WO2013040817A1 - 一种便携式电阻抗成像系统的电阻抗测量装置及测量方法 - Google Patents

一种便携式电阻抗成像系统的电阻抗测量装置及测量方法 Download PDF

Info

Publication number
WO2013040817A1
WO2013040817A1 PCT/CN2011/080741 CN2011080741W WO2013040817A1 WO 2013040817 A1 WO2013040817 A1 WO 2013040817A1 CN 2011080741 W CN2011080741 W CN 2011080741W WO 2013040817 A1 WO2013040817 A1 WO 2013040817A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
electrical impedance
excitation
square wave
circuit
Prior art date
Application number
PCT/CN2011/080741
Other languages
English (en)
French (fr)
Inventor
董秀珍
霍旭阳
尤富生
史学涛
付峰
刘锐岗
季振宇
徐灿华
杨滨
杨旻
漆家学
张雯
王楠
Original Assignee
中国人民解放军第四军医大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军第四军医大学 filed Critical 中国人民解放军第四军医大学
Priority to US13/877,317 priority Critical patent/US9995775B2/en
Priority to EP11872690.0A priority patent/EP2759261B1/en
Priority to PCT/CN2011/080741 priority patent/WO2013040817A1/zh
Publication of WO2013040817A1 publication Critical patent/WO2013040817A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0536Impedance imaging, e.g. by tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/14Measuring resistance by measuring current or voltage obtained from a reference source

Definitions

  • the invention belongs to the technical field of bioelectrical impedance imaging, and particularly relates to an electrical impedance measuring device and a measuring method of a portable electrical impedance imaging system.
  • Bioelectrical impedance imaging technology is a tomographic imaging technique that images the internal structure of an organism using a set of electrical impedance information measured non-invasively from the living body.
  • This technique requires an electrical impedance measurement device to perform an electrical impedance measurement on an imaging target to obtain a set of electrical impedance values at a certain frequency including internal information of the imaging target.
  • electrical impedance measurement it is generally necessary to apply a constant intensity current excitation to the imaging target, and measure the response voltage on the imaging target, from which the electrical impedance information of the imaging target is demodulated.
  • a sinusoidal current excitation signal is generally applied to the imaging target, and a high-speed analog-to-digital converter (ADC) is used to perform high-speed sampling on the response sinusoidal voltage signal, and then digital quadrature demodulation is used.
  • ADC analog-to-digital converter
  • the method demodulates the electrical impedance information of the imaging target.
  • the object of the present invention is to provide a battery-powered, simple structure, low power consumption for portable Electrical impedance measuring device and measuring method of the electrical impedance imaging system.
  • an electrical impedance measuring apparatus of the present invention includes a pair of excitation electrodes that generate a square wave current excitation signal in contact with an imaging target, and parallel first and second operational amplifiers connected to an output end of the excitation electrode.
  • the output ends of the first and second operational amplifiers are respectively connected to the first and second resistance-capacitance high-pass filter circuits, and the signal output ends of the first and second resistance-capacitance high-pass filter circuits are connected to the A/D circuit via the differential amplifier circuit.
  • the measurement method of the present invention is as follows:
  • the collected response voltage signal is buffered and amplified by a pair of high input impedance operational amplifiers to eliminate the influence of the electrode-skin contact impedance;
  • the voltage signal amplified by the operational amplifier buffer is passed through a RC high-pass filter circuit to filter out power frequency interference and electrode polarization voltage interference;
  • the filtered signal enters the differential amplifying circuit, and the extracted response voltage differential signal is converted into a single-ended signal and amplified;
  • the amplified response voltage signal is converted into a digital signal by a high-speed, high-precision A/D circuit for calculating and demodulating the electrical impedance information
  • the response voltage signal is collected for one signal period, and is sampled once during the high level and the low level, respectively, to obtain the sampling result and V 2 respectively ;
  • is the time interval between the absolute sampling time and the rising edge of the square wave excitation signal, and T is the period of the square wave excitation signal;
  • the average of the demodulation results ⁇ of a plurality of cycles is taken as the final demodulation result.
  • the excitation signal of the invention is a square wave current signal, and the response voltage signal on the imaging target is first buffered by the operational amplifier to reduce the influence of the electrode-skin contact impedance; and then filtered by the RC high-pass filter circuit to eliminate the electrode polarization The effect of the voltage; the signal amplification is performed by the differential amplifier circuit; finally, the high-speed, high-resolution, high-precision analog-to-digital converter (ADC) is used to convert the analog signal into a digital signal for demodulation of the electrical impedance.
  • ADC analog-to-digital converter
  • the acquisition process is performed once during the high and low periods of the square wave, and the difference is the demodulation result.
  • the average of the multiple demodulation results is taken as the final demodulation result.
  • the relative sampling instants during the high and low periods remain the same.
  • the impedance measuring circuit can all adopt a low voltage, low power consumption device, can be powered by a single power source, and is convenient for a battery powered portable electrical impedance imaging system.
  • the difference between the sampling results during the high level and the low level is used as the demodulation result, which can further reduce the influence of interference signals such as power frequency interference and electrode polarization voltage.
  • averaging the multiple demodulation results and using the mean as the final demodulation result is beneficial to further improve the measurement accuracy.
  • FIG. 1 is a schematic diagram of an electrical impedance measuring circuit of the present invention.
  • FIG. 2 is a schematic diagram of relative sampling timings of the electrical impedance measurement method of the present invention.
  • the measuring apparatus of the present invention includes a pair of excitation electrodes 1 for generating a square wave current excitation signal 1 in contact with an imaging target, and parallel first and second operational amplifiers 2 connected to an output end of the excitation electrode. 3.
  • the output ends of the first and second operational amplifiers 2, 3 are respectively connected to the first and second resistance-capacitance high-pass filter circuits 4, 5, and the signal outputs of the first and second resistance-capacitance high-pass filter circuits 4, 5
  • the terminal is connected to the A/D circuit 8 via a differential amplifying circuit 6.
  • the invention adopts a square wave current signal with constant intensity to perform excitation, and demodulates and measures the electrical impedance information by using the difference of the voltage amplitude during the high level and the low level of the square wave.
  • the electrical impedance measurement method, the analog signal processing flow is:
  • the square wave current excitation signal 1 generates a response voltage signal on the imaging target after being applied to the imaging target through a pair of excitation electrodes;
  • the response voltage signal is extracted by a pair of measuring electrodes, and the amplifier amplifier 2, 3 with high input impedance is used for buffer amplification. Since the input impedance of the operational amplifier is sufficiently high, the influence of the electrode-skin contact impedance can be eliminated;
  • the buffered amplified voltage signal passes through the RC high-pass filter circuit 4, 5 to filter out the effects of interference such as power frequency interference and electrode polarization voltage;
  • the filtered signal enters the differential amplifying circuit 6, converts the response voltage differential signal extracted by the pair of measuring electrodes into a single-ended signal, and performs amplification;
  • the amplified response voltage signal 7 is converted to a digital signal by a high speed, high precision A/D circuit 8 for calculation and demodulation of the electrical impedance information.
  • the measurement accuracy of the electrical impedance information is improved by using the mean value of the demodulation result ⁇ of a plurality of cycles as the final demodulation result.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Signal Processing (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种便携式电阻抗成像系统的电阻抗测量装置及测量方法,采用"电流激励、电压测量"的原理,激励信号为强度恒定的方波电流信号,成像目标上的响应电压信号分别依次经过缓冲放大、阻容隔直滤波、差分放大等电路,被处理成合适幅度的方波信号,交由模拟数字转换器在合适的时刻转变成数字信号。ADC在方波周期的高电平和低电平期间分别对测量电压信号进行一次数据采样,分别得到采样结果V1和V2,使用其差值作为本周期的电压测量结果。可以将多个周期的电压测量结果的均值作为最终的电压测量结果。由于激励电流信号的强度恒定,所以电压测量结果即可反映成像目标的电阻抗信息。

Description

一种便携式电阻抗成像系统的电阻抗测量装置及测量方法
技术领域
本发明属于生物电阻抗成像技术领域, 具体涉及一种便携式电阻抗成像 系统的电阻抗测量装置及测量方法。
背景技术
生物电阻抗成像技术是使用从生物体表无创测量到的一组电阻抗信息, 对生物体的内部结构进行成像的一种断层成像技术。 该技术需要使用电阻抗 测量设备对成像目标进行电阻抗测量, 得到包含成像目标内部信息的、 某频 率下的一组电阻抗值。 在进行电阻抗测量时, 一般需要对成像目标施加一个 恒定强度的电流激励, 并测量成像目标上的响应电压, 从中解调出成像目标 的电阻抗信息。
传统的电阻抗成像技术中进行电阻抗测量时, 一般对成像目标施加正弦 电流激励信号, 并使用高速模拟数字转换器(ADC)对响应正弦电压信号进行 高速采样, 然后使用数字正交解调的方法, 解调出成像目标的电阻抗信息。
在这种传统的生物电阻抗测量电路中, 需要使用 FPGA、 高速 ADC等功耗 较高的芯片; 而且在数字正交解调方法中, 需要进行较多的乘法运算, 导致 微控制器的运算量大、 功耗大, 因而这种传统的生物电阻抗测量方法不便于 在电池供电的手持式电阻抗成像系统中使用。
所以, 需要一种结构简单、 运算量小、 功耗低的生物电阻抗测量方法, 以适应便携式电阻抗成像系统对小体积、 低功耗等方面的要求。
发明内容
本发明的目的在于提供一种以电池供电、 结构简单、 功耗低的用于便携 式电阻抗成像系统的电阻抗测量装置及测量方法。
为达到上述目的, 本发明的电阻抗测量装置包括与成像目标相接触的一 对产生方波电流激励信号的激励电极以及与该激励电极的输出端相连接的并 联的第一、 第二运算放大器, 第一、 第二运算放大器的输出端分别与第一、 第二阻容高通滤波电路相连接, 第一、 第二阻容高通滤波电路的信号输出端 经差分放大电路与 A/D电路相连。
本发明的测量方法如下:
1 )首先, 方波电流激励信号通过一对激励电极施加到成像目标后, 在成 像目标上产生响应电压信号;
2 )然后,采集的响应电压信号通过一对高输入阻抗的运算放大器进行缓 冲放大, 消除电极-皮肤接触阻抗的影响;
3 )由运算放大器缓冲放大后的电压信号经过阻容高通滤波电路,滤除工 频干扰、 电极极化电压干扰;
4)滤波后的信号进入差分放大电路,将提取到的响应电压差分信号转变 成单端信号, 并进行放大;
5)最后, 放大后的响应电压信号经过高速、高精度 A/D电路转变为数字 信号, 用于进行电阻抗信息的计算和解调;
所述的响应电压信号的采集是对于一个信号周期, 分别在其高电平和低 电平期间进行一次采样, 分别得到采样结果 和 V2; 设在高电平期间的相对采样时刻为 ^ = i,其中 ^为绝对采样时刻距方 波激励信号上升沿的时间间隔, T 为方波激励信号的周期; 与此对应设低电 平期间的相对采样时刻为 =-^-; 则 ^ = tn2 ; 通过计算高电平和低电平期间采样结果的差值 vz = v, -v2,进行电阻抗信 息的解调;
将多个周期的解调结果^的均值作为最终解调结果。
本发明的激励信号为方波电流信号, 成像目标上的响应电压信号首先经 过运算放大器进行缓冲, 以降低电极-皮肤接触阻抗的影响;再经由阻容高通 滤波电路进行滤波, 以消除电极极化电压的影响; 再经过差分放大电路进行 信号放大; 最后使用高速、 高分辨率、 高精度模拟数字转换器 (ADC) , 将模 拟信号转换为数字信号, 用于电阻抗的解调。
采集过程分别在方波的高电平和低电平期间进行一次采样, 其差值即为 解调结果。为了提高测量精度,将多次解调结果的均值作为最终的解调结果。 解调过程中, 在高电平和低电平期间的相对采样时刻保持一致。
与现有技术相比, 本发明的优点在于: 首先, 阻抗测量电路可以全部采 用低电压、 低功耗的器件, 可以单电源供电, 便于应用于电池供电的便携式 电阻抗成像系统。 其次, 将高电平和低电平期间的采样结果的差值作为解调 结果, 可以进一步降低工频干扰、 电极极化电压等干扰信号的影响。 最后, 将多次解调结果进行平均, 使用其均值作为最终的解调结果, 有利于进一步 提高测量精度。
附图说明
图 1是本发明电阻抗测量电路示意图。
图 2是本发明电阻抗测量方法的相对采样时刻的示意图。
具体实施方式
下面结合附图对本发明作进一步详细说明。 参见图 1, 本发明的测量装置包括与成像目标相接触的一对产生方波电 流激励信号 1的激励电极 1以及与该激励电极的输出端相连接的并联的第一、 第二运算放大器 2、 3, 第一、 第二运算放大器 2、 3的输出端分别与第一、 第二阻容高通滤波电路 4、 5相连接, 第一、 第二阻容高通滤波电路 4、 5的 信号输出端经差分放大电路 6与 A/D电路 8相连。
本发明采用强度恒定的方波电流信号进行激励, 采用对方波高电平和低 电平期间的电压幅度求差值的方法进行电阻抗信息的解调与测量。
电阻抗测量方法, 其模拟信号处理流程为:
方波电流激励信号 1通过一对激励电极施加到成像目标后, 在成像目标 上产生响应电压信号;
通过一对测量电极提取此响应电压信号, 使用高输入阻抗的运算放大器 2、 3进行缓冲放大, 由于运算放大器的输入阻抗足够高, 所以可以消除电极 -皮肤接触阻抗的影响;
缓冲放大后的电压信号经过阻容高通滤波电路 4、 5, 滤除工频干扰、 电 极极化电压等干扰的影响;
滤波后的信号进入差分放大电路 6, 将一对测量电极提取到的响应电压 差分信号转变成单端信号, 并进行放大;
最后, 放大后的响应电压信号 7经过高速、 高精度 A/D电路 8转变为数 字信号, 用于进行电阻抗信息的计算和解调。
其电阻抗解调方法为:
参见图 2, 对于一个信号周期, 分别在其高电平和低电平期间进行一次 采样, 分别得到采样结果 ^和¥2 ; 设在高电平期间的相对采样时刻为 = ^,其中 ^为绝对采样时刻距方 波激励信号上升沿的时间间隔, T 为方波激励信号的周期; 对于此对应设低 电平期间的相对采样时刻为 则^ = 相对采样时刻 ^、 ^的值一般为 0. 8, 此值可以进行调整, 以适应不同 的成像需要;
通过计算高电平和低电平期间采样结果的差值 ,来进行电阻抗 信息的解调;
通过将多个周期的解调结果 ^的均值作为最终解调结果的方法, 来提高 电阻抗信息的测量精度。

Claims

权利要求书
1、一种便携式电阻抗成像系统的电阻抗测量装置, 其特征在于: 包括与 成像目标相接触的一对产生方波电流激励信号 (1) 的激励电极 (1) 以及与 该激励电极的输出端相连接的并联的第一、 第二运算放大器 (2、 3), 第一、 第二运算放大器 (2、 3) 的输出端分别与第一、 第二阻容高通滤波电路 (4、 5)相连接, 第一、 第二阻容高通滤波电路(4、 5) 的信号输出端经差分放大 电路 (6) 与 A/D电路 (8) 相连。
2、一种如权利要求 1所述的便携式电阻抗成像系统的电阻抗测量装置的 测量方法, 其特征在于:
1)首先, 方波电流激励信号(1)通过一对激励电极施加到成像目标后, 在成像目标上产生响应电压信号;
2)然后,采集的响应电压信号通过一对高输入阻抗的运算放大器(2、 3) 进行缓冲放大, 消除电极-皮肤接触阻抗的影响;
3) 由运算放大器(2、 3)缓冲放大后的电压信号经过阻容高通滤波电路 (4、 5), 滤除工频干扰、 电极极化电压干扰;
4)滤波后的信号进入差分放大电路(6), 将提取到的响应电压差分信号 转变成单端信号, 并进行放大;
5) 最后, 放大后的响应电压信号 (7) 经过高速、 高精度 A/D电路 (8) 转变为数字信号, 用于进行电阻抗信息的计算和解调;
3、根据权利要求 2所述的测量方法, 其特征在于: 所述的响应电压信号 的采集是对于一个信号周期, 分别在其高电平和低电平期间进行一次采样, 设在高电平期间的相对采样时刻为 ^ = i,其中 ^为绝对采样时刻距方 波激励信号上升沿的时间间隔, T 为方波激励信号的周期; 与此对应设低电 平期间的相对采样时刻为^ = 则^ = 通过计算高电平和低电平期间采样结果的差值 vz = v, -v2,进行电阻抗信 息的解调;
将多个周期的解调结果^的均值作为最终解调结果。
PCT/CN2011/080741 2011-09-23 2011-10-13 一种便携式电阻抗成像系统的电阻抗测量装置及测量方法 WO2013040817A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/877,317 US9995775B2 (en) 2011-09-23 2011-10-13 Electrical impedance detecting device of portable electrical impedance imaging system and detecting method thereof
EP11872690.0A EP2759261B1 (en) 2011-09-23 2011-10-13 Electrical impedance measurement method for portable electrical impedance imaging system
PCT/CN2011/080741 WO2013040817A1 (zh) 2011-09-23 2011-10-13 一种便携式电阻抗成像系统的电阻抗测量装置及测量方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2011102865892A CN102499678B (zh) 2011-09-23 2011-09-23 一种便携式电阻抗成像系统的电阻抗测量装置及测量方法
CN201110286589.2 2011-09-23
PCT/CN2011/080741 WO2013040817A1 (zh) 2011-09-23 2011-10-13 一种便携式电阻抗成像系统的电阻抗测量装置及测量方法

Publications (1)

Publication Number Publication Date
WO2013040817A1 true WO2013040817A1 (zh) 2013-03-28

Family

ID=46211860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080741 WO2013040817A1 (zh) 2011-09-23 2011-10-13 一种便携式电阻抗成像系统的电阻抗测量装置及测量方法

Country Status (4)

Country Link
US (1) US9995775B2 (zh)
EP (1) EP2759261B1 (zh)
CN (1) CN102499678B (zh)
WO (1) WO2013040817A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630748A (zh) * 2013-11-11 2014-03-12 西安交通大学 一种用于微型电网谐波阻抗测量的装置及方法
CN103630749A (zh) * 2013-11-11 2014-03-12 西安交通大学 一种用于电网谐波阻抗测量的谐波注入装置
CN112617794A (zh) * 2020-12-31 2021-04-09 点奇生物医疗科技(北京)有限公司 用于电阻抗成像的测量装置及其测量方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150342497A1 (en) * 2013-01-09 2015-12-03 Timpel S.A. Method and apparatus for acquiring of signals for electrical impedance
DE102013000966A1 (de) * 2013-01-22 2014-07-24 Zimmer Medizinsysteme Gmbh Verfahren und Gerät zur kontinuierlichen, nicht invasiven Messung von Gewebetemperaturen in unterschiedlichen Gewebetiefen
CN103235190B (zh) * 2013-04-19 2015-10-28 重庆金山科技(集团)有限公司 一种电阻抗测试方法
CN103630750B (zh) * 2013-11-22 2016-07-06 上海交通大学 一种基于电阻抗成像的凝胶电导率测量方法
CN103622693A (zh) * 2013-11-28 2014-03-12 中山大学 一种便携式生物电阻抗测量装置
US10357180B2 (en) * 2014-01-16 2019-07-23 D.T.R. Dermal Therapy Research Inc. Health monitoring system
US20150196224A1 (en) * 2014-01-16 2015-07-16 Dermal Therapy (Barbados) Inc. Implantable Sensor and Method for Such Sensor
CN107773240A (zh) * 2016-08-24 2018-03-09 四川锦江电子科技有限公司 一种基于全差分运放的激励源电路
US10120005B2 (en) * 2016-09-07 2018-11-06 Silicon Laboratories Inc. Synchronous detection circuit and method for determining a bio-impedance of a biological tissue
US10702184B2 (en) * 2017-06-07 2020-07-07 Analog Devices International Unlimited Company Low power measurement of skin electrical properties
US11412946B2 (en) 2017-11-14 2022-08-16 Timpel Medical B.V. Electrical impedance tomography device and system having a multi-dimensional electrode arrangement
CN110176613A (zh) * 2019-07-05 2019-08-27 武汉雄韬氢雄燃料电池科技有限公司 一种燃料电池电堆内阻测试系统及方法
US11604229B2 (en) 2020-12-28 2023-03-14 Analog Devices International Unlimited Company Techniques for determining energy storage device state of health
CN112964933B (zh) * 2021-02-02 2023-03-28 湖北工业大学 一种绝对值检波式的涂层复阻抗的测量装置及方法
TWI800018B (zh) * 2021-10-04 2023-04-21 茂達電子股份有限公司 微機電薄膜揚聲器裝置
CN114594383A (zh) * 2022-03-04 2022-06-07 吉林大学 一种燃料电池组在线阻抗测量装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5544662A (en) * 1991-07-09 1996-08-13 Rensselaer Polytechnic Institute High-speed electric tomography
US5749369A (en) * 1996-08-09 1998-05-12 R.S. Medical Monitoring Ltd. Method and device for stable impedance plethysmography
CN1543912A (zh) * 2003-11-18 2004-11-10 华中科技大学 一种生物组织多频率阻抗测量方法及其装置
US20050151545A1 (en) * 2004-01-08 2005-07-14 Information And Communication University Research And Industrial Cooperation Group Apparatus for measuring electrical impedance
US20070007973A1 (en) * 2005-07-07 2007-01-11 Drager Medical Ag & Co. Kg Electroimpedance tomograph with common-mode signal suppression
GB2447477A (en) * 2007-03-14 2008-09-17 Univ Montfort Measuring the dielectric properties of a conductive material

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181134A (en) * 1977-09-21 1980-01-01 Mason Richard C Cardiotachometer
US4584885A (en) * 1984-01-20 1986-04-29 Harry E. Aine Capacitive detector for transducers
US6529640B1 (en) * 1998-06-09 2003-03-04 Nikon Corporation Image processing apparatus
AUPP711998A0 (en) * 1998-11-13 1998-12-10 Micromedical Industries Limited Wrist mountable monitor
US6397730B1 (en) 1998-11-18 2002-06-04 Ortwin Steinbach Sandwich and method for the production thereof
JP4299987B2 (ja) * 2001-12-21 2009-07-22 株式会社日立製作所 プラズマディスプレイ装置及びその駆動方法
US6693444B2 (en) * 2002-07-19 2004-02-17 Delphi Technologies, Inc. Circuit design for liquid property sensor
US7317465B2 (en) * 2002-08-07 2008-01-08 Hewlett-Packard Development Company, L.P. Image display system and method
EP1667579A4 (en) * 2003-09-12 2008-06-11 Bodymedia Inc METHOD AND DEVICE FOR MEASURING CARDIAC PARAMETERS
JP4154601B2 (ja) * 2003-10-23 2008-09-24 ソニー株式会社 信号変換装置、出力アンプ装置、オーディオ装置および送受信システム
CN1723845A (zh) * 2005-07-01 2006-01-25 天津大学 数字解调方式的混频生物阻抗测量系统
GB0614261D0 (en) * 2006-07-18 2006-08-30 Univ Sussex The Electric Potential Sensor
US8057390B2 (en) * 2007-01-26 2011-11-15 The Regents Of The University Of Michigan High-resolution mapping of bio-electric fields
CN100571612C (zh) * 2007-07-13 2009-12-23 深圳迪美泰数字医学技术有限公司 用于临床或非临床生物信号记录的纯数字医用放大器
JP5005570B2 (ja) * 2008-02-04 2012-08-22 株式会社リコー 画像処理装置およびプログラム
US8390304B2 (en) * 2008-02-22 2013-03-05 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Electrical resonance detection of particles and analytes in microfluidic channels
CN101971284B (zh) * 2008-04-16 2013-02-06 松下电器产业株式会社 等离子显示装置
JP5740879B2 (ja) * 2009-09-18 2015-07-01 株式会社村田製作所 圧電アクチュエーター駆動回路
US8933405B2 (en) * 2010-03-29 2015-01-13 Inspection Technologies Limited Inspection apparatus and method
CN101828919A (zh) * 2010-04-28 2010-09-15 上海诺诚电气有限公司 一种具有放大功能的表面肌电电极
WO2011154468A1 (en) * 2010-06-08 2011-12-15 Iee International Electronics & Engineering S.A. Robust capacitive measurement system
CN102819998B (zh) * 2012-07-30 2015-01-14 京东方科技集团股份有限公司 移位寄存器和显示装置
US10149362B2 (en) * 2013-08-01 2018-12-04 Power Integrations, Inc. Solid state lighting control with dimmer interface to control brightness

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5544662A (en) * 1991-07-09 1996-08-13 Rensselaer Polytechnic Institute High-speed electric tomography
US5749369A (en) * 1996-08-09 1998-05-12 R.S. Medical Monitoring Ltd. Method and device for stable impedance plethysmography
CN1543912A (zh) * 2003-11-18 2004-11-10 华中科技大学 一种生物组织多频率阻抗测量方法及其装置
US20050151545A1 (en) * 2004-01-08 2005-07-14 Information And Communication University Research And Industrial Cooperation Group Apparatus for measuring electrical impedance
US20070007973A1 (en) * 2005-07-07 2007-01-11 Drager Medical Ag & Co. Kg Electroimpedance tomograph with common-mode signal suppression
GB2447477A (en) * 2007-03-14 2008-09-17 Univ Montfort Measuring the dielectric properties of a conductive material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630748A (zh) * 2013-11-11 2014-03-12 西安交通大学 一种用于微型电网谐波阻抗测量的装置及方法
CN103630749A (zh) * 2013-11-11 2014-03-12 西安交通大学 一种用于电网谐波阻抗测量的谐波注入装置
CN112617794A (zh) * 2020-12-31 2021-04-09 点奇生物医疗科技(北京)有限公司 用于电阻抗成像的测量装置及其测量方法

Also Published As

Publication number Publication date
US9995775B2 (en) 2018-06-12
EP2759261A4 (en) 2015-04-22
CN102499678A (zh) 2012-06-20
EP2759261B1 (en) 2021-06-09
US20140188417A1 (en) 2014-07-03
CN102499678B (zh) 2013-11-06
EP2759261A1 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
WO2013040817A1 (zh) 一种便携式电阻抗成像系统的电阻抗测量装置及测量方法
Yazicioglu et al. A 30$\mu $ W Analog Signal Processor ASIC for Portable Biopotential Signal Monitoring
US8755868B2 (en) Adaptive sampling
CN102551727B (zh) 呼吸信息检测方法及装置
US9204816B2 (en) Method and system for determining body impedance
CN103475343B (zh) 一种微弱信号抗干扰、放大和整形的低功耗处理方法
CN101449970B (zh) 生物电放大器
CN206756755U (zh) 一种应力波信号调理装置
CN104198826A (zh) 一种脉冲信号检测系统、方法及粒子计数器
CN104510461B (zh) 数字式全隔离心电信号采集降噪装置及其方法
CN104783781B (zh) 低失真心电信号采集处理电路及心电采集设备
CN103393417B (zh) 一种指脉测试电路
CN203859727U (zh) 检测微弱信号的装置
CN104485914A (zh) 一种生物微弱信号检测与处理电路
CN102579033B (zh) 一种恒流源驱动的生物电前置放大器及其控制方法
CN204272046U (zh) 一种生物微弱信号检测与处理电路
CN115778398B (zh) 一种体表肌电信号检测电路及检测方法
CN204188710U (zh) 一种脉冲信号检测系统及粒子计数器
CN105380647A (zh) 一种基于四电极半桥法的微弱动态阻抗检测装置及其方法
CN109247922A (zh) 一种心电采集设备起搏脉冲的检测方法及装置
CN104706344A (zh) 一种心电信号测量采集系统
CN103869863B (zh) 传感器调理电路
CN202133637U (zh) 应用于电解水装置的检测电路
CN103654766A (zh) 弱生理信号低倍率放大装置
CN203749406U (zh) 弱生理信号低倍率放大装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13877317

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011872690

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE