WO2013042310A1 - Water treatment device - Google Patents

Water treatment device Download PDF

Info

Publication number
WO2013042310A1
WO2013042310A1 PCT/JP2012/005251 JP2012005251W WO2013042310A1 WO 2013042310 A1 WO2013042310 A1 WO 2013042310A1 JP 2012005251 W JP2012005251 W JP 2012005251W WO 2013042310 A1 WO2013042310 A1 WO 2013042310A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treated water
storage unit
path
circulation
Prior art date
Application number
PCT/JP2012/005251
Other languages
French (fr)
Japanese (ja)
Inventor
誠 小玉
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013042310A1 publication Critical patent/WO2013042310A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms

Definitions

  • the present invention relates to a water treatment apparatus.
  • a water treatment device a device including a storage unit that stores drinking water and a circulation path that circulates drinking water in the storage unit is known (for example, see Patent Document 1).
  • both ends of the circulation path are connected and fixed to the storage part. Then, a sterilizing means is provided in the circulation path, and when the drinking water in the storage part is circulated, sterilization is performed so that the drinking water is stored hygienically in the storage part.
  • an object of the present invention is to obtain a water treatment apparatus capable of storing treated water in a storage section in a more sanitary manner.
  • the first feature of the present invention is that the treated water generating unit that generates treated water, the storage unit that stores the treated water generated by the treated water generating unit, and the discharged treated water from the discharge port,
  • a water treatment apparatus comprising: an introduction path that is introduced into the storage section; a circulation path that circulates treated water in the storage section and reintroduces the treated water in the storage section; and a discharge path that discharges treated water in the storage section to the outside.
  • the said circulation path has the discharge outlet for circulation which discharges the treated water in the said circulation path in the said storage part,
  • the relative position with respect to the said storage part of the said discharge outlet for circulation is variable Is the gist.
  • the gist of the second feature of the present invention is that the storage section is detachably provided.
  • the third feature of the present invention is summarized in that the discharge port of the introduction path also serves as the discharge port for circulation.
  • a fourth feature of the present invention is summarized in that the water treatment apparatus includes a drainage unit that drains the treated water in the storage unit.
  • the water treatment device drives the pump when the treated water in the reservoir is discharged to the outside and the treated water in the reservoir is discharged to the outside by a predetermined amount. And a control unit that stops the operation.
  • control unit stops driving the pump when the pump is idling.
  • the seventh feature of the present invention is summarized in that the control unit controls the pump to perform a fixed amount of water discharge that discharges a predetermined amount of treated water in the storage unit to the outside.
  • control unit performs control so that the pump performs constant-flow water discharge that discharges treated water in the storage unit to the outside at a predetermined flow rate.
  • the circulation path has a circulation discharge port that discharges treated water in the circulation path into the storage unit, and the relative position of the circulation discharge port to the storage unit is variable. . For this reason, it becomes possible to set the relative position with respect to the storage part of the circulation discharge port so that the treated water can be efficiently convected throughout the storage part during circulation. As a result, it is possible to suppress the occurrence of stagnation in the treated water in the reservoir, and the treated water can be stored in the reservoir more hygienically.
  • the water treatment device 1 As shown in FIG. 1, the water treatment device 1 according to the present embodiment includes a treated water generating unit 40 that generates treated water, and a storage unit 8 that stores treated water generated by the treated water generating unit 40. I have. And the water treatment apparatus 1 discharges the treated water from the discharge port 50 and introduces the introduction path P2 into the storage section 8, and the sterilization / electrolysis processing path P3 that performs sterilization and electrolysis of the treated water in the storage section 8. And a discharge path P4 for discharging the treated water in the reservoir 8 to the outside. Furthermore, the water treatment apparatus 1 includes a circulation path P7 that circulates the treated water in the storage unit 8 and reintroduces it into the storage unit 8.
  • the water treatment device 1 includes a housing 2, and the housing 2 is operated to drive / stop the water treatment device 1, to discharge / stop treated water, or to be in a drinkable state.
  • a display / operation unit 19 is provided for notifying that it has become.
  • a part of the treated water generation unit 40, the storage unit 8, the introduction path P2, the sterilization / electrolysis process path P3, the circulation path P7, and the like are accommodated in the housing 2.
  • the discharge path P4 is accommodated in the housing
  • this embodiment has the water supply path P1 into which raw
  • a pre-filter 3, an on-off valve 4, a booster pump 5, a nano filter 6, and an activated carbon filter 7 are installed in this order from the upstream side.
  • the pre-filter 3, the on-off valve 4, the booster pump 5, the nano filter 6, and the activated carbon filter 7 constitute a treated water generating unit 40 that generates treated water.
  • an introduction path P ⁇ b> 2 for introducing the treated water into the storage unit 8 by discharging it from the discharge port 50 is provided.
  • the raw water is not limited to tap water, and may be well water or pool water.
  • the prefilter 3 can be a non-woven fabric filter or an activated carbon filter, for example. If a nonwoven fabric filter is used, foreign substances such as particles and dust mixed in tap water introduced into the water supply channel P1 can be captured and removed.
  • a heavy metal removing agent for removing heavy metals may be mixed inside the activated carbon filter so that harmful heavy metals such as lead can be adsorbed and removed by the heavy metal removing agent.
  • harmful heavy metals such as lead can be adsorbed and removed by the heavy metal removing agent.
  • bacteria are likely to propagate on the downstream side.
  • silver is added to the prefilter 3 and the activated carbon filter 7 when the activated carbon filter is used. You may make it mix the antibacterial agent containing the metal which has antibacterial properties.
  • the configuration of the prefilter 3 is not limited to these configurations.
  • a wind type or a sintered type in which fibers such as cotton are wound around a water collecting pipe may be used, or a fiber type in which thin fibers are laminated may be used.
  • a granular activated carbon stored in a case or a sintered type may be used, or a fibrous charcoal type may be used.
  • a prefilter a coarse filter, a sediment filter, an activated carbon filter, an MF membrane, a UF membrane, or the like can be used, and the number and combination of the filters may be changed as necessary while considering the quality of raw water. Is preferable.
  • the prefilter 3 having a higher replacement frequency than other members is provided outside the housing 2.
  • the prefilter 3 may be accommodated in the housing 2.
  • the on-off valve 4 controls the start and stop of introduction into the raw water treatment apparatus 1.
  • the raw water introduced from the raw water distribution pipe P0 into the water supply channel P1 passes through the prefilter 3 and is filtered.
  • the purified water that has been pretreated by the prefilter 3 is introduced into the nanofilter (reverse osmosis filtration unit) 6.
  • a booster pump 5 is installed on the downstream side of the prefilter 3, and the purified water pretreated by the prefilter 3 passes through the on-off valve 4 and reaches the booster pump 5.
  • the on-off valve 4 may be installed at any position in the middle of the water supply path P1, but is preferably installed downstream of the prefilter 3. This is because foreign substances can be prevented from entering the on-off valve 4.
  • the nanofilter (reverse osmosis filtration unit) 6 has an NF membrane (reverse osmosis membrane) 6a, and the pretreated water is introduced into the nanofilter 6 and the NF membrane (reverse osmosis membrane) 6a. It is separated into concentrated water that does not permeate and treated water (permeated water) that has permeated through the NF membrane (reverse osmosis membrane) 6a.
  • the nanofilter 6 applies reverse osmosis pressure by the booster pump 5 and generates treated water (permeated water) by allowing a part of the purified water sent to the nanofilter 6 to pass through the NF membrane (reverse osmosis membrane) 6a. It is what I did.
  • organic substances for example, trihalomethane, mold odor, and agricultural chemicals
  • heavy metal ions for example, lead, chromium, cadmium, mercury, arsenic, etc.
  • low molecular weight ion components such as sodium and calcium. Etc. can be removed.
  • the remaining water, salts and impurities are discharged from the concentrated water drainage channel P5 as concentrated water.
  • the restrictor 15 is provided in the middle of the concentrated water drainage channel P5, and the amount of treated water (permeated water) generated is determined by the restrictor 15.
  • the NF membrane 6a has a larger permeation hole than the RO membrane. Therefore, the nanofilter 6 using the NF film 6a can remove particles, organic substances, and heavy metals at a high removal rate of 90% or more, but low molecular weight ionic components are about 10 to about 10 to treated water (permeated water). It has a characteristic of remaining about 30 percent. In this case, for example, when water having a conductivity of 300 ⁇ S / cm is permeated, treated water having a conductivity of about 60 ⁇ S / cm is obtained as the treated water in which the low molecular ions remain.
  • the membrane used as the reverse osmosis membrane is not limited to this NF membrane, and a reverse osmosis membrane such as an RO membrane can also be used.
  • the treated water (permeated water) introduced into the activated carbon filter 7 passes through the activated carbon filter 7 and is filtered.
  • the treated water (permeated water) filtered by the activated carbon filter 7 is supplied to the introduction path P2.
  • the introduction path P ⁇ b> 2 is provided so that the discharge port 50 is disposed above the storage unit 8, and is a passage for introducing treated water (permeated water) into the storage unit 8.
  • the storage part 8 is a container with an open top.
  • the treated water (permeated water) filtered by the activated carbon filter 7 is discharged from the discharge port 50 into the storage unit 8 and temporarily stored in the storage unit 8.
  • the time required for discharging the treated water to the outside can be shortened.
  • the discharge path P4 for discharging the treated water in the reservoir 8 to the outside is formed.
  • the discharge path P4 is connected to the downstream side of the sterilization / electrolysis process path P3 connected to the storage unit 8, and the discharge path P4 is so exposed that the discharge port 70 is exposed to the outside of the housing 2. Is provided.
  • the sterilization / electrolysis treatment path P3 is connected to the lower portion of the storage section 8 on the side where the treated water in the storage section 8 is introduced into the sterilization / electrolysis treatment path P3.
  • a circulation path P7 for circulating the treated water in the storage unit 8 and reintroducing it into the storage unit 8 is provided.
  • a branch portion D1 is provided at the downstream end of the sterilization / electrolysis treatment path P3, and the sterilization / electrolysis treatment path P3 is branched into the discharge path P4 and the circulation path P7 by the branch portion D1. .
  • the circulation path P7 has a circulation discharge port 60 for discharging the treated water in the circulation path P7 into the storage unit 8.
  • the circulation discharge port 60 is disposed at the upper part of the storage unit 8 and discharges treated water (permeated water) circulated from above the storage unit 8.
  • an electrolytic cell 10 is provided in the middle of the sterilization / electrolytic treatment path P3, that is, downstream of the storage section 8, and alkali ion water (treated water) or permeated water (treated water) is selected from the discharge path P4. Can be supplied automatically.
  • the booster pump 9 and the electrolytic cell 10 are installed in order from the upstream side of the sterilization / electrolysis treatment path P3.
  • the electrolytic cell 10 is internally partitioned by a diaphragm 10a, one is a cathode chamber 10c having a cathode (electrode) 10b, and the other is an anode chamber 10e having an anode (electrode) 10d. Then, the terminal of the sterilization / electrolytic treatment path P3 is branched, and one branch path is connected to the inlet of the cathode chamber 10c, and the other branch path is connected to the inlet of the anode chamber 10e.
  • the treated water introduced into the cathode chamber 10c and the anode chamber 10e of the electrolytic cell 10 is electrolyzed by applying a voltage between the cathode 10b and the anode 10d, and alkali ion water is generated in the cathode chamber 10c. At the same time, acidic water is generated in the anode chamber 10e.
  • the outlet of the cathode chamber 10c is communicated with the sterilization / electrolysis treatment path P3, and the outlet of the anode chamber 10e is communicated with the discharge path P6.
  • the alkaline ionized water generated in the cathode chamber 10c passes through the sterilization / electrolytic treatment path P3 and the discharge path P4 and is discharged from the discharge port 70 to the outside.
  • the acidic water generated in the anode chamber 10e is discharged to the outside from the discharge path P6.
  • a booster pump 9 is disposed on the downstream side of the storage portion 8 of the sterilization / electrolytic treatment path P3, and this booster pump 9 is operated to supply treated water (permeated water) from the storage portion 8. It introduces into the electrolytic cell 10.
  • a water level sensor 20 is provided at a predetermined position of the storage unit 8, and when the water is stored up to a predetermined position of the storage unit 8, it detects that the water is full and controls the on-off valve 4. To be able to.
  • the sterilization / electrolysis treatment path P3 is provided with a sterilization unit 11 having a UV tube 11a.
  • a discharge path P4 is connected to the downstream side of the sterilization unit 11 (between the sterilization unit 11 and the circulation discharge port 60).
  • the alkaline ionized water (treated water) obtained by electrolyzing the treated water in the reservoir 8 in the electrolytic cell 10 and the permeated water (treated water) that has passed through the non-operated electrolytic cell 10 are discharged from the discharge port. Before being discharged from 70, it is sterilized by passing through the sterilizing section 11. In addition, even when the treated water in the storage unit 8 is circulated through the sterilization / electrolytic treatment path P3 and the circulation path P7, the treated water (permeated water) sterilized by passing through the sterilization unit 11 is stored in the storage unit. 8 is introduced again.
  • the sterilizing unit is not limited to using a UV tube, and other sterilizing means such as ozone may be used. Thus, by providing the sterilizing unit 11, more sanitary treated water (alkali ion water or permeated water) can be supplied.
  • the storage unit 8 is detachably installed in the housing 2. Specifically, the storage unit 8 is installed to be slidable in the horizontal direction, and the storage unit 8 can be removed by sliding the storage unit 8 in the horizontal direction.
  • a mechanical movable valve 21 is provided at the connecting portion between the storage unit 8 and the sterilization / electrolysis treatment path P3 so that the treated water remaining in the storage unit 8 does not leak when the storage unit 8 is attached or detached.
  • this mechanical movable valve 21 one having a known structure can be used.
  • An electromagnetic valve can be used instead of the mechanical movable valve 21.
  • the solenoid valve 12 is provided in the circulation path P7.
  • the circulation outlet 60 is preferably arranged above the top surface of the storage unit 8 so that it does not get in the way when the storage unit 8 is attached and detached. Moreover, when the storage part 8 is slid, it is also possible to make the circulation spout 60 move upward so that the circulation path P7 does not interfere with the attachment / detachment of the storage part 8.
  • an electromagnetic valve 13 is also provided in the middle of the discharge path P4, and an electromagnetic valve 14 is also provided in the discharge path P6.
  • the water treatment apparatus 1 is provided with a control circuit (control unit) 18.
  • the on-off valve 4, the booster pump 5, the booster pump 9, the UV tube 11 a, the solenoid valve 12, the solenoid valve 13, the solenoid valve 14 and the restrictor 15 are supplied with command signals (power) supplied from the control circuit (control unit) 18. ).
  • operation signals from the water level sensor 20 and the display / operation unit 19 are sent to a control circuit (control unit) 18.
  • the electrolytic cell 10 is also driven by a command signal from the control circuit (control unit) 18, and a controlled voltage is applied to the cathode 10b and the anode 10d of the electrolytic cell 10. .
  • control circuit (control unit) 18 is performed by converting a commercial AC voltage supplied from a power plug 16 connected to an external power source (not shown) into a DC voltage by the power source unit 17. It is done in the state.
  • the relative position of the circulation outlet 60 of the circulation path P7 with the storage unit 8 can be changed.
  • the portion where the circulation outlet 60 of the circulation path P7 is provided movably so that the position at which the reservoir 8 is discharged can be changed.
  • a flexible member such as a rubber tube provided with the circulation outlet 60 integrally or separately to the circulation path P7, the part of the circulation path P7 where the circulation outlet 60 is provided can be moved. Can be formed.
  • the part where the circulation outlet 60 of the circulation path P7 is provided may be formed so as to be rotatable in the horizontal direction with respect to other parts, so that the discharge position of the treated water can be changed.
  • the part where the circulation outlet 60 of the circulation path P7 is provided may be formed so as to be rotatable in the vertical direction with respect to the other part so that the discharge angle of the treated water can be changed.
  • the entire circulation path P7 may be connected to the sterilization / electrolysis treatment path P3 so as to be variable with respect to the sterilization / electrolysis treatment path P3.
  • the water treatment apparatus 1 includes a drainage means for draining the treated water in the storage unit 8.
  • the water is drained through the mechanical movable valve 21, the booster pump 9, the anode chamber 10e of the electrolytic cell 10, and the discharge path P6.
  • the booster pump 9 may be driven to drain the treated water in the reservoir 8, or the treated water in the reservoir 8 may be drained using gravity.
  • the treated water in the reservoir 8 can be drained by discharging the treated water in the reservoir 8 from the discharge port 70 without newly storing the treated water in the reservoir 8.
  • control circuit (control unit) 18 stops driving the booster pump 9 when the predetermined amount of treated water in the storage unit 8 is discharged to the outside.
  • control circuit (control unit) 18 performs control to stop driving of the booster pump 9 when the booster pump 9 is idling.
  • a detection unit that detects the current value of the booster pump 9 is provided, and when the detection unit detects a current value that flows through the booster pump 9 when the booster pump 9 is idle, a control circuit ( The control unit 18 stops driving the booster pump 9.
  • control circuit (control unit) 18 performs control so that the booster pump 9 performs quantitative water discharge that discharges a predetermined amount of treated water in the storage unit 8 to the outside.
  • control circuit (control unit) 18 performs control so that the booster pump 9 performs constant-flow water discharge that discharges treated water in the storage unit 8 to the outside at a predetermined flow rate.
  • the constant flow rate water discharge is performed by controlling the rotation speed of the booster pump 9 to be a constant value.
  • the constant flow rate water discharge is performed by detecting the driving time of the booster pump 9 while performing the constant flow rate water discharge.
  • the water treatment apparatus 1 having such a configuration operates as follows.
  • the control circuit (control unit) 18 opens the on-off valve 4 of the water supply channel P1.
  • natural water is introduce
  • the purified water generated by performing the pretreatment passes through the on-off valve 4 to reach the booster pump 5 and is boosted by the booster pump 5.
  • treated water permeated water introduced into the nanofilter 6 and permeated through the NF film 6a and from which organic substances and ions dissolved in the water are removed by the NF film 6a is introduced into the activated carbon filter 7.
  • transmitting NF membrane (reverse osmosis membrane) 6a is removed from the discharge port 50 of the introduction path P2 to the storage part 8 is obtained.
  • the water level sensor 20 detects that the water level is full, the generation of the treated water (permeated water) in the treated water generation unit 40 is stopped, and the supply of the treated water (permeated water) into the storage unit 8 is stopped. Stop.
  • alkaline ionized water or permeated water is discharged from the discharge port 70 to the outside while the treated water is accumulated in the reservoir 8 (preferably in a full water state).
  • the display unit / operation unit 19 When discharging alkaline ion water from the discharge port 70 to the outside, the display unit / operation unit 19 is operated to select the alkali ion water generation mode.
  • the booster pump 9 is driven, and the treated water (permeated water) in the reservoir 8 is supplied to the electrolytic cell 10 through the sterilization / electrolytic treatment path P3.
  • Part of the treated water (permeated water) in the sterilization / electrolytic treatment path P3 is introduced into the cathode chamber 10c and the other is introduced into the anode chamber 10e.
  • the amount (flow rate ratio) of treated water (permeated water) introduced into the cathode chamber 10c and the anode chamber 10e is determined by narrowing the discharge path P6.
  • the treated water supplied into the electrolytic cell 10 is electrolyzed by applying a DC voltage to the cathode 10b and the anode 10d, and alkali ion water is generated in the cathode chamber 10c and acidic water is generated in the anode chamber 10e. .
  • generated in the cathode chamber 10c is sterilized by allowing the sterilization part 11 to pass through before discharging to the exterior from the discharge outlet 70.
  • the alkaline ionized water sterilized by the sterilizing unit 11 passes through the sterilization / electrolytic treatment path P3 and the discharge path P4 and is discharged to the outside from the discharge port 70.
  • the acidic water generated in the anode chamber 10e is discharged to the outside through the discharge path P6.
  • the solenoid valve 12 is closed, so that alkaline ionized water is not introduced into the reservoir 8 through the circulation path P7.
  • the on-off valve 4, the mechanical movable valve 21, the electromagnetic valve 13 and the electromagnetic valve 14 are open so that water can pass through the respective water channels.
  • the booster pump 5 is also operated so that newly generated treated water (permeated water) can be supplied into the storage unit 8 at the time of supplying alkaline ion water.
  • the display unit / operation unit 19 is operated to stop water flow.
  • the on-off valve 4 is closed by the control circuit (control unit) 18 and the booster pump 5 and the booster pump 9 are stopped.
  • the treated water that has been permeated through the nanofilter 6 is supplied into the storage unit 8, so that the amount of treated water generated per unit time is the amount generated per unit time of alkaline ionized water. It is less than the amount. Therefore, it is preferable to close the on-off valve 4 and stop the booster pump 5 after the booster pump 9 is stopped, after a predetermined time has elapsed, or after it is detected that the reservoir 8 is full. .
  • the display unit / operation unit 19 is operated to select the constant flow rate discharge mode.
  • the booster pump 9 When the constant flow rate discharge mode is selected, when a predetermined amount of alkaline ionized water such as 2 liters is discharged, the booster pump 9 is stopped by the control circuit (control unit) 18 to stop water supply. The predetermined amount is detected by discharging the booster pump 9 at a constant flow rate, and detecting it based on the discharge flow rate and the drive time of the booster pump 9 (the product of both).
  • the treated water generation mode (purified water) is selected by operating the display / operation unit 19.
  • this treated water generation mode (purified water)
  • substantially the same operation as the alkaline ion water generation mode is performed without operating the electrolytic cell 10.
  • the electromagnetic valve 14 is closed so that the treated water is not introduced into the anode chamber 10e, the treated water can be prevented from being drained wastefully.
  • the treated water circulation mode for circulating the treated water in the reservoir 8 can be selected.
  • control is performed so that the treated water circulation mode is selected after a predetermined time has elapsed, or the treated water circulation mode is selected by operating the display unit / operation unit 19. I can do it.
  • the booster pump 9 is driven with the on-off valve 4 closed and the booster pump 5 stopped. Further, the electromagnetic valve 13 and the electromagnetic valve 14 are closed, and the electromagnetic valve 12 and the mechanical movable valve 21 are opened. At this time, the electrolytic cell 10 is not operated.
  • the treated water in the storage unit 8 passes through the sterilization / electrolysis processing path P3, is sterilized in the sterilization unit 11 on the way, and is reintroduced into the storage unit 8 from the circulation outlet 60 of the circulation path P7.
  • the relative position of the circulation outlet 60 of the circulation path P7 with the storage section 8 can be changed. Therefore, if the position of the circulation outlet 60 is set at a position where the treated water can be efficiently convected throughout the storage unit 8 during circulation, stagnation occurs in the treated water in the storage unit 8. Can be suppressed.
  • the reverse cleaning mode in which acidic water is circulated in the sterilization / electrolytic treatment path P3, the circulation path P7, and the storage section 8 can be selected.
  • This reverse cleaning mode can also be selected by the user or by the control circuit (control unit) 18.
  • a reverse voltage is applied to the electrolytic cell 10 so that acidic water is generated in the cathode chamber 10c. And the produced
  • the acidic water in the sterilization / electrolytic treatment path P3, the circulation path P7 and the storage section 8 is drained, and the treated water is generated and stored in the storage section 8 after drainage.
  • the drainage mode for draining the treated water in the reservoir 8 can be selected.
  • the drainage of the treated water in the storage unit 8 can also be performed using the drainage means described above.
  • the circulation path P7 has the circulation discharge port 60 that discharges the treated water in the circulation path P7 into the storage unit 8, and the circulation discharge port.
  • the relative position of 60 to the storage unit 8 is variable. For this reason, it becomes possible to set the relative position with respect to the storage part 8 of the discharge port 60 for circulation so that it may be a position where the treated water can be efficiently convected throughout the storage part 8 during circulation. As a result, it is possible to suppress the stagnation of the treated water in the storage unit 8 and to store the treated water in the storage unit 8 in a more sanitary manner.
  • the storage part 8 since the storage part 8 is provided so that attachment or detachment is possible, the removed storage part 8 can be wash
  • the water treatment device 1 includes the drainage means for draining the treated water in the storage unit 8. Therefore, it is not necessary to remove the storage unit 8 in the state where the treated water is accumulated, and the storage unit 8 can be easily taken out.
  • the water treatment apparatus 1 discharged the treated water in the storage unit 8 to the outside and the booster pump (pump) 9 that discharges the treated water in the storage unit 8 to the outside by a predetermined amount.
  • a control circuit (control unit) 18 for stopping the drive of the booster pump (pump) 9 is provided. That is, water discharge is stopped when a desired amount of treated water is discharged. Therefore, it is possible to perform other tasks away from the installation location of the water treatment device 1 during water discharge.
  • control circuit (control unit) 18 stops driving of the booster pump (pump) 9 when the booster pump (pump) 9 is idle. That is, the water is automatically stopped when the treated water in the reservoir 8 becomes empty during water discharge or drainage. Therefore, the booster pump (pump) 9 is not driven when the treated water in the reservoir 8 is empty, and the life of the booster pump (pump) 9 can be extended and the water treatment apparatus 1 can be saved. .
  • control circuit (control part) 18 is controlled so that the booster pump (pump) 9 performs the fixed amount water discharge which discharges the treated water in the storage part 8 only predetermined amount outside. .
  • control circuit (control unit) 18 controls the booster pump (pump) 9 to perform constant flow water discharge that discharges the treated water in the storage unit 8 to the outside at a predetermined flow rate. Therefore, it is possible to easily perform quantitative water discharge.
  • a water treatment apparatus 1A according to the present embodiment has basically the same configuration as that of the first embodiment. That is, 1 A of water treatment apparatuses are provided with the treated water production
  • the water treatment apparatus 1A according to the present embodiment is mainly different from the first embodiment in that the electrolytic bath 10 is not provided in the sterilization / electrolysis treatment path P3.
  • the treated water in the storage unit 8 is sterilized by the sterilization unit 11 and then discharged from the discharge port 70 to the outside.
  • the branch part D2 is provided and branched on the way to the sterilization part 11 of the sterilization / electrolysis processing path P3, and the discharge path P6 is formed.
  • the treated water generation mode, the constant flow rate discharge mode, the treated water circulation mode, and the drainage mode described in the first embodiment can be selected.
  • the water treatment apparatus 1B has basically the same configuration as that of the first embodiment. That is, as shown in FIG. 3, the water treatment apparatus 1 ⁇ / b> B includes a treated water generating unit 40 that generates treated water and a storage unit 8 that stores treated water generated by the treated water generating unit 40. . And the water treatment apparatus 1B is the introduction path P2 which introduces in the storage part 8 by discharging treated water from the discharge port 50, and the sterilization / electrolysis process path P3 which performs sterilization and electrolysis of the treated water in the storage part 8. And a discharge path P4 for discharging the treated water in the reservoir 8 to the outside. Furthermore, the water treatment apparatus 1B includes a circulation path P7 that circulates the treated water in the storage unit 8 and reintroduces it into the storage unit 8.
  • an electrolytic cell 10 is provided in the sterilization / electrolysis treatment path P3.
  • the water treatment apparatus 1B according to the present embodiment is mainly different from the first embodiment in that the discharge port 50 of the introduction path P2 also serves as the discharge port 60 for circulation.
  • the tip of the circulation path P7 is connected to the introduction path P2 at the junction D3, and the treated water in the circulation path P7 is reintroduced into the storage section 8 from the discharge port 50 of the introduction path P2. ing.
  • the relative position of the discharge port 50 of the introduction path P2 with the storage unit 8 can be changed.
  • the alkali ion water generation mode, the treated water generation mode, the constant flow rate discharge mode, the treated water circulation mode, the backwash mode, and the drainage mode described in the first embodiment can be selected. It has become.
  • the passage in which the valve 22 is provided in the storage unit 8 is communicated so as to be exposed to the outside of the housing 2, and the treated water in the storage unit 8 is directly (sterilized / electrolytic treatment path P3). (Without passing through the discharge path P4).
  • the discharge port 50 of the introduction path P2 also serves as the discharge port 60 for circulation, the number of parts can be reduced and the cost can be reduced.
  • the water treatment apparatus 1C has basically the same configuration as that of the third embodiment. That is, 1 C of water treatment apparatuses are provided with the treated water production
  • discharge port 50 of the introduction path P2 also serves as the circulation discharge port 60, and the relative position of the discharge port 50 of the introduction path P2 with the storage portion 8 can be changed.
  • valve 22 is provided in the storage unit 8 so as to be exposed to the outside of the housing 2, and the treated water in the storage unit 8 is directly passed (disinfection / electrolysis treatment path P3 and discharge path P4 through (Without going through).
  • the treated water generation mode, the constant flow rate discharge mode, the treated water circulation mode, and the drainage mode described in the first embodiment can be selected.
  • the water treatment apparatus 1C according to the present embodiment is mainly different from the third embodiment in that the electrolytic bath 10 is not provided in the sterilization / electrolysis treatment path P3.
  • the treated water in the storage unit 8 is sterilized by the sterilization unit 11 and then discharged from the discharge port 70 to the outside.
  • the branch part D2 is provided and branched on the way to the sterilization part 11 of the sterilization / electrolysis processing path P3, and the discharge path P6 is formed.
  • the water treatment apparatus 1D has basically the same configuration as that of the third embodiment. That is, as shown in FIG. 5, the water treatment apparatus 1 ⁇ / b> D includes a treated water generating unit 40 that generates treated water and a storage unit 8 that stores treated water generated by the treated water generating unit 40. . And the water treatment apparatus 1D introduces the treated water into the reservoir 8 by discharging the treated water from the discharge port 50, and the sterilization / electrolytic treatment path P3 for sterilizing and electrolyzing the treated water in the reservoir 8. And a discharge path P4 for discharging the treated water in the reservoir 8 to the outside. Furthermore, the water treatment apparatus 1D includes a circulation path P7 that circulates the treated water in the storage unit 8 and reintroduces it into the storage unit 8.
  • discharge port 50 of the introduction path P2 also serves as the circulation discharge port 60, and the relative position of the discharge port 50 of the introduction path P2 with the storage portion 8 can be changed.
  • an electrolytic cell 10 is provided in the sterilization / electrolysis treatment path P3.
  • the alkali ion water generation mode, the treated water generation mode, the constant flow rate discharge mode, the treated water circulation mode, the backwash mode, and the drainage mode described in the first embodiment can be selected. It has become.
  • the water treatment apparatus 1D according to the present embodiment is mainly different from the third embodiment in that the concentrated water drainage channel P5 and the discharge channel P6 are communicated, and the restrictor 15 is provided on the downstream side of the communication unit. It is in the point provided.
  • the concentrated water drainage channel P5 and the discharge channel P6 are communicated with each other at the junction D4, and the restrictor 15 is provided on the downstream side of the junction D4.
  • a check valve 23 is provided on the downstream side of the electromagnetic valve 14 in the discharge path P6 so that the concentrated water in the concentrated water drainage path P5 does not flow back into the discharge path P6.
  • the concentrated water drainage channel P5 and the discharge channel P6 are communicated, and the restrictor 15 is provided on the downstream side of the communication part.
  • the acidic water drained after the end of the reverse cleaning mode passes through the restrictor 15, and the scale adhering to the restrictor 15 can be dissolved. As a result, the restrictor 15 can be prevented from being clogged with the scale.
  • the storage part is provided so as to be detachable, but the storage part may be fixed.
  • treated water generating section electrolytic cell, and other detailed specifications (shape, size, layout, etc.) can be changed as appropriate.

Abstract

A water treatment device (1) is provided with: a treatment water generation unit (40) for generating treatment water; a storage unit (8) for storing the treatment water generated by the treatment water generation unit (40); an introduction path (P2) for discharging the treatment water from the discharge port (50) and thereby introducing the same to the inside of the storage unit (8); a circulation path (P7) for causing the treatment water inside the storage unit (8) to circulate and re-introducing the same to the inside of the storage unit (8); and a discharge path (P4) for discharging the treatment water inside the storage unit (8) to the exterior. The circulation path (P7) includes a circulating discharge port (60) for discharging the treatment water inside the circulation path (P7) to the inside of the storage unit (8), and the relative position of the circulating discharge port (60) with respect to the storage unit (8) is variable.

Description

水処理装置Water treatment equipment
 本発明は、水処理装置に関する。 The present invention relates to a water treatment apparatus.
 従来、水処理装置として、飲料水を貯留する貯留部と、貯留部内の飲料水を循環させる循環路と、を備えるものが知られている(たとえば、特許文献1参照)。 Conventionally, as a water treatment device, a device including a storage unit that stores drinking water and a circulation path that circulates drinking water in the storage unit is known (for example, see Patent Document 1).
 この特許文献1では、貯留部に循環路の両端を接続固定している。そして、循環路に殺菌手段を設け、貯留部内の飲料水を循環させる際に、殺菌を行い、飲料水が貯留部内に衛生的に貯留されるようにしている。 In this Patent Document 1, both ends of the circulation path are connected and fixed to the storage part. Then, a sterilizing means is provided in the circulation path, and when the drinking water in the storage part is circulated, sterilization is performed so that the drinking water is stored hygienically in the storage part.
特開2006-272029号公報JP 2006-272029 A
 しかしながら、かかる従来の技術では、貯留部に循環路の両端を接続固定しているため、貯留部内全体で飲料水を対流させることができず、貯留部内の飲料水に澱みが生じてしまうおそれがあった。その結果、飲料水を貯留部内で衛生的に貯留することができないおそれがあった。 However, in the conventional technique, since both ends of the circulation path are connected and fixed to the storage part, the drinking water cannot be convected throughout the storage part, and the drinking water in the storage part may be stagnation. there were. As a result, there is a possibility that the drinking water cannot be stored hygienically in the storage unit.
 このことは、特に、雑菌が繁殖しやすい処理水を貯留する場合に顕著となる。 This is particularly noticeable when storing treated water in which miscellaneous bacteria are likely to propagate.
 そこで、本発明は、より衛生的に処理水を貯留部内に貯留することのできる水処理装置を得ることを目的とする。 Therefore, an object of the present invention is to obtain a water treatment apparatus capable of storing treated water in a storage section in a more sanitary manner.
 本発明の第1の特徴は、処理水を生成する処理水生成部と、前記処理水生成部で生成された処理水を貯留する貯留部と、前記処理水を吐出口から吐出することで前記貯留部内に導入する導入路と、前記貯留部内の処理水を循環させて前記貯留部内に再導入する循環路と、前記貯留部内の処理水を外部に吐出する吐出路と、を備える水処理装置であって、前記循環路は、当該循環路内の処理水を前記貯留部内に吐出する循環用吐出口を有しており、当該循環用吐出口の前記貯留部に対する相対位置が可変であることを要旨とする。 The first feature of the present invention is that the treated water generating unit that generates treated water, the storage unit that stores the treated water generated by the treated water generating unit, and the discharged treated water from the discharge port, A water treatment apparatus comprising: an introduction path that is introduced into the storage section; a circulation path that circulates treated water in the storage section and reintroduces the treated water in the storage section; and a discharge path that discharges treated water in the storage section to the outside. And the said circulation path has the discharge outlet for circulation which discharges the treated water in the said circulation path in the said storage part, The relative position with respect to the said storage part of the said discharge outlet for circulation is variable Is the gist.
 本発明の第2の特徴は、前記貯留部が着脱可能に設けられていることを要旨とする。 The gist of the second feature of the present invention is that the storage section is detachably provided.
 本発明の第3の特徴は、前記導入路の吐出口が前記循環用吐出口を兼ねていることを要旨とする。 The third feature of the present invention is summarized in that the discharge port of the introduction path also serves as the discharge port for circulation.
 本発明の第4の特徴は、前記水処理装置は、前記貯留部内の処理水を排水する排水手段を備えていることを要旨とする。 A fourth feature of the present invention is summarized in that the water treatment apparatus includes a drainage unit that drains the treated water in the storage unit.
 本発明の第5の特徴は、前記水処理装置は、前記貯留部内の処理水を外部に吐出させるポンプと、前記貯留部内の処理水を所定量外部に吐出させた際に、前記ポンプの駆動を停止する制御部と、を備えていることを要旨とする。 According to a fifth feature of the present invention, the water treatment device drives the pump when the treated water in the reservoir is discharged to the outside and the treated water in the reservoir is discharged to the outside by a predetermined amount. And a control unit that stops the operation.
 本発明の第6の特徴は、前記制御部は、前記ポンプが空運転となった際に、当該ポンプの駆動を停止することを要旨とする。 The sixth feature of the present invention is summarized in that the control unit stops driving the pump when the pump is idling.
 本発明の第7の特徴は、前記制御部は、前記ポンプが前記貯留部内の処理水を所定量だけ外部に吐出させる定量吐水を行うように制御していることを要旨とする。 The seventh feature of the present invention is summarized in that the control unit controls the pump to perform a fixed amount of water discharge that discharges a predetermined amount of treated water in the storage unit to the outside.
 本発明の第8の特徴は、前記制御部は、前記ポンプが前記貯留部内の処理水を所定流量で外部に吐出させる定流量吐水を行うように制御していることを要旨とする。 The eighth feature of the present invention is summarized in that the control unit performs control so that the pump performs constant-flow water discharge that discharges treated water in the storage unit to the outside at a predetermined flow rate.
 本発明によれば、循環路は、当該循環路内の処理水を貯留部内に吐出する循環用吐出口を有しており、当該循環用吐出口の貯留部に対する相対位置が可変となっている。このため、循環用吐出口の貯留部に対する相対位置を、循環時に貯留部内全体で効率的に処理水を対流させることができる位置となるように設定することが可能となる。その結果、貯留部内の処理水に澱みが生じてしまうのを抑制することができ、より衛生的に処理水を貯留部内に貯留することができるようになる。 According to the present invention, the circulation path has a circulation discharge port that discharges treated water in the circulation path into the storage unit, and the relative position of the circulation discharge port to the storage unit is variable. . For this reason, it becomes possible to set the relative position with respect to the storage part of the circulation discharge port so that the treated water can be efficiently convected throughout the storage part during circulation. As a result, it is possible to suppress the occurrence of stagnation in the treated water in the reservoir, and the treated water can be stored in the reservoir more hygienically.
本発明の第1実施形態にかかる水処理装置を模式的に示す全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram which shows typically the water treatment apparatus concerning 1st Embodiment of this invention. 本発明の第2実施形態にかかる水処理装置を模式的に示す全体構成図である。It is a whole block diagram which shows typically the water treatment apparatus concerning 2nd Embodiment of this invention. 本発明の第3実施形態にかかる水処理装置を模式的に示す全体構成図である。It is a whole block diagram which shows typically the water treatment apparatus concerning 3rd Embodiment of this invention. 本発明の第4実施形態にかかる水処理装置を模式的に示す全体構成図である。It is a whole block diagram which shows typically the water treatment apparatus concerning 4th Embodiment of this invention. 本発明の第5実施形態にかかる水処理装置を模式的に示す全体構成図である。It is a whole block diagram which shows typically the water treatment apparatus concerning 5th Embodiment of this invention.
 以下、本発明の実施形態について図面を参照しつつ詳細に説明する。なお、以下の複数の実施形態には、同様の構成要素が含まれている。よって、以下では、それら同様の構成要素には共通の符号を付与するとともに、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that similar components are included in the following embodiments. Therefore, in the following, common reference numerals are given to those similar components, and redundant description is omitted.
 (第1実施形態)
 本実施形態にかかる水処理装置1は、図1に示すように、処理水を生成する処理水生成部40と、処理水生成部40で生成された処理水を貯留する貯留部8と、を備えている。そして、水処理装置1は、処理水を吐出口50から吐出することで貯留部8内に導入する導入路P2と、貯留部8内の処理水の殺菌や電解を行う殺菌/電解処理路P3と、貯留部8内の処理水を外部に吐出する吐出路P4と、を備えている。さらに、水処理装置1は、貯留部8内の処理水を循環させて貯留部8内に再導入する循環路P7を備えている。
(First embodiment)
As shown in FIG. 1, the water treatment device 1 according to the present embodiment includes a treated water generating unit 40 that generates treated water, and a storage unit 8 that stores treated water generated by the treated water generating unit 40. I have. And the water treatment apparatus 1 discharges the treated water from the discharge port 50 and introduces the introduction path P2 into the storage section 8, and the sterilization / electrolysis processing path P3 that performs sterilization and electrolysis of the treated water in the storage section 8. And a discharge path P4 for discharging the treated water in the reservoir 8 to the outside. Furthermore, the water treatment apparatus 1 includes a circulation path P7 that circulates the treated water in the storage unit 8 and reintroduces it into the storage unit 8.
 本実施形態では、水処理装置1は、筐体2を備えており、当該筐体2には、水処理装置1の駆動/停止や処理水の吐水/停止を操作したり、飲用可能状態となったことを報知したりする表示部・操作部19が取り付けられている。また、処理水生成部40の一部や貯留部8、導入路P2、殺菌/電解処理路P3、循環路P7などは、筐体2内に収容されている。そして、吐出路P4は、一部が筐体2の外部に露出するように筐体2内に収容されており、吐出路P4の吐出口70から処理水を外部に吐出できるようになっている。 In the present embodiment, the water treatment device 1 includes a housing 2, and the housing 2 is operated to drive / stop the water treatment device 1, to discharge / stop treated water, or to be in a drinkable state. A display / operation unit 19 is provided for notifying that it has become. Further, a part of the treated water generation unit 40, the storage unit 8, the introduction path P2, the sterilization / electrolysis process path P3, the circulation path P7, and the like are accommodated in the housing 2. And the discharge path P4 is accommodated in the housing | casing 2 so that a part may be exposed to the exterior of the housing | casing 2, and a process water can be discharged outside from the discharge outlet 70 of the discharge path P4. .
 また、本実施形態では、水道管などの原水配水管P0から水道水などの原水が導入される給水路P1を有している。 Moreover, in this embodiment, it has the water supply path P1 into which raw | natural water, such as a tap water, is introduced from raw | natural water distribution pipes P0, such as a water pipe.
 この給水路P1には、上流側から順にプレフィルタ3、開閉弁4、昇圧ポンプ5、ナノフィルタ6、活性炭フィルタ7が設置されている。本実施形態では、プレフィルタ3、開閉弁4、昇圧ポンプ5、ナノフィルタ6および活性炭フィルタ7で処理水を生成する処理水生成部40を構成している。 In this water supply channel P1, a pre-filter 3, an on-off valve 4, a booster pump 5, a nano filter 6, and an activated carbon filter 7 are installed in this order from the upstream side. In the present embodiment, the pre-filter 3, the on-off valve 4, the booster pump 5, the nano filter 6, and the activated carbon filter 7 constitute a treated water generating unit 40 that generates treated water.
 そして、活性炭フィルタ7の下流側には、処理水を吐出口50から吐出することで貯留部8内に導入する導入路P2が設けられている。なお、原水は水道水に限られるものではなく、井戸水や溜め水等であってもよい。 And, on the downstream side of the activated carbon filter 7, an introduction path P <b> 2 for introducing the treated water into the storage unit 8 by discharging it from the discharge port 50 is provided. The raw water is not limited to tap water, and may be well water or pool water.
 プレフィルタ3は、例えば、不織布フィルタや活性炭フィルタを用いることができる。不織布フィルタを用いると、給水路P1内に導入される水道水に混入した粒子やゴミなどの異物を捕捉して除去することができる。 The prefilter 3 can be a non-woven fabric filter or an activated carbon filter, for example. If a nonwoven fabric filter is used, foreign substances such as particles and dust mixed in tap water introduced into the water supply channel P1 can be captured and removed.
 また、活性炭フィルタを用いると、遊離残留塩素や、水に溶解した成分、特に異味や異臭、あるいは、トリハロメタンをはじめとしたハロゲン化炭素を除去することができる。 In addition, when an activated carbon filter is used, free residual chlorine, components dissolved in water, especially off-flavors and odors, or halogenated carbon such as trihalomethane can be removed.
 なお、活性炭フィルタの内部に重金属を除去するための重金属除去剤を混入し、当該重金属除去剤に鉛などの有害重金属を吸着させて除去できるようにしてもよい。また、活性炭フィルタで水中の残留塩素を分解除去することで、下流側に細菌が繁殖し易くなるが、これを防止するため、活性炭フィルタを用いた場合のプレフィルタ3や活性炭フィルタ7に、銀などの抗菌性を有する金属を含む抗菌剤を混合するようにしてもよい。 It should be noted that a heavy metal removing agent for removing heavy metals may be mixed inside the activated carbon filter so that harmful heavy metals such as lead can be adsorbed and removed by the heavy metal removing agent. Moreover, by decomposing and removing residual chlorine in water with an activated carbon filter, bacteria are likely to propagate on the downstream side. To prevent this, silver is added to the prefilter 3 and the activated carbon filter 7 when the activated carbon filter is used. You may make it mix the antibacterial agent containing the metal which has antibacterial properties.
 また、プレフィルタ3の構成は、これらの構成に限定されるものではない。例えば、プレフィルタとして、コットンなどの繊維を集水管に巻き付けたワインドタイプのものや焼結タイプのものを用いてもよく、細い繊維を積層した繊維タイプのものを用いてもよい。また、プレフィルタとして、粒状活性炭をケースに収納したタイプのものや焼結タイプのものを用いてもよいし、繊維状炭タイプのものを用いてもよい。また、ブロック活性炭フィルタや繊維状活性炭フィルタを用い、当該フィルタの孔径を利用して不織布フィルタの機能を兼ね備えるようにしてもよい。さらに、プレフィルタとして、粗濾過用のセディメントフィルタや活性炭フィルタ、MF膜,UF膜等を用いることも可能であり、その数や組合せを、原水の水質を考慮しつつ必要に応じて変えるようにするのが好適である。 Further, the configuration of the prefilter 3 is not limited to these configurations. For example, as the prefilter, a wind type or a sintered type in which fibers such as cotton are wound around a water collecting pipe may be used, or a fiber type in which thin fibers are laminated may be used. Further, as the prefilter, a granular activated carbon stored in a case or a sintered type may be used, or a fibrous charcoal type may be used. Moreover, you may make it combine the function of a nonwoven fabric filter using the pore diameter of the said filter using a block activated carbon filter or a fibrous activated carbon filter. Furthermore, as a prefilter, a coarse filter, a sediment filter, an activated carbon filter, an MF membrane, a UF membrane, or the like can be used, and the number and combination of the filters may be changed as necessary while considering the quality of raw water. Is preferable.
 また、本実施形態では、交換頻度が他の部材よりも高いプレフィルタ3を筐体2の外部に設けるようにしたが、プレフィルタ3を筐体2内に収容させるようにしてもよい。 In this embodiment, the prefilter 3 having a higher replacement frequency than other members is provided outside the housing 2. However, the prefilter 3 may be accommodated in the housing 2.
 開閉弁4は、原水の水処理装置1内への導入の開始および停止を制御するものである。 The on-off valve 4 controls the start and stop of introduction into the raw water treatment apparatus 1.
 そして、原水配水管P0から給水路P1内に導入された原水は、プレフィルタ3を通過して濾過される。 The raw water introduced from the raw water distribution pipe P0 into the water supply channel P1 passes through the prefilter 3 and is filtered.
 このように、本実施形態では、プレフィルタ3にて前処理を行った浄水が、ナノフィルタ(逆浸透濾過部)6に導入されるようになっている。 Thus, in the present embodiment, the purified water that has been pretreated by the prefilter 3 is introduced into the nanofilter (reverse osmosis filtration unit) 6.
 そして、プレフィルタ3の下流側には、昇圧ポンプ5が設置されており、プレフィルタ3にて前処理を行った浄水は、開閉弁4を通過して昇圧ポンプ5に至る。なお、開閉弁4は、給水路P1の途中のいずれかの位置に設置されていればよいが、プレフィルタ3の下流側に設置されているのが好ましい。こうすれば、開閉弁4内部への異物の侵入を抑制することができるためである。 Further, a booster pump 5 is installed on the downstream side of the prefilter 3, and the purified water pretreated by the prefilter 3 passes through the on-off valve 4 and reaches the booster pump 5. The on-off valve 4 may be installed at any position in the middle of the water supply path P1, but is preferably installed downstream of the prefilter 3. This is because foreign substances can be prevented from entering the on-off valve 4.
 ナノフィルタ(逆浸透濾過部)6は、NF膜(逆浸透膜)6aを有しており、前処理が行われた浄水は、ナノフィルタ6に導入され、NF膜(逆浸透膜)6aを透過しない濃縮水とNF膜(逆浸透膜)6aを透過した処理水(透過水)とに分離される。 The nanofilter (reverse osmosis filtration unit) 6 has an NF membrane (reverse osmosis membrane) 6a, and the pretreated water is introduced into the nanofilter 6 and the NF membrane (reverse osmosis membrane) 6a. It is separated into concentrated water that does not permeate and treated water (permeated water) that has permeated through the NF membrane (reverse osmosis membrane) 6a.
 このナノフィルタ6は、昇圧ポンプ5によって逆浸透圧をかけ、ナノフィルタ6に送られた浄水の一部をNF膜(逆浸透膜)6aを透過させることで処理水(透過水)を生成するようにしたものである。なお、NF膜6aを用いると、有機物(たとえば、トリハロメタンやカビ臭および農薬など)や重金属イオン(たとえば、鉛、クロム、カドミウム、水銀、砒素など)、さらにナトリウムやカルシウムなどの低分子量のイオン成分などを除去することができる。 The nanofilter 6 applies reverse osmosis pressure by the booster pump 5 and generates treated water (permeated water) by allowing a part of the purified water sent to the nanofilter 6 to pass through the NF membrane (reverse osmosis membrane) 6a. It is what I did. When the NF film 6a is used, organic substances (for example, trihalomethane, mold odor, and agricultural chemicals), heavy metal ions (for example, lead, chromium, cadmium, mercury, arsenic, etc.), and low molecular weight ion components such as sodium and calcium. Etc. can be removed.
 また、残りの水分、塩類や不純物(この不純物には有機物やイオンなどが含まれる)は、濃縮水として濃縮水排水路P5から排出されるようになっている。 Further, the remaining water, salts and impurities (the impurities include organic substances and ions) are discharged from the concentrated water drainage channel P5 as concentrated water.
 濃縮水排水路P5には、途中にリストリクタ15が設けられており、このリストリクタ15によって、処理水(透過水)の生成量が決定される。 The restrictor 15 is provided in the middle of the concentrated water drainage channel P5, and the amount of treated water (permeated water) generated is determined by the restrictor 15.
 ところで、NF膜6aはRO膜よりも透過孔が大きくなっている。そのため、NF膜6aを用いたナノフィルタ6は、粒子や有機物および重金属を90パーセント以上の高い除去率で除去することができるが、低分子量のイオン成分は処理水(透過水)に約10~30パーセント程度残存するという特性を有する。この場合、例えば導電率が300μS/cmの水を透過させた場合、低分子イオンが残存した処理水として、約60μS/cm程度の導電率の処理水が得られる。ただし、逆浸透膜として使用する膜は、このNF膜に限らず、RO膜等の逆浸透膜を用いることも可能である。 Incidentally, the NF membrane 6a has a larger permeation hole than the RO membrane. Therefore, the nanofilter 6 using the NF film 6a can remove particles, organic substances, and heavy metals at a high removal rate of 90% or more, but low molecular weight ionic components are about 10 to about 10 to treated water (permeated water). It has a characteristic of remaining about 30 percent. In this case, for example, when water having a conductivity of 300 μS / cm is permeated, treated water having a conductivity of about 60 μS / cm is obtained as the treated water in which the low molecular ions remain. However, the membrane used as the reverse osmosis membrane is not limited to this NF membrane, and a reverse osmosis membrane such as an RO membrane can also be used.
 そして、NF膜6aを透過した水は、これらの物質が除去された処理水(透過水)として、活性炭フィルタ7に供給される。 And the water which permeate | transmitted the NF film | membrane 6a is supplied to the activated carbon filter 7 as the treated water (permeated water) from which these substances were removed.
 活性炭フィルタ7に導入された処理水(透過水)は、活性炭フィルタ7を通過して濾過される。活性炭フィルタ7にて処理水(透過水)を濾過することで、NF膜(逆浸透膜)6aを透過させた際に発生するにおい等を除去することができ、処理水(透過水)の味をまろやかにすることができる。 The treated water (permeated water) introduced into the activated carbon filter 7 passes through the activated carbon filter 7 and is filtered. By filtering the treated water (permeated water) with the activated carbon filter 7, it is possible to remove the odor generated when the NF membrane (reverse osmosis membrane) 6a permeates, and the taste of the treated water (permeated water). Can be mellow.
 そして、活性炭フィルタ7にて濾過された処理水(透過水)は導入路P2に供給される。この導入路P2は、吐出口50が貯留部8の上部に配置されるように設けられており、処理水(透過水)を貯留部8内に導入するための通路である。なお、貯留部8は、天面が開口した容器になっている。 The treated water (permeated water) filtered by the activated carbon filter 7 is supplied to the introduction path P2. The introduction path P <b> 2 is provided so that the discharge port 50 is disposed above the storage unit 8, and is a passage for introducing treated water (permeated water) into the storage unit 8. In addition, the storage part 8 is a container with an open top.
 そして、活性炭フィルタ7にて濾過された処理水(透過水)は、吐出口50から貯留部8内に吐出されて貯留部8内に一時的に貯留されることとなる。 Then, the treated water (permeated water) filtered by the activated carbon filter 7 is discharged from the discharge port 50 into the storage unit 8 and temporarily stored in the storage unit 8.
 このように、処理水(透過水)を貯留部8内に一時的に貯留することで、処理水を外部へ吐出する際に要する時間を短縮させることができる。 Thus, by temporarily storing the treated water (permeated water) in the storage unit 8, the time required for discharging the treated water to the outside can be shortened.
 ここで、本実施形態では、貯留部8内の処理水を外部に吐出する吐出路P4が形成されている。具体的には、吐出路P4は、貯留部8に接続された殺菌/電解処理路P3の下流側に接続されており、吐出口70が筐体2の外部に露出するように吐出路P4が設けられている。こうして、貯留部8内の処理水を殺菌もしくは電解した状態で、吐出口70から外部に吐出できるようにしている。なお、殺菌/電解処理路P3は、貯留部8内の処理水を殺菌/電解処理路P3内に導入する側が貯留部8の下部に接続されている。 Here, in this embodiment, the discharge path P4 for discharging the treated water in the reservoir 8 to the outside is formed. Specifically, the discharge path P4 is connected to the downstream side of the sterilization / electrolysis process path P3 connected to the storage unit 8, and the discharge path P4 is so exposed that the discharge port 70 is exposed to the outside of the housing 2. Is provided. In this way, the treated water in the storage unit 8 can be discharged to the outside from the discharge port 70 in a sterilized or electrolyzed state. The sterilization / electrolysis treatment path P3 is connected to the lower portion of the storage section 8 on the side where the treated water in the storage section 8 is introduced into the sterilization / electrolysis treatment path P3.
 さらに、本実施形態では、貯留部8内の処理水を循環させて貯留部8内に再導入する循環路P7が設けられている。本実施形態では、殺菌/電解処理路P3の下流端に分岐部D1を設けており、この分岐部D1によって殺菌/電解処理路P3を吐出路P4と循環路P7とに分岐させるようにしている。 Furthermore, in the present embodiment, a circulation path P7 for circulating the treated water in the storage unit 8 and reintroducing it into the storage unit 8 is provided. In the present embodiment, a branch portion D1 is provided at the downstream end of the sterilization / electrolysis treatment path P3, and the sterilization / electrolysis treatment path P3 is branched into the discharge path P4 and the circulation path P7 by the branch portion D1. .
 また、本実施形態では、循環路P7は、循環路P7内の処理水を貯留部8内に吐出する循環用吐出口60を有している。この循環用吐出口60は、貯留部8の上部に配置されており、貯留部8の上方から循環させた処理水(透過水)を吐出するようにしている。 Further, in the present embodiment, the circulation path P7 has a circulation discharge port 60 for discharging the treated water in the circulation path P7 into the storage unit 8. The circulation discharge port 60 is disposed at the upper part of the storage unit 8 and discharges treated water (permeated water) circulated from above the storage unit 8.
 さらに、殺菌/電解処理路P3の途中、すなわち、貯留部8の下流側に、電解槽10が設けられており、吐出路P4からアルカリイオン水(処理水)や透過水(処理水)を選択的に供給できるようになっている。 Furthermore, an electrolytic cell 10 is provided in the middle of the sterilization / electrolytic treatment path P3, that is, downstream of the storage section 8, and alkali ion water (treated water) or permeated water (treated water) is selected from the discharge path P4. Can be supplied automatically.
 本実施形態では、殺菌/電解処理路P3の上流側から順に昇圧ポンプ9、電解槽10が設置されている。 In this embodiment, the booster pump 9 and the electrolytic cell 10 are installed in order from the upstream side of the sterilization / electrolysis treatment path P3.
 電解槽10は、内部が隔膜10aによって仕切られており、一方が陰極(電極)10bを有する陰極室10cとなっており、他方が陽極(電極)10dを有する陽極室10eとなっている。そして、殺菌/電解処理路P3の端末を分岐させて、一方の分岐路を陰極室10cの入口に連通させ、他方の分岐路を陽極室10eの入口に連通させている。 The electrolytic cell 10 is internally partitioned by a diaphragm 10a, one is a cathode chamber 10c having a cathode (electrode) 10b, and the other is an anode chamber 10e having an anode (electrode) 10d. Then, the terminal of the sterilization / electrolytic treatment path P3 is branched, and one branch path is connected to the inlet of the cathode chamber 10c, and the other branch path is connected to the inlet of the anode chamber 10e.
 この電解槽10の陰極室10cおよび陽極室10eにそれぞれ導入された処理水は、陰極10bと陽極10dとの間に電圧を印加することで電気分解され、陰極室10cではアルカリイオン水が生成されるとともに、陽極室10eでは酸性水が生成される。 The treated water introduced into the cathode chamber 10c and the anode chamber 10e of the electrolytic cell 10 is electrolyzed by applying a voltage between the cathode 10b and the anode 10d, and alkali ion water is generated in the cathode chamber 10c. At the same time, acidic water is generated in the anode chamber 10e.
 また、陰極室10cの出口は、殺菌/電解処理路P3に連通されており、陽極室10eの出口は、排出路P6に連通されている。そして、陰極室10cで生成されたアルカリイオン水は、殺菌/電解処理路P3および吐出路P4を通り、吐出口70から外部に吐出されるようになっている。一方、陽極室10eで生成された酸性水は、排出路P6から外部に排出されるようになっている。 Further, the outlet of the cathode chamber 10c is communicated with the sterilization / electrolysis treatment path P3, and the outlet of the anode chamber 10e is communicated with the discharge path P6. The alkaline ionized water generated in the cathode chamber 10c passes through the sterilization / electrolytic treatment path P3 and the discharge path P4 and is discharged from the discharge port 70 to the outside. On the other hand, the acidic water generated in the anode chamber 10e is discharged to the outside from the discharge path P6.
 さらに、本実施形態では、殺菌/電解処理路P3の貯留部8よりも下流側に昇圧ポンプ9を配置しており、この昇圧ポンプ9を作動させ、貯留部8から処理水(透過水)を電解槽10に導入するようにしている。また、貯留部8の所定位置には、水位センサ20が設けられており、貯留部8の所定位置まで貯水された際に、満水状態であることを検知して開閉弁4の制御を行うことができるようにしている。 Further, in the present embodiment, a booster pump 9 is disposed on the downstream side of the storage portion 8 of the sterilization / electrolytic treatment path P3, and this booster pump 9 is operated to supply treated water (permeated water) from the storage portion 8. It introduces into the electrolytic cell 10. In addition, a water level sensor 20 is provided at a predetermined position of the storage unit 8, and when the water is stored up to a predetermined position of the storage unit 8, it detects that the water is full and controls the on-off valve 4. To be able to.
 さらに、殺菌/電解処理路P3には、UV管11aを有する殺菌部11が設けられている。そして、この殺菌部11の下流側(殺菌部11と循環用吐出口60との間)に吐出路P4が接続されている。 Furthermore, the sterilization / electrolysis treatment path P3 is provided with a sterilization unit 11 having a UV tube 11a. A discharge path P4 is connected to the downstream side of the sterilization unit 11 (between the sterilization unit 11 and the circulation discharge port 60).
 したがって、貯留部8内の処理水を電解槽10にて電気分解することで得られるアルカリイオン水(処理水)や動作していない電解槽10を通過した透過水(処理水)は、吐出口70から吐出する前に、殺菌部11を通過することで殺菌されるようになっている。また、殺菌/電解処理路P3および循環路P7を通過させて貯留部8内の処理水を循環させる場合にも、殺菌部11を通過することで殺菌された処理水(透過水)が貯留部8内に再度導入されるようになっている。なお、殺菌部はUV管を用いるものに限らず、オゾン等他の殺菌手段を用いてもよい。このように、殺菌部11を設けることでより衛生的な処理水(アルカリイオン水や透過水)を供給することができる。 Therefore, the alkaline ionized water (treated water) obtained by electrolyzing the treated water in the reservoir 8 in the electrolytic cell 10 and the permeated water (treated water) that has passed through the non-operated electrolytic cell 10 are discharged from the discharge port. Before being discharged from 70, it is sterilized by passing through the sterilizing section 11. In addition, even when the treated water in the storage unit 8 is circulated through the sterilization / electrolytic treatment path P3 and the circulation path P7, the treated water (permeated water) sterilized by passing through the sterilization unit 11 is stored in the storage unit. 8 is introduced again. The sterilizing unit is not limited to using a UV tube, and other sterilizing means such as ozone may be used. Thus, by providing the sterilizing unit 11, more sanitary treated water (alkali ion water or permeated water) can be supplied.
 また、本実施形態では、貯留部8は、筐体2内に着脱可能に設置されるようにしている。具体的には、貯留部8は水平方向にスライド可能に設置されており、貯留部8を水平方向にスライドさせることで、貯留部8を取り外すことができるようになっている。 In this embodiment, the storage unit 8 is detachably installed in the housing 2. Specifically, the storage unit 8 is installed to be slidable in the horizontal direction, and the storage unit 8 can be removed by sliding the storage unit 8 in the horizontal direction.
 このとき、貯留部8と殺菌/電解処理路P3との接続部には、貯留部8の着脱時に、貯留部8内に残留した処理水が漏水しないよう機械式可動弁21が設けられている。この機械式可動弁21としては、公知の構造のものを用いることができる。なお、機械式可動弁21の替わりに電磁弁を用いることも可能である。 At this time, a mechanical movable valve 21 is provided at the connecting portion between the storage unit 8 and the sterilization / electrolysis treatment path P3 so that the treated water remaining in the storage unit 8 does not leak when the storage unit 8 is attached or detached. . As this mechanical movable valve 21, one having a known structure can be used. An electromagnetic valve can be used instead of the mechanical movable valve 21.
 また、本実施形態では、循環路P7に電磁弁12が設けられている。 In this embodiment, the solenoid valve 12 is provided in the circulation path P7.
 なお、循環用吐水口60は、貯留部8着脱の際に邪魔にならないよう、貯留部8天面位置より上部に配置されるようにするのが好ましい。また、貯留部8をスライドさせたときに、循環用吐水口60が上方に移動できる構成とし、循環路P7が貯留部8の着脱を邪魔しないようにすることも可能である。 It should be noted that the circulation outlet 60 is preferably arranged above the top surface of the storage unit 8 so that it does not get in the way when the storage unit 8 is attached and detached. Moreover, when the storage part 8 is slid, it is also possible to make the circulation spout 60 move upward so that the circulation path P7 does not interfere with the attachment / detachment of the storage part 8.
 さらに、吐出路P4の途中にも電磁弁13が設けられており、排出路P6にも電磁弁14が設けられている。 Furthermore, an electromagnetic valve 13 is also provided in the middle of the discharge path P4, and an electromagnetic valve 14 is also provided in the discharge path P6.
 また、本実施形態では、水処理装置1には制御回路(制御部)18が設けられている。そして、開閉弁4、昇圧ポンプ5、昇圧ポンプ9、UV管11a、電磁弁12、電磁弁13、電磁弁14およびリストリクタ15が、制御回路(制御部)18から供給される指令信号(電力)により制御されている。また、水位センサ20および表示部・操作部19の操作信号が制御回路(制御部)18に送られるようになっている。さらに、電解槽10も制御回路(制御部)18の指令信号によって駆動するようになっており、電解槽10の陰極10bおよび陽極10dには、制御された電圧が印加されるようになっている。 In this embodiment, the water treatment apparatus 1 is provided with a control circuit (control unit) 18. The on-off valve 4, the booster pump 5, the booster pump 9, the UV tube 11 a, the solenoid valve 12, the solenoid valve 13, the solenoid valve 14 and the restrictor 15 are supplied with command signals (power) supplied from the control circuit (control unit) 18. ). In addition, operation signals from the water level sensor 20 and the display / operation unit 19 are sent to a control circuit (control unit) 18. Furthermore, the electrolytic cell 10 is also driven by a command signal from the control circuit (control unit) 18, and a controlled voltage is applied to the cathode 10b and the anode 10d of the electrolytic cell 10. .
 なお、本実施形態では、制御回路(制御部)18への電源の供給は、図示せぬ外部電源に接続される電源プラグ16から供給される商用交流電圧を電源部17にて直流電圧に変換した状態で行われる。 In this embodiment, power supply to the control circuit (control unit) 18 is performed by converting a commercial AC voltage supplied from a power plug 16 connected to an external power source (not shown) into a DC voltage by the power source unit 17. It is done in the state.
 ここで、本実施形態では、循環路P7の循環用吐出口60の貯留部8との相対位置を変化させることができるようにしている。 Here, in this embodiment, the relative position of the circulation outlet 60 of the circulation path P7 with the storage unit 8 can be changed.
 具体的には、循環路P7の循環用吐出口60が設けられる部位を移動可能に形成し、貯留部8に吐出させる位置を変化させることができるようにすることが可能である。例えば、循環用吐出口60が設けられたゴムチューブ等の可撓性の部材を循環路P7に一体または別体に取り付けることで、循環路P7の循環用吐出口60が設けられる部位を移動可能に形成することができる。 Specifically, it is possible to make the portion where the circulation outlet 60 of the circulation path P7 is provided movably so that the position at which the reservoir 8 is discharged can be changed. For example, by attaching a flexible member such as a rubber tube provided with the circulation outlet 60 integrally or separately to the circulation path P7, the part of the circulation path P7 where the circulation outlet 60 is provided can be moved. Can be formed.
 また、循環路P7の循環用吐出口60が設けられる部位を、他の部位に対して水平方向に回動可能に形成し、処理水の吐出位置を変えることができるようにしてもよい。 Further, the part where the circulation outlet 60 of the circulation path P7 is provided may be formed so as to be rotatable in the horizontal direction with respect to other parts, so that the discharge position of the treated water can be changed.
 さらに、循環路P7の循環用吐出口60が設けられる部位を、他の部位に対して上下方向に回動可能に形成し、処理水の吐出角度を変えることができるようにしてもよい。 Furthermore, the part where the circulation outlet 60 of the circulation path P7 is provided may be formed so as to be rotatable in the vertical direction with respect to the other part so that the discharge angle of the treated water can be changed.
 なお、循環路P7全体を殺菌/電解処理路P3に対して可変となるように殺菌/電解処理路P3に接続してもよい。 The entire circulation path P7 may be connected to the sterilization / electrolysis treatment path P3 so as to be variable with respect to the sterilization / electrolysis treatment path P3.
 また、水処理装置1は、貯留部8内の処理水を排水する排水手段を備えている。本実施形態では、機械的可動弁21、昇圧ポンプ9、電解槽10の陽極室10e、排出路P6を通過させて排水するようになっている。 Moreover, the water treatment apparatus 1 includes a drainage means for draining the treated water in the storage unit 8. In this embodiment, the water is drained through the mechanical movable valve 21, the booster pump 9, the anode chamber 10e of the electrolytic cell 10, and the discharge path P6.
 このとき、昇圧ポンプ9を駆動させて貯留部8内の処理水を排水するようにしてもよいし、重力を利用して、貯留部8内の処理水を排水するようにしてもよい。 At this time, the booster pump 9 may be driven to drain the treated water in the reservoir 8, or the treated water in the reservoir 8 may be drained using gravity.
 また、貯留部8内に新たに処理水を貯留することなく、貯留部8内の処理水を吐出口70から吐出させることで、貯留部8内の処理水を排水することも可能である。 Also, the treated water in the reservoir 8 can be drained by discharging the treated water in the reservoir 8 from the discharge port 70 without newly storing the treated water in the reservoir 8.
 そして、本実施形態では、制御回路(制御部)18は、貯留部8内の処理水を所定量外部に吐出させた際に、昇圧ポンプ9の駆動を停止するようにしている。 In this embodiment, the control circuit (control unit) 18 stops driving the booster pump 9 when the predetermined amount of treated water in the storage unit 8 is discharged to the outside.
 具体的には、制御回路(制御部)18は、昇圧ポンプ9が空運転となった際に、当該昇圧ポンプ9の駆動を停止する制御を行っている。 Specifically, the control circuit (control unit) 18 performs control to stop driving of the booster pump 9 when the booster pump 9 is idling.
 本実施形態では、昇圧ポンプ9の電流値を検知する検知手段を設け、昇圧ポンプ9が空運転となった際に当該昇圧ポンプ9に流れる電流値を検知手段が検知した際に、制御回路(制御部)18が昇圧ポンプ9の駆動を停止するようにしている。 In the present embodiment, a detection unit that detects the current value of the booster pump 9 is provided, and when the detection unit detects a current value that flows through the booster pump 9 when the booster pump 9 is idle, a control circuit ( The control unit 18 stops driving the booster pump 9.
 さらに、制御回路(制御部)18は、昇圧ポンプ9が貯留部8内の処理水を所定量だけ外部に吐出させる定量吐水を行うように制御している。 Furthermore, the control circuit (control unit) 18 performs control so that the booster pump 9 performs quantitative water discharge that discharges a predetermined amount of treated water in the storage unit 8 to the outside.
 また、制御回路(制御部)18は、昇圧ポンプ9が貯留部8内の処理水を所定流量で外部に吐出させる定流量吐水を行うように制御している。 Further, the control circuit (control unit) 18 performs control so that the booster pump 9 performs constant-flow water discharge that discharges treated water in the storage unit 8 to the outside at a predetermined flow rate.
 本実施形態では、昇圧ポンプ9の回転数を一定の値となるように制御することで、定流量吐水を行うようにしている。 In this embodiment, the constant flow rate water discharge is performed by controlling the rotation speed of the booster pump 9 to be a constant value.
 そして、定流量吐水を行いつつ、昇圧ポンプ9の駆動時間を検知することで、定流量吐水を行うようにしている。 The constant flow rate water discharge is performed by detecting the driving time of the booster pump 9 while performing the constant flow rate water discharge.
 かかる構成を備える水処理装置1は、以下のように動作する。 The water treatment apparatus 1 having such a configuration operates as follows.
 まず、筐体2に設けられた表示部・操作部19を操作すると、制御回路(制御部)18により、給水路P1の開閉弁4が開かれる。そして、原水が原水配水管P0から給水路P1内に導入され、給水路P1内のプレフィルタ3を通過しながら濾過されて浄水が生成される。このように、前処理を行うことで生成された浄水は、開閉弁4を通過して昇圧ポンプ5に至り、昇圧ポンプ5によって昇圧される。 First, when the display unit / operation unit 19 provided in the housing 2 is operated, the control circuit (control unit) 18 opens the on-off valve 4 of the water supply channel P1. And raw | natural water is introduce | transduced in the water supply path P1 from the raw water distribution pipe P0, and it filters while passing the pre filter 3 in the water supply path P1, and purified water is produced | generated. Thus, the purified water generated by performing the pretreatment passes through the on-off valve 4 to reach the booster pump 5 and is boosted by the booster pump 5.
 そして、昇圧された浄水がナノフィルタ6に導入される。 And the pressure-purified water is introduced into the nanofilter 6.
 そして、ナノフィルタ6に導入され、NF膜6aを透過して当該NF膜6aによって水中に溶存する有機物やイオンが取り除かれた処理水(透過水)が、活性炭フィルタ7に導入される。 Then, treated water (permeated water) introduced into the nanofilter 6 and permeated through the NF film 6a and from which organic substances and ions dissolved in the water are removed by the NF film 6a is introduced into the activated carbon filter 7.
 そして、活性炭フィルタ7を通過して、NF膜(逆浸透膜)6aを透過させた際に発生するにおい等を除去した処理水(透過水)が、導入路P2の吐出口50から貯留部8内に貯留される。このとき、水位センサ20が満水状態であることを検知すると、処理水生成部40での処理水(透過水)の生成が停止し、貯留部8内への処理水(透過水)の供給が停止する。 And the treated water (permeated water) from which the odor etc. which generate | occur | produced when passing the activated carbon filter 7 and permeate | transmitting NF membrane (reverse osmosis membrane) 6a is removed from the discharge port 50 of the introduction path P2 to the storage part 8 is obtained. Stored inside. At this time, when the water level sensor 20 detects that the water level is full, the generation of the treated water (permeated water) in the treated water generation unit 40 is stopped, and the supply of the treated water (permeated water) into the storage unit 8 is stopped. Stop.
 そして、通常使用時には、貯留部8に処理水が溜まっている状態(好ましくは満水の状態)で、アルカリイオン水や透過水を吐出口70から外部に吐出するようにしている。 In normal use, alkaline ionized water or permeated water is discharged from the discharge port 70 to the outside while the treated water is accumulated in the reservoir 8 (preferably in a full water state).
 そして、アルカリイオン水を吐出口70から外部に吐出する際には、表示部・操作部19を操作してアルカリイオン水生成モードを選択する。 When discharging alkaline ion water from the discharge port 70 to the outside, the display unit / operation unit 19 is operated to select the alkali ion water generation mode.
 すると、昇圧ポンプ9が駆動し、貯留部8内の処理水(透過水)が、殺菌/電解処理路P3を通り、電解槽10へと供給される。なお、殺菌/電解処理路P3内の処理水(透過水)は、一部が陰極室10cに導入され、他が陽極室10eに導入される。陰極室10cおよび陽極室10eに導入される処理水(透過水)の導入量(流量比率)は、排出路P6を絞ることで決定している。 Then, the booster pump 9 is driven, and the treated water (permeated water) in the reservoir 8 is supplied to the electrolytic cell 10 through the sterilization / electrolytic treatment path P3. Part of the treated water (permeated water) in the sterilization / electrolytic treatment path P3 is introduced into the cathode chamber 10c and the other is introduced into the anode chamber 10e. The amount (flow rate ratio) of treated water (permeated water) introduced into the cathode chamber 10c and the anode chamber 10e is determined by narrowing the discharge path P6.
 そして、電解槽10内に供給された処理水は、陰極10bおよび陽極10dに直流電圧を印加することで電気分解され、陰極室10cではアルカリイオン水が、陽極室10eでは酸性水が生成される。 The treated water supplied into the electrolytic cell 10 is electrolyzed by applying a DC voltage to the cathode 10b and the anode 10d, and alkali ion water is generated in the cathode chamber 10c and acidic water is generated in the anode chamber 10e. .
 そして、陰極室10cで生成されたアルカリイオン水は、吐出口70から外部に吐出する前に、殺菌部11を通過させることで殺菌される。そして、殺菌部11にて殺菌されたアルカリイオン水は、殺菌/電解処理路P3および吐出路P4を通り、吐出口70から外部に吐出する。一方、陽極室10eで生成された酸性水は、排出路P6を通り外部に排出される。 And the alkaline ionized water produced | generated in the cathode chamber 10c is sterilized by allowing the sterilization part 11 to pass through before discharging to the exterior from the discharge outlet 70. FIG. Then, the alkaline ionized water sterilized by the sterilizing unit 11 passes through the sterilization / electrolytic treatment path P3 and the discharge path P4 and is discharged to the outside from the discharge port 70. On the other hand, the acidic water generated in the anode chamber 10e is discharged to the outside through the discharge path P6.
 このとき、電磁弁12は閉じられており、アルカリイオン水が循環路P7を通って貯留部8内に導入されないようにしている。また、開閉弁4、機械的可動弁21、電磁弁13および電磁弁14は開いており、それぞれの水路内を水が通過できるようにしている。また、本実施形態では、昇圧ポンプ5も作動させ、アルカリイオン水給水時に、新たに生成された処理水(透過水)を貯留部8内に供給できるようにしている。 At this time, the solenoid valve 12 is closed, so that alkaline ionized water is not introduced into the reservoir 8 through the circulation path P7. The on-off valve 4, the mechanical movable valve 21, the electromagnetic valve 13 and the electromagnetic valve 14 are open so that water can pass through the respective water channels. Further, in the present embodiment, the booster pump 5 is also operated so that newly generated treated water (permeated water) can be supplied into the storage unit 8 at the time of supplying alkaline ion water.
 なお、飲料用に少量のアルカリイオン水を生成させる場合、表示部・操作部19を操作して通水を停止することになる。このように、通水を停止した場合には、制御回路(制御部)18により開閉弁4が閉じられ、昇圧ポンプ5および昇圧ポンプ9が停止する。ただし、本実施形態では、ナノフィルタ6を透過させた処理水を貯留部8内に供給させるようにしているため、処理水の単位時間あたりの生成量が、アルカリイオン水の単位時間あたりの生成量よりも少なくなっている。そのため、昇圧ポンプ9を停止させた後、所定時間経過後、もしくは、貯留部8が満水状態であることを検知した後に、開閉弁4を閉じ、昇圧ポンプ5を停止するようにするのが好ましい。 In addition, when producing a small amount of alkaline ionized water for beverages, the display unit / operation unit 19 is operated to stop water flow. Thus, when water flow is stopped, the on-off valve 4 is closed by the control circuit (control unit) 18 and the booster pump 5 and the booster pump 9 are stopped. However, in the present embodiment, the treated water that has been permeated through the nanofilter 6 is supplied into the storage unit 8, so that the amount of treated water generated per unit time is the amount generated per unit time of alkaline ionized water. It is less than the amount. Therefore, it is preferable to close the on-off valve 4 and stop the booster pump 5 after the booster pump 9 is stopped, after a predetermined time has elapsed, or after it is detected that the reservoir 8 is full. .
 また、冷蔵庫保管用等、大量のアルカリイオン水を吐出させる場合には、表示部・操作部19を操作して定流量吐出モードを選択する。 Also, when discharging a large amount of alkaline ionized water, such as for refrigerator storage, the display unit / operation unit 19 is operated to select the constant flow rate discharge mode.
 定流量吐出モードが選択された場合、2リットル等、所定量のアルカリイオン水が吐出された際に、制御回路(制御部)18により昇圧ポンプ9を停止し、給水を停止するようになる。所定量の検知は、昇圧ポンプ9を定流量吐水させ、吐出流量と昇圧ポンプ9の駆動時間(両者の積)に基づいて検知するようにしている。 When the constant flow rate discharge mode is selected, when a predetermined amount of alkaline ionized water such as 2 liters is discharged, the booster pump 9 is stopped by the control circuit (control unit) 18 to stop water supply. The predetermined amount is detected by discharging the booster pump 9 at a constant flow rate, and detecting it based on the discharge flow rate and the drive time of the booster pump 9 (the product of both).
 また、処理水を吐出口70から外部に吐出する際には、表示部・操作部19を操作して処理水生成モード(浄水)を選択する。 Further, when the treated water is discharged from the discharge port 70 to the outside, the treated water generation mode (purified water) is selected by operating the display / operation unit 19.
 この処理水生成モード(浄水)を選択すると、電解槽10を動作させない状態で、アルカリイオン水生成モードとほぼ同様の作用が行われる。このとき、陽極室10e内に処理水が導入されないように電磁弁14を閉じれば、処理水が無駄に排水されてしまうのを抑制することができる。 When this treated water generation mode (purified water) is selected, substantially the same operation as the alkaline ion water generation mode is performed without operating the electrolytic cell 10. At this time, if the electromagnetic valve 14 is closed so that the treated water is not introduced into the anode chamber 10e, the treated water can be prevented from being drained wastefully.
 また、本実施形態では、貯留部8内の処理水を循環させる処理水循環モードを選択できるようになっている。 Moreover, in this embodiment, the treated water circulation mode for circulating the treated water in the reservoir 8 can be selected.
 例えば、飲用水を吐出口70から外部に吐出した後、所定時間経過後に、処理水循環モードが選択されるように制御したり、表示部・操作部19を操作して処理水循環モードを選択したりできるようにしている。 For example, after drinking water is discharged from the discharge port 70 to the outside, control is performed so that the treated water circulation mode is selected after a predetermined time has elapsed, or the treated water circulation mode is selected by operating the display unit / operation unit 19. I can do it.
 この処理水循環モードが選択されると、開閉弁4を閉じ、昇圧ポンプ5を停止した状態で、昇圧ポンプ9が駆動される。また、電磁弁13および電磁弁14が閉じられ、電磁弁12および機械的可動弁21が開かれる。このとき、電解槽10を動作させないようにする。 When this treated water circulation mode is selected, the booster pump 9 is driven with the on-off valve 4 closed and the booster pump 5 stopped. Further, the electromagnetic valve 13 and the electromagnetic valve 14 are closed, and the electromagnetic valve 12 and the mechanical movable valve 21 are opened. At this time, the electrolytic cell 10 is not operated.
 こうして、貯留部8内の処理水は、殺菌/電解処理路P3を通り、途中で殺菌部11にて殺菌されて循環路P7の循環用吐出口60から貯留部8内に再導入される。 Thus, the treated water in the storage unit 8 passes through the sterilization / electrolysis processing path P3, is sterilized in the sterilization unit 11 on the way, and is reintroduced into the storage unit 8 from the circulation outlet 60 of the circulation path P7.
 このとき、本実施形態では、循環路P7の循環用吐出口60の貯留部8との相対位置を変化させることができるようにしている。そこで、循環用吐出口60の位置を、循環時に貯留部8内全体で効率的に処理水を対流させることができる位置に設置すれば、貯留部8内の処理水に澱みが生じてしまうのを抑制することができる。 At this time, in this embodiment, the relative position of the circulation outlet 60 of the circulation path P7 with the storage section 8 can be changed. Therefore, if the position of the circulation outlet 60 is set at a position where the treated water can be efficiently convected throughout the storage unit 8 during circulation, stagnation occurs in the treated water in the storage unit 8. Can be suppressed.
 また、本実施形態では、殺菌/電解処理路P3、循環路P7および貯留部8内に酸性水を循環させる逆洗浄モードを選択できるようになっている。 In the present embodiment, the reverse cleaning mode in which acidic water is circulated in the sterilization / electrolytic treatment path P3, the circulation path P7, and the storage section 8 can be selected.
 この逆洗浄モードも、使用者の選択もしくは制御回路(制御部)18による選択が可能である。 This reverse cleaning mode can also be selected by the user or by the control circuit (control unit) 18.
 逆洗浄モードが選択された場合には、電解槽10に通常とは逆の電圧を印加し、陰極室10cで酸性水が生成されるようにしている。そして、生成された酸性水を、処理水循環モードと同様に循環させるようにしている。なお、殺菌部11での殺菌は行っても行わなくてもよい。 When the reverse cleaning mode is selected, a reverse voltage is applied to the electrolytic cell 10 so that acidic water is generated in the cathode chamber 10c. And the produced | generated acidic water is made to circulate similarly to the treated water circulation mode. Note that sterilization in the sterilization unit 11 may or may not be performed.
 そして、逆洗浄モード終了後には、殺菌/電解処理路P3、循環路P7および貯留部8内の酸性水を排水し、排水後に処理水を生成して貯留部8に貯留するようにしている。 Then, after the end of the reverse cleaning mode, the acidic water in the sterilization / electrolytic treatment path P3, the circulation path P7 and the storage section 8 is drained, and the treated water is generated and stored in the storage section 8 after drainage.
 なお、酸性水の排水は、機械的可動弁21、昇圧ポンプ9、電解槽10の陽極室10e、排出路P6を通過させて排水するのが好ましい。 In addition, it is preferable to drain the acidic water through the mechanical movable valve 21, the booster pump 9, the anode chamber 10e of the electrolytic cell 10, and the discharge path P6.
 さらに、本実施形態では、貯留部8内の処理水を排水する排水モードを選択できるようになっている。 Furthermore, in this embodiment, the drainage mode for draining the treated water in the reservoir 8 can be selected.
 そして、貯留部8を取り外して洗浄する場合には、排水モードを選択することで、貯留部8内の処理水を排水した状態で取り出せるようになっている。 And when removing and wash | cleaning the storage part 8, it can take out in the state which drained the treated water in the storage part 8 by selecting drainage mode.
 貯留部8内の処理水の排水も、上述した排水手段を用いて行うことができる。 The drainage of the treated water in the storage unit 8 can also be performed using the drainage means described above.
 このとき、貯留部8の洗浄時期を報知するようにするのが好ましい。 At this time, it is preferable to notify the cleaning time of the reservoir 8.
 以上説明したように、本実施形態によれば、循環路P7は、当該循環路P7内の処理水を貯留部8内に吐出する循環用吐出口60を有しており、当該循環用吐出口60の貯留部8に対する相対位置が可変となっている。このため、循環用吐出口60の貯留部8に対する相対位置を、循環時に貯留部8内全体で効率的に処理水を対流させることができる位置となるように設定することが可能となる。その結果、貯留部8内の処理水に澱みが生じてしまうのを抑制することができ、より衛生的に処理水を貯留部8内に貯留することができるようになる。 As described above, according to the present embodiment, the circulation path P7 has the circulation discharge port 60 that discharges the treated water in the circulation path P7 into the storage unit 8, and the circulation discharge port. The relative position of 60 to the storage unit 8 is variable. For this reason, it becomes possible to set the relative position with respect to the storage part 8 of the discharge port 60 for circulation so that it may be a position where the treated water can be efficiently convected throughout the storage part 8 during circulation. As a result, it is possible to suppress the stagnation of the treated water in the storage unit 8 and to store the treated water in the storage unit 8 in a more sanitary manner.
 また、本実施形態によれば、貯留部8が着脱可能に設けられているため、取り外した貯留部8を洗浄することができ、より貯留部8をより衛生的な状態とすることが可能となる。 Moreover, according to this embodiment, since the storage part 8 is provided so that attachment or detachment is possible, the removed storage part 8 can be wash | cleaned, and the storage part 8 can be made more hygienic. Become.
 また、本実施形態によれば、水処理装置1は、貯留部8内の処理水を排水する排水手段を備えている。そのため、処理水が溜まった状態の貯留部8を取り外す必要がなくなり、貯留部8の取り出しが容易になる。 Further, according to the present embodiment, the water treatment device 1 includes the drainage means for draining the treated water in the storage unit 8. Therefore, it is not necessary to remove the storage unit 8 in the state where the treated water is accumulated, and the storage unit 8 can be easily taken out.
 また、本実施形態によれば、水処理装置1は、貯留部8内の処理水を外部に吐出させる昇圧ポンプ(ポンプ)9と、貯留部8内の処理水を所定量外部に吐出させた際に、昇圧ポンプ(ポンプ)9の駆動を停止する制御回路(制御部)18と、を備えている。すなわち、所望量の処理水が吐水された際に吐水が停止されるようにしている。したがって、吐水時に水処理装置1の設置場所から離れて他の用事を行うことが可能となる。 Moreover, according to this embodiment, the water treatment apparatus 1 discharged the treated water in the storage unit 8 to the outside and the booster pump (pump) 9 that discharges the treated water in the storage unit 8 to the outside by a predetermined amount. At this time, a control circuit (control unit) 18 for stopping the drive of the booster pump (pump) 9 is provided. That is, water discharge is stopped when a desired amount of treated water is discharged. Therefore, it is possible to perform other tasks away from the installation location of the water treatment device 1 during water discharge.
 また、本実施形態によれば、制御回路(制御部)18は、昇圧ポンプ(ポンプ)9が空運転となった際に、当該昇圧ポンプ(ポンプ)9の駆動を停止するようにしている。すなわち、吐水時や排水時に貯留部8内の処理水が空になった場合に、自動で止水されるようにしている。そのため、貯留部8内の処理水が空の状態で昇圧ポンプ(ポンプ)9を駆動させることがなくなり、昇圧ポンプ(ポンプ)9の長寿命化および水処理装置1の省エネ化を図ることができる。 Further, according to the present embodiment, the control circuit (control unit) 18 stops driving of the booster pump (pump) 9 when the booster pump (pump) 9 is idle. That is, the water is automatically stopped when the treated water in the reservoir 8 becomes empty during water discharge or drainage. Therefore, the booster pump (pump) 9 is not driven when the treated water in the reservoir 8 is empty, and the life of the booster pump (pump) 9 can be extended and the water treatment apparatus 1 can be saved. .
 また、本実施形態によれば、制御回路(制御部)18は、昇圧ポンプ(ポンプ)9が貯留部8内の処理水を所定量だけ外部に吐出させる定量吐水を行うように制御している。 Moreover, according to this embodiment, the control circuit (control part) 18 is controlled so that the booster pump (pump) 9 performs the fixed amount water discharge which discharges the treated water in the storage part 8 only predetermined amount outside. .
 そのため、処理水を長時間吐出させる場合であっても、水処理装置1の設置場所に居続ける必要がなくなり、水処理装置1の設置場所から離れて他の用事を行うことが可能となる。 Therefore, even when the treated water is discharged for a long time, it is not necessary to stay at the place where the water treatment apparatus 1 is installed, and it is possible to perform other tasks away from the place where the water treatment apparatus 1 is installed.
 また、本実施形態によれば、制御回路(制御部)18は、昇圧ポンプ(ポンプ)9が貯留部8内の処理水を所定流量で外部に吐出させる定流量吐水を行うように制御しているため、定量吐水を容易に行うことができる。 Further, according to the present embodiment, the control circuit (control unit) 18 controls the booster pump (pump) 9 to perform constant flow water discharge that discharges the treated water in the storage unit 8 to the outside at a predetermined flow rate. Therefore, it is possible to easily perform quantitative water discharge.
 (第2実施形態)
 本実施形態にかかる水処理装置1Aは、基本的に上記第1実施形態とほぼ同様の構成をしている。すなわち、水処理装置1Aは、図2に示すように、処理水を生成する処理水生成部40と、処理水生成部40で生成された処理水を貯留する貯留部8と、を備えている。そして、水処理装置1Aは、処理水を吐出口50から吐出することで貯留部8内に導入する導入路P2と、貯留部8内の処理水の殺菌や電解を行う殺菌/電解処理路P3と、貯留部8内の処理水を外部に吐出する吐出路P4と、を備えている。さらに、水処理装置1Aは、貯留部8内の処理水を循環させて貯留部8内に再導入する循環路P7を備えている。
(Second Embodiment)
A water treatment apparatus 1A according to the present embodiment has basically the same configuration as that of the first embodiment. That is, 1 A of water treatment apparatuses are provided with the treated water production | generation part 40 which produces | generates treated water, and the storage part 8 which stores the treated water produced | generated by the treated water production | generation part 40, as shown in FIG. . And 1 A of water treatment apparatuses are the introduction path P2 which introduces in the storage part 8 by discharging treated water from the discharge outlet 50, and the sterilization / electrolysis process path P3 which performs sterilization and electrolysis of the treated water in the storage part 8. And a discharge path P4 for discharging the treated water in the reservoir 8 to the outside. Furthermore, the water treatment apparatus 1 </ b> A includes a circulation path P <b> 7 that circulates the treated water in the storage unit 8 and reintroduces it into the storage unit 8.
 ここで、本実施形態にかかる水処理装置1Aが、上記第1実施形態と主に異なる点は、殺菌/電解処理路P3に、電解槽10が設けられていない点にある。 Here, the water treatment apparatus 1A according to the present embodiment is mainly different from the first embodiment in that the electrolytic bath 10 is not provided in the sterilization / electrolysis treatment path P3.
 すなわち、貯留部8内の処理水を、殺菌部11で殺菌した後に吐出口70から外部に吐出させるようになっている。 That is, the treated water in the storage unit 8 is sterilized by the sterilization unit 11 and then discharged from the discharge port 70 to the outside.
 また、本実施形態では、殺菌/電解処理路P3の殺菌部11へ向かう途中に分岐部D2を設けて分岐させ、排出路P6を形成している。 Moreover, in this embodiment, the branch part D2 is provided and branched on the way to the sterilization part 11 of the sterilization / electrolysis processing path P3, and the discharge path P6 is formed.
 また、循環路P7の循環用吐出口60の貯留部8との相対位置を変化させることができるようにしている。 Further, the relative position of the circulation outlet 60 of the circulation path P7 with the storage portion 8 can be changed.
 さらに、本実施形態においても、上記第1実施形態で説明した、処理水生成モード、定流量吐出モード、処理水循環モード、排水モードを選択することができるようになっている。 Furthermore, also in this embodiment, the treated water generation mode, the constant flow rate discharge mode, the treated water circulation mode, and the drainage mode described in the first embodiment can be selected.
 以上の本実施形態によっても、上記第1実施形態とほぼ同様の作用、効果を奏することができる。 Also according to the present embodiment described above, substantially the same operations and effects as the first embodiment can be achieved.
 (第3実施形態)
 本実施形態にかかる水処理装置1Bは、基本的に上記第1実施形態とほぼ同様の構成をしている。すなわち、水処理装置1Bは、図3に示すように、処理水を生成する処理水生成部40と、処理水生成部40で生成された処理水を貯留する貯留部8と、を備えている。そして、水処理装置1Bは、処理水を吐出口50から吐出することで貯留部8内に導入する導入路P2と、貯留部8内の処理水の殺菌や電解を行う殺菌/電解処理路P3と、貯留部8内の処理水を外部に吐出する吐出路P4と、を備えている。さらに、水処理装置1Bは、貯留部8内の処理水を循環させて貯留部8内に再導入する循環路P7を備えている。
(Third embodiment)
The water treatment apparatus 1B according to the present embodiment has basically the same configuration as that of the first embodiment. That is, as shown in FIG. 3, the water treatment apparatus 1 </ b> B includes a treated water generating unit 40 that generates treated water and a storage unit 8 that stores treated water generated by the treated water generating unit 40. . And the water treatment apparatus 1B is the introduction path P2 which introduces in the storage part 8 by discharging treated water from the discharge port 50, and the sterilization / electrolysis process path P3 which performs sterilization and electrolysis of the treated water in the storage part 8. And a discharge path P4 for discharging the treated water in the reservoir 8 to the outside. Furthermore, the water treatment apparatus 1B includes a circulation path P7 that circulates the treated water in the storage unit 8 and reintroduces it into the storage unit 8.
 また、殺菌/電解処理路P3には電解槽10が設けられている。 Further, an electrolytic cell 10 is provided in the sterilization / electrolysis treatment path P3.
 ここで、本実施形態にかかる水処理装置1Bが、上記第1実施形態と主に異なる点は、導入路P2の吐出口50が循環用吐出口60を兼ねている点にある。 Here, the water treatment apparatus 1B according to the present embodiment is mainly different from the first embodiment in that the discharge port 50 of the introduction path P2 also serves as the discharge port 60 for circulation.
 具体的には、循環路P7の先端を導入路P2に合流部D3にて連結させ、循環路P7内の処理水を導入路P2の吐出口50から、貯留部8内に再導入させるようにしている。 Specifically, the tip of the circulation path P7 is connected to the introduction path P2 at the junction D3, and the treated water in the circulation path P7 is reintroduced into the storage section 8 from the discharge port 50 of the introduction path P2. ing.
 したがって、本実施形態では、導入路P2の吐出口50の貯留部8との相対位置を変化させることができるようになっている。 Therefore, in the present embodiment, the relative position of the discharge port 50 of the introduction path P2 with the storage unit 8 can be changed.
 また、本実施形態においても、上記第1実施形態で説明した、アルカリイオン水生成モード、処理水生成モード、定流量吐出モード、処理水循環モード、逆洗浄モードおよび排水モードを選択することができるようになっている。 Also in the present embodiment, the alkali ion water generation mode, the treated water generation mode, the constant flow rate discharge mode, the treated water circulation mode, the backwash mode, and the drainage mode described in the first embodiment can be selected. It has become.
 さらに、本実施形態では、貯留部8に弁22が設けられた通路が筐体2の外部に露出するように連通されており、貯留部8内の処理水を直接(殺菌/電解処理路P3および吐出路P4を経由することなく)取り出せるようになっている。 Further, in the present embodiment, the passage in which the valve 22 is provided in the storage unit 8 is communicated so as to be exposed to the outside of the housing 2, and the treated water in the storage unit 8 is directly (sterilized / electrolytic treatment path P3). (Without passing through the discharge path P4).
 以上の本実施形態によっても、上記第1実施形態と同様の作用、効果を奏することができる。 Also according to this embodiment described above, the same operations and effects as those of the first embodiment can be obtained.
 また、本実施形態によれば、導入路P2の吐出口50が循環用吐出口60を兼ねているため、部品点数の削減を図ることができ、コストを削減することができる。 In addition, according to the present embodiment, since the discharge port 50 of the introduction path P2 also serves as the discharge port 60 for circulation, the number of parts can be reduced and the cost can be reduced.
 (第4実施形態)
 本実施形態にかかる水処理装置1Cは、基本的に上記第3実施形態とほぼ同様の構成をしている。すなわち、水処理装置1Cは、図4に示すように、処理水を生成する処理水生成部40と、処理水生成部40で生成された処理水を貯留する貯留部8と、を備えている。そして、水処理装置1Cは、処理水を吐出口50から吐出することで貯留部8内に導入する導入路P2と、貯留部8内の処理水の殺菌や電解を行う殺菌/電解処理路P3と、貯留部8内の処理水を外部に吐出する吐出路P4と、を備えている。さらに、水処理装置1Cは、貯留部8内の処理水を循環させて貯留部8内に再導入する循環路P7を備えている。
(Fourth embodiment)
The water treatment apparatus 1C according to the present embodiment has basically the same configuration as that of the third embodiment. That is, 1 C of water treatment apparatuses are provided with the treated water production | generation part 40 which produces | generates treated water, and the storage part 8 which stores the treated water produced | generated by the treated water production | generation part 40, as shown in FIG. . Then, the water treatment apparatus 1C has an introduction path P2 for introducing treated water into the reservoir 8 by discharging the treated water from the discharge port 50, and a sterilization / electrolytic treatment path P3 for sterilizing and electrolyzing the treated water in the reservoir 8. And a discharge path P4 for discharging the treated water in the reservoir 8 to the outside. Furthermore, the water treatment apparatus 1 </ b> C includes a circulation path P <b> 7 that circulates the treated water in the storage unit 8 and reintroduces it into the storage unit 8.
 また、導入路P2の吐出口50が循環用吐出口60を兼ねており、導入路P2の吐出口50の貯留部8との相対位置を変化させることができるようになっている。 Further, the discharge port 50 of the introduction path P2 also serves as the circulation discharge port 60, and the relative position of the discharge port 50 of the introduction path P2 with the storage portion 8 can be changed.
 また、貯留部8に弁22が設けられた通路が筐体2の外部に露出するように連通されており、貯留部8内の処理水を直接(殺菌/電解処理路P3および吐出路P4を経由することなく)取り出せるようになっている。 Further, the passage in which the valve 22 is provided in the storage unit 8 is communicated so as to be exposed to the outside of the housing 2, and the treated water in the storage unit 8 is directly passed (disinfection / electrolysis treatment path P3 and discharge path P4 through (Without going through).
 さらに、本実施形態においても、上記第1実施形態で説明した、処理水生成モード、定流量吐出モード、処理水循環モード、排水モードを選択することができるようになっている。 Furthermore, also in this embodiment, the treated water generation mode, the constant flow rate discharge mode, the treated water circulation mode, and the drainage mode described in the first embodiment can be selected.
 ここで、本実施形態にかかる水処理装置1Cが、上記第3実施形態と主に異なる点は、殺菌/電解処理路P3に、電解槽10が設けられていない点にある。 Here, the water treatment apparatus 1C according to the present embodiment is mainly different from the third embodiment in that the electrolytic bath 10 is not provided in the sterilization / electrolysis treatment path P3.
 すなわち、貯留部8内の処理水を、殺菌部11で殺菌した後に吐出口70から外部に吐出させるようになっている。 That is, the treated water in the storage unit 8 is sterilized by the sterilization unit 11 and then discharged from the discharge port 70 to the outside.
 また、本実施形態では、殺菌/電解処理路P3の殺菌部11へ向かう途中に分岐部D2を設けて分岐させ、排出路P6を形成している。 Moreover, in this embodiment, the branch part D2 is provided and branched on the way to the sterilization part 11 of the sterilization / electrolysis processing path P3, and the discharge path P6 is formed.
 以上の本実施形態によっても、上記第3実施形態とほぼ同様の作用、効果を奏することができる。 Also according to the present embodiment described above, substantially the same operations and effects as the third embodiment can be achieved.
 (第5実施形態)
 本実施形態にかかる水処理装置1Dは、基本的に上記第3実施形態とほぼ同様の構成をしている。すなわち、水処理装置1Dは、図5に示すように、処理水を生成する処理水生成部40と、処理水生成部40で生成された処理水を貯留する貯留部8と、を備えている。そして、水処理装置1Dは、処理水を吐出口50から吐出することで貯留部8内に導入する導入路P2と、貯留部8内の処理水の殺菌や電解を行う殺菌/電解処理路P3と、貯留部8内の処理水を外部に吐出する吐出路P4と、を備えている。さらに、水処理装置1Dは、貯留部8内の処理水を循環させて貯留部8内に再導入する循環路P7を備えている。
(Fifth embodiment)
The water treatment apparatus 1D according to the present embodiment has basically the same configuration as that of the third embodiment. That is, as shown in FIG. 5, the water treatment apparatus 1 </ b> D includes a treated water generating unit 40 that generates treated water and a storage unit 8 that stores treated water generated by the treated water generating unit 40. . And the water treatment apparatus 1D introduces the treated water into the reservoir 8 by discharging the treated water from the discharge port 50, and the sterilization / electrolytic treatment path P3 for sterilizing and electrolyzing the treated water in the reservoir 8. And a discharge path P4 for discharging the treated water in the reservoir 8 to the outside. Furthermore, the water treatment apparatus 1D includes a circulation path P7 that circulates the treated water in the storage unit 8 and reintroduces it into the storage unit 8.
 また、導入路P2の吐出口50が循環用吐出口60を兼ねており、導入路P2の吐出口50の貯留部8との相対位置を変化させることができるようになっている。 Further, the discharge port 50 of the introduction path P2 also serves as the circulation discharge port 60, and the relative position of the discharge port 50 of the introduction path P2 with the storage portion 8 can be changed.
 また、殺菌/電解処理路P3には電解槽10が設けられている。 Further, an electrolytic cell 10 is provided in the sterilization / electrolysis treatment path P3.
 そして、貯留部8に弁22が設けられた通路が筐体2の外部に露出するように連通されており、貯留部8内の処理水を直接(殺菌/電解処理路P3および吐出路P4を経由することなく)取り出せるようになっている。 The passage in which the valve 22 is provided in the storage unit 8 is communicated so as to be exposed to the outside of the housing 2, and the treated water in the storage unit 8 is directly passed through the sterilization / electrolysis treatment path P3 and the discharge path P4. (Without going through).
 また、本実施形態においても、上記第1実施形態で説明した、アルカリイオン水生成モード、処理水生成モード、定流量吐出モード、処理水循環モード、逆洗浄モードおよび排水モードを選択することができるようになっている。 Also in the present embodiment, the alkali ion water generation mode, the treated water generation mode, the constant flow rate discharge mode, the treated water circulation mode, the backwash mode, and the drainage mode described in the first embodiment can be selected. It has become.
 ここで、本実施形態にかかる水処理装置1Dが、上記第3実施形態と主に異なる点は、濃縮水排水路P5と排出路P6とを連通させ、連通部の下流側にリストリクタ15を設けた点にある。 Here, the water treatment apparatus 1D according to the present embodiment is mainly different from the third embodiment in that the concentrated water drainage channel P5 and the discharge channel P6 are communicated, and the restrictor 15 is provided on the downstream side of the communication unit. It is in the point provided.
 具体的には、濃縮水排水路P5と排出路P6とを合流部D4で連通させ、合流部D4の下流側にリストリクタ15を設けている。 Specifically, the concentrated water drainage channel P5 and the discharge channel P6 are communicated with each other at the junction D4, and the restrictor 15 is provided on the downstream side of the junction D4.
 そして、排出路P6の電磁弁14の下流側には、濃縮水排水路P5内の濃縮水が排出路P6内に逆流してしまわないように、逆止弁23が設けられている。 A check valve 23 is provided on the downstream side of the electromagnetic valve 14 in the discharge path P6 so that the concentrated water in the concentrated water drainage path P5 does not flow back into the discharge path P6.
 かかる構成とすることで、逆洗浄モード終了後に排水する酸性水がリストリクタ15を通過することになり、リストリクタ15に付着したスケールを溶解させることができる。 By adopting such a configuration, the acidic water drained after the end of the reverse cleaning mode passes through the restrictor 15, and the scale adhering to the restrictor 15 can be dissolved.
 以上の本実施形態によっても、上記第3実施形態と同様の作用、効果を奏することができる。 Also according to this embodiment described above, the same operations and effects as those of the third embodiment can be achieved.
 また、本実施形態によれば、濃縮水排水路P5と排出路P6とを連通させ、連通部の下流側にリストリクタ15を設けている。 Further, according to the present embodiment, the concentrated water drainage channel P5 and the discharge channel P6 are communicated, and the restrictor 15 is provided on the downstream side of the communication part.
 そのため、逆洗浄モード終了後に排水する酸性水がリストリクタ15を通過することになり、リストリクタ15に付着したスケールを溶解させることができる。その結果、リストリクタ15がスケールによって詰まってしまうのを抑制することができるようになる。 Therefore, the acidic water drained after the end of the reverse cleaning mode passes through the restrictor 15, and the scale adhering to the restrictor 15 can be dissolved. As a result, the restrictor 15 can be prevented from being clogged with the scale.
 なお、上記第1実施形態の構成に本実施形態を適用することも可能である。 Note that the present embodiment can also be applied to the configuration of the first embodiment.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、種々の変形が可能である。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made.
 例えば、上記各実施形態では、殺菌部を設けたものを例示したが、殺菌部を設けない水処理装置に本発明を適用することも可能である。 For example, in each of the above embodiments, an example in which a sterilization unit is provided is illustrated, but the present invention can also be applied to a water treatment apparatus in which no sterilization unit is provided.
 また、上記各実施形態では、貯留部を着脱可能に設けたものを例示したが、貯留部が固定されたものであってもよい。 Further, in each of the above-described embodiments, the storage part is provided so as to be detachable, but the storage part may be fixed.
 また、処理水生成部や電解槽、その他細部のスペック(形状、大きさ、レイアウト等)も適宜に変更可能である。 Also, the treated water generating section, electrolytic cell, and other detailed specifications (shape, size, layout, etc.) can be changed as appropriate.
 本発明によれば、より衛生的に処理水を貯留部内に貯留することのできる水処理装置を得ることができる。 According to the present invention, it is possible to obtain a water treatment device that can store treated water in a more sanitary manner.

Claims (8)

  1.  処理水を生成する処理水生成部と、
     前記処理水生成部で生成された処理水を貯留する貯留部と、
     前記処理水を吐出口から吐出することで前記貯留部内に導入する導入路と、
     前記貯留部内の処理水を循環させて前記貯留部内に再導入する循環路と、
     前記貯留部内の処理水を外部に吐出する吐出路と、
     を備える水処理装置であって、
     前記循環路は、当該循環路内の処理水を前記貯留部内に吐出する循環用吐出口を有しており、当該循環用吐出口の前記貯留部に対する相対位置が可変であることを特徴とする水処理装置。
    A treated water generating unit for generating treated water;
    A reservoir for storing treated water generated by the treated water generator;
    An introduction path for introducing the treated water into the reservoir by discharging from the discharge port;
    A circulation path for circulating the treated water in the reservoir and reintroducing it into the reservoir;
    A discharge path for discharging treated water in the reservoir to the outside;
    A water treatment device comprising:
    The circulation path has a circulation discharge port for discharging treated water in the circulation path into the storage unit, and a relative position of the circulation discharge port with respect to the storage unit is variable. Water treatment equipment.
  2.  前記貯留部が着脱可能に設けられていることを特徴とする請求項1に記載の水処理装置。 The water treatment apparatus according to claim 1, wherein the storage section is detachably provided.
  3.  前記導入路の吐出口が前記循環用吐出口を兼ねていることを特徴とする請求項1または請求項2に記載の水処理装置。 The water treatment apparatus according to claim 1 or 2, wherein the discharge port of the introduction path also serves as the discharge port for circulation.
  4.  前記水処理装置は、前記貯留部内の処理水を排水する排水手段を備えていることを特徴とする請求項1~3のうちいずれか1項に記載の水処理装置。 The water treatment apparatus according to any one of claims 1 to 3, wherein the water treatment apparatus includes drainage means for draining the treated water in the reservoir.
  5.  前記水処理装置は、前記貯留部内の処理水を外部に吐出させるポンプと、前記貯留部内の処理水を所定量外部に吐出させた際に、前記ポンプの駆動を停止する制御部と、を備えていることを特徴とする請求項1~4のうちいずれか1項に記載の水処理装置。 The water treatment device includes: a pump that discharges treated water in the storage unit to the outside; and a control unit that stops driving the pump when the treated water in the storage unit is discharged to the outside by a predetermined amount. The water treatment apparatus according to any one of claims 1 to 4, wherein the water treatment apparatus is provided.
  6.  前記制御部は、前記ポンプが空運転となった際に、当該ポンプの駆動を停止することを特徴とする請求項5に記載の水処理装置。 The water treatment apparatus according to claim 5, wherein the control unit stops driving the pump when the pump is idling.
  7.  前記制御部は、前記ポンプが前記貯留部内の処理水を所定量だけ外部に吐出させる定量吐水を行うように制御していることを特徴とする請求項5に記載の水処理装置。 The water treatment apparatus according to claim 5, wherein the control unit controls the pump to perform a fixed amount of water discharge that discharges a predetermined amount of treated water in the storage unit to the outside.
  8.  前記制御部は、前記ポンプが前記貯留部内の処理水を所定流量で外部に吐出させる定流量吐水を行うように制御していることを特徴とする請求項5~7のうちいずれか1項に記載の水処理装置。 The control unit according to any one of claims 5 to 7, wherein the control unit controls the pump to perform constant-flow water discharge that discharges treated water in the storage unit to the outside at a predetermined flow rate. The water treatment apparatus as described.
PCT/JP2012/005251 2011-09-21 2012-08-22 Water treatment device WO2013042310A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011206081A JP2013066831A (en) 2011-09-21 2011-09-21 Water treatment device
JP2011-206081 2011-09-21

Publications (1)

Publication Number Publication Date
WO2013042310A1 true WO2013042310A1 (en) 2013-03-28

Family

ID=47914104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005251 WO2013042310A1 (en) 2011-09-21 2012-08-22 Water treatment device

Country Status (2)

Country Link
JP (1) JP2013066831A (en)
WO (1) WO2013042310A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071504A1 (en) 2018-10-03 2020-04-09 ダイキン工業株式会社 Polytetrafluoroethylene production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3069019U (en) * 1999-08-04 2000-05-30 清 海谷 Activated ordinary water production equipment
JP2004033947A (en) * 2002-07-04 2004-02-05 Mitsubishi Rayon Eng Co Ltd Apparatus for manufacturing refined water
JP2011167676A (en) * 2010-02-17 2011-09-01 Noriko Yamauchi Magnetic-activated mineral water purifying device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3069019U (en) * 1999-08-04 2000-05-30 清 海谷 Activated ordinary water production equipment
JP2004033947A (en) * 2002-07-04 2004-02-05 Mitsubishi Rayon Eng Co Ltd Apparatus for manufacturing refined water
JP2011167676A (en) * 2010-02-17 2011-09-01 Noriko Yamauchi Magnetic-activated mineral water purifying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071504A1 (en) 2018-10-03 2020-04-09 ダイキン工業株式会社 Polytetrafluoroethylene production method

Also Published As

Publication number Publication date
JP2013066831A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
KR101916882B1 (en) Sterilizing method of water treatment apparatus
US10266441B2 (en) Water treatment apparatus and sterilizing and cleansing method thereof
US10099179B2 (en) Reverse osmosis system
US10159939B2 (en) Reverse osmosis system
KR101734194B1 (en) Sterilizing method for water treatment apparatus
JP2009233591A (en) Water purifier
JP5822286B1 (en) Reverse osmosis membrane water purifier that can initialize the reverse osmosis membrane
JP2007136384A (en) Permeated water manufacturing apparatus
DE102011109093A1 (en) Combination of a single-user RO device with a hemodialysis machine
KR101876214B1 (en) Water treatment apparatus and sterilizing method thereof
JP6016305B2 (en) Water purifier
KR102058059B1 (en) Sterilization method of water purifier using portable sterilization kit
WO2013042462A1 (en) Water treatment apparatus
KR101897563B1 (en) Water treatment apparatus and sterilizing method thereof
WO2013042310A1 (en) Water treatment device
WO2015173981A1 (en) Direct reverse osmosis membrane water purification apparatus with regenerable reverse osmosis membrane
KR20170087842A (en) Water treatment apparatus and sterilizing method thereof
JP2011255348A (en) Electrolytic water generator
KR100463251B1 (en) Purified system having electro dialysis
KR101886237B1 (en) Water treatment apparatus and sterilizing method thereof
KR20120131720A (en) drain apparatus of water treatmenter
JP2009233566A (en) Water purifier
JP3671684B2 (en) Bath water purification device
CN114163033A (en) Water purification system
JPH0760256A (en) Method for sterilization and cleaning of water-purifier in continuous electrolytic water adjusting apparatus, and electrolytic water-adjusting apparatus provided with device executing this method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834536

Country of ref document: EP

Kind code of ref document: A1