WO2013078746A1 - 能降低电压和改善电流分布的铝电解槽阴极结构 - Google Patents

能降低电压和改善电流分布的铝电解槽阴极结构 Download PDF

Info

Publication number
WO2013078746A1
WO2013078746A1 PCT/CN2011/084599 CN2011084599W WO2013078746A1 WO 2013078746 A1 WO2013078746 A1 WO 2013078746A1 CN 2011084599 W CN2011084599 W CN 2011084599W WO 2013078746 A1 WO2013078746 A1 WO 2013078746A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
carbon block
powder
steel rod
tamping
Prior art date
Application number
PCT/CN2011/084599
Other languages
English (en)
French (fr)
Inventor
冯乃祥
彭建平
王耀武
狄跃忠
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2013078746A1 publication Critical patent/WO2013078746A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Definitions

  • Cathode structure of aluminum electrolytic cell capable of reducing voltage and improving current distribution
  • the invention belongs to the technical field of aluminum electrolysis, and particularly relates to a cathode structure of an aluminum electrolytic cell capable of reducing voltage and improving current distribution.
  • the cathode structure of the aluminum electrolysis cell is a component of the electrolysis cell.
  • the structural design directly affects the cathode voltage drop of the aluminum electrolysis cell and affects the current efficiency of the aluminum electrolysis cell.
  • the cathode structure design of the industrial aluminum electrolysis cell has the following problems. :
  • the cathode voltage drop of the electrolytic cell is large.
  • the cathode voltage drop is 300-350 mV on average, which causes the cathode voltage drop to be higher because of the resistance of the cathode carbon block.
  • the conductive distance between the upper surface of the cathode carbon block and the upper surface of the cathode steel rod is long and the electric resistance is large; if a cathode carbon block with a high degree of graphitization is used, the voltage drop of the conductive distance section can be reduced, but the cathode with a high degree of graphitization The price of carbon blocks is high and the investment is large;
  • the combined connection structure of the cathode carbon block and the cathode steel rod of the current electrolytic cell is likely to cause the cathode aluminum liquid in the electrolytic cell to be in the longitudinal direction of the cathode carbon block.
  • the horizontal current is too large; this horizontal current has a bad influence on the hydrodynamic condition and current efficiency of the aluminum liquid in the electrolytic cell under the action of the vertical magnetic field in the electrolytic cell.
  • the Chinese patent "a structure for greatly reducing the horizontal current in the aluminum liquid of the aluminum electrolytic cell” proposes a cathode electrolytic rod structure of an aluminum electrolytic cell, the cathode steel bar of the application
  • the structure has three significant technical points and features that can reduce the horizontal current of the aluminum electrolytic cell: (1) along the length direction, the section near the end of the cathode carbon block is divided into upper and lower parts, but not in the middle part of the carbon block.
  • the present invention provides a cathode structure of an aluminum electrolytic cell capable of reducing voltage and improving current distribution, using no splitting, no insulation, no division.
  • the cathode carbon block and the cathode steel rod of the insulating material improve the horizontal current distribution of the aluminum electrolytic cell and reduce the heat generated by the cathode, thereby improving the stability of the aluminum liquid of the aluminum electrolytic cell, thereby improving the cathode voltage of the aluminum electrolytic cell.
  • the current efficiency of the aluminum cell reduces the purpose of power consumption.
  • the cathode structure of the aluminum electrolytic cell capable of reducing voltage and improving current distribution of the invention comprises a cathode carbon block and a cathode steel rod, and the bottom of the cathode carbon block is provided with two through steel rod grooves or four steel rod grooves arranged in two rows.
  • the graphite powder is in the gap in the middle of the cathode carbon block;
  • the carbon powder material in the gap between the two sides of the cathode carbon block is a mixture of graphite powder and calcined petroleum coke powder, or graphite powder and electric calcination a mixture of anthracite powder, or a mixture of graphite powder, calcined petroleum coke powder and electric calcined anthracite powder;
  • the weight content of graphite powder in the carbon powder material in the gap between the two sides of the cathode carbon block is 30-80%, each The carbon powder material in the side gap is divided into at least two sections, and the weight content of the graphite powder in each section of the carbon powder material is gradually increased from the both ends of the cathode carbon block to the middle direction;
  • the middle part of the cathode carbon block is on the axis of the cathode carbon block In the 500 ⁇ 600mm section, the two sides of the middle are equidistant from the ends
  • the distance between the cathode steel rods in the two steel rod grooves of the same row is 80 to 200 mm.
  • the graphite powder, the calcined petroleum coke powder and the electrically calcined anthracite powder in the above structure each have a particle diameter of 1.0 mm.
  • the carbon powder material in each of the above-mentioned gaps is divided into at least two sections, and the weight content of the graphite powder in each section of the carbon powder material is gradually increased from the both ends of the cathode carbon block to the middle direction; the segmentation method is divided into arbitrary lengths. In the segment, the increase in the weight content of the graphite powder is an arbitrary ratio.
  • the above-mentioned tamping paste on each side is divided into at least two sections, and the weight content of the graphite powder in the aggregate in each section of the tamping paste is gradually increased from the ends of the cathode carbon block to the middle direction, and the segmentation method is The ratio of the weight content of the graphite powder is increased in any proportion.
  • the working principle of the cathode structure of the aluminum electrolytic cell capable of reducing voltage and improving current distribution of the present invention is: In the production of aluminum electrolysis, the electrolysis current flows from the carbon anode to the aluminum liquid through the electrolyte melt, and then passes through the upper portion of the cathode carbon block through the aluminum liquid.
  • the carbon powder on the top of the cathode steel rod and the tamping paste on the side of the steel rod are introduced into the steel rod, and then introduced into the cathode bus bar via the cathode steel rod; due to the different position between the top of the cathode steel rod and the cathode carbon block
  • the content of graphite powder in the carbon powder material is different, and the ratio of the graphite powder in the tamping paste between the two sides of the cathode steel rod and the inner side of the steel rod groove forms the electric resistance of the electric conductor between the cathode carbon block and the cathode steel rod.
  • the current in the aluminum liquid passing through the middle of the electrolytic cell does not pass or is less electrolysis.
  • the aluminum liquid at the end of the trough is led out, but vertically into the cathode carbon block, which in turn goes to the carbon powder material, the tamping paste, the cathode steel rod, and the cathode bus bar, which significantly reduces and reduces the cathode.
  • the horizontal current in the aluminum liquid is provided.
  • the thickness of the mixed powder between the cathode steel rod and the cathode carbon block is less than 10 mm, which is more than the conventional scheme.
  • the thickness of the film is less than 10mm, which also reduces the cathode resistance.
  • the carbon powder material uses corrosion-resistant carbon material, which can significantly improve the corrosion resistance of the cathode steel rod, and can also release the cathode carbon caused by the thermal expansion of the cathode steel rod in a small amount.
  • the expansion force of the block is very effective in improving the life of the electrolytic cell.
  • the solution of the invention can not only reduce the horizontal current in the cathode aluminum liquid of the electrolytic cell and reduce the cathode voltage drop, but also reduce the upper surface temperature of the cathode carbon block, thereby facilitating the improvement of the current efficiency and the power consumption of the aluminum electrolytic cell. .
  • FIG. 1 is a schematic view showing a half-sectional structure of a cathode structure of an aluminum electrolytic cell capable of reducing voltage and improving current distribution according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is a cross-sectional view taken along line B-B of Figure 1;
  • FIG. 4 is a schematic view showing a half-sectional structure of a cathode structure of an aluminum electrolytic cell capable of reducing voltage and improving current distribution in Embodiment 4 of the present invention
  • Figure 5 is a cross-sectional view taken along line A-A of Figure 4.
  • FIG. 6 is a schematic view showing a half-sectional structure of a cathode structure of an aluminum electrolytic cell capable of reducing voltage and improving current distribution in Embodiment 7 of the present invention
  • Figure 8 is a cross-sectional view taken along line B-B of Figure 6;
  • the width (thickness) of the cathode steel bar is 60 to 90 mm, and the height is 190 to 220 mm.
  • the cathode carbon block used in the embodiment of the present invention is a rectangular parallel cathode carbon block or a convex shaped carbon block with a convex surface on the top surface; when a rectangular parallel cathode carbon block is used, between the bottom of the steel rod groove and the upper surface of the cathode carbon block The distance is 200 ⁇ 300mm ; when the shaped carbon block is used, the distance between the bottom of the steel rod groove and the upper surface of the cathode carbon block base is 200 ⁇ 250mm.
  • the graphite powder, the calcined petroleum coke powder and the electric calcined anthracite powder are commercially available products.
  • the graphite powder, the calcined petroleum coke powder and the electric calcined anthracite powder have a particle size of lmm.
  • the cathode structure of the aluminum electrolytic cell which can reduce the voltage and improve the current distribution is shown in Fig. 1.
  • the AA surface is shown in Fig. 2, and the BB surface is shown in Fig. 3. It includes a rectangular parallelepiped cathode carbon block 1 and a long cathode steel rod 3, and a rectangular parallelepiped cathode. There are 2 at the bottom of the carbon block 1
  • each steel rod groove is equipped with a long cathode steel rod 3, the long cathode steel rod has a width of 60 mm and a height of 190 mm;
  • each long cathode steel rod 3 and the rectangular cathode carbon block 1 is filled with a carbon powder material 2, and the side faces of each of the long cathode steel rods 3 and the rectangular parallel cathode carbon block 1 are ⁇ Solid paste 4 tamping, side tamping paste 4 is cold tamping;
  • the carbon powder material 2 in the void is a mixture of graphite powder and calcined petroleum coke powder;
  • the carbon powder material 2 in the gap between the two sides of the cathode carbon block is equally divided into two sections, and the weight of the graphite powder in the section of the carbon powder material near the two ends is 30%, and the weight of the graphite powder in the section near the middle part is 80%;
  • the middle portion of the cathode carbon block refers to a portion within 300 mm of both sides of the center line 5 of the rectangular cathode carbon block;
  • the weight of the graphite powder of the aggregate is 100%;
  • the side tamping pastes 4 on both sides of the cathode carbon block are equally divided into two sections, a section close to both ends
  • the weight content of the graphite powder in the aggregate is 30%, and the weight of the graphite powder in the aggregate is 70% in the side tamping paste 4 near the middle portion;
  • the thickness of the carbon powder material filled between the top surface of the long cathode steel rod 3 and the rectangular cathode carbon block 1 is 2 mm ; the thickness of the side tamping paste 4 is 8 mm ;
  • the aluminum electrolysis production using the above structure can significantly reduce the aluminum electrolytic cathode pressure drop and significantly reduce the horizontal current in the cathode aluminum liquid of the electrolytic cell, thereby significantly increasing the current efficiency of the aluminum electrolytic cell and reducing The electrical energy consumption of the aluminum electrolytic cell.
  • the cathode structure of an aluminum electrolytic cell capable of lowering the voltage and improving the current distribution is the same as that of the embodiment 1, in that:
  • the length of the long cathode steel bar is 70mm and the height is 200mm.
  • the side tamping paste is hot gluten
  • the carbon powder material in the gap between the two sides of the cuboid cathode carbon block is a mixture of graphite powder and electric calcined anthracite powder;
  • the carbon powder materials in the gaps on both sides of the middle part of the cuboid cathode carbon block are equally divided into three sections, and the weight content of the graphite powder in the carbon powder materials from the both ends to the middle section is 40%, 50% and 60, respectively. %;
  • the side tamping pastes on both sides of the cuboid cathode carbon block are equally divided into three sections, which are smeared by the sides of the cuboid cathode carbon block to the middle of each section, and the weight content of the graphite powder in the aggregate is 40%, 50% and 60% in order; (6)
  • the thickness of the carbon powder material filled between the top surface of the long cathode steel rod and the rectangular cathode carbon block is 6 mm ; the thickness of the side tamping paste is 10 mm;
  • the aluminum electrolysis production using the above structure can significantly reduce the aluminum electrolytic cathode pressure drop and significantly reduce the horizontal current in the cathode aluminum liquid of the electrolytic cell, thereby significantly increasing the current efficiency of the aluminum electrolytic cell and reducing The electrical energy consumption of the aluminum electrolytic cell.
  • the cathode structure of an aluminum electrolytic cell capable of lowering the voltage and improving the current distribution is the same as that of the embodiment 1, in that:
  • the length of the long cathode steel bar is 80mm and the height is 210mm.
  • the side tamping paste is hot gluten
  • the carbon powder material in the gap between the two sides of the cuboid cathode carbon block is a mixture of graphite powder, calcined petroleum coke powder and electric calcined anthracite powder, wherein the weight of the calcined petroleum coke powder and the electric calcined anthracite powder is equal ;
  • the weight content of the graphite powder of the aggregate is 100%; the average entanglement of the tamping paste on both sides of the cuboid cathode carbon block For the two sections, near the two ends of the side tamping paste, the weight content of the graphite powder in the aggregate is 30%, close to the middle part of the side tamping paste, the weight content of the graphite powder in the aggregate is 70%;
  • the thickness of the carbon powder material filled between the top surface of the long cathode steel bar and the rectangular cathode carbon block is 10 mm; the thickness of the side tamping paste is 15 mm ;
  • the aluminum electrolysis production using the above structure can significantly reduce the aluminum electrolytic cathode pressure drop and significantly reduce the horizontal current in the cathode aluminum liquid of the electrolytic cell, thereby significantly increasing the current efficiency of the aluminum electrolytic cell and reducing The electrical energy consumption of the aluminum electrolytic cell.
  • the cathode structure of the aluminum electrolytic cell which can reduce the voltage and improve the current distribution is shown in Fig. 4.
  • the AA surface is as shown in Fig. 5, including the rectangular cathode carbon block 1 and the short cathode steel rod 6.
  • the rectangular cathode carbon block has 4 rows at the bottom. Two rows of steel rod grooves, one short cathode steel rod 6 in each steel rod groove; two steel rod grooves of each row of steel rod grooves are symmetrically disposed on both sides of the longitudinal center line 5 of the rectangular cathode carbon block;
  • the distance between the short cathode steel bars 6 in the two steel rod slots of the row is 80 mm ;
  • the short cathode steel rod 6 has a width of 90 mm and a height of 220 mm;
  • the gap between the top surface of each of the short cathode steel rods 6 and the rectangular cathode carbon block 1 is filled with a carbon powder material 2, and the side faces of each of the short cathode steel rods 6 and the rectangular parallel cathode carbon block 1 are ⁇ Solid paste tamping 4, side tamping paste 4 is hot Solid paste
  • the carbon powder material 2 filled in the gap between the two sides of the cuboid cathode block 1 is divided into two sections, the weight of the graphite powder in the section near the both ends is 30%, and the weight of the graphite powder in the section near the middle is 80.
  • the middle portion of the cathode carbon block refers to a portion of 600 mm on the axis of the rectangular cathode carbon block, and the two sides of the middle portion are equidistant from the ends of the rectangular cathode carbon block 1;
  • the cathode structure of the aluminum electrolytic cell capable of lowering the voltage and improving the current distribution is the same as that of the embodiment 4, and the difference lies in:
  • the distance between the short cathode steel bars in the two steel rod slots of the same row is 100 mm; the width of the short cathode steel rod is 60 mm and the height is 190 mm;
  • the thickness of the carbon powder material filled between the top surface of the short cathode steel rod and the rectangular cathode carbon block is 10 mm; the thickness of the side tamping paste between the two sides of the short cathode steel rod and the rectangular cathode carbon block is 15mm ; the short cathode steel rod is close to the end of the cuboid cathode carbon block and the cuboid cathode carbon block is tamped with the end surface tamping paste 7 , and the end surface tamping paste is cold tamping or hot tamping, the thickness is 15mm ;
  • the aluminum electrolysis production using the above structure can significantly reduce the aluminum electrolytic cathode pressure drop and significantly reduce the horizontal current in the cathode aluminum liquid of the electrolytic cell, thereby significantly increasing the current efficiency of the aluminum electrolytic cell and reducing The electrical energy consumption of the aluminum electrolytic cell.
  • the cathode structure of the aluminum electrolytic cell which can reduce the voltage and improve the current distribution is shown in Fig. 6.
  • the AA surface is as shown in Fig. 7, and the B-B surface is as shown in Fig. 8, including the shaped cathode carbon block 8 and the short cathode steel rod 6.
  • the bottom of the shaped cathode carbon block 8 is provided with four steel rod slots arranged in two rows, and each steel rod groove is provided with a short cathode steel rod 6; the two rows of steel rod grooves are symmetrically arranged on the longitudinal center line 9 of the shaped cathode carbon block.
  • the short cathode steel rod 6 in the two steel rod slots of the same row has a spacing of 140 mm ;
  • the short cathode steel rod has a width of 80 mm and a height of 210 mm ;
  • the gap between the top surface of each of the short cathode steel rods 6 and the shaped cathode carbon block 8 is filled with the carbon powder material 2, and the side between each of the short cathode steel rods 6 and the shaped cathode carbon block 8 is sideways.
  • the paste is tamped, the side tamping paste is a cold mash; the carbon powder material 2 filled in the gap between the top surface of the short cathode steel rod 6 and the shaped cathode carbon block 8, in the middle of the shaped cathode carbon block 8
  • the graphite powder is in the void;
  • the carbon powder material 2 in the gap between the two sides of the middle portion of the shaped cathode carbon block 8 is a mixture of graphite powder, calcined petroleum coke powder and electric calcined anthracite powder, wherein the calcined petroleum coke powder and electric calcination
  • the weight of anthracite powder is equal.
  • the weight content of the graphite powder in the aggregate gradually increases from the both ends of the shaped cathode carbon block 8 toward the middle portion, and the weight of the graphite powder of the aggregate in the middle side of the shaped cathode carbon block 8
  • the content is 100%; the side tamping pastes on both sides of the middle part of the shaped cathode carbon block 8 are equally divided into two sections, and the graphite in the aggregate is lumped from the sides of the deformed cathode carbon block 8 to the middle of each section.
  • the weight content of the powder is 30% and 60%, respectively;
  • the carbon powder material 2 filled in the gaps on both sides of the middle portion of the shaped cathode carbon block 8 is equally divided into two sections, the weight of the graphite powder in the section near the both ends is 30%, and the weight of the graphite powder in the section near the middle is 80.
  • the middle portion of the shaped cathode carbon block 8 refers to a portion of 500 mm on the axis of the shaped cathode carbon block 8, and the two sides of the middle portion are equidistant from the ends of the shaped cathode carbon block 8;
  • the thickness of the carbon powder material 2 filled between the top surface of the short cathode steel rod 6 and the shaped cathode carbon block 8 is 2 mm ; the side tamping paste between the two sides of the short cathode steel rod 6 and the shaped cathode carbon block 8 thickness of 8mm; short steel bar 6 close to the end surface of the cathode ramming paste 7 between 8 tamping central profiled end surface of the cathode carbon block shaped cathode carbon block 8, the end face 7 a cold ramming paste or hot ramming paste tamping Paste, thickness 8mm ;
  • the aluminum electrolysis production using the above structure can significantly reduce the aluminum electrolytic cathode pressure drop and significantly reduce the horizontal current in the cathode aluminum liquid of the electrolytic cell, thereby significantly increasing the current efficiency of the aluminum electrolytic cell and reducing The electrical energy consumption of the aluminum electrolytic cell.
  • the cathode structure of an aluminum electrolytic cell capable of lowering the voltage and improving the current distribution is the same as that of the embodiment 7, in that:
  • the distance between the short cathode steel bars in the two steel rod slots of the same row is 180 mm ; the width of the short cathode steel rod is 90 mm and the height is 220 mm;
  • the side tamping paste is hot gluten
  • the carbon powder material filled in the gaps on both sides of the middle portion of the shaped cathode carbon block is a mixture of graphite powder and calcined petroleum coke powder;
  • the carbon powder material in the gap between the two sides of the middle part of the shaped cathode carbon block is divided into three sections, and the weight content of the graphite powder in the carbon powder materials from the both ends to the middle part is 40%, 60% and 80, respectively. %;
  • the side tamping pastes on both sides of the middle part of the shaped cathode carbon block are equally divided into 3 sections, and the weight content of the graphite powder in the aggregate is smeared by the sides of the deformed cathode carbon block from the both ends to the middle of the section. 30%, 50% and 70% in order;
  • the aluminum electrolysis production using the above structure can significantly reduce the aluminum electrolytic cathode pressure drop and significantly reduce the horizontal current in the cathode aluminum liquid of the electrolytic cell, thereby significantly increasing the current efficiency of the aluminum electrolytic cell and reducing The electrical energy consumption of the aluminum electrolytic cell.
  • the distance between the short cathode steel bars in the two steel rod slots of the same row is 200 mm ; the width of the short cathode steel rod is 80 mm and the height is 200 mm;
  • the carbon powder material filled in the gaps on both sides of the middle portion of the shaped cathode carbon block is a mixture of graphite powder and electric calcined anthracite powder;
  • the carbon powder material filled in the gaps on both sides of the middle part of the shaped cathode carbon block is divided into 4 sections, and the weight content of the graphite powder in the carbon powder materials from the both ends to the middle part is 30%, 40%, 50, respectively. % and 60%;
  • the thickness of the carbon powder material filled between the top surface of the short cathode steel rod and the shaped cathode carbon block is 10 mm; the thickness of the side tamping paste between the two sides of the short cathode steel rod and the shaped cathode carbon block is 15mm ; the short cathode steel rod is close to the end face of the shaped cathode carbon block and the shaped cathode carbon block is tamped with the end surface tamping paste, and the end surface tamping paste is cold tamping or hot tamping, and the thickness is 15mm ;
  • the aluminum electrolysis production using the above structure can significantly reduce the aluminum electrolytic cathode pressure drop and significantly reduce the horizontal current in the cathode aluminum liquid of the electrolytic cell, thereby significantly increasing the current efficiency of the aluminum electrolytic cell and reducing The electrical energy consumption of the aluminum electrolytic cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

一种能降低电压和改善电流分布的铝电解槽阴极结构,属于铝电解技术领域,阴极炭块底部开设有2个贯通的钢棒槽或4个排成两排的钢棒槽,每个钢棒槽内设有阴极钢棒;每个阴极钢棒顶面和阴极炭块钢棒槽之间的空隙中填充有炭粉材料,每个阴极钢棒的两个侧面与钢棒槽之间用冷捣固糊或热捣固糊捣固。本发明的方案不仅可以降低电解槽阴极铝液中的水平电流并使阴极电压降降低,也有利于降低阴极炭块的上表面温度,从而有利于铝电解槽电流效率的提高和电耗的降低。

Description

能降低电压和改善电流分布的铝电解槽阴极结构 技术领域
本发明属于铝电解技术领域, 特别涉及一种能降低电压和改善电流分布的铝电解槽阴极 结构。
背景技术
铝电解生产需要消耗大量电能, 对铝电解生产来说, 其直流电耗 W (kWh/t-Al) 可以用 表示公式为 W=2980 XV平 / ( CE), 式中 V平为电解槽的平均槽电压 (V), CE为电解槽的电 流效率 (%), 由上述公式可以看出, 铝电解生产的吨铝直流电耗是由槽电压和电流效率决 定的, 铝电解槽约 0.1伏的槽电压降低可使直流电耗降低 300 kWh/t-Al左右, 而电流效率每 提高 1 %, 可使直流电耗降低 150 kWh/t-Al左右。
铝电解槽的阴极结构是电解槽的组成部分, 其结构设计直接会影响铝电解槽阴极电压 降, 并对铝电解槽电流效率产生影响; 目前工业铝电解槽的阴极结构设计存在如下几个问 题:
1、 电解槽的阴极电压降较大, 在使用以无烟煤为基本材料的阴极炭块时, 其阴极压降平均 在 300-350mV, 造成如此阴极电压降较高的原因是: 阴极炭块的电阻大; 阴极炭块上表面与 阴极钢棒上表面之间的导电距离长、 电阻大; 如果使用石墨化程度高的阴极炭块可以降低此 导电距离段的电压降, 但石墨化程度高的阴极炭块价格高、 投资大;
2、 阴极钢棒的电流密度较大, 阴极钢棒的电阻较大;
3、 由于阴极压降较大, 阴极部分产生的热量大, 如果电解槽的底部保温过度, 容易造成槽 底温度过高, 使电流效率降低; 如果槽底保温程度降低又会升高电解槽的能量消耗, 特别是 对于新型阴极结构电解槽而言, 当槽底保温过强时, 这种情况是难以避免的;
4、 由于铝液的电阻系数远小于阴极炭块碳素材料的电阻系数, 因而现行的电解槽阴极炭块 与阴极钢棒的组合连接结构容易造成电解槽阴极铝液内在阴极炭块纵向方向的水平电流过 大; 这种水平电流在电解槽内垂直磁场的作用下, 对电解槽内铝液的流体动力学状况和电流 效率产生不好的影响。
针对上述问题, 中国专利 "一种大幅度降低铝电解槽铝液中水平电流的结构" (杨晓东 等, 申请号为 201020566373 ) 提出了一种铝电解槽阴极钢棒结构, 该申请的阴极钢棒结构 有 3个显著的可使铝电解槽水平电流降低的技术要点和特点: (1 ) 沿长度方向, 在靠近阴极 炭块端部的一段被分割成上下两部分, 而在炭块中间部分没有被分割的一段部分采用导电体 (铸铁或捣鼓碳糊) 与阴极炭块连接; (2) 靠近阴极炭块端部的阴极钢棒上半部采用碳糊或 铸铁与阴极快连接; 下半部分采用绝缘块与阴极炭块绝缘; (3 ) 分剖缝内采用绝缘材料填 充。
应该说, 这种阴极钢棒结构确实对降低电解槽内沿阴极炭块纵向方向的水平电流分布以 及对提高电解槽阴极铝液稳定性和提高铝电解槽的电流效率有效果, 然而这种阴极钢棒结构 还存在以下缺点: 阴极钢棒的制作和在电解槽阴极炭块上的安装过程较为复杂; 阴极钢棒内 分割缝内所使用的分隔材料和靠近阴极炭块边部的阴极钢棒的下部分所使用的绝缘材料的抗 电解槽的磨蚀性是一个未经实践检验的问题, 一旦电解质或铝液渗入或漏入这些部位可能会 对阴极钢棒的破坏和电解槽的寿命产生影响。
发明内容
为了克服现行电解槽阴极炭块和阴极钢棒连接的上述各种不足, 本发明提供一种能降低 电压和改善电流分布的铝电解槽阴极结构, 采用没有分剖缝的、 无绝缘体、 无分割绝缘材料 的阴极炭块与阴极钢棒, 在降低铝电解槽阴极电压的同时, 改善铝电解槽水平电流分布和通 过降低阴极产生的热量, 提高铝电解槽阴极铝液的稳定性, 达到既提高铝电解槽的电流效率 又降低电能消耗的目的。
本发明的能降低电压和改善电流分布的铝电解槽阴极结构包括阴极炭块和阴极钢棒, 阴 极炭块底部开设有 2 个贯通的钢棒槽或 4 个排成两排的钢棒槽, 每个钢棒槽内设有阴极钢 棒; 其中每个阴极钢棒顶面和阴极炭块钢棒槽之间的空隙中填充有炭粉材料, 每个阴极钢棒 的两个侧面与钢棒槽之间用冷捣固糊或热捣固糊捣固; 所述的炭粉材料为石墨粉, 或者石墨 粉与煅后石油焦粉的混合物, 或者石墨粉与电煅无烟煤粉的混合物, 或者石墨粉、 煅后石油 焦粉与电煅无烟煤粉的混合物。
上述结构中, 在阴极炭块的中部的空隙中为石墨粉; 在阴极炭块的中部两侧的空隙中的 炭粉材料为石墨粉与煅后石油焦粉的混合物, 或者石墨粉与电煅无烟煤粉的混合物, 或者石 墨粉、 煅后石油焦粉与电煅无烟煤粉的混合物; 在阴极炭块中部两侧的空隙中的炭粉材料中 石墨粉的重量含量为 30~80%, 每一侧空隙中的炭粉材料分为至少 2段, 各段炭粉材料中石 墨粉的重量含量由阴极炭块两端向中部方向逐渐增高; 所述的阴极炭块中部是指阴极炭块轴 线上 500~600mm的部分, 中部的两侧与阴极炭块两端距离相等。
上述结构中, 阴极钢棒的两个侧面与阴极炭块之间的冷捣固糊或热捣固糊中, 冷捣固糊 或热捣固糊中的骨料中的石墨粉的重量含量由阴极炭块的两端向中部逐渐增加, 其中在阴极 炭块中部捣固的捣固糊中, 骨料的石墨粉的重量含量为 100%; 在阴极炭块中部两侧捣固的 捣固糊中, 骨料的石墨粉的重量含量为 30~70%, 每一侧捣固的捣固糊分为至少 2段, 各段 捣固糊中的骨料中石墨粉的重量含量由阴极炭块两端向中部方向逐渐增高。
上述结构中, 当阴极炭块底部设有 4个排成两排的钢棒槽时, 每排的一对钢棒槽对称设 置在阴极炭块纵向中心线的两侧; 阴极炭块纵向中心线是指与阴极炭块地面平行, 且与阴极 炭块轴线垂直, 位于阴极炭块中部与阴极炭块两端距离相等的线。
上述结构中, 当阴极炭块底部设有 4个排成两排的钢棒槽时, 同一排的两个钢棒槽内的 阴极钢棒的间距为 80~200mm。
上述结构中, 阴极钢棒的顶面和阴极炭块之间填充的炭粉材料的厚度为 2~10mm; 阴极 钢棒的两个侧面与阴极炭块之间的冷捣固糊或热捣固糊的厚度为 8~15mm; 当阴极炭块底部 设有 4个排成两排的钢棒槽时, 阴极钢棒靠近阴极炭块中部的端面与阴极炭块之间用冷捣固 糊或热捣固糊捣固, 冷捣固糊或热捣固糊的厚度为 8~15mm。
上述结构中的石墨粉、 煅后石油焦粉和电煅无烟煤粉的粒径均 1.0mm。
上述的每一侧空隙中的炭粉材料分为至少 2段, 各段炭粉材料中石墨粉的重量含量由阴 极炭块两端向中部方向逐渐增高; 其分段方法为按任意长度比例分段, 其石墨粉重量含量的 增高比例为任意比例。
上述的每一侧捣固的捣固糊分为至少 2段, 各段捣固糊中的骨料中石墨粉的重量含量有 阴极炭块两端向中部方向逐渐增高, 其分段方法为按任意长度比例分段, 其石墨粉重量含量 的增高比例为任意比例。
上述炭粉材料为石墨粉、 煅后石油焦粉与电煅无烟煤粉的混合物时, 石墨粉的重量含量 为为 30~80%, 其余为煅后石油焦粉和电煅无烟煤粉, 煅后石油焦粉和电煅无烟煤粉的混合 比例为任意比例。
本发明的能降低电压和改善电流分布的铝电解槽阴极结构的工作原理是: 在铝电解生产 中, 电解电流从炭阳极经由电解质熔体到铝液, 再经由铝液通过阴极炭块的上部和侧部, 阴 极钢棒顶部的炭粉和钢棒侧部的捣固糊导入钢棒, 再经由阴极钢棒导入到阴极母线上; 由于 阴极钢棒顶部和阴极炭块之间的不同位置段上的炭粉材料中石墨粉含量不同, 以及阴极钢棒 两侧与钢棒槽内侧之间的捣固糊中石墨粉的不同配比, 形成阴极炭块与阴极钢棒之间导电体 的电阻差异, 以及阴极钢棒加高后电阻的降低, 使得电流进入阴极炭块和阴极钢棒的路径上 各处的电阻相等或相近, 经过电解槽中部的铝液中的电流不经由或少经由电解槽的端部的铝 液导出, 而是垂直地进入阴极炭块, 依次到炭粉材料、 捣固糊、 阴极钢棒、 阴极母线, 显著 降低和减少阴极铝液内的水平电流。
本发明的方案中由于阴极钢棒和阴极炭块之间的混合粉料厚度小于 10mm, 比传统方案 的厚度小 10mm以上, 也使阴极电阻降低; 炭粉材料使用了抗腐蚀的碳素材料, 可显著提高 阴极钢棒的抗腐蚀能力, 也可少量地释放阴极钢棒热膨胀所引起的对阴极炭块的胀力, 对提 高电解槽的寿命有很大保障。 本发明的方案不仅可以降低电解槽阴极铝液中的水平电流并使 阴极电压降降低, 也有利于降低阴极炭块的上表面温度, 从而有利于铝电解槽电流效率的提 高和电耗的降低。
附图说明
图 1 为本发明实施例 1.中能降低电压和改善电流分布的铝电解槽阴极结构半剖面结构示意 图;
图 2为图 1的 A-A面剖图;
图 3为图 1的 B-B面剖图;
图 4 为本发明实施例 4 中能降低电压和改善电流分布的铝电解槽阴极结构半剖面结构示意 图;
图 5为图 4的 A-A面剖图;
图 6 为本发明实施例 7 中能降低电压和改善电流分布的铝电解槽阴极结构半剖面结构示意 图;
图 7为图 6的 A-A面剖图;
图 8为图 6的 B-B面剖图;
图中 1、 长方体阴极炭块, 2、 炭粉材料, 3、 长阴极钢棒, 4、 侧面捣固糊, 5、 长方体阴极 炭块纵向中心线, 6、 短阴极钢棒, 7、 端面捣固糊, 8、 异形阴极炭块, 9、 异形阴极炭块纵 向中心线。
具体实施方式
本发明实施例中阴极钢棒的宽度 (厚度) 为 60~90mm, 高度为 190~220mm。
本发明实施例中采用的阴极炭块为长方体阴极炭块或顶面上带有凸起的异形阴极炭块; 当采用长方体阴极炭块时, 钢棒槽底部与阴极炭块的上表面之间的距离为 200~300mm; 当 采用异形结构阴极炭块时, 钢棒槽底部与阴极炭块基体的上表面的距离在 200~250mm。
本发明实施例中石墨粉、 煅后石油焦粉和电煅无烟煤粉为市购产品。
本发明实施例中石墨粉、 煅后石油焦粉和电煅无烟煤粉粒径 lmm。
实施例 1
能降低电压和改善电流分布的铝电解槽阴极结构如图 1所示, A-A面如图 2所示, B-B 面如图 3所示, 包括长方体阴极炭块 1和长阴极钢棒 3, 长方体阴极炭块 1底部开设有 2个 贯通且平行的钢棒槽, 每个钢棒槽内均装配有一个长阴极钢棒 3, 长阴极钢棒的宽度为 60mm, 高度为 190mm;
每个长阴极钢棒 3的顶面和长方体阴极炭块 1之间的空隙中填充有炭粉材料 2, 每个长 阴极钢棒 3的两个侧面与长方体阴极炭块 1之间用侧面捣固糊 4捣固, 侧面捣固糊 4为冷捣 固糊;
长阴极钢棒 3的顶面和长方体阴极炭块 1之间的空隙中的炭粉材料 2中, 在长方体阴极 炭块 1的中部的空隙中为石墨粉; 在阴极炭块的中部两侧的空隙中的炭粉材料 2为石墨粉与 煅后石油焦粉的混合物;
长方体在阴极炭块中部两侧的空隙中的炭粉材料 2各平均分为 2段, 靠近两端的一段炭 粉材料中石墨粉的重量含量为 30%, 靠近中部的一段中石墨粉的重量含量为 80%; 所述的 阴极炭块中部是指长方体阴极炭块中心线 5两侧 300mm内的部分;
在长方体阴极炭块 1 中部的侧面捣固糊 4中, 骨料的石墨粉的重量含量为 100%; 阴极 炭块中部两侧的侧面捣固糊 4各平均分为 2段, 靠近两端的一段侧面捣固糊 4中, 骨料中石 墨粉的重量含量为 30%, 靠近中部的一段侧面捣固糊 4 中, 骨料中石墨粉的重量含量为 70%;
长阴极钢棒 3 的顶面和长方体阴极炭块 1 之间填充的炭粉材料的厚度为 2mm; 侧面捣 固糊 4的厚度为 8mm;
经过实验和计算, 采用上述结构进行铝电解生产, 可以显著地降低铝电解阴极压降, 显 著地降低电解槽阴极铝液内的水平电流, 从而可以显著地提高铝电解槽的电流效率, 并降低 铝电解槽的电能消耗。
实施例 2
能降低电压和改善电流分布的铝电解槽阴极结构同实施例 1, 不同点在于:
( 1 ) 长阴极钢棒的宽度为 70mm, 高度为 200mm
(2) 侧面捣固糊为热捣固糊;
( 3 ) 在长方体阴极炭块的中部两侧的空隙中的炭粉材料为石墨粉与电煅无烟煤粉的混合 物;
(4) 在长方体阴极炭块中部两侧的空隙中的炭粉材料各平均分为 3段, 从两端向中部各 段炭粉材料中石墨粉的重量含量依次为 40%、 50%和 60%;
( 5 ) 长方体阴极炭块中部两侧捣固的侧面捣固糊各平均分为 3段, 由长方体阴极炭块两 端向中部的各段侧面捣固糊中, 骨料中石墨粉的重量含量依次为 40%、 50%和 60%; ( 6) 长阴极钢棒的顶面和长方体阴极炭块之间填充的炭粉材料的厚度为 6mm; 侧面捣固 糊的厚度为 10mm;
经过实验和计算, 采用上述结构进行铝电解生产, 可以显著地降低铝电解阴极压降, 显著地 降低电解槽阴极铝液内的水平电流, 从而可以显著地提高铝电解槽的电流效率, 并降低铝电 解槽的电能消耗。
实施例 3
能降低电压和改善电流分布的铝电解槽阴极结构同实施例 1, 不同点在于:
( 1 ) 长阴极钢棒的宽度为 80mm, 高度为 210mm
(2) 侧面捣固糊为热捣固糊;
( 3 ) 在长方体阴极炭块的中部两侧的空隙中的炭粉材料为石墨粉、 煅后石油焦粉与电煅 无烟煤粉的混合物, 其中煅后石油焦粉与电煅无烟煤粉的重量相等;
(4) 长方体阴极炭块中部两侧捣固的侧面捣固糊各平均分为 4段, 由长方体阴极炭块两 端向中部的各段侧面捣固糊中, 骨料中石墨粉的重量含量依次为 30%、 40%、 50%和 60%;
( 5 ) 侧面捣固糊中, 在长方体阴极炭块中部的侧面捣固糊中, 骨料的石墨粉的重量含量 为 100%; 长方体阴极炭块中部两侧捣固的捣固糊各平均分为 2段, 靠近两端的一段侧面捣 固糊中, 骨料中石墨粉的重量含量为 30%, 靠近中部的一段侧面捣固糊中, 骨料中石墨粉的 重量含量为 70%;
( 6) 长阴极钢棒的顶面和长方体阴极炭块之间填充的炭粉材料的厚度为 10mm; 侧面捣 固糊的厚度为 15mm;
经过实验和计算, 采用上述结构进行铝电解生产, 可以显著地降低铝电解阴极压降, 显 著地降低电解槽阴极铝液内的水平电流, 从而可以显著地提高铝电解槽的电流效率, 并降低 铝电解槽的电能消耗。
实施例 4
能降低电压和改善电流分布的铝电解槽阴极结构如图 4所示, A-A面如图 5所示, 包 括长方体阴极炭块 1和短阴极钢棒 6, 长方体阴极炭块底部开设有 4个排成两排的钢棒槽, 每个钢棒槽内设有一个短阴极钢棒 6; 每排钢棒槽的两个钢棒槽对称设置在长方体阴极炭块 纵向中心线 5的两侧; 同一排的两个钢棒槽内的短阴极钢棒 6的间距为 80mm; 短阴极钢棒 6的宽度为 90mm, 高度为 220mm;
每个短阴极钢棒 6的顶面和长方体阴极炭块 1之间的空隙中填充有炭粉材料 2, 每个短 阴极钢棒 6的两个侧面与长方体阴极炭块 1之间用侧面捣固糊捣固 4, 侧面捣固糊 4为热捣 固糊;
短阴极钢棒 6的顶面和长方体阴极炭块 1之间的空隙中填充的炭粉材料 2中, 在长方体 阴极炭块 1的中部的空隙中为石墨粉; 在长方体阴极炭块 1的中部两侧的空隙中的炭粉材料 2为石墨粉与煅后石油焦粉的混合物;
在长方体阴极炭块 1中部两侧的空隙中填充的炭粉材料 2平均分为 2段, 靠近两端的一 段中石墨粉的重量含量为 30%, 靠近中部的一段中石墨粉的重量含量为 80%; 所述的阴极 炭块中部是指是指长方形阴极炭块 1轴线上 600mm的部分, 中部的两侧与长方形阴极炭块 1两端距离相等;
侧面捣固糊 4 中, 骨料中的石墨粉的重量含量由长方体阴极炭块的两端向中部逐渐增 加, 在长方体阴极炭块 1 中部侧面捣固糊中, 骨料的石墨粉的重量含量为 100%; 长方体阴 极炭块中部两侧捣固的侧面捣固糊各平均分为 2段, 由长方体阴极炭块两端向中部的各段侧 面捣固糊中, 骨料中石墨粉的重量含量依次为 30%和 60%;
短阴极钢棒 6的顶面和长方体阴极炭块 1之间填充的炭粉材料 2的厚度为 2mm; 短阴 极钢棒 6的两个侧面与长方体阴极炭块 1之间的侧面捣固糊 4的厚度为 8mm; 短阴极钢棒 6 靠近长方体阴极炭块 1中部的端面与长方体阴极炭块 1之间用端面捣固糊 7捣固, 端面捣固 糊 7为冷捣固糊或热捣固糊, 厚度为 8mm;
经过实验和计算, 采用上述结构进行铝电解生产, 可以显著地降低铝电解阴极压降, 显 著地降低电解槽阴极铝液内的水平电流, 从而可以显著地提高铝电解槽的电流效率, 并降低 铝电解槽的电能消耗。
实施例 5
能降低电压和改善电流分布的铝电解槽阴极结构同实施例 4, 不同点在于:
( 1 ) 同一排的两个钢棒槽内的短阴极钢棒的间距为 100mm; 短阴极钢棒的宽度为 60mm, 高度为 190mm;
(2) 侧面捣固糊为冷捣固糊;
( 3 ) 在长方体阴极炭块的中部两侧的空隙中填充的炭粉材料为石墨粉与电煅无烟煤粉的 混合物;
(4) 在长方体阴极炭块中部两侧的空隙中填充的炭粉材料平均分为 3段, 从两端向中部 各段炭粉材料中石墨粉的重量含量依次为 40%、 60%和 80%;
( 5 ) 长方体阴极炭块中部两侧捣固的侧面捣固糊各平均分为 3段, 由长方体阴极炭块两 端向中部的各段侧面捣固糊中, 骨料中石墨粉的重量含量依次为 30%、 50%和 70%; ( 6 ) 短阴极钢棒的顶面和长方体阴极炭块之间填充的炭粉材料的厚度为 6mm; 短阴极 钢棒的两个侧面与长方体阴极炭块之间的侧面捣固糊的厚度为 10mm; 短阴极钢棒靠近长方 体阴极炭块中部的端面与长方体阴极炭块之间用端面捣固糊 7捣固, 端面捣固糊为冷捣固糊 或热捣固糊, 厚度为 10mm;
经过实验和计算, 采用上述结构进行铝电解生产, 可以显著地降低铝电解阴极压降, 显 著地降低电解槽阴极铝液内的水平电流, 从而可以显著地提高铝电解槽的电流效率, 并降低 铝电解槽的电能消耗。
实施例 6
能降低电压和改善电流分布的铝电解槽阴极结构同实施例 4, 不同点在于:
( 1 ) 同一排的两个钢棒槽内的短阴极钢棒的间距为 120mm; 短阴极钢棒的宽度为 70mm, 高度为 200mm;
(2) 在长方体阴极炭块的中部两侧的空隙中填充的炭粉材料为石墨粉、 煅后石油焦粉与 电煅无烟煤粉的混合物, 其中煅后石油焦粉和电煅无烟煤粉的重量相等;
( 3 ) 在长方体阴极炭块中部两侧的空隙中的炭粉材料平均分为 4段, 从两端向中部各段 炭粉材料中石墨粉的重量含量依次为 40%、 50%、 60%和 70%;
(4) 长方体阴极炭块中部两侧捣固的侧面捣固糊各平均分为 4段, 由长方体阴极炭块两 端向中部的各段侧面捣固糊中, 骨料中石墨粉的重量含量依次为 30%、 50%、 60%和 70%;
( 5 ) 短阴极钢棒的顶面和长方体阴极炭块之间填充的炭粉材料的厚度为 10mm; 短阴极 钢棒的两个侧面与长方体阴极炭块之间的侧面捣固糊的厚度为 15mm; 短阴极钢棒靠近长方 体阴极炭块中部的端面与长方体阴极炭块之间用端面捣固糊 7捣固, 端面捣固糊为冷捣固糊 或热捣固糊, 厚度为 15mm;
经过实验和计算, 采用上述结构进行铝电解生产, 可以显著地降低铝电解阴极压降, 显 著地降低电解槽阴极铝液内的水平电流, 从而可以显著地提高铝电解槽的电流效率, 并降低 铝电解槽的电能消耗。
实施例 7
能降低电压和改善电流分布的铝电解槽阴极结构如图 6所示, A-A面如图 7所示, B- B面如图 8所示, 包括异形阴极炭块 8和短阴极钢棒 6, 异形阴极炭块 8底部开设有 4个排 成两排的钢棒槽, 每个钢棒槽内设有一个短阴极钢棒 6; 两排钢棒槽对称设置在异形阴极炭 块纵向中心线 9 的两侧; 同一排的两个钢棒槽内的短阴极钢棒 6 的间距为 140mm; 短阴极 钢棒的宽度为 80mm, 高度为 210mm; 其中每个短阴极钢棒 6的顶面和异形阴极炭块 8之间的空隙中填充有炭粉材料 2, 每个 短阴极钢棒 6的两个侧面与异形阴极炭块 8之间用侧面糊捣固, 侧面捣固糊为冷捣固糊; 短阴极钢棒 6的顶面和异形阴极炭块 8之间的空隙中填充的炭粉材料 2中, 在异形阴极 炭块 8的中部的空隙中为石墨粉; 在异形阴极炭块 8的中部两侧的空隙中的炭粉材料 2为石 墨粉、 煅后石油焦粉与电煅无烟煤粉的混合物, 其中煅后石油焦粉和电煅无烟煤粉的重量相 等.
侧面捣固糊 4 中, 骨料中的石墨粉的重量含量由异形阴极炭块 8 的两端向中部逐渐增 加, 在异形阴极炭块 8 中部侧面捣固糊中, 骨料的石墨粉的重量含量为 100%; 异形阴极炭 块 8中部两侧捣固的侧面捣固糊各平均分为 2段, 由异形阴极炭块 8两端向中部的各段侧面 捣固糊中, 骨料中石墨粉的重量含量依次为 30%和 60%;
在异形阴极炭块 8中部两侧的空隙中填充的炭粉材料 2平均分为 2段, 靠近两端的一段 中石墨粉的重量含量为 30%, 靠近中部的一段中石墨粉的重量含量为 80%; 所述的异形阴 极炭块 8中部是指异形阴极炭块 8轴线上 500mm的部分, 中部的两侧与异形阴极炭块 8两 端距离相等;
短阴极钢棒 6的顶面和异形阴极炭块 8之间填充的炭粉材料 2的厚度为 2mm; 短阴极 钢棒 6的两个侧面与异形阴极炭块 8之间的侧面捣固糊 4的厚度为 8mm; 短阴极钢棒 6靠 近异形阴极炭块 8中部的端面与异形阴极炭块 8之间用端面捣固糊 7捣固, 端面捣固糊 7为 冷捣固糊或热捣固糊, 厚度为 8mm;
经过实验和计算, 采用上述结构进行铝电解生产, 可以显著地降低铝电解阴极压降, 显 著地降低电解槽阴极铝液内的水平电流, 从而可以显著地提高铝电解槽的电流效率, 并降低 铝电解槽的电能消耗。
实施例 8
能降低电压和改善电流分布的铝电解槽阴极结构同实施例 7, 不同点在于:
( 1 ) 同一排的两个钢棒槽内的短阴极钢棒的间距为 180mm; 短阴极钢棒的宽度为 90mm, 高度为 220mm;
(2) 侧面捣固糊为热捣固糊;
( 3 ) 在异形阴极炭块的中部两侧的空隙中填充的炭粉材料为石墨粉与煅后石油焦粉的混 合物;
(4) 在异形阴极炭块中部两侧的空隙中的填充炭粉材料平均分为 3段, 从两端向中部各 段炭粉材料中石墨粉的重量含量依次为 40%、 60%和 80%; ( 5 ) 异形阴极炭块中部两侧捣固的侧面捣固糊各平均分为 3 段, 由异形阴极炭块两端向 中部的各段侧面捣固糊中, 骨料中石墨粉的重量含量依次为 30%、 50%和 70%;
( 6) 短阴极钢棒的顶面和异形阴极炭块之间填充的炭粉材料的厚度为 6mm; 短阴极钢棒 的两个侧面与异形阴极炭块之间的侧面捣固糊的厚度为 10mm; 短阴极钢棒靠近异形阴极炭 块中部的端面与异形阴极炭块之间用端面捣固糊捣固, 端面捣固糊为冷捣固糊或热捣固糊, 厚度为 10mm;
经过实验和计算, 采用上述结构进行铝电解生产, 可以显著地降低铝电解阴极压降, 显 著地降低电解槽阴极铝液内的水平电流, 从而可以显著地提高铝电解槽的电流效率, 并降低 铝电解槽的电能消耗。
实施例 9
能降低电压和改善电流分布的铝电解槽阴极结构同实施例 7, 不同点在于:
( 1 ) 同一排的两个钢棒槽内的短阴极钢棒的间距为 200mm; 短阴极钢棒的宽度为 80mm, 高度为 200mm;
(2) 在异形阴极炭块的中部两侧的空隙中填充的炭粉材料为石墨粉与电煅无烟煤粉的混 合物;
( 3 ) 在异形阴极炭块中部两侧的空隙中填充的炭粉材料平均分为 4段, 从两端向中部各 段炭粉材料中石墨粉的重量含量依次为 30%、 40%、 50%和 60%;
(4) 异形阴极炭块中部两侧捣固的侧面捣固糊各平均分为 4段, 由异形阴极炭块两端向 中部的各段侧面捣固糊中, 骨料中石墨粉的重量含量依次为 40%、 50%、 60%和 70%;
( 5 ) 短阴极钢棒的顶面和异形阴极炭块之间填充的炭粉材料的厚度为 10mm; 短阴极钢 棒的两个侧面与异形阴极炭块之间的侧面捣固糊的厚度为 15mm; 短阴极钢棒靠近异形阴极 炭块中部的端面与异形阴极炭块之间用端面捣固糊捣固, 端面捣固糊为冷捣固糊或热捣固 糊, 厚度为 15mm;
经过实验和计算, 采用上述结构进行铝电解生产, 可以显著地降低铝电解阴极压降, 显 著地降低电解槽阴极铝液内的水平电流, 从而可以显著地提高铝电解槽的电流效率, 并降低 铝电解槽的电能消耗。

Claims

权利要求书
1. 一种能降低电压和改善电流分布的铝电解槽阴极结构, 包括阴极炭块和阴极钢棒, 阴极 炭块底部开设有 2个贯通的钢棒槽或 4个排成两排的钢棒槽, 每个钢棒槽内设有阴极钢棒; 其特征在于: 每个阴极钢棒顶面和阴极炭块钢棒槽之间的空隙中填充有炭粉材料, 每个阴极 钢棒的两个侧面与钢棒槽之间用冷捣固糊或热捣固糊捣固; 所述的炭粉材料为石墨粉, 或者 石墨粉与煅后石油焦粉的混合物, 或者石墨粉与电煅无烟煤粉的混合物, 或者石墨粉、 煅后 石油焦粉与电煅无烟煤粉的混合物。
2. 根据权利要求 1 所述的能降低电压和改善电流分布的铝电解槽阴极结构, 其特征在于阴 极钢棒顶面和阴极炭块钢棒槽之间的空隙中的炭粉材料中, 在阴极炭块的中部的空隙中为石 墨粉; 在阴极炭块的中部两侧的空隙中的炭粉材料为石墨粉与煅后石油焦粉的混合物, 或者 石墨粉与电煅无烟煤粉的混合物, 或者石墨粉、 煅后石油焦粉与电煅无烟煤粉的混合物; 在 阴极炭块中部两侧的空隙中的炭粉材料中石墨粉的重量含量为 30~80%, 每一侧空隙中的炭 粉材料分为至少 2段, 各段炭粉材料中石墨粉的重量含量由阴极炭块两端向中部方向逐渐增 高; 所述的阴极炭块中部是指阴极炭块轴线上 500~600mm 的部分, 中部的两侧与阴极炭块 两端距离相等。
3. 根据权利要求 1 所述的能降低电压和改善电流分布的铝电解槽阴极结构, 其特征在于阴 极钢棒的两个侧面与阴极炭块之间的冷捣固糊或热捣固糊中, 冷捣固糊或热捣固糊中的骨料 中的石墨粉的重量含量由阴极炭块的两端向中部逐渐增加, 其中在阴极炭块中部捣固的捣固 糊中, 骨料的石墨粉的重量含量为 100%; 在阴极炭块中部两侧捣固的捣固糊中, 骨料的石 墨粉的重量含量为 30~70%, 每一侧捣固的捣固糊分为至少 2段, 各段捣固糊中的骨料中石 墨粉的重量含量由阴极炭块两端向中部方向逐渐增高。
4. 根据权利要求 1 所述的能降低电压和改善电流分布的铝电解槽阴极结构, 其特征在于当 阴极炭块底部设有 4 个排成两排的钢棒槽时, 同一排的两个钢棒槽内的阴极钢棒的间距为 80~200mm。
5. 根据权利要求 1 所述的能降低电压和改善电流分布的铝电解槽阴极结构, 其特征在于阴 极钢棒的顶面和阴极炭块之间填充的炭粉材料的厚度为 2~10mm; 阴极钢棒的两个侧面与阴 极炭块之间的冷捣固糊或热捣固糊的厚度为 8~15mm; 当阴极炭块底部设有 4个排成两排的 钢棒槽时, 阴极钢棒靠近阴极炭块中部的端面与阴极炭块之间用冷捣固糊或热捣固糊捣固, 冷捣固糊或热捣固糊的厚度为 8~15mm。
6. 根据权利要求 1 所述的能降低电压和改善电流分布的铝电解槽阴极结构, 其特征在于所 述的石墨粉、 煅后石油焦粉和电煅无烟煤粉的粒径均 1.0mm。
PCT/CN2011/084599 2011-11-29 2011-12-24 能降低电压和改善电流分布的铝电解槽阴极结构 WO2013078746A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110385782.1 2011-11-29
CN201110385782.1A CN102392272B (zh) 2011-11-29 2011-11-29 能降低电压和改善电流分布的铝电解槽阴极结构

Publications (1)

Publication Number Publication Date
WO2013078746A1 true WO2013078746A1 (zh) 2013-06-06

Family

ID=45859650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084599 WO2013078746A1 (zh) 2011-11-29 2011-12-24 能降低电压和改善电流分布的铝电解槽阴极结构

Country Status (2)

Country Link
CN (1) CN102392272B (zh)
WO (1) WO2013078746A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113445079A (zh) * 2021-06-17 2021-09-28 合肥工业大学 一种铝电解槽用可降低铝液水平电流的阴极钢棒结构

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109778233B (zh) * 2019-03-28 2021-01-08 中南大学 一种铝电解阴极钢棒、制备方法及铝电解槽

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665958A (zh) * 2009-10-15 2010-03-10 郭龙 一种关于铝电解槽阴极炭块和阴极钢棒的连接方法和构造
WO2011047516A1 (zh) * 2009-10-21 2011-04-28 中国铝业股份有限公司 铝电解异型阴极电解槽开槽阳极结构、铝电解槽及焙烧方法
CN201864785U (zh) * 2010-10-19 2011-06-15 沈阳铝镁设计研究院有限公司 一种大幅降低铝电解槽铝液中水平电流的结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1801264A1 (en) * 2005-12-22 2007-06-27 Sgl Carbon Ag Cathodes for aluminium electrolysis cell with expanded graphite lining
CN101724857B (zh) * 2008-10-13 2013-03-27 高德金 一种阴极碳块钢棒组
CN101423956B (zh) * 2008-11-21 2010-08-11 中国铝业股份有限公司 一种带导电板的电解槽阴极结构
US8205593B2 (en) * 2009-06-17 2012-06-26 De Versterre William I DEV cycle engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665958A (zh) * 2009-10-15 2010-03-10 郭龙 一种关于铝电解槽阴极炭块和阴极钢棒的连接方法和构造
WO2011047516A1 (zh) * 2009-10-21 2011-04-28 中国铝业股份有限公司 铝电解异型阴极电解槽开槽阳极结构、铝电解槽及焙烧方法
CN201864785U (zh) * 2010-10-19 2011-06-15 沈阳铝镁设计研究院有限公司 一种大幅降低铝电解槽铝液中水平电流的结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113445079A (zh) * 2021-06-17 2021-09-28 合肥工业大学 一种铝电解槽用可降低铝液水平电流的阴极钢棒结构
CN113445079B (zh) * 2021-06-17 2023-09-22 合肥工业大学 一种铝电解槽用可降低铝液水平电流的阴极钢棒结构

Also Published As

Publication number Publication date
CN102392272B (zh) 2014-02-05
CN102392272A (zh) 2012-03-28

Similar Documents

Publication Publication Date Title
CN100478500C (zh) 一种异形阴极碳块结构铝电解槽
RU2403324C2 (ru) Катоды для алюминиевых электролизеров с пазом неплоской конфигурации
CN102016124B (zh) 包含减小电压降的设备的用于制铝的电解槽
CN101413136B (zh) 具有纵向和横向减波功能的新型阴极结构铝电解槽
AU2017203090B2 (en) Systems and methods of protecting electrolysis cells
WO2012003649A1 (zh) 一种阴极碳块上表面镶嵌柱形凸起的铝电解槽
CN102758216B (zh) 一种均化铝电解槽铝液中电流分布的方法
CN203065598U (zh) 熔炼设备
CA2811361A1 (en) Cathode for electrolytic cells
CN101775621B (zh) 一种铝电解槽阴极结构
CN201049966Y (zh) 一种异形结构铝电解槽的阴极碳块
CN101451249B (zh) 一种消除铝电解槽铝液中水平电流的方法
CN104250831A (zh) 节能、均化铝液水平电流的阴极结构
CN201367468Y (zh) 水平出电铝电解槽阴极结构
CN101503809A (zh) 一种具有倒角开槽阴极的新型节能铝电解槽
WO2013078746A1 (zh) 能降低电压和改善电流分布的铝电解槽阴极结构
WO2013040856A1 (zh) 减小铝液中水平电流的阴极结构
CN201141044Y (zh) 消除铝电解槽铝液中水平电流的结构
WO2011082657A1 (zh) 一种电解槽的槽底结构
CN201305634Y (zh) 一种具有纵向和横向减波功能的新型阴极结构铝电解槽
CN201358306Y (zh) 一种具有倒角开槽阴极的新型节能铝电解槽
CN101781773A (zh) 一种水平出电铝电解槽阴极结构
CN101949035B (zh) 铝电解用新型组合石墨化异型阴极
CN105350018A (zh) 一种燕尾槽型铝电解槽用阴极
CN217536190U (zh) 一种新型节能电解槽

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876612

Country of ref document: EP

Kind code of ref document: A1