WO2013040979A1 - 一种直流系统绝缘监测方法及其设备 - Google Patents

一种直流系统绝缘监测方法及其设备 Download PDF

Info

Publication number
WO2013040979A1
WO2013040979A1 PCT/CN2012/080936 CN2012080936W WO2013040979A1 WO 2013040979 A1 WO2013040979 A1 WO 2013040979A1 CN 2012080936 W CN2012080936 W CN 2012080936W WO 2013040979 A1 WO2013040979 A1 WO 2013040979A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive
branch
negative
insulation resistance
bus
Prior art date
Application number
PCT/CN2012/080936
Other languages
English (en)
French (fr)
Inventor
罗兵
熊勇
李艳玲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013040979A1 publication Critical patent/WO2013040979A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors

Definitions

  • the present invention relates to the field of power systems, and in particular, to a DC system insulation monitoring method and device thereof.
  • a DC system is an important component of a power plant and a substation.
  • the safety and reliability of a DC system affects the safe operation of power plants and substations, and is related to the safe production of the entire power grid.
  • the DC system of power plants and substations is complex, and it is connected with relay protection, signal devices, automatic devices, terminal boxes and operating mechanisms of indoor and outdoor power distribution devices, and is electrical, thermal, automatic, and relay protection. Secondary equipment such as accident lighting and communication provide power, and the normal operation of these secondary equipment is very important to ensure the safe operation of power plants and substations.
  • the monitoring process of the DC system generally adopts the monitoring of each busbar in the DC system.
  • the busbar fails including the ground fault and the insulation drop fault
  • the positive and negative poles of each branch corresponding to the faulty busbar are performed. Patrol inspection to determine the faulty branch; however, each time the busbar fails, it is necessary to patrol the positive and negative poles of each branch, and determine the positive insulation resistance value and negative insulation resistance of each branch.
  • Embodiments of the present invention provide a DC system insulation monitoring method and device, which are used to solve the problem that the branch circuit inspection process in the monitoring of the DC system existing in the prior art is time-consuming, and thus the faulty branch cannot be detected in time. The problem.
  • An embodiment of the present invention provides a DC system insulation monitoring method, the method comprising: determining, when the busbar is faulty, determining a to-be-detected pole of a branch connected to the busbar according to the busbar insulation resistance value; The detection of the pole to be detected determines the faulty branch.
  • determining the to-be-detected pole of the branch connected to the bus bar according to the busbar insulation resistance value includes: if the positive busbar insulation resistance value is not greater than the first threshold, and the negative busbar insulation resistance value is greater than the first threshold, determining a positive pole of the branch connected to the positive busbar is a pole to be detected; if the insulation resistance value of the positive busbar is greater than the first threshold, and the insulation resistance value of the negative busbar is not greater than the first threshold, determining a branch connected to the negative busbar The negative electrode is a pole to be detected; if the positive busbar insulation resistance value and the negative busbar insulation resistance value are not greater than the first threshold value, it is determined that the positive pole of the branch connected to the positive busbar and the negative pole of the branch connected to the negative busbar are Detection pole.
  • detecting the fault to be detected of the branch to determine the faulty branch comprises: if the branch is to be detected as the anode of the branch, when the positive insulation resistance value of the branch is not greater than the set first threshold, Determining that the corresponding branch is a ground fault; and when the positive insulation resistance value of the branch is greater than the first threshold and not greater than the set second threshold, determining that the corresponding branch is an insulation drop fault; if the branch is to be detected extremely When the negative pole of the branch circuit is not greater than the first threshold value, the corresponding branch is determined to be a ground fault; and when the negative insulation resistance value of the branch is greater than the first threshold and not greater than the second valve When the value is determined, it is determined that the corresponding branch is an insulation drop fault; if the branch is to be detected as the branch positive pole and the branch anode, then the branch positive insulation resistance value and/or the branch negative insulation resistance value are not greater than the above first valve When the value is determined, it is determined that the corresponding branch is a ground fault;
  • the branch is to be detected as a positive pole of the branch, the following formula is used to determine the positive insulation resistance value of the branch: Wherein, ⁇ + is the positive insulation resistance value of the Nth branch, wherein N is a positive integer; U + is a second sampling resistor connected in parallel between the negative bus and the preset ground, and the positive bus and the ground are When disconnected, the current positive busbar second ground voltage value is obtained; L is the current value of the leakage current flowing through the Nth branch; if the branch is to be detected as the branch negative pole, the above formula is determined by the following formula Negative insulation resistance value: Where is the negative insulation resistance value of the Nth branch, where N is a positive integer; ⁇ 7 - is the first sampling resistor connected in parallel between the positive bus and the preset ground, and the negative bus is disconnected from the ground When the first negative ground voltage value of the current negative bus is obtained; the current value of the leakage current flowing through the Nth branch; if the branch is to be detected as the branch positive pole and the branch
  • the positive insulation resistance value of the Nth branch is the negative insulation resistance value of the Nth branch, wherein N is a positive integer; U ⁇ ' and the parallel connection between the corresponding negative bus and the preset ground Two sampling resistors, and when the positive bus is disconnected from the ground, the current positive bus second ground voltage value, current negative bus The second pair of ground voltage values and the current value of the leakage current flowing through the Nth branch; U + , ⁇ _ and / « are the first sampling resistors connected in parallel between the positive bus and the ground, and the negative bus and ground When disconnected, the current positive bus first ground voltage value, the current negative bus first ground voltage value, and the current value of the leakage current flowing through the Nth branch are obtained.
  • determining that the busbar is faulty comprises: determining a positive busbar insulation resistance value and a negative busbar insulation resistance value; if the positive busbar insulation resistance value and/or the negative busbar insulation resistance value are not greater than the first threshold value, determining that the busbar is grounded If the positive busbar insulation resistance value and/or the negative busbar insulation resistance value are between the first threshold value and the second threshold value, determining that the busbar insulation insulation fault occurs; wherein the first threshold value is less than the above The second threshold value, the second threshold value is not greater than the first threshold.
  • determining the positive busbar insulation resistance value and the negative busbar insulation resistance value comprises: connecting a first sampling resistor between the positive bus bar and the preset ground wire, and determining that the negative bus bar is disconnected from the ground wire, The first pair of ground voltage values of the positive bus bar and the negative bus bar; the positive bus bar is disconnected from the ground wire, and when the second sampling resistor is connected between the negative bus bar and the ground wire, the positive bus bar and the negative bus bar are determined Two pairs of ground voltage values; The above positive busbar insulation resistance value and negative busbar insulation resistance value are determined according to the following formula:
  • ⁇ - is the negative busbar insulation resistance value; is the first sampling resistance; is the second sampling resistance; is the first pair of ground voltage values of the positive bus; ⁇ is the first pair of grounds of the negative bus
  • the voltage value is the second pair of ground voltage values of the positive bus; the second pair of ground voltage values of the negative bus.
  • the comparison coefficient, the first sampling resistance value, and the range of ⁇ is: 90% ⁇ ⁇ ⁇ 99.9%.
  • the positive bus-to-ground voltage value is determined according to the following steps: During the set time period, the positive bus-to-ground voltage value is sampled at least twice; the obtained sampled voltage value is filtered, and the filtered voltage is filtered.
  • the value is taken as the positive bus-to-ground voltage value; wherein, the positive bus-to-ground voltage value includes the first bus-to-ground voltage value of the positive bus and the second-to-ground voltage value of the positive bus; and the negative bus-to-ground voltage value is determined according to the following steps: During the set time period, the negative bus-to-ground voltage value is sampled at least twice; the obtained sampled voltage value is filtered, and the filtered voltage value is used as the negative bus-to-ground voltage value; wherein, the negative bus bar
  • the ground voltage value includes a first bus voltage value of the negative bus and a second ground voltage value of the negative bus.
  • An embodiment of the present invention provides a DC system insulation monitoring device, where the device includes: a branch to be detected pole determining module, and determining a branch connected to the bus bar according to the busbar insulation resistance value when determining that the busbar is faulty a detecting pole; the detecting module is configured to detect the fault to be detected by detecting the pole to be detected of the branch.
  • the branch to-be-detected pole determining module is configured to: if the positive busbar insulation resistance value is not greater than the first threshold, and the negative busbar insulation resistance value is greater than the first threshold, determining that the positive pole connected to the positive busbar is to be The detecting pole; if the positive busbar insulation resistance value is greater than the first threshold value, and the negative busbar insulation resistance value is not greater than the first threshold value, determining that the branch negative pole connected to the negative busbar is the to-be-detected pole; if the positive busbar insulation is The resistance value and the negative busbar insulation resistance value are not greater than the first threshold value, and it is determined that the branch positive electrode connected to the positive bus bar and the branch negative electrode connected to the negative bus bar are the to-be-detected poles.
  • the detecting module is further configured to: if the branch is to be detected as the positive pole of the branch, when the positive insulation resistance value of the branch is not greater than the set first threshold, determine that the corresponding branch is a ground fault; When the positive insulation resistance value of the road is greater than the first threshold value and not greater than the set second threshold value, it is determined that the corresponding branch is an insulation drop fault; if the branch is to be detected as a branch negative pole, then the branch negative insulation resistance When the value is not greater than the first threshold, determining that the corresponding branch is a ground fault; and when the negative insulation resistance value of the branch is greater than the first threshold and not greater than the second threshold, determining that the corresponding branch is an insulation drop fault If the branch is to be detected as the branch positive pole and the branch anode, when the branch anode insulation resistance value and/or the branch anode insulation resistance value are not greater than the first threshold value, it is determined that the corresponding branch is a ground fault; When the branch positive insulation resistance value and the branch negative insulation resistance resistance value and
  • the detecting module is further configured to: if the branch is to be detected as the positive pole of the branch, the following formula is used to determine the positive insulation resistance value of the branch: Wherein, ⁇ + is the positive insulation resistance value of the Nth branch, wherein N is a positive integer; ⁇ + is a second sampling resistor connected in parallel between the corresponding negative bus and the preset ground, and the positive bus and the ground When disconnected, the current second bus voltage value of the positive bus is obtained; "the current value of the leakage current flowing through the Nth branch; if the branch is to be detected as the negative pole of the branch, the following formula is used to determine the above branch Road negative insulation resistance value: Wherein, is the negative insulation resistance value of the Nth branch, where N is a positive integer; ⁇ 7 - is the first sampling resistor connected in parallel between the corresponding positive bus and the preset ground, and the negative bus and the ground are interrupted When open, obtain the current first bus voltage value of the negative bus; L is the current value of the leakage current flowing through the N
  • the positive insulation resistance value of the Nth branch is the negative insulation resistance value of the Nth branch, wherein N is a positive integer; U + , U _ 1 L are corresponding to the negative bus and the preset ground When the second sampling resistor is connected in parallel, and the positive busbar is disconnected from the ground line, the current positive busbar second ground voltage value is obtained, and the current negative busbar is obtained.
  • the second pair of ground voltage values and the current value of the leakage current flowing through the Nth branch; U +, U - and ⁇ are the first sampling resistor connected in parallel between the positive bus and the ground, and the negative bus and the ground When disconnected, the current positive bus first ground voltage value, the current negative bus first ground voltage value, and the current value of the leakage current flowing through the Nth branch are obtained.
  • the device further includes a busbar monitoring module, configured to: determine a positive busbar insulation resistance value and a negative busbar insulation resistance value; if the positive busbar insulation resistance value and/or the negative busbar insulation resistance value are not greater than the first threshold value, determining If the positive busbar insulation resistance value and/or the negative busbar insulation resistance value are between the first threshold value and the second threshold value, determining that the busbar insulation insulation fault occurs; wherein, the first gate is The limit value is less than the second threshold value, and the second threshold value is not greater than the first threshold value.
  • the busbar monitoring module is configured to: connect a first sampling resistor between the positive busbar and the preset grounding wire, and determine a first pair of the positive busbar and the negative busbar when the negative busbar is disconnected from the grounding wire a ground voltage value; the positive bus bar is disconnected from the ground wire, and when a second sampling resistor is connected between the negative bus bar and the ground wire, determining a second pair of ground voltage values of the positive bus bar and the negative bus bar; Determine the above positive bus insulation resistance value and negative bus insulation resistance value:
  • ⁇ - is the negative busbar insulation resistance value; is the first sampling resistance; is the second sampling resistance; is the first pair of ground voltage values of the positive bus; ⁇ is the first pair of grounds of the negative bus
  • the voltage value is the second pair of ground voltage values of the positive bus; the second pair of ground voltage values of the negative bus.
  • the comparison coefficient, the first sampling resistance value, and the range of ⁇ is: 90% ⁇ ⁇ ⁇ 99.9%.
  • the to-be-detected pole of the branch connected to the failed busbar is determined, and the to-be-detected pole of the branch is detected to determine the faulty branch, thereby avoiding each fault in the busbar.
  • Embodiments of the present invention provide a DC system insulation monitoring method, the method comprising: obtaining a leakage current of each branch connected to a faulty positive bus or a negative bus when determining a ground fault of a positive bus or a negative bus
  • the branch corresponding to the largest current value of the current value is determined as a fault branch; wherein the leakage current of the branch is the vector sum of the drain current of the branch anode and the drain current of the branch anode to the ground, A positive integer.
  • determining a ground fault of the positive bus bar or the negative bus bar comprises: determining a positive bus bar insulation resistance value and a negative bus bar insulation resistance value; wherein the positive bus bar insulation resistance value is not greater than the first comparison value, and the negative bus bar insulation resistance value is greater than the above
  • the first comparison value it is determined that the positive bus has a ground fault
  • the negative busbar insulation resistance value is not greater than the first comparison value
  • determining a positive busbar insulation resistance value and a negative busbar insulation resistance value comprising: determining a first sampling resistor in parallel between the positive bus bar and the preset ground wire, and determining that the negative bus bar is disconnected from the ground wire, a first pair of ground voltage values of the positive bus bar and the negative bus bar; a second sampling resistor is connected in parallel between the negative bus bar and the ground wire, and when the positive bus bar is disconnected from the ground wire, the positive bus bar and the negative bus bar are determined Two pairs of ground voltage values; determining the above-mentioned positive busbar insulation resistance value and negative busbar insulation resistance value according to the following formula; u + u_ -u + u
  • ⁇ - is the negative busbar insulation resistance value; is the first sampling resistance; is the second sampling resistance; is the first pair of ground voltage values of the positive bus; ⁇ is the first pair of grounds of the negative bus
  • the voltage value is the second pair of ground voltage values of the positive bus; the second pair of ground voltage values of the negative bus.
  • determining that the busbar ground fault occurs comprises: connecting a first sampling resistor between the positive bus bar and the preset ground wire, and determining a positive bus bar and a negative bus bar when the negative bus bar is disconnected from the ground wire a pair of ground voltage values; when the first pair of ground voltage values of the positive bus bar and the negative bus bar satisfy the following formula, determining that the positive bus bar has a ground fault; Where ⁇ + is the first pair of ground voltage values of the positive bus; ⁇ is the first pair of ground voltage values of the negative bus; P is the ratio
  • the comparison coefficient, the first sampling resistance value, and the range of ⁇ is: 90% ⁇ ⁇ ⁇ 99.9%.
  • the positive bus-to-ground voltage value is determined according to the following steps: During the set time period, the positive bus-to-ground voltage value is sampled at least twice; the obtained sampled voltage value is filtered, and the filtered voltage is filtered.
  • the value is taken as the positive bus-to-ground voltage value; wherein, the positive bus-to-ground voltage value includes the first bus voltage value of the positive bus and the second ground voltage value of the positive bus; the negative bus-to-ground voltage value is determined according to the following steps: During the timing, the voltage value of the negative bus to ground is sampled at least twice; the obtained sampled voltage value is filtered, and the filtered voltage value is taken as the negative bus-to-ground voltage value; wherein, the negative bus is grounded The voltage value includes a first bus voltage value of the negative bus and a second ground voltage value of the negative bus.
  • An embodiment of the present invention provides a DC system insulation monitoring device, the device comprising: a monitoring module, configured to acquire each branch connected to a faulty positive bus or a negative bus when determining a ground fault of a positive bus or a negative bus The current value of the leakage current; wherein, the leakage current of the branch is the vector sum of the leakage current of the branch positive pole to the ground and the leakage current of the branch negative pole to the ground; the fault branch determining module is set to determine the largest one of the current values The branch corresponding to the current value is a fault branch; where ⁇ is a positive integer.
  • the device further includes a first busbar detecting module, configured to: determine a positive busbar insulation resistance value and a negative busbar insulation resistance value; wherein the positive busbar insulation resistance value is not greater than the first comparison value, and the negative busbar insulation resistance value is greater than When the first comparison value is determined, determining that the positive bus has a ground fault; and when the positive bus insulation resistance value is greater than the first comparison value, and the negative bus insulation resistance value is not greater than the first comparison value, determining that the negative bus is grounded malfunction.
  • the first busbar detecting module is configured to: when the first sampling resistor is connected in parallel between the positive bus bar and the preset ground wire, and the negative bus bar is disconnected from the ground wire, the positive bus bar and the negative bus bar are determined.
  • a second sampling resistor is connected in parallel between the negative bus bar and the ground wire, and when the positive bus bar is disconnected from the ground wire, determining a second pair of ground voltage values of the positive bus bar and the negative bus bar;
  • ⁇ - is the negative busbar insulation resistance value; is the first sampling resistance; is the second sampling resistance; is the first pair of ground voltage values of the positive bus; ⁇ is the first pair of grounds of the negative bus
  • the voltage value is the second pair of ground voltage values of the positive bus; the second pair of ground voltage values of the negative bus.
  • the comparison coefficient, the first sampling resistance value, and the range of ⁇ is: 90% ⁇ ⁇ ⁇ 99.9%; Determining a second sampling resistor between the negative bus bar and the ground wire, and determining a second pair of ground voltage values of the positive bus bar and the negative bus bar when the positive bus bar and the ground wire are disconnected; the positive bus bar and the negative bus bar When the second pair of ground voltage values satisfy the following formula, it is determined that the above-mentioned negative bus line has a ground fault; Where + is the second pair of ground voltage values of the positive bus; - is the second pair of ground voltage values of the negative bus; ⁇ is
  • FIG. 1 is a flow chart of a first DC system insulation monitoring method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a bus bar and a branch in a DC system insulation monitoring according to an embodiment of the present invention
  • FIG. 4 is a first timing diagram for determining the control of the branch insulation resistance according to an embodiment of the present invention
  • FIG. 4 is a second embodiment of determining the control of the branch insulation resistance according to an embodiment of the present invention
  • FIG. 4C is a schematic diagram of a third control sequence for determining the insulation resistance of the branch according to the embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of the first DC system insulation monitoring device according to an embodiment of the present invention
  • FIG. 6 is a flow chart of a second DC system insulation monitoring method according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a third DC system insulation monitoring device according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a fourth DC system insulation monitoring device according to an embodiment of the present invention
  • FIG. 7C is a schematic structural diagram of a fifth DC system insulation monitoring device according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram showing a hardware circuit structure of a DC system insulation monitoring device according to an embodiment of the present invention
  • FIG. 9A is a bus insulation monitoring according to an embodiment of the present invention
  • FIG. 9B is a flow chart of a second part of a method for monitoring busbar insulation according to an embodiment of the present invention
  • FIG. 10A is a flow chart of a first part of a method for calculating busbar insulation resistance according to an embodiment of the present invention
  • FIG. 11A is a flowchart of a first part of a method for monitoring branch insulation monitoring according to an embodiment of the present invention
  • FIG. 11B is a flowchart of branch insulation monitoring according to an embodiment of the present invention
  • Figure 2C is a flow chart of a third part of the method for monitoring the branch insulation of the embodiment of the present invention
  • Figure 11D is a flow chart of the fourth part of the method for monitoring the branch insulation of the embodiment of the present invention
  • 12A is a first part of a flowchart of a method for calculating a branch insulation resistance according to an embodiment of the present invention
  • 12B is a diagram of an embodiment of the present invention.
  • a second portion of a flowchart of a method of insulation resistance branch is a diagram of an embodiment of the present invention.
  • the to-be-detected pole of the branch connected by the busbar, and detecting the to-be-detected pole of the branch to determine the faulty branch avoiding the need to inspect the positive and negative poles of each branch every time the busbar fails Therefore, the time for detecting the faulty branch is greatly shortened, and the faulty branch can be detected more timely; in the embodiment of the invention, when the fault occurs in the positive busbar or the negative busbar, the current value according to the leakage current of each branch The faulty branch is determined, and the faulty branch is determined according to the positive insulation resistance value and the negative insulation resistance value of each branch, thereby greatly shortening the time for detecting the faulty branch, and thus the faulty branch can be detected more timely.
  • the embodiment of the invention provides a DC system insulation monitoring method. As shown in FIG. 1 , the method includes the following steps: 5101. When determining that the busbar is faulty, determine a to-be-detected pole of the branch connected to the busbar according to the faulty busbar insulation resistance value;
  • the bus bar in the embodiment of the present invention includes a positive bus bar and a negative bus bar; the branch circuit connected to the positive bus bar is a branch positive pole, and the branch road connected to the negative bus bar is a branch positive pole; when only the positive bus bar fails, then Determining the positive branch of the branch connected to the faulty positive busbar to be detected; when only the negative busbar fails, the determined branch of the branch connected to the faulty negative busbar is to be detected; When both the positive busbar and the negative busbar fail, the branch of the branch connected to the faulty negative busbar is determined to be the positive pole of the branch and the negative pole of the branch.
  • the busbar of the DC system In the normal operation of the DC system, only the busbar of the DC system is monitored in real time, including the monitoring of the positive busbar and the negative busbar; when the fault occurs in the positive busbar and/or the negative busbar (including ground fault and insulation drop fault), it is determined.
  • the to-be-detected pole of the branch connected to the faulty busbar is activated to detect the to-be-detected pole of the branch to determine the faulty branch, wherein the fault of the branch also includes a ground fault and an insulation drop fault. It should be noted that, in the normal operation of the DC system, the insulation resistance of the busbar is very large and close to infinity.
  • the insulation resistance of the busbar suddenly becomes smaller and lowers to a smaller value, it means that one of the busbars is connected or Some branches have failed.
  • the fault includes the ground fault and the insulation drop fault. It is necessary to detect the faulty branch in time to eliminate the fault as early as possible to ensure the normal operation of the DC system. Therefore, under normal operation of the DC system. Only need to start monitoring the busbar. When the busbar fails, the detection of the branch is started to determine the faulty branch, so as to eliminate the fault in time. The busbar of the DC system is monitored, and when the busbar is determined to be faulty, the branch circuit detection is started.
  • the process of determining the busbar fault includes the following steps: determining the positive busbar insulation resistance value and the negative busbar insulation resistance value; if the positive busbar insulation resistance The value and/or the negative busbar insulation resistance value is not greater than the first threshold value, and the grounding fault of the busbar is determined; If the positive busbar insulation resistance value and/or the negative busbar insulation resistance value between the first threshold value and the second threshold value are determined, the busbar insulation insulation fault is determined; wherein, the first threshold value and the second threshold value are The empirical value may be set as needed, and the first threshold is less than the second threshold, and the second threshold is not greater than the first threshold.
  • the following two methods can be used to determine the positive bus insulation resistance value and the negative bus insulation resistance value.
  • the first method is to determine the positive bus insulation resistance value and the negative bus insulation resistance value according to the calculation formula of the ground voltage and the insulation resistance value of the positive bus bar and the negative bus bar. The following is a detailed description of determining the positive bus bar insulation resistance value and negative in combination with FIG. 2 .
  • Bus insulation resistance value process When the first sampling resistor is connected between the positive bus and the preset ground (ie, switch K1 is closed), and the negative bus is disconnected from the ground (ie, switch K2 is open), the positive is determined. The first pair of ground voltage values of the bus bar ⁇ + and the first pair of ground voltage values of the negative bus bar ⁇ ; the positive bus bar is disconnected from the ground wire (ie, the switch K1 is disconnected), and the second bus bar is connected to the ground wire.
  • the sampling resistor R 2 ie, the switch K2 is closed
  • the second pair of ground voltage values W of the positive bus and the second pair of ground voltage values of the negative bus are determined according to the following formula: the positive bus insulation resistance value and the negative bus insulation resistance value are determined according to the following formula:
  • R , R, formula 1 ;
  • Kl, ⁇ 2 2 with the main switch, and is connected to the first sampling resistor K1, K2 and the first sampling resistor R 2 is connected; K3, ⁇ 4 standby switch, and with ⁇ 3
  • the first sampling resistor R 3 is connected, K4 is connected with the first sampling resistor; wherein, the resistance of the sampling resistor is an empirical value, and the resistance value can be selected according to requirements, and the resistor with the same resistance value can be selected as the sampling resistor, and different resistances can also be selected.
  • the value of the resistor acts as a sampling resistor. Under normal circumstances, the main switch is activated for detection. When the main switch is faulty, the standby switch is activated for detection.
  • Rl, R2, R3, and R4 are sampling resistors for detecting the insulation resistance value of the busbar.
  • the resistance of the sampling resistor cannot be selected too large. If it is too large, the calibration value (ie, the second threshold value) cannot be accurately measured. The resistance can not be too small. If it is too small, it will not be able to accurately measure the resistance above the setting value. After several tests, the resistance of the sampling resistor is 75 ⁇ .
  • the sampling resistor can be a 75 ⁇ resistor or two 150K. The resistors are obtained in parallel.
  • R + and R are the total equivalent insulation resistance of the positive bus to the ground and the negative bus to the ground respectively;
  • Kl and ⁇ 2 are the switching main switches, ⁇ 3 and ⁇ 4 are the switching standby switches, and we use optocouplers to realize the control of the switching switches;
  • L2, Ln are smart leakage current sensors installed on the branch 1, branch 2, ... branch n circuit, respectively, for detecting the flow through the branch 1, the branch 2 ... The leakage current of the road n.
  • control K1 is closed, K2 is open (or K3 is closed, K4 is open), and during the time T1 T2, the switch K1 is closed and K2 is off, so that the positive and negative buses are The ground voltage is stable.
  • the first pair of ground voltage values + and ⁇ / are determined.
  • control K1 is turned off, K2 is closed (or K3 is closed, K4 is turned off), and within T3 T4 time. Keep the switch K1 open and K2 closed, so that the positive bus and the negative bus are stable to the ground voltage.
  • T4 T5 time determine the second ground voltage of the bus.
  • the positive bus-to-ground voltage value is determined according to the following steps: During the set time period, the positive bus-to-ground voltage value is sampled at least twice; the obtained sampled voltage value is filtered, and the filtered processed The voltage value is taken as the positive bus-to-ground voltage value; Wherein, the positive bus-to-ground voltage value includes the first bus voltage value of the positive bus and the second ground voltage value of the positive bus; the first ground voltage value of the positive bus is determined in T2 T3, and the positive bus second is determined in T4 T5.
  • Ground voltage value Determine the negative bus to ground voltage value according to the following steps: In the set time length T2 T3, the negative bus line to ground voltage value is sampled at least twice; the obtained sampled voltage value is filtered, and the filter is filtered. The processed voltage value is used as a negative bus-to-ground voltage value; wherein, the negative bus-to-ground voltage value includes a negative bus first ground voltage value and a negative bus second ground voltage value; determining a first pair of negative bus bars in T2 T3 Ground voltage value, determine the second pair of ground voltage values of the negative bus in T4 T5.
  • the positive bus and the negative bus can be sampled by the median filtering method.
  • the positive and negative bus-to-ground voltages are continuously sampled 6 times.
  • the sampling voltage is removed once, and the vertical values of the remaining 5 sampling voltages are arranged by size, and the intermediate value is taken as the current voltage value.
  • R+ is compared with the first threshold value and the second threshold value, wherein the comparison with the first threshold value takes precedence over the first threshold value.
  • the comparison of the two thresholds; the comparison results are as follows: (1) When R+ is not greater than the first threshold, and R—is not greater than the first threshold, it is determined that the positive bus and the negative bus have ground faults. Since the first threshold is less than the first threshold, the dual-end detection mode of the branch is started, that is, the positive pole of the branch and the negative pole of the branch are detected;
  • R+ is greater than the first threshold, and R—is not greater than the first threshold, it is determined that the negative bus has a ground fault; Determining whether R+ is between the first threshold and the second threshold. If R+ is between the first threshold and the second threshold, determining that the positive bus has an insulation drop fault; therefore, starting the branch double end Detection mode, that is, detecting the positive pole of the branch and the negative pole of the branch; if R+ is greater than the second threshold, determining the relationship between R+ and the first threshold; if R+ is not greater than the first threshold, starting the dual-ended detection mode of the branch, That is, detecting the positive pole of the branch and the negative pole of the branch; if R+ is greater than the first threshold, the detection mode of the negative end of the branch is started, that is, only the negative pole of the branch is detected;
  • the second method for determining the positive bus insulation resistance value and the negative bus insulation resistance value includes the following steps: when the first sampling resistor is connected between the positive bus and the ground, and the positive bus is disconnected from the ground, the positive bus is determined.
  • the first sampling resistor value is connected in parallel with the second sampling resistor between the negative bus and the ground, and when the positive bus is disconnected from the ground, the second ground voltage value of the positive bus and the second ground voltage value of the negative bus are determined. — ;
  • the voltage of the second pair of ground of the positive busbar and the negative busbar satisfies the following formula, it is determined that the negative busbar is grounded, and the negative busbar insulation resistance value is the preset resistance value;
  • the first sampling resistance value needs to be explained that the second method for determining the positive busbar insulation resistance value and the negative busbar insulation resistance value is only applicable to the case where the positive busbar or the negative busbar is grounded, that is, the case where the busbar is grounded at one end; If the busbar has a double-ended ground fault (that is, a ground fault occurs in both the positive busbar and the negative busbar) or an insulation drop fault, the first method is used to determine the positive busbar insulation resistance value and the negative busbar insulation resistance value. When a positive bus (or negative bus) ground fault occurs, the determined positive bus-to-ground voltage value (or negative bus-to-ground voltage value) is small, based on the positive bus-to-ground voltage value (or negative bus-to-ground voltage value).
  • the positive busbar insulation resistance (or negative busbar insulation resistance) is likely to be obtained due to the small positive busbar ground voltage value (or negative busbar to ground voltage value). A large error occurs.
  • the positive busbar (or negative busbar insulation resistance) is determined according to the positive busbar insulation resistance (or negative busbar insulation resistance)
  • an error detection or a false alarm may occur. Therefore, according to the above formula 3 (or Equation 4) Determine whether a ground fault has occurred by the magnitude of the positive and negative bus voltages to ground, thus avoiding the calculation of the positive busbar insulation resistance (or negative busbar insulation resistance).
  • the branch road The positive pole is connected to the positive busbar, and the negative pole is connected to the negative busbar in the branch; the pole to be detected of the branch connected to the faulty busbar is determined, including: If the positive busbar insulation resistance value is not greater than the first threshold, and the negative busbar insulation resistance value is greater than the first threshold value, that is, only the positive busbar fails (including the ground fault and the insulation drop fault), it is determined that the positive pole of the branch connected to the positive busbar is If the positive busbar insulation resistance value is greater than the first threshold, and the negative busbar insulation resistance value is not greater than the first threshold value, that is, only the negative busbar ground fault occurs, and the negative pole of the branch connected to the negative busbar is determined to be the detection pole;
  • the positive busbar insulation resistance value is not greater than the first threshold, and the negative busbar insulation resistance value is not greater than the first threshold value, that is, only the negative busbar ground fault occurs, and the negative pole of the branch connected to the negative busbar is determined to be the detection pole;
  • the detection of the branch is started, and the following three situations are met: The first case: If the branch is to be detected, the positive branch is positive, that is, only the positive bus occurs. In case of failure, it is only necessary to start the detection of the positive pole of the branch; at this time, the following formula is used to determine the insulation resistance value of the branch positive:
  • N is a positive integer
  • I is the current value of the leakage current flowing through the Nth branch
  • the control K1 is disconnected, K2 is closed (or K3 is open, K4 is closed); during the T1 T2 time, the above-mentioned switching state is maintained, and the voltage of the positive and negative busbars is stabilized to the ground; in the T2 T3 time, it is determined The first bus voltage value of the positive busbar negative busbar; in the T3 T4 time, the round trip acquires N branch leakage currents; at T5, the positive insulation resistance values of all the branches are determined; wherein N is connected to the faulty busbar The number of branches, and N is a positive integer.
  • N is a positive integer
  • the control timing for determining the negative insulation resistance value of the branch in the first case of FIG. 4B will be described.
  • control K1 is closed, K2 is open (or K3 is closed, K4 is open); during T1 T2, the above-mentioned switching state is maintained, and the voltages of the positive and negative busbars are stabilized to ground; within T2 T3, it is determined.
  • the positive insulation resistance value of the Nth branch is the negative insulation resistance value of the Nth branch, wherein N is a positive integer;
  • U + , U_ Rln is a second sampling resistance connected in parallel between the corresponding negative bus and ground And when the positive bus is disconnected from the ground, the current positive bus second ground voltage value, the current negative bus second ground voltage value, and the leakage current flowing through the Nth branch are obtained;
  • U + , ⁇ /_ and A are the first sampling resistor connected in parallel between the positive bus and the ground, and the first positive ground voltage value of the current positive bus and the first pair of the current negative bus are obtained when the negative bus is disconnected from the ground.
  • the ground voltage value and the current value of the leakage current flowing through the Nth branch are the negative insulation resistance value of the Nth branch, wherein N is a positive integer;
  • U + , U_ Rln is a second sampling resistance connected in parallel between the corresponding negative bus and ground And when the positive bus is disconnected from the ground, the current positive bus second ground voltage value,
  • control K1 is closed, K2 is open (or K3 is closed, K4 is open); in the T1 T2 segment, keep the switch K1 closed, K2 open (or K3 closed, K4 open), so that the positive and negative busbars Stable to ground voltage;
  • T2 T3 determine the first pair of ground voltage values of the positive bus and the first ground voltage value of the negative bus, and obtain N branch leakage currents during the T3 T4 time;
  • control K1 is disconnected and K2 is closed (or K3 is disconnected, K4 is closed), in the T4 T5 segment, keep the switch K1 open, K2 closed (or K3 open, K4 closed), make the positive and negative busbars to ground voltage stable; within T5 T6 time, determine positive The second pair of ground voltage values of the bus bar and the second ground voltage value of the negative bus bar; N branch leakage currents are obtained by
  • Tl 100ms
  • T2 4.5s
  • T3 5.0s
  • T4 7.3s
  • T5 11.8s
  • T6 12.3s
  • T7 14.6s
  • T8 14.7s.
  • a composite filtering method can be used to continuously acquire the bus voltage of the busbar to ground after 5 times of neutralization in a steady state, and remove the The maximum voltage value and the minimum voltage value among the five bus-to-ground voltage values, and the remaining three bus-to-ground voltage values are averaged as the current bus-to-ground voltage value.
  • the second threshold value in the embodiment of the present invention is set in the range of 15 to 30 ⁇ , and is generally selected to be 28 ⁇ ⁇ ; the first threshold value generally selects 2% of the resistance of the sampling resistor, generally The sampling resistor is selected to be 75 ⁇ , so the first threshold is generally 1.5 ⁇ ; the first threshold is generally 150 ⁇ , (usually 75 ⁇ and 150 ⁇ are connected in parallel).
  • the comparison between the positive insulation resistance value of the branch and/or the negative insulation resistance value of the branch is compared with the preset first threshold and the second threshold.
  • the details are as follows: If the branch is to be detected as a branch positive pole, then the branch positive insulation resistance value is not greater than the set When a threshold value is determined, determining that the corresponding branch is a ground fault; and when the positive insulation resistance value of the branch is greater than the first threshold and not greater than the set second threshold, determining that the corresponding branch is an insulation drop fault;
  • the branch circuit is to be detected as a branch anode, when the branch anode insulation resistance value is not greater than the first threshold, it is determined that the corresponding branch is a ground fault; and when the branch anode insulation resistance value is greater than the first
  • the threshold is not greater than the second threshold, it is determined that the corresponding branch is an insulation drop fault
  • the branch is to be detected as a branch positive pole and a branch anode, then the branch positive insulation resistance value and/or branch When the negative insulation resistance value of the road is not greater than the first threshold
  • a DC system insulation monitoring device is also provided in the embodiment of the present invention. Since the principle of solving the problem of the device is similar to the DC system insulation monitoring method, the implementation of the device can refer to the implementation of the method, and the method is repeated. I won't go into details here.
  • the embodiment of the present invention provides a DC system insulation monitoring device. As shown in FIG. 5A, the device includes: a branch to be detected pole determining module 50, configured to determine that a busbar is faulty, and is determined according to the busbar insulation resistance value. a to-be-detected pole of the branch connected to the busbar; and a detecting module 51 configured to detect the to-be-detected pole of the branch to determine a faulty branch.
  • the branch to-be-detected pole determining module 50 is specifically configured to: if the positive busbar insulation resistance value is not greater than the first threshold, and the negative busbar insulation resistance value is greater than the first threshold, determining the positive pole of the branch connected to the positive busbar is to be Detecting pole; if the positive busbar insulation resistance value is greater than the first threshold, and the negative busbar insulation resistance value is not greater than the first threshold, it is determined that the negative pole of the branch connected to the negative busbar is the pole to be detected; if the positive busbar insulation resistance value and the negative busbar insulation The resistance value is not greater than the first threshold, and it is determined that the positive pole of the branch connected to the positive bus and the negative pole of the branch connected to the negative bus are the to-be-detected poles.
  • the branch to-be-detected pole determining module 50 is further configured to: if the branch is to be detected as a branch positive pole, when the branch positive insulation resistance value is not greater than the set first threshold, determine the corresponding branch The circuit is a ground fault; and when the positive insulation resistance value of the branch is greater than the first threshold and not greater than the set second threshold, determining that the corresponding branch is an insulation drop fault; if the branch is to be detected If the anode negative resistance value of the branch is not greater than the first threshold value, determining that the corresponding branch is a ground fault; and when the branch negative insulation resistance value is greater than the first threshold and not greater than the first When the threshold is two, it is determined that the corresponding branch is an insulation drop fault; if the branch is to be detected as the branch positive pole and the branch anode, then the branch anode insulation resistance value and/or the branch anode insulation resistance value are not greater than When the first threshold is described, it is determined that the corresponding branch is a ground fault; when the branch positive
  • the detecting module 51 is specifically configured to: if the branch is to be detected as the positive pole of the branch, determine the positive insulation resistance value of the branch by using Equation 5; if the branch is to be detected as the negative pole of the branch, determine the negative insulation of the branch by using Equation 6 Resistance value; If the branch is to be detected as the branch positive pole and the branch anode, use the formula 7 to determine the branch anode insulation resistance value and the branch anode insulation resistance value.
  • Equation 5 if the branch is to be detected as the positive pole of the branch, determine the negative insulation of the branch by using Equation 6 Resistance value
  • Equation 6 Resistance value if the branch is to be detected as the branch positive pole and the branch anode, use the formula 7 to determine the branch anode insulation resistance value and the branch anode insulation resistance value.
  • the device further includes a busbar monitoring module 52 configured to determine a positive busbar insulation resistance value and a negative busbar insulation resistance value; if the positive busbar insulation resistance value and/or the negative busbar insulation resistance value is not greater than The first threshold value determines that the busbar ground fault occurs; if the positive busbar insulation resistance value and/or the negative busbar insulation resistance value are between the first threshold value and the second threshold value, determining that the busbar insulation insulation fault occurs; The first threshold is less than the second threshold, and the second threshold is not greater than the first threshold.
  • the busbar monitoring module 52 is specifically configured to: when the first sampling resistor is connected between the positive busbar and the preset grounding wire, and the first busbar and the grounding wire are disconnected, the first pair of the positive busbar and the negative busbar are determined.
  • Ground voltage value disconnected between the positive bus and the ground, and when the second sampling resistor is connected between the negative bus and the ground, determine the second pair of ground voltage values of the positive bus and the negative bus; determine the positive bus insulation according to formula 1.
  • the resistance value and the negative bus insulation resistance value are determined according to Equation 2.
  • the busbar monitoring module 52 is specifically configured to: when the first sampling resistor is connected between the positive busbar and the preset grounding wire, and the first busbar and the grounding wire are disconnected, the first pair of the positive busbar and the negative busbar are determined.
  • the positive bus bar insulation resistance value is the preset resistance value; the second parallel connection between the negative bus bar and the ground wire When the sampling resistor is disconnected between the positive bus and the ground, the second pair of ground voltage values of the positive bus bar and the negative bus bar are determined; when the second pair ground voltage value of the positive bus bar and the negative bus bar satisfies the formula 4, the negative bus bar ground is determined. , the negative bus insulation resistance value is the preset resistance value.
  • the positive bus-to-ground voltage value is determined according to the following steps: During the set time period, the positive bus-to-ground voltage value is sampled at least twice; the obtained sampled voltage value is filtered, and the filtered processed The voltage value is taken as the positive bus-to-ground voltage value; Wherein, the positive bus-to-ground voltage value includes the first bus voltage value of the positive bus and the second ground voltage value of the positive bus; the negative bus-to-ground voltage value is determined according to the following steps: within the set time period, the negative bus-to-ground voltage The value is sampled at least twice; the obtained sampled voltage value is filtered, and the filtered voltage value is taken as the negative bus-to-ground voltage value; wherein, the negative bus-to-ground voltage value includes the first bus-to-ground voltage value of the negative bus And the second pair of ground voltage values of the negative bus.
  • the embodiment of the present invention when the busbar fails, the to-be-detected pole of the branch connected to the failed busbar is determined, and the to-be-detected pole of the branch is detected to determine the faulty branch, thereby avoiding each fault in the busbar. At the same time, it is necessary to inspect the positive and negative poles of each branch, thereby greatly shortening the time for detecting the faulty branch, and thus detecting the faulty branch in a timely manner.
  • the embodiment of the invention further provides a DC system insulation monitoring method when a positive bus or a negative bus has a ground fault, as shown in FIG. 6, the method includes the following steps:
  • the fault branch is determined by comparing the current value of the leakage current of the branch connected to the failed bus, thereby shortening the detection time and ensuring the detection accuracy.
  • the embodiments of the present invention provide two methods for determining a ground fault of a positive bus or a negative bus. It should be noted that the two methods are merely illustrative and not limiting, and the positive bus is well known to those skilled in the art. Or a method in which a negative bus has a ground fault is included in the embodiment of the present invention.
  • the leakage current of the positive pole of the branch and the leakage current of the negative pole of the branch are both small, and the current value of the ground leakage current of the branch positive and the earth leakage current of the negative pole of the branch are equal, and the direction is opposite.
  • the leakage current is the vector sum of the leakage current of the positive pole of the branch and the leakage current of the negative pole of the branch to the ground, the leakage current is 0;
  • the positive pole of the circuit fails, the current value of the leakage current of the positive pole of the branch increases due to the decrease of the insulation resistance of the positive pole of the branch, so that the current value of the leakage current is positive;
  • the negative pole of the branch fails, the negative pole of the branch
  • the insulation resistance value is lowered, the current value of the branch negative electrode to the ground leakage current is increased, so that the current value of the leakage current is a negative value.
  • the first method for determining a ground fault of a positive bus bar or a negative bus bar includes: determining a positive bus bar insulation resistance value and a negative bus bar insulation resistance value; wherein the positive bus bar insulation resistance value is not greater than the first threshold value, and the negative bus bar insulation resistance value When the first threshold is greater than the first threshold, it is determined that the positive bus has a ground fault. When the positive bus insulation resistance value is greater than the first threshold and the negative bus insulation resistance value is not greater than the first threshold, it is determined that the negative bus has a ground fault.
  • the positive busbar insulation resistance value and the negative busbar insulation resistance value are determined, including: determining a positive busbar and a negative busbar when the first sampling resistor is connected in parallel between the positive busbar and the ground, and the negative busbar is disconnected from the ground. a pair of ground voltage values; a second sampling resistor is connected in parallel between the negative bus and the ground, and the second bus voltage value of the positive bus bar and the negative bus bar is determined when the positive bus bar is disconnected from the ground; determining the positive bus bar insulation according to the formula 1
  • the resistance value and the negative bus insulation resistance value are determined according to Equation 2.
  • the second method for determining a ground fault of a positive bus or a negative bus includes: connecting a first sampling resistor between the positive bus and the ground, and determining a first pair of the positive bus and the negative bus when the negative bus is disconnected from the ground Ground voltage value; when the first pair of ground voltage values of the positive bus and the negative bus meet the formula 3, it is determined that the positive bus has a ground fault; a second sampling resistor is connected between the negative bus and the ground, and the positive bus is disconnected from the ground.
  • determining the second pair of ground voltage values of the positive bus bar and the negative bus bar when the second pair ground voltage value of the positive bus bar and the negative bus bar satisfies the formula 4, it is determined that the negative bus bar has a ground fault.
  • step S601 it is determined that the branch corresponding to the largest N current values among the current values is a fault branch, and the specific processing method can sort the absolute values of the current values of the leakage currents of each branch in descending order, and determine the order.
  • the branch corresponding to the first N leakage currents in the current value of the leakage current is the fault branch; the current value of the leakage current of each branch is also The absolute values are sorted in ascending order, and the branch corresponding to the N leakage currents in the current value of the sorted leakage current is determined as a fault branch; wherein N is a positive integer and N is an empirical value, which can be Need to set.
  • the positive bus-to-ground voltage value is determined according to the following steps: During the set time period, the positive bus-to-ground voltage value is sampled at least twice; the obtained sampled voltage value is filtered, and the filtered processed The voltage value is taken as the positive bus-to-ground voltage value; wherein, the positive bus-to-ground voltage value includes the first bus voltage value of the positive bus and the second ground voltage value of the positive bus; the negative bus-to-ground voltage value is determined according to the following steps: During the timing, the voltage value of the negative bus to ground is sampled at least twice; the obtained sampled voltage value is filtered, and the filtered voltage value is taken as the negative bus-to-ground voltage value; wherein, the negative bus-to-ground voltage The value includes the first pair of ground voltage values of the negative bus and the second pair of ground voltage values of the negative bus.
  • the positive bus and the negative bus can be sampled by the median filtering method.
  • the positive and negative bus voltages are continuously sampled 6 times.
  • the first sampling voltage is removed, and the vertical values of the remaining five sampling voltages are arranged in size, and the intermediate value is taken as the current voltage value.
  • a DC system insulation monitoring device is also provided in the embodiment of the present invention. Since the principle of solving the problem of the device is similar to the DC system insulation monitoring method, the implementation of the device can refer to the implementation of the method, and the method is repeated. I won't go into details here.
  • An embodiment of the present invention provides a DC system insulation monitoring device. As shown in FIG.
  • the device includes: a monitoring module 70 configured to acquire a positive bus with a fault when determining a ground fault of a positive bus or a negative bus The current value of the leakage current of each branch connected by the negative bus; wherein, the leakage current of the branch is a vector sum of the leakage current of the positive pole of the branch and the leakage current of the negative pole of the branch; the fault branch determining module 71 is set to Determining that the branch corresponding to the largest N current values among the current values is a fault branch; wherein N is a positive integer.
  • a monitoring module 70 configured to acquire a positive bus with a fault when determining a ground fault of a positive bus or a negative bus The current value of the leakage current of each branch connected by the negative bus; wherein, the leakage current of the branch is a vector sum of the leakage current of the positive pole of the branch and the leakage current of the negative pole of the branch; the fault branch determining module 71 is set to Determining that the branch corresponding to the largest N current
  • the device further includes a first bus bar detecting module 72 configured to determine a positive busbar insulation resistance value and a negative busbar insulation resistance value; the positive busbar insulation resistance value is not greater than the first comparison value, and When the negative busbar insulation resistance value is greater than the first comparison value, it is determined that the positive busbar ground fault occurs; when the positive busbar insulation resistance value is greater than the first comparison value, and the negative busbar insulation resistance value is not greater than the first comparison value, it is determined that the negative busbar is grounded malfunction.
  • the first bus detection module 72 is specifically configured to: when the first sampling resistor is connected in parallel between the positive bus and the preset ground, and the negative bus and the ground are disconnected, the first bus and the negative bus are determined.
  • the device further includes a second bus detection module 73, configured to: connect the first sampling resistor between the positive bus and the preset ground, and disconnect the negative bus from the ground.
  • the positive bus-to-ground voltage value is determined according to the following steps: During the set time period, the positive bus-to-ground voltage value is sampled at least twice; the obtained sampled voltage value is filtered, and the filtered processed The voltage value is taken as the positive bus-to-ground voltage value; wherein, the positive bus-to-ground voltage value includes the first bus voltage value of the positive bus and the second ground voltage value of the positive bus; the negative bus-to-ground voltage value is determined according to the following steps: During the timing, the voltage value of the negative bus to ground is sampled at least twice; the obtained sampled voltage value is filtered, and the filtered voltage value is taken as the negative bus-to-ground voltage value; wherein, the negative bus-to-ground voltage The value includes the first pair of ground voltage values of the negative bus and the second pair of ground voltage values of the negative bus.
  • the faulty branch when the fault occurs in the positive busbar or the negative busbar, the faulty branch is determined according to the current value of the leakage current of each branch, and the fault is determined according to the positive insulation resistance value and the negative insulation resistance value of each branch.
  • the branch road greatly shortens the time for detecting the faulty branch, and thus the faulty branch can be detected more timely.
  • the hardware circuit connection of the DC system insulation monitoring device according to the embodiment of the present invention is described in detail below with reference to FIG. 8.
  • the hardware circuit connection shown in FIG. 8 is merely illustrative and not restrictive, and each module of the embodiment of the present invention can be implemented. Functional hardware circuits are all included in the embodiments of the present invention.
  • the DC system insulation monitoring device can use an insulation monitoring board to control the various functional modules and process the data.
  • the insulation monitoring board includes an MCU (Micro Controller Unit). Serial port UART0 and UART1, ADC (Analog to Digital, analog to digital converter), SRAM (Static Radom Access Memory, static random access memory);
  • the serial port UART1 is connected with the front communication interface, and is set to reduce the real-time value of the detected bus-to-ground voltage, insulation resistance, and the insulation resistance.
  • Real-time alarms such as faults and ground faults are sent to the centralized monitoring unit for display, sound and light alarms, etc.; LCD (Liquid Crystal Display) can be used for display; ADC and optocoupler are connected to analog, digital detection and control interfaces.
  • the DC system insulation monitoring device is connected to the N branches respectively.
  • N leakage current sensors measure the current value of the leakage current flowing through each branch, and each leakage current sensor is respectively connected with the branch leakage current detection interface for transmitting the detected leakage current of each branch to the insulation monitoring board.
  • the ground voltage detection channel that is, the main channel composed of the main switch and the sampling resistor, and the alternate channel composed of the standby switch and the sampling resistor, generally adopt the main channel by default, when the main channel voltage is invalid and the standby channel input voltage is valid.
  • the insulation monitoring board automatically switches to the alternate channel through the optocoupler control switching switch. If the DC system includes multiple sets of busbars, multiple sets of busbars can be monitored by multiple insulation monitoring boards, and then each insulation monitoring board is connected to the centralized monitoring unit through RS485, and the monitoring results of the various insulation monitoring boards are transmitted to the centralized The monitoring unit performs integrated management.
  • the detection of the busbar insulation in the embodiment of the present invention includes the following steps:
  • the bus measurement reference clock is incremented by 1;
  • 5920 determining whether the number of temporary storage voltages is greater than or equal to 4; if yes, executing S921; if not, returning; S92K performing composite filtering processing, calculating bus voltage to ground, and returning; 5922, determining whether the bus reference clock is less than T4; if yes, executing S923; if not, executing S926;
  • the measurement branch insulation resistance mark is set to allow
  • the recovery branch is the default resistance
  • the method for calculating the busbar insulation resistance in the embodiment of the present invention includes the following steps:
  • U-D, V2 (
  • bus-to-ground voltage Vb Vl; 51004, determining whether the second measured bus-to-ground voltage V2 is over-range; if yes, executing S1006; if not, executing S 1007;
  • the positive bus insulation resistance takes a preset detection minimum value Rmin;
  • the positive bus insulation resistance takes a preset detection maximum value Rmax; 51019. Calculate the ratio of the bus-to-ground voltage measured twice;
  • S102K calculates the intermediate value f/ +' xf/_, U + ' U two, U + U: MJ + U_ .
  • 51023 determining whether the numerator is less than or equal to 0; if yes, executing S1024; if not, executing S1025;
  • the busbar and branch insulation resistance take the default value, and execute S1042; S1025, determine whether the second measured negative bus-to-ground voltage is 0; if yes, execute S1027; if not, execute S1029;
  • the positive busbar insulation resistance is taken to detect the maximum value Rmax;
  • S103 K determines whether the positive bus insulation resistance is over-range; if yes, execute S1032; if not, execute S1028;
  • the positive busbar insulation resistance takes the detection maximum value Rmax; S1033, the positive busbar insulation resistance takes the detection minimum value Rmin;
  • the resistor has a large jump count
  • S105 K assigns the backup value to the real-time value and returns to S1043;
  • the resistance jump counter is cleared, and returns to S1043;
  • the resistance trip counter is cleared, and returns to S1043. It should be noted that there is a process of lowering the insulation resistance in actual operation. Generally, the insulation resistance does not have a large jump. In order to suppress the external insulation, the measured insulation resistance drops sharply. Compare this with the last measured busbar insulation. The difference between the resistance values, if it drops 100K occasionally, the last value is taken. If it is decreased by 100K for 3 consecutive times, the current value is taken.
  • the flow of the method for detecting the branch insulation condition in the embodiment of the present invention will be described in detail below with reference to FIGS. 11A to 11D. As shown in FIG. 11A to FIG. 11D, the method for detecting the branch insulation condition in the embodiment of the present invention includes the following steps:
  • S110K obtains the type of branch measurement and the number of branches
  • the sensor address is cleared, the branch measurement type is cleared, the branch reference clock is cleared, and the return is performed;
  • the branch measurement reference clock is incremented by 1;
  • 51105 Determine whether to use the branch positive terminal falling mode to perform measurement; if yes, execute S1106; if not, execute S 1107; S1106, determine whether the branch reference clock is less than T2; if yes, execute S1109; if not, execute S1110;
  • S111 K determines whether the branch reference clock is greater than or equal to T2 and less than T3; if yes, execute S1112; if not, execute S1113;
  • S113 K obtains the negative bus to ground voltage; 51132, determining whether the number of temporary storage voltage is not less than T4; if yes, executing S1133; if not, executing S1134;
  • 51150 determining whether the number of temporary storage voltage is not less than 4; if so, executing S1151; if not, executing S1152; 51151, performing a composite filtering process, calculating the bus-to-ground voltage, and continuing to execute S1152;
  • S 116K determines whether the alternate bus voltage flag is allowed; if yes, execute S1162; if not, execute S1163;
  • S117K obtains the current value of the specified branch leakage current
  • the current value of the positive leakage current of the branch is assigned a negative value
  • S118K determines whether the current value of the positive leakage current is equal to the maximum value; if yes, execute S1182; if not, execute S1183;
  • the positive insulation resistance value of the branch takes the detection minimum value Rmin;
  • the positive insulation resistance value of the branch takes a default value
  • the branch negative insulation resistance value takes the detection maximum value Rmax
  • the current value of the leakage current of the branch anode is assigned a negative value; 51189. Sort the current values of the leakage currents of all the branch anodes;
  • the branch positive insulation resistance value takes the detection maximum value Rmax;
  • the method for calculating the branch insulation resistance in the embodiment of the present invention includes the following steps: S120K determining whether the current value of the branch leakage current is 0; if yes, executing S1202; if not, executing
  • the positive and negative insulation resistance of the branch take the default value, and return;
  • the negative insulation resistance of the branch takes a minimum value, and the positive insulation resistance takes a default value and returns;
  • branch positive insulation resistance positive bus insulation resistance -Rmin
  • the branch negative insulation resistance takes the detection maximum value Rmax, and executes S1218; S1217, the branch negative insulation resistance takes the default value;
  • S122K determines whether the negative insulation resistance of the branch is over-range; if yes, execute S1222; if not, execute S1223; 51222, the branch negative insulation resistance takes the maximum value of the detection resistance Rmax;
  • branch negative insulation resistance negative bus insulation resistance -Rmin
  • the branch positive insulation resistance takes the detection maximum value Rmax; 51240, determining whether the positive insulation resistance of the branch is greater than the positive bus insulation resistance; if yes, executing S1242; if not, executing S1241;
  • branch positive insulation resistance positive bus insulation resistance -Rmin, and execute S1241;
  • the branch negative insulation resistance takes the maximum value Rmax
  • S125K branch negative insulation resistance negative bus insulation resistance -Rmin, and ends. It should be noted that since the leakage current sensor has a range of ⁇ 10 mA, the normal detection range is -10 mA to 10 mA. In some cases, the branch leakage current may exceed the range. When it is found that the leakage current is over-range, the branch is generally The insulation resistance of the road will be small, we directly think of grounding. When detecting the leakage current of the branch >10mA, it is judged that the positive pole of the branch is grounded. When the leakage current is ⁇ -10mA, it is judged that the negative pole of the branch is grounded.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the present invention has been described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (system), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory operable in a particular manner by a computer or other programmable data processing device, such that instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the instruction means implements the functions specified in one or more flows of the flowchart and one or more blocks of the I or block diagram.

Abstract

本发明实施例涉及电力系统领域,特别涉及一种直流系统绝缘监测方法及其设备,用于解决现有技术中存在的直流系统的监测中支路巡检的过程耗时大,从而不能及时检测到故障支路的问题。本发明实施例的直流系统绝缘监测方法包括:在确定母线发生故障时,确定与发生故障的母线连接的支路的待检测极;其中,与支路的待检测极连接的母线的绝缘电阻值不大于第一阈值;对支路的待检测极进行检测。本发明实施例在母线发生故障时,通过确定与发生故障的母线连接的支路的待检测极,并对该支路的待检测极进行检测以确定故障支路,避免了每次在母线故障时,均需对各支路的正极和负极都进行巡检,从而大大缩短了检测故障支路的时间。

Description

一种直流系统绝缘监测方法及其设备 技术领域 本发明涉及电力系统领域, 特别涉及一种直流系统绝缘监测方法及其设备。 背景技术 直流系统是发电厂、 变电站重要的组成部分, 直流系统的安全可靠性影响着发电 厂、 变电站的安全运行, 关系到整个电网的安全生产。 发电厂、 变电站的直流系统比 较复杂, 其与继电保护、 信号装置、 自动装置以及室内、 室外配电装置的端子箱、 操 作机构等连接, 并为电气、 热工、 自动装置、 继电保护、 事故照明、 通讯等二次设备 提供电源, 而这些二次设备的正常工作对于保障发电厂、变电站的安全运行十分重要。 因此, 需要保证直流系统及其网络应具有高度的可靠性。 当直流系统发生单点接地故障 (即某一支路的正极接地或负极接地) 时, 由于没 有短路电流流过, 熔断器不会熔断, 一般不会立即产生危害性后果, 仍能继续运行, 但若发生两点同时接地或多点同时接地时, 则有可能造成信号回路、 控制回路、 继电 保护等的不正确动作, 如继电器的误跳闸或拒动, 或直接造成直流操作电容短路, 从 而引发严重的电力系统事故。 由于发电厂、 变电站直流系统所接设备多、 回路复杂, 在长期运行过程中会由于 环境的改变、 气候的变化、 电缆以及接头的老化, 设备本身的问题等等, 而不可避免 的发生直流系统接地故障。 目前, 直流系统的监测过程一般采用先对直流系统中的各母线进行监测, 在母线 出现故障 (包括接地故障及绝缘下降故障) 时, 则对故障母线对应的各支路的正极和 负极均进行巡检, 以确定发生故障的支路; 但由于每次在母线出现故障时, 均需要对 各支路的正极和负极都进行巡检,并确定各支路的正极绝缘电阻值及负极绝缘电阻值, 以确定发生故障的支路, 使得检测故障支路的过程耗时大, 从而不能及时检测到故障 支路。 综上所述, 目前直流系统的监测中检测故障支路的过程耗时大, 从而不能及时检 测到故障支路。 发明内容 本发明实施例提供了一种直流系统绝缘监测方法及设备, 用于解决现有技术中存 在的直流系统的监测中支路巡检的过程耗时大,从而不能及时检测到故障支路的问题。 本发明实施例提供了一种直流系统绝缘监测方法, 该方法包括: 在确定母线发生故障时, 根据上述母线绝缘电阻值, 确定与上述母线连接的支路 的待检测极; 对上述支路的待检测极进行检测确定出故障支路。 优选地, 根据上述母线绝缘电阻值, 确定与上述母线连接的支路的待检测极, 包 括: 若正母线绝缘电阻值不大于第一阈值, 且负母线绝缘电阻值大于上述第一阈值, 确定与上述正母线连接的支路正极为待检测极; 若上述正母线绝缘电阻值大于上述第一阈值, 且上述负母线绝缘电阻值不大于上 述第一阈值, 确定与上述负母线连接的支路负极为待检测极; 若上述正母线绝缘电阻值及上述负母线绝缘电阻值都不大于上述第一阈值, 确定 与上述正母线连接的支路正极及与上述负母线连接的支路负极为待检测极。 优选地, 对上述支路的待检测极进行检测确定出故障支路包括: 若上述支路待检测极为支路正极, 则当支路正极绝缘电阻值不大于设定的第一阀 值时, 确定对应支路为接地故障; 以及当支路正极绝缘电阻值大于上述第一阀值且不 大于设定的第二阀值时, 确定对应支路为绝缘下降故障; 若上述支路待检测极为支路负极, 则当支路负极绝缘电阻值不大于上述第一阀值 时, 确定对应支路为接地故障; 以及当支路负极绝缘电阻值大于上述第一阀值且不大 于上述第二阀值时, 确定对应支路为绝缘下降故障; 若上述支路待检测极为支路正极及支路负极, 则当支路正极绝缘电阻值和 /或支路 负极绝缘电阻值不大于上述第一阀值时, 确定对应支路为接地故障; 当支路正极绝缘 电阻值及支路负极绝缘电阻值都大于上述第一阀值, 且当支路正极绝缘电阻值和 /或支 路负极绝缘电阻值不大于上述第二阀值时, 确定对应支路为绝缘下降故障; 其中, 上述第一阀值小于上述第二阀值。 优选地, 若上述支路待检测极为支路正极, 采用下列公式确定支路正极绝缘电阻 值:
Figure imgf000005_0001
其中, ^+为第 N条支路正极绝缘电阻值, 其中, N为正整数; U+ 为在负母线 与预设的地线之间并联第二取样电阻, 且正母线与上述地线之间断开时, 获取的当前 正母线第二对地电压值; L为流经第 N条支路的漏电流的电流值; 若上述支路待检测极为支路负极, 采用下列公式确定上述支路负极绝缘电阻值:
Figure imgf000005_0002
其中, 为第 N条支路负极绝缘电阻值, 其中, N为正整数; ^7-为在正母线 与预设的地线之间并联第一取样电阻, 且负母线与地线之间断开时, 获取的当前负母 线第一对地电压值; 为流经第 N条支路的漏电流的电流值; 若上述支路待检测极为支路正极及支路负极, 采用下列公式确定上述支路正极绝 缘电阻值及支路负极绝缘电阻值:
U + u -u + u
=
Figure imgf000005_0003
其中, 为第 N条支路正极绝缘电阻值, 为第 N条支路负极绝缘电阻值, 其中, N为正整数; U ^'及 为在对应负母线与预设的地线之间并联第二取样 电阻, 且正母线与地线之间断开时, 获取的当前正母线第二对地电压值、 当前负母线 第二对地电压值及流经第 N条支路的漏电流的电流值; U + 、 ^ _及/«为在正母线与 地线之间并联第一取样电阻, 且负母线与地线之间断开时, 获取的当前正母线第一对 地电压值、 当前负母线第一对地电压值及流经第 N条支路的漏电流的电流值。 优选地, 确定母线发生故障, 包括: 确定正母线绝缘电阻值及负母线绝缘电阻值; 若正母线绝缘电阻值和 /或负母线绝缘电阻值不大于第一门限值,确定上述母线发 生接地故障; 若正母线绝缘电阻值和 /或负母线绝缘电阻值在上述第一门限值与第二门限值之 间, 确定上述母线发生绝缘下降故障; 其中, 上述第一门限值小于上述第二门限值, 上述第二门限值不大于上述第一阈 值。 优选地, 确定正母线绝缘电阻值及负母线绝缘电阻值, 包括: 在上述正母线与预设的地线之间连接第一取样电阻, 且上述负母线与上述地线之 间断开时, 确定正母线及负母线的第一对地电压值; 上述正母线与上述地线之间断开, 且在上述负母线与上述地线之间连接第二取样 电阻时, 确定正母线及负母线的第二对地电压值; 根据下列公式确定上述正母线绝缘电阻值及负母线绝缘电阻值:
R 二 u u_ -u +Ui、
+ u + + u_u: 1
Figure imgf000006_0001
其中, 为正母线绝缘电阻值; ^ -为负母线绝缘电阻值; 为第一取样电阻; 为第二取样电阻; 为正母线的第一对地电压值; ^为负母线的第一对地电压值; 为正母线的第二对地电压值; 为负母线的第二对地电压值。 优选地, 确定正母线绝缘电阻值及负母线绝缘电阻值, 包括: 在上述正母线与预设的地线之间连接第一取样电阻, 且上述负母线与上述地线之 间断开时, 确定正母线及负母线的第一对地电压值; 在上述正母线及负母线的第一对地电压值满足下列公式时,确定上述正母线接地, 则上述正母线绝缘电阻值为预设阻值;
Figure imgf000007_0001
其中, +为正母线的第一对地电压值; υ-为负母线的第一对地电压值; Ρ为比 ρ = ί 第一门限值
较系数, 第一取样电阻值, 且 Ρ的取值范围为: 90%≤Ρ≤99.9%; 在上述负母线与上述地线之间并联第二取样电阻, 且上述正母线与上述地线之间 断开时, 确定正母线及负母线的第二对地电压值; 在上述正母线及负母线的第二对地电压值满足下列公式时,确定上述负母线接地, 则上述负母线绝缘电阻值为上述预设阻值;
Figure imgf000007_0002
其中, +为正母线的第二对地电压值; -为负母线的第二对地电压值; ρ为 ρ = ί 第一门限值
比较系数, 第一取样电阻值, 且 Ρ的取值范围为: 90%≤Ρ≤99.9%。 优选地, 根据下列步骤确定正母线对地电压值: 在设定时长内, 对正母线对地电压值至少进行两次采样; 对得到的采样电压值进行滤波处理, 并将滤波处理后的电压值作为上述正母线对 地电压值; 其中, 正母线对地电压值包括正母线第一对地电压值及正母线第二对地电压值; 根据下列步骤确定负母线对地电压值: 在设定时长内, 对负母线对地电压值至少进行两次采样; 对得到的采样电压值进行滤波处理, 并将滤波处理后的电压值作为上述负母线对 地电压值; 其中, 负母线对地电压值包括负母线第一对地电压值及负母线第二对地电压值。 本发明实施例提供了一种直流系统绝缘监测设备, 该设备包括: 支路待检测极确定模块, 在确定母线发生故障时, 根据上述母线绝缘电阻值, 确 定与上述母线连接的支路的待检测极; 检测模块, 设置为对上述支路的待检测极进行检测确定出故障支路。 优选地, 上述支路待检测极确定模块设置为: 若正母线绝缘电阻值不大于第一阈值, 且负母线绝缘电阻值大于上述第一阈值, 确定与上述正母线连接的支路正极为待检测极; 若上述正母线绝缘电阻值大于上述第一阈值, 且上述负母线绝缘电阻值不大于上 述第一阈值, 确定与上述负母线连接的支路负极为待检测极; 若上述正母线绝缘电阻值及上述负母线绝缘电阻值都不大于上述第一阈值, 确定 与上述正母线连接的支路正极及与上述负母线连接的支路负极为待检测极。 优选地, 检测模块还设置为: 若上述支路待检测极为支路正极, 则当支路正极绝缘电阻值不大于设定的第一阀 值时, 确定对应支路为接地故障; 以及当支路正极绝缘电阻值大于上述第一阀值且不 大于设定的第二阀值时, 确定对应支路为绝缘下降故障; 若上述支路待检测极为支路负极, 则当支路负极绝缘电阻值不大于上述第一阀值 时, 确定对应支路为接地故障; 以及当支路负极绝缘电阻值大于上述第一阀值且不大 于上述第二阀值时, 确定对应支路为绝缘下降故障; 若上述支路待检测极为支路正极及支路负极, 则当支路正极绝缘电阻值和 /或支路 负极绝缘电阻值不大于上述第一阀值时, 确定对应支路为接地故障; 当支路正极绝缘 电阻值及支路负极绝缘电阻值都大于上述第一阀值, 且当支路正极绝缘电阻值和 /或支 路负极绝缘电阻值不大于上述第二阀值时, 确定对应支路为绝缘下降故障; 其中, 上述第一阀值小于上述第二阀值。 优选地, 检测模块还设置为: 若上述支路待检测极为支路正极, 采用下列公式确定支路正极绝缘电阻值:
Figure imgf000009_0001
其中, ^+为第 N条支路正极绝缘电阻值, 其中, N为正整数; ^+为在对应负 母线与预设的地线之间并联第二取样电阻, 且正母线与上述地线之间断开时, 获取的 当前正母线第二对地电压值; "为流经第 N条支路的漏电流的电流值; 若上述支路待检测极为支路负极, 采用下列公式确定上述支路负极绝缘电阻值:
Figure imgf000009_0002
其中, 为第 N条支路负极绝缘电阻值, 其中, N为正整数; ^7-为在对应正 母线与预设的地线之间并联第一取样电阻, 且负母线与地线之间断开时, 获取的当前 负母线第一对地电压值; L为流经第 N条支路的漏电流的电流值; 若上述支路待检测极为支路正极及支路负极, 采用下列公式确定上述支路正极绝 缘电阻值及支路负极绝缘电阻值:
Figure imgf000009_0003
其中, 为第 N条支路正极绝缘电阻值, 为第 N条支路负极绝缘电阻值, 其中, N为正整数; U+ 、 U_ 1L 为在对应负母线与预设的地线之间并联第二取样 电阻, 且正母线与地线之间断开时, 获取的当前正母线第二对地电压值、 当前负母线 第二对地电压值及流经第 N条支路的漏电流的电流值; U +、 U -及 ^为在正母线与 地线之间并联第一取样电阻, 且负母线与地线之间断开时, 获取的当前正母线第一对 地电压值、 当前负母线第一对地电压值及流经第 N条支路的漏电流的电流值。 优选地, 上述设备还包括母线监测模块, 设置为: 确定正母线绝缘电阻值及负母 线绝缘电阻值; 若正母线绝缘电阻值和 /或负母线绝缘电阻值不大于第一门限值, 确定 上述母线发生接地故障; 若正母线绝缘电阻值和 /或负母线绝缘电阻值在上述第一门限 值与第二门限值之间, 确定上述母线发生绝缘下降故障; 其中, 上述第一门限值小于 上述第二门限值, 上述第二门限值不大于上述第一阈值。 优选地, 母线监测模块设置为: 在上述正母线与预设的地线之间连接第一取样电 阻, 且上述负母线与上述地线之间断开时, 确定正母线及负母线的第一对地电压值; 上述正母线与上述地线之间断开, 且在上述负母线与上述地线之间连接第二取样电阻 时, 确定正母线及负母线的第二对地电压值; 根据下列公式确定上述正母线绝缘电阻 值及负母线绝缘电阻值:
Figure imgf000010_0001
其中, 为正母线绝缘电阻值; ^ -为负母线绝缘电阻值; 为第一取样电阻; 为第二取样电阻; 为正母线的第一对地电压值; ^为负母线的第一对地电压值; 为正母线的第二对地电压值; 为负母线的第二对地电压值。 优选地, 母线监测模块设置为: 在上述正母线与预设的地线之间连接第一取样电 阻, 且上述负母线与上述地线之间断开时, 确定正母线及负母线的第一对地电压值; 在上述正母线及负母线的第一对地电压值满足下列公式时, 确定上述正母线接地, 则 上述正母线绝缘电阻值为预设阻值; u + ― U— u + + U— 其中, +为正母线的第一对地电压值; U-为负母线的第一对地电压值; P为比 ρ = ί 第一门限值
较系数, 第一取样电阻值, 且 Ρ的取值范围为: 90%≤Ρ≤99.9%; 在上述负母线与上述地线之间并联第二取样电阻, 且上述正母线与上述地线之间 断开时, 确定正母线及负母线的第二对地电压值; 在上述正母线及负母线的第二对地 电压值满足下列公式时, 确定上述负母线接地, 则上述负母线绝缘电阻值为上述预设 阻值;
Figure imgf000011_0001
其中, +为正母线的第二对地电压值; -为负母线的第二对地电压值; ρ为 ρ = ί 第一门限值
比较系数, 第一取样电阻值, 且 Ρ的取值范围为: 90%≤Ρ≤99.9%。 本发明实施例通过在母线发生故障时, 确定与发生故障的母线连接的支路的待检 测极, 并对该支路的待检测极进行检测以确定故障支路, 避免了每次在母线故障时, 均需对各支路的正极和负极都进行巡检, 从而大大缩短了检测故障支路的时间, 进而 能够更及时地检测到故障支路。 本发明实施例提供了一种直流系统绝缘监测方法, 该方法包括: 在确定正母线或负母线发生接地故障时, 获取与发生故障的正母线或负母线连接 的各支路的漏电流的电流值; 确定上述电流值中最大的 Ν个电流值对应的支路为故障支路; 其中,上述支路的漏电流为支路正极对地漏电流与支路负极对地漏电流的矢量和, Ν为正整数。 优选地, 确定正母线或负母线发生接地故障, 包括: 确定正母线绝缘电阻值及负母线绝缘电阻值; 在上述正母线绝缘电阻值不大于第一比较值, 且负母线绝缘电阻值大于上述第一 比较值时, 确定上述正母线发生接地故障; 在上述正母线绝缘电阻值大于上述第一比较值, 且负母线绝缘电阻值不大于上述 第一比较值时, 确定上述负母线发生接地故障。 优选地, 确定正母线绝缘电阻值及负母线绝缘电阻值, 包括: 在上述正母线与预设的地线之间并联第一取样电阻, 且上述负母线与上述地线之 间断开时, 确定正母线及负母线的第一对地电压值; 在上述负母线与上述地线之间并联第二取样电阻, 且上述正母线与上述地线之间 断开时, 确定正母线及负母线的第二对地电压值; 根据下列公式确定上述正母线绝缘电阻值及负母线绝缘电阻值; u + u_ -u +u
u + u ' + u u
Figure imgf000012_0001
其中, 为正母线绝缘电阻值; ^ -为负母线绝缘电阻值; 为第一取样电阻; 为第二取样电阻; 为正母线的第一对地电压值; ^为负母线的第一对地电压值; 为正母线的第二对地电压值; 为负母线的第二对地电压值。 优选地, 确定母线发生接地故障, 包括: 在上述正母线与预设的地线之间连接第一取样电阻, 且上述负母线与上述地线之 间断开时, 确定正母线及负母线的第一对地电压值; 在上述正母线及负母线的第一对地电压值满足下列公式时, 确定上述正母线发生 接地故障;
Figure imgf000012_0002
其中, ^+为正母线的第一对地电压值; ^为负母线的第一对地电压值; P为比
第一比较值
第一取样电阻值, 且 P的取值范围为: 90%≤P≤99.9%; 在上述负母线与上述地线之间连接第二取样电阻, 且上述正母线与上述地线之间 断开时, 确定正母线及负母线的第二对地电压值; 在上述正母线及负母线的第二对地电压值满足下列公式时, 确定上述负母线发生 接地故障;
Figure imgf000013_0001
其中, +为正母线的第二对地电压值; -为负母线的第二对地电压值; ρ为 ρ = ι 第一比较值
比较系数, 第一取样电阻值, 且 Ρ的取值范围为: 90%≤Ρ≤99.9%。 优选地, 根据下列步骤确定正母线对地电压值: 在设定时长内, 对正母线对地电压值至少进行两次采样; 对得到的采样电压值进行滤波处理, 并将滤波处理后的电压值作为上述正母线对 地电压值; 其中, 正母线对地电压值包括正母线第一对地电压值及正母线第二对地电压值; 根据下列步骤确定负母线对地电压值: 在设定时长内, 对负母线对地电压值至少进行两次采样; 对得到的采样电压值进行滤波处理, 并将滤波处理后的电压值作为上述负母线对 地电压值; 其中, 负母线对地电压值包括负母线第一对地电压值及负母线第二对地电压值。 本发明实施例提供了一种直流系统绝缘监测设备, 该设备包括: 监测模块, 设置为在确定正母线或负母线发生接地故障时, 获取与发生故障的正 母线或负母线连接的各支路的漏电流的电流值; 其中, 上述支路的漏电流为支路正极 对地漏电流与支路负极对地漏电流的矢量和; 故障支路确定模块, 设置为确定上述电流值中最大的 Ν个电流值对应的支路为故 障支路; 其中, Ν为正整数。 优选地, 上述设备还包括第一母线检测模块, 设置为: 确定正母线绝缘电阻值及 负母线绝缘电阻值; 在上述正母线绝缘电阻值不大于第一比较值, 且负母线绝缘电阻 值大于上述第一比较值时, 确定上述正母线发生接地故障; 在上述正母线绝缘电阻值 大于上述第一比较值, 且负母线绝缘电阻值不大于上述第一比较值时, 确定上述负母 线发生接地故障。 优选地, 上述第一母线检测模块设置为: 在上述正母线与预设的地线之间并联第一取样电阻, 且上述负母线与上述地线之 间断开时, 确定正母线及负母线的第一对地电压值; 在上述负母线与上述地线之间并 联第二取样电阻, 且上述正母线与上述地线之间断开时, 确定正母线及负母线的第二 对地电压值; 根据下列公式确定上述正母线绝缘电阻值及负母线绝缘电阻值;
Figure imgf000014_0001
其中, 为正母线绝缘电阻值; ^ -为负母线绝缘电阻值; 为第一取样电阻; 为第二取样电阻; 为正母线的第一对地电压值; ^为负母线的第一对地电压值; 为正母线的第二对地电压值; 为负母线的第二对地电压值。 优选地, 上述设备还包括第二母线检测模块, 设置为: 在上述正母线与预设的地线之间连接第一取样电阻, 且上述负母线与上述地线之 间断开时, 确定正母线及负母线的第一对地电压值; 在上述正母线及负母线的第一对 地电压值满足下列公式时, 确定上述正母线发生接地故障;
Figure imgf000014_0002
其中, ^+为正母线的第一对地电压值; ^为负母线的第一对地电压值; P为比 ρ = ί 第一比较值
较系数, 第一取样电阻值, 且 Ρ的取值范围为: 90%≤Ρ≤99.9%; 在上述负母线与上述地线之间连接第二取样电阻, 且上述正母线与向下地线之间 断开时, 确定正母线及负母线的第二对地电压值; 在上述正母线及负母线的第二对地 电压值满足下列公式时, 确定上述负母线发生接地故障;
Figure imgf000015_0001
其中, +为正母线的第二对地电压值; -为负母线的第二对地电压值; ρ为
第一比较值
比较系数, 第一取样电阻值, 且 Ρ的取值范围为: 90%≤Ρ≤99.9%。 本发明实施例通过在正母线或负母线发生故障时, 根据各支路的漏电流的电流值 的大小确定故障支路, 避免了根据各支路的正极绝缘电阻值及负极绝缘电阻值确定故 障支路, 从而大大缩短了检测故障支路的时间, 进而能够更及时地检测到故障支路。 附图说明 图 1为本发明实施例的第一种直流系统绝缘监测方法的流程图; 图 2为本发明实施例的直流系统绝缘监测中母线及支路的结构示意图; 图 3为本发明实施例的确定母线绝缘电阻的控制时序示意图; 图 4Α为本发明实施例的第一种确定支路绝缘电阻的控制时序示意图; 图 4Β为本发明实施例的第二种确定支路绝缘电阻的控制时序示意图; 图 4C为本发明实施例的第三种确定支路绝缘电阻的控制时序示意图; 图 5Α为本发明实施例的第一种直流系统绝缘监测设备结构示意图; 图 5Β为本发明实施例的第二种直流系统绝缘监测设备结构示意图; 图 6为本发明实施例的第二种直流系统绝缘监测方法的流程图; 图 7Α为本发明实施例的第三种直流系统绝缘监测设备结构示意图; 图 7Β为本发明实施例的第四种直流系统绝缘监测设备结构示意图; 图 7C为本发明实施例的第五种直流系统绝缘监测设备结构示意图; 图 8为本发明实施例的直流系统绝缘监测设备的硬件电路结构示意图; 图 9A为本发明实施例的母线绝缘监测的方法的第一部分流程图; 图 9B为本发明实施例的母线绝缘监测的方法的第二部分流程图; 图 10A为本发明实施例的计算母线绝缘电阻的方法的第一部分流程图; 图 10B为本发明实施例的计算母线绝缘电阻的方法的第二部分流程图; 图 11A为本发明实施例的支路绝缘监测的方法的第一部分流程图; 图 11B为本发明实施例的支路绝缘监测的方法的第二部分流程图; 图 11C为本发明实施例的支路绝缘监测的方法的第三部分流程图; 图 11D为本发明实施例的支路绝缘监测的方法的第四部分流程图; 图 12A为本发明实施例的计算支路绝缘电阻的方法的第一部分流程图; 以及 图 12B为本发明实施例的计算支路绝缘电阻的方法的第二部分流程图。 具体实施方式 相关技术中在直流系统的母线发生故障时, 确定故障支路的过程耗时大, 从而不 能及时检测到故障支路; 本发明实施例中在母线发生故障时, 确定与发生故障的母线 连接的支路的待检测极, 并对该支路的待检测极进行检测以确定故障支路, 避免了每 次在母线故障时, 均需对各支路的正极和负极都进行巡检, 从而大大缩短了检测故障 支路的时间, 进而能够更及时地检测到故障支路; 本发明实施例通过在正母线或负母 线发生故障时, 根据各支路的漏电流的电流值的大小确定故障支路, 避免了根据各支 路的正极绝缘电阻值及负极绝缘电阻值确定故障支路, 从而大大缩短了检测故障支路 的时间, 进而能够更及时地检测到故障支路。 下面结合附图对本发明的实施例进行详细说明。 本发明实施例提供了一种直流系统绝缘监测方法, 如图 1所示, 该方法包括以下 步骤: 5101、 在确定母线发生故障时, 根据发生故障的母线绝缘电阻值, 确定与该母线 连接的支路的待检测极;
5102、 对支路的待检测极进行检测确定出故障支路; 其中, 第一阈值为经验值, 可根据需要设定。 具体的, 本发明实施例中的母线包括正母线及负母线; 与正母线连接的支路为支 路正极, 与负母线连接的支路为支路正极; 当仅正母线发生故障时, 则确定的与发生故障的正母线连接的支路的待检测极为 支路正极; 当仅负母线发生故障时, 则确定的与发生故障的负母线连接的支路的待检测极为 支路负极; 当正母线与负母线均发生故障时, 则确定的与发生故障的负母线连接的支路的待 检测极为支路正极及支路负极。 在直流系统正常运行情况下, 仅对直流系统的母线进行实时监测, 包括对正母线 及负母线的监测;在正母线和 /或负母线发生故障(包括接地故障及绝缘下降故障)时, 确定与故障母线连接的支路的待检测极, 并启动对支路的待检测极进行检测, 以确定 故障支路, 其中, 支路的故障也包括接地故障及绝缘下降故障。 需要说明的是, 在直流系统正常运行情况下, 母线绝缘电阻值很大, 接近无穷大, 但若母线绝缘电阻值突然变小, 降低到一个较小的值, 则说明与母线连接的某条或某 些条支路发生了故障, 该故障包括接地故障极绝缘下降故障, 需要及时检测出发生故 障的支路, 以尽早排除故障, 保证直流系统的正常运行, 因此, 在直流系统正常运行 情况下, 只需启动对母线的监测, 在母线发生故障时, 再启动对支路的检测, 以确定 故障支路, 从而及时排除故障。 对直流系统的母线进行监测, 在确定母线发生故障时, 启动支路检测, 其中, 确 定母线发生故障的过程包括以下步骤: 确定正母线绝缘电阻值及负母线绝缘电阻值; 若正母线绝缘电阻值和 /或负母线绝缘电阻值不大于第一门限值,确定该母线发生 接地故障; 若正母线绝缘电阻值和 /或负母线绝缘电阻值第一门限值与第二门限值之间,确定 该母线发生绝缘下降故障; 其中, 第一门限值与第二门限值为经验值, 可根据需要设定, 且第一门限值小于 第二门限值, 第二门限值不大于第一阈值。 较佳地, 可采用以下两种方法确定正母线绝缘电阻值及负母线绝缘电阻值, 需要 说明的是, 以下两种确定正母线绝缘电阻值及负母线绝缘电阻值的方法只是说明性, 并非限制性的, 凡本领域技术人员所熟知的确定母线绝缘电阻值的方法均包括在本发 明实施例中。 第一种方法是根据正母线及负母线的对地电压及绝缘电阻值的计算公式, 确定正 母线绝缘电阻值及负母线绝缘电阻值, 下面结合图 2详细说明确定正母线绝缘电阻值 及负母线绝缘电阻值的过程: 在正母线与预设的地线之间连接第一取样电阻 (即开关 K1 闭合), 且负母线 与地线之间断开(即开关 K2断开)时, 确定正母线的第一对地电压值^ +及负母线的 第一对地电压值^ ; 正母线与地线之间断开 (即开关 K1断开), 且在负母线与地线之间连接第二取样 电阻 R2 (即开关 K2闭合) 时, 确定正母线的第二对地电压值 W及负母线的第二对 地电压值 根据下列公式确定正母线绝缘电阻值及负母线绝缘电阻值:
U + u_ - u + u
R , = R、 公式 1 ;
u + u ' + u u
_ u+ u_ -u+u_
U + U + +U + U Λ 、 ' 其中, R+为正母线绝缘电阻值; 为负母线绝缘电阻值; 为第一取样电阻; 为第二取样电阻; +为正母线的第一对地电压值; ^为负母线的第一对地电压值; W为正母线的第二对地电压值; f/_ '为负母线的第二对地电压值。 需要说明的是, 如图 2所示, Kl、 Κ2为主用切换开关, 且 K1 与第一取样电阻 连接, K2与第一取样电阻 R2连接; K3、 Κ4为备用切换开关, 且 Κ3与第一取样电 阻 R3连接, K4与第一取样电阻 连接; 其中, 取样电阻 的阻值为经验值, 可 根据需要选择阻值, 可选取相同阻值的电阻作为取样电阻, 也可选取不同阻值的电阻 作为取样电阻。 一般情况下, 启动主用切换开关进行检测, 在主用切换开关发生故障 时, 启动备用切换开关进行检测。 图 2中 Rl、 R2、 R3、 R4为取样电阻, 用于检测母线绝缘电阻值, 该取样电阻的 阻值不能选择过大, 过大将无法准确测量整定值 (即第二门限值) 以下的电阻, 也不 能选择过小, 过小将无法准确测量整定值以上的电阻; 经过多次试验选定取样电阻的 阻值为 75ΚΩ, 该取样电阻可采用 1个 75ΚΩ的电阻, 也可以采用 2个 150K电阻并联 得到。 R+、 R分别是正母线对地、 负母线对地总的等效绝缘电阻; Kl、 Κ2为切换主 开关, Κ3、 Κ4为切换备用开关, 我们采用光耦实现对切换开关的控制; Ll、 L2、 Ln 分别是安装在支路 1、支路 2... ...支路 n回路上的智能漏电流传感器,用以检测流经支 路 1、 支路 2... ...支路 n的漏电流。 下面结合图 3对第一种确定正母线绝缘电阻值及负母线绝缘电阻值的控制时序进 行说明。 如图 3所示, 在 T1时刻, 控制 K1闭合、 K2断开 (或 K3闭合、 K4断开), 在 T1 T2时间内,保持开关 K1闭合、 K2断开的状态, 使正母线及负母线对地电压稳定, 在 T2 T3时间内, 确定母线第一对地电压值 +及^/ ; 在 T3时刻, 控制 K1断开、 K2闭合 (或 K3闭合、 K4断开), 在 T3 T4时间内, 保持开关 K1断开、 K2闭合的 状态, 使正母线及负母线对地电压稳定, 在 T4 T5时间内, 确定母线第二对地电压值
U+ RU_ ; 在 T6时刻, 根据公式 1及公式 2计算正母线绝缘电阻值 R+及负母线绝 缘电阻值 R_。 假设周期定时器 T为 100ms, 则图 3 的时序图中 Tl=100ms, T2=2s, T3=2.5s, T4=4.5s, T5=4.9s, T6=5s。 较佳地, 根据下列步骤确定正母线对地电压值: 在设定时长内, 对正母线对地电压值至少进行两次采样; 对得到的采样电压值进行滤波处理, 并将滤波处理后的电压值作为正母线对地电 压值; 其中, 正母线对地电压值包括正母线第一对地电压值及正母线第二对地电压值; 在 T2 T3内确定正母线第一对地电压值, 在 T4 T5内确定正母线第二对地电压值; 根据下列步骤确定负母线对地电压值: 在设定时长 T2 T3内, 对负母线对地电压值至少进行两次采样; 对得到的采样电压值进行滤波处理, 并将滤波处理后的电压值作为负母线对地电 压值; 其中, 负母线对地电压值包括负母线第一对地电压值及负母线第二对地电压值; 在 T2 T3内确定负母线第一对地电压值, 在 T4 T5内确定负母线第二对地电压值。 例如, 正母线及负母线对地电压值的采样可采用中值滤波法, 如对正、 负母线对 地电压连续采样 6次, 为了排除切换模拟量通道对采样电压值的影响, 可将第 1次采 样电压去掉, 把余下的 5次采样电压的竖值按大小排列, 取中间值为本次电压值。 计算出正母线绝缘电阻值 R+及负母线绝缘电阻值 R—后,将 R+及 与第一门限值 及第二门限值进行比较, 其中, 与第一门限值的比较优先于与第二门限值的比较; 比 较结果有以下几种情况: ( 1 ) 在 R+不大于第一门限值, 且 R—不大于第一门限值时, 确定正母线及负母线 均发生接地故障; 由于第一门限值小于第一阈值, 因此, 启动支路双端检测模式, 即 检测支路正极及支路负极;
(2) 当 R+不大于第一门限值, 且 大于第一门限值时, 确定正母线发生接地故 障; 判断 R—是否在第一门限值与第二门限值之间,若 R—在第一门限值与第二门限值之 间, 确定负母线发生绝缘下降故障; 因此, 启动支路双端检测模式, 即检测支路正极 及支路负极; 若 大于第二门限值, 则判断 R_与第一阈值的关系; 若 不大于第一阈值时, 则启动支路双端检测模式, 即检测支路正极及支路负极; 若R_大于第一阈值时, 则启 动支路正端检测模式, 即仅检测支路正极;
(3 ) 当 R+大于第一门限值, 且 R—不大于第一门限值时, 确定负母线发生接地故 障; 判断 R+是否在第一门限值与第二门限值之间, 若 R+在第一门限值与第二门限值 之间, 确定正母线发生绝缘下降故障; 因此, 启动支路双端检测模式, 即检测支路正 极及支路负极; 若 R+大于第二门限值, 则判断 R+与第一阈值的关系; 若 R+不大于第一阈值时, 则启动支路双端检测模式, 即检测支路正极及支路负极; 若 R+大于第一阈值时, 则启 动支路负端检测模式, 即仅检测支路负极;
(4) 在 R+大于第一门限值, 且 大于第一门限值时, 则判断 R+及 R—是否在第 一门限值与第二门限值之间; 若 R+及 均在均第一门限值与第二门限值之间, 则确定正母线及负母线发生绝 缘下降故障, 并启动支路双端检测模式; 若 R+在第一门限值与第二门限值之间, R_大于第二门限值, 则确定正母线发生 绝缘下降故障, 则判断 R_与第一阈值的关系; 若 不大于第一阈值时, 则启动支路双 端检测模式; 若 大于第一阈值时, 则启动支路正端检测模式; 若 R+大于第二门限值, R—在均第一门限值与第二门限值之间, 则确定负母线发 生绝缘下降故障, 则判断 R+与第一阈值的关系; 若 R+不大于第一阈值时, 则启动支 路双端检测模式; 若R+大于第一阈值时, 则启动支路负端检测模式; 若 R+及 均大于第二门限值, 则不启动支路检测, 返回确定母线绝缘电阻值的
第二种确定正母线绝缘电阻值及负母线绝缘电阻值的方法包括以下步骤: 在正母线与地线之间连接第一取样电阻, 且负母线与地线之间断开时, 确定正母 线的第一对地电压值 及负母线的第一对地电压值 —; 在正母线及负母线的第一对地电压值满足下列公式时, 确定正母线接地, 则正母 线绝缘电阻值为预设阻值; u + ― U— u + + U— 公式 3 其中, 为正母线的第一对地电压值; ^为负母线的第一对地电压值; 尸为比 第一门限倌
较系数, ^P = l- ^ ' ^ ^' 一般 P的取值范围为: 90%≤P≤99.9%;
第一取样电阻值 在负母线与地线之间并联第二取样电阻, 且正母线与地线之间断开时, 确定正母 线的第二对地电压值 及负母线的第二对地电压值 — ; 在正母线及负母线的第二对地电压值满足下列公式时, 确定负母线接地, 则负母 线绝缘电阻值为预设阻值; 公式 4
Figure imgf000022_0001
其中, 为正母线的第二对地电压值; ^为负母线的第二对地电压值; P为
第一门限倌
比较系数, ^P = l- ^ ' ^ ^' 一般 P的取值范围为: 90%≤P≤99.9%。
第一取样电阻值 需要说明的是, 第二种确定正母线绝缘电阻值及负母线绝缘电阻值的方法只适用 于正母线或负母线发生接地故障的情况, 即母线发生单端接地的情况; 若母线发生双 端接地故障 (即正母线及负母线均发生接地故障) 或绝缘下降故障时, 需采用第一种 方法确定正母线绝缘电阻值及负母线绝缘电阻值。 当正母线 (或负母线) 发生接地故障时, 确定的正母线对地电压值 (或负母线对 地电压值) 很小, 在根据正母线对地电压值 (或负母线对地电压值) 计算正母线绝缘 电阻(或负母线绝缘电阻) 时, 由于正母线对地电压值(或负母线对地电压值)很小, 很可能会使得到的正母线绝缘电阻 (或负母线绝缘电阻) 出现较大的误差, 此时根据 该正母线绝缘电阻 (或负母线绝缘电阻) 确定正母线 (或负母线) 的故障时, 可能会 出现错误检测或误告警的情况, 因此, 可根据上述公式 3 (或公式 4)通过正母线及负 母线对地电压值的大小来判断是否发生接地故障,从而避免了计算正母线绝缘电阻(或 负母线绝缘电阻)。 本发明实施例在确定母线发生故障时, 需先确定与发生故障的母线连接的支路的 待检测极, 再对该支路的待检测极进行检测, 以确定故障支路; 其中, 支路中与正母 线连接的为支路正极, 支路中与负母线连接的为支路负极; 确定与发生故障的母线连 接的支路的待检测极, 包括: 若正母线绝缘电阻值不大于第一阈值, 且负母线绝缘电阻值大于第一阈值, 即仅 正母线发生故障(包括接地故障及绝缘下降故障), 则确定与正母线连接的支路正极为 待检测极; 若正母线绝缘电阻值大于第一阈值, 且负母线绝缘电阻值不大于第一阈值, 即仅 负母线发生接地故障, 确定与负母线连接的支路负极为待检测极; 若正母线绝缘电阻值及负母线绝缘电阻值都不大于第一阈值, 即正母线与负母线 均发生接地故障, 确定与正母线连接的支路正极及与负母线连接的支路负极为待检测 极。 确定于发生故障的母线连接的支路的待检测极之后, 启动对支路的检测, 分为以 下三种情况: 第一种情况: 若支路待检测极为支路正极, 即仅正母线发生故障, 则只需启动支 路正极的检测即可; 此时, 采用下列公式确定支路正极绝缘电阻值:
Figure imgf000023_0001
其中, 为第 N条支路正极绝缘电阻值, 其中, N为正整数; 为在对应负 母线与预设的地线之间并联第二取样电阻, 且正母线与地线断开时, 获取的当前正母 线第二对地电压值; I"为流经第 N条支路的漏电流的电流值; 下面结合图 4A第一种情况下确定支路正极绝缘电阻值的控制时序进行说明。 在 T1时亥 lj, 控制 K1断开、 K2闭合(或 K3断开、 K4闭合); 在 T1 T2时间内, 保持上 述开关状态, 使正负母线对地电压稳定; 在 T2 T3时间内, 确定正母线极负母线第一 对地电压值; 在 T3 T4时间内, 轮循获取 N个支路漏电流; 在 T5时刻, 确定所有支 路正极绝缘电阻值; 其中, N为与故障母线连接的支路的数目, 且 N为正整数。 假设 周期定时器 T为 100ms, 则图 4A的时序图中 Tl=100ms, T2=4.5s, T3=5.0s, T4=7.3s, T5=7.4s。 第二种情况: 若支路待检测极为支路负极, 即仅负母线发生故障, 则只需启动支 路负极的检测即可; 此时, 采用下列公式确定支路负极绝缘电阻值: u
公式 6
Figure imgf000024_0001
其中, 为第 N条支路负极绝缘电阻值, 其中, N为正整数; 为在对应正 母线与地之间并联第一取样电阻, 且负母线与地线之间断开时, 获取的当前负母线第 一对地电压值; A为流经第 N条支路的漏电流的电流值。 下面结合图 4B第一种情况下确定支路负极绝缘电阻值的控制时序进行说明。 在 T1时刻, 控制 K1闭合、 K2断开(或 K3闭合、 K4断开); 在 T1 T2时间内, 保持上 述开关状态, 使正母线及负母线对地电压稳定; 在 T2 T3时间内, 确定正母线第一对 地电压值及负母线第一对地电压值; 在 T3 T4时间内轮循获取 N个支路漏电流; 在 T5时刻, 计算所有支路负极绝缘电阻值。 假设周期定时器 T为 100ms, 则图 4C的时 序图中 Tl=100ms, T2=4.5s, T3=5.0s, T4=7.3s, T5=7.4s。 第三种情况: 若支路待检测极为支路正极及支路负极, 即正母线及负母线均发生 故障, 则需要启动支路正极及负极的检测; 此时, 采用下列公式确定支路正极绝缘电 阻值及支路负极绝缘电阻值:
8
Figure imgf000024_0002
其中, 为第 N条支路正极绝缘电阻值, 为第 N条支路负极绝缘电阻值, 其中, N为正整数; U+ 、 U_ Rln 为在对应负母线与地之间并联第二取样电阻, 且 正母线与地线之间断开时, 获取的当前正母线第二对地电压值、 当前负母线第二对地 电压值及流经第 N条支路的漏电流的电流值; U +、 ^/_及 A为在正母线与地线之间 并联第一取样电阻, 且负母线与地线之间断开时, 获取的当前正母线第一对地电压值、 当前负母线第一对地电压值及流经第 N条支路的漏电流的电流值。 下面结合图 4C第一种情况下确定支路正极绝缘电阻值的控制时序进行说明。 在 T1时刻, 控制 K1 闭合、 K2断开 (或 K3闭合、 K4断开); 在 T1 T2段, 保持开关 K1闭合、 K2断开(或 K3闭合、 K4断开)的状态,使正负母线对地电压稳定;在 T2 T3 时间内, 确定正母线第一对地电压值及负母线第一对地电压值, 在 T3 T4时间内轮循 获取 N个支路漏电流; 在 T4时刻, 控制 K1断开、 K2闭合 (或 K3断开、 K4闭合), 在 T4 T5段, 保持开关 K1断开、 K2闭合 (或 K3断开、 K4闭合) 的状态, 使正负 母线对地电压稳定; 在 T5 T6时间内, 确定正母线第二对地电压值及负母线第二对地 电压值; 在 T6 T7时间内轮循获取 N个支路漏电流; 在 T8时刻, 计算所有支路正极 绝缘电阻值及负极绝缘电阻值。 假设周期定时器 T 为 100ms, 则图 4C 的时序图中 Tl=100ms, T2=4.5s, T3=5.0s, T4=7.3s, T5=11.8s, T6=12.3s, T7=14.6s, T8=14.7s。 需要说明的是, 上述三种情况下, 计算支路正极绝缘电阻值和 /或负极绝缘电阻值 之前需要对母线当前对地电压进行采样, 包括: 正母线第一对地电压值及负母线第一 对地电压值、 正母线第二对地电压值及负母线第二对地电压值; 可采用复合滤波法, 稳态下连续获取 5次经中值滤波后的母线对地电压, 去除该 5个母线对地电压值中最 大的电压值及最小的电压值, 将余下的 3个母线对地电压值取平均值, 作为当前母线 对地电压值。 需要说明的是, 经过多次试验验证, 本发明实施例中的第二门限值的设置范围为 15〜30ΚΩ, 一般选择 28ΚΩ; 第一门限值一般选择取样电阻阻值的 2%, 一般取样电 阻选择 75ΚΩ, 所以, 第一门限值一般选择 1.5ΚΩ; 第一阈值一般选择 150ΚΩ, (—般 采用 75ΚΩ与 150ΚΩ并联得到)。 在确定支路正极绝缘电阻值和 /或支路负极绝缘电阻值之后,根据支路正极绝缘电 阻值和 /或支路负极绝缘电阻值与预设的第一阀值、 第二阀值进行比较, 以确定出故障 支路, 并确定故障支路是接地故障还是绝缘下降故障; 具体如下: 若所述支路待检测极为支路正极, 则当支路正极绝缘电阻值不大于设定的第一阀 值时, 确定对应支路为接地故障; 以及当支路正极绝缘电阻值大于所述第一阀值且不 大于设定的第二阀值时, 确定对应支路为绝缘下降故障; 若所述支路待检测极为支路负极, 则当支路负极绝缘电阻值不大于所述第一阀值 时, 确定对应支路为接地故障; 以及当支路负极绝缘电阻值大于所述第一阀值且不大 于所述第二阀值时, 确定对应支路为绝缘下降故障; 若所述支路待检测极为支路正极及支路负极, 则当支路正极绝缘电阻值和 /或支路 负极绝缘电阻值不大于所述第一阀值时, 确定对应支路为接地故障; 当支路正极绝缘 电阻值及支路负极绝缘电阻值都大于所述第一阀值, 且当支路正极绝缘电阻值和 /或支 路负极绝缘电阻值不大于所述第二阀值时, 确定对应支路为绝缘下降故障; 其中, 所述第一阀值小于所述第二阀值。 基于同一发明构思, 本发明实施例中还提供了一种直流系统绝缘监测设备, 由于 该设备解决问题的原理与上述直流系统绝缘监测方法相似, 因此该设备的实施可以参 见方法的实施, 重复之处不再赘述。 本发明实施例提供了一种直流系统绝缘监测设备, 如图 5A所示, 该设备包括: 支路待检测极确定模块 50, 设置为确定母线发生故障时, 根据所述母线绝缘电阻 值, 确定与所述母线连接的支路的待检测极; 检测模块 51, 设置为对所述支路的待检测极进行检测确定出故障支路。 较佳地, 支路待检测极确定模块 50具体设置为: 若正母线绝缘电阻值不大于第一阈值, 且负母线绝缘电阻值大于第一阈值, 确定 与正母线连接的支路正极为待检测极; 若正母线绝缘电阻值大于第一阈值, 且负母线绝缘电阻值不大于第一阈值, 确定 与负母线连接的支路负极为待检测极; 若正母线绝缘电阻值及负母线绝缘电阻值都不大于第一阈值, 确定与正母线连接 的支路正极及与负母线连接的支路负极为待检测极。 较佳地, 支路待检测极确定模块 50还设置为: 若所述支路待检测极为支路正极, 则当支路正极绝缘电阻值不大于设定的第一阀 值时, 确定对应支路为接地故障; 以及当支路正极绝缘电阻值大于所述第一阀值且不 大于设定的第二阀值时, 确定对应支路为绝缘下降故障; 若所述支路待检测极为支路负极, 则当支路负极绝缘电阻值不大于所述第一阀值 时, 确定对应支路为接地故障; 以及当支路负极绝缘电阻值大于所述第一阀值且不大 于所述第二阀值时, 确定对应支路为绝缘下降故障; 若所述支路待检测极为支路正极及支路负极, 则当支路正极绝缘电阻值和 /或支路 负极绝缘电阻值不大于所述第一阀值时, 确定对应支路为接地故障; 当支路正极绝缘 电阻值及支路负极绝缘电阻值都大于所述第一阀值, 且当支路正极绝缘电阻值和 /或支 路负极绝缘电阻值不大于所述第二阀值时, 确定对应支路为绝缘下降故障; 其中, 所述第一阀值小于所述第二阀值。 较佳地, 检测模块 51具体设置为: 若支路待检测极为支路正极, 采用公式 5确定支路正极绝缘电阻值; 若支路待检测极为支路负极, 采用公式 6确定支路负极绝缘电阻值; 若支路待检测极为支路正极及支路负极, 采用公式 7确定支路正极绝缘电阻值及 支路负极绝缘电阻值。 较佳地, 如图 5B所示, 该设备还包括母线监测模块 52, 设置为确定正母线绝缘 电阻值及负母线绝缘电阻值; 若正母线绝缘电阻值和 /或负母线绝缘电阻值不大于第一 门限值, 确定母线发生接地故障; 若正母线绝缘电阻值和 /或负母线绝缘电阻值在第一 门限值与第二门限值之间, 确定母线发生绝缘下降故障; 其中, 第一门限值小于第二 门限值, 第二门限值不大于第一阈值。 较佳地, 母线监测模块 52具体设置为:在正母线与预设的地线之间连接第一取样 电阻, 且负母线与地线之间断开时, 确定正母线及负母线的第一对地电压值; 正母线 与地线之间断开, 且在负母线与地线之间连接第二取样电阻时, 确定正母线及负母线 的第二对地电压值; 根据公式 1确定正母线绝缘电阻值及根据公式 2确定负母线绝缘 电阻值。 较佳地, 母线监测模块 52具体设置为:在正母线与预设的地线之间连接第一取样 电阻, 且负母线与地线之间断开时, 确定正母线及负母线的第一对地电压值; 在正母 线及负母线的第一对地电压值满足公式 3时, 确定正母线接地, 则正母线绝缘电阻值 为预设阻值; 在负母线与地线之间并联第二取样电阻, 且正母线与地线之间断开时, 确定正母 线及负母线的第二对地电压值; 在正母线及负母线的第二对地电压值满足公式 4时, 确定负母线接地, 则负母线绝缘电阻值为预设阻值。 较佳地, 根据下列步骤确定正母线对地电压值: 在设定时长内, 对正母线对地电压值至少进行两次采样; 对得到的采样电压值进行滤波处理, 并将滤波处理后的电压值作为正母线对地电 压值; 其中, 正母线对地电压值包括正母线第一对地电压值及正母线第二对地电压值; 根据下列步骤确定负母线对地电压值: 在设定时长内, 对负母线对地电压值至少进行两次采样; 对得到的采样电压值进行滤波处理, 并将滤波处理后的电压值作为负母线对地电 压值; 其中, 负母线对地电压值包括负母线第一对地电压值及负母线第二对地电压值。 本发明实施例通过在母线发生故障时, 确定与发生故障的母线连接的支路的待检 测极, 并对该支路的待检测极进行检测以确定故障支路, 避免了每次在母线故障时, 均需对各支路的正极和负极都进行巡检, 从而大大缩短了检测故障支路的时间, 进而 能够更及时地检测到故障支路。 本发明实施例还提供了一种在正母线或负母线发生接地故障时, 直流系统绝缘监 测方法, 如图 6, 该方法包括以下步骤:
S601、 在确定正母线或负母线发生接地故障时, 获取与发生故障的正母线或负母 线连接的各支路的漏电流的电流值; S602、 确定上述电流值中最大的 N个电流值对应的支路为故障支路; 其中, 支路的漏电流为支路正极对地漏电流与支路负极对地漏电流的矢量和, N 为正整数。 由于直流系统中与母线连接的支路数量较多, 同时又存在切换延时等因素, 导致 对与发生故障的母线连接的支路的待检测极进行巡检的时间较长, 本发明实施例在正 母线或负母线发生接地故障时, 通过比较与发生故障的母线连接的支路的漏电流的电 流值的大小, 确定故障支路, 从而缩短了检测时间, 同时也保证了检测精度。 本发明实施例提供了两种确定正母线或负母线发生接地故障的方法, 需要说明的 是, 该两种方法只是说明性的, 并非限制性的, 凡本领域技术人员所熟知的确定正母 线或负母线发生接地故障的方法均包括在本发明实施例中。 支路正常运行情况下,支路正极对地漏电流与支路负极对地漏电流均为较小的值, 且支路正极对地漏电流与支路负极对地漏电流的电流值大小相等, 方向相反, 由于漏 电流为支路正极对地漏电流与支路负极对地漏电流的矢量和, 所以漏电流为 0; 当支 路正极发生故障时, 由于支路正极绝缘电阻值降低, 则支路正极对地漏电流的电流值 增大, 使得漏电流的电流值为正值; 当支路负极发生故障时, 由于支路负极绝缘电阻 值降低, 则支路负极对地漏电流的电流值增大, 使得漏电流的电流值为负值。 第一种确定正母线或负母线发生接地故障的方法, 包括: 确定正母线绝缘电阻值及负母线绝缘电阻值; 在正母线绝缘电阻值不大于第一门限值,且负母线绝缘电阻值大于第一门限值时, 确定正母线发生接地故障; 在正母线绝缘电阻值大于第一门限值,且负母线绝缘电阻值不大于第一门限值时, 确定负母线发生接地故障。 较佳地, 确定正母线绝缘电阻值及负母线绝缘电阻值, 包括: 在正母线与地之间并联第一取样电阻, 且负母线与地之间断开时, 确定正母线及 负母线的第一对地电压值; 在负母线与地之间并联第二取样电阻, 且正母线与地之间断开时, 确定正母线及 负母线的第二对地电压值; 根据公式 1确定正母线绝缘电阻值及根据公式 2确定负母线绝缘电阻值。 第二种确定正母线或负母线发生接地故障的方法, 包括: 在正母线与地之间连接第一取样电阻, 且负母线与地之间断开时, 确定正母线及 负母线的第一对地电压值; 在正母线及负母线的第一对地电压值满足公式 3时, 确定正母线发生接地故障; 在负母线与地之间连接第二取样电阻, 且正母线与地之间断开时, 确定正母线及 负母线的第二对地电压值; 在正母线及负母线的第二对地电压值满足公式 4时, 确定负母线发生接地故障。 步骤 S601中确定电流值中最大的 N个电流值对应的支路为故障支路, 具体的处 理方法可将各支路漏电流的电流值的绝对值按从大到小的顺序排序, 确定排序后的漏 电流的电流值中前 N个漏电流对应的支路为故障支路; 也将各支路漏电流的电流值的 绝对值按从小到大的顺序排序, 确定排序后的漏电流的电流值中后 N个漏电流对应的 支路为故障支路; 其中, N为正整数, N的值为经验值, 可根据需要设定。 较佳地, 根据下列步骤确定正母线对地电压值: 在设定时长内, 对正母线对地电压值至少进行两次采样; 对得到的采样电压值进行滤波处理, 并将滤波处理后的电压值作为正母线对地电 压值; 其中, 正母线对地电压值包括正母线第一对地电压值及正母线第二对地电压值; 根据下列步骤确定负母线对地电压值: 在设定时长内, 对负母线对地电压值至少进行两次采样; 对得到的采样电压值进行滤波处理, 并将滤波处理后的电压值作为负母线对地电 压值; 其中, 负母线对地电压值包括负母线第一对地电压值及负母线第二对地电压值。 具体的, 正母线及负母线对地电压值的采样可采用中值滤波法, 如对正、 负母线 对地电压连续采样 6次, 为了排除切换模拟量通道对采样电压值的影响, 可将第 1次 采样电压去掉, 把余下的 5次采样电压的竖值按大小排列, 取中间值为本次电压值。 基于同一发明构思, 本发明实施例中还提供了一种直流系统绝缘监测设备, 由于 该设备解决问题的原理与上述直流系统绝缘监测方法相似, 因此该设备的实施可以参 见方法的实施, 重复之处不再赘述。 本发明实施例提供了一种直流系统绝缘监测设备, 如图 7A所示, 该设备包括: 监测模块 70, 设置为在确定正母线或负母线发生接地故障时, 获取与发生故障的 正母线或负母线连接的各支路的漏电流的电流值; 其中, 所述支路的漏电流为支路正 极对地漏电流与支路负极对地漏电流的矢量和; 故障支路确定模块 71,设置为确定所述电流值中最大的 N个电流值对应的支路为 故障支路; 其中, N为正整数。 较佳地, 如图 7B所示, 该设备还包括第一母线检测模块 72, 设置为确定正母线 绝缘电阻值及负母线绝缘电阻值; 在正母线绝缘电阻值不大于第一比较值, 且负母线 绝缘电阻值大于第一比较值时, 确定正母线发生接地故障; 在正母线绝缘电阻值大于 第一比较值, 且负母线绝缘电阻值不大于第一比较值时, 确定负母线发生接地故障。 较佳地, 第一母线检测模块 72具体设置为: 在正母线与预设的地线之间并联第一取样电阻, 且负母线与地线之间断开时, 确 定正母线及负母线的第一对地电压值; 在负母线与地线之间并联第二取样电阻, 且正 母线与地线之间断开时, 确定正母线及负母线的第二对地电压值; 根据公式 1确定正 母线绝缘电阻值及根据公式 2确定负母线绝缘电阻值。 较佳地, 如图 7C所示, 该设备还包括第二母线检测模块 73, 设置为: 在正母线与预设的地线之间连接第一取样电阻, 且负母线与地线之间断开时, 确 定正母线及负母线的第一对地电压值; 在正母线及负母线的第一对地电压值满足公式 3时, 确定正母线发生接地故障; 在负母线与地线之间连接第二取样电阻, 且正母线与向下地线之间断开时, 确定 正母线及负母线的第二对地电压值; 在正母线及负母线的第二对地电压值满足公式 4 时, 确定负母线发生接地故障。 较佳地, 根据下列步骤确定正母线对地电压值: 在设定时长内, 对正母线对地电压值至少进行两次采样; 对得到的采样电压值进行滤波处理, 并将滤波处理后的电压值作为正母线对地电 压值; 其中, 正母线对地电压值包括正母线第一对地电压值及正母线第二对地电压值; 根据下列步骤确定负母线对地电压值: 在设定时长内, 对负母线对地电压值至少进行两次采样; 对得到的采样电压值进行滤波处理, 并将滤波处理后的电压值作为负母线对地电 压值; 其中, 负母线对地电压值包括负母线第一对地电压值及负母线第二对地电压值。 本发明实施例通过在正母线或负母线发生故障时, 根据各支路的漏电流的电流值 的大小确定故障支路, 避免了根据各支路的正极绝缘电阻值及负极绝缘电阻值确定故 障支路, 从而大大缩短了检测故障支路的时间, 进而能够更及时地检测到故障支路。 下面结合图 8对本发明实施例的直流系统绝缘监测设备的硬件电路连接进行详细 说明, 图 8所示的硬件电路连接只是说明性的, 并非限制性的, 凡能实现本发明实施 例的各模块功能的硬件电路均包括在本发明实施例中。 假设对 240V高压直流系统进行在线绝缘监测, 直流系统绝缘监测设备可用一个 绝缘监测主板实现对各功能模块的控制及对数据的处理, 该绝缘监测主板包括 MCU (Micro Controller Unit,微控制器)、串口 UART0及 UART1、 ADC (Analog to Digital, 模 /数转换器)、 SRAM ( Static Radom Access Memory, 静态随机存储器); 其中, 串口
UART0与支路漏电流检测接口的一端连接,设置为接收各支路的漏电流;串口 UART1 与前台通讯接口连接, 设置为将检测得到的母线对地电压、 绝缘电阻等实时值及绝缘 电阻下降故障、接地故障等实时告警发送给集中监控单元进行显示、声光告警等操作; 如可采用 LCD (Liquid Crystal Display, 液晶显示器)进行显示; ADC及光耦与模拟、 数字量检测及控制接口连接, 设置为接收母线对地电压值、 数字量输入 (指拨码开关 状态的检测, 如绝缘监测主板的拨码地址等) 及切换开关的控制; 直流系统绝缘监测 设备通过分别与 N个支路连接 N个漏电流传感器来测量流经各支路的漏电流的电流 值, 各漏电流传感器分别与支路漏电流检测接口连接, 用以将检测到的各支路的漏电 流传送至绝缘监测主板进行处理; 其中, 直流系统绝缘监测设备设有两组正、 负母线 对地电压检测通道, 即由主用开关与取样电阻组成的主用通道, 及由备用开关与取样 电阻组成的备用通道, 一般默认采用主用通道, 当主用通道电压无效且备用通道输入 电压有效时, 绝缘监测主板通过光耦控制投切开关自动切换到备用通道。 若直流系统中包括多组母线, 则可通过多个绝缘监测主板分别对多组母线进行监 测, 再将各个绝缘监测主板通过 RS485与集中监控单元连接, 将各个绝缘监测主板的 监测结果传送至集中监控单元进行综合管理。 下面结合图 9A及图 9B对本发明实施例中检测母线绝缘情况进行详细说明,如图 9A及图 9B所示, 本发明实施例中检测母线绝缘情况包括以下步骤:
S901、 判断测量母线绝缘电阻标志是否允许; 若允许, 则执行 S902; 若不允许, 则执行 S903 ; S902、 判断支路是否处于测量中; 若支路处于测量中, 则执行 S908; 若支路不处 于测量中, 则执行 S909; 5903、 测量母线绝缘电阻标志置为允许;
5904、 清母线测量基准时钟;
5905、 控制正、 负母线投切电阻开关均断开;
5906、 清告警变化标志; S907、 清取备用通道母线电压标志; 执行 S902;
5908、 发送支路巡检消息;
5909、 清测量支路绝缘电阻标志;
5910、 母线测量基准时钟自加 1 ;
5911、 判断母线基准时钟是否小于 T2; 若母线基准时钟小于 T2, 则执行 S912; 若母线基准时钟不小于 Τ2, 则执行 S913 ;
5912、判断取备用通道母线电压标志是否允许; 若允许, 则执行 S914; 若不允许, 则执行 S915 ;
5913、 判断母线基准时钟是否小于 T3 ; 若小于, 则执行 S918; 若不小于, 则执 行 S922;
S914、 执行投切电阻开关 K3闭合、 K4断开;
5915、 执行投切电阻开关 K1闭合、 K2断开;
5916、 判断主用通道电压检测是否无效, 备用通道电压检测是否为有效; 若主用 通道电压检测无效,备用通道电压检测有效,则执行 S917;若主用通道电压检测有效, 备用通道电压检测无效, 则返回; S917、 取备用通道母线电压标志置位;
5918、 获取母线对地电压;
5919、 暂存母线对地电压;
5920、 判断暂存电压次数是否大于或等于 4; 若是, 则执行 S921 ; 若否, 则返回; S92K 进行复合滤波处理, 计算母线对地电压, 返回; 5922、 判断母线基准时钟是否小于 T4; 若是, 则执行 S923 ; 若否, 则执行 S926;
5923、 判断取备用通道母线电压标志是否允许; 若是, 则执行 S924; 若否, 则执 行 S932;
5924、 执行投切电阻开关 K3断开、 K4闭合, 并返回;
5925、判断母线基准时钟是否小于 T5 ;若是,则执行 S926;若不是,则执行 S930;
5926、 获取母线对地电压;
5927、 暂存母线对地电压;
5928、 判断暂存电压次数是否大于或等于 4; 若是, 则执行 S929; 若不是, 则返 回;
5929、 进行复合滤波处理, 计算母线对地电压, 并返回;
5930、 判断母线基准时钟是否等于 T5 ; 若是, 则执行 S932; 若不是, 则返回; S93 K 执行投切电阻开关 K1断开、 K4闭合, 并返回;
5932、 清母线测量基准时钟;
5933、 计算母线绝缘电阻;
5934、 测量支路绝缘电阻标志置为允许;
5935、 判断支路绝缘测量是否允许; 若是, 则执行 S936; 若不是, 则返回;
5936、 获取实时告警数据;
5937、 判断当前母线是否有告警; 若有, 则执行 S938; 若无, 则执行 S939;
5938、 置告警变化标志;
5939、 清告警变化标志;
5940、 判断当前母线是否有告警变化; 若有, 则执行 S941 ; 若无, 则执行 S944;
5941、 判断正母线绝缘电阻是否小于第一阈值; 若是, 则执行 S943 ; 若否, 则执 行 S944; 5942、 支路测量类型 BitO置 1 ;
5943、 判断负母线绝缘电阻是否小于第一阈值; 若是, 则执行 S945; 若否, 则执 行 S946;
5944、 判断母线及支路是否有告警; 若母线无告警而支路有告警, 则执行 S947; 若母线有告警而支路无告警, 则执行 S948;
5945、 支路测量类型 Bitl置 1 ;
5946、 发送支路巡检消息, 并返回;
5947、 恢复支路为缺省电阻;
5948、 判断当前母线是否有告警变化; 若有, 则执行 S949; 若无, 则返回;
5949、 判断正母线绝缘电阻是否小于第一阈值; 若是, 则执行 S950; 若否, 则执 行 S951 ;
5950、 支路测量类型 BitO置 1 ;
5951、 判断负母线绝缘电阻是否小于第一阈值; 若是, 则执行 S952; 若否, 则执 行 S953 ;
5952、 支路测量类型 Bitl置 1 ;
5953、 发送支路巡检信息, 并结束流程。 下面结合图 10A及图 10B对本发明实施例中计算母线绝缘电阻的方法的流程进行 详细说明。如图 10A及图 10B所示, 本发明实施例中计算母线绝缘电阻的方法包括以 下步骤:
S100K 计算两次测量母线对地电压 VI及 V2; 其中, V1=C|U+| + |U-D, V2=(|U+'|
+ |U-'|);
51002、 判断第一次测量的母线对地电压 VI是否超量程; 若是, 则执行 S1003 ; 若否, 则执行 S 1004;
51003、 令母线对地电压 Vb=Vl ; 51004、 判断第二次测量的母线对地电压 V2是否超量程; 若是, 则执行 S1006; 若否, 则执行 S 1007;
51005、判断母线对地电压 Vb是否低于有效值 V3 (本实施例中 V3=150V);若是, 则执行 S1007; 若否, 则执行 S1008;
51006、 令母线对地电压 Vb=V2;
51007、 令母线及支路绝缘电阻取缺省值, 并返回;
51008、在 K1断开、 K2闭合时,判断负、正母线对地电压之差是否大于(PxVb);
第一门限值
若是, 则执行 S1009; 若否, 则执行 S1013 ; 其中, P = l - 第一取样电阻值'
51009、 判断正母线绝缘电阻是否大于第一门限值; 若是, 则执行 S1010; 若否, 则执行 S1011 ;
51010、 令正母线绝缘电阻取预设的检测最小值 Rmin;
51011、 判断负母线绝缘电阻是否小于取样电阻; 若是, 则执行 S1012; 若否, 则 返回;
51012、 令负母线绝缘电阻取预设的检测最大值 Rmax;
S1013、在 K1闭合、 K2断开时,判断正、负母线对地电压之差是否大于(PxVb); 若是, 则执行 S1014; 若否, 则执行 S1015 ;
51014、 判断负母线绝缘电阻是否大于第一门限值; 若是, 则执行 S1016; 若否, 则执行 S1017;
51015、 正、 负母线对地电压是否都大于校准门限 V4 (本实施例中 V4=20V); 若 是, 则执行 S1019; 若否, 则执行 S1021 ;
51016、 令负母线绝缘电阻取预设的检测最小值 Rmin;
51017、 判断正母线绝缘电阻是否小于取样电阻; 若是, 则执行 S1018; 若否, 则 返回;
51018、 令正母线绝缘电阻取预设的检测最大值 Rmax; 51019、 计算两次测量的母线对地电压的比值;
51020、校正第二次测量的母线对地电压; 为了防止母线对地电压在同一次测量过 程中变化影响测量精度, 以第一次测量的母线对地电压为基准, 对第二次测量的母线 对地电压进行校正, 判断正、 负母线对地电压是否均大于 20V (校准门限 V4), 若大于 V4, 则计算两次母线电压 V2、 VI之比作为系数, 校准第二次测量的母线对地电压;
S102K 计算中间值 f/ +' xf/_、 U +' U二、 U + U:MJ + U_ .
51022、 计算分子绝对值 u + u - u + u
51023、 判断分子是否小于或等于 0; 若是, 则执行 S1024; 若否, 则执行 S1025 ;
51024、 令母线及支路绝缘电阻取缺省值, 并执行 S1042; S1025、判断第二次测量的负母线对地电压是否为 0; 若是, 则执行 S1027; 若否, 则执行 S1029;
51027、 令正母线绝缘电阻取检测最大值 Rmax;
51028、 判断正母线绝缘电阻是否小于最小值 Rmin; 若是, 则执行 S1029; 若否, 则执行 S1034; S1029、 计算正母线绝缘电阻分母;
S1030、 按公式 1计算正母线绝缘电阻;
S103 K 判断正母线绝缘电阻是否超量程; 若是, 则执行 S1032; 若否, 则执行 S1028;
S1032、 令正母线绝缘电阻取检测最大值 Rmax; S1033、 令正母线绝缘电阻取检测最小值 Rmin;
S1034、判断第一次测量的正母线对地电压是否为 0; 若是, 则执行 S1035 ; 若否, 则执行 S1036;
S1035、 令负母线绝缘电阻取检测最大值 Rmax;
S1036、 计算负母线电阻分母; 51037、 按公式 2计算负母线绝缘电阻;
51038、 判断负母线绝缘电阻是否超量程; 若是, 则执行 S1039; 若否, 则执行 S1040;
51039、 令负母线绝缘电阻取检测最大值 Rmax; S1040、 判断负母线绝缘电阻是否小于最小值 Rmin; 若是, 则执行 S1041 ; 若否, 则执行 S1042;
S104 令负母线绝缘电阻取检测最大值 Rmin;
S1042、 判断是否已初始化备份母线绝缘电阻; 若是, 则执行 S1043 ; 若否, 则执 行 S1044; S1043、 判断是否循环比较正、 负母线电阻; 若是, 则执行 S1046; 若否, 则结束 本流程;
51044、 初始化备份母线绝缘电阻;
51045、 置备份母线绝缘电阻标志, 并返回 S1043 ;
51046、 比较本次 (实时) 与上次 (备份) 测得母线绝缘电阻; S1047、 判断上次与本次测得值之差是否大于 Rmax; 若是, 则执行 S1048; 若否, 则执行 S1049;
51048、 电阻有大的跳变计数;
51049、 将实时值赋给备份值;
51050、 判断母线绝缘电阻连续跳变计数器是否小于 3 ; 若是, 则执行 S1051 ; 若 否, 则执行 S 1053 ;
S105 K 将备份值赋给实时值, 并返回 S1043 ;
51052、 电阻跳变计数器清零, 并返回 S1043 ;
51053、 将实时值赋给备份值;
51054、 电阻跳变计数器清零, 并返回 S1043。 需要说明的是, 实际运行中绝缘电阻下降有一个过程, 一般绝缘电阻不会有很大 的跳变, 为了抑制外部干扰引起测得的绝缘电阻急剧下降, 比较本次与上次测得母线 绝缘电阻值之差, 若偶尔下降 100K, 则取上次值, 若连续 3次下降 100K, 才取本次 值。 下面结合图 11A〜图 11D对本发明实施例中检测支路绝缘情况的方法的流程进行 详细说明。 如图 11A〜图 11D所示, 本发明实施例中检测支路绝缘情况的方法包括以 下步骤:
S110K 获取支路测量类型及支路数目;
51102、 判断传感器地址是否小于支路数目或判断支路数目是否为 0; 若是, 则执 行 S1103 ; 若否, 则执行 S1104;
51103、 传感器地址清零, 支路测量类型清零, 支路基准时钟清零, 并返回;
51104、 支路测量基准时钟自加 1 ;
51105、 判断是否采用支路正端下降模式进行测量; 若是, 则执行 S1106; 若否, 则执行 S 1107; S1106、判断支路基准时钟是否小于 T2;若是,则执行 S1109;若否,则执行 S1110;
51107、 判断是否采用支路负端下降模式测量; 若是, 则执行 S1125 ; 若否, 则执 行 S1126;
51108、 判断取备用母线电压标志是否允许; 若是, 则执行 S1109; 若否, 则执行 S1110; S1109、 K3断开、 K4闭合;
S1110、 K1断开、 K2闭合;
S111 K 判断支路基准时钟是否大于等于 T2且小于 T3 ; 若是, 则执行 S1112; 若 否, 则执行 S1113 ;
S1112、 获取正母线对地电压;
S1113、判断支路基准时钟是否等于 T3 ;若是,则执行 S1116;若否,则执行 S1117; 51114、 判断暂存电压次数是否大于等于 4; 若是, 则执行 S1115 ; 若否, 则执行 S1126;
51115、 进行复合滤波处理, 计算母线对地电压, 继续执行 S1113 ;
51116、 发送命令至第一个传感器;
51117、 判断支路基准时钟是否大于 T3且小于 T4; 若是, 则执行 S1118; 若否, 则执行 S1121 ;
51118、 获取指定支路漏电流的电流值;
51119、 传感器地址自加 1 ;
51120、 发送命令至下一个传感器;
51121、判断支路基准时钟是否等于 T4;若是,则执行 S1122;若否,则执行 S1123 ;
51122、 获取最后一个支路漏电流的电流值;
51123、 判断支路基准时钟是否大于 T4; 若是, 则执行 S1124; 若否, 则返回;
51124、 连续计算所有支路正极绝缘电阻;
51125、判断支路基准时钟是否小于 T2;若是,则执行 S1127;若否,则执行 S1130;
51126、 判断是否采用支路双端下降模式测量; 若是, 则执行 S1144; 若否, 则返 回;
51127、 判断取备用母线电压标志是否允许; 若是, 则执行 S1128; 若否, 则执行 S1129;
51128、 K3闭合、 K4断开;
51129、 K1闭合、 K2断开;
51130、判断支路基准时钟是否不小于 T2且小于 T3 ; 若是, 则执行 S1131 ; 若否, 则执行 S 1135 ;
S113 K 获取负母线对地电压; 51132、 判断暂存电压次数是否不小于 T4; 若是, 则执行 S1133 ; 若否, 则执行 S1134;
51133、 进行复合滤波处理, 计算母线对地电压, 继续执行 S1134; ;
51134、判断支路基准时钟是否等于 T3 ;若是,则执行 S1135 ;若否,则执行 S1136;
51135、 发送命令至第一个传感器;
51136、 判断支路基准时钟是否大于 T3且小于 T4; 若是, 则执行 S1137; 若否, 则执行 S1140;
51137、 获取指定支路漏电流的电流值;
51138、 传感器地址自加 1 ;
51139、 发送命令至下一个传感器;
51140、判断支路基准时钟是否等于 T4;若是,则执行 S 1141 ;若否,则执行 S 1142;
S 114K 获取最后一个支路漏电流的电流值;
51142、 判断支路基准时钟是否大于 T4; 若是, 则执行 S1143 ; 若否, 则返回;
51143、 连续计算所有支路负极绝缘电阻;
51144、 判断支路基准时钟是否不大于 T2; 若是, 则执行 S1145 ; 若否, 则执行 S1146;
51145、 判断取备用母线电压标志是否允许; 若是, 则执行 S1146; 若否, 则执行 S1147;
51146、 K3闭合、 K4断开;
51147、 K1闭合、 K2断开;
51148、判断支路基准时钟是否不小于 T2且小于 T3 ; 若是, 则执行 S1149; 若否, 则执行 S1152;
51149、 获取母线对地电压;
51150、判断暂存电压次数是否不小于 4;若是,则执行 S1151 ;若否,则执行 S1152; 51151、 进行复合滤波处理, 计算母线对地电压, 继续执行 S1152; ;
51152、判断支路基准时钟是否等于 T3 ;若是,则执行 S1153 ;若否,则执行 S1154;
51153、 发送命令至第一个传感器;
51154、 判断支路基准时钟是否大于 T3且小于 T4; 若是, 则执行 S1155 ; 若否, 则执行 S1158;
51155、 获取指定支路漏电流的电流值;
51156、 传感器地址自加 1 ;
51157、 发送命令至下一个传感器;
51158、判断支路基准时钟是否等于 T4;若是,则执行 S 1159;若否,则执行 S 1142;
51159、 获取最后一个支路漏电流的电流值;
51160、判断支路基准时钟是否不大于 T4且小于 T5 ; 若是, 则执行 S1161 ; 若否, 则执行 S1164;
S 116K 判断取备用母线电压标志是否允许; 若是, 则执行 S1162; 若否, 则执行 S1163 ;
51162、 K3断开、 K4闭合;
51163、 K1断开、 K2闭合;
51164、判断支路基准时钟是否不小于 T5且小于 T6; 若是, 则执行 S1165 ; 若否, 则执行 S1168;
51165、 获取母线对地电压;
51166、判断暂存电压次数是否不小于 4;若是,则执行 S1167;若否,则执行 S1168;
51167、 进行复合滤波处理, 计算母线对地电压, 继续执行 S1168; ;
51168、判断支路基准时钟是否等于 T6;若是,则执行 S 1169;若否,则执行 S1170;
51169、 发送命令至第一个传感器; S1170、 判断支路基准时钟是否大于 T6且小于 T7; 若是, 则执行 S1171 ; 若否, 则执行 S 1174;
S117K 获取指定支路漏电流的电流值;
S1172、 传感器地址自加 1; S1173、 发送命令至下一个传感器;
51174、判断支路基准时钟是否等于 T7;若是,则执行 S1175 ;若否,则执行 S1176;
51175、 获取最后一个支路漏电流的电流值;
51176、 判断支路基准时钟是否大于 T7; 若是, 则执行 S1177; 若否, 则返回;
51177、 判断正母线是否接地; 若是, 则执行 S1178; 若否, 则执行 S1185 ;
S1178、 判断支路正极漏电流的电流值是否为 0; 若是, 则执行 S1179; 若否, 则 执行 S1180;
51179、 将该支路正极漏电流的电流值赋为一负值;
51180、 对所有支路正极漏电流的电流值进行排序;
S118K 判断正极漏电流的电流值是否等于最大值; 若是, 则执行 S1182; 若否, 则执行 S1183 ;
51182、 该支路正极绝缘电阻值取检测最小值 Rmin;
51183、 该支路正极绝缘电阻值取缺省值;
51184、 支路负极绝缘电阻值取检测最大值 Rmax;
51185、 判断负母线是否接地; 若是, 则执行 S1186; 若否, 则执行 S1187;
S1186、 判断支路负极漏电流的电流值是否为 0; 若是, 则执行 S1188; 若否, 则 执行 S1189;
51187、 判断是否计算完所有支路绝缘电阻; 若是, 则执行 S11100; 若否, 则执 行 S1194;
51188、 将该支路负极漏电流的电流值赋为一负值; 51189、 对所有支路负极漏电流的电流值进行排序;
51190、 判断负极漏电流的电流值是否等于最大值; 若是, 则执行 S1191 ; 若否, 则执行 S 1192;
S119K 该支路负极绝缘电阻值取检测最小值 Rmin; S1192、 该支路负极绝缘电阻值取缺省值, 继续执行 S1193 ;
51193、 支路正极绝缘电阻值取检测最大值 Rmax;
51194、 采用公式 7及公式 8计算第 N条支路的正、 负极绝缘电阻值;
51195、 判断采用双端检测是否测出该支路绝缘电阻; 若是, 则执行 S11100; 若 否, 则执行 S 1196; S1196、 判断两次测得的支路 N的漏电流的电流值是否均大于 0; 若是, 则执行
S1197; 若否, 则执行 S1198;
51197、 计算支路 N正极绝缘电阻;
51198、判断两次测得的支路 N漏电流的电流值是否均小于 0;若是,则执行 S1199; 若否, 则执行 S11100 S1199、 计算支路 N的负极绝缘电阻值;
S11100、 支路测量类型清零, 支路基准时钟清零, 并结束本流程。 下面结合图 12A及图 12B对本发明实施例中计算支路绝缘电阻的方法的流程进行 详细说明。如图 12A及图 12B所示, 本发明实施例中计算支路绝缘电阻的方法包括以 下步骤: S120K 判断支路漏电流的电流值是否为 0; 若是, 则执行 S1202; 若否, 则执行
S1203;
51202、 该支路正、 负极绝缘电阻取缺省值, 并返回;
51203、 判断检测支路漏电流是否大于预设最大值 Imax; 若是, 则执行 S1204; 若否, 则执行 S 1205; S1204、 该支路正极绝缘电阻取最小值, 负极绝缘电阻取缺省值, 并返回; 51205、 判断检测支路漏电流是否小于预设最小值 Imin; 若是, 则执行 S1206; 若 否, 则执行 S1207;
51206、 该支路负极绝缘电阻取最小值, 正极绝缘电阻取缺省值, 并返回;
51207、 判断支路测量是否为正端下降模式; 若是, 则执行 S1208; 若否, 则执行 S1209;
51208、 按公式 5计算支路正极绝缘电阻;
51209、 判断支路测量是否为负端下降模式; 若是, 则执行 S1219; 若否, 则执行 S1220;
51210、 判断支路正极绝缘电阻是否超量程; 若是, 则执行 S1211 ; 若否, 则执行 S1212;
S121K 支路正极绝缘电阻取检测最大值 Rmax;
51212、 判断支路正极绝缘电阻是否大于正母线绝缘电阻; 若是, 则执行 S1213 ; 若否, 则执行 S1215;
51213、 判断正母线绝缘电阻是否大于预设最小值 Rmin; 若是, 则执行 S1214; 若否, 则执行 S1215;
51214、 支路正极绝缘电阻 =正母线绝缘电阻 -Rmin;
51215、 判断负母线绝缘电阻是否为无穷大; 若是, 则执行 S1216; 若否, 则执行 S1217;
51216、 支路负极绝缘电阻取检测最大值 Rmax, 并执行 S1218; S1217、 支路负极绝缘电阻取缺省值;
51218、 支路基准时钟清零, 并返回;
51219、 按公式 6计算支路负极绝缘电阻, 并执行 S1221 ;
51220、判断支路测量是否为双端下降模式; 若是, 则执行 S1230; 若否, 则返回;
S122K 判断支路负极绝缘电阻是否超量程; 若是, 则执行 S1222; 若否, 则执行 S1223 ; 51222、 支路负极绝缘电阻取检测电阻最大值 Rmax;
51223、 判断支路负极绝缘电阻是否大于负母线绝缘电阻; 若是, 则执行 S1224; 若否, 则执行 S1226;
51224、 判断母线绝缘电阻是否大于预设最小值 Rmin; 若是, 则执行 S1225; 若 否, 则执行 S1226;
S 1225、 支路负极绝缘电阻 =负母线绝缘电阻 -Rmin;
51226、 判断正母线绝缘电阻是否为无穷大; 若是, 则执行 S1227; 若否, 则执行 S1228;
51227、 支路正极绝缘电阻取检测最大值, 并执行 S1229; S1228、 支路正极绝缘电阻取缺省值;
51229、 支路基准时钟清零, 并返回;
51230、 计算中间值: U+'* U_、 U+ * U_'、 U- * In'、 U-'* In、 U+ * In'、 U+,* In; S123 K 计算分子绝对值: |U+'* U_ - U+ * U_'|;
S1232、 判断分子是否等于 0; 若是, 则执行 S1233 ; 若否, 则执行 S1234; S1233 , 该支路正、 负极绝缘电阻取缺省值, 并返回;
51234、判断两次投切开关测得该支路漏电流方向是否相反;若是,则执行 S1235; 若否, 则执行 S1236;
51235、 计算支路正极绝缘电阻分母: U- * In' + U-'* In, 并执行 S1237;
51236、 计算支路正极绝缘电阻分母: U- * In' - U-'* In; S1237、 按公式 7计算支路正极绝缘电阻;
51238、 判断支路正极绝缘电阻是否超量程; 若是, 则执行 S1239; 若否, 则执行 S1240;
51239, 支路正极绝缘电阻取检测最大值 Rmax; 51240、 判断支路正极绝缘电阻是否大于正母线绝缘电阻; 若是, 则执行 S1242; 若否, 则执行 S1241 ;
51241、判断两次投切开关测得该支路漏电流方向是否相反;若是,则执行 S1244; 若否, 则执行 S 1245; S1242, 判断正母线绝缘电阻是否小于预设最小值 Rmin; 若是, 则执行 S1243 ; 若否, 则执行 S1241 ;
51243、 支路正极绝缘电阻 =正母线绝缘电阻 -Rmin, 并执行 S1241 ;
51244、 计算支路负极绝缘电阻分母: U+ * In' + U+'* In, 并执行 S1246;
51245、 计算支路负极绝缘电阻分母的绝对值: |U+ * In' - U+'* In|; S1246、 按公式 8计算支路负极绝缘电阻;
51247、判断负极绝缘电阻是否超量程;若是,则执行 S1248;若否,则执行 S1249;
51248、 支路负极绝缘电阻取检测最大值 Rmax;
51249、 判断支路负极绝缘电阻是否大于负母线绝缘电阻; 若是, 则执行 S1250; 若否, 则结束; S1250、 判断负母线绝缘电阻是否大于预设最小值 Rmin; 若是, 则执行 S1251 ; 若否, 则结束;
S125K 支路负极绝缘电阻 =负母线绝缘电阻 -Rmin, 并结束。 需要说明的是, 由于漏电流传感器量程为 ±10mA,正常检测范围为 -10mA〜10 mA, 某些情况下支路漏电流可能会超量程, 当发现检测到漏电流超量程时, 一般该支路绝 缘电阻都会很小, 我们直接认为接地。 当检测支路漏电流 >10mA, 判断该支路正极接 地, 当检测漏电流 <-10mA, 判断该支路负极接地。 本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程 序产品。 因此, 本发明可采用完全硬件实施例、 完全软件实施例、 或结合软件和硬件 方面的实施例的形式。 而且, 本发明可采用在一个或多个其中包含有计算机可用程序 代码的计算机可用存储介质 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等) 上实施的计算机程序产品的形式。 本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程 图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的 每一流程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供 这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处 理设备的处理器以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理 器执行的指令产生用于实现在流程图一个流程或多个流程和 /或方框图一个方框或多 个方框中指定的功能的装置。 这些计算机程序指令也可存储在能弓 I导计算机或其他可编程数据处理设备以特定 方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括 指令装置的制造品, 该指令装置实现在流程图一个流程或多个流程和 I或方框图一个 方框或多个方框中指定的功能。 这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计 算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算 机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或 方框图一个方框或多个方框中指定的功能的步骤。 尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造 性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为 包括优选实施例以及落入本发明范围的所有变更和修改。 显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精 神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的 范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求 书 、 一种直流系统绝缘监测方法, 该方法包括:
在确定母线发生故障时, 根据所述母线绝缘电阻值, 确定与所述母线连接 的支路的待检测极;
对所述支路的待检测极进行检测确定出故障支路。 、 如权利要求 1所述的方法, 其中, 根据所述母线绝缘电阻值, 确定与所述母线 连接的支路的待检测极, 包括:
若正母线绝缘电阻值不大于第一阈值, 且负母线绝缘电阻值大于所述第一 阈值, 确定与所述正母线连接的支路正极为待检测极;
若所述正母线绝缘电阻值大于所述第一阈值, 且所述负母线绝缘电阻值不 大于所述第一阈值, 确定与所述负母线连接的支路负极为待检测极;
若所述正母线绝缘电阻值及所述负母线绝缘电阻值都不大于所述第一阈 值, 确定与所述正母线连接的支路正极及与所述负母线连接的支路负极为待检 测极。 、 如权利要求 2所述的方法, 其中, 对所述支路的待检测极进行检测确定出故障 支路包括:
若所述支路待检测极为支路正极, 则当支路正极绝缘电阻值不大于设定的 第一阀值时, 确定对应支路为接地故障; 以及当支路正极绝缘电阻值大于所述 第一阀值且不大于设定的第二阀值时, 确定对应支路为绝缘下降故障;
若所述支路待检测极为支路负极, 则当支路负极绝缘电阻值不大于所述第 一阀值时, 确定对应支路为接地故障; 以及当支路负极绝缘电阻值大于所述第 一阀值且不大于所述第二阀值时, 确定对应支路为绝缘下降故障;
若所述支路待检测极为支路正极及支路负极,则当支路正极绝缘电阻值和 / 或支路负极绝缘电阻值不大于所述第一阀值时, 确定对应支路为接地故障; 当 支路正极绝缘电阻值及支路负极绝缘电阻值都大于所述第一阀值, 且当支路正 极绝缘电阻值和 /或支路负极绝缘电阻值不大于所述第二阀值时,确定对应支路 为绝缘下降故障;
其中, 所述第一阀值小于所述第二阀值。 如权利要求 3所述的方法, 其中, 若所述支路待检测极为支路正极, 采用下列 公式确定支路正极绝缘电阻值:
Figure imgf000050_0001
其中,
Figure imgf000050_0002
N条支路正极绝缘电阻值, 其中, N为正整数; U+ 为在 负母线与预设的地线之间并联第二取样电阻,且正母线与所述地线之间断开时, 获取的当前正母线第二对地电压值; /«为流经第 N条支路的漏电流的电流值; 若所述支路待检测极为支路负极, 采用下列公式确定所述支路负极绝缘电 阻值:
Figure imgf000050_0003
Figure imgf000050_0004
N条支路负极绝缘电阻值, 其中, N为正整数; U—为在 正母线与预设的地线之间并联第一取样电阻, 且负母线与地线之间断开时, 获 取的当前负母线第一对地电压值; I"为流经第 N条支路的漏电流的电流值; 若所述支路待检测极为支路正极及支路负极, 采用下列公式确定所述支路 正极绝缘电阻值及支路负极绝缘电阻值:
Figure imgf000050_0005
Figure imgf000050_0006
N条支路正极绝缘电阻值, —-为第 N条支路负极绝缘电 阻值, 其中, N为正整数; U+ 、 U_ Rln 为在对应负母线与预设的地线之间 并联第二取样电阻, 且正母线与地线之间断开时, 获取的当前正母线第二对地 电压值、 当前负母线第二对地电压值及流经第 N条支路的漏电流的电流值; U + 、 ^/_及 A为在正母线与地线之间并联第一取样电阻, 且负母线与地线之 间断开时, 获取的当前正母线第一对地电压值、 当前负母线第一对地电压值及 流经第 N条支路的漏电流的电流值。 、 如权利要求 1所述的方法, 其中, 确定母线发生故障, 包括: 确定正母线绝缘电阻值及负母线绝缘电阻值;
若正母线绝缘电阻值和 /或负母线绝缘电阻值不大于第一门限值,确定所述 母线发生接地故障;
若正母线绝缘电阻值和 /或负母线绝缘电阻值在所述第一门限值与第二门 限值之间, 确定所述母线发生绝缘下降故障;
其中, 所述第一门限值小于所述第二门限值, 所述第二门限值不大于所述 第一阈值。 、 如权利要求 5 所述的方法, 其中, 确定正母线绝缘电阻值及负母线绝缘电阻 值, 包括:
在所述正母线与预设的地线之间连接第一取样电阻, 且所述负母线与所述 地线之间断开时, 确定正母线及负母线的第一对地电压值;
所述正母线与所述地线之间断开, 且在所述负母线与所述地线之间连接第 二取样电阻时, 确定正母线及负母线的第二对地电压值;
根据下列公式确定所述正母线绝缘电阻值及负母线绝缘电阻值:
R
Figure imgf000051_0001
R — u; u—-u+ u: R
" u+ u +u+ ul 2 其中, R+为正母线绝缘电阻值; R—为负母线绝缘电阻值; 为第一取样 电阻; 为第二取样电阻; +为正母线的第一对地电压值; ^为负母线的 第一对地电压值; W为正母线的第二对地电压值; f/_ '为负母线的第二对地电 压值。 、 如权利要求 5 所述的方法, 其中, 确定正母线绝缘电阻值及负母线绝缘电阻 值, 包括:
在所述正母线与预设的地线之间连接第一取样电阻, 且所述负母线与所述 地线之间断开时, 确定正母线及负母线的第一对地电压值; 在所述正母线及负母线的第一对地电压值满足下列公式时, 确定所述正母 线接地, 则所述正母线绝缘电阻值为预设阻值;
Figure imgf000052_0001
其中, f/ +为正母线的第一对地电压值; ^为负母线的第一对地电压值;
第一门限值
P为比较系数, 尸= 1- , 且 P的取值范围为: 90%≤P≤99.9%;
第一取样电阻值
在所述负母线与所述地线之间并联第二取样电阻, 且所述正母线与所述地 线之间断开时, 确定正母线及负母线的第二对地电压值;
在所述正母线及负母线的第二对地电压值满足下列公式时, 确定所述负母 线接地, 则所述负母线绝缘电阻值为所述预设阻值;
Figure imgf000052_0002
其中, ί/ +为正母线的第二对地电压值; ^为负母线的第二对地电压值;
第一门限倌
P为比较系数, P = l- , 且 P的取值范围为: 90%≤P≤99.9%。
第一取样电阻值 如权利要求 3或 6或 7所述的方法, 其中, 根据下列步骤确定正母线对地电压 值:
在设定时长内, 对正母线对地电压值至少进行两次采样;
对得到的采样电压值进行滤波处理, 并将滤波处理后的电压值作为所述正 母线对地电压值;
其中, 正母线对地电压值包括正母线第一对地电压值及正母线第二对地电 压值;
根据下列步骤确定负母线对地电压值:
在设定时长内, 对负母线对地电压值至少进行两次采样;
对得到的采样电压值进行滤波处理, 并将滤波处理后的电压值作为所述负 母线对地电压值;
其中, 负母线对地电压值包括负母线第一对地电压值及负母线第二对地电 压值。 、 一种直流系统绝缘监测设备, 该设备包括:
支路待检测极确定模块, 设置为确定母线发生故障时, 根据所述母线绝缘 电阻值, 确定与所述母线连接的支路的待检测极;
检测模块, 设置为对所述支路的待检测极进行检测确定出故障支路。 0、 如权利要求 9所述的设备, 其中, 所述支路待检测极确定模块设置为:
若正母线绝缘电阻值不大于第一阈值, 且负母线绝缘电阻值大于所述第一 阈值, 确定与所述正母线连接的支路正极为待检测极;
若所述正母线绝缘电阻值大于所述第一阈值, 且所述负母线绝缘电阻值不 大于所述第一阈值, 确定与所述负母线连接的支路负极为待检测极;
若所述正母线绝缘电阻值及所述负母线绝缘电阻值都不大于所述第一阈 值, 确定与所述正母线连接的支路正极及与所述负母线连接的支路负极为待检 测极。 1、 如权利要求 10所述的设备, 其中, 所述检测模块还设置为:
若所述支路待检测极为支路正极, 则当支路正极绝缘电阻值不大于设定的 第一阀值时, 确定对应支路为接地故障; 以及当支路正极绝缘电阻值大于所述 第一阀值且不大于设定的第二阀值时, 确定对应支路为绝缘下降故障;
若所述支路待检测极为支路负极, 则当支路负极绝缘电阻值不大于所述第 一阀值时, 确定对应支路为接地故障; 以及当支路负极绝缘电阻值大于所述第 一阀值且不大于所述第二阀值时, 确定对应支路为绝缘下降故障;
若所述支路待检测极为支路正极及支路负极,则当支路正极绝缘电阻值和 / 或支路负极绝缘电阻值不大于所述第一阀值时, 确定对应支路为接地故障; 当 支路正极绝缘电阻值及支路负极绝缘电阻值都大于所述第一阀值, 且当支路正 极绝缘电阻值和 /或支路负极绝缘电阻值不大于所述第二阀值时,确定对应支路 为绝缘下降故障;
其中, 所述第一阀值小于所述第二阀值。 、 如权利要求 11所述的设备, 其中, 所述检测模块还设置为:
若所述支路待检测极为支路正极,采用下列公式确定支路正极绝缘电阻值: 其中, 为第 N条支路正极绝缘电阻值, 其中, N为正整数; σ+ 为在 对应负母线与预设的地线之间并联第二取样电阻, 且正母线与所述地线之间断 开时,获取的当前正母线第二对地电压值; /«为流经第 Ν条支路的漏电流的电 流值;
若所述支路待检测极为支路负极, 采用下列公式确定所述支路负极绝缘电 阻值:
其中, 为第 Ν条支路负极绝缘电阻值, 其中, Ν为正整数; U—为在 对应正母线与预设的地线之间并联第一取样电阻,且负母线与地线之间断开时, 获取的当前负母线第一对地电压值; /«为流经第 Ν条支路的漏电流的电流值; 若所述支路待检测极为支路正极及支路负极, 采用下列公式确定所述支路 正极绝缘电阻值及支路负极绝缘电阻值:
D u+' u -u + u '
=
Figure imgf000054_0001
其中, 为第 Ν条支路正极绝缘电阻值, 为第 Ν条支路负极绝缘电 阻值, 其中, Ν为正整数; U+ 、 U_ 及//为在对应负母线与预设的地线之间 并联第二取样电阻, 且正母线与地线之间断开时, 获取的当前正母线第二对地 电压值、 当前负母线第二对地电压值及流经第 N条支路的漏电流的电流值; U +、 ^/_及 A为在正母线与地线之间并联第一取样电阻, 且负母线与地线之 间断开时, 获取的当前正母线第一对地电压值、 当前负母线第一对地电压值及 流经第 N条支路的漏电流的电流值。 如权利要求 10所述的设备, 其中, 所述设备还包括母线监测模块,设置为:确 定正母线绝缘电阻值及负母线绝缘电阻值;若正母线绝缘电阻值和 /或负母线绝 缘电阻值不大于第一门限值, 确定所述母线发生接地故障; 若正母线绝缘电阻 值和 /或负母线绝缘电阻值在所述第一门限值与第二门限值之间,确定所述母线 发生绝缘下降故障; 其中, 所述第一门限值小于所述第二门限值, 所述第二门 限值不大于所述第一阈值。 、 如权利要求 13所述的设备, 其中, 所述母线监测模块设置为:在所述正母线与 预设的地线之间连接第一取样电阻, 且所述负母线与所述地线之间断开时, 确 定正母线及负母线的第一对地电压值; 所述正母线与所述地线之间断开, 且在 所述负母线与所述地线之间连接第二取样电阻时, 确定正母线及负母线的第二 对地电压值; 根据下列公式确定所述正母线绝缘电阻值及负母线绝缘电阻值:
Figure imgf000055_0001
其中, 为正母线绝缘电阻值; ^ -为负母线绝缘电阻值; 为第一取样 电阻; 为第二取样电阻; 为正母线的第一对地电压值; ^为负母线的 第一对地电压值; W为正母线的第二对地电压值; 为负母线的第二对地电 压值。 、 如权利要求 13所述的设备, 其中, 所述母线监测模块设置为:在所述正母线与 预设的地线之间连接第一取样电阻, 且所述负母线与所述地线之间断开时, 确 定正母线及负母线的第一对地电压值; 在所述正母线及负母线的第一对地电压 值满足下列公式时, 确定所述正母线接地, 则所述正母线绝缘电阻值为预设阻 值;
Figure imgf000055_0002
其中, f/ +为正母线的第一对地电压值; -为负母线的第一对地电压值;
第一门限值
P为比较系数, P = l— , 且 P的取值范围为: 90%≤P≤99.9%;
第一取样电阻值
在所述负母线与所述地线之间并联第二取样电阻, 且所述正母线与所述地 线之间断开时, 确定正母线及负母线的第二对地电压值; 在所述正母线及负母 线的第二对地电压值满足下列公式时, 确定所述负母线接地, 则所述负母线绝 缘电阻值为所述预设阻值;
Figure imgf000056_0001
其中, f/ 为正母线的第二对地电压值; ^为负母线的第二对地电压值;
第一门限倌
P为比较系数, P = l- , 且 P的取值范围为: 90%≤P≤99.9%。
第一取样电阻值 、 一种直流系统绝缘监测方法, 该方法包括:
在确定正母线或负母线发生接地故障时, 获取与发生故障的正母线或负母 线连接的各支路的漏电流的电流值;
确定所述电流值中最大的 N个电流值对应的支路为故障支路;
其中, 所述支路的漏电流为支路正极对地漏电流与支路负极对地漏电流的 矢量和, N为正整数。 、 如权利要求 16所述的方法, 其中, 确定正母线或负母线发生接地故障, 包括: 确定正母线绝缘电阻值及负母线绝缘电阻值;
在所述正母线绝缘电阻值不大于第一比较值, 且负母线绝缘电阻值大于所 述第一比较值时, 确定所述正母线发生接地故障;
在所述正母线绝缘电阻值大于所述第一比较值, 且负母线绝缘电阻值不大 于所述第一比较值时, 确定所述负母线发生接地故障。 、 如权利要求 17 所述的方法, 其中, 确定正母线绝缘电阻值及负母线绝缘电阻 值, 包括:
在所述正母线与预设的地线之间并联第一取样电阻, 且所述负母线与所述 地线之间断开时, 确定正母线及负母线的第一对地电压值;
在所述负母线与所述地线之间并联第二取样电阻, 且所述正母线与所述地 线之间断开时, 确定正母线及负母线的第二对地电压值;
根据下列公式确定所述正母线绝缘电阻值及负母线绝缘电阻值;
R 二 u u_ -u +Ui、
+ u + u ' + u u ' 1
Figure imgf000057_0001
其中, R+为正母线绝缘电阻值; R—为负母线绝缘电阻值; 为第一取样 电阻; 为第二取样电阻; +为正母线的第一对地电压值; ^为负母线的 第一对地电压值; W为正母线的第二对地电压值; f/_ '为负母线的第二对地电 压值。 、 如权利要求 16所述的方法, 其中, 确定母线发生接地故障, 包括: 在所述正母线与预设的地线之间连接第一取样电阻, 且所述负母线与所述 地线之间断开时, 确定正母线及负母线的第一对地电压值;
在所述正母线及负母线的第一对地电压值满足下列公式时, 确定所述正母 线发生接地故障;
Figure imgf000057_0003
其中, t +为正母线的第一对地电压值; ^为负母线的第一对地电压值;
第一比较值
P为比较系数, 尸= 1- , 且 P的取值范围为: 90%≤P≤99.9%;
第一取样电阻值
在所述负母线与所述地线之间连接第二取样电阻, 且所述正母线与所述地 线之间断开时, 确定正母线及负母线的第二对地电压值;
在所述正母线及负母线的第二对地电压值满足下列公式时, 确定所述负母 线发生接地故障;
Figure imgf000057_0004
其中, ί/ +为正母线的第二对地电压值; ^为负母线的第二对地电压值;
P为比较系数, P = 且 P的取值范围为: 90%≤P≤99.9%C
Figure imgf000057_0002
、 如权利要求 18或 19所述的方法, 其中, 根据下列步骤确定正母线对地电压值:
在设定时长内, 对正母线对地电压值至少进行两次采样; 对得到的采样电压值进行滤波处理, 并将滤波处理后的电压值作为所述正 母线对地电压值;
其中, 正母线对地电压值包括正母线第一对地电压值及正母线第二对地电 压值;
根据下列步骤确定负母线对地电压值:
在设定时长内, 对负母线对地电压值至少进行两次采样;
对得到的采样电压值进行滤波处理, 并将滤波处理后的电压值作为所述负 母线对地电压值;
其中, 负母线对地电压值包括负母线第一对地电压值及负母线第二对地电 压值。 、 一种直流系统绝缘监测设备, 该设备包括:
监测模块, 设置为在确定正母线或负母线发生接地故障时, 获取与发生故 障的正母线或负母线连接的各支路的漏电流的电流值; 其中, 所述支路的漏电 流为支路正极对地漏电流与支路负极对地漏电流的矢量和;
故障支路确定模块, 设置为确定所述电流值中最大的 N个电流值对应的支 路为故障支路; 其中, N为正整数。 、 如权利要求 21所述的设备,其中,所述设备还包括第一母线检测模块,设置为: 确定正母线绝缘电阻值及负母线绝缘电阻值; 在所述正母线绝缘电阻值不大于 第一比较值, 且负母线绝缘电阻值大于所述第一比较值时, 确定所述正母线发 生接地故障; 在所述正母线绝缘电阻值大于所述第一比较值, 且负母线绝缘电 阻值不大于所述第一比较值时, 确定所述负母线发生接地故障。 、 如权利要求 22所述的设备, 其中, 所述第一母线检测模块设置为:
在所述正母线与预设的地线之间并联第一取样电阻, 且所述负母线与所述 地线之间断开时, 确定正母线及负母线的第一对地电压值; 在所述负母线与所 述地线之间并联第二取样电阻, 且所述正母线与所述地线之间断开时, 确定正 母线及负母线的第二对地电压值; 根据下列公式确定所述正母线绝缘电阻值及 负母线绝缘电阻值;
R 二 u u_ -u + Ui、
+ u + + u_u: 1
Figure imgf000059_0001
其中, Λ+为正母线绝缘电阻值; Λ -为负母线绝缘电阻值; ^为第一取样 电阻; 为第二取样电阻; 为正母线的第一对地电压值; ^为负母线的 第一对地电压值; W为正母线的第二对地电压值; 为负母线的第二对地电 压值。 如权利要求 21所述的设备,其中,所述设备还包括第二母线检测模块,设置为: 在所述正母线与预设的地线之间连接第一取样电阻, 且所述负母线与所述 地线之间断开时, 确定正母线及负母线的第一对地电压值; 在所述正母线及负 母线的第一对地电压值满足下列公式时, 确定所述正母线发生接地故障;
Figure imgf000059_0003
其中, t +为正母线的第一对地电压值; ^为负母线的第一对地电压值;
第一比较值
P为比较系数, 尸= 1- , 且 P的取值范围为: 90%≤P≤99.9%;
第一取样电阻值
在所述负母线与所述地线之间连接第二取样电阻, 且所述正母线与向下地 线之间断开时, 确定正母线及负母线的第二对地电压值; 在所述正母线及负母 线的第二对地电压值满足下列公式时, 确定所述负母线发生接地故障;
Figure imgf000059_0004
其中, ί/ +为正母线的第二对地电压值; ^为负母线的第二对地电压值;
P为比较系数, P = 且 P的取值范围为: 90%≤P≤99.9%。
Figure imgf000059_0002
PCT/CN2012/080936 2011-09-23 2012-09-03 一种直流系统绝缘监测方法及其设备 WO2013040979A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110285661.XA CN103018614B (zh) 2011-09-23 2011-09-23 一种直流系统绝缘监测方法及其设备
CN201110285661.X 2011-09-23

Publications (1)

Publication Number Publication Date
WO2013040979A1 true WO2013040979A1 (zh) 2013-03-28

Family

ID=47913869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080936 WO2013040979A1 (zh) 2011-09-23 2012-09-03 一种直流系统绝缘监测方法及其设备

Country Status (2)

Country Link
CN (1) CN103018614B (zh)
WO (1) WO2013040979A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220252657A1 (en) * 2021-02-09 2022-08-11 Huawei Digital Power Technologies Co., Ltd. Converter system, method and apparatus for detecting insulation resistance of system, and medium

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049169B (zh) 2013-03-15 2016-12-28 艾默生网络能源有限公司 接地检测装置和方法
FR3007844B1 (fr) * 2013-06-26 2015-07-17 Schneider Electric Ind Sas Dispositif d'estimation de l'impedance d'une liaison electrique de terre, procede d'estimation et systeme d'alimentation electrique associes
CN103389436B (zh) * 2013-07-24 2015-12-02 中达电通股份有限公司 直流供电系统的投切式绝缘监测方法及系统
CN103383417A (zh) * 2013-07-24 2013-11-06 中达电通股份有限公司 一种投切式直流系统绝缘监测方法
CN104678264B (zh) * 2013-11-30 2017-12-15 中国科学院沈阳自动化研究所 Auv直流供电系统在线绝缘检测及故障处理装置和方法
CN104007396B (zh) * 2014-05-19 2017-01-25 广西电网公司电力科学研究院 一种直流系统环路窜电故障查找装置及方法
CN104237645B (zh) * 2014-09-04 2017-11-03 上海慕安电气有限公司 一种变电站直流系统绝缘状态在线监测系统和方法
CN107656186B (zh) * 2017-08-29 2020-02-07 北京新能源汽车股份有限公司 一种高压直流电路的检测方法及高压直流电路
CN108375711A (zh) * 2018-02-26 2018-08-07 南京华脉科技股份有限公司 一种双极不接地hvdc电源系统的绝缘监察方法
CN108761293B (zh) * 2018-08-09 2021-01-05 安徽亚辉电气自动化有限公司 一种母线绝缘状态检测装置
CN112557940A (zh) * 2019-09-06 2021-03-26 中兴通讯股份有限公司 一种多级直流系统分布式绝缘检测装置
CN111781425B (zh) * 2020-08-07 2022-05-17 锦浪科技股份有限公司 用于光伏储能系统的绝缘检测模块的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270473A (ja) * 1994-03-29 1995-10-20 Kansai Electric Power Co Inc:The 母線事故の診断方法及び診断装置
CN1584612A (zh) * 2004-06-07 2005-02-23 山东大学 直流电源系统接地故障检测方法及其检测电路
CN101026295A (zh) * 2006-12-21 2007-08-29 王小华 中性点不接地系统低压漏电保护方法及其设备
CN201242583Y (zh) * 2008-07-22 2009-05-20 比亚迪股份有限公司 一种漏电检测装置
CN101738568A (zh) * 2008-11-21 2010-06-16 山东惠工仪器有限公司 分布式直流接地故障检测装置
CN101738560A (zh) * 2008-11-14 2010-06-16 南车株洲电力机车有限公司 一种基于不平衡电桥法的机车控制回路接地检测电路
CN201965190U (zh) * 2010-12-31 2011-09-07 杭州奥能电源设备有限公司 一种直流系统绝缘检测装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2645650B1 (fr) * 1989-04-06 1991-09-27 Merlin Gerin Systeme de controle d'isolement d'un reseau a courant continu
JP3131392B2 (ja) * 1996-10-02 2001-01-31 東日本旅客鉄道株式会社 絶縁抵抗検出装置
CN1470880A (zh) * 2003-06-20 2004-01-28 昆明理工大学 一种具有远程报警及查询功能的直流系统绝缘监测装置
CN1687799A (zh) * 2005-04-06 2005-10-26 南京师范大学 直流接地电阻的开关状态组合检测装置及组合检测方法
CN201335868Y (zh) * 2008-12-29 2009-10-28 株洲电力机车厂长河机电产品开发公司 一种直流电网绝缘监测仪
CN102830283A (zh) * 2011-06-13 2012-12-19 中兴通讯股份有限公司 一种直流电源绝缘检测装置及其检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270473A (ja) * 1994-03-29 1995-10-20 Kansai Electric Power Co Inc:The 母線事故の診断方法及び診断装置
CN1584612A (zh) * 2004-06-07 2005-02-23 山东大学 直流电源系统接地故障检测方法及其检测电路
CN101026295A (zh) * 2006-12-21 2007-08-29 王小华 中性点不接地系统低压漏电保护方法及其设备
CN201242583Y (zh) * 2008-07-22 2009-05-20 比亚迪股份有限公司 一种漏电检测装置
CN101738560A (zh) * 2008-11-14 2010-06-16 南车株洲电力机车有限公司 一种基于不平衡电桥法的机车控制回路接地检测电路
CN101738568A (zh) * 2008-11-21 2010-06-16 山东惠工仪器有限公司 分布式直流接地故障检测装置
CN201965190U (zh) * 2010-12-31 2011-09-07 杭州奥能电源设备有限公司 一种直流系统绝缘检测装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SU, YIXIN ET AL.: "Monitoring and Detecting of DC System Insulation by Balance Resistance Method", AUTOMATION OF ELECTRIC POWER SYSTEMS, vol. 27, no. 14, 25 July 2003 (2003-07-25), pages 65 - 68 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220252657A1 (en) * 2021-02-09 2022-08-11 Huawei Digital Power Technologies Co., Ltd. Converter system, method and apparatus for detecting insulation resistance of system, and medium
US11977110B2 (en) * 2021-02-09 2024-05-07 Huawei Digital Power Technologies Co., Ltd. Converter system, method and apparatus for detecting insulation resistance of system, and medium

Also Published As

Publication number Publication date
CN103018614B (zh) 2017-11-28
CN103018614A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
WO2013040979A1 (zh) 一种直流系统绝缘监测方法及其设备
KR101070832B1 (ko) 자기진단 기능을 구비한 수배전반의 이상 검출 방법
RU2505824C2 (ru) Направленное детектирование замыкания на землю
EP3138171B1 (en) Transient protection for multi-terminal hvdc grid
Li et al. Multi-sample differential protection scheme in DC microgrids
SE536143C2 (sv) Metod för att detektera jordfel i trefas elkraftdistributionsnät
CN104330677B (zh) 一种电子式电流互感器试验装置及试验方法
EP2527854A2 (en) Systems and methods for determining electrical faults
CN102590693A (zh) 一种基于集中参数t模型的交流输电线路故障选相的测后模拟方法
SE459946B (sv) Relaeskydd med selektivt fasval foer dubbelledningar
CN202975229U (zh) 变电站二次回路多点接地检测查找仪
EP3299828A1 (en) Electrical fault detection
JP4977481B2 (ja) 絶縁監視装置
CN102798793B (zh) 逆变器保护电路
JP2016114437A (ja) 漏電箇所探査方法及びその装置
CN104251978A (zh) 直流系统交流串扰与电压波动对继电器影响的测试装置
KR20180008987A (ko) 가스절연개폐기 시스템내 고장 판별 장치 및 가스절연개폐기 시스템내 고장 판별 방법
US8756023B2 (en) Systems and methods for determining electrical ground faults
CN106257294A (zh) 用于检测电网中的故障的方法和装置
JP2010187446A (ja) 電力ケーブル地絡検出装置および電力ケーブル地絡保護装置
KR101481384B1 (ko) 고압배전반, 저압배전반, 분전반, 모터제어반, 태양광 접속반의 비접촉 온도 검출에 의한 열화 감시진단 방법
KR101551341B1 (ko) 케이블 확인 장치
CN103900777A (zh) 一种支柱式电子式电流互感器一次振动检测装置及方法
CN107271775B (zh) 一种电力架空线路相位检查方法
JP6039912B2 (ja) 抵抗値算出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834426

Country of ref document: EP

Kind code of ref document: A1