WO2013040856A1 - 减小铝液中水平电流的阴极结构 - Google Patents

减小铝液中水平电流的阴极结构 Download PDF

Info

Publication number
WO2013040856A1
WO2013040856A1 PCT/CN2012/001151 CN2012001151W WO2013040856A1 WO 2013040856 A1 WO2013040856 A1 WO 2013040856A1 CN 2012001151 W CN2012001151 W CN 2012001151W WO 2013040856 A1 WO2013040856 A1 WO 2013040856A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
carbon block
horizontal current
reducing
aluminum liquid
Prior art date
Application number
PCT/CN2012/001151
Other languages
English (en)
French (fr)
Inventor
周东方
杨晓东
刘雅锋
刘伟
邹智勇
刘铭
胡红武
张钦菘
白斌
Original Assignee
中铝国际工程股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铝国际工程股份有限公司 filed Critical 中铝国际工程股份有限公司
Priority to IN2835CHN2014 priority Critical patent/IN2014CN02835A/en
Publication of WO2013040856A1 publication Critical patent/WO2013040856A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Definitions

  • the present invention relates to a cathode structure, and more particularly to a cathode structure capable of reducing a horizontal current in an aluminum liquid in the field of producing primary aluminum by Hall-Elu electrolysis.
  • Metallic aluminum is industrially produced by molten salt electrolysis, that is, alumina which is electrolytically dissolved in molten cryolite-based electrolyte.
  • the main method currently used is Hall-Heroult electrolysis. .
  • the direct equipment for the production of electrolytic aluminum is an electrolytic cell.
  • the electrolytic cell is mainly composed of two parts: one part is an anode, usually made of carbon material; the other part is a cathode, which is made of carbon block and lining material.
  • the aluminum electrolysis cell is connected in series throughout the electrolysis series.
  • the current flows from the anode into the electrolysis cell, through the molten electrolyte, through the liquid aluminum liquid, into the cathode carbon block, and the current is collected through the cathode steel rod assembled in the cathode carbon block, passing through the cathode.
  • the busbar is routed to the next cell.
  • the cathode structure of the existing aluminum electrolytic cell is such that a cathode steel rod is arranged at the bottom of the cathode carbon block, and the cathode steel rod and the carbon block are all connected by way of smearing or ferrophosphorus, and each cathode carbon block is provided with one. Or two cathode steel rods, the cathode steel rod and the cathode carbon block are placed horizontally in the same direction, and one end of the cathode steel rod extends from the side wall of the electrolytic tank and is connected to the cathode bus bar.
  • the cathode conductive structure has a very large disadvantage: Since the cathode steel bar and the cathode carbon block are placed in the same horizontal direction, a very large horizontal current is generated in the aluminum liquid, and the horizontal current and the vertical magnetic field in the aluminum liquid Cooperating to generate electromagnetic force, which drives the liquid aluminum liquid to flow and fluctuate in the electrolytic cell. If the horizontal current in the electrolytic cell is too large and unevenly distributed, the interface between the aluminum liquid and the electrolysis interface will be excessively large, so that Electrolytic cells produce severe instability in production and reduce current efficiency.
  • the horizontal current distribution in the aluminum liquid is unevenly distributed along the length of the cathode carbon block, so that the current density at the end of the cathode carbon block is maximized, thereby significantly accelerating the corrosion of the cathode carbon block and reducing the life of the electrolytic cell.
  • the present invention proposes a cathode structure for reducing the horizontal current in the aluminum liquid, the purpose of which is to reduce the horizontal current in the aluminum liquid and make the cathode current density more uniform.
  • a cathode structure for reducing a horizontal current in an aluminum liquid comprising a cathode carbon block, and a cathode steel rod disposed under the cathode carbon block, characterized in that the cathode steel rod is along the length There is a partition in the direction, and a partition insulation material is arranged in the partition.
  • the bottom of the cathode steel rod and the bottom of the partition to the area directly below the end of the cathode carbon block are insulators, and the upper part of the cathode steel rod passes through the electric conductor and The cathode carbon block is connected.
  • the conductor is carbon paste or ferrophosphorus.
  • the cathode steel rod is partially ligated or cast in a cathode carbon block, and the cathode steel rod is integrally passed out from the side of the electrolytic cell.
  • the cross-sectional shape of the cathode steel rod is square, circular, semi-circular, trapezoidal or triangular.
  • One to 50 cathode steel rods are installed in the lower portion of each set of cathode carbon blocks.
  • the dividing slit is disposed at an upper portion of the cathode steel bar.
  • the dividing seam is a vertical or inclined dividing seam.
  • the number of the slits is 1 to 50.
  • the length of the slit is sequentially decreased from the inner side to the outer side.
  • the invention has strong practicability, and reduces the horizontal current in the aluminum liquid under the condition that the cathode power-off mode, that is, the side power-off mode, is not changed, and the cathode current distribution is more uniform
  • the stability of the electrolytic cell is improved and the life of the tank is prolonged.
  • the electrolytic cell can operate efficiently and smoothly under the condition of low pole distance, effectively reducing the energy consumption per ton of aluminum, and has remarkable energy saving effect.
  • Figure 1 is a schematic view showing the structure of a cathode of a first embodiment of the present invention.
  • FIG. 2 is a schematic view showing a combined structure of a cathode carbon block and a cathode steel rod according to a first embodiment of the present invention
  • Fig. 3 is a schematic view showing the combined structure of a cathode carbon block and a cathode steel rod according to a second embodiment of the present invention.
  • Figure 4 is a schematic view of an open split slit on a cathode steel bar.
  • cathode carbon block 2, cathode steel rod; 3, separation joint; 4, separation joint insulation material; 5, insulator; 6, electrical conductor.
  • the cathode structure of the present invention for reducing the horizontal current in the aluminum liquid comprises a cathode carbon block 1, and a cathode steel rod 2 is disposed under the cathode carbon block 1, and one end of the cathode steel rod 2 is opposite to the cathode bus line.
  • the cathode steel rod 2 is fixed or cast in the lower part of the cathode carbon block 1, and the cathode steel rod 2 is provided with a partition seam 3 along the length direction.
  • two slits of different lengths are provided on one cathode steel rod 2. 3.
  • the longer length of the dividing seam 3 is placed on the side close to the center of the carbon block, so that during the current conduction of the cathode structure, the current is derived from the three-part split.
  • a partitioning insulation material 4 is provided in the partitioning seam 3 so that the cathode steel rod 2 is insulated from each other by the different portions divided by the partitioning seam 3.
  • An area between the bottom of the cathode steel rod 2 and the bottom of the partition 3 directly below the end of the cathode carbon block 1 is an insulator 5, and an upper portion of the cathode steel rod 2 is connected to the cathode carbon block 1 through an electric conductor 6, and the electric conductor 6 is Carbon paste or ferrophosphorus, the cathode steel rod 2 is entirely passed out from the side of the electrolytic cell, and the cross-sectional shape of the cathode steel rod 2 is square, circular, semi-circular, trapezoidal or triangular, and the lower part of each group of cathode carbon blocks 1 is installed.
  • the partition 3 is provided at the upper portion of the cathode steel bar 2
  • the partition 3 is a vertical partition, and the number of the partitions 3 is set to 1 to 50 per cathode steel
  • the partition slit 3 in the embodiment 1 is a slanted split joint as shown in Fig. 4. As shown in Fig. 3, a portion of the lower portion of the cathode steel rod 2 protrudes from the lower surface of the cathode carbon block 1.
  • the invention changes the junction of the cathode steel bar without changing the way of the cathode power-off mode.
  • the resistance between the second equipotential surface of the end of the steel rod significantly reduces the horizontal current in the aluminum liquid, which makes the cathode current distribution more uniform, improves the stability of the electrolytic cell, and enables the electrolytic cell to be at a low pole. Efficient and stable production under the conditions of the distance, effectively reducing the energy consumption per ton of aluminum, and the energy saving effect is obvious. Achieve the purpose of reducing the horizontal current in the aluminum liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

公开了一种减小铝液中水平电流的阴极结构。该结构包括阴极炭块,在阴极炭块下方设有阴极钢棒,阴极钢棒沿长度方向设有分隔缝,分隔缝内设有分隔缝绝缘材料,阴极钢棒内分隔缝底部与阴极炭块的端部及其底部围成的长方体区域为绝缘体,阴极钢棒的上部通过导电体与阴极炭块连接。该结构在不改变阴极出电方式即侧面出电的条件下,均化了铝电解槽铝液中的电流分布,降低了铝液中的水平电流,提高了电解槽的稳定性,使电解槽能够在低极距下高效运行,有效地减少了吨铝能耗,具有节能效果,同时延长了阴极的寿命。

Description

减小铝液中水平电流的阴极结构 技术领域
本发明涉及一种阴极结构, 尤其涉及利用霍尔 -埃鲁电解法生产原 铝的领域中能够减小铝液中水平电流的阴极结构。
背景技术
金属铝在工业上采用熔盐电解法进行生产, 即电解溶解在熔融的 以冰晶石为主要成分的电解质中的氧化铝, 目前主要采用的方法为霍 尔 -埃鲁 ( Hall-Heroult ) 电解法。
生产电解铝的直接设备为电解槽, 电解槽主要由两大部分组成: 一部分为阳极, 通常由碳素材料制成; 另一部分为阴极, 由炭块与内 衬材料砌筑而成。
铝电解槽被串联在整个电解系列中, 电流从阳极进入电解槽, 通 过熔融的电解质, 穿过液态铝液, 进入阴极炭块, 电流通过装配在阴 极炭块中的阴极钢棒收集, 通过阴极母线导入下一台电解槽。
现有的铝电解槽阴极结构为, 在阴极炭块的底部装有阴极钢棒, 阴极钢棒与炭块之间全部采用扎糊或浇磷铁的方式连接, 每个阴极炭 块装有一根或两根阴极钢棒, 阴极钢棒与阴极炭块同向水平放置, 阴 极钢棒的一端伸出电解槽的侧壁与阴极母线相连接。 这种结构的电解 槽, 阴极导电结构存在一个非常大的缺点: 由于阴极钢棒与阴极炭块 同向水平放置, 导致铝液中产生非常大的水平电流, 该水平电流与铝 液中垂直磁场共同作用产生电磁力, 这种电磁力驱动液态铝液在电解 槽中流动和波动, 如果电解槽中的水平电流过大且分布不均, 将会导 致铝液与电解 ^界面波动过大, 使电解槽在生产中产生严重的不稳定 性, 降低电流效率。 另外, 铝液中水平电流分布沿阴极炭块的长度方 向分布不均勾, 使得阴极炭块的端部处电流密度最大, 从而显著加快 此处阴极炭块的腐蚀, 降低电解槽的寿命。
为了提高电解槽的稳定性, 通常的做法是在电解槽的设计中严格 控制铝液中的垂直磁场分布, 减小电磁力, 从而提高电解槽的稳定性。 另外还有其它几种方法, 如在电解槽铝液中设置一定数量的阻挡结构, 如阻流块、 阴极凸起等, 以此来降低铝液的流速、 减緩界面波动, 提 高电解槽的稳定性; 均化电解槽铝液中的电流分布, 减小水平电流, 提高电解槽的稳定性。
发明内容
本发明为了解决上述技术问题, 提高电解槽的稳定性, 提出一种 减小铝液中水平电流的阴极结构, 其目的是减小铝液中的水平电流, 使阴极电流密度更加均勾, 从而提高铝电解槽生产的稳定性, 使电解 槽能够在较低极距下高效平稳运行, 显著降低吨铝能耗, 同时阴极电 流密度均勾, 降低阴极磨损的速率, 延长阴极寿命。
为了实现上述目的, 本发明是这样实现的: 减小铝液中水平电流 的阴极结构, 包括阴极炭块, 在阴极炭块下方设有阴极钢棒, 其特征 在于所述的阴极钢棒沿长度方向设有分隔缝, 分隔缝内设有分隔缝绝 缘材料, 阴极钢棒的底部与分隔缝的底部之间的到阴极炭块端部正下 方区域为绝缘体, 阴极钢棒的上部通过导电体与阴极炭块连接。
所述的导电体为碳糊或磷铁。
所述的阴极钢棒部分扎固或浇铸在阴极炭块中, 所述阴极钢棒整 体从电解槽的侧部穿出。
所迷的阴极钢棒的截面形状是方形、 圆形、 半圆形、 梯形或三角 形。
所述的每组阴极炭块下部安装 1至 50根阴极钢棒。
所述分隔缝设置在阴极钢棒的上部。
所迷分隔缝是竖直或倾斜分隔缝。
所述分隔缝数量为 1至 50个。
所述当分隔缝数量 2至 50个时, 分隔缝的长度从里侧向外側依次 减小。
本发明的优点效果: 本发明具有很强的实用性, 在不改变阴极出 电方式——即侧面出电——的条件下, 减小了铝液中的水平电流, 阴 极电流分布更加均勾, 提高了电解槽的稳定性, 延长了槽寿命, 电解 槽可以在低极距条件下高效平稳运行, 有效地减少了吨铝能耗, 具有 显著的节能效果。
附图说明
图 1是本发明的第一实施例的阴极结构示意图。
图 2 是本发明的第一实施例的阴极炭块与阴极钢棒组合结构示意 图。
图 3 是本发明的第二实施例的阴极炭块与阴极钢棒组合结构示意 图。
图 4是阴极钢棒上开倾斜分割缝的示意图。
图中, 1、 阴极炭块; 2、 阴极钢棒; 3、 分隔缝; 4、 分隔缝绝缘 材料; 5、 绝缘体; 6、 导电体。
具体实施方式
下面结合附图对本发明进行详细说明, 但本发明的保护范围不受 实施例所限。
实施例 1
如图 1、 2所示本发明的减小铝液中水平电流的阴极结构, 包括阴 极炭块 1 , 在阴极炭块 1下方设有阴极钢棒 2 , 阴极钢棒 2的一端与阴 极母线相连接, 阴极钢棒 2扎固或浇铸在阴极炭块 1下部, 阴极钢棒 2 沿长度方向设有分隔缝 3,本实施例在一根阴极钢棒 2上设有两个长度 不同的分隔缝 3, 长度较长的分隔缝 3设在靠近炭块中心的一侧, 这样 在阴极结构的电流传导过程中, 电流由三部分分流导出。
分隔缝 3内设有分隔缝绝缘材料 4 ,以使阴极钢棒 2被分隔缝 3分 割的不同部分之间相互绝缘。 阴极钢棒 2的底部与分隔缝 3的底部之 间的到阴极炭块 1端部正下方区域为绝缘体 5 ,阴极钢棒 2的上部通过 导电体 6与阴极炭块 1连接, 导电体 6为碳糊或磷铁, 阴极钢棒 2整 体从电解槽的侧部穿出, 阴极钢棒 2 的截面形状是方形、 圆形、 半圆 形、 梯形或三角形, 每组阴极炭块 1下部安装 1至 50根阴极钢棒 2, 分隔缝 3设置在阴极钢棒 2的上部, 分隔缝 3是竖直分隔缝, 每根阴 极钢棒 2上设置分隔缝 3数量为 1至 50个。
实施例 2
实施例 1 中的分隔缝 3如图 4所示为倾斜分割缝, 如图 3所示阴 极钢棒 2下部有一部分突出阴极炭块 1的下表面。
当然, 分隔缝为一条或多条, 都能实现是电流分流导出, 不同的 是分流的效果不同, 对减小水平电流的贡献程度不同, 但都能通过此 方法达到减小水平电流的目的。 当分隔缝数量 2-50个时, 分隔缝的长 度从里侧向外侧依次减小。
本发明在不改变阴极出电方式的条件下, 通过改变阴极钢棒的结 构、 阴极钢棒与阴极炭块的连接方式等, 调节阴极炭块及阴极钢棒的 组合电阻, 即调节铝液和阴极炭块相接触的第一等电位面与同阴极母 线相连接的阴极钢棒端部的第二等电位面之间的电阻值, 显著减小了 铝液中的水平电流, 使得阴极电流分布更加均勾, 提高了电解槽的稳 定性, 使电解槽能够在低极距条件下高效稳定生产, 有效地减少了吨 铝能耗, 节能效果明显。 达到降低铝液中水平电流的目的。
本发明的具体实施方式中参照附图, 对本发明的实现措施进行了 示例性描述, 但本发明保护范围是由下面的权利要求书来限定的, 而 不受本发明中实施例所限。

Claims

权 利 要 求
1. 一种减小铝液中水平电流的阴极结构, 包括阴极炭块( 1) , 在 所述阴极炭块 ( 1 ) 下方设有阴极钢棒(2) , 其特征在于, 所述阴极 钢棒(2) 沿长度方向设有分隔缝(3) , 所述分隔缝(3) 内设有分隔 缝绝缘材料(4) , 阴极钢棒(2) 的底部与分隔缝(3) 的底部之间的 到阴极炭块 ( 1 ) 端部正下方区域为绝缘体, 阴极钢棒(2) 的上部通 过导电体 (6) 与阴极炭块 ( 1)连接。
2. 根据权利要求 1所述的减小铝液中水平电流的阴极结构, 其特 征在于, 所述导电体 (6) 为碳糊或磷铁。
3. 根据权利要求 1所述的减小铝液中水平电流的阴极结构, 其特 征在于, 所述阴极钢棒(2) 部分扎固或浇铸在阴极炭块 ( 1) 中, 所 述阴极钢棒(2) 整体从电解槽的侧部穿出。
4. 根据权利要求 1所述的减小铝液中水平电流的阴极结构, 其特 征在于, 所述阴极钢棒(2) 的截面形状是方形、 圆形、 半圆形、 梯形 或三角形。
5. 根据权利要求 1所述的减小铝液中水平电流的阴极结构, 其特 征在于, 每组阴极炭块 ( 1) 下部安装 1至 50根阴极钢棒(2) 。
6. 根据权利要求 1所述的减小铝液中水平电流的阴极结构, 其特 征在于, 所述分隔缝(3)设置在阴极钢棒(2) 的上部。
7. 根据权利要求 1所述的减小铝液中水平电流的阴极结构, 其特 征在于, 所述分隔缝是竖直或倾斜分隔缝。
8. 根据权利要求 1所述的减小铝液中水平电流的阴极结构, 其特 征在于, 所述每根阴极钢棒上设置分隔缝数量为 1至 50个。
9. 根据权利要求 8所述的减小铝液中水平电流的阴极结构, 其特 征在于, 当分隔缝数量 2至 50个时, 分隔缝的长度从里侧向外侧依次 减小。
PCT/CN2012/001151 2011-09-24 2012-08-27 减小铝液中水平电流的阴极结构 WO2013040856A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IN2835CHN2014 IN2014CN02835A (zh) 2011-09-24 2012-08-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110286115.8A CN103014765B (zh) 2011-09-24 2011-09-24 减小铝液中水平电流的阴极结构
CN201110286115.8 2011-09-24

Publications (1)

Publication Number Publication Date
WO2013040856A1 true WO2013040856A1 (zh) 2013-03-28

Family

ID=47913812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001151 WO2013040856A1 (zh) 2011-09-24 2012-08-27 减小铝液中水平电流的阴极结构

Country Status (4)

Country Link
CN (1) CN103014765B (zh)
IN (1) IN2014CN02835A (zh)
MY (1) MY172135A (zh)
WO (1) WO2013040856A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107435157A (zh) * 2017-10-10 2017-12-05 高西胜 一种不需要炭块中间部位填充扎固的阴极组装方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820814A (zh) * 2014-03-07 2014-05-28 新疆生产建设兵团农八师天山铝业有限公司 一种阴极炭块钢棒组结构
CN109763145A (zh) * 2019-03-07 2019-05-17 合肥工业大学 一种降低铝电解槽中水平电流的阴极结构
CN111809202B (zh) * 2020-07-22 2021-11-23 合肥工业大学 一种降低铝电解槽中铝液水平电流的阴极钢棒结构
CN113445079B (zh) * 2021-06-17 2023-09-22 合肥工业大学 一种铝电解槽用可降低铝液水平电流的阴极钢棒结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683046A (en) * 1985-03-22 1987-07-28 Swiss Aluminium Ltd. Reduction pot for the production of aluminum
WO2005098093A2 (fr) * 2004-04-02 2005-10-20 Aluminium Pechiney Element cathodique pour l'equipement d'une cellule d'electrolyse destinee a la production d'aluminium
CN201031257Y (zh) * 2007-04-20 2008-03-05 东北大学设计研究院(有限公司) 一种铝电解槽新型结构阴极
CN101440505A (zh) * 2008-12-11 2009-05-27 中国铝业股份有限公司 阴极炭块及防渗层导电钢棒的阴极结构
CN201864785U (zh) * 2010-10-19 2011-06-15 沈阳铝镁设计研究院有限公司 一种大幅降低铝电解槽铝液中水平电流的结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102453927B (zh) * 2010-10-19 2013-08-14 沈阳铝镁设计研究院有限公司 一种大幅降低铝电解槽铝液中水平电流的方法
CN102758216B (zh) * 2011-04-29 2015-04-15 沈阳铝镁设计研究院有限公司 一种均化铝电解槽铝液中电流分布的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683046A (en) * 1985-03-22 1987-07-28 Swiss Aluminium Ltd. Reduction pot for the production of aluminum
WO2005098093A2 (fr) * 2004-04-02 2005-10-20 Aluminium Pechiney Element cathodique pour l'equipement d'une cellule d'electrolyse destinee a la production d'aluminium
CN201031257Y (zh) * 2007-04-20 2008-03-05 东北大学设计研究院(有限公司) 一种铝电解槽新型结构阴极
CN101440505A (zh) * 2008-12-11 2009-05-27 中国铝业股份有限公司 阴极炭块及防渗层导电钢棒的阴极结构
CN201864785U (zh) * 2010-10-19 2011-06-15 沈阳铝镁设计研究院有限公司 一种大幅降低铝电解槽铝液中水平电流的结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107435157A (zh) * 2017-10-10 2017-12-05 高西胜 一种不需要炭块中间部位填充扎固的阴极组装方法

Also Published As

Publication number Publication date
MY172135A (en) 2019-11-14
CN103014765B (zh) 2016-07-06
IN2014CN02835A (zh) 2015-07-03
CN103014765A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
CA2792415C (en) Cathode structure, aluminum electrolysis cell, and method for lowering horizontal current in aluminum liquid
WO2012146063A1 (zh) 一种均化铝电解槽铝液中电流分布的方法
WO2013040856A1 (zh) 减小铝液中水平电流的阴极结构
CN201864785U (zh) 一种大幅降低铝电解槽铝液中水平电流的结构
CN203065598U (zh) 熔炼设备
CN104250831A (zh) 节能、均化铝液水平电流的阴极结构
EA029022B1 (ru) Установка получения алюминия электролизом, содержащая электролизеры с катодным выводом через днище кожуха и средства стабилизации электролизеров
CN101775621B (zh) 一种铝电解槽阴极结构
WO2009070961A1 (fr) Procédé pour éviter le courant horizontal dans le patin d'aluminium d'une cuve électrolytique en aluminium
CN201141044Y (zh) 消除铝电解槽铝液中水平电流的结构
CN201416035Y (zh) 节能型铝电解槽阴极结构
CN101775622B (zh) 一种节能型铝电解槽阴极结构
CN201390784Y (zh) 一种铝电解槽阴极结构
WO2008098489A1 (fr) Cellule d'électrolyse d'aluminium
CN203333778U (zh) 节能、均化铝液水平电流的阴极结构
CN104250830A (zh) 一种节能、均化铝液水平电流的阴极结构
CN102154664A (zh) 一种窄中缝密集排布炭阳极的铝电解槽阳极结构
CN101781772A (zh) 一种槽底出电铝电解槽阴极结构
CN101781773A (zh) 一种水平出电铝电解槽阴极结构
CN203333779U (zh) 一种节能、均化铝液水平电流的阴极结构
WO2013078746A1 (zh) 能降低电压和改善电流分布的铝电解槽阴极结构
CN103205776B (zh) 一种水平进电的铝电解槽
CN108396334A (zh) 一种用于降低铝液水平电流的铝电解槽阴极结构
CN110029359A (zh) 多室铝电解槽及其母线系统
CN203270054U (zh) 一种水平进电的铝电解槽

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834032

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014/03338

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834032

Country of ref document: EP

Kind code of ref document: A1