WO2013042527A1 - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
WO2013042527A1
WO2013042527A1 PCT/JP2012/072337 JP2012072337W WO2013042527A1 WO 2013042527 A1 WO2013042527 A1 WO 2013042527A1 JP 2012072337 W JP2012072337 W JP 2012072337W WO 2013042527 A1 WO2013042527 A1 WO 2013042527A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
cradle
rotor chamber
chamber
compressor
Prior art date
Application number
PCT/JP2012/072337
Other languages
English (en)
French (fr)
Inventor
和幸 山口
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Priority to BR112014006255A priority Critical patent/BR112014006255A2/pt
Priority to CN201280045412.6A priority patent/CN103814220B/zh
Priority to KR1020147004484A priority patent/KR101581692B1/ko
Priority to US14/344,228 priority patent/US9631621B2/en
Priority to EP12833548.6A priority patent/EP2759709B1/en
Publication of WO2013042527A1 publication Critical patent/WO2013042527A1/ja
Priority to IN2012CHN2014 priority patent/IN2014CN02012A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/40Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and having a hinged member
    • F04C18/44Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and having a hinged member with vanes hinged to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/40Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and having a hinged member
    • F04C18/46Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and having a hinged member with vanes hinged to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids

Definitions

  • the present invention relates to a compressor.
  • swash plate type compressors vane type compressors, and scroll type compressors are known as positive displacement compressors that change the volume of a compression chamber by the rotation of a drive shaft.
  • the piston reciprocates with a stroke corresponding to the inclination angle of the swash plate.
  • Patent Document 1 In the vane type compressor, the vane slides in contact with the inner peripheral surface of the housing while appearing in and out of the rotor.
  • Patent Document 2 In a scroll compressor, the movable scroll is only revolving with respect to the fixed scroll. For example, see Patent Document 3.
  • the compression chamber sucks fluid from the suction port when the volume increases, and discharges fluid from the discharge port when the volume decreases.
  • These positive displacement compressors can be used, for example, in a vehicle air conditioner.
  • Patent Documents 4 and 5 disclose vane type compressors having a radially outer compression chamber and a radially inner compression chamber. In this vane type compressor, since the radially inner compression chamber can be formed in the rotor, it is possible to increase the exhaust amount per total volume.
  • An object of the present invention is to provide a novel positive displacement compressor that solves various problems of conventional positive displacement compressors.
  • a drive shaft that can rotate around an axis, and a rotor chamber that rotatably supports the drive shaft and has an annular shape parallel to the axis.
  • a cradle window that penetrates in the radial direction, and is provided in the rotor chamber while being in sliding contact with the housing on a circumferential surface extending in a direction parallel to the shaft core, and is rotatable with the drive shaft.
  • An annular rotor and two oscillating ends provided in the cradle window so as to be swingable about a pivot axis parallel to the axis and extending along a direction parallel to the axis as the rotor rotates.
  • a cradle in sliding contact with the housing wherein the rotor chamber includes an outer working chamber located radially outside the rotor and an inner working chamber located radially inside the rotor, the outer working chamber and the At least in the inner working chamber And the cradle form a compression chamber in which volume change occurs while maintaining airtightness by rotation of the rotor, and the housing has a suction port and a discharge port communicating with the compression chamber. .
  • the rotor when the drive shaft supported by the housing rotates around the axis, the rotor also rotates together with the drive shaft in the rotor chamber.
  • the cradle swings around the pivot extending in parallel with the axis within the cradle window of the rotor while rotating in synchronization with the rotor.
  • the rotor chamber is composed of an outer working chamber and an inner working chamber, and a compression chamber is formed by at least one of the outer working chamber and the inner working chamber and the cradle.
  • the cradle is in sliding contact with the housing at both oscillating ends extending along a direction parallel to the axis as the rotor rotates.
  • This compressor can be used, for example, in a vehicle air conditioner.
  • this compressor is less susceptible to vibration because the volume of the compression chamber is changed by the rotation of the rotor, and does not require a large number of parts.
  • the rotor is annular, and an inner working chamber is formed on the inner peripheral side of the rotor. Therefore, the displacement is larger than that of a general vane compressor.
  • the cradle is more resistant to load due to friction than the vane because of its shape, and is not easily destroyed.
  • this compressor does not require the processing of a spiral groove unlike the scroll type compressor. Further, this compressor does not require parts having a complicated shape. Therefore, even when the axial length is increased to increase the displacement, the displacement can be increased simply by changing the thickness of the housing, rotor, and cradle. Easy to realize weight, Therefore, the compressor of the present invention can solve various problems of the conventional positive displacement compressor as a new positive displacement compressor.
  • FIG. 4 is a cross-sectional view in the axial direction showing the compressor according to the first embodiment of the present invention, and is a cross-sectional view taken along the line II in FIG. 3.
  • the compressor of 1st Embodiment is shown, it is sectional drawing of an axial direction, and sectional drawing along the II-II line of FIG. It is sectional drawing of the radial direction which shows the compressor of 1st Embodiment. It is sectional drawing of the radial direction which shows the compressor of 1st Embodiment. It is sectional drawing of the radial direction which shows the compressor of 1st Embodiment. It is sectional drawing of the radial direction which shows the compressor of 1st Embodiment. It is sectional drawing of the radial direction which shows the compressor of 1st Embodiment.
  • FIGS. 1-10 are explanatory drawings which show the change of the compression chamber of the compressor of 1st Embodiment. It is sectional drawing which shows the rotor of the compressor of 1st Embodiment, and the cradle which shows three pieces. It is a top view which shows the cradle of the compressor of 1st Embodiment. It is sectional drawing which shows the cradle of the compressor of 2nd Embodiment. It is sectional drawing which shows the cradle of the compressor of 3rd Embodiment.
  • FIGS. 1 and 2 In the compressor of the first embodiment, as shown in FIGS. 1 and 2, the front housing 1 and the shell 3 are joined to each other via an O-ring 2a.
  • An outer block 5, an inner block 7, a front plate 9, and a rear plate 11 are fixed inside the front housing 1 and the shell 3.
  • These front housing 1, shell 3, outer block 5, inner block 7, front plate 9 and rear plate 11 constitute a housing. 1 and 2, the left side of the figure is defined as the front, and the right side of the figure is defined as the rear.
  • a shaft hole 1 a extending along the axis O is formed in the front housing 1 so as to penetrate the front housing 1.
  • a shaft hole 9 a coaxial with the shaft hole 1 a is formed in the front plate 9 so as to penetrate the front plate 9.
  • the rear plate 11 is formed with a bearing recess 11a coaxial with the shaft holes 1a and 9a.
  • a shaft sealing device 13 is provided in the shaft hole 1a, a bearing device 15 is provided in the shaft hole 9a, and a bearing device 17 is provided in the bearing recess 11a.
  • the drive shaft 19 is supported by the shaft seal device 13 and the bearing devices 15 and 17 so as to be rotatable around the axis O.
  • the front plate 9 is fixed in the front housing 1 via an O-ring 2b.
  • the rear plate 11 is fixed in the shell 3 via an O-ring 2c.
  • the outer block 5 is sandwiched between the front plate 9 and the rear plate 11 in the shell 3.
  • the outer block 5 and the inner block 7 are each formed in an annular shape.
  • An inner block 7 is provided in the outer block 5.
  • the inner block 7 is fixed to the rear plate 11 by a plurality of bolts 21.
  • a rotor driving recess 9c is formed in the central region of the front plate 9, and a hub 27b of a connecting member 27 described later is housed in the rotor driving recess 9c. Therefore, the outer block 5, the inner block 7, the rear plate 11, and the hub 27b form a rotor chamber 23 that forms an annular shape parallel to the axis O.
  • the rotor chamber 23 includes a rotor chamber facing surface 23a parallel to the shaft core O, a rotor chamber facing surface 23b parallel to the shaft core O, a rotor chamber front end surface 23c orthogonal to the shaft core O, and a shaft core O. And a rotor chamber rear end surface 23d.
  • the rotor inner surface 23 a is formed by the inner peripheral surface of the outer block 5.
  • the rotor inner surface 23a is designed based on the locus of the outer abutment surface 33b when a simulation of rotating the rotor 26 is performed based on the axis O and a pivot P of a cradle 33 described later.
  • the rotor chamber outward surface 23 b is formed by the outer peripheral surface of the inner block 7.
  • the rotor chamber outward surface 23 b is designed based on the locus of the inner contact surface 33 c when the rotor 26 is rotated based on the axis O and the pivot P of the cradle 33.
  • the rotor chamber front end surface 23c is formed by the rear surface of the outer peripheral region of the front plate 9 and the rear surface of the hub 27b.
  • the rotor chamber rear end face 23 d is formed by the front face of the rear plate 11.
  • a shaft hole 7a extending along the shaft core O is formed coaxially with the shaft holes 1a and 9a and the bearing recess 11a.
  • a drive shaft 19 is inserted into the shaft hole 7a.
  • a ring 27 a of a connecting member 27 is fixed to the drive shaft 19 by a key 25.
  • the connecting member 27 includes a ring 27a formed in a cylindrical shape parallel to the axis O, and a hub 27b made of an annular plate extending from the ring 27a in the radially outward direction perpendicular to the axis O at the front end of the ring 27a.
  • a plain bearing 31 is provided between the ring 27 a and the shaft hole 7 a of the inner block 7.
  • the rotor 26 is located outside the ring 27a of the connecting member 27 and is concentric with the ring 27a.
  • the rotor 26 is formed in a cylindrical shape parallel to the axis O.
  • a hub 27b of the connecting member 27 is fixed to the front end surface of the rotor 26 by a plurality of bolts 26a.
  • the rear surface of the hub 27 b forms a rotor chamber front end surface 23 c that is flush with the front surface of the outer block 5 and the front surface of the inner block 7.
  • An annular slider 60 that is concentric and has the same diameter as the rotor 26 is fixed to the rear end surface of the rotor 26 by a plurality of bolts 26b.
  • the slider 60 is formed of a material having the same material as that of the plain bearing 31.
  • the rotor 26 is located in the rotor chamber 23. As shown in FIGS. 3 to 6, the rotor 26 is inscribed with the rotor outer circumferential surface 28a extending from the rotor chamber front end surface 23c to the rotor chamber rear end surface 23d and inscribed with the rotor chamber inner facing surface 23a. However, it has a rotor inner peripheral surface 28b extending from the rotor chamber front end surface 23c to the rotor chamber rear end surface 23d. For this reason, the rotor chamber 23 includes an outer working chamber 231 located outside the rotor 26 and an inner working chamber 232 located inside the rotor 26.
  • the rotor driving recess 9c of the front plate 9 is provided with a thrust bearing 32 for receiving the front surface of the hub 27b.
  • a guide groove 11 b is formed on the front surface of the rear plate 11 along the rotor 26.
  • a slider 60 is slidably accommodated in the guide groove 11b.
  • each cradle window 29 extends in parallel with the axis O from the rotor chamber front end surface 23 c to the rotor chamber rear end surface 23 d.
  • the first end 29a in the circumferential direction of each cradle window 29 is formed as a part of a cylindrical surface centering on a pivot P described later.
  • the second end 29 b in the circumferential direction of each cradle window 29 is also formed as a part of a cylindrical surface with the pivot P as the center.
  • each cradle 33 has a substantially triangular prism shape and is an integrated product extending from the rotor chamber front end surface 23 c to the rotor chamber rear end surface 23 d.
  • Pins 33g and 33h are provided at both ends of each cradle 33 in the axial direction so as to protrude.
  • a central axis of the pins 33g and 33h is a pivot P parallel to the axis O.
  • the front side pin 33 g is supported by the hub 27 b, and the rear side pin 33 h is supported by the slider 60. For this reason, each cradle 33 can swing around the pivot P in each cradle window 29.
  • each cradle 33 has a hollow portion 33f extending from the rotor chamber front end surface 23c to the rotor chamber rear end surface 23d.
  • Each cradle 33 includes an outer abutment surface 33b formed so as to form a part of the cylinder outside the part away from the pins 33g and 33h, and a part of the cylinder inside the part away from the pins 33g and 33h. And an inner abutting surface 33c formed so as to be formed.
  • the outer contact surface 33b is in contact with the rotor chamber facing surface 23a.
  • the inner contact surface 33c circumscribes the rotor chamber outward surface 23b.
  • the outer contact surface 33b and the inner contact surface 33c are connected by a first sealing surface 33d.
  • the first sealing surface 33 d is formed in a curved surface forming a part of a cylinder aligned with the first end 29 a of the cradle window 29. Further, the outer contact surface 33b and the inner contact surface 33c are connected by a second sealing surface 33e. Of the second sealing surface 33e, portions around the pins 33g and 33h are formed as curved surfaces forming a part of a cylinder aligned with the second end 29b of the cradle window 29. As shown in FIGS. 1 and 2, the outer contact surface 33b, the inner contact surface 33c, the first sealing surface 33d, and the second sealing surface 33e extend from the rotor chamber front end surface 23c to the rotor chamber rear end surface 23d. ing.
  • each cradle 33 partitions the rotor chamber 23 together with the rotor 26 into a plurality of working chambers while maintaining airtightness.
  • three compression chambers 351 are formed by the outer working chamber 231 and the cradle 33, and the inner working chamber 232 and the cradle 33 are formed.
  • three compression chambers 352 are formed.
  • the compression chambers 351 and 352 undergo volume changes due to the rotation of the rotor 26.
  • the outer block 5 is formed with two suction ports 5a extending in parallel with the axis O.
  • two concave portions are formed on the outer peripheral surface of the outer block, and each concave portion forms a discharge port 5 b with the shell 3.
  • Each suction port 5a communicates with a compression chamber 351 whose volume is increasing.
  • Each discharge port 5b communicates with a compression chamber 351 whose volume is being reduced.
  • the inner block 7 is formed with two suction ports 7b and two discharge ports 7c extending in parallel with the axis O.
  • Each suction port 7b communicates with a compression chamber 352 whose volume is increasing.
  • Each discharge port 7c communicates with a compression chamber 352 whose volume is being reduced.
  • a suction chamber 37 is formed between the front housing 1 and the front plate 9.
  • suction passages 9 b and 9 d communicating with the suction chamber 37 are formed so as to pass therethrough.
  • the suction passage 9b communicates the suction chamber 37 and both the suction ports 5a.
  • the hub 27b is formed with a suction passage 27c through which the suction passage 9d and the suction ports 7b communicate with each other.
  • the suction chamber 37 is opened to the outside by a suction passage 1 b formed in the front housing 1.
  • a discharge chamber 39 is formed between the shell 3 and the rear plate 11.
  • discharge passages 11 c and 11 d are formed so as to penetrate both the discharge ports 5 b and both discharge chambers 7 c to the discharge chamber 39.
  • the discharge chamber 39 is opened to the outside by a discharge passage 3 b formed in the shell 3.
  • this compressor When the compressor configured as described above is used in a vehicle air conditioner, this compressor constitutes a refrigeration circuit together with a condenser, an expansion valve, and an evaporator.
  • the suction passage 1b is connected to the evaporator, and the discharge passage 3b is connected to the condenser.
  • the drive shaft 19 is driven by the vehicle engine or motor.
  • each cradle 33 swings about the pivot P in the corresponding cradle window 29 while rotating in synchronization with the rotor 26. Due to the rotation of the drive shaft 19, the rotor 26 and each cradle 33 behave as shown in FIGS.
  • a plurality of pairs of cradle windows 29 and cradle 33 are provided, a plurality of compression chambers 351 are formed in the outer working chamber 231 and a plurality of compression chambers 352 are formed in the inner working chamber 232. Is done.
  • Each cradle 33 is in sliding contact with the outer block 5 and the inner block 7 at both oscillating ends extending along the direction parallel to the axis O as the rotor 26 rotates, so that the airtightness of the compression chambers 351 and 352 is maintained. Is done.
  • the compression chamber 351 formed by the outer working chamber 231 is maintained in a highly airtight state. For this reason, the compression chambers 351 and 352 undergo volume changes due to the rotation of the rotor 26.
  • the rotor 26 rotates so that the first sealing surface 33d of each cradle 33 is in front. Therefore, most of the compression reaction force of the compression chambers 351 and 352 is supported by the rotor 26 via the first sealing surface 33d, and the behavior of the cradle 33 is stabilized.
  • the compression chamber 351 sucks refrigerant gas from the suction port 5a when the volume increases, and the compression chamber 352 sucks refrigerant gas from the suction port 7b when the volume increases.
  • the compression chamber 351 discharges refrigerant gas from the discharge port 5b when the volume is reduced, and the compression chamber 352 discharges refrigerant gas from the discharge port 7c when the volume is reduced.
  • the vehicle compartment is air-conditioned.
  • FIG. 7A the compression chambers 351 and 352 of FIG. 3 are shown in FIG. 7A
  • the compression chambers 351 and 352 of FIG. 4 are shown in FIG. 7B
  • the compression chambers 351 and 352 of FIG. FIG. 7C shows the compression chambers 351 and 352 shown in FIG. 6.
  • FIG. 7A if attention is paid to the compression chamber C1 among the compression chambers 351 constituted by the outer working chamber 231, the compression chamber C1 increases its volume in FIG. Enlarge and inhale refrigerant at this time. Then, the compression chamber C1 finishes the suction of the refrigerant in FIG. 7C, and starts to decrease in volume as the compression chamber C1 in FIG. 7D, and discharges the refrigerant.
  • each cradle 33 since this compressor causes volume changes in the compression chambers 351 and 352 due to the rotational operation of the rotor 26, it is difficult to generate vibrations and does not require a large number of parts. Further, in this compressor, even if a frictional force is applied to the cradle 33, the shape is not easily broken or deformed. In particular, in this compressor, since the first sealing surface 33d of each cradle 33 is formed by a part of a cylindrical surface centered on the pivot P, the pivot P is suitable for the high pressure in the compression chambers 351 and 352. When received, each cradle 33 is preferably easily swung. In addition, each cradle 33 has a hollow portion 33f and is light in weight, so that it easily swings suitably.
  • this compressor exhibits an excellent effect in terms of power loss. Moreover, in this compressor, the occupation ratio of the rotor 26 is small. Since the compression chamber 352 can be formed not only in the compression chamber 351 on the radially outer side of the rotor 26 but also on the inner side in the radial direction, an excellent effect is exhibited in terms of the exhaust amount per volume of the entire compressor.
  • this compressor it is not necessary to process a spiral groove like a scroll compressor.
  • this compressor there is no low-strength part due to its complicated shape such as a scroll, and when the axial length is increased to increase the displacement, the housing, rotor 26 and each cradle 33 It is possible to increase the displacement by simply changing the wall thickness. Therefore, it is easy to reduce the size and weight of the compressor.
  • suction ports 5a and 7b and discharge ports 5b and 7c are formed in the outer block 5 and the inner block 7, so that the overall weight can be reduced.
  • this compressor can solve various problems of the conventional positive displacement compressor as a new positive displacement compressor.
  • the compressor according to the second embodiment of the present invention employs a cradle 43 shown in FIG.
  • Each cradle 43 includes an integral cradle body 44 having a substantially triangular prism shape, an outer seal pin 45 provided on the cradle body 44, and an inner seal pin 46 provided on the cradle body 44.
  • each cradle 43 can swing around the pivot P in the corresponding cradle window 29.
  • Each cradle 43 has a hollow portion 43 f extending in a direction parallel to the axis O.
  • Each outer seal pin 45 is made of a material different from the material of the outer block 5 that defines the rotor chamber facing surface 23a, for example, a resin.
  • Each outer seal pin 45 is formed in a cylindrical shape extending from the rotor chamber front end surface 23c to the rotor chamber rear end surface 23d.
  • Each outer seal pin 45 is covered with a cradle body 44 at a portion slightly exceeding half of the outer peripheral surface. The outer peripheral surface exposed from the cradle body 44 forms the outer contact surface 45a. For this reason, each outer seal pin 45 is rotatable about the outer rotation axis Q1 parallel to the axis O and the pivot P on the cradle body 44. There is no limitation on the rotation range of each outer seal pin 45.
  • Each inner seal pin 46 is made of a material different from the material of the inner block 7 that defines the rotor chamber outward face 23b, for example, a resin.
  • Each inner seal pin 46 is formed in a column shape extending from the rotor chamber front end surface 23c to the rotor chamber rear end surface 23d, and a lip 46a projecting radially outward is formed on a part of the peripheral surface. Further, the inner seal pin 46 is formed with a concave portion 46c that is recessed radially inward at a part of its peripheral surface.
  • Each inner seal pin 46 is covered with a cradle body 44 while exposing the lip 46a and slightly exceeding half of the outer peripheral surface, and the outer surface of the lip 46a is formed as an inner contact surface 46b.
  • each inner seal pin 46 can be rotated around the inner rotation axis Q2 parallel to the axis O and the pivot P on the cradle main body 44.
  • the rotation range of each inner seal pin 46 is limited to the range of the circumferential length of the recess 46c.
  • Other configurations of the second embodiment are the same as those of the first embodiment.
  • each cradle 43 includes a cradle main body 44, an outer seal pin 45, and an inner seal pin 46. Therefore, the outer seal pin 45 and the inner seal pin 46 are separate from the cradle body 44, and the outer seal pin 45 and the inner seal pin 46 having the optimum diameter can be combined with respect to dimensional variations during the manufacture of the cradle 43 and the housing. .
  • the outer contact surface 45a of the outer seal pin 45 is preferably inscribed in the rotor chamber facing surface 23a, and the inner contact surface 46b of the inner seal pin 46 is preferably in contact with the rotor chamber outward surface 23b.
  • each outer seal pin 45 rotates about the outer rotation axis Q1 with respect to the cradle body 44, and therefore, the outer contact surface 45a of the outer seal pin 45 preferably rotates on the rotor inner surface 23a. Move. Further, since each cradle 43 presses the outer contact surface 45a against the rotor chamber inner surface 23a by centrifugal force based on the rotation of the rotor 26, the outer contact surface 45a and the rotor chamber inner surface 23a are suitably sealed.
  • the inner contact surface 45b of the inner seal pin 46 preferably rolls on the rotor chamber outward surface 23b. Further, a lip 46a is formed on the inner seal pin 46, and the lip 46a is curved outward by the pressure difference between the front and rear compression chambers 351 and 352 in the rotation direction of the rotor 26. Touch.
  • each outer seal pin 45 is formed of a material different from that of the outer block 5
  • seizure between the outer contact surface 45a and the rotor inner surface 23a can be prevented.
  • each inner seal pin 46 is formed of a material different from that of the inner block 7, seizure between the inner contact surface 46b and the rotor chamber outward surface 23b can be prevented. For this reason, this compressor can exhibit high durability.
  • Each cradle 53 includes an integrally formed cradle body 54 having a substantially triangular prism shape, an outer seal pin 55 provided on the cradle body 54, and an inner seal pin 56 provided on the cradle body 54.
  • each cradle 53 has a hollow portion 53f extending in a direction parallel to the axis O.
  • Each outer seal pin 55 is formed of a material different from the material of the outer block 5 that partitions the rotor inner surface 23a, for example, a resin.
  • the configuration of each outer seal pin 55 is the same as that of the second embodiment.
  • Each inner seal pin 56 is formed of a material different from the material of the inner block 7 that defines the rotor chamber outward face 23b, for example, a resin.
  • Each inner seal pin 56 is covered with a cradle main body 54 at a portion slightly exceeding half of the outer peripheral surface, and an outer peripheral surface exposed from the cradle main body 54 is formed as an inner contact surface 56b. For this reason, each inner seal pin 56 is rotatable about the inner rotation axis Q2 parallel to the axis O and the pivot P on the cradle body 54. There is no limit to the rotation range of each inner seal pin 56.
  • a spring chamber 54a is formed in the cradle body 54, and a coil spring 57 as an urging member for urging the outer seal pin 55 and the inner seal pin 56 away from each other is housed in the spring chamber 54a.
  • Other configurations of the second embodiment are the same as those of the first embodiment.
  • the same operational effects as those of the second embodiment can be obtained.
  • the outer contact surface 55a of the outer seal pin 55 is preferably the rotor inner surface 23a.
  • the inner contact surface 56b of the inner seal pin 56 is preferably in contact with the rotor chamber outward surface 23b.
  • the present invention has been described according to the first to third embodiments.
  • the present invention is not limited to the first to third embodiments, and may be appropriately selected without departing from the scope of the present invention. Needless to say, it can be changed and applied.
  • the present invention can electronically control the discharge amount per time by adopting an electric motor as a drive source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

本発明の圧縮機は、駆動軸、ハウジング、ロータ及びクレイドルを備えている。ロータは、径方向に貫通するクレイドル窓を有する環状をなす。ロータは、軸芯と平行な方向に沿って延びる周面でハウジングと摺接しつつロータ室内で駆動軸と共に回転可能である。クレイドルは、クレイドル窓内に枢軸回りに揺動可能に設けられ、揺動時に軸芯と平行な方向に沿って延びる両揺動端でハウジングと接して圧縮室を気密状態に維持する。ロータ室は、ロータの外側に位置する外側作動室と、ロータの内側に位置する内側作動室とからなる。外側作動室及び内側作動室の少なくとも一方とクレイドルとにより、ロータの回転によって容積変化を生じる圧縮室が形成されている。

Description

圧縮機
 本発明は圧縮機に関する。
 従来、駆動軸の回転によって圧縮室の容積変化を生じる容積形圧縮機としては、斜板式圧縮機、ベーン型圧縮機、スクロール型圧縮機が公知である。斜板式圧縮機では、斜板の傾斜角に応じたストロークでピストンが往復運動を行う。例えば、特許文献1参照。ベーン型圧縮機では、ベーンがロータに出没しながらハウジングの内周面を摺接する。例えば、特許文献2参照。スクロール型圧縮機では、固定スクロールに対して可動スクロールが公転運動のみ。例えば、特許文献3参照。
 これらの容積形圧縮機では、圧縮室は、容積が拡大する際に吸入口から流体を吸入し、容積が縮小する際に吐出口から流体を吐出する。これらの容積形圧縮機は、例えば車両の空調装置に用いられ得る。
 また、特許文献4、5は、径方向外側の圧縮室と径方向内側の圧縮室とを有するベーン型圧縮機を開示する。このベーン型圧縮機では、ロータ内に径方向内側の圧縮室を形成可能であることから、全体の容積当たりの排気量を大きくすることが可能である。
特開2011-122572号公報 特開2010-163976号公報 特開2011-64189号公報 特開昭59-41602号公報 特開平1-155091号公報
 従来の容積形圧縮機には種々の問題がある。例えば、斜板式圧縮機では、駆動軸の回転運動をピストンの往復運動に変換するため、振動を生じ易く、部品点数が多いという問題がある。この点、ベーン型圧縮機やスクロール型圧縮機は、ロータや可動スクロールの回転動作によって圧縮室の容積が変化することから、これらの問題点を生じ難い。
 しかしながら、一般的なベーン型圧縮機においては、ロータの占有率が大きく、圧縮機全体の容積当たりの排気量が比較的小さいという問題がある。特許文献4、5に開示されたベーン型圧縮機については、上記問題は解消されるものの、ベーンの両端に摩擦力が作用するため、ベーンにかかる負荷が大きく、ベーンの破壊や変形に至る可能性がある。
 これに対して、スクロール型圧縮機においては、固定スクロールの渦巻状の溝の加工が困難である。また、固定スクロールが複雑な形状であることから強度を確保し難く、軸方向の長さを長くして排気量を大きくする場合には、固定スクロールの肉厚を渦巻き方向全体で厚くせざるを得ず、大型化及び大重量化を生じてしまう。
 本発明の目的は、従来の容積形圧縮機の種々の問題を解決した新規な容積形圧縮機を提供することにある。
 上記目的を達成するために、本発明の一態様は、軸芯回りに回転可能な駆動軸と、該駆動軸を回転可能に支持するとともに、該軸芯と平行な環状をなすロータ室を内部に形成するハウジングと、径方向に貫通するクレイドル窓を有するとともに、該軸芯と平行な方向に沿って延びる周面で該ハウジングと摺接しつつ該ロータ室内に設けられ該駆動軸と共に回転可能な環状のロータと、該軸芯と平行な枢軸回りに揺動可能に該クレイドル窓内に設けられ、該ロータの回転に伴って該軸芯と平行な方向に沿って延びる両揺動端で該ハウジングと摺接するクレイドルとを備え、前記ロータ室は、前記ロータの径方向外側に位置する外側作動室と、該ロータの径方向内側に位置する内側作動室とを含み、該外側作動室及び該内側作動室の少なくとも一方と前記クレイドルとは、該ロータの回転によって気密を維持しつつ容積変化を生じる圧縮室を形成し、前記ハウジングは、該圧縮室と連通する吸入口及び吐出口を有する、圧縮機を提供する。
 本発明の圧縮機では、ハウジングに支持された駆動軸が軸芯回りに回転することにより、ロータもロータ室内で駆動軸と共に回転する。これにより、クレイドルは、ロータと同期回転しつつ、ロータのクレイドル窓内で軸芯と平行に延びる枢軸回りに揺動する。そして、ロータ室が外側作動室と内側作動室とからなり、外側作動室及び内側作動室の少なくとも一方とクレイドルとにより圧縮室が形成される。クレイドルは、ロータの回転に伴って軸芯と平行な方向に沿って延びる両揺動端でハウジングと摺接する。そのため、圧縮室は気密を維持しつつロータの回転によって容積変化を生じる。このため、圧縮室は、容積が拡大する際に吸入口から流体を吸入し、容積が縮小する際に吐出口から流体を吐出する。この圧縮機は、例えば車両の空調装置に用いられ得る。
 また、この圧縮機は、ロータの回転動作によって圧縮室が容積変化を生じることから、振動を生じ難く、さほど多くの部品点数を要しない。さらに、この圧縮機では、ロータが環状であり、ロータの内周側に内側作動室が形成される。そのため、一般的なベーン型圧縮機と比べて排気量が大きい。また、クレイドルは、その形状からベーンに比べて摩擦による負荷に強く、破壊され難い。
 さらに、この圧縮機では、スクロール型圧縮機のような渦巻状の溝の加工が不要である。また、この圧縮機では、さほど複雑な形状の部品を要しない。そのため、軸方向の長さを長くして排気量を大きくする場合であっても、ハウジング、ロータ及びクレイドルの肉厚を変更するだけで排気量を大きくすることが可能であり、小型化及び小重量化を実現し易い、
 したがって、本発明の圧縮機は、新規な容積形圧縮機として、従来の容積形圧縮機の種々の問題を解決することができる。
本発明の第1の実施形態に係る圧縮機を示す、軸方向の断面図であり、図3のI-I線に沿った断面図である。 第1の実施形態の圧縮機を示し、軸方向の断面図であり、図3のII-II線に沿った断面図。 第1の実施形態の圧縮機を示す、径方向の断面図である。 第1の実施形態の圧縮機を示す、径方向の断面図である。 第1の実施形態の圧縮機を示す、径方向の断面図である。 第1の実施形態の圧縮機を示す、径方向の断面図である。 (A)~(D)は第1の実施形態の圧縮機の圧縮室の変化を示す説明図である。 第1の実施形態の圧縮機のロータ及び3個を示すクレイドルを示す断面図である。 第1の実施形態の圧縮機のクレイドルを示す平面図である。 第2の実施形態の圧縮機のクレイドルを示す断面図である。 第3の実施形態の圧縮機のクレイドルを示す断面図である。
 以下、本発明の第1~第3の実施形態に係る圧縮機を図面を参照しつつ説明する。
 (第1の実施形態)
 第1の実施形態の圧縮機では、図1及び図2に示すように、フロントハウジング1とシェル3とがこれらの間にOリング2aを介して互いに接合されている。フロントハウジング1及びシェル3の内部にはアウターブロック5、インナーブロック7、フロントプレート9及びリヤプレート11が固定されている。これらフロントハウジング1、シェル3、アウターブロック5、インナーブロック7、フロントプレート9及びリヤプレート11がハウジングを構成している。なお、図1及び図2において、図の左側を前方とし、図の右側を後方と定義する。
 フロントハウジング1には軸芯Oに沿って延びる軸孔1aが該フロントハウジング1を貫通するように形成されている。フロントプレート9には軸孔1aと同軸の軸孔9aが該フロントプレート9を貫通するように形成されている。また、リヤプレート11には軸孔1a、9aと同軸の軸受け凹部11aが形成されている。軸孔1aには軸封装置13が設けられ、軸孔9aには軸受装置15が設けられ、軸受け凹部11aには軸受装置17が設けられている。軸封装置13及び軸受装置15、17によって駆動軸19が軸芯O回りに回転可能に支持されている。
 フロントプレート9はフロントハウジング1内にOリング2bを介して固定されている。リヤプレート11はシェル3内にOリング2cを介して固定されている。アウターブロック5は、シェル3内でフロントプレート9とリヤプレート11とによって挟持されている。アウターブロック5及びインナーブロック7は、図3~図6に示すように、それぞれ環状に形成されている。アウターブロック5内にインナーブロック7が設けられている。図1及び図2に示すように、インナーブロック7は複数本のボルト21によりリヤプレート11に固定されている。フロントプレート9の中心領域にはロータ駆動用凹部9cが形成されており、ロータ駆動用凹部9cには後述する連結部材27のハブ27bが収納されている。このため、アウターブロック5、インナーブロック7及びリヤプレート11とハブ27bとにより、軸芯Oと平行な環状をなすロータ室23が形成されている。
 このロータ室23は、軸芯Oと平行なロータ室内向面23aと、軸芯Oと平行なロータ室外向面23bと、軸芯Oと直交するロータ室前端面23cと、軸芯Oと直交するロータ室後端面23dとによって区画されている。ロータ室内向面23aはアウターブロック5の内周面によって形成されている。このロータ室内向面23aは、軸芯O、後述するクレイドル33の枢軸Pに基づき、ロータ26を回転させるシミュレートを行った際の外側当接面33bの軌跡に基づき設計されている。ロータ室外向面23bはインナーブロック7の外周面によって形成されている。このロータ室外向面23bは、軸芯O、クレイドル33の枢軸Pに基づき、ロータ26を回転させた際の内側当接面33cの軌跡に基づき設計されている。ロータ室前端面23cは、フロントプレート9の外周領域の後面と、ハブ27bの後面とによって形成されている。ロータ室後端面23dはリヤプレート11の前面によって形成されている。
 インナーブロック7には軸芯Oに沿って延びる軸孔7aが軸孔1a、9a及び軸受け凹部11aと同軸に形成されている。軸孔7a内には駆動軸19が挿通されている。駆動軸19には、連結部材27のリング27aがキー25によって固定されている。連結部材27は、軸芯Oと平行な円筒状に形成されたリング27aと、リング27aの前端でリング27aから軸芯Oと直交する径外方向に延びる環状のプレートからなるハブ27bとを含む。リング27aとインナーブロック7の軸孔7aとの間にはプレーン軸受31が設けられている。
 ロータ26は、連結部材27のリング27aの外側に位置しており、リング27aと同心をなす。また、ロータ26は、軸芯Oと平行な円筒状に形成されている。ロータ26の前端面には連結部材27のハブ27bが複数本のボルト26aによって固定されている。ハブ27bの後面は、アウターブロック5の前面及びインナーブロック7の前面と面一をなすロータ室前端面23cを形成する。また、ロータ26の後端面にはロータ26と同心及び同径をなす環状のスライダ60が複数本のボルト26bによって固定されている。スライダ60はプレーン軸受31と同様の材質を有する材料で形成されている。
 ロータ26はロータ室23内に位置している。ロータ26は、図3~図6に示すように、ロータ室内向面23aと内接しつつロータ室前端面23cからロータ室後端面23dまで延びるロータ外周面28aと、ロータ室外向面23bと内接しつつロータ室前端面23cからロータ室後端面23dまで延びるロータ内周面28bとを有している。このため、ロータ室23は、ロータ26の外側に位置する外側作動室231と、ロータ26の内側に位置する内側作動室232とからなる。
 また、図1及び図2に示すように、フロントプレート9のロータ駆動用凹部9cには、ハブ27bの前面を受けるスラスト軸受32が設けられている。また、リヤプレート11の前面にはロータ26に沿って案内溝11bが形成されている。案内溝11bにはスライダ60が摺動可能に収納されている。
 ロータ26には、図8に示すように、3個のクレイドル窓29が径方向に貫設されている。各クレイドル窓29は、図1及び図2に示すように、ロータ室前端面23cからロータ室後端面23dまで軸芯Oと平行に延びている。図8に示すように、各クレイドル窓29の周方向の第1端29aは、後述する枢軸Pを中心とした円筒面の一部として形成されている。また、各クレイドル窓29の周方向の第2端29bも、枢軸Pを中心とした円筒面の一部として形成されている。
 各クレイドル窓29内にはクレイドル33が設けられている。各クレイドル33は、図9に示すように、略三角柱形状をし、ロータ室前端面23cからロータ室後端面23dまで延びる一体品である。各クレイドル33の軸方向の両端にはピン33g、33hが突出するように設けられている。ピン33g、33hの中心軸が軸芯Oと平行な枢軸Pである。図1及び図2に示すように、前方側のピン33gはハブ27bに支持され、後方側のピン33hはスライダ60に支持されている。このため、各クレイドル33は、各クレイドル窓29内で枢軸P回りに揺動可能になっている。各クレイドル33は、図9に示すように、ロータ室前端面23cからロータ室後端面23dまで延びる中空部33fを有している。
 各クレイドル33は、ピン33g、33hから離れた部分の外側で円筒の一部をなすように形成された外側当接面33bと、ピン33g、33hから離れた部分の内側で円筒の一部をなすように形成された内側当接面33cとを有している。外側当接面33bは、図3~図6に示すように、ロータ室内向面23aと内接する。内側当接面33cはロータ室外向面23bと外接する。外側当接面33bと内側当接面33cとは、図9に示すように、第1封止面33dによって接続されている。第1封止面33dは、クレイドル窓29の第1端29aと整合する円筒の一部をなす曲面に形成されている。また、外側当接面33bと内側当接面33cとは、第2封止面33eによって接続されている。第2封止面33eのうち、ピン33g、33h回りの部分は、クレイドル窓29の第2端29bと整合する円筒の一部をなす曲面に形成されている。外側当接面33b、内側当接面33c、第1封止面33d及び第2封止面33eは、図1及び図2に示すように、ロータ室前端面23cからロータ室後端面23dまで延びている。こうして、各クレイドル33は、ロータ26とともにロータ室23を複数の作動室へと気密を維持しながら区画する。特に、図3~図6及び図7(A)~図7(D)に示すように、外側作動室231とクレイドル33とにより3個の圧縮室351が形成され、内側作動室232とクレイドル33とにより3個の圧縮室352が形成されている。圧縮室351、352はロータ26の回転によって容積変化を生じる。
 図3~図6に示すように、アウターブロック5には軸芯Oと平行に延びる二つの吸入口5aが形成されている。また、アウターブロックの外周面には二つの凹部が形成され、各凹部はシェル3との間で吐出口5bを形成している。各吸入口5aは容積を拡大しつつある圧縮室351と連通する。また、各吐出口5bは容積を縮小しつつある圧縮室351と連通する。また、インナーブロック7には軸芯Oと平行に延びる二つの吸入口7bと二つの吐出口7cとが形成されている。各吸入口7bは容積を拡大しつつある圧縮室352と連通する。また、各吐出口7cは容積を縮小しつつある圧縮室352と連通する。
 図1及び図2に示すように、フロントハウジング1とフロントプレート9との間には吸入室37が形成されている。フロントプレート9には吸入室37と連通する吸入通路9b、9dが貫通するように形成されている。吸入通路9bは吸入室37と両吸入口5aとを連通させている。ハブ27bには吸入通路9dと両吸入口7bとを連通させる吸入通路27cが貫通するように形成されている。吸入室37はフロントハウジング1に形成された吸入通路1bによって外部に開いている。
 また、シェル3とリヤプレート11との間には吐出室39が形成されている。リヤプレート11には、両吐出口5b及び両吐出室7cを吐出室39に連通させる吐出通路11c、11dが貫通するように形成されている。吐出室39はシェル3に形成された吐出通路3bによって外部に開いている。
 以上のように構成された圧縮機が車両の空調装置に用いられる場合、この圧縮機は凝縮器、膨張弁、蒸発器とともに冷凍回路を構成する。そして、吸入通路1bが蒸発器に接続され、吐出通路3bが凝縮器に接続される。また、駆動軸19が車両のエンジン又はモータによって駆動される。
 駆動軸19が軸芯O回りに回転すれば、ロータ26がロータ室23内で駆動軸19によって回転する。これにより、各クレイドル33は、ロータ26と同期回転しつつ、対応するクレイドル窓29内で枢軸P回りに揺動する。駆動軸19の回転により、ロータ26及び各クレイドル33は図3~図6に示す挙動を示す。そして、この圧縮機では、複数対のクレイドル窓29及びクレイドル33が設けられているため、外側作動室231に複数の圧縮室351が形成され、内側作動室232に複数個の圧縮室352が形成される。各クレイドル33は、ロータ26の回転に伴い、軸芯Oと平行な方向に沿って延びる両揺動端でアウターブロック5及びインナーブロック7と摺接するため、圧縮室351、352の気密性が維持される。特に、各クレイドル33はロータ26の回転に基づく遠心力によって外側に押し付けられるため、外側作動室231が形成する圧縮室351は高い気密性を有する状態に維持される。このため、圧縮室351、352はロータ26の回転によって容積変化を生じる。この際、ロータ26は各クレイドル33の第1封止面33dが前方になるように回転する。そのため、圧縮室351、352の圧縮反力の殆どは第1封止面33d経由でロータ26で支えられることとなり、クレイドル33の挙動が安定する。
 そして、圧縮室351は容積が拡大する際に吸入口5aから冷媒ガスの吸入を行い、圧縮室352は容積が拡大する際に吸入口7bから冷媒ガスの吸入を行う。また、圧縮室351は容積が縮小する際に吐出口5bから冷媒ガスの吐出を行い、圧縮室352は容積が縮小する際に吐出口7cから冷媒ガスの吐出を行う。こうして車室の空調が行われる。
 より詳細には、図3の圧縮室351、352が図7(A)に示され、図4の圧縮室351、352が図7(B)に示され、図5の圧縮室351、352が図7(C)に示され、図6の圧縮室351、352が図7(D)に示される。例えば、図7(A)において、外側作動室231によって構成される圧縮室351のうち、圧縮室C1に着目すれば、圧縮室C1は、駆動軸19の回転によって図7(B)では容積を拡大し、この際に冷媒を吸入する。そして、圧縮室C1は図7(C)で冷媒の吸入を終了し、図7(D)では圧縮室C1として容積を縮小し始め、冷媒を吐出する。また、図7(A)において、内側作動室232によって構成される圧縮室352のうち、圧縮室C2に着目すれば、圧縮室C2は、駆動軸19の回転によって図7(B)では容積を拡大し、この際に冷媒を吸入する。そして、圧縮室C3は図7(C)で容積を縮小し始め、図7(D)で冷媒を吐出する。
 また、この圧縮機は、ロータ26の回転動作によって圧縮室351、352が容積変化を生じることから、振動を生じ難く、さほど多くの部品点数を要しない。さらに、この圧縮機では、クレイドル33に摩擦力がかかっても、その形状から破壊や変形が発生しにくい。特に、この圧縮機では、各クレイドル33の第1封止面33dが枢軸Pを中心とした円筒面の一部で形成されているため、圧縮室351、352内の高圧を枢軸Pが好適に受承し、各クレイドル33が好適に揺動し易い。また、各クレイドル33は、中空部33fを有するため、軽量であることから、好適に揺動し易い。このため、この圧縮機は動力損失の点で優れた効果を発揮する。また、この圧縮機においてロータ26の占有率が小さい。ロータ26の径方向外側の圧縮室351だけでなく、径方向内側にも圧縮室352を形成することができるため、圧縮機全体の容積当たりの排気量の点でも優れた効果を発揮する。
 さらに、この圧縮機では、スクロール型圧縮機のような渦巻状の溝の加工が不要である。また、この圧縮機では、スクロールのように形状が複雑ゆえに低強度となる部品が存在せず、軸方向の長さを長くして排気量を大きくする場合、ハウジング、ロータ26及び各クレイドル33の肉厚を変更するだけで排気量を大きくすることが可能である。そのため、圧縮機の小型化及び小重量化を実現し易い。
 また、この圧縮機では、複数対のクレイドル窓29及びクレイドル33が設けられているため、動力損失を小さくすることができるとともに、脈動を低減することができる。また、アウターブロック5及びインナーブロック7に吸入口5a、7b及び吐出口5b、7cが形成されており、全体の軽量化を実現することができる。
 したがって、この圧縮機は、新規な容積形圧縮機として、従来の容積形圧縮機の種々の問題を解決することができる。
 (第2の実施形態)
 本発明の第2の実施形態に係る圧縮機は、図10に示すクレイドル43を採用している。各クレイドル43は、略三角柱形状をした一体品のクレイドル本体44と、クレイドル本体44に設けられた外側シールピン45と、クレイドル本体44に設けられた内側シールピン46とからなる。
 各クレイドル本体44の軸方向の両端にはピン43a、43bが突出するように設けられている。このため、各クレイドル43は、対応するクレイドル窓29内で枢軸P回りに揺動可能になっている。各クレイドル43は軸芯Oと平行な方向に延びる中空部43fを有している。
 各外側シールピン45はロータ室内向面23aを区画するアウターブロック5の材料とは異なる材料、例えば樹脂によって形成されている。各外側シールピン45は、ロータ室前端面23cからロータ室後端面23dまで延びる円柱状に形成されている。各外側シールピン45は、外周面の半分をやや超えた部分がクレイドル本体44によって覆われている。クレイドル本体44から露出する外周面が外側当接面45aを形成する。このため、各外側シールピン45はクレイドル本体44に軸芯O及び枢軸Pと平行な外側回動軸Q1回りに回動可能になっている。各外側シールピン45の回動範囲には制限がない。
 各内側シールピン46はロータ室外向面23bを区画するインナーブロック7の材料とは異なる材料、例えば樹脂によって形成されている。各内側シールピン46は、ロータ室前端面23cからロータ室後端面23dまで延びる柱状に形成されているが、その周面の一部には径外方向に突出したリップ46aが形成されている。また、内側シールピン46は、その周面の一部には径内方向に凹んだ凹部46cが形成されている。各内側シールピン46は、リップ46aを露出しながら、外周面の半分をやや超えた部分がクレイドル本体44によって覆われており、リップ46aの外面が内側当接面46bとして形成されている。このため、各内側シールピン46はクレイドル本体44に軸芯O及び枢軸Pと平行な内側回動軸Q2回りに回動可能になっている。但し、各内側シールピン46の回動範囲は、凹部46cの周方向の長さの範囲内に制限されている。第2の実施形態の他の構成は、第1の実施形態と同様である。
 この圧縮機においても、第1の実施形態と同様の作用効果を奏することができる。また、この圧縮機では、各クレイドル43がクレイドル本体44、外側シールピン45及び内側シールピン46からなる。そのため、外側シールピン45及び内側シールピン46がクレイドル本体44と別体であり、クレイドル43やハウジングの製造時の寸法のばらつきに対して、最適な径の外側シールピン45や内側シールピン46を組み合わせることができる。その結果、外側シールピン45の外側当接面45aがロータ室内向面23aと好適に内接し、内側シールピン46の内側当接面46bがロータ室外向面23bと好適に外接するように構成し易い。
 また、この圧縮機では、各外側シールピン45がクレイドル本体44に対して外側回動軸Q1回りに回動することから、外側シールピン45の外側当接面45aがロータ室内向面23aを好適に転動する。また、各クレイドル43は、ロータ26の回転に基づく遠心力によって外側当接面45aをロータ室内向面23aに押し付けることから、外側当接面45aとロータ室内向面23aとは好適に封止される。
 これに対して、内側シールピン46がクレイドル本体44に対して内側回動軸Q2回りに回動することから、内側シールピン46の内側当接面45bがロータ室外向面23bを好適に転動する。また、内側シールピン46にリップ46aが形成され、リップ46aがロータ26の回転方向における前後の圧縮室351、352の差圧によって外側に湾曲するため、リップ46aがロータ室外向面23bに確実に当接する。
 このため、この圧縮機では、圧縮室351、352の気密性が高まり、圧縮効率が向上する。
 また、この圧縮機では、各外側シールピン45がアウターブロック5とは異なる材料によって形成されていることから、外側当接面45aとロータ室内向面23aとの焼き付きを防止することができる。また、各内側シールピン46がインナーブロック7とは異なる材料によって形成されていることから、内側当接面46bとロータ室外向面23bとの焼き付きを防止することができる。このため、この圧縮機では、高い耐久性を発揮することができる。
 (第3の実施形態)
 第3の実施形態の圧縮機は図11に示すクレイドル53を採用している。各クレイドル53は、略三角柱形状をした一体品のクレイドル本体54と、クレイドル本体54に設けられた外側シールピン55と、クレイドル本体54に設けられた内側シールピン56とからなる。
 各クレイドル本体54の軸方向の両端にはピン53a、53bが突出するように設けられている。このため、各クレイドル53は、各クレイドル窓29内で枢軸P回りに揺動可能になっている。各クレイドル53は軸芯Oと平行な方向に延びる中空部53fを有している。
 各外側シールピン55はロータ室内向面23aを区画するアウターブロック5の材料とは異なる材料、例えば樹脂によって形成されている。各外側シールピン55の構成は第2の実施形態と同様である。
 各内側シールピン56はロータ室外向面23bを区画するインナーブロック7の材料とは異なる材料、例えば樹脂によって形成されている。各内側シールピン56は、外周面の半分をやや超えた部分がクレイドル本体54によって覆われており、クレイドル本体54から露出する外周面が内側当接面56bとして形成されている。このため、各内側シールピン56はクレイドル本体54に軸芯O及び枢軸Pと平行な内側回動軸Q2回りに回動可能になっている。各内側シールピン56の回動範囲には制限がない。
 クレイドル本体54にはバネ室54aが形成されており、バネ室54aには外側シールピン55と内側シールピン56とを互いに離れる方向に付勢する付勢部材としてのコイルバネ57が収納されている。第2の実施形態の他の構成は第1の実施形態と同様である。
 この圧縮機においても、第2の実施形態と同様の作用効果を奏することができる。また、この圧縮機では、各クレイドル53において、外側シールピン55と内側シールピン56とが互いに離れる方向に付勢されているため、外側シールピン55の外側当接面55aがロータ室内向面23aと好適に内接し、内側シールピン56の内側当接面56bがロータ室外向面23bと好適に外接する。このため、この圧縮機においては、圧縮室351、352の気密性がより高まり、圧縮効率が向上する。
 以上において、本発明を第1~第3の実施形態に即して説明したが、本発明は上記第1~第3の実施形態に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。また、本発明は駆動源として電動機を採用することにより、時間あたりの吐出量を電子的に制御することもできる。

Claims (17)

  1.  圧縮機であって、
     軸芯回りに回転可能な駆動軸と、
     該駆動軸を回転可能に支持するとともに、該軸芯と平行な環状をなすロータ室を内部に形成するハウジングと、
     径方向に貫通するクレイドル窓を有するとともに、該軸芯と平行な方向に沿って延びる周面で該ハウジングと摺接しつつ該ロータ室内に設けられ該駆動軸と共に回転可能な環状のロータと、
     該軸芯と平行な枢軸回りに揺動可能に該クレイドル窓内に設けられ、該ロータの回転に伴って該軸芯と平行な方向に沿って延びる両揺動端で該ハウジングと摺接するクレイドルとを備え、
     前記ロータ室は、
     前記ロータの径方向外側に位置する外側作動室と、
     該ロータの径方向内側に位置する内側作動室とを含み、
     該外側作動室及び該内側作動室の少なくとも一方と前記クレイドルとは、該ロータの回転によって気密を維持しつつ容積変化を生じる圧縮室を形成し、前記ハウジングは、該圧縮室と連通する吸入口及び吐出口を有する、圧縮機。
  2.  前記ロータ室は、
     前記軸芯と平行な環状のロータ室内向面と、
     該ロータ室内向面に囲まれ、かつ該軸芯と平行な環状のロータ室外向面と、
     該軸芯と直交するロータ室前端面と、
     該軸芯と直交するロータ室後端面とによって区画され、
     前記ロータは、
     該ロータ室内向面と内接しつつ該ロータ室前端面から該ロータ室後端面まで延びるロータ外周面と、
     該ロータ室外向面と内接しつつ該ロータ室前端面から該ロータ室後端面まで延びるロータ内周面とを有し、
     前記クレイドルは、
     該ロータ室前端面から該ロータ室後端面までに亘って該ロータ室内向面と内接する外側当接面と、
     該ロータ室前端面から該ロータ室後端面までに亘って該ロータ室外向面と外接する内側当接面と、
     該外側当接面と該内側当接面とを接続し、前記クレイドル窓の周方向の第1端を封止する第1封止面と、
     該外側当接面と該内側当接面とを接続し、前記クレイドル窓の周方向の第2端を封止する第2封止面とを有している、請求項1記載の圧縮機。
  3.  前記第1封止面及び前記第2封止面の一方と前記枢軸との距離は、該第1封止面及び該第2封止面の他方と該枢軸との距離より長く設定されている、請求項2記載の圧縮機。
  4.  前記第1封止面又は前記第2封止面であって前記枢軸から遠い方は、該枢軸を中心とした円筒面の一部として形成されている、請求項3項記載の圧縮機。
  5.  前記第1封止面又は前記第2封止面であって前記枢軸に近い方は、該枢軸を中心とした円筒面の一部として形成されている請求項3又は4項記載の圧縮機。
  6.  前記ハウジングは、
     前記ロータ室内向面を形成するアウターブロックと、
     該アウターブロック内に設けられ、前記ロータ室外向面を形成するインナーブロックと、
     該アウターブロック及び該インナーブロックに固定され、前記ロータ室前端面を形成するフロントプレートと、
     該アウターブロック及び該インナーブロックに固定され、前記ロータ室後端面を形成するリヤプレートとを備えている、請求項2乃至5のいずれか1項記載の圧縮機。
  7.  前記ハウジングは、
     前記アウターブロック、前記インナーブロック、前記フロントプレート及び前記リヤプレートを収容するシェルと、
     該シェルに固定され、前記駆動軸を回転可能に支持するフロントハウジングとを備えている、請求項6記載の圧縮機。
  8.  前記ロータと前記駆動軸とは前記軸芯と直交するハブによって連結され、該ハブは前記ロータ室前端面又は前記ロータ室後端面の一部を形成している、請求項2乃至7のいずれか1項記載の圧縮機。
  9.  前記クレイドルは、
     前記クレイドル窓内に揺動可能に設けられたクレイドル本体と、
     該クレイドル本体に設けられ、前記外側当接面を有する外側シールピンと、
     該クレイドル本体に設けられ、前記内側当接面を有する内側シールピンとを含む、請求項2乃至8のいずれか1項記載の圧縮機。
  10.  前記外側シールピンは前記クレイドル本体に前記軸芯及び前記枢軸と平行な外側回動軸回りに回動可能に設けられている、請求項9記載の圧縮機。
  11.  前記内側シールピンは前記クレイドル本体に前記軸芯及び前記枢軸と平行な内側回動軸回りに回動可能に設けられている、請求項9又は10項記載の圧縮機。
  12.  前記外側当接面は前記ロータ室内向面を区画する材料とは異なる材料によって形成されている、請求項2乃至11のいずれか1項記載の圧縮機。
  13.  前記内側当接面は前記ロータ室外向面を区画する材料とは異なる材料によって形成されている、請求項2乃至12のいずれか1項記載の圧縮機。
  14.  前記外側シールピン及び前記内側シールピンの少なくとも一方には、前記ロータの回転方向における前後の差圧によって押され、前記ロータ室内向面又は前記ロータ室外向面に当接するリップが形成されている請求項9乃至11のいずれか1項記載の圧縮機。
  15.  前記クレイドルは中空である、請求項1乃至14のいずれか1項記載の圧縮機。
  16.  前記クレイドルは、前記外側シールピンと前記内側シールピンとを互いに離れる方向に付勢する付勢部材を含む、請求項9乃至11のいずれか1項記載の圧縮機。
  17.  一対以上のクレイドル窓及びクレイドルを更に備える、請求項1乃至16のいずれか1項記載の圧縮機。
PCT/JP2012/072337 2011-09-21 2012-09-03 圧縮機 WO2013042527A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112014006255A BR112014006255A2 (pt) 2011-09-21 2012-09-03 compressor
CN201280045412.6A CN103814220B (zh) 2011-09-21 2012-09-03 压缩机
KR1020147004484A KR101581692B1 (ko) 2011-09-21 2012-09-03 압축기
US14/344,228 US9631621B2 (en) 2011-09-21 2012-09-03 Compressor
EP12833548.6A EP2759709B1 (en) 2011-09-21 2012-09-03 Compressor
IN2012CHN2014 IN2014CN02012A (ja) 2011-09-21 2014-03-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-206044 2011-09-21
JP2011206044A JP5724785B2 (ja) 2011-09-21 2011-09-21 圧縮機

Publications (1)

Publication Number Publication Date
WO2013042527A1 true WO2013042527A1 (ja) 2013-03-28

Family

ID=47914304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072337 WO2013042527A1 (ja) 2011-09-21 2012-09-03 圧縮機

Country Status (8)

Country Link
US (1) US9631621B2 (ja)
EP (1) EP2759709B1 (ja)
JP (1) JP5724785B2 (ja)
KR (1) KR101581692B1 (ja)
CN (1) CN103814220B (ja)
BR (1) BR112014006255A2 (ja)
IN (1) IN2014CN02012A (ja)
WO (1) WO2013042527A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103452846A (zh) * 2013-10-08 2013-12-18 李锦上 塞杆压缩机
CN103867440A (zh) * 2014-03-28 2014-06-18 袁政 压缩机

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105658962B (zh) * 2013-07-24 2018-01-16 张翼 定轨转子泵及定轨转子泵组合增压内燃发动机
WO2016160856A2 (en) 2015-03-30 2016-10-06 Hicor Technologies, Inc. Compressor with liquid injection cooling
CN109268260A (zh) * 2018-11-13 2019-01-25 白明 一种旋转动力泵

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111077A (ja) * 1983-11-22 1985-06-17 Mitsubishi Heavy Ind Ltd 回転式ポンプ
JPS61160292U (ja) * 1985-03-28 1986-10-04
JPH01100394A (ja) * 1987-10-14 1989-04-18 Aisin Seiki Co Ltd 容積型ポンプ
JPH01155091A (ja) * 1987-12-10 1989-06-16 Suzuki Motor Co Ltd ベーン型回転圧縮機
JPH0968171A (ja) * 1995-09-01 1997-03-11 Kayseven Co Ltd 流動体用ポンプ
DE102004002151B3 (de) * 2004-01-15 2005-09-01 Gößling, Werner, Ing.(grad.) Rotationskolbengebläse mit innerem Temperaturausgleich
JP2006336583A (ja) * 2005-06-03 2006-12-14 Daikin Ind Ltd 回転式流体機械

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1000316A (en) * 1910-06-15 1911-08-08 William Alexander Rotary engine.
US2435476A (en) * 1944-04-03 1948-02-03 Orran B Summers Internal-combustion power unit having a rotor with pivoted impulse elements
US2738775A (en) * 1952-03-10 1956-03-20 Elmer D Smyser Fluid meters
US3083894A (en) * 1956-07-11 1963-04-02 Borsig Ag Rotary piston engine
JPS5469812A (en) * 1977-11-15 1979-06-05 Sanyo Electric Co Ltd Rotary type fluid machine
JPS5941602A (ja) 1982-09-01 1984-03-07 Daikin Ind Ltd 二重マルチベ−ン型回転機械
DE3434501A1 (de) * 1984-09-20 1986-03-27 SKF GmbH, 8720 Schweinfurt Fluegelzellenpumpe
US5328337A (en) 1990-08-17 1994-07-12 Kunta Norbert J Guided vanes hydraulic power system
WO1997012133A1 (en) * 1995-09-26 1997-04-03 Christopher Bernard Wade Rotary engine and compressor
JPH10274050A (ja) 1997-03-28 1998-10-13 Masahiko Mori ロータリーピストンエンジン及びポンプ
EP1574664B1 (en) * 2004-03-09 2009-04-15 Radziwill Compressors Sp. z.o.o. Rotary and oscillating vane machine
US20100143174A1 (en) * 2004-03-09 2010-06-10 Maciej Radziwill Rotary Working Machine Provided with an Assembly of Working Chambers and Periodically Variable Volume, In Particular a Compressor
JP5201113B2 (ja) 2008-12-03 2013-06-05 株式会社豊田自動織機 スクロール型圧縮機
JP5083227B2 (ja) 2009-01-15 2012-11-28 株式会社豊田自動織機 圧縮機用背圧調整弁及びベーン型圧縮機
JP2011122572A (ja) 2009-09-07 2011-06-23 Toyota Industries Corp 可変容量型斜板式圧縮機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111077A (ja) * 1983-11-22 1985-06-17 Mitsubishi Heavy Ind Ltd 回転式ポンプ
JPS61160292U (ja) * 1985-03-28 1986-10-04
JPH01100394A (ja) * 1987-10-14 1989-04-18 Aisin Seiki Co Ltd 容積型ポンプ
JPH01155091A (ja) * 1987-12-10 1989-06-16 Suzuki Motor Co Ltd ベーン型回転圧縮機
JPH0968171A (ja) * 1995-09-01 1997-03-11 Kayseven Co Ltd 流動体用ポンプ
DE102004002151B3 (de) * 2004-01-15 2005-09-01 Gößling, Werner, Ing.(grad.) Rotationskolbengebläse mit innerem Temperaturausgleich
JP2006336583A (ja) * 2005-06-03 2006-12-14 Daikin Ind Ltd 回転式流体機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2759709A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103452846A (zh) * 2013-10-08 2013-12-18 李锦上 塞杆压缩机
CN103452846B (zh) * 2013-10-08 2016-08-03 李锦上 塞杆压缩机
CN103867440A (zh) * 2014-03-28 2014-06-18 袁政 压缩机
CN103867440B (zh) * 2014-03-28 2016-04-20 袁政 压缩机

Also Published As

Publication number Publication date
KR20140038562A (ko) 2014-03-28
EP2759709A4 (en) 2015-01-28
BR112014006255A2 (pt) 2017-04-11
EP2759709A1 (en) 2014-07-30
US20140369880A1 (en) 2014-12-18
KR101581692B1 (ko) 2015-12-31
JP5724785B2 (ja) 2015-05-27
EP2759709B1 (en) 2015-11-18
IN2014CN02012A (ja) 2015-05-29
CN103814220A (zh) 2014-05-21
CN103814220B (zh) 2016-01-20
US9631621B2 (en) 2017-04-25
JP2013068122A (ja) 2013-04-18

Similar Documents

Publication Publication Date Title
JP5265705B2 (ja) 回転式圧縮機
WO2013042527A1 (ja) 圧縮機
JP2006083844A (ja) 多気筒回転圧縮機
JP2014005795A (ja) 回転型圧縮機
US9145890B2 (en) Rotary compressor with dual eccentric portion
WO2014196147A1 (ja) 回転型圧縮機構
JP5442638B2 (ja) 回転式圧縮機
US9726018B2 (en) Scroll type fluid machine with a rotation stopping mechanism
JP5653304B2 (ja) ローリングピストン型圧縮機
JP5020327B2 (ja) 複数段圧縮可能な球型圧縮機及び膨張圧縮機
JP6091303B2 (ja) ローリングピストン形圧縮機
JP2001304141A (ja) スクロール型変圧装置
KR102515120B1 (ko) 스크롤 압축기
KR102031851B1 (ko) 전동식 압축기
JP2004286025A (ja) スクロール流体機械
KR20240043219A (ko) 스크롤 압축기
KR20190132112A (ko) 전동식 압축기
KR20200090374A (ko) 스크롤 압축기
KR20190102584A (ko) 전동식 압축기
JPH05272476A (ja) 流体圧縮機
JPS58162787A (ja) 旋回円筒ピストン型容積式流体装置
JP2014181686A (ja) 圧縮機
JP2009216088A (ja) 容積型流体機械
JP2008163835A (ja) 回転式流体機械
JP2004278416A (ja) 2気筒回転式圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833548

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012833548

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147004484

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14344228

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014006255

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014006255

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140317