程度の明るさで、視角依存性の低い表示を行うことが困難になるという問題を見出した。この問題については、後で詳述する。 According to the method disclosed in Patent Document 1, the frame area can be made narrower than before. However, as a result of studies by the present inventor, when the frame area is narrowed, it becomes difficult to perform display at the peripheral edge of the display area with the same brightness as the central part of the display area and with low viewing angle dependency. I found a problem. This problem will be described in detail later.
 また、本発明者は検討を重ね、特許文献2に提案された液晶層の材料を利用して、額縁領域をさらに狭小化した液晶表示装置が得られることを見出した。しかし、このような液晶表示装置においても、上記と同様の問題が生じ得る。 Further, the present inventor has repeatedly studied and found that a liquid crystal display device in which the frame region is further narrowed can be obtained by using the material of the liquid crystal layer proposed in Patent Document 2. However, even in such a liquid crystal display device, the same problem as described above may occur.
 本発明は、上記課題を鑑みてなされたものであり、その目的は、額縁領域を狭小化した場合でも、表示領域全体において均一な明るさで高品位な表示を行うことの可能な液晶表示装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a liquid crystal display device capable of performing high-quality display with uniform brightness over the entire display area even when the frame area is narrowed. Is to provide.
 本発明の実施形態の液晶表示装置は、複数の画素を有する表示領域を含む液晶表示パネルと、前記液晶表示パネルの背面側に配置されたバックライトとを備えた液晶表示装置であって、前記液晶表示パネルは、複数の液晶領域、および、前記複数の液晶領域のうちの隣接する液晶領域の間に高分子を含む壁を有する液晶層と、前記液晶層の観察者側に配置された第1基板と、前記液晶層の背面側に配置された第2基板と、前記第1基板に形成された第1偏光板と、前記第2基板に形成された第2偏光板と、前記第2偏光板と前記バックライトとの間に配置され、所定の波長の光を吸収すると励起して可視光を発する蛍光物質を含む蛍光層とを有し、前記バックライトは、前記所定の波長の光を前記蛍光層に照射する光照射部を有しており、前記液晶表示パネルの法線方向から見たとき、前記蛍光層の外縁の少なくとも一辺は、前記第1および第2偏光板の外縁の一辺、および、前記第1および第2基板の外縁の一辺と整合している。 A liquid crystal display device according to an embodiment of the present invention is a liquid crystal display device including a liquid crystal display panel including a display region having a plurality of pixels, and a backlight disposed on the back side of the liquid crystal display panel, The liquid crystal display panel includes a plurality of liquid crystal regions, a liquid crystal layer having a polymer-containing wall between adjacent liquid crystal regions of the plurality of liquid crystal regions, and a liquid crystal layer disposed on an observer side of the liquid crystal layer. One substrate, a second substrate disposed on the back side of the liquid crystal layer, a first polarizing plate formed on the first substrate, a second polarizing plate formed on the second substrate, and the second A fluorescent layer that is disposed between the polarizing plate and the backlight and includes a fluorescent layer that emits visible light upon absorption of light having a predetermined wavelength, and the backlight includes light having the predetermined wavelength. Having a light irradiation part for irradiating the fluorescent layer, When viewed from the normal direction of the liquid crystal display panel, at least one side of the outer edge of the phosphor layer is one side of the outer edge of the first and second polarizing plates and one side of the outer edge of the first and second substrates. Consistent.
 ある好ましい実施形態において、前記液晶表示パネルの法線方向から見たとき、前記蛍光層の外縁の前記少なくとも一辺は、前記液晶層の外縁の一辺とも整合している。 In a preferred embodiment, when viewed from the normal direction of the liquid crystal display panel, the at least one side of the outer edge of the fluorescent layer is aligned with one side of the outer edge of the liquid crystal layer.
 ある好ましい実施形態において、前記バックライトは導光板を含み、前記光照射部は、前記導光板における前記蛍光層と対向する表面に配置され、前記表示領域において、前記蛍光層の一部は前記導光板の前記光照射部と重なっていない。 In a preferred embodiment, the backlight includes a light guide plate, the light irradiation unit is disposed on a surface of the light guide plate facing the fluorescent layer, and in the display region, a part of the fluorescent layer is the light guide. It does not overlap with the light irradiation part of the light plate.
 ある好ましい実施形態において、前記蛍光物質は2色性蛍光色素を含み、前記蛍光層において、前記2色性蛍光色素の遷移モーメントの方向は、前記第2偏光板の透過軸の方向と平行である。 In a preferred embodiment, the fluorescent material includes a dichroic fluorescent dye, and in the fluorescent layer, the direction of the transition moment of the dichroic fluorescent dye is parallel to the direction of the transmission axis of the second polarizing plate. .
 ある好ましい実施形態において、前記液晶表示パネルは、前記液晶表示パネルの側面の少なくとも一部に配置された反射部をさらに有し、前記反射部は、前記液晶表示パネルの法線方向から見たとき、前記蛍光層の外縁の前記少なくとも一辺に沿って配置されている。 In a preferred embodiment, the liquid crystal display panel further includes a reflective portion disposed on at least a part of a side surface of the liquid crystal display panel, and the reflective portion is viewed from a normal direction of the liquid crystal display panel. And arranged along the at least one side of the outer edge of the fluorescent layer.
 ある好ましい実施形態において、前記蛍光層の厚さは、前記蛍光層の周縁に位置する第1部分で中央部よりも大きい。 In a preferred embodiment, the thickness of the fluorescent layer is larger at the first portion located at the periphery of the fluorescent layer than at the central portion.
 ある好ましい実施形態において、前記蛍光層における前記蛍光物質の濃度は、前記蛍光層の周縁に位置する第1部分で中央部よりも大きい。 In a preferred embodiment, the concentration of the fluorescent substance in the fluorescent layer is higher in the first part located at the periphery of the fluorescent layer than in the central part.
 ある好ましい実施形態において、前記蛍光層の前記第1部分は前記光照射部と重なっておらず、前記蛍光層の前記中央部は前記光照射部と重なっている。 In a preferred embodiment, the first part of the fluorescent layer does not overlap the light irradiation part, and the central part of the fluorescent layer overlaps the light irradiation part.
 ある好ましい実施形態において、液晶表示装置は、前記液晶層と前記第1基板および前記第2基板との間にそれぞれ形成され、それぞれが前記液晶層と接するように形成された第1配向膜および第2配向膜をさらに有する。 In a preferred embodiment, the liquid crystal display device is formed between the liquid crystal layer and the first substrate and the second substrate, respectively, and the first alignment film and the first alignment film are formed so as to be in contact with the liquid crystal layer, respectively. It further has a bi-alignment film.
 ある好ましい実施形態において、液晶表示装置は、前記液晶表示パネルの法線方向から見たとき、前記液晶層の外縁の少なくとも一辺に沿ってシール部が設けられておらず、前記シール部が設けられていない前記液晶層の外縁の前記少なくとも一辺は、前記蛍光層の外縁の前記少なくとも一辺と整合している。 In a preferred embodiment, the liquid crystal display device is not provided with a seal portion along at least one side of the outer edge of the liquid crystal layer when viewed from the normal direction of the liquid crystal display panel, and is provided with the seal portion. The at least one side of the outer edge of the liquid crystal layer that is not aligned with the at least one side of the outer edge of the fluorescent layer.
 本発明の実施形態の液晶表示装置の製造方法は、(A1)偏光板フィルムの表面に、所定の波長の光を吸収すると励起して可視光を発する蛍光物質を含む蛍光膜を形成し、前記偏光板フィルムおよび前記蛍光膜を含む積層フィルムを得る工程と、(A2)前記積層フィルムを切断することにより、偏光板および蛍光層を含む積層体を得る工程と、(B)第1基板および第2基板と、前記第1基板と第2基板との間に形成され、複数の液晶領域と前記複数の液晶領域のうちの隣接する液晶領域の間に高分子を含む壁とを有する液晶層とを含む第1パネル構造体を形成する工程と、(C)前記第1パネル構造体の前記第2基板に、前記偏光板が前記第1パネル構造体側となるように前記積層体を設置し、かつ、前記第1基板に他の偏光板フィルムを設置することにより、第2パネル構造体を得る工程と、(D)前記第2パネル構造体を所定のサイズに切り出すことにより、液晶表示パネルを得る工程と、(E)前記液晶表示パネルの背面側に、前記所定の波長の光を前記液晶表示パネル側に照射する光照射部を有するバックライトを配置する工程とを包含する。 In the method for manufacturing a liquid crystal display device according to an embodiment of the present invention, (A1) a fluorescent film containing a fluorescent material that emits visible light when excited by absorbing light having a predetermined wavelength is formed on the surface of a polarizing film. A step of obtaining a laminated film including a polarizing plate film and the fluorescent film; (A2) a step of obtaining a laminated body including a polarizing plate and a fluorescent layer by cutting the laminated film; and (B) a first substrate and a first substrate. A liquid crystal layer formed between two substrates, a first substrate and a second substrate, and having a plurality of liquid crystal regions and a wall containing a polymer between adjacent liquid crystal regions of the plurality of liquid crystal regions; A step of forming a first panel structure including: (C) placing the laminate on the second substrate of the first panel structure so that the polarizing plate is on the first panel structure side; And another polarizing film on the first substrate. (D) a step of obtaining a liquid crystal display panel by cutting the second panel structure into a predetermined size; and (E) a step of obtaining the liquid crystal display panel. And disposing a backlight having a light irradiation unit for irradiating the liquid crystal display panel with the light having the predetermined wavelength on the back side.
 ある好ましい実施形態において、(A1)偏光板フィルムの表面に、所定の波長の光を吸収すると励起して可視光を発する蛍光物質を含む蛍光膜を形成し、前記偏光板フィルムおよび前記蛍光膜を含む積層フィルムを得る工程と、(A2)前記積層フィルムを切断することにより、偏光板および蛍光層を含む積層体を得る工程と、(B)第1基板および第2基板と、前記第1基板と第2基板との間に形成され、複数の液晶領域と前記複数の液晶領域のうちの隣接する液晶領域の間に高分子を含む壁とを有する液晶層とを含む第1パネル構造体を形成する工程と、(c)前記第1パネル構造体を所定のサイズに切り出す工程と、(d)前記切り出した第1パネル構造体の前記第2基板に、前記偏光板が前記第2パネル構造体側となるように前記積層体を設置し、前記第1基板に他の偏光板を設置することにより、液晶表示パネルを得る工程と、(E)前記液晶表示パネルの背面側に、前記所定の波長の光を前記液晶表示パネル側に照射する光照射部を有するバックライトを配置する工程とを包含する。 In a preferred embodiment, (A1) a fluorescent film containing a fluorescent substance that emits visible light when excited by absorbing light of a predetermined wavelength is formed on the surface of the polarizing film, and the polarizing film and the fluorescent film are A step of obtaining a laminated film including, (A2) a step of obtaining a laminated body including a polarizing plate and a fluorescent layer by cutting the laminated film, (B) a first substrate and a second substrate, and the first substrate. A first panel structure including a plurality of liquid crystal regions and a liquid crystal layer having a polymer-containing wall between adjacent liquid crystal regions of the plurality of liquid crystal regions. A step of forming; (c) a step of cutting out the first panel structure to a predetermined size; and (d) the polarizing plate on the second substrate of the cut out first panel structure. Front to be on the body side A step of obtaining a liquid crystal display panel by installing a laminate and disposing another polarizing plate on the first substrate; and (E) emitting light of the predetermined wavelength on the back side of the liquid crystal display panel. And a step of disposing a backlight having a light irradiating unit for irradiating the display panel.
 ある好ましい実施形態において、前記蛍光物質は2色性蛍光色素を含み、前記工程(A1)は、前記偏光板フィルムの前記表面に、前記偏光板フィルムの透過軸の方向と前記2色性蛍光色素の遷移モーメントの方向とが平行になるように、前記蛍光膜を形成する工程を含む。 In a preferred embodiment, the fluorescent material includes a dichroic fluorescent dye, and the step (A1) includes the step of transmitting the direction of the transmission axis of the polarizing film and the dichroic fluorescent dye on the surface of the polarizing film. Forming the phosphor film so that the direction of the transition moment is parallel.
 ある好ましい実施形態において、前記工程(A1)は、前記2色性蛍光色素を含む蛍光フィルムを用意する工程と、前記蛍光フィルムを所定の方向に延伸する工程と、前記延伸方向と前記偏光板フィルムの透過軸とが平行になるように前記蛍光フィルムを前記偏光板フィルムの表面と貼り合わせることにより、前記蛍光膜を形成する工程とを含む。 In a preferred embodiment, the step (A1) includes a step of preparing a fluorescent film containing the dichroic fluorescent dye, a step of stretching the fluorescent film in a predetermined direction, the stretching direction, and the polarizing film. Forming the phosphor film by bonding the phosphor film to the surface of the polarizing film so that the transmission axis of the phosphor film is parallel.
 ある好ましい実施形態において、前記工程(A1)は、前記偏光板フィルムの表面に対し、前記偏光板フィルムの透過軸と平行な方向にラビング処理を行う工程と、前記ラビング処理が行われた前記表面に、前記蛍光色素を含む樹脂を塗布した後、硬化させることにより、前記蛍光膜を形成する工程とを含む。 In a preferred embodiment, the step (A1) includes a step of rubbing a surface of the polarizing film in a direction parallel to a transmission axis of the polarizing film, and the surface on which the rubbing is performed. And a step of forming the fluorescent film by applying a resin containing the fluorescent dye and then curing the resin.
 ある好ましい実施形態において、前記工程(A1)は、前記蛍光膜の厚さが所定の部分で大きくなるように前記蛍光膜を形成する工程を含み、前記所定の部分は、前記液晶表示パネルにおいて、前記蛍光層の周縁に位置する。 In a preferred embodiment, the step (A1) includes a step of forming the phosphor film such that a thickness of the phosphor film is increased in a predetermined portion, and the predetermined portion is the liquid crystal display panel, Located on the periphery of the phosphor layer.
 ある好ましい実施形態において、前記工程(A1)において、前記蛍光膜における前記蛍光物質の濃度が所定の部分で高くなるように前記蛍光膜を形成する工程を含み、前記所定の部分は、前記液晶表示パネルにおいて、前記蛍光層の周縁に位置する。 In a preferred embodiment, the step (A1) includes a step of forming the fluorescent film so that the concentration of the fluorescent substance in the fluorescent film is high at a predetermined portion, and the predetermined portion includes the liquid crystal display. In the panel, it is located at the periphery of the fluorescent layer.
 ある好ましい実施形態において、前記液晶表示パネルの側面の少なくとも一部を覆うように反射部を形成する工程をさらに含む。 In a preferred embodiment, the method further includes a step of forming a reflection portion so as to cover at least a part of the side surface of the liquid crystal display panel.
 本発明の実施形態によれば、額縁領域の幅が従来よりも小さい場合でも、表示領域の周縁部における表示特性(明度や視認性)の低下を抑制でき、表示領域全体において均一な明るさで高品位な表示を実現できる。従って、高い表示特性と額縁領域の狭小化とを両立することが可能となる。 According to the embodiment of the present invention, even when the width of the frame region is smaller than the conventional one, it is possible to suppress a decrease in display characteristics (brightness and visibility) at the peripheral portion of the display region, and uniform brightness in the entire display region. High quality display can be realized. Therefore, it is possible to achieve both high display characteristics and narrowing of the frame area.
(a)は、本発明による第1の実施形態の液晶表示装置200Aの模式的な平面図であり、(b)および(c)は、それぞれ、(a)のI-I’線およびII-II’線に沿った液晶表示装置200Aの模式的な断面図である。(A) is a schematic plan view of the liquid crystal display device 200A of the first embodiment according to the present invention, and (b) and (c) are respectively a line II ′ and a line II— of (a). It is typical sectional drawing of 200 A of liquid crystal display devices along an II 'line. 液晶表示装置200Aの模式的な断面図である。It is typical sectional drawing of 200 A of liquid crystal display devices. (a)は、第1の実施形態における偏光板および蛍光層の形成方法を説明するための模式的な断面図であり、(b)~(d)は、それぞれ、偏光板と蛍光層とからなる積層体50の端部(切断面)を説明するための拡大断面図である。(A) is a schematic cross-sectional view for explaining a method of forming a polarizing plate and a fluorescent layer in the first embodiment, and (b) to (d) are respectively a polarizing plate and a fluorescent layer. It is an expanded sectional view for demonstrating the edge part (cut surface) of the laminated body 50 which becomes. (a)は、第1の実施形態における液晶表示パネル100Aの製造方法を説明する模式的な斜視図であり、(b)は、1つのTFT基板44の模式的な斜視図である。(c)は、(b)のIII-III’線に沿ったTFT基板44の模式的な断面図である。(A) is a typical perspective view explaining the manufacturing method of liquid crystal display panel 100A in 1st Embodiment, (b) is a typical perspective view of one TFT substrate 44. FIG. FIG. 6C is a schematic cross-sectional view of the TFT substrate 44 taken along line III-III ′ in FIG. (a)は、第1の実施形態における液晶表示パネル100Aの製造方法を説明する模式的な斜視図であり、(b)は、(a)のIV-IV’線に沿った模式的な断面図である。(A) is a typical perspective view explaining the manufacturing method of liquid crystal display panel 100A in 1st Embodiment, (b) is typical sectional drawing in alignment with the IV-IV 'line of (a). FIG. (a)~(g)は、それぞれ、第1の実施形態における液晶表示パネル100Aの製造方法を説明する模式的な断面図である。FIGS. 5A to 5G are schematic cross-sectional views illustrating a method for manufacturing the liquid crystal display panel 100A in the first embodiment. 液晶表示パネル100Aの他の製造方法を説明するためのTFT基板44の模式的な断面図である。It is typical sectional drawing of the TFT substrate 44 for demonstrating the other manufacturing method of 100 A of liquid crystal display panels. (a)は、第1の実施形態における液晶表示パネル100Aの駆動方式を説明するための断面図であり、(b)は、(a)に示す液晶層10の拡大平面図である。(A) is sectional drawing for demonstrating the drive system of 100 A of liquid crystal display panels in 1st Embodiment, (b) is an enlarged plan view of the liquid crystal layer 10 shown to (a). (a)は、第1の実施形態における他の液晶表示パネル100Bの他の駆動方式を説明するための断面図であり、(b)は、(a)に示す液晶層10の拡大平面図である。(A) is sectional drawing for demonstrating the other drive system of the other liquid crystal display panel 100B in 1st Embodiment, (b) is an enlarged plan view of the liquid crystal layer 10 shown to (a). is there. (a)は、本発明による第2の実施形態における蛍光層12を説明するための斜視図であり、(b)および(c)は、それぞれ、蛍光層12に含まれる2色性蛍光色素の吸収特性および発光特性を示す図である。(d)は、2色性蛍光色素の吸収および蛍光強度の波長依存性を示すグラフである。(A) is a perspective view for demonstrating the fluorescent layer 12 in 2nd Embodiment by this invention, (b) and (c) are respectively the dichroism fluorescent dyes contained in the fluorescent layer 12 It is a figure which shows an absorption characteristic and a light emission characteristic. (D) is a graph showing the wavelength dependence of absorption and fluorescence intensity of a dichroic fluorescent dye. 第2の実施形態における偏光板および蛍光層の形成方法を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the formation method of the polarizing plate and fluorescent layer in 2nd Embodiment. 第2の実施形態における偏光板および蛍光層の他の形成方法を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the other formation method of the polarizing plate and fluorescent layer in 2nd Embodiment. 本発明による第3の実施形態の液晶表示装置200Cの模式的な断面図である。It is a typical sectional view of liquid crystal display device 200C of a 3rd embodiment by the present invention. (a)および(b)は、第3の実施形態における反射部24の効果を説明するための図であり、(a)は反射部を有しない液晶表示パネル、(b)は反射部を有する液晶表示パネルの模式的な断面図である。(A) And (b) is a figure for demonstrating the effect of the reflection part 24 in 3rd Embodiment, (a) is a liquid crystal display panel which does not have a reflection part, (b) has a reflection part. It is typical sectional drawing of a liquid crystal display panel. (a)は、本発明による第4の実施形態の液晶表示装置200Dの模式的な平面図であり、(b)は、(a)のV-V’線に沿った液晶表示装置200Dの模式的な断面図である。(A) is a schematic plan view of a liquid crystal display device 200D of the fourth embodiment according to the present invention, and (b) is a schematic view of the liquid crystal display device 200D along the line VV ′ of (a). FIG. 第4の実施形態における偏光板および蛍光層の形成方法を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the formation method of the polarizing plate and fluorescent layer in 4th Embodiment. (a)および(b)は、それぞれ、第5の実施形態における液晶表示パネル100Eの駆動方式を説明するための断面図および拡大平面図である。(A) And (b) is sectional drawing and the enlarged plan view for demonstrating the drive system of the liquid crystal display panel 100E in 5th Embodiment, respectively. 第5の実施形態における他の液晶表示パネル100Fの駆動方式を説明するための拡大平面図である。It is an enlarged plan view for demonstrating the drive system of the other liquid crystal display panel 100F in 5th Embodiment. (a)および(b)は、それぞれ、第5の実施形態における液晶表示パネル100Gの駆動方式を説明するための断面図および拡大平面図である。(A) And (b) is sectional drawing and the enlarged plan view for demonstrating the drive system of the liquid crystal display panel 100G in 5th Embodiment, respectively. 第5の実施形態における他の液晶表示パネル100Hの駆動方式を説明するための拡大平面図である。It is an enlarged plan view for demonstrating the drive system of the other liquid crystal display panel 100H in 5th Embodiment. 本発明による実施形態のディスプレイシステム300の一例を示す平面図である。It is a top view which shows an example of the display system 300 of embodiment by this invention. 本発明による実施形態の電子機器400の一例を説明するための斜視図である。It is a perspective view for demonstrating an example of the electronic device 400 of embodiment by this invention. 従来の液晶表示装置500の模式的な平面図である。FIG. 11 is a schematic plan view of a conventional liquid crystal display device 500. 参考例の液晶表示装置700を示す断面図である。It is sectional drawing which shows the liquid crystal display device 700 of a reference example.
 まず、図面を参照しながら、本発明者が見出した額縁領域の狭小化に伴う問題を説明する。 First, the problems associated with the narrowing of the frame area found by the present inventor will be described with reference to the drawings.
 図24は、液晶表示装置の参考例を示す断面図である。参考例の液晶表示装置700は、液晶表示パネル600と、その背面側に設けられたバックライト610とを備えている。液晶表示装置700の観察者側から見たとき、液晶表示装置700は、表示領域85と、表示領域85以外の領域(額縁領域)87とを有している。額縁領域87は非表示領域である。液晶表示パネル600では、例えば特許文献1に開示された方法を用いてシール部の幅が低減されており、その結果、液晶表示パネル600における非表示領域の幅W2は従来よりも小さい。非表示領域の幅W2は、他の方法を用いて低減されていてもよい。 FIG. 24 is a cross-sectional view showing a reference example of a liquid crystal display device. The liquid crystal display device 700 of the reference example includes a liquid crystal display panel 600 and a backlight 610 provided on the back side thereof. When viewed from the viewer side of the liquid crystal display device 700, the liquid crystal display device 700 has a display region 85 and a region (frame region) 87 other than the display region 85. The frame area 87 is a non-display area. In the liquid crystal display panel 600, for example, the width of the seal portion is reduced by using the method disclosed in Patent Document 1, and as a result, the width W2 of the non-display area in the liquid crystal display panel 600 is smaller than the conventional one. The width W2 of the non-display area may be reduced using other methods.
 バックライト610は、例えば導光板を用いたエッジライト方式のバックライトである。図示する参考例におけるバックライト610は、導光板612と、導光板612から出射された光を均一に散乱させるための光学フィルムシート614と、光学フィルムシート614を固定するためのベゼル616とを備えている。バックライト610の上面のうち表示領域85と重ならない部分には、バックライト光が表示領域85の外側から表示領域85内に入射しないように、遮光部618が設けられている。 The backlight 610 is an edge light type backlight using a light guide plate, for example. The backlight 610 in the illustrated reference example includes a light guide plate 612, an optical film sheet 614 for uniformly scattering light emitted from the light guide plate 612, and a bezel 616 for fixing the optical film sheet 614. ing. A portion of the upper surface of the backlight 610 that does not overlap the display area 85 is provided with a light shielding portion 618 so that the backlight light does not enter the display area 85 from the outside of the display area 85.
 液晶表示装置700では、観察者側から見たとき、表示領域85の端部と導光板612および光学フィルムシート614の端部とが略整合するように、バックライト610が配置されている。このような場合、額縁領域87の幅W1は、カラーフィルタ(CF)のブラックマトリックスにより形成された額縁遮光部やシール部によって規定される非表示領域の幅W2よりも、ベゼル616の側壁の厚さに相当する長さだけ大きくなる。従って、シール部の幅を狭くしても、額縁領域87の幅はベゼル616の厚さ以上となるので、額縁領域87の幅をベゼル616の側壁の厚さ未満まで小さくしたり、あるいは額縁領域87をなくすことは困難である。 In the liquid crystal display device 700, the backlight 610 is disposed so that the end of the display area 85 and the end of the light guide plate 612 and the optical film sheet 614 are substantially aligned when viewed from the viewer side. In such a case, the width W1 of the frame region 87 is larger than the width W2 of the non-display region defined by the frame light shielding portion or the seal portion formed by the black matrix of the color filter (CF), and the thickness of the side wall of the bezel 616. The length corresponding to the length increases. Therefore, even if the width of the seal portion is reduced, the width of the frame region 87 is equal to or greater than the thickness of the bezel 616. Therefore, the width of the frame region 87 is reduced to less than the thickness of the side wall of the bezel 616, or It is difficult to eliminate 87.
 また、液晶表示装置700の観察者側から見たとき、表示領域85の周縁部で導光板612のエッジが見えてしまい、表示ムラの要因となり得る。 Further, when viewed from the observer side of the liquid crystal display device 700, the edge of the light guide plate 612 is visible at the peripheral edge of the display area 85, which may cause display unevenness.
 さらに、本発明者が検討したところ、表示領域85の周縁部85Pでは、表示領域85の中央部よりも表示が暗くなって表示不良が生じやすく、表示領域85全体に亘って均一な明るさで表示を行うことが難しいことが分かった。図示するように、導光板612内を導光板612の端部まで進んだ光の一部620は、導光板612の端面で反射して表示領域85のより内側から出射する。このため、表示領域85のうち導光板612の端部上に位置する部分85Pには、導光板612からの光が入射しにくいからと考えられる。 Further, as a result of examination by the present inventor, the peripheral area 85P of the display area 85 is darker than the central area of the display area 85, and display defects are likely to occur, and the display area 85 has a uniform brightness over the entire display area 85. I found it difficult to display. As shown in the drawing, a part of light 620 that travels through the light guide plate 612 to the end of the light guide plate 612 is reflected by the end surface of the light guide plate 612 and is emitted from the inside of the display area 85. For this reason, it is considered that light from the light guide plate 612 does not easily enter the portion 85P of the display area 85 located on the end of the light guide plate 612.
 表示領域85全体を均一に照射するためには、例えば、液晶表示装置700の観察者側から見たとき、表示領域85よりも一回り大きなサイズの導光板612を設けることが考えられる。しかし、導光板612を大きくすると、バックライト610も大きくなるので、額縁領域87を十分に狭くできない。さらに、導光板612を大きくすると、表示領域85の外側を通過するバックライト光を遮光するための遮光部618の幅も大きくする必要があり、額縁領域87の幅はさらに大きくなる。 In order to irradiate the entire display region 85 uniformly, for example, it is conceivable to provide a light guide plate 612 that is slightly larger in size than the display region 85 when viewed from the observer side of the liquid crystal display device 700. However, when the light guide plate 612 is enlarged, the backlight 610 is also enlarged, so that the frame area 87 cannot be sufficiently narrowed. Further, when the light guide plate 612 is enlarged, it is necessary to increase the width of the light shielding portion 618 for shielding the backlight light passing outside the display area 85, and the width of the frame area 87 is further increased.
 このように、従来の液晶表示装置では、良好な表示特性を維持しつつ、額縁領域を従来よりも効果的に狭小化することは困難であった。 As described above, in the conventional liquid crystal display device, it is difficult to narrow the frame area more effectively than the conventional one while maintaining good display characteristics.
 本発明者は、上記のような額縁領域の狭小化に伴う問題に対し、鋭意検討を行った。この結果、液晶表示パネルの背面基板とバックライトとの間に蛍光層を設け、観察者側から見たときに蛍光層の端部の少なくとも一部を基板や偏光板の端部と整合させることにより、表示領域全体を均一に光らせつつ、額縁領域を狭小化できることを見出し、本願発明に至った。 The inventor has intensively studied the problems associated with the narrowing of the frame area as described above. As a result, a fluorescent layer is provided between the back substrate and the backlight of the liquid crystal display panel, and at least a part of the end of the fluorescent layer is aligned with the end of the substrate or polarizing plate when viewed from the observer side. Thus, it was found that the frame area can be narrowed while uniformly illuminating the entire display area, and the present invention has been achieved.
 以下、図面を参照しながら、本願発明の実施形態を具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
 (第1実施形態)
 図1(a)~(c)は、本発明による実施形態の液晶表示装置200Aを説明する図である。図1(a)は、液晶表示装置200Aの模式的な平面図であり、図1(b)および(c)は、それぞれ、図1(a)のI-I’線およびII-II’線に沿った液晶表示装置200Aの模式的な断面図である。
(First embodiment)
1A to 1C are diagrams illustrating a liquid crystal display device 200A according to an embodiment of the present invention. FIG. 1A is a schematic plan view of the liquid crystal display device 200A, and FIGS. 1B and 1C are the II ′ and II-II ′ lines in FIG. 1A, respectively. It is typical sectional drawing of 200 A of liquid crystal display devices along line.
 図1(a)に示すように、液晶表示装置200Aは、複数の画素(図示せず)を含む表示領域25と、額縁領域27とを有している。額縁領域27は、チップやFPCなどの実装部が形成される接続領域26と、シール部8や遮光部(図示せず)が形成されている領域とを含んでいる。この例では、表示領域25の外縁(例えば略四角形)を構成する辺のうち1辺のみに沿って額縁領域27が形成され、他の辺に沿って額縁領域27が形成されていない。なお、額縁領域27は表示領域25を包囲するように形成されていてもよい。 As shown in FIG. 1A, the liquid crystal display device 200A has a display area 25 including a plurality of pixels (not shown) and a frame area 27. The frame region 27 includes a connection region 26 where a mounting portion such as a chip or FPC is formed, and a region where a seal portion 8 or a light shielding portion (not shown) is formed. In this example, the frame region 27 is formed along only one side of the sides constituting the outer edge (for example, substantially square) of the display region 25, and the frame region 27 is not formed along the other sides. The frame area 27 may be formed so as to surround the display area 25.
 図1(b)および(c)に示すように、液晶表示装置200Aは、液晶表示パネル100Aと、バックライト110とを備えている。 As shown in FIGS. 1B and 1C, the liquid crystal display device 200A includes a liquid crystal display panel 100A and a backlight 110.
 液晶表示パネル100Aは、液晶層10と、液晶層10の観察者側に配置された第1基板1と、液晶層10の背面側に配置された第2基板2と、第2基板2とバックライト110との間に形成された蛍光層(蛍光発光層)12とを有している。第1基板1および第2基板2には、それぞれ、偏光板4および6が設けられている。液晶層10は、第1基板1と第2基板2との間に狭持されている。また、第1基板1と第2基板2との間には、液晶層10の側面の一部と接するようにシール部8が形成されている。 The liquid crystal display panel 100A includes a liquid crystal layer 10, a first substrate 1 disposed on the viewer side of the liquid crystal layer 10, a second substrate 2 disposed on the back side of the liquid crystal layer 10, a second substrate 2 and a back. It has a fluorescent layer (fluorescent light emitting layer) 12 formed between the light 110. The first substrate 1 and the second substrate 2 are provided with polarizing plates 4 and 6, respectively. The liquid crystal layer 10 is sandwiched between the first substrate 1 and the second substrate 2. Further, a seal portion 8 is formed between the first substrate 1 and the second substrate 2 so as to be in contact with a part of the side surface of the liquid crystal layer 10.
 本実施形態では、蛍光層12は、偏光板6のバックライト110側の表面に形成されている。蛍光層12は蛍光物質を含んでおり、所定の波長を有する光(励起光)で照射すると、励起光よりも波長の長い光(ここでは可視光)を発光する。バックライト110は、上記励起光を蛍光層12に出射する光照射部(図示せず)を有している。励起光は例えばUV光である。蛍光色素は特に限定されないが、例えば2色性を有するベンゾチアジアゾール系蛍光色素やクマリン系蛍光色素、シアニン系蛍光色素、ピリジン系蛍光色素、ローダミン系蛍光色素、スチリル系蛍光色素、アントラキノン系蛍光色素などであってもよい。液晶表示パネル100Aでは、バックライト110から蛍光層12に励起光(例えばUV光)が照射されると、蛍光層12が発光し、蛍光層12からの光を利用して表示を行うことができる。 In the present embodiment, the fluorescent layer 12 is formed on the surface of the polarizing plate 6 on the backlight 110 side. The fluorescent layer 12 contains a fluorescent material, and emits light (here, visible light) having a longer wavelength than the excitation light when irradiated with light having a predetermined wavelength (excitation light). The backlight 110 has a light irradiation unit (not shown) that emits the excitation light to the fluorescent layer 12. The excitation light is, for example, UV light. The fluorescent dye is not particularly limited. For example, a dichroic benzothiadiazole fluorescent dye, a coumarin fluorescent dye, a cyanine fluorescent dye, a pyridine fluorescent dye, a rhodamine fluorescent dye, a styryl fluorescent dye, an anthraquinone fluorescent dye, etc. It may be. In the liquid crystal display panel 100A, when the fluorescent layer 12 is irradiated with excitation light (for example, UV light) from the backlight 110, the fluorescent layer 12 emits light, and display can be performed using the light from the fluorescent layer 12. .
 液晶層10は、例えばネマチック液晶材料を有する複数の液晶領域と、複数の液晶領域のうちの隣接する液晶領域の間に高分子を含む壁とを有する。高分子を含む壁は第1基板1および第2基板2の接着に寄与でき、また、第1基板1と第2基板2との間隔を保持できる。このため、図示するように、液晶層10の側面の少なくとも一部を第1基板1の側面および第2基板2の側面と整合させることが可能になる。このように、本実施形態では、液晶層10の法線方向から見たとき、液晶層10全体を包囲するようにシール部8を形成しなくてもよいので、表示に寄与しない額縁領域27の幅を小さくできる。なお、本明細書では、シール部8は、シール材から形成され、液晶材料を含んでいない部材を指し、液晶層とは別個に形成される。 The liquid crystal layer 10 has, for example, a plurality of liquid crystal regions having a nematic liquid crystal material and a wall containing a polymer between adjacent liquid crystal regions of the plurality of liquid crystal regions. The wall containing the polymer can contribute to the adhesion between the first substrate 1 and the second substrate 2, and can maintain the distance between the first substrate 1 and the second substrate 2. Therefore, as shown in the drawing, at least a part of the side surface of the liquid crystal layer 10 can be aligned with the side surface of the first substrate 1 and the side surface of the second substrate 2. Thus, in the present embodiment, when viewed from the normal direction of the liquid crystal layer 10, the seal portion 8 does not have to be formed so as to surround the entire liquid crystal layer 10. The width can be reduced. In this specification, the seal portion 8 is a member that is formed of a seal material and does not include a liquid crystal material, and is formed separately from the liquid crystal layer.
 また、本実施形態では、液晶表示パネル100Aの法線方向から見たとき、蛍光層12の外縁の少なくとも一部が、偏光板4および偏光板6の外縁と、第1基板1および第2基板2の外縁と整合している。図1(a)を参照しながらより具体的に説明する。図1(a)において、第1基板1、第2基板2、偏光板4および6、シール部8、蛍光層12のエッジ(外縁)を、それぞれ、線1e、2e、4e、6e、8eおよび12eで示している。図示するように、表示領域25の外縁(例えば略四角形)を構成する辺のうち少なくとも1辺(この例では3辺)に沿って、蛍光層12の外縁12eの辺が、第1基板1、第2基板2および偏光板4、6の外縁1e、2e、4e、6eの辺と整合している。言い換えると、蛍光層12、第1および第2基板1、2、偏光板4、6の端部の位置が整合している。以下、蛍光層12の外縁12eのうち、第1および第2基板1、2、偏光板4、6の外縁1e、2e、4e、6eと整合している部分を「縁部S」と略する。また、本明細書において、法線方向から見たときの辺同士が整合しているとは、辺の長さが異なっている場合も含む。例えば短い方の辺のほぼ全体が長い方の辺と整合している場合も含む。 In the present embodiment, when viewed from the normal direction of the liquid crystal display panel 100A, at least a part of the outer edge of the fluorescent layer 12 includes the outer edges of the polarizing plate 4 and the polarizing plate 6, and the first substrate 1 and the second substrate. Aligned with the outer edge of the two. This will be described more specifically with reference to FIG. In FIG. 1A, the edges (outer edges) of the first substrate 1, the second substrate 2, the polarizing plates 4 and 6, the seal portion 8, and the fluorescent layer 12 are respectively connected to lines 1e, 2e, 4e, 6e, 8e and 12e. As shown in the drawing, the side of the outer edge 12e of the fluorescent layer 12 extends along the first substrate 1 along at least one side (three sides in this example) of the sides constituting the outer edge (for example, substantially square) of the display region 25. It is aligned with the sides of the outer edges 1e, 2e, 4e and 6e of the second substrate 2 and the polarizing plates 4 and 6. In other words, the positions of the end portions of the fluorescent layer 12, the first and second substrates 1 and 2, and the polarizing plates 4 and 6 are aligned. Hereinafter, a portion of the outer edge 12e of the fluorescent layer 12 that is aligned with the outer edges 1e, 2e, 4e, and 6e of the first and second substrates 1 and 2 and the polarizing plates 4 and 6 is abbreviated as “edge S”. . Further, in this specification, the fact that the sides are aligned with each other when viewed from the normal direction includes the case where the sides have different lengths. For example, the case where almost the entire short side is aligned with the long side is included.
 図示する例では、蛍光層12の縁部Sは液晶層10の外縁とも整合している。すなわち、縁部Sに沿ってシール部が形成されていない。従って、縁部Sに沿って額縁領域を設けなくてもよいので有利である。なお、縁部Sに沿って額縁領域が形成されていてもよい。その場合、シール部8やバックライト110を考慮して額縁領域の幅を設定する必要がないので、縁部Sに沿った額縁領域の幅を、縁部S以外の部分に沿った額縁領域の幅よりも小さくできる。 In the illustrated example, the edge S of the fluorescent layer 12 is also aligned with the outer edge of the liquid crystal layer 10. That is, the seal part is not formed along the edge part S. Therefore, it is not necessary to provide the frame area along the edge S, which is advantageous. A frame region may be formed along the edge S. In that case, since it is not necessary to set the width of the frame region in consideration of the seal portion 8 and the backlight 110, the width of the frame region along the edge S is set to the width of the frame region along the portion other than the edge S. Can be smaller than the width.
 次に、図2を参照しながら、本実施形態の液晶表示装置200Aの動作および効果を説明する。 Next, the operation and effect of the liquid crystal display device 200A of the present embodiment will be described with reference to FIG.
 図2では、バックライト110の全体を示していないが、代わりに、バックライト110における導光板112と、導光板112の端部に配置され、例えばUV光を出射する光出射部111とを示している。導光板112は、蛍光層12と対向する側の表面に光照射部112sを有している。光出射部111は例えば発光ダイオード(LED)を含んでいる。 In FIG. 2, the entire backlight 110 is not shown, but instead, the light guide plate 112 in the backlight 110 and the light emitting unit 111 that is arranged at the end of the light guide plate 112 and emits, for example, UV light are shown. ing. The light guide plate 112 has a light irradiation part 112 s on the surface facing the fluorescent layer 12. The light emitting unit 111 includes, for example, a light emitting diode (LED).
 光出射部111で出射されたUV光は、導光板112内を進む。導光板112内を進む光の一部は、光照射部112sから蛍光層12に入射する。このとき、図示するように、蛍光層12に対して鉛直方向から光120が入射する場合でも、傾斜した方向から光122が入射する場合でも、入射した光120、122が励起光となり、蛍光層12が全方位に発光する。この蛍光層12からの光(可視光)が偏光板6から液晶表示パネル100Aに入射する。液晶表示パネル100Aは、2枚の偏光板4、6を透過する光の量を、偏光板4、6の間に保持されている液晶を電気的に駆動することにより調整し、表示を行う。 UV light emitted from the light emitting unit 111 travels in the light guide plate 112. A part of the light traveling in the light guide plate 112 enters the fluorescent layer 12 from the light irradiation unit 112s. At this time, as shown in the drawing, even when the light 120 is incident on the fluorescent layer 12 from the vertical direction or the light 122 is incident from the inclined direction, the incident light 120, 122 becomes excitation light, and the fluorescent layer 12 emits light in all directions. Light (visible light) from the fluorescent layer 12 enters the liquid crystal display panel 100A from the polarizing plate 6. The liquid crystal display panel 100A performs display by adjusting the amount of light transmitted through the two polarizing plates 4 and 6 by electrically driving the liquid crystal held between the polarizing plates 4 and 6.
 本実施形態における蛍光層12は、蛍光層12に対する励起光の入射方向に依存せずに全方位に光を出射できる。従って、観察者側から見たとき、蛍光層12の一部(例えば周縁部)が導光板112と重なっていなくても、蛍光層12の当該部分に対して導光板112から斜め方向に励起光を照射できれば、蛍光層12によって表示領域25全体により均一に光(可視光)を照射できる。従って、導光板112のサイズ(バックライト110のサイズ)を従来よりも小さくすることが可能である。例えば、観察者側から見たときの導光板112のサイズは、表示領域25または蛍光層12のサイズ以下であってもよい。あるいは、観察者側から見たとき、導光板112の外縁の少なくとも一部が、表示領域25または蛍光層12の外縁の内側にあってもよい。このように、導光板112のサイズを小さくしたり、導光板112の端部を蛍光層12よりも内側に配置することにより、表示特性を低下させることなく、額縁領域を従来よりも狭小化したり、あるいは、部分的に額縁領域をなくすことが可能となる。さらに、蛍光層12に対する入射方向を考慮することなく、液晶表示パネル100Aの正面における光の分布を制御できるので、導光板112や光散乱シート(図示せず)などの光学系の構造を単純化でき、また設計も容易となる。 The fluorescent layer 12 in the present embodiment can emit light in all directions without depending on the incident direction of the excitation light with respect to the fluorescent layer 12. Therefore, when viewed from the viewer side, even if a part of the fluorescent layer 12 (for example, a peripheral portion) does not overlap the light guide plate 112, the excitation light is obliquely directed from the light guide plate 112 to the portion of the fluorescent layer 12. , The fluorescent layer 12 can irradiate light (visible light) uniformly over the entire display region 25. Therefore, the size of the light guide plate 112 (the size of the backlight 110) can be made smaller than before. For example, the size of the light guide plate 112 when viewed from the viewer side may be equal to or smaller than the size of the display region 25 or the fluorescent layer 12. Alternatively, when viewed from the viewer side, at least a part of the outer edge of the light guide plate 112 may be inside the outer edge of the display region 25 or the fluorescent layer 12. Thus, by reducing the size of the light guide plate 112 or arranging the end of the light guide plate 112 on the inner side of the fluorescent layer 12, the frame area can be made narrower than before without deteriorating the display characteristics. Alternatively, it is possible to partially eliminate the frame area. Furthermore, since the light distribution in the front surface of the liquid crystal display panel 100A can be controlled without considering the incident direction with respect to the fluorescent layer 12, the structure of the optical system such as the light guide plate 112 and the light scattering sheet (not shown) is simplified. Can also be designed.
 なお、本明細書において、「額縁領域がない」とは、表示領域25の端部と液晶表示装置200Aの端部との距離が、人間の目の分解能である0.2mm未満であることを意味する。距離が0.2mm未満であると、人の目が額縁領域を認識できず、額縁領域が無いように見えるからである。ここでいう「表示領域の端部」とは、厳密には、観察者側から見て、複数の画素のうち最外縁に位置する画素の端部を意味する。液晶層の側面のうちシール部と接していない部分では、液晶層の側面と最外縁に位置する画素の端部との距離を0.2mm未満(例えば0.15mm以下)に抑えることができるので、実質的に額縁領域をなくすことができる。 In this specification, “there is no frame area” means that the distance between the end of the display area 25 and the end of the liquid crystal display device 200A is less than 0.2 mm, which is the resolution of the human eye. means. This is because if the distance is less than 0.2 mm, the human eye cannot recognize the frame area and it appears that there is no frame area. The “end of the display region” here means strictly the end of the pixel located at the outermost edge among the plurality of pixels as viewed from the observer side. In the portion of the side surface of the liquid crystal layer that is not in contact with the seal portion, the distance between the side surface of the liquid crystal layer and the end portion of the pixel located at the outermost edge can be suppressed to less than 0.2 mm (for example, 0.15 mm or less). The frame area can be substantially eliminated.
 前述したように、従来は、額縁領域27の幅を小さくすると、表示領域25の周縁部で明るい表示が得られず、表示領域全体の明るさを均一にしようとすると、バックライトのサイズ(導光板のサイズ)を大きくする必要があり、額縁領域の幅を十分に低減できなかった。これに対し、本実施形態の液晶表示装置200Aは、バックライト110から入射するUV光(励起光)によって発光する蛍光層12を備えている。蛍光層12は、UV光の入射方向に依存せずに、蛍光層12全体が略均一に発光する。従って、額縁領域の幅が小さかったり、額縁領域が形成されていない場合でも、蛍光層12により、表示領域25の周縁部に他の部分と同等の量の光を入射させることができるので、表示領域25の周縁部でもより明るい表示を実現できる。また、観察者側から見たとき、バックライト110の導光板112が表示領域25よりも小さい場合であっても、表示領域25の全体においてより均一な明るさで表示を行うことが可能となる。 As described above, conventionally, when the width of the frame region 27 is reduced, a bright display cannot be obtained at the peripheral portion of the display region 25. It was necessary to increase the size of the light plate), and the width of the frame area could not be reduced sufficiently. On the other hand, the liquid crystal display device 200 </ b> A of the present embodiment includes the fluorescent layer 12 that emits light by UV light (excitation light) incident from the backlight 110. The entire fluorescent layer 12 emits light substantially uniformly without depending on the incident direction of UV light. Therefore, even when the width of the frame region is small or the frame region is not formed, the fluorescent layer 12 allows the same amount of light to be incident on the peripheral portion of the display region 25 as the other portions. A brighter display can be realized even at the periphery of the region 25. Moreover, even when the light guide plate 112 of the backlight 110 is smaller than the display area 25 when viewed from the observer side, it is possible to perform display with more uniform brightness over the entire display area 25. .
 観察者側から見たとき、導光板112を表示領域25よりも小さくすると、次のような利点もある。従来は、導光板から表示領域以外の領域を通過して観察者側に出射される光を遮光するための遮光部を形成する必要があったが、本実施形態によると、導光板112から出射される光はUV光であるため、観察者側に出射しても表示品位の低下を引き起こさない。従って、表示領域25の周縁部に遮光部を設ける必要がないので、表示領域をさらに拡大できる。また、表示領域25の周縁で導光板112のエッジが見えることによる表示ムラを抑制できるので有利である。 When viewed from the observer side, if the light guide plate 112 is made smaller than the display area 25, there are the following advantages. Conventionally, it has been necessary to form a light shielding portion for shielding light emitted from the light guide plate through the region other than the display region to the viewer side. However, according to the present embodiment, the light is emitted from the light guide plate 112. Since the emitted light is UV light, it does not cause deterioration in display quality even when emitted to the viewer side. Accordingly, since it is not necessary to provide a light shielding portion at the peripheral edge of the display area 25, the display area can be further enlarged. Further, it is advantageous because display unevenness due to the edge of the light guide plate 112 being visible at the periphery of the display area 25 can be suppressed.
 また、本実施形態によると、表示領域25の周縁の少なくとも一辺に沿って、偏光板6の端部まで蛍光層12が形成されており、偏光板6の端部の近傍にも光を入射させることができる。このため、偏光板6の周縁部上の領域(表示領域25の周縁に位置する領域)でも良好な表示を行うことができる。より好ましくは、蛍光層12の外縁全体において、蛍光層12の端部と偏光板6の端部とが整合している。これにより、偏光板6の表面全体に光を入射させることができるので、偏光板6の表面と同じサイズの領域で良好な表示を行うことが可能になる。 Further, according to the present embodiment, the fluorescent layer 12 is formed up to the end of the polarizing plate 6 along at least one side of the peripheral edge of the display region 25, and light is also incident in the vicinity of the end of the polarizing plate 6. be able to. For this reason, a favorable display can be performed also in the area | region (area | region located in the periphery of the display area 25) on the peripheral part of the polarizing plate 6. FIG. More preferably, the end of the fluorescent layer 12 and the end of the polarizing plate 6 are aligned over the entire outer edge of the fluorescent layer 12. Thereby, since light can be incident on the entire surface of the polarizing plate 6, it is possible to perform good display in a region having the same size as the surface of the polarizing plate 6.
 なお、一般に、蛍光層を偏光板表面に形成しようとすると、蛍光物質を含む塗料を印刷するか、蛍光フィルムを貼り付ける方法が用いられ得る。しかしながら、これらの方法では、偏光板および蛍光層の端部にズレが生じ、これらの端部を整合させることは難しい。このため、観察者側から見たとき、偏光板と蛍光層とが重なっている部分に表示領域が形成され、偏光板または蛍光層のうち表示領域からはみ出した部分は額縁領域を構成する。従って、表示領域に対してパネルサイズが大きくなるという問題がある。これに対し、本実施形態では、後述するように、例えば、表面に蛍光体膜が形成された偏光板フィルムを切断することによって、所定のサイズの蛍光層12および偏光板6を得る。この方法によると、蛍光層12の端部と偏光板6の端部とを容易に整合させることができる。 In general, when a fluorescent layer is to be formed on the polarizing plate surface, a method of printing a paint containing a fluorescent substance or attaching a fluorescent film can be used. However, in these methods, deviation occurs at the ends of the polarizing plate and the fluorescent layer, and it is difficult to align these ends. For this reason, when viewed from the observer side, a display region is formed in a portion where the polarizing plate and the fluorescent layer overlap, and a portion of the polarizing plate or the fluorescent layer that protrudes from the display region constitutes a frame region. Therefore, there is a problem that the panel size becomes large with respect to the display area. On the other hand, in the present embodiment, as will be described later, for example, the fluorescent layer 12 and the polarizing plate 6 having a predetermined size are obtained by cutting a polarizing plate film having a phosphor film formed on the surface thereof. According to this method, the end of the fluorescent layer 12 and the end of the polarizing plate 6 can be easily aligned.
 さらに、液晶表示パネル100Aの法線方向から見たとき、表示領域25の外縁を構成する辺のうち額縁領域27と隣接している辺を除く3辺に沿った縁部において(I側、II側およびII’側の縁部において)、表示領域25を規定する偏光板4、6の外縁と、第1および第2基板1、2の外縁とを整合させることにより、表示領域25の外縁と液晶表示パネルの外縁との距離を低減できる。 Further, when viewed from the normal line direction of the liquid crystal display panel 100A, the edges along the three sides excluding the side adjacent to the frame region 27 among the sides constituting the outer edge of the display region 25 (I side, II The outer edges of the polarizing regions 4 and 6 defining the display area 25 and the outer edges of the first and second substrates 1 and 2 are aligned with the outer edge of the display area 25. The distance from the outer edge of the liquid crystal display panel can be reduced.
 液晶層10を観察者側から見たとき、液晶層10はシール部8によって包囲されていないことが好ましい。例えば液晶層10の外縁が略四角形であれば、シール部8はその四角形の1辺または2辺に沿ってのみ配置されていてもよい。図示する例では、シール部8は液晶層10の外縁を構成する1辺に沿って形成されているが、他の辺に沿って配置されていない。シール部が形成されていないと、額縁領域を狭くできるので、この部分で蛍光層12の端部と偏光板6の端部とを整合させると、表示領域の周縁部における明るさの低下をより効果的に抑制できる。なお、液晶層10の材料が接着性を有しているため、液晶表示装置200Aは、シール材を含むシール部を有していなくてもよい。 When the liquid crystal layer 10 is viewed from the observer side, the liquid crystal layer 10 is preferably not surrounded by the seal portion 8. For example, if the outer edge of the liquid crystal layer 10 is substantially rectangular, the seal portion 8 may be disposed only along one or two sides of the rectangle. In the illustrated example, the seal portion 8 is formed along one side that forms the outer edge of the liquid crystal layer 10, but is not disposed along the other side. If the seal portion is not formed, the frame region can be narrowed. Therefore, when the end of the fluorescent layer 12 and the end of the polarizing plate 6 are aligned at this portion, the brightness at the peripheral portion of the display region is further reduced. It can be effectively suppressed. Note that since the material of the liquid crystal layer 10 has adhesiveness, the liquid crystal display device 200 </ b> A may not have a seal portion including a seal material.
 さらに、液晶表示パネル100Aを観察者側からみたとき、液晶層10の外縁のうちの少なくとも一辺は第1基板1および第2基板2の外縁と整合していることが好ましい。すなわち、液晶層10の側面のうちシール部に接していない部分が、第1基板1および第2基板2の側面と連続していることが好ましい。これにより、液晶層10の外縁のうち基板1、2と整合している部分に沿って、額縁領域の幅をさらに狭くするか、あるいは、額縁領域をなくすことも可能となる。前述したように、図示する例では、液晶表示パネル100Aの法線方向から見たとき、蛍光層12の縁部Sが、基板1、2、偏光板4、6の外縁の辺のみでなく、液晶層10の外縁の辺とも整合している。これにより、縁部Sに沿って額縁領域を設けなくてもよいので有利である。 Furthermore, when the liquid crystal display panel 100A is viewed from the observer side, at least one side of the outer edges of the liquid crystal layer 10 is preferably aligned with the outer edges of the first substrate 1 and the second substrate 2. That is, it is preferable that a portion of the side surface of the liquid crystal layer 10 not in contact with the seal portion is continuous with the side surfaces of the first substrate 1 and the second substrate 2. This makes it possible to further reduce the width of the frame region or eliminate the frame region along the portion of the outer edge of the liquid crystal layer 10 aligned with the substrates 1 and 2. As described above, in the illustrated example, when viewed from the normal direction of the liquid crystal display panel 100A, the edge S of the fluorescent layer 12 is not only the outer edges of the substrates 1 and 2 and the polarizing plates 4 and 6, It is also aligned with the outer edge side of the liquid crystal layer 10. This is advantageous because the frame region need not be provided along the edge S.
 バックライト110は、蛍光層12にUV光を照射し、蛍光層12のうち表示領域25に位置する部分を略均一に発光させることができればよい。バックライト110は、液晶表示パネル100Aの法線方向から見たとき、液晶表示パネル100Aの外縁と略整合するか、あるいは、液晶表示パネル100Aの外縁よりも内側にあることが好ましい。これにより、バックライト110のサイズに起因して、額縁領域の面積が増大することを防止できる。このような構成は、一例として、観察者側から見たときのバックライト110における導光板112のサイズを蛍光層12のサイズよりも小さくすることにより実現できる。 The backlight 110 only needs to irradiate the fluorescent layer 12 with UV light so that the portion of the fluorescent layer 12 positioned in the display region 25 can emit light substantially uniformly. When viewed from the normal direction of the liquid crystal display panel 100A, the backlight 110 is preferably substantially aligned with the outer edge of the liquid crystal display panel 100A or on the inner side of the outer edge of the liquid crystal display panel 100A. Thereby, it is possible to prevent the frame area from increasing due to the size of the backlight 110. As an example, such a configuration can be realized by making the size of the light guide plate 112 in the backlight 110 when viewed from the viewer side smaller than the size of the fluorescent layer 12.
 液晶層10は、高分子分散型液晶と同様の材料を用いて形成できる。高分子分散型液晶は、水滴状の液晶がポリマー中に分散した構造を有するPDLC(Polymer Dispersed Liquid Crystal)であってもよいし、液晶層にポリマーのネットワークを張り巡らせた構造を有するPNLC(Polymer Network Liquid Crystal)であってもよい。PNLCでは、液晶は、ポリマー中で水滴状にならずに連続した状態で存在する。 The liquid crystal layer 10 can be formed using the same material as the polymer dispersed liquid crystal. The polymer-dispersed liquid crystal may be PDLC (Polymer Dispersed Liquid Crystal) having a structure in which water-drop-like liquid crystal is dispersed in a polymer, or PNLC (Polymer) having a structure in which a polymer network is stretched around a liquid crystal layer. (Network Liquid Crystal). In PNLC, the liquid crystal exists in a continuous state in the polymer without forming water droplets.
 液晶層10をPDLCと同様の材料を用いて形成する場合、液晶層10は、例えばネマチック液晶材料(すなわち低分子液晶組成物)および光硬化性樹脂(モノマーおよび/またはオリゴマー)の混合物を相溶させて透明基板間に配置した後、光硬化性樹脂を重合することによって得られる。光硬化性樹脂の種類は特に限定されないが、好ましくは紫外線硬化性樹脂を用いる。紫外線硬化性樹脂を用いると、重合を行う際に上記混合物を加熱する必要がないので、他の部材への熱による悪影響を防止できる。モノマー、オリゴマーは単官能でも多官能でもよい。このような液晶層10は、連続したポリマーの壁を有するので、シール部を形成しなくても、第1基板1と第2基板2との間隔を安定して保持できる。 When the liquid crystal layer 10 is formed using a material similar to PDLC, the liquid crystal layer 10 is compatible with, for example, a mixture of a nematic liquid crystal material (that is, a low molecular liquid crystal composition) and a photocurable resin (monomer and / or oligomer). It is obtained by polymerizing a photocurable resin after being arranged between transparent substrates. Although the kind of photocurable resin is not specifically limited, Preferably an ultraviolet curable resin is used. When an ultraviolet curable resin is used, there is no need to heat the mixture when polymerization is performed, so that adverse effects due to heat on other members can be prevented. Monomers and oligomers may be monofunctional or polyfunctional. Since the liquid crystal layer 10 has a continuous polymer wall, the distance between the first substrate 1 and the second substrate 2 can be stably maintained without forming a seal portion.
 なお、ポリマーの壁を有しない液晶層を1対のマザー基板で保持してパネル構造体を形成すると、パネル構造体では、シール部で規定された領域内に液晶が保持される。パネル構造体をシール部以外の部分で切断すると、液晶が基板間から流れ出てしまう。これに対し、本実施形態における液晶層を用いてパネル構造体を形成すると、ポリマーの壁によって第1基板1と第2基板2との間に液晶を保持できるので、パネル構造体をどの面で切断しても、液晶は基板1、2の間から流出しない。従って、後述するように、パネル構造体の周縁を切断することにより、額縁領域をなくすことが可能である。このように、高分子分散型液晶と同様の材料を用いて、額縁領域を狭小化した(あるいは額縁領域をなくした)液晶表示パネルを実現できる。そのような液晶表示パネルの詳細な構造および製造方法については、本出願人による未公開の特許出願(PCT/JP2012/068843号、PCT/JP2012/068835号)に記載されている。 When a panel structure is formed by holding a liquid crystal layer having no polymer wall with a pair of mother substrates, the liquid crystal is held in a region defined by the seal portion in the panel structure. When the panel structure is cut at a portion other than the seal portion, the liquid crystal flows out between the substrates. On the other hand, when the panel structure is formed using the liquid crystal layer in the present embodiment, the liquid crystal can be held between the first substrate 1 and the second substrate 2 by the polymer wall. Even if cut, the liquid crystal does not flow out between the substrates 1 and 2. Therefore, as will be described later, the frame region can be eliminated by cutting the peripheral edge of the panel structure. In this manner, a liquid crystal display panel in which the frame area is narrowed (or the frame area is eliminated) can be realized by using the same material as the polymer dispersed liquid crystal. The detailed structure and manufacturing method of such a liquid crystal display panel are described in unpublished patent applications (PCT / JP2012 / 068843, PCT / JP2012 / 068835) by the present applicant.
 図示していないが、液晶表示パネル100Aは、第2基板2上に画素ごとに形成された薄膜トランジスタ(TFT)および画素電極と、第1基板1上に形成されたカラーフィルタ層と、カラーフィルタ層上に形成された共通電極とを有する。画素電極は、第2基板2の側面付近まで形成されていてもよい。共通電極は、第1基板1のほぼ全面にわたり形成されていてもよい。 Although not shown, the liquid crystal display panel 100A includes a thin film transistor (TFT) and a pixel electrode formed for each pixel on the second substrate 2, a color filter layer formed on the first substrate 1, and a color filter layer. A common electrode formed thereon. The pixel electrode may be formed up to the vicinity of the side surface of the second substrate 2. The common electrode may be formed over almost the entire surface of the first substrate 1.
 また、第2基板2上には、TFTに電気的に接続された駆動回路が形成されている。駆動回路は、それぞれ表示領域25の外側に位置する接続領域26に形成されている。さらに、駆動回路は、接続領域26において、例えばFPC(Flexible Printed Circuits)を介して、外部回路に接続されている。FPCの他、LSI(Large Scale Integration)ドライバ、TAB(Tape Automated Bonding)、COF(Chip On Film)を介して、駆動回路が外部回路に接続される場合もある。 Further, a drive circuit electrically connected to the TFT is formed on the second substrate 2. The drive circuits are formed in the connection regions 26 located outside the display region 25, respectively. Furthermore, the drive circuit is connected to an external circuit in the connection region 26 via, for example, FPC (Flexible Printed Circuits). In addition to the FPC, the drive circuit may be connected to an external circuit through an LSI (Large Scale Integration) driver, TAB (Tape Automated Bonding), or COF (Chip On Film).
 図示するように、表示領域25と接続領域26との間に、第1基板1と第2基板2とを貼り合わせるシール部8が形成されていることが好ましい。シール部8は、例えば光硬化性樹脂(例えば、積水化学工業社製、商品名:フォトレックS-WB)から形成されている。シール部8を形成することにより、液晶表示パネル100Aを製造する際に、接続領域26に液晶材料が漏れ出すことを防止できる。シール部8の幅は、例えば約1mmである。 As shown in the drawing, it is preferable that a seal portion 8 for bonding the first substrate 1 and the second substrate 2 is formed between the display region 25 and the connection region 26. The seal portion 8 is made of, for example, a photo-curing resin (for example, product name: Photorec S-WB manufactured by Sekisui Chemical Co., Ltd.). By forming the seal portion 8, it is possible to prevent the liquid crystal material from leaking into the connection region 26 when the liquid crystal display panel 100A is manufactured. The width of the seal portion 8 is about 1 mm, for example.
 必要に応じて、液晶表示パネル100Aの側面に側面封止樹脂部を形成してもよい。側面封止樹脂部を形成することにより、液晶表示パネル100Aの機械的強度が向上し、水分等が液晶層10に侵入することが抑制されるので、信頼性を向上できる。側面封止樹脂部は、例えば紫外線硬化樹脂から形成されていてもよい。 If necessary, a side sealing resin portion may be formed on the side surface of the liquid crystal display panel 100A. By forming the side sealing resin portion, the mechanical strength of the liquid crystal display panel 100A is improved, and moisture and the like are prevented from entering the liquid crystal layer 10, so that reliability can be improved. The side surface sealing resin portion may be formed of, for example, an ultraviolet curable resin.
 <液晶表示装置200Aの製造方法>
 次いで、図3~図6を参照しながら、本発明による液晶表示装置200Aの製造方法を具体的に説明する。
<Method for Manufacturing Liquid Crystal Display Device 200A>
Next, a method for manufacturing the liquid crystal display device 200A according to the present invention will be specifically described with reference to FIGS.
 はじめに、液晶表示パネル100Aの背面側に配置される偏光板6の表面に蛍光層を形成する方法を説明する。図3(a)は、本実施形態で使用する偏光板の形成方法の一例を説明する図であり、図3(b)~(d)は、それぞれ、偏光板のエッジの形状を例示する断面図である。 First, a method for forming a fluorescent layer on the surface of the polarizing plate 6 disposed on the back side of the liquid crystal display panel 100A will be described. FIG. 3A is a diagram for explaining an example of a method of forming a polarizing plate used in this embodiment, and FIGS. 3B to 3D are cross-sectional views illustrating the shape of the edge of the polarizing plate, respectively. FIG.
 まず、図3(a)に示すように、偏光板フィルム6aの表面に、蛍光発光物質を含む蛍光フィルム12aを貼り合わせて積層フィルムを得る。次いで、この積層フィルムを所定のサイズになるように切断する。このようにして、偏光板6と蛍光層12とからなる積層体50を得る。 First, as shown in FIG. 3A, a fluorescent film 12a containing a fluorescent light-emitting substance is bonded to the surface of the polarizing film 6a to obtain a laminated film. Next, the laminated film is cut to a predetermined size. Thus, the laminated body 50 which consists of the polarizing plate 6 and the fluorescent layer 12 is obtained.
 偏光板フィルム6aと蛍光フィルム12aとが同時に切断されることから、積層体50では、偏光板6と蛍光層12との切断面は連続している。例えば図3(b)に示すように、偏光板6の表面に対して垂直方向に切断してもよい。あるいは、偏光板6の表面に対して傾斜した方向に切断してもよい。例えば図3(c)に示すように、蛍光層12の切断面が偏光板6の切断面よりも内側に位置するテーパー形状を有するように切断してもよいし、図3(d)に示すように、蛍光層12の切断面が偏光板6の切断面よりも外側に位置する逆テーパー形状を有するように切断してもよい。なお、切断方向が偏光板6の表面に対して傾斜している場合であっても、偏光板6と蛍光層12との切断面が連続していれば本願発明の効果が得られる。本明細書において、「液晶表示パネル100Aの法線方向から見たとき偏光板6の外縁と蛍光層12の外縁とは整合している」とは、切断方向が傾斜している場合をも含む。 Since the polarizing film 6a and the fluorescent film 12a are cut at the same time, in the laminate 50, the cut surfaces of the polarizing film 6 and the fluorescent layer 12 are continuous. For example, as shown in FIG. 3B, it may be cut in a direction perpendicular to the surface of the polarizing plate 6. Or you may cut | disconnect in the direction inclined with respect to the surface of the polarizing plate 6. FIG. For example, as shown in FIG. 3C, the fluorescent layer 12 may be cut so that the cut surface has a tapered shape located inside the cut surface of the polarizing plate 6, or as shown in FIG. Thus, you may cut | disconnect so that the cut surface of the fluorescent layer 12 may have a reverse taper shape located outside the cut surface of the polarizing plate 6. Even when the cutting direction is inclined with respect to the surface of the polarizing plate 6, the effect of the present invention can be obtained if the cutting surfaces of the polarizing plate 6 and the fluorescent layer 12 are continuous. In this specification, “when viewed from the normal direction of the liquid crystal display panel 100A, the outer edge of the polarizing plate 6 and the outer edge of the fluorescent layer 12 are aligned” includes the case where the cutting direction is inclined. .
 蛍光層12の形成方法は上記に限定されない。偏光板フィルム6aの表面に蛍光発光物質を含む塗料を塗布した後、偏光板フィルム6aを切断してもよい。 The formation method of the fluorescent layer 12 is not limited to the above. After applying a paint containing a fluorescent light-emitting substance on the surface of the polarizing film 6a, the polarizing film 6a may be cut.
 続いて、図4~図6を参照しながら、上記方法で得られた積層体50を用いて液晶表示装置200Aを製造する方法を説明する。 Subsequently, a method for manufacturing the liquid crystal display device 200A using the laminate 50 obtained by the above method will be described with reference to FIGS.
 図4(a)および図4(b)は、液晶表示パネル100Aの製造方法を説明する模式的な斜視図である。図4(c)は、図4(b)のIII-III’線に沿った模式的な断面図である。図5(a)は、液晶表示パネル100Aの製造方法を説明する模式的な斜視図である。図5(b)は、図5(a)のIV-IV’線に沿った模式的な断面図である。図6(a)~(g)は、それぞれ、液晶表示パネル100Aの製造方法を説明する模式的な断面図である。 4 (a) and 4 (b) are schematic perspective views for explaining a method of manufacturing the liquid crystal display panel 100A. FIG. 4C is a schematic cross-sectional view taken along the line III-III ′ of FIG. FIG. 5A is a schematic perspective view for explaining a manufacturing method of the liquid crystal display panel 100A. FIG. 5B is a schematic cross-sectional view taken along line IV-IV ′ of FIG. FIGS. 6A to 6G are schematic cross-sectional views illustrating a method for manufacturing the liquid crystal display panel 100A.
 図4(a)に示すように、第1マザー基板42および第2マザー基板43を用意する。第1マザー基板42には、複数のTFT基板44が形成されている。複数のTFT基板44のそれぞれには、例えば、画素ごとにp-SiTFTが公知の方法で形成され、TFT基板44のほぼ全体にわたり水平配向膜が公知の方法により形成されている。第2マザー基板43には、カラーフィルタ層を有する複数のカラーフィルタ基板45が公知の方法で形成され、カラーフィルタ基板45のほぼ全体にわたり水平配向膜が公知の方法で形成されている。 As shown in FIG. 4A, a first mother substrate 42 and a second mother substrate 43 are prepared. A plurality of TFT substrates 44 are formed on the first mother substrate 42. On each of the plurality of TFT substrates 44, for example, a p-Si TFT is formed for each pixel by a known method, and a horizontal alignment film is formed by a known method over almost the entire TFT substrate 44. A plurality of color filter substrates 45 having color filter layers are formed on the second mother substrate 43 by a known method, and a horizontal alignment film is formed by a known method over almost the entire color filter substrate 45.
 次に、図4(b)および(c)に示すように、TFT基板44ごとに、シール材(例えば、紫外線硬化樹脂)8を付与する(簡単のため、シール部8と同じ参照符号を用いる)。シール材8は、複数の画素電極46が形成された表示領域25を囲むように付与される。このとき、シール材8の一部は表示領域25と接続領域26との間に形成され、それ以外の部分は表示領域25から離されて(例えば、0.2mm以上離されて)形成される。 Next, as shown in FIGS. 4B and 4C, a sealing material (for example, an ultraviolet curable resin) 8 is applied to each TFT substrate 44 (for the sake of simplicity, the same reference numerals as those of the sealing portion 8 are used. ). The sealing material 8 is applied so as to surround the display area 25 in which the plurality of pixel electrodes 46 are formed. At this time, a part of the sealing material 8 is formed between the display area 25 and the connection area 26, and the other part is separated from the display area 25 (for example, separated by 0.2 mm or more). .
 次に、ODF(One Drop Fill)法により、ネマチック液晶材料とモノマーとが混合された混合液をシール材8で囲まれた領域内に滴下する。このとき、ネマチック材料とモノマーとの質量比は、80:20(ネマチック液晶材料:モノマー=80:20)である。質量比はこれに限定されず、モノマー濃度が10質量%以上30質量%以下である混合液を用いてもよい。モノマーから形成される高分子の壁は、表示に寄与しない領域である。したがって、モノマー濃度が10質量%未満であると、液晶表示パネル100Aの透過率、つまり表示の輝度が高くなるが、液晶表示パネル100Aの機械的な強度が低下する。モノマー濃度が30質量%超であると、液晶表示パネル100Aの機械的な強度が高くなるが、液晶表示パネル100Aの透過率、つまり表示の輝度が低くなる。また、シール材8は表示領域25を囲むように付与されているので、滴下した混合液がシール材8の外に漏れ出すことがない。 Next, a mixed liquid in which a nematic liquid crystal material and a monomer are mixed is dropped into an area surrounded by the sealing material 8 by an ODF (One Drop Fill) method. At this time, the mass ratio of the nematic material to the monomer is 80:20 (nematic liquid crystal material: monomer = 80: 20). The mass ratio is not limited to this, and a mixed solution having a monomer concentration of 10% by mass to 30% by mass may be used. The polymer wall formed from the monomer is a region that does not contribute to display. Therefore, when the monomer concentration is less than 10% by mass, the transmittance of the liquid crystal display panel 100A, that is, the luminance of display increases, but the mechanical strength of the liquid crystal display panel 100A decreases. When the monomer concentration exceeds 30% by mass, the mechanical strength of the liquid crystal display panel 100A increases, but the transmittance of the liquid crystal display panel 100A, that is, the display brightness decreases. Further, since the sealing material 8 is provided so as to surround the display region 25, the dropped mixed liquid does not leak out of the sealing material 8.
 次に、図5(a)および図5(b)に示すように、公知の方法で、第1マザー基板42と第2マザー基板43とを貼り合わせた後、シール材8および表示領域25内のモノマーに紫外線を照射して、それぞれを硬化させる。その結果、シール材8で囲まれた領域に、高分子を含む壁と液晶領域とを含む液晶層10が得られる。このようにして、第1パネル構造体を得る。なお、シール材8およびモノマーを硬化させる積算光量は、材料にもよるが波長365nmの光に対し1~4J/cm2程度である。 Next, as shown in FIGS. 5A and 5B, after the first mother substrate 42 and the second mother substrate 43 are bonded together by a known method, the sealing material 8 and the display area 25 Each monomer is irradiated with ultraviolet rays to be cured. As a result, a liquid crystal layer 10 including a wall including a polymer and a liquid crystal region in a region surrounded by the sealant 8 is obtained. In this way, a first panel structure is obtained. The integrated light amount for curing the sealing material 8 and the monomer is about 1 to 4 J / cm 2 for light having a wavelength of 365 nm, depending on the material.
 次に、図6(a)に示すように、第1パネル構造体の観察者側の表面(第1基板1の表面)に、偏光板4を貼り付ける。さらに、第1パネル構造体の背面側の表面(第2基板2の表面)に、図3を参照しながら前述した方法で形成した積層体50を、偏光板6が第2基板2側となるように貼り付ける。このとき、第1パネル構造体の法線方向から見たとき、第1パネル構造体のエッジと偏光板4、6のエッジとが略整合するように位置合わせをして貼り合わせることが好ましい。これにより、第2パネル構造体60が得られる。この後、オートクレープで第2パネル構造体60と偏光板4、6とをなじませる。 Next, as shown in FIG. 6A, the polarizing plate 4 is attached to the surface on the observer side (the surface of the first substrate 1) of the first panel structure. Further, the laminate 50 formed by the method described above with reference to FIG. 3 on the surface on the back side of the first panel structure (the surface of the second substrate 2), the polarizing plate 6 is on the second substrate 2 side. Paste like so. At this time, it is preferable to align and bond the edges of the first panel structure and the edges of the polarizing plates 4 and 6 when viewed from the normal direction of the first panel structure. Thereby, the 2nd panel structure 60 is obtained. Then, the 2nd panel structure 60 and the polarizing plates 4 and 6 are made to adapt with an autoclave.
 この後、図6(b)~(e)に示すように、偏光板4、6に刃61等を用いて切れ目を入れ、基板1、2にもガラスカッター63等を用いて切れ目を入れる。 Thereafter, as shown in FIGS. 6B to 6E, the polarizing plates 4 and 6 are cut using a blade 61 and the like, and the substrates 1 and 2 are cut using a glass cutter 63 and the like.
 次いで、図6(f)に示すように、基板1、2の面内方向に引っ張る。これにより、図6(g)に示すように第2パネル構造体60を液晶表示パネル100Aごとに分断することができる。 Next, as shown in FIG. 6 (f), the substrates 1 and 2 are pulled in the in-plane direction. Thereby, as shown in FIG.6 (g), the 2nd panel structure 60 can be divided | segmented for every liquid crystal display panel 100A.
 なお、液晶表示パネル100Aごとに分断する際に、シール部8のうち表示領域25と接続領域26との間に形成された部分以外の部分は、分断により切り落とされることが好ましい。本実施形態における液晶層10は高分子を含む壁で区画された液晶領域11を有しているので、分断により隣接する液晶領域の間に位置する壁の一部が破壊されても、破壊された壁に接した液晶領域11内の液晶材料が漏れ出すだけであり、液晶層10内のすべての液晶材料が漏れ出すということはないので、表示として問題はない。 In addition, when dividing for every liquid crystal display panel 100A, it is preferable that parts other than the part formed between the display area 25 and the connection area | region 26 among the seal parts 8 are cut off by division. Since the liquid crystal layer 10 in this embodiment has the liquid crystal region 11 partitioned by the wall containing the polymer, even if a part of the wall located between the adjacent liquid crystal regions is broken by the division, the liquid crystal layer 10 is broken. The liquid crystal material in the liquid crystal region 11 in contact with the wall only leaks out, and not all the liquid crystal material in the liquid crystal layer 10 leaks out.
 この後、液晶表示パネル100Aの側面のうちシール部8が形成されていない部分を、側面封止樹脂(図示せず)にて封止する。側面封止樹脂は、例えば、紫外線硬化性樹脂から形成されている。このようにして、液晶表示パネル100Aを得る。 Thereafter, the portion of the side surface of the liquid crystal display panel 100A where the seal portion 8 is not formed is sealed with a side surface sealing resin (not shown). The side surface sealing resin is made of, for example, an ultraviolet curable resin. In this way, the liquid crystal display panel 100A is obtained.
 続いて、液晶表示パネル100Aの背面側に、バックライト110を配置することにより、液晶表示装置200Aを製造することができる。 Subsequently, the liquid crystal display device 200A can be manufactured by disposing the backlight 110 on the back side of the liquid crystal display panel 100A.
 上述した製造方法では、ネマチック液晶材料とモノマーとを含む混合液をODF法にて滴下する方法を用いて液晶表示パネルを製造したが、混合液を真空注入法によって基板間に注入させる方法を用いてもよい。その場合、偏光板4、6を貼り付けた後の第2パネル構造体60を分断して副パネル構造体を形成した後、各副パネル構造体における基板間に混合液を注入してもよい。この後、副パネル構造体をさらに分断して、液晶表示パネル100Aを得る。 In the above-described manufacturing method, a liquid crystal display panel is manufactured using a method in which a liquid mixture containing a nematic liquid crystal material and a monomer is dropped by an ODF method, but a method in which the liquid mixture is injected between substrates by a vacuum injection method is used. May be. In that case, after dividing the 2nd panel structure 60 after bonding the polarizing plates 4 and 6, and forming a subpanel structure, you may inject | pour a liquid mixture between the board | substrates in each subpanel structure. . Thereafter, the sub panel structure is further divided to obtain the liquid crystal display panel 100A.
 また、上記方法では、表示領域の全体に高分子壁を含む液晶層を形成したが、液晶層10の周縁領域にのみ高分子の壁を含むように液晶層10を形成してもよい。この場合、図7に示すように、第1マザー基板のTFT基板44ごとに、ネマチック液晶材料(例えば、ネガ型のネマチック液晶材料)とモノマーとが混合された混合液30をODF法により付与する。このとき、混合液30は、各TFT基板44の画素電極が形成されている領域の外縁の近傍に付与される。ネマチック液晶材料とモノマーとの重量比は、例えば80:20(ネマチック液晶材料:モノマー=80:20)である。重量比はこれに限定されず、モノマー濃度が10質量%以上30質量%以下である混合液を用いてもよい。モノマー濃度が10質量%未満であると、液晶表示パネル100Aの表示のコントラスト比が大きくなるが、液晶表示パネル100Aの機械的な強度が低下する。モノマー濃度が30質量%超であると、液晶表示パネル100Aの機械的な強度が高くなるが、液晶表示パネル100Aの表示のコントラスト比および輝度が小さくなる。 In the above method, the liquid crystal layer including the polymer wall is formed in the entire display region. However, the liquid crystal layer 10 may be formed so as to include the polymer wall only in the peripheral region of the liquid crystal layer 10. In this case, as shown in FIG. 7, a mixed liquid 30 in which a nematic liquid crystal material (for example, a negative nematic liquid crystal material) and a monomer are mixed is applied to each TFT substrate 44 of the first mother substrate by the ODF method. . At this time, the mixed liquid 30 is applied in the vicinity of the outer edge of the region where the pixel electrode of each TFT substrate 44 is formed. The weight ratio of the nematic liquid crystal material and the monomer is, for example, 80:20 (nematic liquid crystal material: monomer = 80: 20). A weight ratio is not limited to this, You may use the liquid mixture whose monomer concentration is 10 mass% or more and 30 mass% or less. When the monomer concentration is less than 10% by mass, the display contrast ratio of the liquid crystal display panel 100A increases, but the mechanical strength of the liquid crystal display panel 100A decreases. When the monomer concentration is more than 30% by mass, the mechanical strength of the liquid crystal display panel 100A increases, but the display contrast ratio and luminance of the liquid crystal display panel 100A decrease.
 次に、ODF法で、各TFT基板44における混合液30で囲まれた領域内にネマチック液晶材料(例えば、ネガ型のネマチック液晶材料)を付与する。 Next, a nematic liquid crystal material (for example, a negative nematic liquid crystal material) is applied to the region surrounded by the mixed liquid 30 in each TFT substrate 44 by the ODF method.
 この後、公知の方法で、TFT基板44を含む第1マザー基板と第2マザー基板とを貼り合わせた後、混合液30内のモノマーに紫外線を照射して、硬化させる。このようにして、各表示領域には、周縁領域にのみ高分子の壁を含む液晶層が形成される。次いで、図5を参照しながら前述した方法と同様の方法で、偏光板および蛍光層を形成してパネル構造体を得る。 Thereafter, the first mother substrate including the TFT substrate 44 and the second mother substrate are bonded to each other by a known method, and then the monomer in the mixed solution 30 is irradiated with ultraviolet rays to be cured. Thus, a liquid crystal layer including a polymer wall only in the peripheral region is formed in each display region. Next, a polarizing plate and a fluorescent layer are formed by the same method as described above with reference to FIG. 5 to obtain a panel structure.
 続いて、図6を参照しながら前述したように、パネル構造体を分断することにより、複数の液晶表示パネルが得られる。このとき、液晶層のうち高分子の壁を含む周縁領域を分断すると、液晶表示パネルの側面から液晶材料が漏れ出すことを防止できる。 Subsequently, as described above with reference to FIG. 6, a plurality of liquid crystal display panels can be obtained by dividing the panel structure. At this time, if the peripheral region including the polymer wall in the liquid crystal layer is divided, the liquid crystal material can be prevented from leaking from the side surface of the liquid crystal display panel.
 <液晶表示パネル100Aの駆動方式>
 次いで、本実施形態における液晶表示パネル100Aの駆動方式を説明する。
<Driving method of liquid crystal display panel 100A>
Next, a driving method of the liquid crystal display panel 100A in the present embodiment will be described.
 一般に、PDLCやPNLCを用いた液晶表示装置(高分子分散型液晶表示装置)では偏光板を使用しない。例えばPDLCは、液晶層に対する電圧の印加により散乱状態と光透過状態との間で光学特性を切り換えることができるので、PDLCを用いると、偏光板を使用せずに表示を行うことができるからである。これに対し、本実施形態は、PDLCと同様の材料を用いるが偏光板を使用している。偏光板は円偏光板でもよいし、直線偏光板でもよい。 Generally, a polarizing plate is not used in a liquid crystal display device (polymer dispersion type liquid crystal display device) using PDLC or PNLC. For example, since PDLC can switch the optical characteristics between a scattering state and a light transmission state by applying a voltage to the liquid crystal layer, it is possible to perform display without using a polarizing plate when PDLC is used. is there. In contrast, this embodiment uses the same material as PDLC but uses a polarizing plate. The polarizing plate may be a circular polarizing plate or a linear polarizing plate.
 一例として、直線偏光板を有する場合の液晶表示パネル100Aの構造および駆動方式を説明する。 As an example, the structure and driving method of the liquid crystal display panel 100A having a linear polarizing plate will be described.
 図8(a)および(b)は、駆動方式の一例を説明するための液晶表示パネル100Aの断面図および部分平面図である。 8A and 8B are a cross-sectional view and a partial plan view of the liquid crystal display panel 100A for explaining an example of a driving method.
 図示する例では、液晶層10は、複数の液晶領域11と、高分子の壁13とを含んでいる。液晶層10の材料として誘電異方性が正である液晶材料を用いる。図示しないが第1基板1上には、液晶層10と接するように第1水平配向膜が形成され、第2基板2上には、液晶層10と接するように第2水平配向膜が形成されている。各液晶領域11は、これらの水平配向膜と接するように配置されている。第1基板1には第1偏光板、第2基板2には第2偏光板が配置されている。これらの偏光板は直線偏光板であり、その吸収軸が互いに直交する(クロスニコル)ように配置されている。第1水平配向膜および第2水平配向膜は、それぞれ配向処理(例えば、ラビング処理)が施されている。第1水平配向膜および第2水平配向膜の配向処理の方向D1、D2は互いに直交している。好ましくは、第1水平配向膜に施された配向処理方向D1は第1偏光板の透過軸と平行であり、第2水平配向膜に施された配向処理方向D2は第2偏光板の透過軸と平行である。また、液晶層10と第1基板1との間には電極(例えば共通電極)15が設けられており、液晶層10と第2基板2との間には電極(例えば複数の画素電極)14が設けられている。 In the illustrated example, the liquid crystal layer 10 includes a plurality of liquid crystal regions 11 and polymer walls 13. A liquid crystal material having a positive dielectric anisotropy is used as the material of the liquid crystal layer 10. Although not shown, a first horizontal alignment film is formed on the first substrate 1 so as to be in contact with the liquid crystal layer 10, and a second horizontal alignment film is formed on the second substrate 2 so as to be in contact with the liquid crystal layer 10. ing. Each liquid crystal region 11 is arranged in contact with these horizontal alignment films. A first polarizing plate is disposed on the first substrate 1, and a second polarizing plate is disposed on the second substrate 2. These polarizing plates are linear polarizing plates, and are arranged so that their absorption axes are orthogonal to each other (crossed Nicols). The first horizontal alignment film and the second horizontal alignment film are each subjected to an alignment process (for example, a rubbing process). The directions D1 and D2 of the alignment treatment of the first horizontal alignment film and the second horizontal alignment film are orthogonal to each other. Preferably, the alignment treatment direction D1 applied to the first horizontal alignment film is parallel to the transmission axis of the first polarizing plate, and the alignment treatment direction D2 applied to the second horizontal alignment film is the transmission axis of the second polarizing plate. And parallel. An electrode (for example, a common electrode) 15 is provided between the liquid crystal layer 10 and the first substrate 1, and an electrode (for example, a plurality of pixel electrodes) 14 is disposed between the liquid crystal layer 10 and the second substrate 2. Is provided.
 この駆動方式では、電圧無印加時に、各液晶領域11に含まれる液晶分子(特に配向膜近傍に位置する界面液晶分子)のチルト方向を異ならせることにより、観察方位による視角(極角)依存性を大幅に低減させることができる。このような構成を有する液晶表示パネル(TN(Twisted Nematic)型の液晶表示パネル)は、本出願人による国際公開第2010/044246号に開示されている。 In this driving method, when no voltage is applied, the tilt direction of the liquid crystal molecules included in each liquid crystal region 11 (particularly, the interface liquid crystal molecules located in the vicinity of the alignment film) is made different so that the viewing angle (polar angle) dependency depends on the viewing direction. Can be greatly reduced. A liquid crystal display panel (TN (Twisted Nematic) type liquid crystal display panel) having such a configuration is disclosed in International Publication No. 2010/044246 by the present applicant.
 なお、本実施形態における液晶表示パネルは、直線偏光板の代わりに円偏光板を有していてもよい。図9(a)および(b)は、円偏光板を有する場合の駆動方式を説明するための液晶表示パネル100Bの部分断面図および平面図である。 In addition, the liquid crystal display panel in this embodiment may have a circularly polarizing plate instead of the linearly polarizing plate. FIGS. 9A and 9B are a partial cross-sectional view and a plan view of a liquid crystal display panel 100B for explaining a driving method in the case of having a circularly polarizing plate.
 図9に例示する液晶表示パネル100Bでは、第1および第2偏光板として、吸収軸が互いに直交するように配置された直線偏光板を用い、第1偏光板と第1基板1との間、および第2偏光板と第2基板2との間に、それぞれ、λ/4板が配置されている。λ/4板と直線偏光板とはそれぞれ円偏光板として機能する。また、第1および第2基板上の第1および第2水平配向膜には配向処理が施されていない。さらに、液晶層10に含まれる液晶領域11は、何れか一方の基板1、2に形成された水平配向膜にのみ接している。その他の構成は、図8に示す構成と同様である。 In the liquid crystal display panel 100B illustrated in FIG. 9, as the first and second polarizing plates, linear polarizing plates arranged so that the absorption axes are orthogonal to each other are used, and between the first polarizing plate and the first substrate 1, A λ / 4 plate is disposed between the second polarizing plate and the second substrate 2. Each of the λ / 4 plate and the linearly polarizing plate functions as a circularly polarizing plate. In addition, the first and second horizontal alignment films on the first and second substrates are not subjected to alignment treatment. Further, the liquid crystal region 11 included in the liquid crystal layer 10 is in contact with only the horizontal alignment film formed on one of the substrates 1 and 2. Other configurations are the same as those shown in FIG.
 この駆動方式によると、液晶層と平行な面内において互いに異なる方向を向いたディレクタを有する複数の液晶領域11を画素内に配置できるので、視野角特性を向上できる。このような構成を有する液晶表示パネルは、本出願人による国際公開第2009/069249号に開示されている。 According to this driving method, since a plurality of liquid crystal regions 11 having directors oriented in different directions within a plane parallel to the liquid crystal layer can be arranged in the pixel, the viewing angle characteristics can be improved. A liquid crystal display panel having such a configuration is disclosed in International Publication No. 2009/069249 by the present applicant.
 (第2の実施形態)
 以下、図面を参照しながら、本発明による液晶表示装置の第2の実施形態を説明する。本実施形態の液晶表示装置は、蛍光2色性色素を含む蛍光層を用いる点で、前述の実施形態と異なっている。
(Second Embodiment)
Hereinafter, a second embodiment of the liquid crystal display device according to the present invention will be described with reference to the drawings. The liquid crystal display device of this embodiment is different from the above-described embodiment in that a fluorescent layer containing a fluorescent dichroic dye is used.
 図10(a)は、本実施形態における蛍光層12および偏光板6を示す斜視図である。図示するように、蛍光層12は、直線偏光板である偏光板6の表面に形成され、液晶表示パネルの背面側に設置される。 FIG. 10A is a perspective view showing the fluorescent layer 12 and the polarizing plate 6 in the present embodiment. As shown in the drawing, the fluorescent layer 12 is formed on the surface of a polarizing plate 6 that is a linear polarizing plate, and is disposed on the back side of the liquid crystal display panel.
 蛍光層12は2色性蛍光色素22の遷移モーメントの方向Tが、偏光板6の透過軸の方向Pと平行になるように、2色性蛍光色素22を1軸配向させている。蛍光色素の配向の制御方法については後述する。 The fluorescent layer 12 has the dichroic fluorescent dye 22 uniaxially oriented so that the direction T of the transition moment of the dichroic fluorescent dye 22 is parallel to the direction P of the transmission axis of the polarizing plate 6. A method for controlling the orientation of the fluorescent dye will be described later.
 2色性蛍光色素以外の蛍光物質(例えば無機蛍光体である遷移金属イオン系や希土類イオン系、CaS系、ZnS系、2色性を有さない有機蛍光色素であるクマリン系、シアニン系、ピリジン系、ローダミン系、スチリル系、アントラキノン系、ルモゲン系、ボディピー系、スチルベン系)を用いて蛍光層を形成すると、蛍光層は等方的に発光する。このため、蛍光層で出射された光のうち偏光板の透過軸と平行な方向に振幅する光のみが偏光板を透過して液晶層に入射し、表示に利用される。従って、蛍光層から偏光板に入射する光の約1/2は表示に利用されないため、光の利用効率を高めることは難しい。 Fluorescent substances other than dichroic fluorescent dyes (for example, transition metal ion-based rare earth ions, CaS-based, ZnS-based inorganic fluorescent substances, coumarin-based, cyanine-based, pyridine-based organic fluorescent dyes that do not have dichroism) System, rhodamine system, styryl system, anthraquinone system, rumogen system, body pea system, stilbene system), the phosphor layer emits isotropically. For this reason, only the light having an amplitude in the direction parallel to the transmission axis of the polarizing plate out of the light emitted from the fluorescent layer is transmitted through the polarizing plate and incident on the liquid crystal layer and used for display. Therefore, about half of the light incident on the polarizing plate from the fluorescent layer is not used for display, and it is difficult to increase the light use efficiency.
 これに対し、本実施形態における蛍光層12は、2色性蛍光色素22の遷移モーメントと平行な方向に振幅する光を主に発する。このため、蛍光層12から出射した光の大部分が偏光板6を透過し、表示に利用され得るので、光(蛍光発光した光)の利用効率を高めることが可能である。 On the other hand, the fluorescent layer 12 in the present embodiment mainly emits light that oscillates in a direction parallel to the transition moment of the dichroic fluorescent dye 22. For this reason, most of the light emitted from the fluorescent layer 12 is transmitted through the polarizing plate 6 and can be used for display. Therefore, it is possible to increase the utilization efficiency of light (fluorescent light).
 2色性蛍光色素としては、例えば
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
などが挙げられる。化学式(1)に示す蛍光色素は4,7ビスパラメトキシフェニル2,1,3ベンゾチアジアゾール(4,7-bis(p-methoxyphenyl)-2,1,3-benzothiadiazoles)である。この蛍光色素の吸収波長λAは409nm、蛍光発光波長λFは542nmである。化学式(2)に示す蛍光色素は4,7ビスパラメトキシメチルフェニル2,1,3ベンゾチアジアゾール(4,7-bis(p-methoxymethylphenyl)-2,1,3-benzothiadiazoles)である。この蛍光色素の吸収波長λAは384nm、蛍光発光波長λFは505nmである。化学式(3)に示す蛍光色素は4,7ビスパラメトキシカルボニルフェニル2,1,3ベンゾチアジアゾール(4,7-bis(p-methoxycarbonylphenyl)-2,1,3-benzothiadiazoles)である。この蛍光色素の吸収波長λAは376nm、蛍光発光波長λFは464nmである。各波長の値はジクロロメタン中での測定値である。
As the dichroic fluorescent dye, for example,
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Etc. The fluorescent dye represented by the chemical formula (1) is 4,7 bisparamethoxyphenyl 2,1,3 benzothiadiazole (4,7-bis (p-methoxyphenyl) -2,1,3-benzothiadiazoles). This fluorescent dye has an absorption wavelength λ A of 409 nm and a fluorescence emission wavelength λ F of 542 nm. The fluorescent dye represented by the chemical formula (2) is 4,7 bisparamethoxymethylphenyl 2,1,3 benzothiadiazole (4,7-bis (p-methoxymethylphenyl) -2,1,3-benzothiadiazoles). This fluorescent dye has an absorption wavelength λ A of 384 nm and a fluorescence emission wavelength λ F of 505 nm. The fluorescent dye represented by the chemical formula (3) is 4,7 bisparamethoxycarbonylphenyl 2,1,3 benzothiadiazole (4,7-bis (p-methoxycarbenylphenyl) -2,1,3-benzothiadiazoles). This fluorescent dye has an absorption wavelength λ A of 376 nm and a fluorescence emission wavelength λ F of 464 nm. Each wavelength value is a value measured in dichloromethane.
 図10(b)および(c)は、それぞれ、P型の2色性蛍光色素の吸収特性および発光特性を説明するための図である。 FIGS. 10B and 10C are diagrams for explaining the absorption characteristics and emission characteristics of the P-type dichroic fluorescent dye, respectively.
 図10(b)に示すように、本実施形態における蛍光層12では、P型の2色性蛍光色素22の分子軸と吸収の遷移モーメント(吸収軸)とが同じ方向Tを向いている。このため、偏光方向が分子軸と平行な光の吸収係数(A//)の方が、偏光方向が分子軸と垂直な光の吸収係数(A⊥)よりも大きい。 As shown in FIG. 10B, in the fluorescent layer 12 in the present embodiment, the molecular axis of the P-type dichroic fluorescent dye 22 and the transition moment of absorption (absorption axis) are in the same direction T. For this reason, the absorption coefficient (A //) of light whose polarization direction is parallel to the molecular axis is larger than the absorption coefficient (A⊥) of light whose polarization direction is perpendicular to the molecular axis.
 また、図10(c)に示すように、P型の2色性蛍光色素22の分子軸と蛍光発光の遷移モーメント(発光軸)とが同じ方向Tを向いている。このため、偏光方向が分子軸と平行な光の蛍光発光係数(F//)の方が、偏光方向が分子軸と垂直な光の蛍光発光係数(F⊥)よりも大きい。 Further, as shown in FIG. 10C, the molecular axis of the P-type dichroic fluorescent dye 22 and the transition moment (luminescence axis) of fluorescence emission are directed in the same direction T. For this reason, the fluorescence emission coefficient (F //) of light whose polarization direction is parallel to the molecular axis is larger than the fluorescence emission coefficient (F⊥) of light whose polarization direction is perpendicular to the molecular axis.
 図10(d)は、P型の2色性蛍光色素による光の吸収・発光強度の波長依存性を示す図であり、横軸は光の波長、縦軸は吸収光の強度および発光強度を表している。この図から、2色性蛍光色素は特定の偏光方向(ここでは分子軸と平行な方向)の光を選択的に吸収し、その特定の偏光方向の蛍光を強く発することが分かる。 FIG. 10 (d) is a diagram showing the wavelength dependence of the light absorption / emission intensity by the P-type dichroic fluorescent dye. The horizontal axis represents the light wavelength, and the vertical axis represents the intensity of the absorbed light and the emission intensity. Represents. From this figure, it can be seen that the dichroic fluorescent dye selectively absorbs light of a specific polarization direction (here, parallel to the molecular axis) and strongly emits fluorescence of the specific polarization direction.
 次に、本実施形態の液晶表示装置の製造方法を説明する。本実施形態でも、偏光板フィルム6aの表面に蛍光フィルム12aを設けた積層体50を形成し、この積層体50を用いて液晶表示装置を得る。 Next, a method for manufacturing the liquid crystal display device of this embodiment will be described. Also in this embodiment, the laminated body 50 which provided the fluorescent film 12a on the surface of the polarizing plate film 6a is formed, and a liquid crystal display device is obtained using this laminated body 50. FIG.
 以下、図11を参照しながら、積層体50の形成方法の一例を説明する。 Hereinafter, an example of a method of forming the stacked body 50 will be described with reference to FIG.
 まず、2色性蛍光色素を含む蛍光フィルム12aを作製する。次いで、蛍光フィルム12aを延伸させ、蛍光フィルム12aに含まれる蛍光2色性色素を1軸方向(延伸方向)Tに整列させる。この後、偏光板フィルム6aの透過軸と蛍光フィルム12aの延伸方向Tとが平行になるように、これらのフィルムを貼り合わせて積層フィルムを得る。続いて、積層フィルムを所定のサイズに切断し、積層体50を得る。偏光板フィルム6aは、偏光板フィルム6aの長手方向に透過軸を有していることが好ましい。図示するように、蛍光フィルム12aの延伸工程と貼り合わせ工程とを連続して行ってもよい。このようにして得られた積層体50を用い、図4~図6を参照しながら前述した方法と同様の方法で液晶表示装置を製造することができる。 First, a fluorescent film 12a containing a dichroic fluorescent dye is produced. Next, the fluorescent film 12a is stretched, and the fluorescent dichroic dye contained in the fluorescent film 12a is aligned in the uniaxial direction (stretching direction) T. Thereafter, these films are bonded together to obtain a laminated film so that the transmission axis of the polarizing film 6a and the stretching direction T of the fluorescent film 12a are parallel to each other. Subsequently, the laminated film is cut into a predetermined size to obtain a laminated body 50. The polarizing film 6a preferably has a transmission axis in the longitudinal direction of the polarizing film 6a. As shown in the figure, the stretching process and the bonding process of the fluorescent film 12a may be performed continuously. A liquid crystal display device can be manufactured by using the laminate 50 thus obtained by the same method as described above with reference to FIGS.
 本実施形態における蛍光層12の形成方法は上記の方法に限定されない。例えば、2色性蛍光色素を含む樹脂を偏光板フィルム6aに塗布することによって蛍光層12を形成することもできる。 The formation method of the fluorescent layer 12 in this embodiment is not limited to the above method. For example, the fluorescent layer 12 can be formed by applying a resin containing a dichroic fluorescent dye to the polarizing film 6a.
 図12は、本実施形態における蛍光層12を含む積層体50の他の形成方法を説明するための図である。 FIG. 12 is a diagram for explaining another method for forming the laminate 50 including the fluorescent layer 12 in the present embodiment.
 まず、偏光板フィルム6aの表面に対し、偏光板フィルム6aの透過軸と平行な方向Pにラビングを行う。次いで、偏光板フィルム6aのラビングした表面に、2色性蛍光色素を含む樹脂(例えばUV硬化性液晶性高分子樹脂)を塗布して樹脂膜12b’を得る。これにより、2色性蛍光色素および液晶性高分子の分子軸をラビング方向Pに揃えることができる。次いで、液晶性高分子樹脂と2色性蛍光色素とを含む樹脂膜12b’を、例えばUV光の照射によって硬化させる。これにより、偏光板フィルム6a上に蛍光膜12bが形成される。この後、蛍光膜12bおよび偏光板フィルム6aを同時に切断することにより、所定のサイズの積層体50を得る。偏光板フィルム6aは、偏光板フィルム6aの長手方向に透過軸を有していることが好ましい。図示するように、偏光板フィルム6aのラビング工程、偏光板フィルム6aへの樹脂の塗布工程および樹脂膜12b’の硬化工程を連続して行ってもよい。このようにして得られた積層体50を用い、図4~図6を参照しながら前述した方法と同様の方法で液晶表示装置を製造することができる。 First, the surface of the polarizing film 6a is rubbed in a direction P parallel to the transmission axis of the polarizing film 6a. Next, a resin (for example, a UV curable liquid crystalline polymer resin) containing a dichroic fluorescent dye is applied to the rubbed surface of the polarizing film 6a to obtain a resin film 12b '. Thereby, the molecular axes of the dichroic fluorescent dye and the liquid crystalline polymer can be aligned in the rubbing direction P. Next, the resin film 12b 'containing the liquid crystalline polymer resin and the dichroic fluorescent dye is cured by, for example, UV light irradiation. Thereby, the fluorescent film 12b is formed on the polarizing film 6a. Thereafter, the phosphor film 12b and the polarizing film 6a are cut at the same time to obtain a laminate 50 having a predetermined size. The polarizing film 6a preferably has a transmission axis in the longitudinal direction of the polarizing film 6a. As shown in the figure, the rubbing process of the polarizing film 6a, the resin coating process on the polarizing film 6a, and the curing process of the resin film 12b 'may be performed continuously. A liquid crystal display device can be manufactured by using the laminate 50 thus obtained by the same method as described above with reference to FIGS.
 (第3の実施形態)
 以下、図面を参照しながら、本発明による液晶表示装置の第3の実施形態を説明する。本実施形態の液晶表示装置は、液晶表示パネルの側面の少なくとも一部に反射部を有する点で、前述の実施形態と異なっている。
(Third embodiment)
Hereinafter, a third embodiment of the liquid crystal display device according to the present invention will be described with reference to the drawings. The liquid crystal display device of the present embodiment is different from the above-described embodiment in that the liquid crystal display device has a reflection portion on at least a part of the side surface of the liquid crystal display panel.
 図13は、本実施形態の液晶表示装置200Cの断面図である。簡単のため、図1に示す液晶表示装置200Aと同様の構成要素には同じ参照符号を付し、説明を省略する。 FIG. 13 is a cross-sectional view of the liquid crystal display device 200C of the present embodiment. For simplicity, the same components as those of the liquid crystal display device 200A shown in FIG.
 液晶表示装置200Cは、液晶表示パネル100Cおよびバックライト110を備えている。液晶表示パネル100Cを観察者側から見たとき、蛍光層12の外縁の少なくとも一部は、第1基板1、第2基板2、偏光板4、6、および液晶層10の外縁と整合している。この整合している縁部Sに沿って、反射部24が設けられている。反射部24は、第1基板1、第2基板2、偏光板4、6、液晶層10および蛍光層12のそれぞれの側面を覆うように配置されている。好ましくは、反射部24はこれらの側面と接するように配置されている。 The liquid crystal display device 200C includes a liquid crystal display panel 100C and a backlight 110. When the liquid crystal display panel 100C is viewed from the viewer side, at least a part of the outer edge of the fluorescent layer 12 is aligned with the outer edges of the first substrate 1, the second substrate 2, the polarizing plates 4 and 6, and the liquid crystal layer 10. Yes. A reflecting portion 24 is provided along the aligned edge portion S. The reflection unit 24 is disposed so as to cover the side surfaces of the first substrate 1, the second substrate 2, the polarizing plates 4 and 6, the liquid crystal layer 10, and the fluorescent layer 12. Preferably, the reflection part 24 is arrange | positioned so that these side surfaces may be contact | connected.
 反射部24は、液晶表示パネル100Cを観察者側から見たとき、液晶表示パネル100Cの外縁の少なくとも一部に設けられていればよい。例えば、液晶表示パネル100Cの外縁(例えば略四角形)を構成する辺のうち少なくとも1辺に沿って反射部24が設けられていてもよい。 The reflection unit 24 may be provided on at least a part of the outer edge of the liquid crystal display panel 100C when the liquid crystal display panel 100C is viewed from the observer side. For example, the reflection part 24 may be provided along at least one side among the sides constituting the outer edge (for example, a substantially square shape) of the liquid crystal display panel 100C.
 反射部24は、可視光を反射する材料を含んでいればよく、その材料および形成方法は特に限定されない。例えば反射部24として、液晶表示パネル100Cの側面の一部に、反射率の高い高誘電体膜または金属膜を形成してもよい。図6を参照しながら前述した方法で液晶表示パネルを製造した場合、液晶表示パネルの切断面の少なくとも一部に高誘電体膜または金属膜を形成してもよい。あるいは、液晶表示パネル100Cの側面(または切断面)の少なくとも一部に、金属フレークを含む塗料を塗布することによって反射部24を形成することもできる。代わりに、液晶表示パネル100Cの側面(または切断面)に反射フィルムを貼ってもよい。 The reflection part 24 should just contain the material which reflects visible light, and the material and formation method are not specifically limited. For example, a high dielectric film or a metal film having a high reflectance may be formed as a part of the side surface of the liquid crystal display panel 100C as the reflection part 24. When a liquid crystal display panel is manufactured by the method described above with reference to FIG. 6, a high dielectric film or a metal film may be formed on at least a part of the cut surface of the liquid crystal display panel. Alternatively, the reflecting portion 24 can be formed by applying a paint containing metal flakes to at least a part of the side surface (or cut surface) of the liquid crystal display panel 100C. Instead, a reflective film may be attached to the side surface (or cut surface) of the liquid crystal display panel 100C.
 本実施形態によると、バックライト110からの励起光120によって蛍光層12から出射した光が、液晶表示パネル100Cの側面から液晶表示パネル100Cの外部へ漏れること(光漏れ)を抑制できる。また、額縁領域を狭小化した場合であっても、表示領域25の周縁部での表示不良を低減できる。以下、図面を参照しながら、本実施形態の効果をより詳しく説明する。 According to this embodiment, the light emitted from the fluorescent layer 12 by the excitation light 120 from the backlight 110 can be prevented from leaking from the side surface of the liquid crystal display panel 100C to the outside of the liquid crystal display panel 100C (light leakage). Further, even when the frame area is narrowed, display defects at the peripheral edge of the display area 25 can be reduced. Hereinafter, the effects of the present embodiment will be described in more detail with reference to the drawings.
 上記のような反射層を有しない液晶表示パネルでは、額縁領域を狭くする(あるいはなくす)と、図14(a)に示すように、蛍光層12から出射された光の一部L1が液晶表示パネルの側面から液晶表示パネルの外部に漏れてしまうおそれがある。このため、液晶表示パネルの周縁部では、中央部よりも明度が低下する。この結果、表示領域25の周縁部において表示が暗くなる結果、視認不良が生じるおそれがある。 In the liquid crystal display panel having no reflective layer as described above, when the frame region is narrowed (or eliminated), as shown in FIG. 14A, a part L1 of the light emitted from the fluorescent layer 12 is displayed on the liquid crystal display. There is a risk of leakage from the side of the panel to the outside of the liquid crystal display panel. For this reason, the brightness at the peripheral edge of the liquid crystal display panel is lower than that at the center. As a result, the display becomes dark at the peripheral edge of the display area 25, and as a result, poor visibility may occur.
 額縁領域を有しない場合、表示領域25における「表示が暗くなる範囲」25Pの幅、すなわち液晶表示パネルの外縁から、範囲25Pの最も内側に位置する部分までの距離xは、液晶表示パネルの屈折率をn、厚さをhとすると、次の式で算出される。
x=h × tan{arcsin(1/n)}
When there is no frame area, the width of the “display darkening range” 25P in the display area 25, that is, the distance x from the outer edge of the liquid crystal display panel to the innermost portion of the range 25P is the refraction of the liquid crystal display panel. When the rate is n and the thickness is h, the following formula is used.
x = h × tan {arcsin (1 / n)}
 これに対し、本実施形態によると、図14(b)に示すように、液晶表示パネル100Cの側面から液晶表示パネル100Cの外部に向かう光L2を、液晶表示パネル100Cの内部に反射させることができる。従って、液晶表示パネル100Cの周縁部における明度不足を改善できる。この結果、額縁領域を有しない場合や額縁領域の幅が上記距離x未満の場合でも、表示領域25の周縁部における表示ムラを低減でき、表示領域25全体でより均一な明るさで表示を行うことが可能になる。 On the other hand, according to the present embodiment, as shown in FIG. 14B, the light L2 traveling from the side surface of the liquid crystal display panel 100C to the outside of the liquid crystal display panel 100C is reflected inside the liquid crystal display panel 100C. it can. Accordingly, it is possible to improve the brightness shortage at the peripheral edge of the liquid crystal display panel 100C. As a result, even when the frame region is not provided or the width of the frame region is less than the distance x, display unevenness in the peripheral portion of the display region 25 can be reduced, and display is performed with more uniform brightness in the entire display region 25. It becomes possible.
 (第4の実施形態)
 以下、図面を参照しながら、本発明による液晶表示装置の第4の実施形態を説明する。本実施形態の液晶表示装置は、蛍光層の周縁部に含まれる蛍光物質の量が、中央部に含まれる量よりも多い点で、前述の実施形態と異なっている。ここでいう「蛍光物質の量」とは、蛍光層の法線方向から見たときの蛍光層の単位面積あたりの蛍光物質の質量を意味する。
(Fourth embodiment)
Hereinafter, a fourth embodiment of a liquid crystal display device according to the present invention will be described with reference to the drawings. The liquid crystal display device of this embodiment is different from the above-described embodiment in that the amount of the fluorescent material contained in the peripheral portion of the fluorescent layer is larger than the amount contained in the central portion. The “amount of the fluorescent substance” here means the mass of the fluorescent substance per unit area of the fluorescent layer when viewed from the normal direction of the fluorescent layer.
 図15(a)および(b)は、それぞれ、本実施形態の液晶表示装置200Dの断面図および平面図である。簡単のため、図1に示す液晶表示装置200Aと同様の構成要素には同じ参照符号を付し、説明を省略する。 15A and 15B are a cross-sectional view and a plan view of the liquid crystal display device 200D of the present embodiment, respectively. For simplicity, the same components as those of the liquid crystal display device 200A shown in FIG.
 液晶表示装置200Dは、液晶表示パネル100Dおよびバックライト110を備えている。本実施形態における液晶表示パネル100Dでは、蛍光層12における蛍光物質の密度は略均一であるが、蛍光層12の厚さが周縁部で中央部よりも大きい。このような構成により、蛍光層12の周縁部において蛍光物質の量を中央部よりも多くできるので、蛍光層12からの発光量を周縁部で中央部よりも高めることが可能になる。従って、パネル側面での光漏れ(図14(a))に起因する表示の明るさの不均一性を低減できる。 The liquid crystal display device 200D includes a liquid crystal display panel 100D and a backlight 110. In the liquid crystal display panel 100D in the present embodiment, the density of the fluorescent material in the fluorescent layer 12 is substantially uniform, but the thickness of the fluorescent layer 12 is larger at the peripheral part than at the central part. With such a configuration, since the amount of the fluorescent material can be increased at the peripheral portion of the fluorescent layer 12 as compared with the central portion, the light emission amount from the fluorescent layer 12 can be increased at the peripheral portion as compared with the central portion. Accordingly, display brightness non-uniformity due to light leakage on the side surface of the panel (FIG. 14A) can be reduced.
 また、図15(b)に示すように、液晶表示装置200Dを観察者側から見たとき、蛍光層12よりも、バックライト110の導光板112が小さく、蛍光層12の周縁部が導光板112と重なっていなくてもよい。この場合、蛍光層12のうち表示領域25内に位置し、かつ、導光板112(導光板112の光照射部)と重なっていない領域を領域Zとすると、蛍光層12の領域Zに含まれる蛍光物質の量を、他の領域に含まれる量よりも増加させることが好ましい。領域Zの下方には導光板112が存在していないので、蛍光層12の領域Zに入射する励起光の量は、蛍光層12の他の領域(例えば中央部)に入射する励起光の量よりも少なくなる。しかしながら、領域Zに含まれる蛍光物質の量を増加させているので、少ない励起光でも他の領域と同程度の発光を行うことが可能である。このため、導光板112のサイズや位置にかかわらず、蛍光層12の表面全体でより均一に発光できる。 15B, when the liquid crystal display device 200D is viewed from the viewer side, the light guide plate 112 of the backlight 110 is smaller than the fluorescent layer 12, and the peripheral portion of the fluorescent layer 12 is the light guide plate. 112 does not have to overlap. In this case, if the region of the fluorescent layer 12 that is located within the display region 25 and does not overlap the light guide plate 112 (the light irradiating part of the light guide plate 112) is the region Z, it is included in the region Z of the fluorescent layer 12. It is preferable to increase the amount of the fluorescent substance more than the amount contained in other regions. Since the light guide plate 112 does not exist below the region Z, the amount of excitation light incident on the region Z of the fluorescent layer 12 is the amount of excitation light incident on another region (for example, the central portion) of the fluorescent layer 12. Less than. However, since the amount of the fluorescent substance contained in the region Z is increased, it is possible to emit the same amount of light as other regions even with a small amount of excitation light. For this reason, light can be emitted more uniformly over the entire surface of the fluorescent layer 12 regardless of the size and position of the light guide plate 112.
 次いで、本実施形態における蛍光層12の形成方法を説明する。図16は、蛍光層12の形成方法の一例を説明するための断面図である。 Next, a method for forming the fluorescent layer 12 in this embodiment will be described. FIG. 16 is a cross-sectional view for explaining an example of a method for forming the fluorescent layer 12.
 本実施形態における蛍光層12は、例えば液晶性高分子樹脂と2色性蛍光色素とを含んでいる。 The fluorescent layer 12 in the present embodiment includes, for example, a liquid crystalline polymer resin and a dichroic fluorescent dye.
 まず、偏光板フィルム6aの表面に対し、偏光板フィルム6aの透過軸と平行な方向にラビングを行う。次いで、偏光板フィルム6aのラビングした表面に、2色性蛍光色素を含むUV硬化性液晶性高分子樹脂を塗布して樹脂膜12c’を得る。これにより、2色性蛍光色素および液晶性高分子の分子軸をラビング方向に揃えることができる。このとき、塗布量を制御することにより、樹脂膜12c’の厚さを変える。本実施形態では、パネルの周縁部に対応する部分で厚くなるように制御する。 First, rubbing is performed on the surface of the polarizing film 6a in a direction parallel to the transmission axis of the polarizing film 6a. Next, a UV curable liquid crystalline polymer resin containing a dichroic fluorescent dye is applied to the rubbed surface of the polarizing film 6a to obtain a resin film 12c '. Thereby, the molecular axes of the dichroic fluorescent dye and the liquid crystalline polymer can be aligned in the rubbing direction. At this time, the thickness of the resin film 12c 'is changed by controlling the coating amount. In this embodiment, it controls so that it may become thick in the part corresponding to the peripheral part of a panel.
 次いで、液晶性高分子樹脂と2色性蛍光色素とを含む樹脂幕12c’を、例えばUV光の照射によって硬化させることにより、偏光板フィルム6a上に蛍光膜12cを形成する。この後、蛍光膜12cおよび偏光板フィルム6aを同時に切断することにより、所定のサイズの積層体50を得る。偏光板フィルム6aは、偏光板フィルム6aの長手方向に透過軸を有していることが好ましい。図示するように、偏光板フィルム6aのラビング工程、偏光板フィルム6aへの樹脂の塗布工程および樹脂膜12c’の硬化工程を連続して行ってもよい。このようにして得られた積層体50を、蛍光層12の厚い部分と、液晶表示パネルの端部とが重なるように貼り合わせる。この後、図4~図6を参照しながら前述した方法と同様の方法を用いて、液晶表示装置200Dを製造することができる。 Next, the resin film 12c 'containing the liquid crystalline polymer resin and the dichroic fluorescent dye is cured by, for example, irradiation with UV light, thereby forming the fluorescent film 12c on the polarizing film 6a. Thereafter, the fluorescent film 12c and the polarizing film 6a are simultaneously cut to obtain a laminate 50 having a predetermined size. The polarizing film 6a preferably has a transmission axis in the longitudinal direction of the polarizing film 6a. As shown in the drawing, the rubbing step of the polarizing film 6a, the step of applying the resin to the polarizing film 6a, and the curing step of the resin film 12c 'may be performed successively. The laminated body 50 obtained in this way is bonded so that the thick part of the fluorescent layer 12 and the end of the liquid crystal display panel overlap. Thereafter, the liquid crystal display device 200D can be manufactured by using a method similar to the method described above with reference to FIGS.
 なお、蛍光層12の厚さを周縁部で中央部よりも大きくする代わりに、蛍光層12における蛍光物質の濃度を周縁部で中央部よりも高めてもよい。これにより、蛍光物質の量を周縁部で増加させることができるので、パネル側面からの光漏れによる表示ムラを抑制する効果が得られる。特に、蛍光層12における領域Zで他の領域よりも蛍光物質の濃度を高めることにより、励起光の量の不均一性に起因する表示ムラを改善できる。 In addition, instead of making the thickness of the fluorescent layer 12 larger at the peripheral portion than at the central portion, the concentration of the fluorescent substance in the fluorescent layer 12 may be higher at the peripheral portion than at the central portion. Thereby, since the quantity of a fluorescent substance can be increased in a peripheral part, the effect which suppresses the display nonuniformity by the light leakage from a panel side surface is acquired. In particular, by increasing the concentration of the fluorescent substance in the region Z in the fluorescent layer 12 as compared with other regions, display unevenness due to non-uniformity in the amount of excitation light can be improved.
 濃度の異なる蛍光層12は、例えば次のような方法で形成され得る。 The fluorescent layers 12 having different concentrations can be formed by the following method, for example.
 2色性蛍光色素の濃度の異なる2種類の樹脂を用意する。図16を参照しながら前述した方法で、ラビング処理を行った偏光板フィルム6a上に、これらの樹脂を塗布する。このとき、2色性蛍光色素の濃度の高い方の樹脂をパネルの周縁部に対応する部分上に塗布し、他の部分上に濃度の低い方の樹脂を塗布する。この後の工程は、図16を参照しながら前述した方法と同様である。 Prepare two types of resins with different concentrations of dichroic fluorescent dye. These resins are applied onto the polarizing film 6a that has been rubbed by the method described above with reference to FIG. At this time, the resin having the higher concentration of the dichroic fluorescent dye is applied on the portion corresponding to the peripheral portion of the panel, and the resin having the lower concentration is applied on the other portion. The subsequent steps are the same as those described above with reference to FIG.
 (第5の実施形態)
 本実施形態の液晶表示装置は、図8および図9を参照しながら前述した駆動方式とは異なる方式を用いる点で、前述の実施形態と異なる。以下、図面を参照しながら、本実施形態における液晶表示パネルの駆動方式として、IPS(In Plane Switching)方式およびFFS(Fringe Field Switching)方式と呼ばれる駆動方式を用いる例を説明する。
(Fifth embodiment)
The liquid crystal display device of this embodiment is different from the above-described embodiment in that a method different from the driving method described above with reference to FIGS. 8 and 9 is used. Hereinafter, an example of using a driving method called an IPS (In Plane Switching) method and a FFS (Fringe Field Switching) method as a driving method of the liquid crystal display panel in the present embodiment will be described with reference to the drawings.
 図17(a)および(b)は、IPS方式を用いた液晶表示パネル100Eの部分断面図および部分平面図である。簡単のため、図8および図9と同様の構成要素には同じ参照符号を付し、説明を省略する。 FIGS. 17A and 17B are a partial cross-sectional view and a partial plan view of a liquid crystal display panel 100E using the IPS method. For simplicity, the same components as those in FIGS. 8 and 9 are denoted by the same reference numerals, and description thereof is omitted.
 液晶表示パネル100Eでは、液晶層10の背面側にある第2基板2に、一対の櫛歯電極16aおよび16bが形成されている。液晶層10の観察者側にある第1基板1には電極は形成されていない。また、第1および第2基板1、2の液晶層側の表面には水平配向膜(図示せず)が形成されている。これらの配向膜には、パネルの法線方向から見て互いに平行となるように配向処理(例えばラビング処理)が施されている。配向方向D3を図17(b)に示す。液晶層10は、液晶領域11と高分子壁13とを含んでいる。各液晶領域11は第1および第2基板1、2の水平配向膜の両方と接していることが好ましい。また、第1基板1の観察者側および第2基板2の背面側には、それぞれ、直線偏光板(図示せず)が設けられている。これらの直線偏光板は、その吸収軸が互いに直交する(クロスニコル)ように配置されている。また、いずれか一方の吸収軸がラビング方向と一致していてもよい。この方式では、横電界により液晶領域11の配向状態を制御する。 In the liquid crystal display panel 100E, a pair of comb electrodes 16a and 16b are formed on the second substrate 2 on the back side of the liquid crystal layer 10. No electrode is formed on the first substrate 1 on the viewer side of the liquid crystal layer 10. A horizontal alignment film (not shown) is formed on the surface of the first and second substrates 1 and 2 on the liquid crystal layer side. These alignment films are subjected to an alignment process (for example, a rubbing process) so as to be parallel to each other when viewed from the normal direction of the panel. The orientation direction D3 is shown in FIG. The liquid crystal layer 10 includes a liquid crystal region 11 and a polymer wall 13. Each liquid crystal region 11 is preferably in contact with both the horizontal alignment films of the first and second substrates 1 and 2. In addition, linear polarizers (not shown) are provided on the viewer side of the first substrate 1 and the back side of the second substrate 2, respectively. These linearly polarizing plates are arranged so that their absorption axes are orthogonal to each other (crossed Nicols). Further, either one of the absorption axes may coincide with the rubbing direction. In this method, the alignment state of the liquid crystal region 11 is controlled by a lateral electric field.
 なお、第1基板1および第2基板2に、それぞれ、水平配向膜を形成する代わりに垂直配向膜を形成してもよい。垂直配向膜には配向処理を施さない。また、液晶層10の材料として誘電異方性が正である液晶材料を用いる。この場合の液晶表示パネル100Fの部分平面図を図18に示す。断面図は、図17(a)と同様となるため省略する。 A vertical alignment film may be formed on the first substrate 1 and the second substrate 2 instead of forming the horizontal alignment film. The vertical alignment film is not subjected to alignment treatment. A liquid crystal material having a positive dielectric anisotropy is used as the material of the liquid crystal layer 10. A partial plan view of the liquid crystal display panel 100F in this case is shown in FIG. The cross-sectional view is the same as FIG.
 図19(a)および(b)は、FFS方式を用いた液晶表示パネル100Gの部分断面図および部分平面図である。簡単のため、図8および図9と同様の構成要素には同じ参照符号を付し、説明を省略する。 19 (a) and 19 (b) are a partial cross-sectional view and a partial plan view of a liquid crystal display panel 100G using the FFS method. For simplicity, the same components as those in FIGS. 8 and 9 are denoted by the same reference numerals, and description thereof is omitted.
 液晶表示パネル100Gは、第1基板1における表示領域のほぼ全体にわたって形成された下電極17と、下電極17上に形成された絶縁層18と、絶縁層18上に形成された櫛歯電極19とを有している。液晶層10の観察者側にある第2基板2には電極は形成されていない。また、第1および第2基板1、2の液晶層側の表面には水平配向膜(図示せず)が形成されている。これらの配向膜には、パネルの法線方向から見て互いに平行となるように配向処理(例えばラビング処理)が施されている。配向方向D4を図19(b)に示す。液晶層10は、液晶領域11と高分子壁13とを含んでいる。各液晶領域11は第1および第2基板1、2の水平配向膜の両方と接していることが好ましい。また、第1基板1の観察者側および第2基板2の背面側には、それぞれ、直線偏光板(図示せず)が設けられている。これらの直線偏光板は、その吸収軸が互いに直交する(クロスニコル)ように配置されている。また、いずれか一方の吸収軸がラビング方向と一致していてもよい。この方式でも、IPS方式と同様に、横電界により液晶領域11の配向状態を制御する。 The liquid crystal display panel 100G includes a lower electrode 17 formed over almost the entire display area of the first substrate 1, an insulating layer 18 formed on the lower electrode 17, and a comb electrode 19 formed on the insulating layer 18. And have. No electrode is formed on the second substrate 2 on the viewer side of the liquid crystal layer 10. A horizontal alignment film (not shown) is formed on the surface of the first and second substrates 1 and 2 on the liquid crystal layer side. These alignment films are subjected to an alignment process (for example, a rubbing process) so as to be parallel to each other when viewed from the normal direction of the panel. The orientation direction D4 is shown in FIG. The liquid crystal layer 10 includes a liquid crystal region 11 and a polymer wall 13. Each liquid crystal region 11 is preferably in contact with both the horizontal alignment films of the first and second substrates 1 and 2. In addition, linear polarizers (not shown) are provided on the viewer side of the first substrate 1 and the back side of the second substrate 2, respectively. These linearly polarizing plates are arranged so that their absorption axes are orthogonal to each other (crossed Nicols). Further, either one of the absorption axes may coincide with the rubbing direction. In this method, as in the IPS method, the alignment state of the liquid crystal region 11 is controlled by a lateral electric field.
 なお、第1基板1および第2基板2に、それぞれ、水平配向膜を形成する代わりに垂直配向膜を形成してもよい。垂直配向膜には配向処理を施さない。また、液晶層10の材料として誘電異方性が正である液晶材料を用いる。この場合の液晶表示パネル100Hの部分平面図を図20に示す。断面図は、図19(a)と同様となるため省略する。 A vertical alignment film may be formed on the first substrate 1 and the second substrate 2 instead of forming the horizontal alignment film. The vertical alignment film is not subjected to alignment treatment. A liquid crystal material having a positive dielectric anisotropy is used as the material of the liquid crystal layer 10. A partial plan view of the liquid crystal display panel 100H in this case is shown in FIG. The cross-sectional view is the same as FIG.
 本発明の液晶表示装置は、上述した実施形態の液晶表示装置に限定されない。例えば、第3~第5の実施形態に2色性蛍光色素を含む蛍光層を適用してもよい。これにより、光の利用効率をさらに改善できる。また、第3の実施形態で説明した反射部24を第4の実施形態に適用してもよい。これにより、表示領域の周縁部における表示特性の低下をより効果的に抑制できる。さらに、第5の実施形態で説明した駆動方式および電極構造は、他の何れの実施形態の液晶表示装置にも適用され得る。 The liquid crystal display device of the present invention is not limited to the liquid crystal display device of the above-described embodiment. For example, a fluorescent layer containing a dichroic fluorescent dye may be applied to the third to fifth embodiments. Thereby, the utilization efficiency of light can be further improved. Moreover, you may apply the reflection part 24 demonstrated in 3rd Embodiment to 4th Embodiment. Thereby, the fall of the display characteristic in the peripheral part of a display area can be suppressed more effectively. Furthermore, the drive system and electrode structure described in the fifth embodiment can be applied to the liquid crystal display device of any other embodiment.
 本発明の実施形態の液晶表示装置は、マルチディスプレイシステムに好適に適用され得る。例えば図21に示すように、複数個の液晶表示パネル101~104を並べて配置し、その背面側にバックライト(図示せず)を設けることにより、大型のディスプレイシステム300を製造できる。このとき、隣接する2つの液晶表示パネルを、額縁領域を有しない側面同士が接するように配置すると、これらのパネルの境界部分において、額縁がほとんど視認されず、連続的な表示を実現できる。液晶表示パネル101~104は、上述した液晶表示パネル100A~100Hの何れであってもよい。 The liquid crystal display device according to the embodiment of the present invention can be suitably applied to a multi-display system. For example, as shown in FIG. 21, a large display system 300 can be manufactured by arranging a plurality of liquid crystal display panels 101 to 104 side by side and providing a backlight (not shown) on the back side thereof. At this time, if the two adjacent liquid crystal display panels are arranged so that the side surfaces not having the frame region are in contact with each other, the frame is hardly visually recognized at the boundary portion between these panels, and continuous display can be realized. The liquid crystal display panels 101 to 104 may be any of the liquid crystal display panels 100A to 100H described above.
 さらに、図22に示すように、本のように見開き可能な電子機器400に利用され得る。電子機器400は、例えば、同じ構成を有する2つの液晶表示装置201、202から構成される。液晶表示装置201、202は、上述した何れの実施形態の液晶表示装置であってもよい。これらの液晶表示装置201、202は、額縁領域を有しない側面同士が接するように配置されている。これにより、連続的な表示を実現できる。また、2つの液晶表示装置201、202の境界を軸として折り畳み可能にすれば、電子機器400の携帯性を高めることができる。 Furthermore, as shown in FIG. 22, it can be used for an electronic device 400 that can be spread like a book. The electronic device 400 includes, for example, two liquid crystal display devices 201 and 202 having the same configuration. The liquid crystal display devices 201 and 202 may be the liquid crystal display device of any of the above-described embodiments. These liquid crystal display devices 201 and 202 are arranged so that side surfaces having no frame region are in contact with each other. Thereby, continuous display is realizable. Further, if the folding between the two liquid crystal display devices 201 and 202 can be folded, the portability of the electronic device 400 can be improved.
 本発明の実施形態は、液晶表示装置および液晶表示装置を有する種々の電子機器、例えば電子ブック、携帯電話およびスマートフォンなどの中小型のデバイスだけでなく、マルチディスプレイシステムなどの大型のデバイスにも適用され得る。 Embodiments of the present invention are applicable not only to liquid crystal display devices and various electronic devices having the liquid crystal display devices, for example, small and medium devices such as electronic books, mobile phones, and smartphones, but also large devices such as multi-display systems. Can be done.
 1、2   基板
 4、6   偏光板
 8   シール部
 10  液晶層
 11   液晶領域
 12   蛍光層
 13   壁
 14、15   電極
 25   表示領域
 27   額縁領域
 100A~100H   液晶表示パネル
 110  バックライト
 112  導光板
 200A、200C、200D   液晶表示装置
DESCRIPTION OF SYMBOLS 1, 2 Substrate 4, 6 Polarizing plate 8 Seal part 10 Liquid crystal layer 11 Liquid crystal area 12 Fluorescent layer 13 Wall 14, 15 Electrode 25 Display area 27 Frame area 100A-100H Liquid crystal display panel 110 Back light 112 Light guide plate 200A, 200C, 200D Liquid crystal display

Claims (18)

  1.  複数の画素を有する表示領域を含む液晶表示パネルと、前記液晶表示パネルの背面側に配置されたバックライトとを備えた液晶表示装置であって、
     前記液晶表示パネルは、
      複数の液晶領域、および、前記複数の液晶領域のうちの隣接する液晶領域の間に高分子を含む壁を有する液晶層と、
      前記液晶層の観察者側に配置された第1基板と、
      前記液晶層の背面側に配置された第2基板と、
      前記第1基板に形成された第1偏光板と、
      前記第2基板に形成された第2偏光板と、
      前記第2偏光板と前記バックライトとの間に配置され、所定の波長の光を吸収すると励起して可視光を発する蛍光物質を含む蛍光層と
    を有し、
     前記バックライトは、前記所定の波長の光を前記蛍光層に照射する光照射部を有しており、
     前記液晶表示パネルの法線方向から見たとき、前記蛍光層の外縁の少なくとも一辺は、前記第1および第2偏光板の外縁の一辺、および、前記第1および第2基板の外縁の一辺と整合している液晶表示装置。
    A liquid crystal display device comprising a liquid crystal display panel including a display region having a plurality of pixels, and a backlight disposed on the back side of the liquid crystal display panel,
    The liquid crystal display panel is
    A liquid crystal layer having a plurality of liquid crystal regions and a wall containing a polymer between adjacent liquid crystal regions of the plurality of liquid crystal regions;
    A first substrate disposed on the viewer side of the liquid crystal layer;
    A second substrate disposed on the back side of the liquid crystal layer;
    A first polarizing plate formed on the first substrate;
    A second polarizing plate formed on the second substrate;
    A fluorescent layer disposed between the second polarizing plate and the backlight, and including a fluorescent material that emits visible light when excited by absorbing light of a predetermined wavelength;
    The backlight has a light irradiation unit that irradiates the fluorescent layer with light of the predetermined wavelength,
    When viewed from the normal direction of the liquid crystal display panel, at least one side of the outer edge of the phosphor layer is one side of the outer edge of the first and second polarizing plates and one side of the outer edge of the first and second substrates. Aligned liquid crystal display device.
  2.  前記液晶表示パネルの法線方向から見たとき、前記蛍光層の外縁の前記少なくとも一辺は、前記液晶層の外縁の一辺とも整合している請求項1に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein when viewed from the normal direction of the liquid crystal display panel, the at least one side of the outer edge of the fluorescent layer is aligned with one side of the outer edge of the liquid crystal layer.
  3.  前記バックライトは導光板を含み、
     前記光照射部は、前記導光板における前記蛍光層と対向する表面に配置され、
     前記表示領域において、前記蛍光層の一部は前記導光板の前記光照射部と重なっていない請求項1または2に記載の液晶表示装置。
    The backlight includes a light guide plate,
    The light irradiation unit is disposed on a surface of the light guide plate facing the fluorescent layer,
    3. The liquid crystal display device according to claim 1, wherein in the display region, a part of the fluorescent layer does not overlap the light irradiation part of the light guide plate.
  4.  前記蛍光物質は2色性蛍光色素を含み、
     前記蛍光層において、前記2色性蛍光色素の遷移モーメントの方向は、前記第2偏光板の透過軸の方向と平行である請求項1から3のいずれかに記載の液晶表示装置。
    The fluorescent material includes a dichroic fluorescent dye;
    4. The liquid crystal display device according to claim 1, wherein in the fluorescent layer, a direction of a transition moment of the dichroic fluorescent dye is parallel to a direction of a transmission axis of the second polarizing plate.
  5.  前記液晶表示パネルは、前記液晶表示パネルの側面の少なくとも一部に配置された反射部をさらに有し、
     前記反射部は、前記液晶表示パネルの法線方向から見たとき、前記蛍光層の外縁の前記少なくとも一辺に沿って配置されている請求項1から4のいずれかに記載の液晶表示装置。
    The liquid crystal display panel further includes a reflective portion disposed on at least a part of a side surface of the liquid crystal display panel,
    5. The liquid crystal display device according to claim 1, wherein the reflection portion is disposed along the at least one side of the outer edge of the fluorescent layer when viewed from a normal direction of the liquid crystal display panel.
  6.  前記蛍光層の厚さは、前記蛍光層の周縁に位置する第1部分で中央部よりも大きい請求項1から5のいずれかに記載の液晶表示装置。 6. The liquid crystal display device according to claim 1, wherein the thickness of the fluorescent layer is larger at the first portion located at the periphery of the fluorescent layer than at the central portion.
  7.  前記蛍光層における前記蛍光物質の濃度は、前記蛍光層の周縁に位置する第1部分で中央部よりも大きい請求項1から5のいずれかに記載の液晶表示装置。 6. The liquid crystal display device according to claim 1, wherein the concentration of the fluorescent substance in the fluorescent layer is higher in the first portion located at the periphery of the fluorescent layer than in the central portion.
  8.  前記蛍光層の前記第1部分は前記光照射部と重なっておらず、前記蛍光層の前記中央部は前記光照射部と重なっている請求項6または7に記載の液晶表示装置。 The liquid crystal display device according to claim 6 or 7, wherein the first portion of the fluorescent layer does not overlap the light irradiation unit, and the central portion of the fluorescent layer overlaps the light irradiation unit.
  9.  前記液晶層と前記第1基板および前記第2基板との間にそれぞれ形成され、それぞれが前記液晶層と接するように形成された第1配向膜および第2配向膜をさらに有する、請求項1から8のいずれかに記載の液晶表示装置。 The first alignment film and the second alignment film, which are formed between the liquid crystal layer and the first substrate and the second substrate, respectively, are formed so as to be in contact with the liquid crystal layer, respectively. The liquid crystal display device according to claim 8.
  10.  前記液晶表示パネルの法線方向から見たとき、前記液晶層の外縁の少なくとも一辺に沿ってシール部が設けられておらず、前記シール部が設けられていない前記液晶層の外縁の前記少なくとも一辺は、前記蛍光層の外縁の前記少なくとも一辺と整合している請求項1から9のいずれかに記載の液晶表示装置。 When viewed from the normal direction of the liquid crystal display panel, a seal portion is not provided along at least one side of the outer edge of the liquid crystal layer, and the at least one side of the outer edge of the liquid crystal layer is not provided with the seal portion. The liquid crystal display device according to claim 1, which is aligned with the at least one side of the outer edge of the fluorescent layer.
  11.  (A1)偏光板フィルムの表面に、所定の波長の光を吸収すると励起して可視光を発する蛍光物質を含む蛍光膜を形成し、前記偏光板フィルムおよび前記蛍光膜を含む積層フィルムを得る工程と、
     (A2)前記積層フィルムを切断することにより、偏光板および蛍光層を含む積層体を得る工程と、
     (B)第1基板および第2基板と、前記第1基板と第2基板との間に形成され、複数の液晶領域と前記複数の液晶領域のうちの隣接する液晶領域の間に高分子を含む壁とを有する液晶層とを含む第1パネル構造体を形成する工程と、
     (C)前記第1パネル構造体の前記第2基板に、前記偏光板が前記第1パネル構造体側となるように前記積層体を設置し、かつ、前記第1基板に他の偏光板フィルムを設置することにより、第2パネル構造体を得る工程と、
     (D)前記第2パネル構造体を所定のサイズに切り出すことにより、液晶表示パネルを得る工程と、
     (E)前記液晶表示パネルの背面側に、前記所定の波長の光を前記液晶表示パネル側に照射する光照射部を有するバックライトを配置する工程と
    を包含する液晶表示装置の製造方法。
    (A1) A step of forming a fluorescent film containing a fluorescent substance that emits visible light when excited by absorbing light of a predetermined wavelength on the surface of the polarizing film, and obtains a laminated film including the polarizing film and the fluorescent film When,
    (A2) a step of obtaining a laminate including a polarizing plate and a fluorescent layer by cutting the laminated film;
    (B) A polymer is formed between the first substrate and the second substrate, the first substrate and the second substrate, and a plurality of liquid crystal regions and an adjacent liquid crystal region among the plurality of liquid crystal regions. Forming a first panel structure including a liquid crystal layer having a wall including;
    (C) The laminated body is placed on the second substrate of the first panel structure so that the polarizing plate is on the first panel structure side, and another polarizing film is placed on the first substrate. A step of obtaining a second panel structure by installing;
    (D) obtaining a liquid crystal display panel by cutting the second panel structure into a predetermined size;
    (E) A method of manufacturing a liquid crystal display device including a step of disposing a backlight having a light irradiation unit for irradiating the liquid crystal display panel with light of the predetermined wavelength on the back side of the liquid crystal display panel.
  12.  (A1)偏光板フィルムの表面に、所定の波長の光を吸収すると励起して可視光を発する蛍光物質を含む蛍光膜を形成し、前記偏光板フィルムおよび前記蛍光膜を含む積層フィルムを得る工程と、
     (A2)前記積層フィルムを切断することにより、偏光板および蛍光層を含む積層体を得る工程と、
     (B)第1基板および第2基板と、前記第1基板と第2基板との間に形成され、複数の液晶領域と前記複数の液晶領域のうちの隣接する液晶領域の間に高分子を含む壁とを有する液晶層とを含む第1パネル構造体を形成する工程と、
     (c)前記第1パネル構造体を所定のサイズに切り出す工程と、
     (d)前記切り出した第1パネル構造体の前記第2基板に、前記偏光板が前記第2パネル構造体側となるように前記積層体を設置し、前記第1基板に他の偏光板を設置することにより、液晶表示パネルを得る工程と、
     (E)前記液晶表示パネルの背面側に、前記所定の波長の光を前記液晶表示パネル側に照射する光照射部を有するバックライトを配置する工程と
    を包含する液晶表示装置の製造方法。
    (A1) A step of forming a fluorescent film containing a fluorescent substance that emits visible light when excited by absorbing light of a predetermined wavelength on the surface of the polarizing film, and obtains a laminated film including the polarizing film and the fluorescent film When,
    (A2) a step of obtaining a laminate including a polarizing plate and a fluorescent layer by cutting the laminated film;
    (B) A polymer is formed between the first substrate and the second substrate, the first substrate and the second substrate, and a plurality of liquid crystal regions and an adjacent liquid crystal region among the plurality of liquid crystal regions. Forming a first panel structure including a liquid crystal layer having a wall including;
    (C) cutting the first panel structure into a predetermined size;
    (D) The stacked body is installed on the second substrate of the cut out first panel structure so that the polarizing plate is on the second panel structure side, and another polarizing plate is installed on the first substrate. To obtain a liquid crystal display panel;
    (E) A method of manufacturing a liquid crystal display device including a step of disposing a backlight having a light irradiation unit for irradiating the liquid crystal display panel with light of the predetermined wavelength on the back side of the liquid crystal display panel.
  13.  前記蛍光物質は2色性蛍光色素を含み、
     前記工程(A1)は、前記偏光板フィルムの前記表面に、前記偏光板フィルムの透過軸の方向と前記2色性蛍光色素の遷移モーメントの方向とが平行になるように、前記蛍光膜を形成する工程を含む請求項11または12に記載の液晶表示装置の製造方法。
    The fluorescent material includes a dichroic fluorescent dye;
    In the step (A1), the fluorescent film is formed on the surface of the polarizing film so that the transmission axis direction of the polarizing film is parallel to the transition moment direction of the dichroic fluorescent dye. The manufacturing method of the liquid crystal display device of Claim 11 or 12 including the process to carry out.
  14.  前記工程(A1)は、
      前記2色性蛍光色素を含む蛍光フィルムを用意する工程と、
      前記蛍光フィルムを所定の方向に延伸する工程と、
      前記延伸方向と前記偏光板フィルムの透過軸とが平行になるように前記蛍光フィルムを前記偏光板フィルムの表面と貼り合わせることにより、前記蛍光膜を形成する工程と
    を含む請求項13に記載の液晶表示装置の製造方法。
    The step (A1)
    Preparing a fluorescent film containing the dichroic fluorescent dye;
    Stretching the fluorescent film in a predetermined direction;
    The process of forming the said fluorescent film by bonding the said fluorescent film with the surface of the said polarizing film so that the said extending | stretching direction and the transmission axis of the said polarizing film may become parallel. A method for manufacturing a liquid crystal display device.
  15.  前記工程(A1)は、
      前記偏光板フィルムの表面に対し、前記偏光板フィルムの透過軸と平行な方向にラビング処理を行う工程と、
      前記ラビング処理が行われた前記表面に、前記蛍光色素を含む樹脂を塗布した後、硬化させることにより、前記蛍光膜を形成する工程と
    を含む請求項13に記載の液晶表示装置の製造方法。
    The step (A1)
    A process of rubbing the surface of the polarizing film in a direction parallel to the transmission axis of the polarizing film,
    The method for manufacturing a liquid crystal display device according to claim 13, further comprising: forming the fluorescent film by applying a resin containing the fluorescent dye to the surface subjected to the rubbing treatment and then curing the resin.
  16.  前記工程(A1)は、前記蛍光膜の厚さが所定の部分で大きくなるように前記蛍光膜を形成する工程を含み、
     前記所定の部分は、前記液晶表示パネルにおいて、前記蛍光層の周縁に位置する請求項11から15のいずれかに記載の液晶表示装置の製造方法。
    The step (A1) includes a step of forming the phosphor film such that the thickness of the phosphor film is increased at a predetermined portion,
    The method for manufacturing a liquid crystal display device according to claim 11, wherein the predetermined portion is located at a periphery of the fluorescent layer in the liquid crystal display panel.
  17.  前記工程(A1)において、前記蛍光膜における前記蛍光物質の濃度が所定の部分で高くなるように前記蛍光膜を形成する工程を含み、前記所定の部分は、前記液晶表示パネルにおいて、前記蛍光層の周縁に位置する請求項11から15のいずれかに記載の液晶表示装置の製造方法。 The step (A1) includes a step of forming the fluorescent film so that the concentration of the fluorescent substance in the fluorescent film is high at a predetermined portion, and the predetermined portion includes the fluorescent layer in the liquid crystal display panel. The manufacturing method of the liquid crystal display device in any one of Claim 11 to 15 located in the periphery of.
  18.  前記液晶表示パネルの側面の少なくとも一部を覆うように反射部を形成する工程をさらに含む請求項11から17のいずれかに記載の液晶表示装置の製造方法。 The method for manufacturing a liquid crystal display device according to any one of claims 11 to 17, further comprising a step of forming a reflection portion so as to cover at least a part of a side surface of the liquid crystal display panel.
PCT/JP2012/073996 2011-09-22 2012-09-20 Liquid crystal display device and method for manufacturing liquid crystal display device WO2013042705A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-207939 2011-09-22
JP2011207939 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013042705A1 true WO2013042705A1 (en) 2013-03-28

Family

ID=47914467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073996 WO2013042705A1 (en) 2011-09-22 2012-09-20 Liquid crystal display device and method for manufacturing liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2013042705A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178398A1 (en) * 2013-04-30 2014-11-06 シャープ株式会社 Lighting device
WO2015194630A1 (en) * 2014-06-20 2015-12-23 富士フイルム株式会社 Transfer material, method for manufacturing liquid crystal panel, and method for manufacturing liquid crystal display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027002A (en) * 1988-06-27 1990-01-11 Shinei Kogyo Kk Light deffusive polarizing panel material
JPH09258181A (en) * 1996-03-21 1997-10-03 Sharp Corp Active matrix type liquid crystal display device and its production
JP2001242459A (en) * 2000-01-14 2001-09-07 Koninkl Philips Electronics Nv Liquid crystal color display screen
JP2001264756A (en) * 2000-03-16 2001-09-26 Seiko Epson Corp Liquid crystal device and electronic equipment
JP2003336068A (en) * 2002-05-23 2003-11-28 Sharp Corp Common transition material, liquid crystal panel and manufacturing method of liquid crystal panel
JP2006235409A (en) * 2005-02-28 2006-09-07 Seiko Instruments Inc Liquid crystal display device
JP2008158524A (en) * 2006-12-20 2008-07-10 Ling-Yuan Tseng Method of forming cell gap for liquid crystal panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027002A (en) * 1988-06-27 1990-01-11 Shinei Kogyo Kk Light deffusive polarizing panel material
JPH09258181A (en) * 1996-03-21 1997-10-03 Sharp Corp Active matrix type liquid crystal display device and its production
JP2001242459A (en) * 2000-01-14 2001-09-07 Koninkl Philips Electronics Nv Liquid crystal color display screen
JP2001264756A (en) * 2000-03-16 2001-09-26 Seiko Epson Corp Liquid crystal device and electronic equipment
JP2003336068A (en) * 2002-05-23 2003-11-28 Sharp Corp Common transition material, liquid crystal panel and manufacturing method of liquid crystal panel
JP2006235409A (en) * 2005-02-28 2006-09-07 Seiko Instruments Inc Liquid crystal display device
JP2008158524A (en) * 2006-12-20 2008-07-10 Ling-Yuan Tseng Method of forming cell gap for liquid crystal panel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178398A1 (en) * 2013-04-30 2014-11-06 シャープ株式会社 Lighting device
US9581860B2 (en) 2013-04-30 2017-02-28 Sharp Kabushiki Kaisha Illumination device with multiple phosphor layers
WO2015194630A1 (en) * 2014-06-20 2015-12-23 富士フイルム株式会社 Transfer material, method for manufacturing liquid crystal panel, and method for manufacturing liquid crystal display device
JP2016021056A (en) * 2014-06-20 2016-02-04 富士フイルム株式会社 Transfer material, method for manufacturing liquid crystal panel, and method for manufacturing liquid crystal display device
CN106462006A (en) * 2014-06-20 2017-02-22 富士胶片株式会社 Transfer material, method for manufacturing liquid crystal panel, and method for manufacturing liquid crystal display device
CN106462006B (en) * 2014-06-20 2019-11-29 富士胶片株式会社 The manufacturing method of transfer materials, the manufacturing method of liquid crystal display panel and liquid crystal display device

Similar Documents

Publication Publication Date Title
CN102235607B (en) Lighting device and display unit
JP5263593B2 (en) Illumination device and display device
US7898639B2 (en) Polymer dispersed liquid crystal display with light emitted layer on the substrate and method of fabricating the same
JP4752911B2 (en) LIGHTING DEVICE, DISPLAY DEVICE, AND LIGHT MODULATION ELEMENT MANUFACTURING METHOD FOR EDGE LIGHT TYPE BACKLIGHT
JP5679308B2 (en) Illumination device and display device
JP4851817B2 (en) Display device and manufacturing method thereof
US20160252768A1 (en) Color liquid crystal display panel and manufacturing method thereof
JP2009300599A (en) Polarizing plate, display device, and electronic equipment
JP2011095407A (en) Display device
JPWO2007119409A1 (en) Large substrate, liquid crystal device using the same, and manufacturing method thereof
KR102016958B1 (en) Liquid crystal display and method for fabricating the same
JP2010266610A (en) Liquid crystal display
WO2013018619A1 (en) Lcd panel, electronic device, and method for producing lcd panel
CN101097347A (en) Liquid crystal display device and fabrication method thereof
JP2012027150A (en) Method for manufacturing polymer dispersion type liquid crystal display element, and the display element
KR20110022970A (en) Display device
CN103744211B (en) Color liquid crystal display panel
WO2013042705A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
JP2010122435A (en) Liquid crystal display device, backlight unit, and optical filter
KR102594445B1 (en) Liquid crystal display device
KR101182299B1 (en) backlight unit and method for fabricating the same and liquid crystal display device having the same
JP2005284139A (en) Display device and its manufacturing method
CN114144723B (en) Method for manufacturing liquid crystal display device and liquid crystal display device
JP7391686B2 (en) Method for manufacturing a liquid crystal display device and liquid crystal display device
JPH11326938A (en) Liquid crystal display device and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP