WO2013042603A1 - Liquid for diluting specimen, kit using same and fluorometric method using same - Google Patents

Liquid for diluting specimen, kit using same and fluorometric method using same Download PDF

Info

Publication number
WO2013042603A1
WO2013042603A1 PCT/JP2012/073432 JP2012073432W WO2013042603A1 WO 2013042603 A1 WO2013042603 A1 WO 2013042603A1 JP 2012073432 W JP2012073432 W JP 2012073432W WO 2013042603 A1 WO2013042603 A1 WO 2013042603A1
Authority
WO
WIPO (PCT)
Prior art keywords
specimen
sample
dilution liquid
fluorescence
fluorescence measurement
Prior art date
Application number
PCT/JP2012/073432
Other languages
French (fr)
Japanese (ja)
Inventor
高敏 彼谷
真紀子 大谷
智典 金子
二宮 英隆
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2013534680A priority Critical patent/JP6119607B2/en
Publication of WO2013042603A1 publication Critical patent/WO2013042603A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • G01N33/548Carbohydrates, e.g. dextran

Definitions

  • the present invention mainly uses a biological sample as a specimen by using a fluorescence measurement method such as surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) or total reflection ATR (Attenuated Total Reflection) fluorescence method.
  • SPFS surface plasmon excitation enhanced fluorescence spectroscopy
  • ATR Total reflection ATR
  • analyte detection apparatus that can perform analyte detection with high accuracy based on the principle of surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) applying the surface plasmon resonance phenomenon.
  • SPFS surface plasmon excitation enhanced fluorescence spectroscopy
  • surface plasmon excitation enhanced fluorescence spectroscopy SPFS
  • surface plasmon light is applied to the surface of the metal thin film under the condition that excitation light such as laser light irradiated from a light source attenuates total reflection (ATR) on the surface of the metal thin film.
  • excitation light such as laser light irradiated from a light source attenuates total reflection (ATR) on the surface of the metal thin film.
  • ATR total reflection
  • the fluorescent substance bound (labeled) with the analyte trapped near the surface of the metal thin film is efficiently excited, and by observing this fluorescence, an extremely small amount of analyte can be obtained. It is a method of detection.
  • CMD carboxymethyl dextran
  • ligand refers to a molecule or molecular fragment that can specifically recognize (or be recognized) and bind to an analyte contained in a specimen.
  • CMD itself is generally considered to be relatively difficult to cause non-specific adsorption
  • CMD having various molecular weights and having a wide molecular weight distribution is used as a solid support.
  • various contaminants 1 such as proteins and lipids in the specimen adhere to the solid support 3 and the ligand 4
  • the solid support 3 and the ligand In some cases, the fluorescently labeled antibody 5 may adhere to the contaminant 1 attached to 4.
  • SPFS surface plasmon excitation enhanced fluorescence spectroscopy
  • biological samples such as serum, plasma, whole blood, nasal fluid, and peritoneal fluid are used as specimens.
  • SPFS surface plasmon excitation enhanced fluorescence spectroscopy
  • contaminants 1 such as proteins and lipids in the specimen adhere to the solid support 3 and the ligand 4, and the solid support 3 and the ligand 6 are detected.
  • the fluorescently labeled antibody 5 adheres nonspecifically to the contaminant 1 attached to 4.
  • Table 1 below is a table showing the above-mentioned problems in conventional methods such as ELISA and CLEIA and SPFS measurement, that is, the degree of influence of specific reactions on the measurement results.
  • the SPFS measurement has a greater influence on the measurement due to non-specific adsorption of impurities in comparison with the conventional method.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-327629
  • Patent Document 1 as a sample pretreatment method for removing a substance that causes a non-specific reaction, an immunoassay carrier that absorbs a substance that causes a non-specific reaction or a magnetic particle bound with a substance such as an antibody is used as a specimen.
  • a specimen pretreatment method is described in which magnetic particles are mixed and magnetic particles are separated by a magnetic force so as to remove substances that cause non-specific reactions in the specimen.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 9-089893 discloses an indirect agglutination immunoassay using erythrocytes as a carrier, which removes an adsorbed substance or inhibits adsorption by simply adding it to a measurement solution. Non-specific reaction absorption reagents are disclosed.
  • Patent Document 2 a dextran compound in which at least 60% of the hydroxyl groups of dextran are substituted with sulfate ester groups, or a salt thereof, is used to cause a non-specific reaction in a sample.
  • a non-specific reaction absorption reagent that has a high effect of removing water has been proposed.
  • Patent Document 1 Although specific contaminants absorbed by a specific carrier or antibody can be removed, other contaminants cannot be removed.
  • the contaminants that could not be removed are solid phase support, ligand and In some cases, non-specific adsorption to the sensor chip surface or the like occurred.
  • the analyte is removed together with the magnetic particles by the pretreatment of the specimen, so that a trace amount of the analyte may not be detected.
  • the present invention suppresses nonspecific adsorption of contaminants in a sample to a solid support, a ligand, and the like, and a sample dilution solution that can suppress an increase in assay blank, It is an object to provide a kit and a fluorescence measurement method using the kit.
  • the present invention provides a specimen dilution solution shown in the following [1] to [11], a kit using the same, and a fluorescence measurement method.
  • a sample dilution liquid characterized by containing 0.001 to 5% by mass of carboxymethyldextran having a weight average molecular weight of 200,000 to 1,000,000 based on the sample dilution liquid.
  • a sample dilution liquid kit comprising the sample dilution liquid of any one of [1] to [6].
  • fluorescence After supplying the mixed solution obtained by mixing the sample to the sample dilution solution according to any one of [1] to [6] onto a sensor chip in which a solid support is fixed on a metal film, fluorescence A fluorescence measurement method characterized by performing measurement.
  • a sample dilution solution that suppresses nonspecific adsorption of contaminants in a sample to a solid support, a ligand, and the like, and can suppress an increase in assay blank, and a kit using the same And a fluorescence measurement method can be provided.
  • FIG. 1 is a schematic diagram for explaining a state in which a sample-diluting solution according to the present invention and a sample derived from a living body are mixed and carboxymethyldextran adheres to the surface of a contaminant.
  • FIG. 2 is a schematic diagram for explaining the state of the sensor chip surface of the fluorescence measuring apparatus to which the mixed liquid of FIG. 1 has been fed.
  • FIG. 3 is a schematic diagram illustrating a state in which a fluorescently labeled antibody solution conjugated with a fluorescently labeled substance is delivered to the surface of the sensor chip in FIG. It is a figure to do.
  • FIG. 4 is a schematic diagram for explaining the state of the surface of a sensor chip in which a sample is processed using a related-art sample dilution solution and this solution and a fluorescently labeled antibody solution are fed.
  • FIG. 1 shows a solution obtained by mixing the sample dilution solution according to the present invention with a sample derived from a living body, and illustrates a state in which carboxymethyldextran is attached to the surface of a contaminant. It is a schematic diagram.
  • FIG. 2 is a schematic diagram for explaining the state of the surface of the sensor chip to which the liquid mixture of FIG. 1 has been fed.
  • the sample dilution liquid according to the present invention contains carboxymethyldextran having a weight average molecular weight of 200,000 to 1,000,000.
  • a biological sample such as serum, plasma, whole blood, nasal fluid, and peritoneal fluid is used as a sample.
  • the carboxymethyl dextran molecule 2 adheres to the surface of the contaminant 1 as shown in FIG.
  • the surface of the sensor (solid phase) is generally neutral or negatively charged, but carboxymethyl dextran having a predetermined weight average molecular weight having an anionic sugar chain is determined in a predetermined mass%.
  • carboxymethyl dextran and contaminant 1 are not only adsorbed to each other but also carboxymethyl in a state adsorbed to contaminant 1 as shown in FIG. Since the dextran and the sensor surface are both negatively charged, the Coulomb repulsive force F acts and repels each other, so that the adsorption of the contaminants 1 to the sensor (solid phase) surface is suitably suppressed by the Coulomb repulsive force F. Can do.
  • the contaminant 1 having the carboxymethyl dextran molecule 2 attached to the surface is difficult to non-specifically adsorb to the solid support 3, the ligand 4, and the like. Therefore, it is possible to efficiently suppress the non-specific adsorption of the contaminant 1 in the specimen to the ligand 4 or the solid support 3 of the ligand 4.
  • the fluorescence-labeled antibody 5 is suppressed from adhering to the solid support 3 and the ligand 4 through the contaminants 1 (see FIG. 3 and FIG. 4 for comparison).
  • the change in refractive index due to adhesion is reduced, and it is possible to reduce the adverse effect of the contaminant 1 and the adhesion on the electric field enhancement effect, and the assay blank that is background noise of fluorescence measurement is greatly increased.
  • S / B can be improved. Thereby, in particular, it is possible to realize high-sensitivity and high-precision SPFS measurement of an extremely small amount of the analyte 6.
  • the weight average molecular weight of the carboxymethyl dextran contained in the sample dilution liquid is less than 200,000, or the weight average molecular weight of the carboxymethyl dextran contained in the sample dilution liquid is within the range of 200,000 to 1,000,000. Even if the content is less than 0.001% by mass (the final concentration at the time of sample treatment is less than 0.0005% by mass), the contaminant 1 in the sample is supported on the solid phase of the ligand 4 or the ligand 4. The effect of suppressing nonspecific adsorption to the body 3 or the like cannot be expected, and the assay blank, which is background noise of fluorescence measurement, increases.
  • the weight average molecular weight of the carboxymethyl dextran contained in the sample dilution liquid exceeds 1000000, or the weight average molecular weight of the carboxymethyl dextran contained in the sample dilution liquid falls within the range of 200000 to 1000000. Even so, if the content exceeds 5% by mass (the final concentration at the time of sample processing exceeds 2.5% by mass), the viscosity of the sample dilution solution becomes too high and the reactivity decreases. .
  • carboxymethyl dextran having a weight average molecular weight of 500,000 to 1,000,000 is contained in an amount of 0.01 to 2% by mass with respect to the sample dilution liquid (at a final concentration of 0.005 to 1.00% by mass, It is desirable to be used for the above processing.
  • the effect of suppressing the non-specific adsorption of the contaminant 1 in the sample to the ligand 4 or the solid support 3 of the ligand 4 can be expected, and the fluorescence measurement can be performed.
  • the assay blank which is the background noise, can be further reduced.
  • the viscosity of the sample dilution liquid can be suppressed from becoming unnecessarily high, the decrease in reactivity can be further reduced, and the S / B can be further improved.
  • carboxymethyldextran having a weight average molecular weight of 500,000 to 1,000,000 is 0.1 to 0.5% by mass (0.05 to 0 at the final concentration at the time of sample processing) with respect to the sample dilution solution. .25 mass%) is desirable.
  • the effect of suppressing the non-specific adsorption of the contaminant 1 in the sample to the ligand 4 or the solid support 3 of the ligand 4 can be further expected.
  • the assay blank which is background noise, can be further reduced, and the viscosity of the sample dilution solution can be further prevented from becoming unnecessarily high, the decrease in reactivity can be further reduced, and the S / B can be further improved. it can.
  • the pH of the sample dilution liquid according to the present invention is preferably 4-9.
  • the pH of the specimen dilution solution is 4 to 9
  • the carboxymethyl dextran molecule 2 is maintained at a pH higher than about pH 3.5 where the carboxymethyl dextran molecule 2 is negatively charged, and the carboxymethyl dextran molecules 2 repel each other.
  • it since it does not aggregate, it is excellent in storage stability and can highly suppress nonspecific adsorption of the contaminant 1 in the specimen to the ligand 4 or the solid support 3 of the ligand 4 or the like.
  • contaminants such as histones and ribosomes present in the living body among the contaminants in the specimen are positively charged in the vicinity of pH 7, and therefore, as shown in FIG. In the treatment, the contaminants 1 are electrically attracted to and adsorbed to the negatively charged carboxymethyl dextran molecules 2.
  • the negatively charged carboxymethyl dextran is present against the negatively charged ligand 4 or the solid support 3 of the ligand 4 that is present near the sensor chip surface.
  • the Coulomb repulsive force F of the molecule 2 acts, and the contaminant 1 is maintained in a state of being separated from the ligand 4 and the solid support 3 of the ligand 4 together with the carboxymethyldextran molecule 2.
  • the isoelectric point of the substrate surface having the carboxymethyl dextran solid phase support 3 was about pH 2 to 3.
  • the charged state of the carboxymethyl dextran molecule 2 in the sample diluting solution can be easily maintained anionic and the state can be effectively utilized by setting the sample diluting solution to pH 4 or higher. Therefore, it is preferable.
  • phosphate buffered saline PBS
  • Tris buffered saline TBS
  • HEPES buffered saline HBS
  • the sample dilution liquid according to the present invention contains a surfactant.
  • the surfactant for example, when the contaminant 1 is a lipid, the surfactant acts to form micelles, etc., so that the aggregation of the analyte 6 and the contaminant 1 in the specimen can be suppressed. it can. As a result, it is possible to suppress nonspecific adsorption of the contaminant 1 in the specimen to the ligand 4 or the solid support 3 of the ligand 4.
  • the surfactant is not particularly limited, but is preferably an anionic surfactant from the viewpoint of utilizing the Coulomb repulsion in the same charged state as CMD, for example, sodium dodecyl sulfate (SDS), Monoalkyl sulfates, alkyl polyoxyethylene sulfates, alkylbenzene sulfonates, monoalkyl phosphates and the like can be used.
  • SDS sodium dodecyl sulfate
  • Monoalkyl sulfates, alkyl polyoxyethylene sulfates, alkylbenzene sulfonates, monoalkyl phosphates and the like can be used.
  • the surfactant should be contained in an amount of 0.00001 to 1% by mass with respect to the sample dilution liquid (used to treat the sample at a final concentration of 0.000005 to 0.5% by mass). desirable.
  • sample dilution liquid according to the present invention is preferably a sample dilution liquid using a biological sample as a sample.
  • the contaminant 1 in the specimen is a solid phase of ligand 4 or ligand 4.
  • Non-specific adsorption to the support 3 or the like can be efficiently suppressed.
  • the fluorescence measurement method after a mixed solution obtained by mixing a sample with a sample dilution solution is supplied onto a sensor chip in which the solid support 3 is fixed on the metal thin film 7, the fluorescence measurement is performed. It is characterized by that.
  • the fluorescence measurement method it is desirable to perform fluorescence measurement after supplying the mixed solution, supplying and washing the fluorescence-labeled antibody 5 that binds to the analyte 6 in the specimen, and washing.
  • the sensor chip is obtained by forming the metal thin film 7 on the upper surface of the dielectric member 8 (see FIGS. 2 and 3).
  • the dielectric material member 8 Optically transparent, for example, various inorganic substances, such as glass and ceramics, a natural polymer, a synthetic polymer can be used, chemical stability, manufacture From the viewpoints of stability and optical transparency, silicon dioxide (SiO 2 ) or titanium dioxide (TiO 2 ) is preferably included.
  • the material of the dielectric member 8 is not particularly limited as long as it is made of a material that is optically transparent at least with respect to the excitation light.
  • it is preferably formed from a resin material.
  • the dielectric member 8 is formed from a resin material, for example, -Polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, -Polyolefins such as polyethylene (PE) and polypropylene (PP), -Polycyclic olefins such as cyclic olefin copolymer (COC) and cyclic olefin polymer (COP), ⁇ Vinyl resins such as polyvinyl chloride and polyvinylidene chloride, ⁇ Polystyrene, polyetheretherketone (PEEK), polysulfone (PSF), Polyethersulfone (PES), polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetylcellulose (TAC), and the like can be used.
  • a resin material for example, -Polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, -Polyolefins such as polyethylene
  • the material of the metal thin film 7 is not particularly limited, but is preferably made of at least one metal selected from the group consisting of gold, silver, aluminum, copper, and platinum, more preferably It is made of gold and may be made of an alloy of these metals.
  • the method for forming the metal thin film 7 is not particularly limited, and examples thereof include a sputtering method, a vapor deposition method (resistance heating vapor deposition method, electron beam vapor deposition method, etc.), electrolytic plating, electroless plating method, and the like. . It is preferable to use a sputtering method or a vapor deposition method because it is easy to adjust the thin film formation conditions.
  • the thickness of the metal thin film 7 is not particularly limited, but preferably gold: 5 to 500 nm, silver: 5 to 500 nm, aluminum: 5 to 500 nm, copper: 5 to 500 nm, platinum: 5 Desirably within the range of ⁇ 500 nm and their alloys: 5 to 500 nm.
  • the thickness of the metal thin film 7 is more preferably gold: 20 to 70 nm, silver: 20 to 70 nm, aluminum: 10 to 50 nm, copper: 20 to 70 nm, platinum: 20 to 70 nm and their alloys: preferably in the range of 10-70 nm.
  • the thickness of the metal thin film 7 is within the above range, it is preferable that surface plasmon light (coherent wave) is easily generated.
  • the size (vertical x horizontal) size and shape are not particularly limited.
  • SAM Self-Assembled Monolayer
  • the SAM is used as a scaffold for immobilizing the solid support 3, and when the SPFS sensor chip is used in the fluorescence measurement method, the metal thin film 7 of the dielectric member 8 is used for the purpose of preventing metal quenching of the fluorescent molecules. Is formed on the other surface of the sensor chip that is not in contact with the metal chip, that is, on the surface of the metal thin film 7 opposite to the dielectric member 8 with respect to the metal thin film 7.
  • a carboxyalkanethiol having about 4 to 20 carbon atoms for example, available from Dojindo Laboratories Co., Ltd., Sigma Aldrich Japan Co., Ltd.
  • 10- Carboxy-1-decanethiol is used.
  • Carboxyalkanethiol having 4 to 20 carbon atoms has properties such as high transparency, low refractive index, and thin film thickness. It is preferable because it is small.
  • Such a SAM formation method is not particularly limited, and a conventionally known method can be used.
  • the surface of the metal thin film 7 of the dielectric member 8 on which the layer made of the mask material is formed is immersed in an ethanol solution containing 10-carboxy-1-decanethiol (manufactured by Dojindo Laboratories). The method of doing is mentioned.
  • the thiol group possessed by 10-carboxy-1-decanethiol is bonded to the metal and immobilized, and self-assembles on the surface of the thin gold film 7 to form a SAM.
  • a “spacer layer made of a dielectric” may be formed instead of forming the SAM.
  • the spacer layer is a compound composed of an organic substance and silicon, and is preferably formed using a silane coupling agent having two or more different reactive groups in the molecule.
  • a silane coupling agent a molecule having an ethoxy group or a methoxy group that gives a silanol group [Si—OH] by hydrolysis and a reactive group such as an amino group, a glycidyl group, or a carboxyl group at the other end can be particularly used. . 2-2-2 Fixing of Solid-phase Support After the SAM is formed on the metal thin film 7 of the dielectric member 8 in this way, the ligand 4 is immobilized on the other surface not in contact with the metal thin film 7 of the SAM.
  • the phase support 3 is fixed (see FIG. 2 and FIG. 3, partially not shown).
  • the solid support 3 preferably has a three-dimensional structure as shown in FIGS.
  • the “three-dimensional structure” means that the fixation of the ligand 4 described later is not limited to two dimensions on the sensor chip surface (and its vicinity), but can be expanded to a three-dimensional space free from the sensor chip surface. This refers to the structure of the solid support 3.
  • Such a solid support 3 is not particularly limited, but for example, Glucose, carboxymethylated glucose, ⁇ Vinyl esters, acrylic acid esters, methacrylic acid esters, crotonic acid esters, itaconic acid diesters, maleic acid diesters, fumaric acid diesters, ⁇ Olefins, styrenes, allyl compounds, vinyl ethers, vinyl ketones, -It is preferable to include a polymer composed of at least one monomer selected from the group consisting of monomers included in each.
  • ⁇ Hydrophilic polymers such as dextran and dextran derivatives, ⁇ Vinyl esters, acrylic acid esters, methacrylic acid esters, crotonic acid esters, itaconic acid diesters, maleic acid diesters, fumaric acid diesters, ⁇ Olefins, styrenes, allyl compounds, vinyl ethers, vinyl ketones, -Hydrophobic polymers composed of hydrophobic monomers included in each, It is more preferable to contain.
  • carboxymethyl dextran is particularly preferable from the viewpoint of biocompatibility, suppression of nonspecific adsorption reaction, and high hydrophilicity.
  • the molecular weight of CMD is preferably 1 kDa or more and 5000 kDa or less, and more preferably 4 kDa or more and 1000 kDa.
  • the solid support 3 is carboxymethyldextran
  • the antibody for capturing the analyte 6 can be immobilized at a high density, and a very small amount of the analyte 6 can be highly sensitive and accurate. It can be measured. Further, it is possible to effectively utilize the interaction in the charging characteristics with carboxymethyldextran contained in the sample dilution liquid.
  • the solid support 3 (for example, one made of dextran or a dextran derivative) has a density of less than 2 ng / mm 2 .
  • the density of the solid support 3 can be appropriately adjusted according to the type of polymer used.
  • the assay signal is stabilized and increased when the SPFS sensor chip is used in the fluorescence measurement method. Therefore, it is preferable. 2-3 Immobilization of Ligand After forming the SAM and the solid support 3 on the metal thin film 7 of the dielectric member 8 in this way, the ligand 4 is immobilized on the solid support 3 (FIGS. 2 and 2). 3).
  • the ligand 4 is dispersed and immobilized in the three-dimensional structure of the solid support 3.
  • the analyte 6 in the specimen is immobilized (See FIGS. 2 and 3).
  • Such “molecule” or “molecular fragment” is not particularly limited, and for example, -Nucleic acids (DNA, RNA, polynucleotide, oligonucleotide, PNA (peptide nucleic acid), etc., which may be single-stranded or double-stranded, nucleosides, nucleotides and their modified molecules), ⁇ Proteins (polypeptides, oligopeptides, etc.), ⁇ Amino acids (including modified amino acids), ⁇ Sugar (oligosaccharides, polysaccharides, sugar chains, etc.), ⁇ Lipids, -These modifying molecules, complexes, etc. are mentioned.
  • examples of the protein include an antibody.
  • an anti- ⁇ fetoprotein (AFP) monoclonal antibody available from Japan Medical Laboratory
  • an anti-carcinoembryonic antigen ( CEA) monoclonal antibody available from Japan Medical Laboratory
  • CEA anti-carcinoembryonic antigen
  • anti-CA19-9 monoclonal antibody anti-PSA monoclonal antibody and the like.
  • the term “antibody” includes polyclonal or monoclonal antibodies, antibodies obtained by gene recombination, and antibody fragments.
  • a method for immobilizing the ligand 4 for example, the following method can be used.
  • a carboxyl group possessed by a polymer having a reactive functional group such as carboxymethyldextran (CMD) is converted into a water-soluble carbodiimide (WSC) (for example, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) And the like) and N-hydroxysuccinimide (NHS).
  • CMD carboxymethyldextran
  • WSC water-soluble carbodiimide
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • NHS N-hydroxysuccinimide
  • the density of the ligand 4 immobilized on the outer surface of the solid support 3 is preferably 1 femto mol / cm 2 or more and 1 nano mol / cm 2 or less, preferably 10 femto mol / cm 2 or more and 100 pico mol /. More preferred is cm 2 or less. That is, it is desirable that the density of the ligand 4 is within the above range because the signal intensity increases. 2-4. Preparation of Sample Solution A sample solution (mixed solution) is prepared by mixing the sample with the sample dilution solution prepared as described above.
  • the sample solution used here is a solution prepared using a specimen. For example, a process for mixing a specimen and a reagent to bind a fluorescent substance to the analyte 6 contained in the specimen. The one that has been.
  • specimens examples include blood (serum / plasma), urine, nasal fluid, saliva, stool, body cavity fluid (spinal fluid, ascites, pleural effusion, etc.), etc. May be used. Of these samples, blood, serum, plasma, urine, nasal fluid and saliva are preferred.
  • the analyte 6 contained in the specimen is, for example, -Nucleic acids (DNA, RNA, polynucleotides, oligonucleotides, PNA (peptide nucleic acids) etc., or nucleosides, nucleotides and their modified molecules, which may be single-stranded or double-stranded), ⁇ Proteins (polypeptides, oligopeptides, etc.), ⁇ Amino acids (including modified amino acids), ⁇ Sugar (oligosaccharides, polysaccharides, sugar chains, etc.), ⁇ Lipids, -These modifying molecules, complexes and the like can be mentioned, and specifically, carcinoembryonic antigens such as AFP ( ⁇ -fetoprotein), tumor markers, signaling substances, hormones and the like may be used, and there is no particular limitation. 2-5. Contact between sample solution and sensor chip The sample solution thus prepared is brought into contact with the sensor chip on which the solid support 3 of SAM and ligand 4 is
  • the contact method is not particularly limited.
  • a method of forming a flow path on the sensor chip and feeding the sample solution to contact, or a method of forming a well on the sensor chip A method of supplying a sample solution into the well can be employed.
  • the initial concentration of the analyte 6 contained in the specimen during liquid feeding may be 100 ⁇ g / ml to 0.001 pg / ml.
  • the total amount of liquid feeding that is, the volume of the flow path is usually 0.001 to 20 ml, preferably 0.1 to 1 ml.
  • the flow rate of the liquid feeding is usually 1 to 2,000 ⁇ l / min, preferably 5 to 500 ⁇ l / min. 2-6 Cleaning Step After contacting the sample solution with the sensor chip on which the solid support 3 of SAM and ligand 4 is fixed on the metal thin film 7 of the dielectric member 8 as described above (see FIG. 2), the sensor Clean the tip surface.
  • -Tween 20 (mono-9-octadecanoate poly (oxy-1,2-ethanediyl) in phosphate buffered saline (PBS), Tris buffered saline (TBS), HEPES buffered saline (HBS)
  • PBS phosphate buffered saline
  • TBS Tris buffered saline
  • HBS HEPES buffered saline
  • a surfactant such as Triton X100, preferably containing 0.00001 to 1% by weight of a surfactant, -Desirable is a salt containing 10 to 500 mM salt such as sodium chloride or potassium chloride.
  • a low pH buffer solution such as 10 mM Glycine HCl having a pH of 1.5 to 4.0 may be used.
  • the temperature and flow rate to circulate are preferably the same as the temperature and flow rate to circulate the sample solution.
  • the time for circulating the cleaning liquid is usually 0.5 to 180 minutes, preferably 5 to 60 minutes. 2-7.
  • Contact of Fluorescent Labeled Antibody Solution with Sensor Chip 2-7-1 Preparation of Fluorescent Labeled Antibody Fluorescent labeled antibody 5 is an antibody conjugated with a fluorescent substance (see FIG. 3).
  • a carboxyl group is added to a fluorescent substance, and the carboxyl group is converted into water-soluble carbodiimide [WSC] (for example, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride [EDC]) and N—
  • WSC water-soluble carbodiimide
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • N— A method in which a carboxyl group formed by active esterification with hydroxysuccinimide [NHS] and then an amino group possessed by the active ester is dehydrated and immobilized using water-soluble carbodiimide, A method of reacting and immobilizing an antibody having an isothiocyanate and an amino group with a fluorescent substance, A method of reacting and immobilizing a secondary antibody having a sulfonyl halide and an amino group, respectively, and a fluorescent substance; A method of reacting and
  • the fluorescent substance is a general term for substances that emit fluorescence by irradiating predetermined excitation light or by using a field effect, and the fluorescence includes various kinds of light emission such as phosphorescence.
  • the fluorescent material used in the present invention is not particularly limited as long as it is not quenched due to light absorption by the metal thin film 7, and may be any known fluorescent material.
  • a fluorescent material having a large Stokes shift that enables the use of a fluorometer equipped with a filter rather than a monochromator and also increases the efficiency of detection is preferred.
  • a fluorescent substance of the fluorescein family (manufactured by Integrated DNA Technologies), -Polyhalofluorescein family fluorescent material (Applied Biosystems Japan Co., Ltd.), ⁇ Fluorescent substance of hexachlorofluorescein family (Applied Biosystems Japan Co., Ltd.), -Coumarin family fluorescent material (Invitrogen), ⁇ Rhodamine family fluorescent substance (manufactured by GE Healthcare Biosciences) ⁇ Cyanine family fluorescent material, ⁇ Indocarbocyanine family fluorescent material, Oxazine family fluorescent material, ⁇ Thioazine family fluorescent material, squarain family fluorescent material, • BODIPY®, a chelating lanthanide family fluorescent material ⁇ Family fluorescent material (manufactured by Invitrogen), ⁇ Naphthalene sulfonic acid ⁇ Fluorescent materials in the family ⁇ Pyrene family fluorescent materials, ⁇ Fluorescent substances of the triphenylmethan
  • the fluorescent substance that can be used in the present invention is not limited to the organic fluorescent substance.
  • rare earth complex fluorescent materials such as Eu and Tb can also be used as fluorescent materials in the present invention.
  • Rare earth complexes are generally characterized by a large wavelength difference between the excitation wavelength (about 310 to 340 nm) and the emission wavelength (about 615 nm for Eu complex and 545 nm for Tb complex) and a long fluorescence lifetime of several hundred microseconds or more. is there.
  • An example of a commercially available rare earth complex fluorescent material is ATBTA-Eu 3+ .
  • a fluorescent material having a maximum fluorescence wavelength in a wavelength region where light absorption by the metal contained in the metal thin film 7 is small when performing fluorescence measurement described later.
  • the metal thin film 7 when gold is used as the metal thin film 7, it is desirable to use a fluorescent material having a maximum fluorescence wavelength of 600 nm or more in order to minimize the influence of light absorption by the metal thin film 7.
  • a fluorescent material having a maximum fluorescence wavelength in the near infrared region such as Cy5, Alexa Fluor (registered trademark) 647.
  • Cy5 Alexa Fluor (registered trademark) 647.
  • the use of a fluorescent substance having the maximum fluorescence wavelength in the near-infrared region can minimize the influence of light absorption by iron derived from blood cell components in the blood. Is also useful.
  • the concentration of the fluorescent labeled antibody solution to be sent is 0.001 ⁇ g / ml or more and 10,000 ⁇ g / ml or less. It is preferably 1 ⁇ g / ml or more and 1,000 ⁇ g / ml or less.
  • the preferable flow rate at the time of sending the fluorescence labeled antibody solution is the same as that at the time of sending the sample solution. 2-8.
  • Fluorescence measurement The sensor chip thus obtained is excited via the prism from the other surface of the dielectric member 8 where the metal thin film 7 is not formed (the lower surface of the dielectric member 8 in FIG. 2). Laser light 9 as light is irradiated (see FIG. 3), and the amount of fluorescence emitted from the excited fluorescent material is measured.
  • the light source used in the fluorescence measurement method according to the present invention is not particularly limited as long as it can cause plasmon excitation in the metal thin film 7, but in terms of unity of wavelength distribution and intensity of light energy. It is preferable to use laser light as a light source.
  • the photon increase amount due to the electric field enhancement effect depends on the refractive index of the dielectric member 8, the metal species of the metal thin film 7, and the film thickness thereof, but is usually about 10 to 20 times the increase amount in gold.
  • the fluorescent substance electrons in the molecule are excited by light absorption, move to the first electron excited state in a short time, and when returning from this state (level) to the ground state, the wavelength of the wavelength corresponding to the energy difference Fluoresce.
  • the laser light 9 to be used for example, an LD with a wavelength of 200 to 900 nm, 0.001 to 1,000 mW; a wavelength of 230 to 800 nm (resonance wavelength is determined by the metal species used for the metal thin film 7), 0.01 to A 100 mW semiconductor laser can be used.
  • the “prism” is intended to allow the laser light 9 through various filters to efficiently enter the SPFS sensor chip, and preferably has the same refractive index as that of the dielectric member 8.
  • angles and shape are not particularly limited, and may be, for example, a 60-degree dispersion prism.
  • examples of such commercially available prisms include those similar to the above-described commercially available “glass dielectric member”.
  • examples of the “optical filter” include a neutral density (ND) filter, a polarizing filter, a cut filter, and a diaphragm lens.
  • ND neutral density
  • the “darkening (ND) filter” (or neutral density filter) is intended to adjust the amount of incident laser light.
  • a detector with a narrow dynamic range it is preferable to use it for carrying out a highly accurate measurement.
  • the “polarizing filter” is used for converting the laser light into P-polarized light that efficiently generates surface plasmons.
  • the “cut filter” includes external light (illumination light outside the device), excitation light (excitation light transmission component), stray light (excitation light scattering component in various places), and plasmon scattering light (excitation light originates from the excitation light).
  • a filter that removes optical noise such as scattered light generated by the influence of structures or deposits on the surface of a sensor chip for SPFS, and autofluorescence of a fluorescent substance, such as an interference filter, a color filter, etc. can be mentioned.
  • the “condensing lens” is intended to efficiently collect the fluorescent signal on the detector, and may be an arbitrary condensing system.
  • a simple condensing system a commercially available objective lens (for example, manufactured by Nikon Corporation or Olympus Corporation) used in a microscope or the like may be used.
  • the magnification of the objective lens is preferably 10 to 100 times.
  • the “SPFS detector” is preferably a photomultiplier (a photomultiplier manufactured by Hamamatsu Photonics) from the viewpoint of ultra-high sensitivity. Also, although the sensitivity is lower than these, a CCD image sensor capable of multipoint measurement is also suitable because it can be viewed as an image and noise light can be easily removed.
  • the amount of analyte contained in the specimen is calculated from the measurement results obtained in this way. More specifically, a calibration curve is created by performing measurement with a target antigen of a known concentration or a target antibody, and an analyte (target antigen level) in the sample to be measured is created based on the created calibration curve. Alternatively, the target antibody) amount is calculated from the measurement signal.
  • Example 1 Production of Sensor Chip A glass dielectric member 8 (“S-LAL 10” manufactured by OHARA INC.) Having a refractive index (n d ) of 1.72 and a thickness of 1 mm is plasma-cleaned, A chromium thin film was formed by a sputtering method.
  • S-LAL 10 refractive index manufactured by OHARA INC.
  • a gold thin film was further formed on the surface by a sputtering method.
  • the chromium thin film had a thickness of 1 to 3 nm, and the gold thin film had a thickness of 42 to 47 nm.
  • the substrate thus obtained was immersed in 10 ml of an ethanol solution of 10-amino-1-decanethiol prepared to 1 mM for 24 hours to form a SAM on one side of the gold thin film.
  • the substrate was taken out from the ethanol solution, washed with ethanol and isopropanol, and then dried using an air gun.
  • a surfactant (Tween 20) in the sample dilution solution is added in an amount of 0.05% by mass (relative to the sample dilution solution).
  • Tris buffered saline (TBS) is used as the main solution for the sample dilution solution. ) was used.
  • the weight average molecular weight is respectively ⁇ 10000 (“CMD-L (trade name)” manufactured by Meito Sangyo Co., Ltd.), ⁇ 40000 (“CMD-D40 (trade name)” manufactured by Meisei Sangyo Co., Ltd.), ⁇ 200000 (“CMD-GH (trade name)” manufactured by Meito Sangyo Co., Ltd.), ⁇ 500,000 (“CMD-500 (trade name)” manufactured by Meisei Sangyo Co., Ltd.), ⁇ 1000000 (“CMD (trade name)” manufactured by Meisei Sangyo Co., Ltd.), A sample solution in which the mass% was changed between 0 and 10 was prepared for the sample dilution solution containing carboxymethyldextran (CMD).
  • CCD carboxymethyldextran
  • a sample solution having a mass% changed between 0 and 10 was prepared for comparison.
  • fluorescently labeled antibody 5 a solution of anti-cTnI IgG2a monoclonal antibody (4C2; 2.5 mg / ml, Hytest) and Alexa Fluor (registered trademark) 647 (Molecular Probes) labeling kit were used. The reaction was carried out by stirring and mixing at room temperature (25 ° C.) for 60 minutes according to the procedure for using the kit.
  • Alexa Fluor registered trademark
  • 647-labeled anti-cTnI IgG2a monoclonal antibody was obtained by purification using a molecular weight cut filter (manufactured by Nippon Millipore).
  • a solution containing an antibody labeled with a fluorescent substance PBS solution prepared to 2 ⁇ g / ml was prepared. 4). Fluorescence measurement
  • Each sample solution and fluorescence-labeled antibody solution obtained as described above were sent to individual sensor chips, and fluorescence measurement was performed on each.
  • the measurement procedure common to each fluorescence measurement was performed as follows. First, 0.1 ml of the sample solution was circulated for 25 minutes through the flow path of the sensor chip, and then Tris buffered saline [TBS] containing 0.05% by mass of Tween 20 was circulated and washed for 10 minutes. .
  • the carboxymethyl dextran having a weight average molecular weight of 200,000 to 1,000,000 is contained in an amount of 0.001 to 5% by mass with respect to the sample dilution liquid, that is, the final concentration. It is used for sample treatment at 0.0005 to 2.5% by weight, without greatly increasing the assay blank, which is the background noise of fluorescence measurement, and suppressing the increase in assay blank, and the S / B (S / N ratio) ) Can be measured with improved fluorescence (see the range of ⁇ to ⁇ in Table 2).
  • the carboxymethyl dextran having a weight average molecular weight of 500,000 to 1,000,000 is preferably contained in an amount of 0.01 to 2% by mass with respect to the sample dilution liquid, that is, the final concentration is 0.005 to 1% by mass. It can be seen that it is desirable to be used in the treatment in% (see the range of ⁇ to ⁇ in Table 2).
  • the carboxymethyl dextran having a weight average molecular weight of 500,000 to 1,000,000 is contained in an amount of 0.1 to 0.5% by mass with respect to the sample dilution liquid, that is, the final concentration is 0.05 to 0.00. It can be seen that it is desirable to use the sample at 25% by mass (see the range of ⁇ in Table 2).
  • Example 2 In order to confirm the effect of the surfactant to suppress non-specific adsorption and the effect of suppressing increase in assay blank, the following test was performed. The test was conducted in the same manner as in Example 1 under the condition that 0.025% by mass of Tween 20 was added as a surfactant and no addition.
  • CMD carboxymethyldextran
  • the present invention has been described above, but the present invention is not limited to this.
  • the SPFS measurement was described as the fluorescence measurement method.
  • a fluorescence measuring method such as total reflection ATR (Attenuated Total Reflection) fluorescent method can be used.
  • the reagent dilution solution according to the present invention and another reagent used together with the sample dilution solution for example, a reagent related to sample dilution or a reagent used in the above fluorescence measurement method
  • the sample dilution solution for example, a reagent related to sample dilution or a reagent used in the above fluorescence measurement method
  • another reagent used together with the sample dilution solution for example, a reagent related to sample dilution or a reagent used in the above fluorescence measurement method
  • examples of the reagent used in the fluorescence measurement method include a fluorescently labeled antibody solution and a washing liquid.
  • a reagent related to sample dilution includes a surfactant.
  • the surfactant include surfactants that can be included in the specimen dilution liquid described above, and the following surfactants used for electrophoresis of DNA and proteins, for example. .
  • -Briji 35 (registered trademark, polyethylene glycol monododecyl ether, Polyethylene Glycol Monododecyl Ether), ⁇ Dodecyl- ⁇ -D-maltoside, ⁇ Octyl- ⁇ -D-glucoside, Nonidet (registered trademark) P-40 (polyoxyethylene nonylphenyl ether), Triton X-100 (registered trademark) (polyethylene glycol mono-P-inoctylphenyl ether, Polyoxyethylene (10) Octylphenyl Ether), ⁇ Tween 20 (registered trademark) (a derivative of mono-9-octadecanoate poly (oxy-1,2-ethanediyl)), CHAPS (registered trademark) ((3- [3-cholamidopropyl] dimethylamino) propanesulfonic acid, 3-[(3-Cholamidopropyl) dimethylammonio] propane
  • the present invention uses a biological sample as a specimen using a fluorescence measurement method such as surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) or total reflection ATR (Attenuated Total Reflection) fluorescence method.
  • SPFS surface plasmon excitation enhanced fluorescence spectroscopy
  • ATR Total reflection ATR

Abstract

Provided are a liquid for diluting a specimen, which can prevent the nonspecific adsorption of impurities in the specimen by a solid phase support, a ligand and so on and prevent an increase in assay blank, and a fluorometric method using the same. The liquid for diluting a specimen contains 0.001-5 mass%, relative to the liquid for diluting a specimen, of carboxymethyldextran having a weight-average molecular weight of 200,000-1,000,000.

Description

検体希釈用液、それを用いたキットおよび蛍光測定方法Sample dilution solution, kit using the same, and fluorescence measurement method
 本発明は、例えば、表面プラズモン励起増強蛍光分光法(SPFS;Surface Plasmon-field enhanced Fluorescence Spectroscopy)、全反射ATR(Attenuated Total Reflection)蛍光法などの蛍光測定方法を用いて、主として生体試料を検体として用いて、極微量のアナライトを検出する際に、検体を希釈するための検体希釈用液、それを用いたキットおよび蛍光測定方法に関する。 The present invention mainly uses a biological sample as a specimen by using a fluorescence measurement method such as surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) or total reflection ATR (Attenuated Total Reflection) fluorescence method. The present invention relates to a specimen dilution solution for diluting a specimen when detecting an extremely small amount of analyte, a kit using the same, and a fluorescence measurement method.
 従来、極微量な物質の検出を行う場合において、物質の物理的現象を応用することでこのような物質の検出を可能とした様々な検体検出装置が用いられている。このような検体検出装置の一つとしては、表面プラズモン共鳴現象を応用した表面プラズモン励起増強蛍光分光法(SPFS)の原理に基づき、高精度にアナライト検出を行えるようにしたSPFS装置が挙げられる。 Conventionally, when detecting a very small amount of a substance, various specimen detection apparatuses that can detect such a substance by applying a physical phenomenon of the substance have been used. One example of such an analyte detection apparatus is an SPFS apparatus that can perform analyte detection with high accuracy based on the principle of surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) applying the surface plasmon resonance phenomenon. .
 この表面プラズモン励起増強蛍光分光法(SPFS)は、光源より照射したレーザー光などの励起光が、金属薄膜表面で減衰全反射(ATR;attenuated total reflectance)する条件において、金属薄膜表面に表面プラズモン光(粗密波)を発生させることによって、光源より照射した励起光が有するフォトン量を数十倍~数百倍に増やして、表面プラズモン光の電場増強効果を得るようになっている。 In this surface plasmon excitation enhanced fluorescence spectroscopy (SPFS), surface plasmon light is applied to the surface of the metal thin film under the condition that excitation light such as laser light irradiated from a light source attenuates total reflection (ATR) on the surface of the metal thin film. By generating (coherent wave), the amount of photons contained in the excitation light irradiated from the light source is increased to several tens to several hundred times, and the electric field enhancement effect of the surface plasmon light is obtained.
 そして、この電場増強効果により、金属薄膜の表面近傍に捕捉したアナライトと結合(標識)した蛍光物質を効率良く励起させ、この蛍光を観察することによって、極微量、極低濃度のアナライトを検出する方法である。 And by this electric field enhancement effect, the fluorescent substance bound (labeled) with the analyte trapped near the surface of the metal thin film is efficiently excited, and by observing this fluorescence, an extremely small amount of analyte can be obtained. It is a method of detection.
 ところで、このようなSPFS測定において、アナライトを捕捉するための抗体を高密度に固定化できるカルボキシメチルデキストラン(CMD)を、リガンドの固相支持体として用いることが考えられる。ここで、「リガンド」とは、検体中に含有されるアナライトを特異的に認識し(または、認識され)、結合し得る分子または分子断片をいう。 By the way, in such SPFS measurement, it is conceivable to use carboxymethyl dextran (CMD) capable of immobilizing an antibody for capturing an analyte at a high density as a solid support for the ligand. Here, “ligand” refers to a molecule or molecular fragment that can specifically recognize (or be recognized) and bind to an analyte contained in a specimen.
 このCMD自体は、一般的に非特異吸着が比較的生じ難いとされているものの、実際には、種々の分子量を有し、広範な分子量分布を有するCMDを、固相支持体として使用するような際には、図4の模式図で示したように、検体中のタンパク質や脂質などの種々の夾雑物1が、固相支持体3やリガンド4に付着し、固相支持体3やリガンド4に付着した夾雑物1に蛍光標識抗体5が付着してしまう場合がある。 Although this CMD itself is generally considered to be relatively difficult to cause non-specific adsorption, in fact, CMD having various molecular weights and having a wide molecular weight distribution is used as a solid support. In this case, as shown in the schematic diagram of FIG. 4, various contaminants 1 such as proteins and lipids in the specimen adhere to the solid support 3 and the ligand 4, and the solid support 3 and the ligand In some cases, the fluorescently labeled antibody 5 may adhere to the contaminant 1 attached to 4.
 このように、表面プラズモン励起増強蛍光分光法(SPFS)を用いて、医療、バイオテクノロジーなどの分野において、特に、例えば、血清、血漿、全血、鼻腔液、腹腔液などの生体試料を検体として用いて、極微量のアナライト6を検出する際には、検体中のタンパク質や脂質などの種々の夾雑物1が、固相支持体3やリガンド4に付着し、固相支持体3やリガンド4に付着した夾雑物1に蛍光標識抗体5が非特異的に付着してしまう場合がある。 In this way, using surface plasmon excitation enhanced fluorescence spectroscopy (SPFS), in particular in the fields of medicine, biotechnology, and the like, in particular, biological samples such as serum, plasma, whole blood, nasal fluid, and peritoneal fluid are used as specimens. When detecting a very small amount of the analyte 6, various contaminants 1 such as proteins and lipids in the specimen adhere to the solid support 3 and the ligand 4, and the solid support 3 and the ligand 6 are detected. In some cases, the fluorescently labeled antibody 5 adheres nonspecifically to the contaminant 1 attached to 4.
 このように夾雑物1を介して、蛍光標識抗体5が固相支持体3やリガンド4に僅かでも付着してしまうと、屈折率が変化して、電場増強効果に影響を及ぼすことになり、蛍光測定のバックグランドノイズであるアッセイブランクが大きく増加し、極微量なアナライト6の高感度且つ高精度なSPFS測定の障害となってしまうという問題がある。 Thus, when the fluorescently labeled antibody 5 is attached to the solid support 3 or the ligand 4 even slightly through the contaminants 1, the refractive index changes, and the electric field enhancement effect is affected. There is a problem in that assay blanks, which are background noise of fluorescence measurement, greatly increase, which hinders high-sensitivity and high-accuracy SPFS measurement of a very small amount of analyte 6.
 しかも、SPFS測定においては、センサーチップ表面への夾雑物1の吸着によって、電場増強効果が大きく低下するリスクを有しており、例えば、ELISA(Enzyme-Linked Immuno Sorbent Assay)、発光酵素免疫測定法(CLEIA(Chemiluminesent Enzyme Immunoassay))などの従来の測定方法以上に、センサーチップ表面への非特異吸着を防止する必要がある。 Moreover, in SPFS measurement, there is a risk that the electric field enhancement effect is greatly reduced by the adsorption of the contaminant 1 on the sensor chip surface. For example, ELISA (Enzyme-Linked Immuno Immuno Sorbent Assay), luminescent enzyme immunoassay It is necessary to prevent non-specific adsorption on the surface of the sensor chip more than conventional measurement methods such as (CLEIA (Chemiluminesent Enzyme Immunoassay)).
 下記の表1は、ELISA、CLEIAなどの従来法と、SPFS測定における上記の問題を、すなわち、特異反応が測定結果に及ぼす影響度を示す表である。このように、従来法に比較して、SPFS測定においては、夾雑物の非特異吸着が測定に及ぼす影響が大きいことが分かる。 Table 1 below is a table showing the above-mentioned problems in conventional methods such as ELISA and CLEIA and SPFS measurement, that is, the degree of influence of specific reactions on the measurement results. Thus, it can be seen that the SPFS measurement has a greater influence on the measurement due to non-specific adsorption of impurities in comparison with the conventional method.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 従来、このような夾雑物の非特異吸着を防止する方法としては、特許文献1(特開平8-327629号公報)に開示される前処理方法がある。 Conventionally, as a method for preventing such non-specific adsorption of impurities, there is a pretreatment method disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 8-327629).
 すなわち、特許文献1には、非特異反応を起こす物質を取り除く検体の前処理方法として、非特異反応を起こす物質を吸収する免疫測定用の担体や抗体などの物質を結合した磁性粒子を検体に混合し、磁力により磁性粒子を分離して、検体中の非特異反応を起こす物質を除くようにした検体の前処理方法が記載されている。 That is, in Patent Document 1, as a sample pretreatment method for removing a substance that causes a non-specific reaction, an immunoassay carrier that absorbs a substance that causes a non-specific reaction or a magnetic particle bound with a substance such as an antibody is used as a specimen. A specimen pretreatment method is described in which magnetic particles are mixed and magnetic particles are separated by a magnetic force so as to remove substances that cause non-specific reactions in the specimen.
 また、特許文献2(特開平9-089893号公報)には、測定溶液中に添加するだけで、吸着物質を除去するか、または、吸着を阻害する、赤血球を担体とする間接凝集免疫測定用の非特異反応吸収試薬が開示されている。 Patent Document 2 (Japanese Patent Application Laid-Open No. 9-089893) discloses an indirect agglutination immunoassay using erythrocytes as a carrier, which removes an adsorbed substance or inhibits adsorption by simply adding it to a measurement solution. Non-specific reaction absorption reagents are disclosed.
 この非特異反応吸収試薬として、特許文献2では、デキストランの少なくとも60%の水酸基が、硫酸エステル基で置換されたデキストラン化合物、または、その塩を用いることで、検体中の非特異反応の原因物質を除去する効果の高い非特異反応吸収試薬が提案されている。 As this non-specific reaction absorption reagent, in Patent Document 2, a dextran compound in which at least 60% of the hydroxyl groups of dextran are substituted with sulfate ester groups, or a salt thereof, is used to cause a non-specific reaction in a sample. A non-specific reaction absorption reagent that has a high effect of removing water has been proposed.
特開平8-327629号公報Japanese Patent Laid-Open No. 8-327629 特開平9-089893号公報Japanese Patent Laid-Open No. 9-089893
 しかしながら、このような特許文献1に記載される検体の前処理方法では、検体中の夾雑物を除去する効果は、未だ十分ではなく、上記のように、例えば、血清、血漿、全血、鼻腔液、腹腔液などの生体試料を検体として用いて、極微量のアナライトを検出する際、特に、センサーチップ表面への夾雑物の吸着によって、電場増強効果が大きく低下するリスクを有するSPFS測定において適用するには十分ではなかった。 However, in the sample pretreatment method described in Patent Document 1, the effect of removing contaminants in the sample is not yet sufficient, and as described above, for example, serum, plasma, whole blood, nasal cavity When detecting a very small amount of analyte using a biological sample such as liquid or peritoneal fluid as a specimen, especially in SPFS measurement where there is a risk that the electric field enhancement effect is greatly reduced due to the adsorption of impurities to the sensor chip surface. It was not enough to apply.
 すなわち、特許文献1では、特定の担体や抗体に吸収される特定の夾雑物は除去できるものの、その他の夾雑物は除去できず、この除去できなかった夾雑物が、固相支持体、リガンドおよびセンサーチップ表面等に非特異的に吸着してしまう場合があった。 That is, in Patent Document 1, although specific contaminants absorbed by a specific carrier or antibody can be removed, other contaminants cannot be removed. The contaminants that could not be removed are solid phase support, ligand and In some cases, non-specific adsorption to the sensor chip surface or the like occurred.
 また、検査対象であるアナライトがごく僅かしか存在しない検体では、検体の前処理によってアナライトが磁性粒子とともに除去されてしまい、極微量のアナライトを検出することができない場合があった。 In addition, in a specimen in which the analyte to be examined is very small, the analyte is removed together with the magnetic particles by the pretreatment of the specimen, so that a trace amount of the analyte may not be detected.
 一方、特許文献2の非特異反応吸収試薬では、非特異反応吸収試薬を測定溶液(検体)に添加するだけであるため、誤ってアナライトが測定前に除去されることは防止できるが、種々の夾雑物の付着を十分に防止できるものではなかった。 On the other hand, in the nonspecific reaction absorption reagent of Patent Document 2, since the nonspecific reaction absorption reagent is simply added to the measurement solution (specimen), it is possible to prevent the analyte from being erroneously removed before measurement. It was not possible to sufficiently prevent the adhesion of foreign substances.
 従って、特許文献2の非特異反応吸収試薬でも、上記のように、例えば、血清、血漿、全血、鼻腔液、腹腔液などの生体試料を検体として用いて、極微量のアナライトを検出する際には、特に、センサーチップ表面への夾雑物の吸着によって、電場増強効果が大きく低下するリスクを有するSPFS測定において適用するには十分ではなかった。 Therefore, even with the nonspecific reaction absorption reagent of Patent Document 2, as described above, a very small amount of analyte is detected using a biological sample such as serum, plasma, whole blood, nasal fluid, and peritoneal fluid as a specimen. In particular, it is not sufficient for application in SPFS measurement, which has a risk that the effect of enhancing the electric field is greatly reduced due to the adsorption of impurities on the surface of the sensor chip.
 本発明は、このような現状に鑑み、検体中の夾雑物が、固相支持体、リガンドなどに非特異吸着することを抑制し、アッセイブランクの増加を抑制することができる検体希釈用液、それを用いたキットおよび蛍光測定方法を提供することを目的とする。 In view of such a current situation, the present invention suppresses nonspecific adsorption of contaminants in a sample to a solid support, a ligand, and the like, and a sample dilution solution that can suppress an increase in assay blank, It is an object to provide a kit and a fluorescence measurement method using the kit.
 すなわち、本発明は、下記[1]~[11]に示される検体希釈用液、それを用いたキットおよび蛍光測定方法を提供する。 That is, the present invention provides a specimen dilution solution shown in the following [1] to [11], a kit using the same, and a fluorescence measurement method.
 [1] 重量平均分子量が200000~1000000であるカルボキシメチルデキストランを、検体希釈用液に対して、0.001~5質量%含有することを特徴とする検体希釈用液。 [1] A sample dilution liquid characterized by containing 0.001 to 5% by mass of carboxymethyldextran having a weight average molecular weight of 200,000 to 1,000,000 based on the sample dilution liquid.
 [2] 重量平均分子量が500000~1000000であるカルボキシメチルデキストランを、検体希釈用液に対して、0.01~2質量%含有することを特徴とする[1]に記載の検体希釈用液。 [2] The specimen dilution liquid according to [1], containing 0.01 to 2% by mass of carboxymethyldextran having a weight average molecular weight of 500,000 to 1,000,000 based on the specimen dilution liquid.
 [3] 前記検体が生体試料であることを特徴とする[1]または[2]に記載の検体希釈用液。 [3] The specimen dilution liquid according to [1] or [2], wherein the specimen is a biological sample.
 [4] pH4~9に調整されていることを特徴とする[1]から[3]のいずれかに記載の検体希釈用液。 [4] The specimen dilution liquid according to any one of [1] to [3], which is adjusted to pH 4 to 9.
 [5] 界面活性剤を含有することを特徴とする[1]から[4]のいずれかに記載の検体希釈用液。 [5] The sample dilution liquid according to any one of [1] to [4], which contains a surfactant.
 [6] 前記界面活性剤を、検体希釈用液に対して、0.00001~1質量%含有することを特徴とする[5]に記載の検体希釈用液。 [6] The specimen dilution liquid according to [5], wherein the surfactant is contained in an amount of 0.00001 to 1% by mass with respect to the specimen dilution liquid.
 [7] [1]から[6]のいずれかの検体希釈用液を含むことを特徴とする検体希釈用液のキット。 [7] A sample dilution liquid kit comprising the sample dilution liquid of any one of [1] to [6].
 [8] [1]から[6]のいずれかに記載の検体希釈用液に検体を混合した混合液を、金属膜上に固相支持体が固定されたセンサーチップ上に供給した後、蛍光測定を行うことを特徴とする蛍光測定方法。 [8] After supplying the mixed solution obtained by mixing the sample to the sample dilution solution according to any one of [1] to [6] onto a sensor chip in which a solid support is fixed on a metal film, fluorescence A fluorescence measurement method characterized by performing measurement.
 [9] 前記混合液を供給した後、前記検体中のアナライトに結合する蛍光標識抗体を供給して洗浄した後、前記蛍光測定を行うことを特徴とする[8]に記載の蛍光測定方法。 [9] The fluorescence measurement method according to [8], wherein the fluorescence measurement is performed after supplying the mixed solution, supplying a fluorescently labeled antibody that binds to the analyte in the sample and washing the mixture. .
 [10] 前記固相支持体が、カルボキシメチルデキストランであることを特徴とする[8]または[9]に記載の蛍光測定方法。 [10] The fluorescence measurement method according to [8] or [9], wherein the solid support is carboxymethyl dextran.
 [11] 前記蛍光測定を、表面プラズモン励起増強蛍光分光法(SPFS)、または、全反射ATR蛍光法で行うことを特徴とする[8]から[10]のいずれかに記載の蛍光測定方法。 [11] The fluorescence measurement method according to any one of [8] to [10], wherein the fluorescence measurement is performed by surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) or total reflection ATR fluorescence.
 本発明によれば、検体中の夾雑物が、固相支持体、リガンドなどに非特異吸着することを抑制し、アッセイブランクの増加を抑制することができる検体希釈用液、それを用いたキットおよび蛍光測定方法を提供することができる。 According to the present invention, a sample dilution solution that suppresses nonspecific adsorption of contaminants in a sample to a solid support, a ligand, and the like, and can suppress an increase in assay blank, and a kit using the same And a fluorescence measurement method can be provided.
図1は、本発明に係る検体希釈用液と生体由来の検体を混合し、夾雑物の表面にカルボキシメチルデキストランが付着している状態を説明する模式図である。FIG. 1 is a schematic diagram for explaining a state in which a sample-diluting solution according to the present invention and a sample derived from a living body are mixed and carboxymethyldextran adheres to the surface of a contaminant. 図2は、図1の混合液が送液された蛍光測定装置のセンサーチップ表面の状態を説明する模式図である。FIG. 2 is a schematic diagram for explaining the state of the sensor chip surface of the fluorescence measuring apparatus to which the mixed liquid of FIG. 1 has been fed. 図3は、図2のセンサーチップ表面に、蛍光標識物質とコンジュゲートした蛍光標識抗体溶液を送液した後にレーザー光で照射している状態を説明する模式図で、本発明の一作用を説明する図である。FIG. 3 is a schematic diagram illustrating a state in which a fluorescently labeled antibody solution conjugated with a fluorescently labeled substance is delivered to the surface of the sensor chip in FIG. It is a figure to do. 図4は、関連技術の検体希釈用液を用いて検体を処理し、この溶液と蛍光標識抗体溶液が送液されたセンサーチップ表面の状態を説明する模式図である。FIG. 4 is a schematic diagram for explaining the state of the surface of a sensor chip in which a sample is processed using a related-art sample dilution solution and this solution and a fluorescently labeled antibody solution are fed.
 以下、本発明の実施の形態(実施例)を図面に基づいてより詳細に説明する。
1.検体希釈用液の調製
 図1は、本発明に係る検体希釈用液を生体由来の検体と混合した溶液中を示しており、夾雑物の表面にカルボキシメチルデキストランが付着している状態を説明する模式図である。図2は、図1の混合液が送液されたセンサーチップ表面の状態を説明する模式図である。
Hereinafter, embodiments (examples) of the present invention will be described in more detail with reference to the drawings.
1. Preparation of Sample Dilution Solution FIG. 1 shows a solution obtained by mixing the sample dilution solution according to the present invention with a sample derived from a living body, and illustrates a state in which carboxymethyldextran is attached to the surface of a contaminant. It is a schematic diagram. FIG. 2 is a schematic diagram for explaining the state of the surface of the sensor chip to which the liquid mixture of FIG. 1 has been fed.
 本発明に係る検体希釈用液は、重量平均分子量が200000~1000000であるカルボキシメチルデキストランを含むものであり、例えば、血清、血漿、全血、鼻腔液、腹腔液などの生体試料を検体として用いて稀釈した場合に、図1に示すように、夾雑物1の表面にこのカルボキシメチルデキストラン分子2が付着することになる。 The sample dilution liquid according to the present invention contains carboxymethyldextran having a weight average molecular weight of 200,000 to 1,000,000. For example, a biological sample such as serum, plasma, whole blood, nasal fluid, and peritoneal fluid is used as a sample. When diluted, the carboxymethyl dextran molecule 2 adheres to the surface of the contaminant 1 as shown in FIG.
 すなわち、高感度イムノアッセイ測定においてセンサー(固相)表面は、中性または負電荷帯電の状態が一般的であるが、アニオン性糖鎖を有する所定の重量平均分子量のカルボキシメチルデキストランを所定の質量%で検体希釈用液や検体を含む溶液中で使用することで、カルボキシメチルデキストランと夾雑物1とが互いに吸着するだけでなく、図3に示すように、夾雑物1に吸着した状態のカルボキシメチルデキストランと、センサー表面とがともに負電荷であることによりクーロン斥力Fが作用し互いに反発し合うので、夾雑物1のセンサー(固相)表面への吸着をこのクーロン斥力Fにより好適に抑制することができる。 That is, in a highly sensitive immunoassay measurement, the surface of the sensor (solid phase) is generally neutral or negatively charged, but carboxymethyl dextran having a predetermined weight average molecular weight having an anionic sugar chain is determined in a predetermined mass%. In this way, carboxymethyl dextran and contaminant 1 are not only adsorbed to each other but also carboxymethyl in a state adsorbed to contaminant 1 as shown in FIG. Since the dextran and the sensor surface are both negatively charged, the Coulomb repulsive force F acts and repels each other, so that the adsorption of the contaminants 1 to the sensor (solid phase) surface is suitably suppressed by the Coulomb repulsive force F. Can do.
 これにより、図2および図3の概略図に示したように、表面にカルボキシメチルデキストラン分子2が付着した夾雑物1は、固相支持体3、リガンド4などに非特異吸着しづらい。従って、検体中の夾雑物1が、リガンド4やリガンド4の固相支持体3などに非特異吸着するのを効率良く抑制することができる。 Thereby, as shown in the schematic diagrams of FIG. 2 and FIG. 3, the contaminant 1 having the carboxymethyl dextran molecule 2 attached to the surface is difficult to non-specifically adsorb to the solid support 3, the ligand 4, and the like. Therefore, it is possible to efficiently suppress the non-specific adsorption of the contaminant 1 in the specimen to the ligand 4 or the solid support 3 of the ligand 4.
 このため、蛍光測定においては、夾雑物1を介して、蛍光標識抗体5が固相支持体3やリガンド4に付着することが抑制される(図3及び図4を対比して参照)。その結果、付着に起因する屈折率変化が低減し、夾雑物1やその付着物が電場増強効果に悪影響を及ぼすことが軽減され、蛍光測定のバックグランドノイズであるアッセイブランクが大きく増加することがなく、S/Bを向上することができる。これにより、特に、極微量なアナライト6の高感度且つ高精度なSPFS測定を実現することができる。 For this reason, in the fluorescence measurement, the fluorescence-labeled antibody 5 is suppressed from adhering to the solid support 3 and the ligand 4 through the contaminants 1 (see FIG. 3 and FIG. 4 for comparison). As a result, the change in refractive index due to adhesion is reduced, and it is possible to reduce the adverse effect of the contaminant 1 and the adhesion on the electric field enhancement effect, and the assay blank that is background noise of fluorescence measurement is greatly increased. S / B can be improved. Thereby, in particular, it is possible to realize high-sensitivity and high-precision SPFS measurement of an extremely small amount of the analyte 6.
 一方、検体希釈用液中に含有されるカルボキシメチルデキストランの重量平均分子量が200000を下回ると、あるいは、検体希釈用液中に含有されるカルボキシメチルデキストランの重量平均分子量が200000~1000000の範囲内であっても、その含有量が0.001質量%を下回る(検体処理時の終濃度では0.0005質量%を下回る)と、検体中の夾雑物1が、リガンド4やリガンド4の固相支持体3などに非特異吸着することを抑制する効果が期待できず、蛍光測定のバックグランドノイズであるアッセイブランクが増加してしまう。 On the other hand, when the weight average molecular weight of the carboxymethyl dextran contained in the sample dilution liquid is less than 200,000, or the weight average molecular weight of the carboxymethyl dextran contained in the sample dilution liquid is within the range of 200,000 to 1,000,000. Even if the content is less than 0.001% by mass (the final concentration at the time of sample treatment is less than 0.0005% by mass), the contaminant 1 in the sample is supported on the solid phase of the ligand 4 or the ligand 4. The effect of suppressing nonspecific adsorption to the body 3 or the like cannot be expected, and the assay blank, which is background noise of fluorescence measurement, increases.
 逆に、検体希釈用液中に含有されるカルボキシメチルデキストランの重量平均分子量が1000000を超えると、あるいは、検体希釈用液中に含有されるカルボキシメチルデキストランの重量平均分子量が200000~1000000の範囲内であっても、その含有量が5質量%を超える(検体処理時の終濃度で2.5質量%を超える)と、検体希釈用液の粘度が高くなり過ぎて反応性が低下してしまう。 Conversely, when the weight average molecular weight of the carboxymethyl dextran contained in the sample dilution liquid exceeds 1000000, or the weight average molecular weight of the carboxymethyl dextran contained in the sample dilution liquid falls within the range of 200000 to 1000000. Even so, if the content exceeds 5% by mass (the final concentration at the time of sample processing exceeds 2.5% by mass), the viscosity of the sample dilution solution becomes too high and the reactivity decreases. .
 また、好ましくは、重量平均分子量が500000~1000000であるカルボキシメチルデキストランを、検体希釈用液に対して0.01~2質量%含有すること(終濃度0.005~1.00質量%では検体の処理に用いられること)が望ましい。 Preferably, carboxymethyl dextran having a weight average molecular weight of 500,000 to 1,000,000 is contained in an amount of 0.01 to 2% by mass with respect to the sample dilution liquid (at a final concentration of 0.005 to 1.00% by mass, It is desirable to be used for the above processing.
 このような検体希釈用液によれば、検体中の夾雑物1が、リガンド4やリガンド4の固相支持体3などに非特異吸着するのを抑制する効果がより期待できる上に、蛍光測定のバックグランドノイズであるアッセイブランクをより低減することができる。しかも、検体希釈用液の粘度が不必要に高くなるのを抑制し、反応性の低下をより軽減でき、S/Bをより向上することができる。 According to such a sample dilution solution, the effect of suppressing the non-specific adsorption of the contaminant 1 in the sample to the ligand 4 or the solid support 3 of the ligand 4 can be expected, and the fluorescence measurement can be performed. The assay blank, which is the background noise, can be further reduced. In addition, the viscosity of the sample dilution liquid can be suppressed from becoming unnecessarily high, the decrease in reactivity can be further reduced, and the S / B can be further improved.
 さらに、より好ましくは、重量平均分子量が500000~1000000であるカルボキシメチルデキストランを、検体希釈用液に対して、0.1~0.5質量%(検体処理時の終濃度では0.05~0.25質量%)含有するのが望ましい。 More preferably, carboxymethyldextran having a weight average molecular weight of 500,000 to 1,000,000 is 0.1 to 0.5% by mass (0.05 to 0 at the final concentration at the time of sample processing) with respect to the sample dilution solution. .25 mass%) is desirable.
 このような検体希釈用液によれば、検体中の夾雑物1が、リガンド4やリガンド4の固相支持体3などに非特異吸着するのを抑制する効果がさらにより期待でき、蛍光測定のバックグランドノイズであるアッセイブランクをより低減し、しかも、検体希釈用液の粘度が不必要に高くなるのをさらに抑制し、反応性の低下をさらに軽減でき、S/Bをさらに向上することができる。 According to such a sample dilution solution, the effect of suppressing the non-specific adsorption of the contaminant 1 in the sample to the ligand 4 or the solid support 3 of the ligand 4 can be further expected. The assay blank, which is background noise, can be further reduced, and the viscosity of the sample dilution solution can be further prevented from becoming unnecessarily high, the decrease in reactivity can be further reduced, and the S / B can be further improved. it can.
 また、本発明に係る検体希釈用液のpHは、4~9であるのが望ましい。このように、検体希釈用液のpHが4~9であれば、カルボキシメチルデキストラン分子2が負に帯電する約pH3.5より高いpHに維持されて、カルボキシメチルデキストラン分子2同士が相互に反発し、凝集することがないことから、保存安定性に優れ、検体中の夾雑物1が、リガンド4やリガンド4の固相支持体3などに非特異吸着するのを高く抑制することができる。 Further, the pH of the sample dilution liquid according to the present invention is preferably 4-9. Thus, if the pH of the specimen dilution solution is 4 to 9, the carboxymethyl dextran molecule 2 is maintained at a pH higher than about pH 3.5 where the carboxymethyl dextran molecule 2 is negatively charged, and the carboxymethyl dextran molecules 2 repel each other. In addition, since it does not aggregate, it is excellent in storage stability and can highly suppress nonspecific adsorption of the contaminant 1 in the specimen to the ligand 4 or the solid support 3 of the ligand 4 or the like.
 さらに、例えば、検体中の夾雑物のうち生体中に存在するヒストンやリボソーム等の夾雑物は、pH7付近では正に帯電していることから、図2に示すように、蛍光測定前の検体の処理において、負に帯電したカルボキシメチルデキストラン分子2に夾雑物1が電気的に引き寄せられて吸着する。 Furthermore, for example, contaminants such as histones and ribosomes present in the living body among the contaminants in the specimen are positively charged in the vicinity of pH 7, and therefore, as shown in FIG. In the treatment, the contaminants 1 are electrically attracted to and adsorbed to the negatively charged carboxymethyl dextran molecules 2.
 そして、図3に示すように、蛍光測定の場面では、センサーチップ表面付近に存在し、負に帯電したリガンド4やリガンド4の固相支持体3などに対して、負に帯電したカルボキシメチルデキストラン分子2のクーロン斥力Fが作用して、夾雑物1がカルボキシメチルデキストラン分子2とともにリガンド4やリガンド4の固相支持体3などから引き離された状態に維持される。 As shown in FIG. 3, in the fluorescence measurement scene, the negatively charged carboxymethyl dextran is present against the negatively charged ligand 4 or the solid support 3 of the ligand 4 that is present near the sensor chip surface. The Coulomb repulsive force F of the molecule 2 acts, and the contaminant 1 is maintained in a state of being separated from the ligand 4 and the solid support 3 of the ligand 4 together with the carboxymethyldextran molecule 2.
 この結果、夾雑物1がリガンド4やリガンド4の固相支持体3などへ非特異的に吸着することが効率良く抑制される。そして、アナライト6とリガンド4との特異的な反応が確保される。 As a result, the non-specific adsorption of the contaminants 1 to the ligand 4 or the solid support 3 of the ligand 4 is efficiently suppressed. And the specific reaction of the analyte 6 and the ligand 4 is ensured.
 また、センサーチップの表面の等電点測定を実施した際に、例えば、カルボキシメチルデキストランの固相支持体3を有する基板表面の等電点はpH2~3程度であった。 Further, when the isoelectric point measurement on the surface of the sensor chip was performed, for example, the isoelectric point of the substrate surface having the carboxymethyl dextran solid phase support 3 was about pH 2 to 3.
 従って、このような場合に、検体希釈用液をpH4以上とすることで、検体希釈用液中のカルボキシメチルデキストラン分子2の帯電状態をアニオン性に容易に保持し、その状態を有効に利用できるため好ましい。また、抗原抗体反応においてpH9以下での反応条件とすることが一般的であり、その上限はpH9以下とするのが好ましい。 Therefore, in such a case, the charged state of the carboxymethyl dextran molecule 2 in the sample diluting solution can be easily maintained anionic and the state can be effectively utilized by setting the sample diluting solution to pH 4 or higher. Therefore, it is preferable. Moreover, it is common to set it as reaction conditions at pH 9 or less in an antigen antibody reaction, and it is preferable that the upper limit shall be pH 9 or less.
 なお、この場合、検体希釈用液の主成分としては、例えば、リン酸緩衝生理食塩水(PBS),トリス緩衝生理食塩水(TBS),HEPES緩衝生理食塩水(HBS)などを用いることができる。 In this case, for example, phosphate buffered saline (PBS), Tris buffered saline (TBS), HEPES buffered saline (HBS), etc. can be used as the main component of the sample dilution liquid. .
 また、本発明に係る検体希釈用液は、界面活性剤を含有するのが望ましい。界面活性剤を含有することによって、例えば夾雑物1が脂質の場合に界面活性剤が作用してミセルを形成等することから、検体中のアナライト6や夾雑物1の凝集を抑制することができる。この結果、検体中の夾雑物1が、リガンド4やリガンド4の固相支持体3などに非特異吸着することを抑制することができる。 Further, it is desirable that the sample dilution liquid according to the present invention contains a surfactant. By containing the surfactant, for example, when the contaminant 1 is a lipid, the surfactant acts to form micelles, etc., so that the aggregation of the analyte 6 and the contaminant 1 in the specimen can be suppressed. it can. As a result, it is possible to suppress nonspecific adsorption of the contaminant 1 in the specimen to the ligand 4 or the solid support 3 of the ligand 4.
 この場合、界面活性剤としては、特に限定されるものではないが、CMDと同じ帯電状態にしてクーロン斥力を利用する観点から、アニオン性界面活性剤が好ましく、例えば、ドデシル硫酸ナトリウム(SDS)、モノアルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、アルキルベンゼンスルホン酸塩、モノアルキルリン酸塩などが使用可能である。 In this case, the surfactant is not particularly limited, but is preferably an anionic surfactant from the viewpoint of utilizing the Coulomb repulsion in the same charged state as CMD, for example, sodium dodecyl sulfate (SDS), Monoalkyl sulfates, alkyl polyoxyethylene sulfates, alkylbenzene sulfonates, monoalkyl phosphates and the like can be used.
 この場合、界面活性剤は、検体希釈用液に対して、0.00001~1質量%含有されていること(終濃度0.000005~0.5質量%で検体の処理に用いられること)が望ましい。 In this case, the surfactant should be contained in an amount of 0.00001 to 1% by mass with respect to the sample dilution liquid (used to treat the sample at a final concentration of 0.000005 to 0.5% by mass). desirable.
 これにより、検体中のアナライト6や夾雑物1の凝集を好適に抑制することができる。また、検体中の夾雑物1が、リガンド4やリガンド4の固相支持体3などに非特異吸着するのを抑制することができる。しかも、反応性の低下をより効果的に軽減することができる。 Thereby, aggregation of the analyte 6 and the contaminant 1 in the specimen can be suitably suppressed. Moreover, it can suppress that the foreign substance 1 in a test substance adsorb | sucks to the solid support 3 etc. of the ligand 4 or the ligand 4 nonspecifically. In addition, the decrease in reactivity can be reduced more effectively.
 また、本発明に係る検体希釈用液は、生体試料を検体とする検体希釈用液であることが望ましい。 Further, the sample dilution liquid according to the present invention is preferably a sample dilution liquid using a biological sample as a sample.
 このように、例えば、血清、血漿、全血、鼻腔液、腹腔液などの生体試料を検体とする検体希釈用液であれば、検体中の夾雑物1が、リガンド4やリガンド4の固相支持体3などに非特異吸着することを効率良く抑制することができる。 Thus, for example, in the case of a specimen dilution liquid using a biological sample such as serum, plasma, whole blood, nasal fluid, and peritoneal fluid as a specimen, the contaminant 1 in the specimen is a solid phase of ligand 4 or ligand 4. Non-specific adsorption to the support 3 or the like can be efficiently suppressed.
 また、本発明に係る蛍光測定方法は、検体希釈用液に検体を混合した混合液を、金属薄膜7上に固相支持体3が固定されたセンサーチップ上に供給した後、蛍光測定を行うことを特徴とする。 Further, in the fluorescence measurement method according to the present invention, after a mixed solution obtained by mixing a sample with a sample dilution solution is supplied onto a sensor chip in which the solid support 3 is fixed on the metal thin film 7, the fluorescence measurement is performed. It is characterized by that.
 このように、検体希釈用液に検体を混合した混合液を用いることによって、検体中の夾雑物1が、リガンド4やリガンド4の固相支持体3などに非特異吸着するのを効率良く抑制することができ、その結果、アッセイブランクの増加を抑制し検出対象のアッセイシグナル(S)とアッセイブランクシグナル(B)との比であるS/B(SN比)が向上した蛍光測定を行うことができる。
2.蛍光測定方法について
 本発明に係る蛍光測定方法では、上記のように調製した検体希釈用液に検体を混合した混合液を、金属薄膜7上に固相支持体3が固定されたセンサーチップ上に供給する。その後、検体中のアナライト6に結合する蛍光標識抗体5を供給して洗浄した後、蛍光測定を行うようにすれば良い。
In this way, by using a mixed solution in which the sample is mixed with the sample dilution solution, the non-specific adsorption of the contaminant 1 in the sample to the ligand 4 or the solid support 3 of the ligand 4 is efficiently suppressed. As a result, it is possible to suppress the increase in assay blank and perform fluorescence measurement with improved S / B (S / N ratio), which is the ratio of assay signal (S) to assay blank (B) to be detected. Can do.
2. Fluorescence measurement method In the fluorescence measurement method according to the present invention, a mixed liquid obtained by mixing a specimen with the specimen dilution liquid prepared as described above is placed on a sensor chip on which a solid support 3 is fixed on a metal thin film 7. Supply. Thereafter, after the fluorescently labeled antibody 5 that binds to the analyte 6 in the specimen is supplied and washed, the fluorescence measurement may be performed.
 また、本発明に係る蛍光測定方法は、前記混合溶液を供給した後、検体中のアナライト6に結合する蛍光標識抗体5を供給して洗浄した後、蛍光測定を行うのが望ましい。このように、検体中の夾雑物1が、リガンド4やリガンド4の固相支持体3などに非特異吸着するのを高く抑制することができ、その結果、アッセイブランクの増加を抑制しS/B(SN比)が向上し、極微量のアナライト6を高感度で、かつ高精度に測定できる。
2-1.センサーチップの作製
 この場合、センサーチップは、誘電体部材8の上面に、金属薄膜7を形成したものである(図2および図3参照)。誘電体部材8としては、特に限定されるものではないが、光学的に透明な、例えば、ガラス、セラミックスなどの各種の無機物、天然ポリマー、合成ポリマーを用いることができ、化学的安定性、製造安定性、光学的透明性の観点から、二酸化ケイ素(SiO2)または二酸化チタン(TiO2)を含むのが好ましい。
In the fluorescence measurement method according to the present invention, it is desirable to perform fluorescence measurement after supplying the mixed solution, supplying and washing the fluorescence-labeled antibody 5 that binds to the analyte 6 in the specimen, and washing. In this way, it is possible to highly suppress the non-specific adsorption of the contaminant 1 in the specimen to the ligand 4 or the solid support 3 of the ligand 4, and as a result, the increase in assay blank is suppressed and S / B (SN ratio) is improved, and a very small amount of analyte 6 can be measured with high sensitivity and high accuracy.
2-1. In this case, the sensor chip is obtained by forming the metal thin film 7 on the upper surface of the dielectric member 8 (see FIGS. 2 and 3). Although it does not specifically limit as the dielectric material member 8, Optically transparent, for example, various inorganic substances, such as glass and ceramics, a natural polymer, a synthetic polymer can be used, chemical stability, manufacture From the viewpoints of stability and optical transparency, silicon dioxide (SiO 2 ) or titanium dioxide (TiO 2 ) is preferably included.
 また、誘電体部材8の材質は、少なくとも励起光に対して光学的に透明な材料から形成されていれば、その材質は、上記のように特に限定されないが、安価で取り扱い性に優れるセンサーチップを提供する上で、例えば、樹脂材料から形成されていることが好ましい。 Further, the material of the dielectric member 8 is not particularly limited as long as it is made of a material that is optically transparent at least with respect to the excitation light. For example, it is preferably formed from a resin material.
 誘電体部材8を樹脂材料から形成する場合は、例えば、
・ポリエチレンテレフタレート(PET)、ポリエチレンナフタレートなどのポリエステル類、
・ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン類、
・環状オレフィンコポリマー(COC)、環状オレフィンポリマー(COP)などのポリ環状オレフィン類、
・ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系樹脂、
・ポリスチレン、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、
ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)などを用いることができる。
When the dielectric member 8 is formed from a resin material, for example,
-Polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate,
-Polyolefins such as polyethylene (PE) and polypropylene (PP),
-Polycyclic olefins such as cyclic olefin copolymer (COC) and cyclic olefin polymer (COP),
・ Vinyl resins such as polyvinyl chloride and polyvinylidene chloride,
・ Polystyrene, polyetheretherketone (PEEK), polysulfone (PSF),
Polyethersulfone (PES), polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetylcellulose (TAC), and the like can be used.
 また、金属薄膜7の材質としては、特に限定されるものではないが、好ましくは、金、銀、アルミニウム、銅、および白金からなる群から選ばれる少なくとも1種の金属からなり、より好ましくは、金からなり、さらに、これら金属の合金から構成しても良い。 The material of the metal thin film 7 is not particularly limited, but is preferably made of at least one metal selected from the group consisting of gold, silver, aluminum, copper, and platinum, more preferably It is made of gold and may be made of an alloy of these metals.
 すなわち、このような金属は、酸化に対して安定であり、かつ、後述するように、表面プラズモン光(粗密波)による電場増強が大きくなるので、金属薄膜7として好適である。また、金属薄膜7の形成方法としては、特に限定されるものではなく、例えば、スパッタリング法、蒸着法(抵抗加熱蒸着法、電子線蒸着法など)、電解メッキ、無電解メッキ法などが挙げられる。好ましくは、スパッタリング法、蒸着法を使用するのが、薄膜形成条件の調整が容易であるので望ましい。 That is, such a metal is suitable for the metal thin film 7 because it is stable against oxidation and, as will be described later, the electric field enhancement by surface plasmon light (complex wave) becomes large. Further, the method for forming the metal thin film 7 is not particularly limited, and examples thereof include a sputtering method, a vapor deposition method (resistance heating vapor deposition method, electron beam vapor deposition method, etc.), electrolytic plating, electroless plating method, and the like. . It is preferable to use a sputtering method or a vapor deposition method because it is easy to adjust the thin film formation conditions.
 さらに、金属薄膜7の厚さとしては、特に限定されるものではないが、好ましくは、金:5~500nm、銀:5~500nm、アルミニウム:5~500nm、銅:5~500nm、白金:5~500nm、および、それらの合金:5~500nmの範囲内であるのが望ましい。 Further, the thickness of the metal thin film 7 is not particularly limited, but preferably gold: 5 to 500 nm, silver: 5 to 500 nm, aluminum: 5 to 500 nm, copper: 5 to 500 nm, platinum: 5 Desirably within the range of ˜500 nm and their alloys: 5 to 500 nm.
 なお、電場増強効果の観点からは、金属薄膜7の厚さは、より好ましくは、金:20~70nm、銀:20~70nm、アルミニウム:10~50nm、銅:20~70nm、白金:20~70nm、および、それらの合金:10~70nmの範囲内であるのが望ましい。 From the viewpoint of the electric field enhancement effect, the thickness of the metal thin film 7 is more preferably gold: 20 to 70 nm, silver: 20 to 70 nm, aluminum: 10 to 50 nm, copper: 20 to 70 nm, platinum: 20 to 70 nm and their alloys: preferably in the range of 10-70 nm.
 金属薄膜7の厚さが上記範囲内であれば、表面プラズモン光(粗密波)が発生し易く好適である。また、このような厚さを有する金属薄膜7であれば、大きさ(縦×横)の寸法、形状は、特に限定されない。
2-2.リガンドの固相支持体の固定
2-2-1 SAMの形成
 この誘電体部材8の金属薄膜7の上面に、リガンド4の固相支持体3が固定される(図2および図3参照)。
If the thickness of the metal thin film 7 is within the above range, it is preferable that surface plasmon light (coherent wave) is easily generated. In addition, as long as the metal thin film 7 has such a thickness, the size (vertical x horizontal) size and shape are not particularly limited.
2-2. Ligand solid phase support fixation 2-2-1 Formation of SAM The solid phase support 3 of the ligand 4 is fixed on the upper surface of the metal thin film 7 of the dielectric member 8 (see FIGS. 2 and 3).
 この固相支持体3を固定化する足場として、誘電体部材8の金属薄膜7上に、SAM(Self-Assembled Monolayer;自己組織化単分子膜)が形成されるのが望ましい(図示省略)。 It is desirable that a SAM (Self-Assembled Monolayer) is formed on the metal thin film 7 of the dielectric member 8 as a scaffold for immobilizing the solid support 3 (not shown).
 SAMは、固相支持体3を固定化する足場として、また、SPFS用センサーチップを蛍光測定方法に用いた場合に、蛍光分子の金属消光を防止する目的で、誘電体部材8の金属薄膜7とは接していない、センサーチップもう一方の表面、すなわち金属薄膜7に対して誘電体部材8とは反対側の金属薄膜7の表面に形成される。 The SAM is used as a scaffold for immobilizing the solid support 3, and when the SPFS sensor chip is used in the fluorescence measurement method, the metal thin film 7 of the dielectric member 8 is used for the purpose of preventing metal quenching of the fluorescent molecules. Is formed on the other surface of the sensor chip that is not in contact with the metal chip, that is, on the surface of the metal thin film 7 opposite to the dielectric member 8 with respect to the metal thin film 7.
 SAMが含む単分子としては、通常、炭素原子数4~20程度のカルボキシアルカンチオール(例えば、(株)同仁化学研究所、シグマ アルドリッチ ジャパン(株)などから入手可能)、特に好ましくは、10-カルボキシ-1-デカンチオールが用いられる。 As a single molecule contained in SAM, usually a carboxyalkanethiol having about 4 to 20 carbon atoms (for example, available from Dojindo Laboratories Co., Ltd., Sigma Aldrich Japan Co., Ltd.), particularly preferably 10- Carboxy-1-decanethiol is used.
 炭素原子数4~20のカルボキシアルカンチオールは、それを用いて形成されたSAMが、透明性が高く、屈折率が低く、膜厚が薄いなどの性質を有しており、光学的な影響が少ないので好適である。 Carboxyalkanethiol having 4 to 20 carbon atoms has properties such as high transparency, low refractive index, and thin film thickness. It is preferable because it is small.
 このようなSAMの形成方法としては、特に限定されるものではなく、従来公知の方法を用いることができる。例えば、誘電体部材8の金属薄膜7の表面に、マスク材からなる層が形成されたものを、10-カルボキシ-1-デカンチオール((株)同仁化学研究所製)を含むエタノール溶液に浸漬する方法などが挙げられる。 Such a SAM formation method is not particularly limited, and a conventionally known method can be used. For example, the surface of the metal thin film 7 of the dielectric member 8 on which the layer made of the mask material is formed is immersed in an ethanol solution containing 10-carboxy-1-decanethiol (manufactured by Dojindo Laboratories). The method of doing is mentioned.
 このように、10-カルボキシ-1-デカンチオールが有するチオール基が、金属と結合し固定化され、金薄薄膜7の表面上で自己組織化し、SAMが形成される。また、SAMを形成する代わりに「誘電体からなるスペーサ層」を形成してもよい。 Thus, the thiol group possessed by 10-carboxy-1-decanethiol is bonded to the metal and immobilized, and self-assembles on the surface of the thin gold film 7 to form a SAM. Further, a “spacer layer made of a dielectric” may be formed instead of forming the SAM.
 この場合、スペーサ層は、有機物とケイ素から構成される化合物で、分子中に2種以上の異なった反応基を持つシランカップリング剤などを用いて形成することが好ましい。シランカップリング剤としては、加水分解でシラノール基〔Si-OH〕を与えるエトキシ基またはメトキシ基を有し、他端にアミノ基やグリシジル基、カルボキシル基などの反応基を有する分子が特に利用できる。
2-2-2 固相支持体の固定
 このように誘電体部材8の金属薄膜7上にSAMが形成された後、SAMの金属薄膜7とは接していないもう一方の表面にリガンド4の固相支持体3が固定される(図2および図3参照、一部不図示)。
In this case, the spacer layer is a compound composed of an organic substance and silicon, and is preferably formed using a silane coupling agent having two or more different reactive groups in the molecule. As the silane coupling agent, a molecule having an ethoxy group or a methoxy group that gives a silanol group [Si—OH] by hydrolysis and a reactive group such as an amino group, a glycidyl group, or a carboxyl group at the other end can be particularly used. .
2-2-2 Fixing of Solid-phase Support After the SAM is formed on the metal thin film 7 of the dielectric member 8 in this way, the ligand 4 is immobilized on the other surface not in contact with the metal thin film 7 of the SAM. The phase support 3 is fixed (see FIG. 2 and FIG. 3, partially not shown).
 この固相支持体3は、図2および図3に示したように、3次元構造を有するものであることが望ましい。この場合、「3次元構造」とは、後述するリガンド4の固定化を、センサーチップ表面(およびその近傍)の2次元に限定することなく、センサーチップ表面から遊離した3次元空間にまで広げられる固相支持体3の構造をいう。 The solid support 3 preferably has a three-dimensional structure as shown in FIGS. In this case, the “three-dimensional structure” means that the fixation of the ligand 4 described later is not limited to two dimensions on the sensor chip surface (and its vicinity), but can be expanded to a three-dimensional space free from the sensor chip surface. This refers to the structure of the solid support 3.
 このような固相支持体3は、特に限定されるものではないが、例えば、
・グルコース、カルボキシメチル化グルコース、
・ビニルエステル類、アクリル酸エステル類、メタクリル酸エステル類、クロトン酸エステル類、イタコン酸ジエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、
・オレフィン類、スチレン類、アリル化合物類、ビニルエーテル類、ビニルケトン類、
・それぞれに包含される単量体、からなる群より選択される少なくとも1種の単量体から構成される高分子を含むことが好ましい。
Such a solid support 3 is not particularly limited, but for example,
Glucose, carboxymethylated glucose,
・ Vinyl esters, acrylic acid esters, methacrylic acid esters, crotonic acid esters, itaconic acid diesters, maleic acid diesters, fumaric acid diesters,
・ Olefins, styrenes, allyl compounds, vinyl ethers, vinyl ketones,
-It is preferable to include a polymer composed of at least one monomer selected from the group consisting of monomers included in each.
 さらに、例えば、
・デキストラン、デキストラン誘導体などの親水性高分子、
・ビニルエステル類、アクリル酸エステル類、メタクリル酸エステル類、クロトン酸エステル類、イタコン酸ジエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、
・オレフィン類、スチレン類、アリル化合物類、ビニルエーテル類、ビニルケトン類、
・それぞれに包含される疎水性単量体から構成される疎水性高分子、
を含むことがより好ましい。
In addition, for example,
・ Hydrophilic polymers such as dextran and dextran derivatives,
・ Vinyl esters, acrylic acid esters, methacrylic acid esters, crotonic acid esters, itaconic acid diesters, maleic acid diesters, fumaric acid diesters,
・ Olefins, styrenes, allyl compounds, vinyl ethers, vinyl ketones,
-Hydrophobic polymers composed of hydrophobic monomers included in each,
It is more preferable to contain.
 また、カルボキシメチルデキストラン(CMD)が、生体親和性、非特異的な吸着反応の抑制性、高い親水性の観点から特に好適である。この場合、CMDの分子量は、1kDa以上5000kDa以下が好ましく、4kDa以上1000kDaがより好ましい。 Also, carboxymethyl dextran (CMD) is particularly preferable from the viewpoint of biocompatibility, suppression of nonspecific adsorption reaction, and high hydrophilicity. In this case, the molecular weight of CMD is preferably 1 kDa or more and 5000 kDa or less, and more preferably 4 kDa or more and 1000 kDa.
 このように、固相支持体3が、カルボキシメチルデキストランであれば、アナライト6を捕捉するための抗体を高密度に固定化でき、極微量のアナライト6を高感度で、かつ高精度に測定できる。また、検体希釈用液に含有されたカルボキシメチルデキストランとの帯電特性おける相互作用を有効に利用できる。 Thus, if the solid support 3 is carboxymethyldextran, the antibody for capturing the analyte 6 can be immobilized at a high density, and a very small amount of the analyte 6 can be highly sensitive and accurate. It can be measured. Further, it is possible to effectively utilize the interaction in the charging characteristics with carboxymethyldextran contained in the sample dilution liquid.
 また、固相支持体3(例えば、デキストランまたはデキストラン誘導体からなるもの)は、その密度として、2ng/mm2未満を有することが好ましい。この場合、固相支持体3の密度は、用いる高分子の種類に応じて適宜調整することができる。 Moreover, it is preferable that the solid support 3 (for example, one made of dextran or a dextran derivative) has a density of less than 2 ng / mm 2 . In this case, the density of the solid support 3 can be appropriately adjusted according to the type of polymer used.
 このような高分子が、SAMに、このような密度の範囲内で固相化されていると、SPFS用センサーチップを蛍光測定方法に用いた場合に、アッセイのシグナルが安定化し、かつ増加するため好適である。
2-3 リガンドの固定
 このように誘電体部材8の金属薄膜7上にSAMおよび固相支持体3を形成した後、リガンド4が、固相支持体3に固定化される(図2および図3参照)。
When such a polymer is immobilized on the SAM within the density range, the assay signal is stabilized and increased when the SPFS sensor chip is used in the fluorescence measurement method. Therefore, it is preferable.
2-3 Immobilization of Ligand After forming the SAM and the solid support 3 on the metal thin film 7 of the dielectric member 8 in this way, the ligand 4 is immobilized on the solid support 3 (FIGS. 2 and 2). 3).
 すなわち、リガンド4が、固相支持体3の3次元構造の中に分散して固定化され、例えば、SPFS用センサーチップを蛍光測定方法に用いた際に、検体中のアナライト6を固定(捕捉)させる目的で用いられる(図2および図3参照)。 That is, the ligand 4 is dispersed and immobilized in the three-dimensional structure of the solid support 3. For example, when the SPFS sensor chip is used in the fluorescence measurement method, the analyte 6 in the specimen is immobilized ( (See FIGS. 2 and 3).
 このような「分子」または「分子断片」としては、特に限定されるものではなく、例えば、
・核酸(一本鎖であっても二本鎖であってもよいDNA、RNA、ポリヌクレオチド、オリゴヌクレオチド、PNA(ペプチド核酸)等、ヌクレオシド、ヌクレオチドおよびそれらの修飾分子)、
・タンパク質(ポリペプチド、オリゴペプチド等)、
・アミノ酸(修飾アミノ酸も含む。)、
・糖質(オリゴ糖、多糖類、糖鎖等)、
・脂質、
・これらの修飾分子、複合体
などが挙げられる。
Such “molecule” or “molecular fragment” is not particularly limited, and for example,
-Nucleic acids (DNA, RNA, polynucleotide, oligonucleotide, PNA (peptide nucleic acid), etc., which may be single-stranded or double-stranded, nucleosides, nucleotides and their modified molecules),
・ Proteins (polypeptides, oligopeptides, etc.),
・ Amino acids (including modified amino acids),
・ Sugar (oligosaccharides, polysaccharides, sugar chains, etc.),
・ Lipids,
-These modifying molecules, complexes, etc. are mentioned.
 この場合、タンパク質としては、例えば、抗体などが挙げられ、具体的には、抗αフェトプロテイン(AFP)モノクローナル抗体((株)日本医学臨床検査研究所などから入手可能)、抗ガン胎児性抗原(CEA)モノクローナル抗体、抗CA19-9モノクローナル抗体、抗PSAモノクローナル抗体などが挙げられる。 In this case, examples of the protein include an antibody. Specifically, an anti-α fetoprotein (AFP) monoclonal antibody (available from Japan Medical Laboratory) or an anti-carcinoembryonic antigen ( CEA) monoclonal antibody, anti-CA19-9 monoclonal antibody, anti-PSA monoclonal antibody and the like.
 なお、本発明において、「抗体」という用語は、ポリクローナル抗体またはモノクローナル抗体、遺伝子組換えにより得られる抗体、および抗体断片を包含する。このリガンド4の固定化方法としては、例えば、以下の方法が使用できる。
・カルボキシメチルデキストラン(CMD)などの反応性官能基を有する高分子が有するカルボキシル基を、水溶性カルボジイミド(WSC)(例えば、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)など)と、N-ヒドロキシコハク酸イミド(NHS)とにより活性エステル化する。
In the present invention, the term “antibody” includes polyclonal or monoclonal antibodies, antibodies obtained by gene recombination, and antibody fragments. As a method for immobilizing the ligand 4, for example, the following method can be used.
A carboxyl group possessed by a polymer having a reactive functional group such as carboxymethyldextran (CMD) is converted into a water-soluble carbodiimide (WSC) (for example, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) And the like) and N-hydroxysuccinimide (NHS).
 そして、このように活性エステル化したカルボキシル基と、リガンド4が有するアミノ基とを、水溶性カルボジイミドを用いて脱水反応させ固定化させる方法、
・SAMが有するカルボキシル基を、上述のようにしてリガンド4が有するアミノ基と脱水反応させ固定化させる方法、
などが挙げられる。
And, a method of dehydrating and immobilizing the carboxyl group thus active esterified and the amino group of the ligand 4 using water-soluble carbodiimide,
A method in which the carboxyl group of SAM is dehydrated and immobilized with the amino group of ligand 4 as described above,
Etc.
 なお、固相支持体3の中および外面に固定化されたリガンド4の密度は、1フェムトmol/cm2以上1ナノmol/cm2以下が好ましく、10フェムトmol/cm2以上100ピコmol/cm2以下がより好ましい。すなわち、リガンド4の密度が上記範囲内であると、信号強度が大きくなるために望ましい。
2-4.試料溶液の調製
 上記のように調製した検体希釈用液に検体を混合した試料溶液(混合液)を調製する。
The density of the ligand 4 immobilized on the outer surface of the solid support 3 is preferably 1 femto mol / cm 2 or more and 1 nano mol / cm 2 or less, preferably 10 femto mol / cm 2 or more and 100 pico mol /. More preferred is cm 2 or less. That is, it is desirable that the density of the ligand 4 is within the above range because the signal intensity increases.
2-4. Preparation of Sample Solution A sample solution (mixed solution) is prepared by mixing the sample with the sample dilution solution prepared as described above.
 なお、ここで用いられる試料溶液は、検体を用いて調製された溶液であり、例えば、検体と試薬とを混合して検体中に含有されるアナライト6に、蛍光物質を結合させるための処理をしたものが挙げられる。 The sample solution used here is a solution prepared using a specimen. For example, a process for mixing a specimen and a reagent to bind a fluorescent substance to the analyte 6 contained in the specimen. The one that has been.
 このような検体としては、血液(血清・血漿),尿,鼻孔液,唾液,便,体腔液(髄液,腹水,胸水等)などが挙げられ、所望の溶媒、緩衝液等に適宜希釈して用いてもよい。これら検体のうち、血液,血清,血漿,尿,鼻孔液および唾液が好ましい。 Examples of such specimens include blood (serum / plasma), urine, nasal fluid, saliva, stool, body cavity fluid (spinal fluid, ascites, pleural effusion, etc.), etc. May be used. Of these samples, blood, serum, plasma, urine, nasal fluid and saliva are preferred.
 また、検体中に含有されるアナライト6は、例えば、
・核酸(一本鎖であっても二本鎖であってもよいDNA、RNA、ポリヌクレオチド、オリゴヌクレオチド、PNA(ペプチド核酸)等、またはヌクレオシド、ヌクレオチドおよびそれらの修飾分子)、
・タンパク質(ポリペプチド、オリゴペプチド等)、
・アミノ酸(修飾アミノ酸も含む。)、
・糖質(オリゴ糖、多糖類、糖鎖等)、
・脂質、
・これらの修飾分子、複合体
などが挙げられ、具体的には、AFP(αフェトプロテイン)等のがん胎児性抗原や腫瘍マーカー、シグナル伝達物質、ホルモンなどであってもよく、特に限定されない。
2-5.試料溶液とセンサーチップとの接触
 このように調製した試料溶液を、上記のように誘電体部材8の金属薄膜7上にSAM、リガンド4の固相支持体3が固定されたセンサーチップと接触させる(図2参照)。
The analyte 6 contained in the specimen is, for example,
-Nucleic acids (DNA, RNA, polynucleotides, oligonucleotides, PNA (peptide nucleic acids) etc., or nucleosides, nucleotides and their modified molecules, which may be single-stranded or double-stranded),
・ Proteins (polypeptides, oligopeptides, etc.),
・ Amino acids (including modified amino acids),
・ Sugar (oligosaccharides, polysaccharides, sugar chains, etc.),
・ Lipids,
-These modifying molecules, complexes and the like can be mentioned, and specifically, carcinoembryonic antigens such as AFP (α-fetoprotein), tumor markers, signaling substances, hormones and the like may be used, and there is no particular limitation.
2-5. Contact between sample solution and sensor chip The sample solution thus prepared is brought into contact with the sensor chip on which the solid support 3 of SAM and ligand 4 is fixed on the metal thin film 7 of the dielectric member 8 as described above. (See FIG. 2).
 この場合、接触方法としては、特に限定されるものではなく、例えば、センサーチップ上に流路を形成して試料溶液を送液して接触させる方法や、センサーチップ上にウェルを形成してこのウェル内に試料溶液を供給する方法などを採用することができる。 In this case, the contact method is not particularly limited. For example, a method of forming a flow path on the sensor chip and feeding the sample solution to contact, or a method of forming a well on the sensor chip A method of supplying a sample solution into the well can be employed.
 なお、送液の場合には、送液中の検体中に含有されるアナライト6の初期濃度は、100μg/ml~0.001pg/mlであってもよい。また、送液の総量、すなわち流路の容積としては、通常0.001~20ml、好ましくは0.1~1mlである。さらに、送液の流速は、通常1~2,000μl/min、好ましくは5~500μl/minである。
2-6洗浄工程
 このように試料溶液を、誘電体部材8の金属薄膜7上にSAM、リガンド4の固相支持体3が固定されたセンサーチップと接触させた後(図2参照)、センサーチップの表面を洗浄する。
In the case of liquid feeding, the initial concentration of the analyte 6 contained in the specimen during liquid feeding may be 100 μg / ml to 0.001 pg / ml. Further, the total amount of liquid feeding, that is, the volume of the flow path is usually 0.001 to 20 ml, preferably 0.1 to 1 ml. Further, the flow rate of the liquid feeding is usually 1 to 2,000 μl / min, preferably 5 to 500 μl / min.
2-6 Cleaning Step After contacting the sample solution with the sensor chip on which the solid support 3 of SAM and ligand 4 is fixed on the metal thin film 7 of the dielectric member 8 as described above (see FIG. 2), the sensor Clean the tip surface.
 洗浄工程に使用される洗浄液としては、例えば、
・リン酸緩衝生理食塩水(PBS)、トリス緩衝生理食塩水(TBS)、HEPES緩衝生理食塩水(HBS)に、Tween20(モノ-9-オクタデカノエート ポリ(オキシ-1,2-エタンジイル)の誘導体),TritonX100などの界面活性剤を溶解させ、好ましくは、界面活性剤を0.00001~1重量%含有するもの、
・塩化ナトリウムや塩化カリウムなどの塩を10~500mM含有するもの
などが望ましい。
As the cleaning liquid used in the cleaning process, for example,
-Tween 20 (mono-9-octadecanoate poly (oxy-1,2-ethanediyl) in phosphate buffered saline (PBS), Tris buffered saline (TBS), HEPES buffered saline (HBS) A surfactant such as Triton X100, preferably containing 0.00001 to 1% by weight of a surfactant,
-Desirable is a salt containing 10 to 500 mM salt such as sodium chloride or potassium chloride.
 また、低pHの緩衝液、例えば、10mM Glycine HClで、pHが1.5~4.0のものであってもよい。洗浄液を送液する場合には、循環させる温度および流速は、上記の試料溶液を循環させる温度および流速と同じであることが好ましい。なお、洗浄液を循環させる時間は、通常0.5~180分間、好ましくは5~60分間である。
2-7.蛍光標識抗体溶液とセンサーチップとの接触
2-7-1 蛍光標識抗体の作製
 蛍光標識抗体5は、蛍光物質とコンジュゲートされた抗体である(図3参照)。
蛍光標識抗体5の作製方法としては、
・例えば、蛍光物質にカルボキシル基を付与し、該カルボキシル基を、水溶性カルボジイミド〔WSC〕(例えば、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩〔EDC〕など)とN-ヒドロキシコハク酸イミド〔NHS〕とにより活性エステル化し、次いで活性エステル化したカルボキシル基と抗体が有するアミノ基とを水溶性カルボジイミドを用いて脱水反応させ固定化させる方法、
・イソチオシアネートおよびアミノ基をそれぞれ有する抗体と蛍光物質とを反応させ固定化する方法、
・スルホニルハライドおよびアミノ基をそれぞれ有する2次抗体と蛍光物質とを反応させ固定化する方法、
・ヨードアセトアミドおよびチオール基をそれぞれ有する抗体と蛍光物質とを反応させ固定化する方法、
・あるいは、ビオチン化された蛍光物質とストレプトアビジン化された抗体(あるいは、ストレプトアビジン化された蛍光物質とビオチン化された抗体)とを反応させ固定化する方法などが挙げられる。
Alternatively, a low pH buffer solution such as 10 mM Glycine HCl having a pH of 1.5 to 4.0 may be used. When the cleaning liquid is fed, the temperature and flow rate to circulate are preferably the same as the temperature and flow rate to circulate the sample solution. The time for circulating the cleaning liquid is usually 0.5 to 180 minutes, preferably 5 to 60 minutes.
2-7. Contact of Fluorescent Labeled Antibody Solution with Sensor Chip 2-7-1 Preparation of Fluorescent Labeled Antibody Fluorescent labeled antibody 5 is an antibody conjugated with a fluorescent substance (see FIG. 3).
As a production method of the fluorescent labeled antibody 5,
For example, a carboxyl group is added to a fluorescent substance, and the carboxyl group is converted into water-soluble carbodiimide [WSC] (for example, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride [EDC]) and N— A method in which a carboxyl group formed by active esterification with hydroxysuccinimide [NHS] and then an amino group possessed by the active ester is dehydrated and immobilized using water-soluble carbodiimide,
A method of reacting and immobilizing an antibody having an isothiocyanate and an amino group with a fluorescent substance,
A method of reacting and immobilizing a secondary antibody having a sulfonyl halide and an amino group, respectively, and a fluorescent substance;
A method of reacting and immobilizing an antibody having an iodoacetamide and a thiol group and a fluorescent substance,
-Alternatively, there may be mentioned a method in which a biotinylated fluorescent substance and a streptavidinated antibody (or a streptavidinated fluorescent substance and a biotinylated antibody) are reacted and immobilized.
 また、蛍光物質とは、所定の励起光を照射する、または電界効果を利用して励起することによって蛍光を発光する物質の総称であり、蛍光は、燐光など各種の発光も含む。本発明で用いられる蛍光物質は、金属薄膜7による吸光に起因する消光を受けない限りにおいて、その種類に特に制限はなく、公知の蛍光物質のいずれであってもよい。 Further, the fluorescent substance is a general term for substances that emit fluorescence by irradiating predetermined excitation light or by using a field effect, and the fluorescence includes various kinds of light emission such as phosphorescence. The fluorescent material used in the present invention is not particularly limited as long as it is not quenched due to light absorption by the metal thin film 7, and may be any known fluorescent material.
 一般に、単色比色計(monochromometer)よりむしろフィルターを備えた蛍光計の使用をも可能にし、かつ検出の効率を高める大きなストークス・シフトを有する蛍光物質が好ましい。 In general, a fluorescent material having a large Stokes shift that enables the use of a fluorometer equipped with a filter rather than a monochromator and also increases the efficiency of detection is preferred.
 このような蛍光物質としては、
・例えば、フルオレセイン・ファミリーの蛍光物質(Integrated DNA Technologies社製)、
・ポリハロフルオレセイン・ファミリーの蛍光物質(アプライドバイオシステムズジャパン(株)製)、
・ヘキサクロロフルオレセイン・ファミリーの蛍光物質(アプライドバイオシステムズジャパン(株)製)、
・クマリン・ファミリーの蛍光物質(インビトロジェン(株)製)、
・ローダミン・ファミリーの蛍光物質(GEヘルスケア バイオサイエンス(株)製)、
・シアニン・ファミリーの蛍光物質、
・インドカルボシアニン・ファミリーの蛍光物質,オキサジン・ファミリーの蛍光物質、
・チアジン・ファミリーの蛍光物質,スクアライン・ファミリーの蛍光物質、
・キレート化ランタニド・ファミリーの蛍光物質,BODIPY(登録商標)
・ファミリーの蛍光物質(インビトロジェン(株)製)、
・ナフタレンスルホン酸・ファミリーの蛍光物質、
・ピレン・ファミリーの蛍光物質、
・トリフェニルメタン・ファミリーの蛍光物質、
・Alexa Fluor(登録商標)色素シリーズ(インビトロジェン(株)製)
などが挙げられる。
As such a fluorescent substance,
-For example, a fluorescent substance of the fluorescein family (manufactured by Integrated DNA Technologies),
-Polyhalofluorescein family fluorescent material (Applied Biosystems Japan Co., Ltd.),
・ Fluorescent substance of hexachlorofluorescein family (Applied Biosystems Japan Co., Ltd.),
-Coumarin family fluorescent material (Invitrogen),
・ Rhodamine family fluorescent substance (manufactured by GE Healthcare Biosciences)
・ Cyanine family fluorescent material,
・ Indocarbocyanine family fluorescent material, Oxazine family fluorescent material,
・ Thioazine family fluorescent material, squarain family fluorescent material,
• BODIPY®, a chelating lanthanide family fluorescent material
・ Family fluorescent material (manufactured by Invitrogen),
・ Naphthalene sulfonic acid ・ Fluorescent materials in the family
・ Pyrene family fluorescent materials,
・ Fluorescent substances of the triphenylmethane family,
-Alexa Fluor (registered trademark) dye series (manufactured by Invitrogen Corporation)
Etc.
 さらに、米国特許番号第6,406,297号、同第6,221,604号、同第5,994,063号、同第5,808,044号、同第5,880,287号、同第5,556,959号および同第5,135,717号に記載の蛍光物質も本発明で用いることができる。 Furthermore, U.S. Patent Nos. 6,406,297, 6,221,604, 5,994,063, 5,808,044, 5,880,287, The fluorescent materials described in US Pat. Nos. 5,556,959 and 5,135,717 can also be used in the present invention.
 また、本発明に使用可能な蛍光物質は、上記有機蛍光物質に限られない。例えばEu,Tb等の希土類錯体系の蛍光物質も、本発明に用いられる蛍光物質となりうる。希土類錯体は、一般的に励起波長(310~340nm程度)と発光波長(Eu錯体で615nm付近、Tb錯体で545nm付近)との波長差が大きく、蛍光寿命が数百マイクロ秒以上と長い特徴がある。市販されている希土類錯体系の蛍光物質の一例としては、ATBTA-Eu3+が挙げられる。 Moreover, the fluorescent substance that can be used in the present invention is not limited to the organic fluorescent substance. For example, rare earth complex fluorescent materials such as Eu and Tb can also be used as fluorescent materials in the present invention. Rare earth complexes are generally characterized by a large wavelength difference between the excitation wavelength (about 310 to 340 nm) and the emission wavelength (about 615 nm for Eu complex and 545 nm for Tb complex) and a long fluorescence lifetime of several hundred microseconds or more. is there. An example of a commercially available rare earth complex fluorescent material is ATBTA-Eu 3+ .
 本発明においては、後述する蛍光測定を行う際に、金属薄膜7に含まれる金属による吸光の少ない波長領域に最大蛍光波長を有する蛍光物質を用いることが望ましい。 In the present invention, it is desirable to use a fluorescent material having a maximum fluorescence wavelength in a wavelength region where light absorption by the metal contained in the metal thin film 7 is small when performing fluorescence measurement described later.
 例えば、金属薄膜7として金を用いる場合には、金属薄膜7による吸光による影響を最小限に抑えるため、最大蛍光波長が600nm以上である蛍光物質を使用することが望ましい。 For example, when gold is used as the metal thin film 7, it is desirable to use a fluorescent material having a maximum fluorescence wavelength of 600 nm or more in order to minimize the influence of light absorption by the metal thin film 7.
 従って、この場合には、Cy5,Alexa Fluor(登録商標)647などの近赤外領域に最大蛍光波長を有する蛍光物質を用いることが特に望ましい。このような近赤外領域に最大蛍光波長を有する蛍光物質を用いることは、血液中の血球成分由来の鉄による吸光の影響を最小限に抑えることができる点で、検体として血液を用いる場合においても有用である。 Therefore, in this case, it is particularly desirable to use a fluorescent material having a maximum fluorescence wavelength in the near infrared region, such as Cy5, Alexa Fluor (registered trademark) 647. The use of a fluorescent substance having the maximum fluorescence wavelength in the near-infrared region can minimize the influence of light absorption by iron derived from blood cell components in the blood. Is also useful.
 一方、金属薄膜7として銀を用いる場合には、最大蛍光波長が400nm以上である蛍光物質を使用することが望ましい。なお、これら蛍光物質は1種単独でも、2種以上併用してもよい。
2-7-2 蛍光標識抗体溶液とセンサーチップとの接触
 試料溶液とセンサーチップとを接触させてセンサーチップ上のリガンド4にアナライト6を結合させる(図2参照)。そして、このセンサーチップに対して、蛍光標識抗体5を含む溶液を接触させて蛍光標識抗体5をアナライト6に結合させる(図3参照)。この工程は、好ましくは上記洗浄工程の後に行われる。また、この工程に続いて、さらに上記洗浄工程を行うことがより好ましい。
On the other hand, when silver is used as the metal thin film 7, it is desirable to use a fluorescent material having a maximum fluorescence wavelength of 400 nm or more. These fluorescent materials may be used alone or in combination of two or more.
2-7-2 Contact between Fluorescent Labeled Antibody Solution and Sensor Chip The sample solution is brought into contact with the sensor chip to bind the analyte 6 to the ligand 4 on the sensor chip (see FIG. 2). Then, the sensor chip is brought into contact with a solution containing the fluorescently labeled antibody 5 to bind the fluorescently labeled antibody 5 to the analyte 6 (see FIG. 3). This step is preferably performed after the washing step. Moreover, it is more preferable to perform the said washing | cleaning process further after this process.
 蛍光標識抗体溶液をセンサーチップに送液して蛍光標識抗体5をアナライト6に結合させる際に、送液する蛍光標識抗体溶液の濃度は、0.001μg/ml以上、10,000μg/ml以下であることが好ましく、1μg/ml以上、1,000μg/ml以下であることがより好ましい。 When the fluorescent labeled antibody solution is sent to the sensor chip and the fluorescent labeled antibody 5 is bound to the analyte 6, the concentration of the fluorescent labeled antibody solution to be sent is 0.001 μg / ml or more and 10,000 μg / ml or less. It is preferably 1 μg / ml or more and 1,000 μg / ml or less.
 また、蛍光標識抗体溶液を送液する際の好ましい流速は、試料溶液の送液の場合と同様である。
2-8.蛍光測定
 このようにして得られたセンサーチップに、誘電体部材8の、金属薄膜7を形成していないもう一方の表面(図2において誘電体部材8の下面)から、プリズムを経由して励起光としてのレーザー光9を照射し(図3参照)、励起された蛍光物質から発光された蛍光量を測定する。
Moreover, the preferable flow rate at the time of sending the fluorescence labeled antibody solution is the same as that at the time of sending the sample solution.
2-8. Fluorescence measurement The sensor chip thus obtained is excited via the prism from the other surface of the dielectric member 8 where the metal thin film 7 is not formed (the lower surface of the dielectric member 8 in FIG. 2). Laser light 9 as light is irradiated (see FIG. 3), and the amount of fluorescence emitted from the excited fluorescent material is measured.
 本発明に係る蛍光測定方法で用いる光源は、金属薄膜7にプラズモン励起を生じさせることができるものであれば、特に制限がないものの、波長分布の単一性および光エネルギーの強さの点で、レーザー光を光源として用いることが好ましい。 The light source used in the fluorescence measurement method according to the present invention is not particularly limited as long as it can cause plasmon excitation in the metal thin film 7, but in terms of unity of wavelength distribution and intensity of light energy. It is preferable to use laser light as a light source.
 レーザー光9は、光学フィルター、集光レンズなどを通して、プリズムに入射する直前のエネルギーおよびフォトン量を調節することが望ましい。レーザー光9の照射により、減衰全反射(ATR)の条件において、金属薄膜7の表面に表面プラズモンが発生する。表面プラズモンの電場増強効果により、照射したフォトン量の数十~数百倍に増えたフォトンにより蛍光物質を励起する。 It is desirable to adjust the energy and photon amount immediately before the laser light 9 enters the prism through an optical filter, a condenser lens, and the like. Irradiation with the laser beam 9 generates surface plasmons on the surface of the metal thin film 7 under the condition of attenuated total reflection (ATR). Due to the electric field enhancement effect of the surface plasmon, the fluorescent material is excited by photons that are increased by several tens to several hundred times the amount of photons irradiated.
 なお、電場増強効果によるフォトン増加量は、誘電体部材8の屈折率、金属薄膜7の金属種およびその膜厚に依存するが、通常、金では約10~20倍の増加量となる。蛍光物質は、光吸収により分子内の電子が励起され、短時間のうちに第一電子励起状態に移動し、この状態(準位)から基底状態に戻る際、そのエネルギー差に相当する波長の蛍光を発する。 Note that the photon increase amount due to the electric field enhancement effect depends on the refractive index of the dielectric member 8, the metal species of the metal thin film 7, and the film thickness thereof, but is usually about 10 to 20 times the increase amount in gold. In the fluorescent substance, electrons in the molecule are excited by light absorption, move to the first electron excited state in a short time, and when returning from this state (level) to the ground state, the wavelength of the wavelength corresponding to the energy difference Fluoresce.
 また、用いるレーザー光9としては、例えば、波長200~900nm,0.001~1,000mWのLD;波長230~800nm(金属薄膜7に用いる金属種によって共鳴波長が決まる。),0.01~100mWの半導体レーザーなどが挙げられる。 Further, as the laser light 9 to be used, for example, an LD with a wavelength of 200 to 900 nm, 0.001 to 1,000 mW; a wavelength of 230 to 800 nm (resonance wavelength is determined by the metal species used for the metal thin film 7), 0.01 to A 100 mW semiconductor laser can be used.
 なお、「プリズム」は、各種フィルターを介したレーザー光9が、SPFS用センサーチップに効率よく入射することを目的としており、屈折率が誘電体部材8と同じであることが好ましい。 The “prism” is intended to allow the laser light 9 through various filters to efficiently enter the SPFS sensor chip, and preferably has the same refractive index as that of the dielectric member 8.
 本発明は、減衰全反射の条件を設定できる各種プリズムを適宜選択することができることから、角度、形状に特に制限はなく、例えば、60度分散プリズムなどであってもよい。このようなプリズムの市販品としては、上述した「ガラス製の誘電体部材」の市販品と同様のものが挙げられる。 In the present invention, various prisms that can set conditions for attenuated total reflection can be appropriately selected. Therefore, the angle and shape are not particularly limited, and may be, for example, a 60-degree dispersion prism. Examples of such commercially available prisms include those similar to the above-described commercially available “glass dielectric member”.
 なお、「光学フィルター」としては、例えば、減光(ND)フィルター、偏光フィルター、カットフィルター、ダイアフラムレンズなどが挙げられる。この場合、「減光(ND)フィルター」(または、中性濃度フィルター)は、入射レーザー光量を調節することを目的とするものである。特に、ダイナミックレンジの狭い検出器を使用するときには精度の高い測定を実施する上で用いることが好ましい。 In addition, examples of the “optical filter” include a neutral density (ND) filter, a polarizing filter, a cut filter, and a diaphragm lens. In this case, the “darkening (ND) filter” (or neutral density filter) is intended to adjust the amount of incident laser light. In particular, when a detector with a narrow dynamic range is used, it is preferable to use it for carrying out a highly accurate measurement.
 また、「偏光フィルター」は、レーザー光を、表面プラズモンを効率よく発生させるP偏光とするために用いられるものである。さらに、「カットフィルター」は、外光(装置外の照明光)、励起光(励起光の透過成分)、迷光(各所での励起光の散乱成分)、プラズモンの散乱光(励起光を起源とし、SPFS用センサーチップ表面上の構造体または付着物などの影響で発生する散乱光)などの光学ノイズ,および蛍光物質の自家蛍光を除去するフィルターであって、例えば、干渉フィルター,色フィルターなどが挙げられる。 Also, the “polarizing filter” is used for converting the laser light into P-polarized light that efficiently generates surface plasmons. In addition, the “cut filter” includes external light (illumination light outside the device), excitation light (excitation light transmission component), stray light (excitation light scattering component in various places), and plasmon scattering light (excitation light originates from the excitation light). , A filter that removes optical noise such as scattered light generated by the influence of structures or deposits on the surface of a sensor chip for SPFS, and autofluorescence of a fluorescent substance, such as an interference filter, a color filter, etc. Can be mentioned.
 また、「集光レンズ」は、検出器に蛍光シグナルを効率よく集光することを目的とするものであり、任意の集光系でよい。簡易な集光系として、顕微鏡などで使用されている、市販の対物レンズ(例えば、(株)ニコン製またはオリンパス(株)製等)を転用してもよい。対物レンズの倍率としては、10~100倍が好ましい。 The “condensing lens” is intended to efficiently collect the fluorescent signal on the detector, and may be an arbitrary condensing system. As a simple condensing system, a commercially available objective lens (for example, manufactured by Nikon Corporation or Olympus Corporation) used in a microscope or the like may be used. The magnification of the objective lens is preferably 10 to 100 times.
 「SPFS検出部」としては、超高感度の観点からは光電子増倍管(浜松ホトニクス(株)製のフォトマルチプライヤー)が好ましい。また、これらに比べると感度は下がるが、画像として見ることができ、かつノイズ光の除去が容易なことから、多点計測が可能なCCDイメージセンサも好適である。 The “SPFS detector” is preferably a photomultiplier (a photomultiplier manufactured by Hamamatsu Photonics) from the viewpoint of ultra-high sensitivity. Also, although the sensitivity is lower than these, a CCD image sensor capable of multipoint measurement is also suitable because it can be viewed as an image and noise light can be easily removed.
 このようにして得られた測定結果から、検体中に含有されるアナライト量を算出するようになっている。より具体的には、既知濃度の標的抗原、または、標的抗体での測定を実施することで検量線を作成し、作成された検量線に基づいて、被測定検体中のアナライト(標的抗原量もしくは標的抗体)量を測定シグナルから算出する。 The amount of analyte contained in the specimen is calculated from the measurement results obtained in this way. More specifically, a calibration curve is created by performing measurement with a target antigen of a known concentration or a target antibody, and an analyte (target antigen level) in the sample to be measured is created based on the created calibration curve. Alternatively, the target antibody) amount is calculated from the measurement signal.
 [実施例1]
1.センサーチップの作製
 屈折率(nd)1.72、厚さ1mmのガラス製の誘電体部材8((株)オハラ製の「S-LAL 10」)をプラズマ洗浄し、この支持体の片面にクロム薄膜をスパッタリング法により形成した。
[Example 1]
1. Production of Sensor Chip A glass dielectric member 8 (“S-LAL 10” manufactured by OHARA INC.) Having a refractive index (n d ) of 1.72 and a thickness of 1 mm is plasma-cleaned, A chromium thin film was formed by a sputtering method.
 その後、その表面にさらに金薄膜をスパッタリング法により形成した。クロム薄膜の厚さは1~3nm、金薄膜の厚さは42~47nmであった。このようにして得られた基板を、1mMに調製した10-アミノ-1-デカンチオールのエタノール溶液10mlに24時間浸漬し、金薄膜の片面にSAMを形成した。この基板を、エタノール溶液から取り出し、エタノールおよびイソプロパノールでそれぞれ洗浄した後、エアガンを用いて乾燥させた。 Thereafter, a gold thin film was further formed on the surface by a sputtering method. The chromium thin film had a thickness of 1 to 3 nm, and the gold thin film had a thickness of 42 to 47 nm. The substrate thus obtained was immersed in 10 ml of an ethanol solution of 10-amino-1-decanethiol prepared to 1 mM for 24 hours to form a SAM on one side of the gold thin film. The substrate was taken out from the ethanol solution, washed with ethanol and isopropanol, and then dried using an air gun.
 続いて、分子量50万のカルボキシメチルデキストラン(CMD)を1mg/mlと、N-ヒドロキシコハク酸イミド(NHS)を0.5mMと、水溶性カルボジイミド(WSC)を1mMとを含むpH7.4のMES緩衝生理食塩水(MES)(イオン強度:10mM)にSAMを形成した支持体を1時間浸漬し、SAMにCMDを固定化し、1NのNaOH水溶液に30分間浸漬することで未反応のコハク酸エステルを加水分解させた。 Subsequently, pH 7.4 MES containing 1 mg / ml carboxymethyldextran (CMD) having a molecular weight of 500,000, 0.5 mM N-hydroxysuccinimide (NHS), and 1 mM water-soluble carbodiimide (WSC). An unreacted succinic acid ester is obtained by immersing a support in which SAM is formed in buffered saline (MES) (ionic strength: 10 mM) for 1 hour, immobilizing CMD in SAM, and immersing in 1N NaOH aqueous solution for 30 minutes. Was hydrolyzed.
 次に、NHSを50mMと、WSCを100mMとを含むMESに1時間浸漬させた後に、抗cTnI IgG1モノクローナル抗体(MF4;2.5μg/ml、Hytest社製)溶液に30分間浸漬することで、CMDに1次抗体を固相化した。
2.試料溶液の調製
 心筋トロポニン(cTn)をまったく含まない血清に対して、標準抗原である心筋トロポニンI(cTnI)を、検体希釈用液による希釈後(2倍希釈)の最終濃度が100pg/mlとなるように添加し、これを評価検体(試料溶液)とした。なお、アッセイシグナルは、標準抗原cTnIを添加し、最終濃度が100pg/mlとした。
Next, after immersing in MES containing NHS 50 mM and WSC 100 mM for 1 hour, it was immersed in an anti-cTnI IgG1 monoclonal antibody (MF4; 2.5 μg / ml, Hytest) solution for 30 minutes. The primary antibody was immobilized on CMD.
2. Preparation of sample solution For serum containing no cardiac troponin (cTn), the final concentration of cardiac troponin I (cTnI), which is a standard antigen, after dilution with a sample dilution solution (2 times dilution) is 100 pg / ml. This was added as an evaluation sample (sample solution). As the assay signal, the standard antigen cTnI was added, and the final concentration was 100 pg / ml.
 また、検体希釈用液中の界面活性剤(Tween20)は、0.05質量%(検体希釈用液に対して)添加し、検体希釈用液の主溶液としては、トリス緩衝生理食塩水(TBS)を用いた。 In addition, a surfactant (Tween 20) in the sample dilution solution is added in an amount of 0.05% by mass (relative to the sample dilution solution). Tris buffered saline (TBS) is used as the main solution for the sample dilution solution. ) Was used.
 さらに、このように調製した試料溶液については、重量平均分子量が、それぞれ、
・10000(「CMD-L(商品名)」名糖産業株式会社製)、
・40000(「CMD-D40(商品名)」名糖産業株式会社製)、
・200000(「CMD-GH(商品名)」名糖産業株式会社製)、
・500000(「CMD-500(商品名)」名糖産業株式会社製)、
・1000000(「CMD(商品名)」名糖産業株式会社製)、
のカルボキシメチルデキストラン(CMD)を含む検体希釈用液について、質量%を0~10の間で変更した試料溶液を準備した。
Furthermore, for the sample solution prepared in this way, the weight average molecular weight is respectively
・ 10000 (“CMD-L (trade name)” manufactured by Meito Sangyo Co., Ltd.),
・ 40000 (“CMD-D40 (trade name)” manufactured by Meisei Sangyo Co., Ltd.),
・ 200000 (“CMD-GH (trade name)” manufactured by Meito Sangyo Co., Ltd.),
・ 500,000 (“CMD-500 (trade name)” manufactured by Meisei Sangyo Co., Ltd.),
・ 1000000 (“CMD (trade name)” manufactured by Meisei Sangyo Co., Ltd.),
A sample solution in which the mass% was changed between 0 and 10 was prepared for the sample dilution solution containing carboxymethyldextran (CMD).
 また、重量平均分子量が100000のデキストランを含む検体希釈用液について、質量%を0~10の間で変更した試料溶液を比較として準備した。
3.蛍光標識抗体溶液の調製
 蛍光標識抗体5として、抗cTnI IgG2aモノクローナル抗体(4C2;2.5mg/ml、Hytest社製)の溶液とAlexa Fluor(登録商標)647(Molecular Probes社製)標識キットを用い、キット使用方法の手順に従い、室温(25℃)で60分間、攪拌混合することで反応させた。その後、分子量カットフィルター(日本ミリポア(株)製)を用いて精製することで、Alexa Fluor(登録商標)647標識抗cTnI IgG2aモノクローナル抗体を得た。こうして、蛍光物質で標識された抗体を含む溶液(2μg/mlとなるように調製したPBS溶液)を準備した。
4.蛍光測定
 上述のようにして得られた各試料溶液および蛍光標識抗体溶液を個々のセンサーチップに送液してそれぞれに蛍光測定を行った。
In addition, for a sample dilution solution containing dextran having a weight average molecular weight of 100,000, a sample solution having a mass% changed between 0 and 10 was prepared for comparison.
3. Preparation of fluorescently labeled antibody solution As fluorescently labeled antibody 5, a solution of anti-cTnI IgG2a monoclonal antibody (4C2; 2.5 mg / ml, Hytest) and Alexa Fluor (registered trademark) 647 (Molecular Probes) labeling kit were used. The reaction was carried out by stirring and mixing at room temperature (25 ° C.) for 60 minutes according to the procedure for using the kit. Then, Alexa Fluor (registered trademark) 647-labeled anti-cTnI IgG2a monoclonal antibody was obtained by purification using a molecular weight cut filter (manufactured by Nippon Millipore). In this way, a solution containing an antibody labeled with a fluorescent substance (PBS solution prepared to 2 μg / ml) was prepared.
4). Fluorescence measurement Each sample solution and fluorescence-labeled antibody solution obtained as described above were sent to individual sensor chips, and fluorescence measurement was performed on each.
 個々の蛍光測定に共通する測定手順としては、次のようにして行った。まず、センサーチップの流路に、試料溶液0.1mlを25分間循環送液し、その後、Tween20を0.05質量%含むトリス緩衝生理食塩水〔TBS〕を10分間循環送液して洗浄した。 The measurement procedure common to each fluorescence measurement was performed as follows. First, 0.1 ml of the sample solution was circulated for 25 minutes through the flow path of the sensor chip, and then Tris buffered saline [TBS] containing 0.05% by mass of Tween 20 was circulated and washed for 10 minutes. .
 次に、蛍光標識抗体溶液0.1mlを5分間循環送液し、その後、Tween20を0.05質量%含むTBSを10分間循環送液して洗浄した。その後、プラズモン励起センサーに、ガラス製の誘電体部材8の、金属薄膜7を形成していないもう一方の表面から、プリズム(シグマ光機(株)製)を経由してレーザー光9(640nm,40μW)を照射し、励起された蛍光物質から発光された蛍光量を光電子増倍管(PMT)で検出した光量(シグナル値)を計測し、標準抗原を含む試料溶液毎のアッセイシグナルとした。 Next, 0.1 ml of the fluorescently labeled antibody solution was circulated for 5 minutes, and then TBS containing 0.05% by mass of Tween 20 was circulated for 10 minutes for washing. Thereafter, laser light 9 (640 nm, 640 nm, from the other surface of the dielectric member 8 made of glass, on which the metal thin film 7 is not formed, passes through the prism (manufactured by Sigma Koki Co., Ltd.). 40 μW), and the amount of light (signal value) detected by the photomultiplier tube (PMT) of the amount of fluorescence emitted from the excited fluorescent substance was measured and used as an assay signal for each sample solution containing the standard antigen.
 また、標準抗原である心筋トロポニンI(cTnI)を含まない試料溶液について、同様に計測し、アッセイブランクを測定した。このようにして得られた結果を、下記の表2に示した。 Further, a sample solution containing no cardiac antigen troponin I (cTnI), which is a standard antigen, was measured in the same manner, and an assay blank was measured. The results thus obtained are shown in Table 2 below.
 なお、表2中、CMD添加効果判定については、
×…S/B効果%が130未満、
△…S/B効果%が130~210
○…S/B効果%が210~400、
◎…S/B効果%が400以上、
で判定した。
In Table 2, regarding the CMD addition effect determination,
X: S / B effect% is less than 130,
Δ: S / B effect% is 130 to 210
○: S / B effect% is 210 to 400,
◎… S / B effect% is 400 or more,
Judged by.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この表2の結果から明らかなように、デキストランを添加した場合には、蛍光測定のバックグランドノイズであるアッセイブランクが大きく増加し、極微量なアナライト6の高感度且つ高精度なSPFS測定の障害となってしまう。 As is apparent from the results of Table 2, when dextran is added, the assay blank, which is the background noise of fluorescence measurement, greatly increases, and high-sensitivity and high-precision SPFS measurement of extremely small amount of analyte 6 occurs. It becomes an obstacle.
 これに対して、本発明に係る実施例ように、重量平均分子量が200000~1000000であるカルボキシメチルデキストランを、検体希釈用液に対して、0.001~5質量%含有すること、即ち終濃度0.0005~2.5重量%で検体の処理に用いられることが、蛍光測定のバックグランドノイズであるアッセイブランクが大きく増加することがなく、アッセイブランクの増加を抑制しS/B(SN比)が向上した蛍光測定を行うことができることが分かる(表2中、△~◎の範囲参照)。 In contrast, as in the examples according to the present invention, the carboxymethyl dextran having a weight average molecular weight of 200,000 to 1,000,000 is contained in an amount of 0.001 to 5% by mass with respect to the sample dilution liquid, that is, the final concentration. It is used for sample treatment at 0.0005 to 2.5% by weight, without greatly increasing the assay blank, which is the background noise of fluorescence measurement, and suppressing the increase in assay blank, and the S / B (S / N ratio) ) Can be measured with improved fluorescence (see the range of Δ to ◎ in Table 2).
 また、この場合、好ましくは、重量平均分子量が500000~1000000であるカルボキシメチルデキストランを、検体希釈用液に対して、0.01~2質量%含有すること、即ち終濃度0.005~1質量%で処理に用いられることが望ましいことが分かる(表2中、○~◎の範囲参照)。 In this case, the carboxymethyl dextran having a weight average molecular weight of 500,000 to 1,000,000 is preferably contained in an amount of 0.01 to 2% by mass with respect to the sample dilution liquid, that is, the final concentration is 0.005 to 1% by mass. It can be seen that it is desirable to be used in the treatment in% (see the range of ○ to ◎ in Table 2).
 さらに、より好ましくは、重量平均分子量が500000~1000000であるカルボキシメチルデキストランを、検体希釈用液に対して、0.1~0.5質量%含有すること、即ち終濃度0.05~0.25質量%で検体の処理に用いられることが望ましいことが分かる(表2中、◎の範囲参照)。 More preferably, the carboxymethyl dextran having a weight average molecular weight of 500,000 to 1,000,000 is contained in an amount of 0.1 to 0.5% by mass with respect to the sample dilution liquid, that is, the final concentration is 0.05 to 0.00. It can be seen that it is desirable to use the sample at 25% by mass (see the range of ◎ in Table 2).
 [実施例2]
 界面活性剤が、非特異吸着を抑制する効果、アッセイブランクの増加を抑制する効果を確かめるために下記の試験を行った。界面活性剤として、Tween20を、0.025質量%添加した時と、未添加の条件で、試験を実施例1と同様にして行った。
[Example 2]
In order to confirm the effect of the surfactant to suppress non-specific adsorption and the effect of suppressing increase in assay blank, the following test was performed. The test was conducted in the same manner as in Example 1 under the condition that 0.025% by mass of Tween 20 was added as a surfactant and no addition.
 カルボキシメチルデキストラン(CMD)の重量平均分子量が、100,000以上の系において、CMD濃度を0.25質量%とした。その結果、アッセイシグナルに有意差は見られず、アッセイブランクが、Tween20を0.025質量%添加した条件で、低値化する傾向が確認できた。 In a system in which the weight average molecular weight of carboxymethyldextran (CMD) is 100,000 or more, the CMD concentration was 0.25% by mass. As a result, no significant difference was observed in the assay signal, and it was confirmed that the assay blank had a tendency to decrease under the condition where 0.025 mass% of Tween 20 was added.
 なお、下記の表3のように、各条件のN=3の平均で評価した。 In addition, as shown in Table 3 below, the evaluation was based on an average of N = 3 for each condition.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上、本発明に係る好ましい実施の態様を説明してきたが、本発明はこれに限定されることはなく、例えば、上記実施例1、2では、蛍光測定方法として、SPFS測定について説明したが、これ以外であっても、例えば、全反射ATR(Attenuated Total Reflection)蛍光法などの蛍光測定方法を用いることができるなど本発明の目的を逸脱しない範囲で種々の変更が可能である。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to this. For example, in Examples 1 and 2 described above, the SPFS measurement was described as the fluorescence measurement method. Other than this, various modifications can be made without departing from the object of the present invention, for example, a fluorescence measuring method such as total reflection ATR (Attenuated Total Reflection) fluorescent method can be used.
 例えば、本発明に係る検体希釈用液と、検体希釈用液とともに用いられる他の試薬(例えば、検体の希釈に関連した試薬や上記蛍光測定方法に用いられる試薬等)とをセットにした試薬のキットとすることができる。 For example, the reagent dilution solution according to the present invention and another reagent used together with the sample dilution solution (for example, a reagent related to sample dilution or a reagent used in the above fluorescence measurement method) as a set It can be a kit.
 検体希釈用液とともに用いられる他の試薬のうち、上記蛍光測定方法に用いられる試薬としては、例えば、蛍光標識抗体溶液、洗浄液が挙げることができる。 Among the other reagents used together with the sample dilution liquid, examples of the reagent used in the fluorescence measurement method include a fluorescently labeled antibody solution and a washing liquid.
 一方、検体希釈用液とともに用いられる他の試薬のうち、検体の希釈に関連した試薬としては、界面活性剤が挙げられる。この界面活性剤としては、上述した検体希釈用液中に含めることが可能な界面活性剤や、その他にも、例えばDNAや蛋白質の電気泳動などに用いられる下記の界面活性剤が挙げることができる。後者の界面活性剤の具体例としては、
・Briji 35(登録商標、ポリエチレングリコールモノドデシルエーテル、Polyethylene Glycol Monododecyl Ether)、
・ドデシル-β-D-マルトシド(Dodecyl-β-D-maltoside)、
・オクチル-β-D-グルコシド(Octyl-β-D-glucoside)、
・ノニデット(登録商標)P-40(ポリオキシエチレン ノニルフェニルエーテル)、
・Triton X-100(登録商標)(ポリエチレングリコールモノ-P-イノクチルフェニルエーテル、Polyoxyethylene(10)Octylphenyl Ether)、
・Tween 20(登録商標)(mono-9-octadecanoate poly(oxy-1,2- ethanediyl)の誘導体)、
・CHAPS(登録商標)((3-[3-コラミドプロピル]ジメチルアミノ)プロパンスルホン酸、3-[(3-Cholamidopropyl)dimethylammonio]propanesulfonate)、
・ツビッタージェント3-12(Zwittergent 3-12, n-ドデシル-N,N-ジメチル-3-アンモニオ-1-プロパンスルホン酸、n-Dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate)、
・SDS(ドデシル硫酸ナトリウム、sodium dodecyl sulfate)、これらの試薬に類するもの
を挙げることができる。
On the other hand, among other reagents used together with the sample dilution liquid, a reagent related to sample dilution includes a surfactant. Examples of the surfactant include surfactants that can be included in the specimen dilution liquid described above, and the following surfactants used for electrophoresis of DNA and proteins, for example. . As a specific example of the latter surfactant,
-Briji 35 (registered trademark, polyethylene glycol monododecyl ether, Polyethylene Glycol Monododecyl Ether),
・ Dodecyl-β-D-maltoside,
・ Octyl-β-D-glucoside,
Nonidet (registered trademark) P-40 (polyoxyethylene nonylphenyl ether),
Triton X-100 (registered trademark) (polyethylene glycol mono-P-inoctylphenyl ether, Polyoxyethylene (10) Octylphenyl Ether),
・ Tween 20 (registered trademark) (a derivative of mono-9-octadecanoate poly (oxy-1,2-ethanediyl)),
CHAPS (registered trademark) ((3- [3-cholamidopropyl] dimethylamino) propanesulfonic acid, 3-[(3-Cholamidopropyl) dimethylammonio] propanesulfonate),
・ Zwittergent 3-12 (n-Dodecyl-N, N-dimethyl-3-ammonio-1-propanesulfonate, n-Dodecyl-N, N-dimethyl-3-ammonio-1-propanesulfonic acid) ),
-SDS (sodium dodecyl sulfate) and those similar to these reagents can be mentioned.
 本発明は、例えば、表面プラズモン励起増強蛍光分光法(SPFS;Surface Plasmon-field enhanced Fluorescence Spectroscopy)、全反射ATR(Attenuated Total Reflection)蛍光法などの蛍光測定方法を用いて、生体試料を検体として用いて、極微量のアナライト6を検出する際に、検体を希釈するための検体希釈用液、それを用いたキットおよび蛍光測定方法に適用することができる。 The present invention uses a biological sample as a specimen using a fluorescence measurement method such as surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) or total reflection ATR (Attenuated Total Reflection) fluorescence method. Thus, when detecting a very small amount of the analyte 6, it can be applied to a sample dilution solution for diluting the sample, a kit using the same, and a fluorescence measurement method.
1     夾雑物
2     カルボキシメチルデキストラン分子
3     固相支持体
4     リガンド
5     蛍光標識抗体
6     アナライト
7     金属薄膜(金属膜)
8     誘電体部材
9     レーザー光(励起光)
1 Contaminant 2 Carboxymethyldextran molecule 3 Solid support 4 Ligand 5 Fluorescent labeled antibody 6 Analyte 7 Metal thin film (metal film)
8 Dielectric member 9 Laser light (excitation light)

Claims (11)

  1.  重量平均分子量が200000~1000000であるカルボキシメチルデキストランを、検体希釈用液に対して、0.001~5質量%含有することを特徴とする検体希釈用液。 A liquid for sample dilution characterized by containing 0.001 to 5% by mass of carboxymethyldextran having a weight average molecular weight of 200,000 to 1,000,000 based on the liquid for sample dilution.
  2.  重量平均分子量が500000~1000000であるカルボキシメチルデキストランを、検体希釈用液に対して、0.01~2質量%含有することを特徴とする請求項1に記載の検体希釈用液。 2. The sample dilution liquid according to claim 1, comprising 0.01 to 2% by mass of carboxymethyldextran having a weight average molecular weight of 500,000 to 1,000,000 with respect to the sample dilution liquid.
  3.  前記検体が生体試料であることを特徴とする請求項1又は2に記載の検体希釈用液。 3. The specimen dilution liquid according to claim 1 or 2, wherein the specimen is a biological sample.
  4.  pH4~9に調整されていることを特徴とする請求項1から3のいずれか1項に記載の検体希釈用液。 4. The specimen dilution liquid according to claim 1, wherein the specimen dilution liquid is adjusted to pH 4 to 9.
  5.  界面活性剤を含有することを特徴とする請求項1から4のいずれか1項に記載の検体希釈用液。 5. The specimen dilution liquid according to any one of claims 1 to 4, further comprising a surfactant.
  6.  前記界面活性剤を、検体希釈用液に対して、0.00001~1質量%含有することを特徴とする請求項5に記載の検体希釈用液。 6. The specimen dilution liquid according to claim 5, wherein the surfactant is contained in an amount of 0.00001 to 1% by mass with respect to the specimen dilution liquid.
  7.  請求項1から6のいずれか1項に記載の検体希釈用液を含むことを特徴とする検体希釈用液のキット。 A specimen dilution liquid kit comprising the specimen dilution liquid according to any one of claims 1 to 6.
  8.  請求項1から6のいずれか1項に記載の検体希釈用液に検体を混合した混合液を、金属膜上に固相支持体が固定されたセンサーチップ上に供給した後、蛍光測定を行うことを特徴とする蛍光測定方法。 Fluorescence measurement is performed after supplying a mixed solution obtained by mixing a sample with the sample dilution liquid according to any one of claims 1 to 6 onto a sensor chip in which a solid support is fixed on a metal film. A fluorescence measurement method characterized by the above.
  9.  前記混合溶液を供給した後、検体中のアナライトに結合する蛍光標識抗体を供給して洗浄した後、前記蛍光測定を行うことを特徴とする請求項8に記載の蛍光測定方法。 The fluorescence measurement method according to claim 8, wherein the fluorescence measurement is performed after supplying the mixed solution, supplying a fluorescently labeled antibody that binds to the analyte in the specimen and washing it.
  10.  前記固相支持体が、カルボキシメチルデキストランであることを特徴とする請求項8または9のいずれかに記載の蛍光測定方法。 10. The fluorescence measurement method according to claim 8, wherein the solid support is carboxymethyl dextran.
  11.  前記蛍光測定を、表面プラズモン励起増強蛍光分光法(SPFS)、または、全反射ATR蛍光法で行うことを特徴とする請求項8から10のいずれか1項に記載の蛍光測定方法。 The fluorescence measurement method according to any one of claims 8 to 10, wherein the fluorescence measurement is performed by surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) or total reflection ATR fluorescence method.
PCT/JP2012/073432 2011-09-20 2012-09-13 Liquid for diluting specimen, kit using same and fluorometric method using same WO2013042603A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013534680A JP6119607B2 (en) 2011-09-20 2012-09-13 Sample dilution solution, kit using the same, and fluorescence measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011204587 2011-09-20
JP2011-204587 2011-09-20

Publications (1)

Publication Number Publication Date
WO2013042603A1 true WO2013042603A1 (en) 2013-03-28

Family

ID=47914373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073432 WO2013042603A1 (en) 2011-09-20 2012-09-13 Liquid for diluting specimen, kit using same and fluorometric method using same

Country Status (2)

Country Link
JP (1) JP6119607B2 (en)
WO (1) WO2013042603A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015178099A1 (en) * 2014-05-23 2017-04-20 コニカミノルタ株式会社 Surface plasmon enhanced fluorescence measurement method and surface plasmon enhanced fluorescence measurement apparatus
CN108291906A (en) * 2015-11-05 2018-07-17 富士瑞必欧株式会社 Cardiac muscle troponin I measure reagent and method
WO2019069885A1 (en) 2017-10-02 2019-04-11 コニカミノルタ株式会社 Method for detecting analyte

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001502419A (en) * 1996-10-07 2001-02-20 シェーリング コーポレイション Assay for the detection of antibodies to p53
US20070224703A1 (en) * 2003-09-29 2007-09-27 Fariba Nayeri Rapid Determination of Hepatocyte Growth Factor (Hgf) in the Body Fluids
JP2010011860A (en) * 2003-05-12 2010-01-21 F Hoffmann La Roche Ag METHOD FOR DETECTING proBNP (BRAIN NATRIURETIC PEPTIDE) USING MONOCLONAL ANTIBODY BINDING TO AMINO ACIDS 41-46
WO2010134592A1 (en) * 2009-05-22 2010-11-25 コニカミノルタホールディングス株式会社 Plasmon excitation sensor for use in assay method based on spfs-lpfs system, and assay method
JP2011158369A (en) * 2010-02-02 2011-08-18 National Institute Of Advanced Industrial Science & Technology Biochip, kit for antigen-antibody reaction detection, and detection method for antigen-antibody reaction
JP2011169609A (en) * 2010-02-16 2011-09-01 Konica Minolta Holdings Inc Assay method using plasmon excitation sensor
WO2011111764A1 (en) * 2010-03-12 2011-09-15 コニカミノルタホールディングス株式会社 Storage sensor substrate, dried sensor substrate, method for producing storage sensor substrate, and method for producing dried sensor substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001502419A (en) * 1996-10-07 2001-02-20 シェーリング コーポレイション Assay for the detection of antibodies to p53
JP2010011860A (en) * 2003-05-12 2010-01-21 F Hoffmann La Roche Ag METHOD FOR DETECTING proBNP (BRAIN NATRIURETIC PEPTIDE) USING MONOCLONAL ANTIBODY BINDING TO AMINO ACIDS 41-46
US20070224703A1 (en) * 2003-09-29 2007-09-27 Fariba Nayeri Rapid Determination of Hepatocyte Growth Factor (Hgf) in the Body Fluids
WO2010134592A1 (en) * 2009-05-22 2010-11-25 コニカミノルタホールディングス株式会社 Plasmon excitation sensor for use in assay method based on spfs-lpfs system, and assay method
JP2011158369A (en) * 2010-02-02 2011-08-18 National Institute Of Advanced Industrial Science & Technology Biochip, kit for antigen-antibody reaction detection, and detection method for antigen-antibody reaction
JP2011169609A (en) * 2010-02-16 2011-09-01 Konica Minolta Holdings Inc Assay method using plasmon excitation sensor
WO2011111764A1 (en) * 2010-03-12 2011-09-15 コニカミノルタホールディングス株式会社 Storage sensor substrate, dried sensor substrate, method for producing storage sensor substrate, and method for producing dried sensor substrate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015178099A1 (en) * 2014-05-23 2017-04-20 コニカミノルタ株式会社 Surface plasmon enhanced fluorescence measurement method and surface plasmon enhanced fluorescence measurement apparatus
CN108291906A (en) * 2015-11-05 2018-07-17 富士瑞必欧株式会社 Cardiac muscle troponin I measure reagent and method
EP3373005A4 (en) * 2015-11-05 2019-07-03 Fujirebio Inc. Reagent and method for cardiac troponin-i assay
WO2019069885A1 (en) 2017-10-02 2019-04-11 コニカミノルタ株式会社 Method for detecting analyte
EP3657169A4 (en) * 2017-10-02 2020-07-15 Konica Minolta, Inc. Method for detecting analyte
JPWO2019069885A1 (en) * 2017-10-02 2020-11-05 コニカミノルタ株式会社 How to detect Anna Reed
US11549940B2 (en) 2017-10-02 2023-01-10 Otsuka Pharmaceutical Co., Ltd. Method for detecting analyte
JP7203034B2 (en) 2017-10-02 2023-01-12 大塚製薬株式会社 Analyte detection method

Also Published As

Publication number Publication date
JP6119607B2 (en) 2017-04-26
JPWO2013042603A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
US8796040B2 (en) System and method of quantitatively determining a biomolecule, system and method of detecting and separating a cell by flow cytometry, and fluorescent silica particles for use in the same, and kit comprising plural kinds of the silica particles in combination
US9335324B2 (en) Assay method and kit for assay employing sensor chip for fluorescent measuring apparatus utilizing surface plasmon-field enhanced fluorescence spectrometry
JP6260541B2 (en) An immunoassay to reduce the effects of impurities
JP5652393B2 (en) Plasmon excitation sensor and assay method used for measurement method by SPFS-LPFS system
JP5994890B2 (en) Analyte detection probe
JP5428322B2 (en) Assay method using plasmon excitation sensor
JP5958339B2 (en) Near-field enhanced fluorescence sensor chip
JP6119607B2 (en) Sample dilution solution, kit using the same, and fluorescence measurement method
JP5541003B2 (en) Plasmon excitation sensor chip and assay method using the same
JP5754309B2 (en) Quantitative analysis method for measuring fluorescence using surface plasmon excitation enhanced fluorescence spectroscopy, and quantitative analysis kit and analyte dissociation inhibitor used therefor
US11549940B2 (en) Method for detecting analyte
JP2010091527A (en) Assay method using surface plasmon
JP6523021B2 (en) Method for detecting or quantifying biomolecules by competitive method, and device for detecting or quantifying biomolecules
JP2013029370A (en) Local-field optical sensor chip having ligand highly densely disposed thereon
JP2011127991A (en) Plasmon excitation sensor and assay method using sensor
JP2013029369A (en) Ionic functional group-modified local-field optical sensor chip and method for detecting analyte using ligand-carrying charged particle
JP5516197B2 (en) Plasmon excitation sensor and assay method using the sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013534680

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834194

Country of ref document: EP

Kind code of ref document: A1