WO2013039272A1 - Thin cold-rolled steel plate having high strength and high formability, and preparation method thereof - Google Patents

Thin cold-rolled steel plate having high strength and high formability, and preparation method thereof Download PDF

Info

Publication number
WO2013039272A1
WO2013039272A1 PCT/KR2011/006866 KR2011006866W WO2013039272A1 WO 2013039272 A1 WO2013039272 A1 WO 2013039272A1 KR 2011006866 W KR2011006866 W KR 2011006866W WO 2013039272 A1 WO2013039272 A1 WO 2013039272A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
high strength
strength
rolled steel
formability
Prior art date
Application number
PCT/KR2011/006866
Other languages
French (fr)
Korean (ko)
Inventor
이병호
윤정봉
김정철
김성환
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2014530576A priority Critical patent/JP5826398B2/en
Priority to CN201180073442.3A priority patent/CN103797143B/en
Priority to PCT/KR2011/006866 priority patent/WO2013039272A1/en
Publication of WO2013039272A1 publication Critical patent/WO2013039272A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • Ultra-thin cold rolled steel sheet having high strength and high formability and its manufacturing method
  • the present invention relates to an ultra-thin cold rolled steel sheet used in home appliances and the like, and more particularly, to an ultra-thin galvanized steel sheet having high strength and high formability, and a method of manufacturing the same.
  • the design also has the advantage of being diversified.
  • ultrathin, high strength can have the effect of three stone trillion.
  • many studies have been conducted for the development of ultrathin products having high strength and high formability in recent years. These studies are largely 1) strengthening the structure (transformation) using transformations generated during the steel sheet manufacturing process, 2) solid solution strengthening to control the components that can be employed in the steel, and 3) precipitation strengthening to increase the strength by distributing precipitates.
  • the recrystallized steel sheet may be further divided into work reinforcement, which causes work hardening by second rolling.
  • the prior art is classified into two types. 1) DR (Double Reducing; Rolling) type process and 2) D abbreviation type process which does not use secondary rolling.
  • the transformation, solid-solution strengthening, precipitation strengthening, and the like may be classified into the DR process type and the DR omitted process according to the presence or absence of secondary rolling.
  • the DR process-type process in which the strength is increased by using secondary rolling, defects such as dislocations in steel are inevitably generated due to the increase in strength due to the secondary rolling. While gradually increasing, the elongation is drastically reduced, so it is difficult to use it in an extremely hard part.
  • steel sheets using secondary rolling have most elongation levels of less than 2 to 3% and crack in the rolling direction due to the deterioration of formability due to the low elongation and the influence of the rolled grain generated during secondary rolling. This situation has been formed.
  • the ultra low carbon steels having a carbon content of generally 0.01 wt or less, the low carbon steels having a carbon content of 0.01 ⁇ wt% C ⁇ 0.1, and 0.1 ⁇ wt% C ⁇ 0.25 It can be divided into carbon-based bicarbonate steel, and high carbon steel having a carbon content of 0.25wt% or more.
  • the ultra low carbon steel is mainly used as a steel sheet for cans, and the conventional technique for this is to reduce the reduction ratio of the secondary reduction, and to improve the strength by controlling the content of Mn (JP1995-274558) and its The improved patent (JP1997-216980) etc. which adjust a reduction ratio for workability improvement, etc.
  • JP1990-052642 technology of increasing the content of Mn, continuous lubrication rolling, secondary rolling (JP1996-239734), technology using the effect of overaging treatment (JP1997-040883), using fast tissue Technology (JP2006-074140) and the like.
  • the low carbon steel has a low strength level, and even if the strength level is high, it requires a high angle of incidence that is difficult to realize in a general continuous annealing process, or the final elongation range obtained is lower than a target range. There is a limit.
  • this patent utilizes all of the above-described solid solution strengthening, texture control, and work hardening using the secondary rolling process, and the strength level is higher than that of other technologies (YS> 650 MPa).
  • a method of providing an ultra-thin steel sheet having excellent moldability has been proposed.
  • these patents have a problem that the process is complicated by using secondary rolling, and although the rolling amount is small, dislocations are generated by the effect of rolling, resulting in a difference in formability in the rolling direction and the rolling vertical direction.
  • One aspect of the present invention is to provide an ultra-thin carbon steel sheet having high strength and high formability and a method of manufacturing the same.
  • Another aspect of the present invention is to provide a method capable of producing an ultra-thin steel sheet having high strength and high formability without performing secondary rolling by appropriately controlling the steel composition and manufacturing conditions.
  • the ultra-thin steel sheet provided by the present invention since the ultra-thin steel sheet provided by the present invention has high strength and high formability, it is a notebook, a liquid crystal display (LCD) monitor and an LCD, a portable multimedia player (PMP), and an luminescent diode (LED). ) It can be effectively used for high strength ultrathin leaded products that require high strength over 300 HV as well as chassis supporting strength parts such as TV.
  • LCD liquid crystal display
  • PMP portable multimedia player
  • LED luminescent diode
  • FIG. 1 is an optical tissue picture of the invention and the comparative material outside the scope of the present invention according to the present invention
  • Figure 1 (a) shows a tissue picture of the invention material
  • Figure 1 (b) shows a tissue picture of the comparative material Indicates.
  • Figure 2 is (b) of Figure shows the organization picture of 'an electron microscope photograph showing the tissue material invention with different magnification three (a) of Fig. 2 is a magnification of 1000 times ( ⁇ ⁇ ) consistent with the present invention, 2 An organization photograph at a magnification of 2000 times (X 2000) is shown, and FIG. 2C shows an organization photograph at a magnification of 5000 times (X 5000).
  • the present invention steel is characterized in that the tissue comprises a ferrite of 70 ⁇ 100 vol.% Bainite and 0 ⁇ 30vol.% Of, and bainite structure are so obtained that tissue under normal cooling rates in the Martensite steel Compared to the manufacturing process And, there is an advantage in excellent workability and formability.
  • the steel sheet of the present invention has a hardness of 300 HV or more, but does not perform secondary rolling, even though the hardness of the present invention is higher than that of the high-strength ultrathin material using secondary rolling, which has a hardness of HV500g and 200-250HV, even if the secondary rolling is not performed.
  • the anisotropy characteristic with respect to the various rolling directions shown at the time of secondary rolling is also not shown.
  • the steel composition of the present invention will be described (weight 3 ⁇ 4).
  • the C is preferably contained 0.15% or more in order to control the structure to ensure the striking strength in the production of ultra-thin cold-rolled steel sheet, but the amount of carbide precipitation, considering the workability of the steel sheet, considering the possibility of rolling between rolling and deterioration of shape, It is preferable to limit the upper limit of the content to 0.25% as a cause of the mailing inhibition inhibition.
  • the Mn lowers the Ar 3 temperature and also improves the hardenability at the time of desorption, thereby delaying the formation of pearlite such as pearlite at low cooling rates, thereby allowing the formation of bainite phase at the normal dexterity rate.
  • the Ar 3 temperature is an inverse transformation temperature for forming an austenite pool for causing transformation during the continuous annealing process.
  • the B is a major element to improve the hardenability with Mn to form the bainite phase in spite of the general cornering speed during annealing heat treatment, when the content is less than 5ppm, the effect is not expected, than 30ppm
  • the content is preferably limited to 5 ⁇ 30ppm.
  • Ti is an element added to more reliably obtain the effect of B, and is used to suppress the formation of boron nitride formed by the combination of N and B remaining in the steel. Add to act as a scavenger. Therefore, the content of Ti is preferably limited as determined by "in proportion to the content of the N remaining steel, a 0.01 ⁇ 0.053 ⁇ 4>.
  • Si is an element that plays a role of deoxidizer and solid solution strengthening, but when the content exceeds 1.0%, crack brittleness problem occurs.
  • the C it is preferable to satisfy a relation of Mn and the product of the B content of 1.13 - 1 lead 4 ⁇ wt% C? Wt% Mn? Wt% B ⁇ 1.875 * 10- 3. If multiplication 1.875 * 10 - greater than 3 of the content is provided with the fear that the embrittlement occurs, and the rolling property is degraded, it is less than 1.13 * 10-4 is raised off the Ar 3 temperature curing ability and bainite is sufficiently formed It is difficult.
  • Al, P and S may be included.
  • Cold rolled steel sheet of the present invention is 70 ⁇ 100 ⁇ ⁇ . 1. > Bainite and ferrite from 0 to 30 vol.3 ⁇ 4. Since the bainite structure can obtain its structure at a general cooling rate, it has less warpage during manufacture compared to martensitic steels, thereby improving workability and formability.
  • the steel sheet structure of the present invention may contain up to 30 vol.% Ferrite.
  • the ferrite is a structure that serves to secure the ductility of the steel may include up to 30 vol.3 ⁇ 4).
  • the manufacturing conditions of the present MmN mild steel sheet will be described.
  • the steel slab formed as described above is heated, hot-rolled and rolled at an unknown temperature of Ar 3 , and wound at 500 to 800 ° C.
  • the steel slab heating temperature is not particularly limited, but the heating temperature of the steel slab is preferably limited to 1100 ° C. or more in order to secure the stability of the hot rolling finish temperature.
  • the hot rolling finish temperature is preferably limited to the Ar 3 temperature or more, for the purpose of rolling in the austenite single phase region. More preferred hot rolling finish temperature is Ar 3 ⁇ 950 ° C.
  • the reduction ratio and the cornering condition are not particularly limited.
  • the winding silver is preferably limited to 500 ° C. or more in order to obtain intermetallic rolling properties, but is preferably limited to 800 ° C. or less to prevent grain coarsening.
  • the thickness of the hot rolled steel sheet is not particularly limited, for example, 1.0-3.0 kPa is preferable.
  • the winding temperature is controlled to more than 500 ° C. does not form a hard structure during hot rolling, the hot-rolled final strength is not very high, PCM (Pickling & Cold Rolling Mill) during rolling Can reduce the rolling load.
  • the cold reduction rate is less than 50%, it is difficult to secure the target thickness, and if it exceeds 90%, there is a problem of inferior rollability ⁇
  • the annealing degree is less than 750 ° C. Inverse transformation into austenite Is not sufficiently generated, heat buckle is likely to occur when it exceeds 850 o C.
  • the holding time is less than 30 seconds, since reverse transformation to austenite does not occur sufficiently, the holding time is preferably limited to 30 seconds or more.
  • the pearlite when the cooling rate is less than 10 o C / sec, the pearlite may be formed, if the cooling rate exceeds 50 o C / sec Martensite may be formed, the angular rate is 10 ⁇ 50 ° C / It is preferable to limit to sec.
  • Preferred excitation speed is 10-30 ° C./sec. If the holding time (over aging time) is less than 50 seconds, bainite is not formed sufficiently, and the holding time (over aging time) is preferably limited to 50 seconds or more.
  • the moving speed of the steel sheet during the continuous annealing is preferably limited to 100 ⁇ 500m / min to produce a fine bainite (bainite) phase.
  • the present invention is a material that can cause reverse transformation of the austenite phase at 750 ⁇ 850 ° C when annealing through active ingredient control, 250 ⁇ 450 ° in the state that is not transformed into a tissue such as 3 ⁇ 4 light at the time of the austenite phase wetting Cooling to the temperature range of C, and maintaining at this temperature to produce bainite transformation to form a low-temperature transformation structure in the steel to produce a high strength ultra-thin steel sheet.
  • the steel sheet produced as described above has a structure of 70 to 100 vol. ⁇ Contains bainite and ferrites from 0-30 vol.S3 ⁇ 4.
  • the thickness of the said mild steel sheet is not specifically limited, For example, 0.5 mm or less is preferable.
  • the present invention promotes bainite transformation during continuous annealing without increasing the initial strength by using expensive Mo, Nb, Ti, etc. and alloys such as Mn and B, which are relatively low-cost.
  • Mo, Nb, Ti, etc. and alloys such as Mn and B which are relatively low-cost.
  • the present invention is carried out a rapid angle of 50 ° C / sec or more to cause transformation in low coal series Compared with the prior art, such as utilizing martensitic tissue, it is possible to overcome the low formability characteristic of martensite tissue at a similar level of strength, and to prevent buckling caused by shear deformation.
  • the present invention has the advantage that it is possible to obtain a low temperature high strength transformation structure without the effect of the addition of expensive alloys or fast wetting speed by lowering the wetting speed during transformation in the continuous annealing process to a general continuous annealing furnace (CAL) level cooling rate.
  • CAL continuous annealing furnace
  • the present invention has a good molding characteristics during L-bending, which is a deformation mode of a general high-strength ultrathin material because it does not perform secondary rolling, and its yield strength (YR) value is not achieved because secondary rolling is not performed.
  • Yield strength (YR) value is not achieved because secondary rolling is not performed.
  • the steel having the composition of Table 1 is hot rolled (heating temperature: 1250 ° C., finish rolling temperature: 900 ° C, hot rolled steel sheet thickness: 2.7 kPa and winding temperature: 600 ° C), and then to the manufacturing conditions of Table 2 After cold rolling (rolling rate of primary hot rolling: 89%, thickness: 0.3mm), and then annealed to the manufacturing conditions of Table 3 below, yield strength and total elongation, hardness and formability (cracks during L-bending) Occurrence), yield strength and total elongation are shown in Table 2, hardness in Table 4, and moldability evaluation results (cracking) are shown in Table 5, respectively.
  • test piece for the test was the experiment by limiting the annealing temperature to 750 o C, 780 ° C, 800 o C.
  • invented steels not subjected to the secondary rolling process exhibited characteristics in which the yield strengths exceeded 650 MPa and the elongation values exceeded 5.0 in the case of conditions B and C annealed at a temperature of 750 ° C. or higher.
  • the annealing temperature is low, the yield strength can be seen that the ductility is less than 5% or less than that of the conditions B, C of the invention steel.
  • the strength other than the yield strength due to the error in the yield strength Hardness is used a lot as a standard of measurement.
  • the hardness value is significantly higher than that of the comparative steel in comparison with the yield strength value. This phenomenon is generally inferred from the fact that the hardness value is proportional to the tensile strength rather than the yield strength of the steel.
  • the invented steel in comparison with the comparative steels A and B in which work hardening occurs through the secondary rolling, No hardening occurs because no hardening occurs, and the base structure itself is due to the strong bainite structure, and thus the yield ratio value itself is high.
  • the tensile strength does not increase by more than 30 MPa compared to the yield strength in the tensile test.
  • the yield strength is 483MPa
  • the tensile strength is 683MPa
  • the yield steel condition B is the yield strength.
  • condition C yield strength of 1038 MPa at yield strength of 790 MPa, significantly higher than that of comparative steel near 700 MPa. This high tensile strength guarantees a high hardness value, and in the case of the actual ultrathin material, the effect will be greater.
  • the hardness of the inventive steel is higher than that of the comparative steel due to the bainite microstructure of the inventive steel.
  • the comparative steels had an abnormal structure of ferrite + pilite and the second rolling resulted in the decrease of elongation instead of the increase of the strength, whereas the invented steels did not undergo the second rolling, and thus the elongation of the structure itself. It can maintain the, and due to the microstructure characteristic has the characteristics of the original strength is high, there is a feature that can secure the physical properties equivalent to the comparative material.
  • the annealing conditions are annealing degree of more than 750 ° C, the annealing angle is limited to 10-50 ° C / sec.
  • the additional process such as secondary rolling can be omitted compared to the comparative steels, the rolling direction forming characteristics are not excellent because the secondary rolling is not performed.
  • the advantage of producing continuous annealing conditions, strength level is tensile strength. It has the advantage of high strength (TS) level of 900MPa or more.
  • FIG. 1 shows a tissue photograph of the invention material
  • Fig. 1 (b) shows a tissue photograph of the comparative material
  • Fig. 2 shows a tissue photograph with a magnification of 1000 times (X 1000); 2 (b) shows a tissue photograph with a magnification of 2000 times ( ⁇ 2000), and (c) of FIG.
  • the invention material is prepared under the annealing condition C annealed at 800 ° C.
  • Comparative material B is produced after the secondary rolling of 14% after annealing.
  • FIG. 2 shows the magnification of 1000, 2000, 5000 on an electron microscope and is clearer than that of an optical photograph. It was found to have a typical bainite tissue in which carbides were formed inside the ferrite lath.

Abstract

The present invention relates to a thin cold-rolled steel plate used in home appliances and the like, and a preparation method thereof, and provides a thin cold-rolled steel plate with high strength and high formability, and a preparation method thereof. The present invention relates to an thin cold-rolled steel plate with high strength and high formability, comprising 0.15-0.25 wt% of carbon (C), 1.5-2.5 wt% of manganese (Mn), 0.1-1.0 wt% of silicon (Si), 0.01-0.05 wt% of titanium (Ti), 5-30 ppm of boron (B), and a balance of Fe and other impurities, wherein the tissue comprises 70-100 vol% of bainite, and 0-30 vol% of ferrite, and a preparation method thereof. The thin steel plate provided by the present invention has high strength and high formability, and thus can be effectively used in thin cold-rolled products and the like having high strength requiring high strength of 300 HV or higher on the basis of HV 500g in addition to parts supporting the strength of a chassis such as a notebook, an LCD monitor, an LCD, PMP or LED TV, and the like.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
고강도 및 고성형성을 갖는 극박 냉연 강판 및 그 제조방법 【기술분야】 Ultra-thin cold rolled steel sheet having high strength and high formability and its manufacturing method
본 발명은 가전 제품등에 사용되는 극박 냉연 강판 및 그 제조방법에 관한 것으로서, 보다 상세하게는 고강도 및 고성형성을 갖는 극박 넁연 강판 및 그 제조방법에 관한 것이다. The present invention relates to an ultra-thin cold rolled steel sheet used in home appliances and the like, and more particularly, to an ultra-thin galvanized steel sheet having high strength and high formability, and a method of manufacturing the same.
【배경기술】 Background Art
종래의 가전 제품에 사용되는 강재의 경우, 대부분 일반 저탄소강 계열을 주로 사용하는 경향이 있어 성형성이 중요한 요소로 고려되고, 강도 측면은 고려되지 않았다. 특히, 높은 성형성을 요구하는 EDDQ(Excellent Deep Drawing Quality) 이상 급의 강재의 경우 오히려 성형성에 집중하여 강도를 특정값 이상으로 높이지 않는다. 그러나, 최근의 자동차, 가전 등 넁연 강판을 주로 사용하는 제품 군의 저원가와 고연비화, 슬림 (Slim)화 등의 움직임에서 가장 중요한 키워드는 극박, 고강도화이다. 즉, 극박 제품을 사용함으로써 제품에 사용하는 강재의 총 중량을 줄일 수 있고, 한 제품에 사용하는 강재의 총 중량이 줄어들면 저 원가화의 실현이 가능하며, 보다 얇은 제품을 만들 수 있어 제품의 디자인도 다양화할 수 있는 장점이 있다. 이와 같이, 극박, 고강도화는 일석 삼조의 효과를 가져을 수 있다. 그리하여 최근 고강도 및 고성형성을 갖는 극박 제품의 개발을 위한 많은 연구가 진행되어 왔다. 이러한 연구는 크게 1) 강판 제조공정 중 발생하는 변태를 이용한 조직 (변태) 강화, 2) 강중 고용할 수 있는 성분을 제어하는 고용강화, 3) 석출물을 분포시켜 강도 증가 효과를 꾀하는 석출강화, 4) 마지막으로 소둔 과정을 거쳐 완전 재결정된 강판을 다시 2차 압연하여 가공 경화를 일으키는 가공강화 등으로 나뉠 수 있다ᅳ 이러한 종래 기술을 크게 두 가지로 분류하면, 그 프로세스에 따라 2차 압연을 이용하는 1) DR(Double Reducing; 2차압연)형 프로세스와 2차 압연을 이용하지 않는 2) D 생략형 프로세스로 나눌 수 있다. 즉, 상기한 변태강화, 고용강화, 석출강화 등도 마찬가지로 2차 압연 유무에 따라 DR공정형, DR 생략형 프로세스로 구분할 수 있다. 그 중 2차 압연을 이용하여 강도를 증가시키는 DR 공정형 프로세스의 경우 2차 압연으로 인한 강도 증가 때문에 필연적으로 수반되는 강 중 전위 등의 결함 (defects)이 생성되고, 이러한 이유로 결국 강판의 강도는 완만히 증가하는데 반해, 연신율이 급격하게 하락하는 현상을 가져오게 되어 실제로 성형이 극심한 부위에 사용하기 힘든 실정이다. 실례로 2차 압연을 이용한 강판은 대부분의 연신율 레벨이 2~ 3% 미만의 수준으로 그 낮은 연신율로 인한 성형성 저하 및 2차 압연 시 발생하는 압연립의 영향으로 인해 압연 방향으로 크랙 (crack)이 형성되는 취약점올 갖고 있는 실정이다. 이러한 종래 기술들을 강 중의 탄소 함량으로 나눠 구분하게 되면, 일반적으로 0.01 wt 이하의 탄소 함량을 갖는 극저탄강계, 0.01< wt% C <0.1의 탄소함량의 저탄강계, 0.1< wt% C <0.25의 탄소함량의 중탄강계, 그리고 0.25wt% 이상의 탄소함량을 갖는 고탄강계로 구분할 수 있다. 종래 기술을 살펴보면, 극저탄소강은 주로 캔용 강판으로 사용되며, 이에 대한 종래기술로는 2차 압하의 압하율을 작게 하고, Mn의 함량을 제어하여 강도를 향상시키는 기술 (JP1995-274558)과 그 가공성 개선을 위해 압하율을 조절하는 개량특허 (JP1997-216980) 등을 들 수 있다. 또한, 동일 강판을 Mn, P, TiC둥의 고용 강화와 석출 강화를 이용하여 고온 강도를 향상시키는 특허 (JP2002-307898, JP2002-201574) 등도 제안되어 있다. 하지만, 극저 탄소강의 경우 그 강도의 한계가 존재하고 강도를 향상하기 위해 2차 압연을 수행하는 도중에 연신율이 매우 낮은 레벨로 하락하여, 고성형성 및 고강도 제품을 생산하는데는 문제가 있다. 또한, 저탄강의 대부분의 고강도 강판은 캔용 블랙 플레이트 [Black Plate (BP)] 로 사용되며, 이에 대한 종래기술로는 고질소강을 이용하고, DRM 저압하를 이용하는 DRM(Double Reducing Mi 11)의 저압하기술 (JP1990-052642), Mn의 함량을 높이고 연연속 윤활압연, 2차 압연을 이용하는 기술 (JP1996-239734), 과시효 처리에 의한 효과를 이용하는 기술 (JP1997-040883), 급속 넁각하여 조직을 이용하는 기술 (JP2006— 074140) 등을 들 수 있다. 그러나, 이들 종래기술의 경우에도 저탄강의 강도 레벨이 낮고, 강도 레벨이 높다고 해도 일반적인 연속소둔공정에서는 구현하기 힘든 높은 넁각 속도를 요구하거나 얻어지는 최종의 연신율의 범위가 목표하는 범위보다 낮다는 점 등의 한계가 있다. 그리고, 0.2wt 이상의 고탄강의 경우에는 대부분 초기의 높은 강도로 인해 PCM에서 압하가 힘들 뿐만 아니라 압하 후 형상 제어를 위한 레벨링 작업이 힘들어 극박 넁연재에서는 적용되고 있지 않은 실정이다. 최근 이러한 개념들을 복합하여 중탄계의 강판에서, P를 이용하여 기지 조직을 고용 강화하고 동시에, 기지 조직을 페라이트+ 펄라이트의 2상 조직으로 하고, 2차 압연을 10% 이하로 낮게 제어하여 , 그 강도와 연신율의 조합을 극대화하는 강판이 개발된 바 있다 (KR2009-0084530). 특히, 이 특허에서는 상기한 고용강화, 조직제어, 2차 압연 프로세스를 이용하는 가공 경화를 모두 이용하여 강도 레벨이 타 기술에 비해 높으며 (Y.S.>650 MPa), 그 2차 맙연량이 적어 압연 방향의 성형성이 우수한 극박 넁연 강판을 제공하는 방법을 제시하고 있다. 그러나, 이러한 특허들은 2차 압연을 이용하여 그 프로세스가 복잡하고, 압연량이 적다고는 하지만 압연의 효과로 전위들이 생성되어 압연 방향과 압연 수직 방향의 성형성의 차이가 나타나는 등의 문제점이 있다. In the case of steel materials used in conventional home appliances, most tend to use general low carbon steel series, so formability is considered an important factor, and strength aspects are not considered. Particularly, in the case of steel of grade EDDQ (Excellent Deep Drawing Quality) or higher, which requires high formability, the strength is not increased to a specific value by focusing on moldability. However, the most important keywords in the low cost, high fuel efficiency, slim, etc. of the product group mainly using natural steel sheets such as automobiles and home appliances are ultrathin and high strength. In other words, the use of ultra-thin products can reduce the total weight of the steel used in the product, and if the total weight of the steel used in one product is reduced, the cost can be realized and a thinner product can be made. The design also has the advantage of being diversified. Thus, ultrathin, high strength can have the effect of three stone trillion. Thus, many studies have been conducted for the development of ultrathin products having high strength and high formability in recent years. These studies are largely 1) strengthening the structure (transformation) using transformations generated during the steel sheet manufacturing process, 2) solid solution strengthening to control the components that can be employed in the steel, and 3) precipitation strengthening to increase the strength by distributing precipitates. ) Finally, through annealing The recrystallized steel sheet may be further divided into work reinforcement, which causes work hardening by second rolling. The prior art is classified into two types. 1) DR (Double Reducing; Rolling) type process and 2) D abbreviation type process which does not use secondary rolling. In other words, the transformation, solid-solution strengthening, precipitation strengthening, and the like may be classified into the DR process type and the DR omitted process according to the presence or absence of secondary rolling. Among them, in the case of the DR process-type process in which the strength is increased by using secondary rolling, defects such as dislocations in steel are inevitably generated due to the increase in strength due to the secondary rolling. While gradually increasing, the elongation is drastically reduced, so it is difficult to use it in an extremely hard part. For example, steel sheets using secondary rolling have most elongation levels of less than 2 to 3% and crack in the rolling direction due to the deterioration of formability due to the low elongation and the influence of the rolled grain generated during secondary rolling. This situation has been formed. Dividing these prior arts into carbon contents in steel, the ultra low carbon steels having a carbon content of generally 0.01 wt or less, the low carbon steels having a carbon content of 0.01 <wt% C <0.1, and 0.1 <wt% C <0.25 It can be divided into carbon-based bicarbonate steel, and high carbon steel having a carbon content of 0.25wt% or more. Looking at the prior art, the ultra low carbon steel is mainly used as a steel sheet for cans, and the conventional technique for this is to reduce the reduction ratio of the secondary reduction, and to improve the strength by controlling the content of Mn (JP1995-274558) and its The improved patent (JP1997-216980) etc. which adjust a reduction ratio for workability improvement, etc. are mentioned. In addition, the same steel sheet was subjected to high temperature strength by using solid solution strengthening and precipitation strengthening of Mn, P and TiC columns. Patents for improving (JP2002-307898, JP2002-201574) and the like have also been proposed. However, in the case of ultra-low carbon steel, there is a limit in strength and the elongation falls to a very low level during the secondary rolling to improve the strength, and there is a problem in producing a high formability and a high strength product. In addition, most of the high-strength steel sheet of low carbon steel is used as a black plate (BP) for cans, and the prior art is to use high nitrogen steel and low pressure of DRM (Double Reducing Mi 11) using DRM low pressure. Technique (JP1990-052642), technology of increasing the content of Mn, continuous lubrication rolling, secondary rolling (JP1996-239734), technology using the effect of overaging treatment (JP1997-040883), using fast tissue Technology (JP2006-074140) and the like. However, even in these prior arts, the low carbon steel has a low strength level, and even if the strength level is high, it requires a high angle of incidence that is difficult to realize in a general continuous annealing process, or the final elongation range obtained is lower than a target range. There is a limit. In addition, in the case of high carbon steel of more than 0.2wt, most of the high strength of the initial stage is not only difficult to roll down in PCM, but also difficult to leveling work for shape control after rolling, which is not applied to the ultrathin ductile material. In recent years, these concepts have been combined to solidify and strengthen the base structure by using P in the medium-heavy steel sheet, and to control the base structure as a two-phase structure of ferrite + pearlite and to control the secondary rolling to 10% or less. Steel plates have been developed that maximize the combination of strength and elongation (KR2009-0084530). In particular, this patent utilizes all of the above-described solid solution strengthening, texture control, and work hardening using the secondary rolling process, and the strength level is higher than that of other technologies (YS> 650 MPa). A method of providing an ultra-thin steel sheet having excellent moldability has been proposed. However, these patents have a problem that the process is complicated by using secondary rolling, and although the rolling amount is small, dislocations are generated by the effect of rolling, resulting in a difference in formability in the rolling direction and the rolling vertical direction.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명의 일측면은 고강도 및 고성형성을 갖는 극박 넁연 강판 및 그 제조방법을 제공하고자 하는 것이다. One aspect of the present invention is to provide an ultra-thin carbon steel sheet having high strength and high formability and a method of manufacturing the same.
본 발명의 다른 측면은 강 조성 및 제조조건을 적절히 제어함으로써 2차 압연을 수행하지 않고서도 고강도 및 고성형성을 갖는 극박 넁연 강판을 제조할 수 있는 방법을 제공하고자 하는 것이다. Another aspect of the present invention is to provide a method capable of producing an ultra-thin steel sheet having high strength and high formability without performing secondary rolling by appropriately controlling the steel composition and manufacturing conditions.
【기술적 해결방법] Technical Solution
본 발명의 일측면에 따르면, 중량 ¾로, 탄소 (C): 0.15 - 0.25%, 망간 (Mn): 1.5 ~ 2.5%, 규소 (Si): 0.1 ~ 1.0%, 티타늄 (Ti): 0.01 ~ 0.05%, 붕소 (B): 5~30ppm, 잔부 Fe 및 기타 불순물을 포함하고, 그리고 그 조직이 70 100 vol.¾의 베이나이트 및 0~30νο1·% 위 페라이트를 포함하는 고강도 및 고성형성을 갖는 극박 넁연 강판을 제공한다. 본 발명의 다른 측면에 따르면, 중량 %로, 탄소 (C): 0.15 ~ 0.25%, 망간 (Mn): 1.5 ~ 2. Wo, 규소 (Si): 0.1 ~ 1.0%, 티타늄 (Ti): 0.01 ~ 0.05%, 붕소 (B): 5~30ppm, 잔부 Fe 및 기타 불순물을 포함하는 강 슬라브를 가열한 후 Ar3은도 이상에서 열간 마무리 압연하고 500 ~ 80CTC에서 권취한 후, 열간압연된 강판을 50 ~ 90%의 압하율로 냉간압연한 후, 냉간압연된 강판을 연속소둔라인에서 750~850oC의 소둔온도에서 30초이상.유지한 다음, 250 - 450oC의 온도구간까지 10-50oC/sec의 넁각속도로 넁각하고, 이 온도에서 50초 이상 유지한 다음, 넁각하는 고강도 및 고성형성을 갖는 극박 냉연 강판의 제조방법을 제공한다. 【유리한 효과】 According to one aspect of the invention, by weight ¾, carbon (C): 0.15-0.25%, manganese (Mn): 1.5-2.5%, silicon (Si): 0.1-1.0%, titanium (Ti): 0.01-0.05 %, Boron (B): ultrathin with high strength and high formability, containing 5-30 ppm, balance Fe and other impurities, and its structure comprising 70 100 vol.¾ of bainite and 0-30 μο1 ·% above ferrite Provide a natural steel sheet. According to another aspect of the invention, in weight%, carbon (C): 0.15 to 0.25%, manganese (Mn): 1.5 to 2. Wo, silicon (Si): 0.1 to 1.0%, titanium (Ti): 0.01 to 0.05%, boron (B): 5-30 ppm, after heating the steel slab containing the balance Fe and other impurities, hot-rolled and rolled at Ar 3 silver or higher and wound at 500 ~ 80CTC, the hot rolled steel sheet 50 ~ after cold rolling with a reduction ratio of 90%, the cold-rolled steel sheet in a continuous annealing line 750 ~ 850 o at least 30 seconds at the annealing temperature in C, and then, 250 maintain - to a temperature range of 450 o C 10-50 o Provided is a method for producing an ultra-thin cold rolled steel sheet having a high strength and high formability after being swept at a angular velocity of C / sec, maintained at this temperature for 50 seconds or more. Advantageous Effects
상기한 바와 같이, 본 발명에 의해 제공되는 극박강판은 고강도 및 고성형성 특성을 가지므로, 노트북 (Notebook)이나, LCD(Liquid Crystal Display) 모니터 및 LCD, PMP(portable multimedia player) , LED( luminescent diode) TV등의 샤시 (chassis)류의 강도 지지용 부품은 물론 HV 500g 기준으로 300 HV 이상의 높은 강도를 필요로 하는 고강도 극박 넁연 제품 등에 유효하게 활용될 수 있다. As described above, since the ultra-thin steel sheet provided by the present invention has high strength and high formability, it is a notebook, a liquid crystal display (LCD) monitor and an LCD, a portable multimedia player (PMP), and an luminescent diode (LED). ) It can be effectively used for high strength ultrathin leaded products that require high strength over 300 HV as well as chassis supporting strength parts such as TV.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 본 발명에 부합되는 발명재와 본 발명의 범위를 벗어나는 비교재의 광학조직사진으로서ᅳ 도 1의 (a)는 발명재의 조직사진을 나타내고, 도 1의 (b)는 비교재의 조직사진을 나타냄. 1 is an optical tissue picture of the invention and the comparative material outside the scope of the present invention according to the present invention, Figure 1 (a) shows a tissue picture of the invention material, Figure 1 (b) shows a tissue picture of the comparative material Indicates.
도 2는 본 발명에 부합되는' 발명재의 조직을 배율을 달리하여 나타내는 전자현미경사진으로세 도 2의 (a)는 배율 1000배 (χΙΟΟΟ)의 조직사진을 나타내고, 도 2의 (b)는 배율 2000배 (X 2000)의 조직사진을 나타내고, 그리고 도 2의 (c)는 배율 5000배 ( X 5000)의 조직사진을 나타냄. Figure 2 is (b) of Figure shows the organization picture of 'an electron microscope photograph showing the tissue material invention with different magnification three (a) of Fig. 2 is a magnification of 1000 times ΙΟΟΟ) consistent with the present invention, 2 An organization photograph at a magnification of 2000 times (X 2000) is shown, and FIG. 2C shows an organization photograph at a magnification of 5000 times (X 5000).
【발명의 실시를 위한 최선의 형태】 [Best form for implementation of the invention]
이하, 본 발명에 대하여 상세히 설명한다. 본 발명에서는 낮은 냉각속도에서도 저온 변태 조직을 얻기 위해 일반적으로 강중에 첨가되는 Nb, Mo, Ti 등의 고가 합금 원소를 배제하고 상대적으로 저가인 강중의 Mn 및 B등의 함량 쩨어를 통해 높은 경화능을 확보함으로써 보다 느린 냉각속도,. 예를 들면, 통상 일반적인 연속 소둔로 (CAL) 에서의 소둔 시 넁각 속도인 30oC/초 이하의 속도에서도 소둔 중 저온 변태 조직을 형성할 수 있다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail. In the present invention, in order to obtain low temperature transformation structure even at a low cooling rate, high hardenability is obtained through the removal of expensive alloying elements such as Nb, Mo, and Ti, which are generally added to steel, and the content control of Mn and B in relatively low cost steels. Slower cooling rate by securing For example, it is possible to form low-temperature transformation tissue during annealing even at a rate of 30 ° C./sec or less, which is usually the angle of incidence during annealing in a general continuous annealing furnace (CAL).
본 발명강은 그 조직이 70~100 vol.%의 베이나이트 및 0~30vol.%의 페라이트를 포함하는 것을 특징으로 하며, 베이나이트 조직은 일반적인 냉각 속도에서 그 조직을 얻을 수 있으므로 마르텐사이트 강재에 비해 제조 중 뒤를림이 적은 장점이 있으며 , 가공성 및 성형성이 우수한 장점이 있다. 또한, 본 발명의 강판은 2차 압연을 수행하지 않아도 이미 그 경도가 HV500g으로 200-250HV 수준인 2차 압연을 이용한 성형용 고강도 극박재에 비해 그 경도가 300HV 이상 높지만, 2차 압연을 행하지 않으므로, 2차 압연 시 나타나는 여러가지 압연 방향에 대한 이방성 특성도 나타내지 않는다. 이하, 본 발명의 강 조성에 대하여 설명한다 (중량 ¾ . The present invention steel is characterized in that the tissue comprises a ferrite of 70 ~ 100 vol.% Bainite and 0 ~ 30vol.% Of, and bainite structure are so obtained that tissue under normal cooling rates in the Martensite steel Compared to the manufacturing process And, there is an advantage in excellent workability and formability. In addition, the steel sheet of the present invention has a hardness of 300 HV or more, but does not perform secondary rolling, even though the hardness of the present invention is higher than that of the high-strength ultrathin material using secondary rolling, which has a hardness of HV500g and 200-250HV, even if the secondary rolling is not performed. In addition, the anisotropy characteristic with respect to the various rolling directions shown at the time of secondary rolling is also not shown. Hereinafter, the steel composition of the present invention will be described (weight ¾).
상기 C은 극박 냉연 강판 제조시의 층분한 강도를 확보하기 위한 조직 제어를 위하여 0.15% 이상 함유되는 것이 바람직하나, 탄화물 석출량 조절, 강판의 가공성 고려, 넁간 압연 가능성 고려 및 형상 열화, 소둔 시의 통판성 저해 둥의 원인으로 그 함량의 상한은 0.25%로 제한하는 것이 바람직하다. 상기 Mn은 Ar3온도를 낮춰주고, 또한 넁각 시 그 경화능을 향상시켜 낮은 냉각 속도에서도 퍼얼라이트 (pearl ite)등의 변태상이 형성되는 것을 지연시켜 일반적인 넁각 속도에서도 베이나이트 상을 형성할 수 있도록 해주고, 또한, 불순물 S의 적열 취성을 방지하기 위해 첨가되는 필수 성분으로서, 이러한 효과를 나타내기 위해서는 1.5%이상 첨가하는 것이 바람직하나, 넁간 압연성, 슬라브의 취성 문제 등을 고려하여 그 함량은 2.5% 이하로 조절하는 것이 바람직하다. 상기 Ar3온도는 연속소둔공정의 넁각 시 변태를 일으키기 위한 오스테나이트 풀 (Austenite pool)을 형성하여 주기 위한 역변태 온도이다. 상기 B는 Mn과 함께 경화능을 향상시켜 소둔 열처리 시 일반적인 넁각 속도에서도 불구하고 베이나이트 상을 형성할 수 있도록 하는 주요한 원소로서, 그 함량이 5ppm 보다 작을 경우에는 그 효과를 기대할 수 없으며, 30ppm보다 과도할 경우에는 입계 보론계 석출물을 과도히 형성하여 강의 물성에 좋지 않은 영향을 미치므로, 그 함량은 5~30ppm로 제한하는 것이 바람직하다. 상기 Ti는 상기 B의 효과를 보다 확실히 얻기 위해 첨가하는 원소로 강중 잔존하는 N과 B의 결합으로 형성되는 보론나이트라이드의 형성을 억제하기 위한 스캐빈저 (scavenger)의 역할을 하기 위해 첨가한다. 따라서, Ti의 함량은 강중 잔존하는 N의 함량에' 비례하여 결정되는 것으로서, 0.01~0.05¾>로 제한하는 것이 바람직하다. 상기 Si는 탈산제 및 고용강화 역할을 하는 원소이지만, 그 함량이 1.0%를 초과하는 경우에는 균열취성 문제가 발생된다. 상기 C, Mn 및 B 함량의 곱이 1.13*1으4 < wt% C ? wt% Mn ? wt% B < 1.875*10— 3의 관계를 만족하는 것이 바람직하다. 상기 함량의 곱이 1.875*10—3 보다 큰 경우에는 취성이 발생될 우려가 있고, 압연성이 떨어지고, 1.13*10— 4 보다 작은 경우에는 Ar3온도가 상승하고 경화능이 떨어져 베이나이트가 충분히 형성되기 어렵다. 상기 성분 외에, Al, P 및 S등이 포함될 수 있다. 바람직하게는, 상기 Al^ 0.06 %까지 P 및 S는 각각 0.03%까지 포함될 수 있다. 본 발명의 냉연강판은 70~100 \^.1. >의 베이나이트 및 0~30vol.¾의 페라이트를 포함한다. 상기 베이나이트 조직은 일반적인 냉각 속도에서 그 조직을 얻을 수 있으므로 마르텐사이트 강재에 비해 제조 중 뒤틀림이 적어 가공성 및 성형성을 향상시킨다. 본 발명이 강판조직에는 페라이트를 30 vol.%까지 포함할 수 있다. 상기 페라이트는 강의 연성을 확보하는 역할을 하는 조직으로서 30 vol.¾)까지 포함할 수 있다. 상기 냉연강판은 이 강관을 r=0 L- 벤딩 (bending)성형 시험 시, 그 코너부에 눈으로 관찰할 수 있는 크랙의 수가 단위 m 당 2개 이하인 것이 바람직하다. 이하, 본 맣명 넁연강판의 제조조건에 대하여 설명한다. 본 발명에서는 상기와 같이 조성되는 강 슬라브를 가열한 후 Ar3온도 미상에서 열간 마무리 압연하고 500 ~ 800oC에서 권취한다. The C is preferably contained 0.15% or more in order to control the structure to ensure the striking strength in the production of ultra-thin cold-rolled steel sheet, but the amount of carbide precipitation, considering the workability of the steel sheet, considering the possibility of rolling between rolling and deterioration of shape, It is preferable to limit the upper limit of the content to 0.25% as a cause of the mailing inhibition inhibition. The Mn lowers the Ar 3 temperature and also improves the hardenability at the time of desorption, thereby delaying the formation of pearlite such as pearlite at low cooling rates, thereby allowing the formation of bainite phase at the normal dexterity rate. , Also, as an essential ingredient added to prevent the redness brittleness of the impurity S, it is preferable to add more than 1.5% to exhibit this effect, but the content is 2.5% in consideration of the rolling properties of the slab, brittleness of the slab, etc. It is preferable to adjust to the following. The Ar 3 temperature is an inverse transformation temperature for forming an austenite pool for causing transformation during the continuous annealing process. The B is a major element to improve the hardenability with Mn to form the bainite phase in spite of the general cornering speed during annealing heat treatment, when the content is less than 5ppm, the effect is not expected, than 30ppm When excessively excessively formed grain boundary boron-based precipitates adversely affect the properties of the steel, the content is preferably limited to 5 ~ 30ppm. Ti is an element added to more reliably obtain the effect of B, and is used to suppress the formation of boron nitride formed by the combination of N and B remaining in the steel. Add to act as a scavenger. Therefore, the content of Ti is preferably limited as determined by "in proportion to the content of the N remaining steel, a 0.01 ~ 0.05¾>. Si is an element that plays a role of deoxidizer and solid solution strengthening, but when the content exceeds 1.0%, crack brittleness problem occurs. The C, it is preferable to satisfy a relation of Mn and the product of the B content of 1.13 - 1 lead 4 <wt% C? Wt% Mn? Wt% B <1.875 * 10- 3. If multiplication 1.875 * 10 - greater than 3 of the content is provided with the fear that the embrittlement occurs, and the rolling property is degraded, it is less than 1.13 * 10-4 is raised off the Ar 3 temperature curing ability and bainite is sufficiently formed It is difficult. In addition to the above components, Al, P and S may be included. Preferably, up to Al ^ 0.06%, P and S may be included up to 0.03%, respectively. Cold rolled steel sheet of the present invention is 70 ~ 100 \ ^. 1. > Bainite and ferrite from 0 to 30 vol.¾. Since the bainite structure can obtain its structure at a general cooling rate, it has less warpage during manufacture compared to martensitic steels, thereby improving workability and formability. The steel sheet structure of the present invention may contain up to 30 vol.% Ferrite. The ferrite is a structure that serves to secure the ductility of the steel may include up to 30 vol.¾). In the cold rolled steel sheet, the number of cracks that can be observed by the eye at the corner portion of the steel pipe in the r = 0 L-bending molding test is preferably 2 or less per unit m. Hereinafter, the manufacturing conditions of the present MmN mild steel sheet will be described. In the present invention, the steel slab formed as described above is heated, hot-rolled and rolled at an unknown temperature of Ar 3 , and wound at 500 to 800 ° C.
본 발명에서는 강 슬라브 가열온도를 특별히 한정하는 것은 아니지만, 열간압연 마무리 온도의 안정적 .확보를 위해 강슬라브의 가열온도는 1100°C 이상으로 제한하는 것이 바람직하다. 상기 열간압연 마무리 온도는 Ar3온도 이상으로 한정하는 것이 바람직한데, 그 이유는 오스테나이트 단상영역에서 압연을 하기 위함이다. 보다 바람직한 열간압연 마무리 온도는 Ar3~ 950oC이다. In the present invention, the steel slab heating temperature is not particularly limited, but the heating temperature of the steel slab is preferably limited to 1100 ° C. or more in order to secure the stability of the hot rolling finish temperature. The hot rolling finish temperature is preferably limited to the Ar 3 temperature or more, for the purpose of rolling in the austenite single phase region. More preferred hot rolling finish temperature is Ar 3 ~ 950 ° C.
상기 열간 마무리 압연에 있어 압하율과 넁각 조건은 특별히 한정하지 않는다. 상기 권취 은도는 넁간 압연성을 얻기 위해 500oC 이상으로 제한하는 것이 바람직하지만, 결정립 조대화 방지를 위해 800°C 이하로 제한하는 것이 바람직하다. In the hot finish rolling, the reduction ratio and the cornering condition are not particularly limited. The winding silver is preferably limited to 500 ° C. or more in order to obtain intermetallic rolling properties, but is preferably limited to 800 ° C. or less to prevent grain coarsening.
상기 열연강판의 두께는 특별히 제한되는 것은 아니지만, 예를 들면, 1.0-3.0瞧가 바람직하다. 본 발명에서는 석출 강화형 원소를 다량 첨가하지 않고, 권취온도를 500°C 이상으로 제어하여 열간 압연 시 경한 조직을 형성시키지 않아 열연 최종 강도가 그리 높지 않으며, 넁간 압연 시 PCM(Pickling & Cold Rolling Mill)의 압연 부하를 줄일 수 있다. 다음에, 상기와 같이 열간압연된 열연강판을 50~90%의 압하율로 넁간압연한 후 넁간압연된 강판을 연속소둔라인에서 750~850°C의 소둔온도에서 30초이상 .유지한 다음, 250~450°C의 온도구간 (과시효 온도구간)까지 10~50oC/sec의 넁각속도로 넁각하고, 이 온도에서 50초 이상 유지 (과사효)한 다음, 넁각하는 연속소둔을 행함으로써 고강도 및 고성형성을 갖는 극박 냉연 강판이 제조된다. 넁간 압연시 넁간압하율은 본 발명에서 최종 소재의 두께를 결정하는 것으로서, 50~90¾로 제한하는 것이 바람직하다. 상기 냉간압하율이 50% 미만인 경우에는 목표 두께를 확보하기 어렵고, 90%를 초과하는 경우에는 압연성이 떨어지는 문제가 있다ᅳ 상기 소둔은도가 750°C 미만인 경우애는 오스테나이트로의 역변태가 충분히 일어나지 않고, 850oC를 초과하는 경우에는 히트 버클 (heat buckle)등이 일어나기 쉽다. 상기 유지시간이 30초 미만인 경우에는 오스테나이트로의 역변태가 충분히 일어나지 않으므로, 상기 유지시간은 30초이상으로 제한하는 것이 바람직하다. Although the thickness of the hot rolled steel sheet is not particularly limited, for example, 1.0-3.0 kPa is preferable. In the present invention, do not add a large amount of precipitation-reinforced elements, the winding temperature is controlled to more than 500 ° C. does not form a hard structure during hot rolling, the hot-rolled final strength is not very high, PCM (Pickling & Cold Rolling Mill) during rolling Can reduce the rolling load. Next, after hot rolling the hot rolled steel sheet as described above at a reduction ratio of 50 ~ 90% 넁 Maintain the rolled steel sheet for more than 30 seconds at the annealing temperature of 750 ~ 850 ° C in the continuous annealing line, and then keep the temperature of 10 ~ 50 o C / sec until 250 ~ 450 ° C. An ultra-thin cold rolled steel sheet having high strength and high formability is produced by angling at an angular velocity, holding (overkill) at this temperature for 50 seconds or more, and then performing continuous annealing. The intermetallic rolling reduction rate during intermetallic rolling is to determine the thickness of the final material in the present invention, and is preferably limited to 50 to 90¾. If the cold reduction rate is less than 50%, it is difficult to secure the target thickness, and if it exceeds 90%, there is a problem of inferior rollability ᅳ In the case of the annealing degree is less than 750 ° C. Inverse transformation into austenite Is not sufficiently generated, heat buckle is likely to occur when it exceeds 850 o C. If the holding time is less than 30 seconds, since reverse transformation to austenite does not occur sufficiently, the holding time is preferably limited to 30 seconds or more.
상기 냉각 정지온도 (과시효온도)가 250°C 미만이거나 450oC를 초과하는 경우에는 베이나이트가 충분히 형성되지 않으므로, 상기 넁각 정지온도 (과시효온도)는 250~450°C로 제한하는 것이 바람직하다. When exceeding the above cooling-stop temperature (overaging temperature) is less than 250 ° C or 450 o C is not sufficiently formed is bainite, it is limited to the nyaenggak stop temperature (overaging temperature) is 250 ~ 450 ° C desirable.
그리고 상기 냉각속도가 10oC/sec미만인 경우에는 퍼얼라이트가 형성될 수 있고, 50oC/sec를 초과하는 경우에는 마르텐사이트가 형성될 우려가 있으므로, 상기 넁각속도는 10~50°C/sec로 제한하는 것이 바람직하다. And when the cooling rate is less than 10 o C / sec, the pearlite may be formed, if the cooling rate exceeds 50 o C / sec Martensite may be formed, the angular rate is 10 ~ 50 ° C / It is preferable to limit to sec.
바람직한 넁각속도는 10~30°C/sec이다. 상기 유지시간 (과시효시간)이 50초 미만인 경우에는 베이나이트가 층분히 형성되지 않으므로, 상기 유지시간 (과시효시간)은 50초 이상으로 제한하는 것이 바람직하다. 상기 연속소둔시 강판의 이동속도는 미세한 베이나이트 (bainite) 상을 생성시키기 위하여 100~500m/min으로 제한하는 것이 바람직하다. Preferred excitation speed is 10-30 ° C./sec. If the holding time (over aging time) is less than 50 seconds, bainite is not formed sufficiently, and the holding time (over aging time) is preferably limited to 50 seconds or more. The moving speed of the steel sheet during the continuous annealing is preferably limited to 100 ~ 500m / min to produce a fine bainite (bainite) phase.
본 발명에서는 적극적인 성분 제어를 통해 소둔 시 750~850°C 에서 오스테나이트 상으로 역변태를 일으킬 수 있는 소재이며, 이러한 오스테나이트 상에서 넁각 시 ¾라이트 등의 조직으로 변태되지 않은 상태에서 250 ~ 450°C의 온도구간까지 냉각하고, 이 온도에서 유지 시 베이나이트 변태를 일으켜 강중에 저온 변태 조직을 형성하여 고강도 극박 넁연 강판을 제조하는 것이다. 상기와 같이 제조된 넁연강판은 그 조직이 70~100 vol. ^ 베이나이트 및 0~30vol.S¾의 페라이트를 포함한다. 상기 냉연강판은 이 강판을 r=0 L- 벤딩 (bending)성형 시험 시, 그 코너부에 눈으로 관찰할 수 있는 크랙의 수가 단위 m 당 2개 이하인 것이 바람직하다. 상기 넁연강판의 두께는 특별히 제한되는 것은 아니지만, 예를 들면, 0.5mm 이하가 바람직하다ᅳ In the present invention, it is a material that can cause reverse transformation of the austenite phase at 750 ~ 850 ° C when annealing through active ingredient control, 250 ~ 450 ° in the state that is not transformed into a tissue such as ¾ light at the time of the austenite phase wetting Cooling to the temperature range of C, and maintaining at this temperature to produce bainite transformation to form a low-temperature transformation structure in the steel to produce a high strength ultra-thin steel sheet. The steel sheet produced as described above has a structure of 70 to 100 vol. ^ Contains bainite and ferrites from 0-30 vol.S¾. In the cold rolled steel sheet, the number of cracks that can be visually observed in the corner portion of the steel sheet in the r = 0 L-bending molding test is preferably 2 or less per unit m. Although the thickness of the said mild steel sheet is not specifically limited, For example, 0.5 mm or less is preferable.
상기한 바와 같이, 본 발명은 고가의 Mo, Nb, Ti 등와:원소를 배제하고 상대적으로 저원가인 Mn 및 B 등의 합금을 이용하여 초기 강도를 증가시키지 않은 상태에서 연속소둔 시 베이나이트 변태를 촉진시키는 방법을 이용하여, 2차 압연을 수행하지 않고도 연속소둔라인에서 최종 목적으로 하는 강도 및 성형성을 얻을 수 있는 것이다. As described above, the present invention promotes bainite transformation during continuous annealing without increasing the initial strength by using expensive Mo, Nb, Ti, etc. and alloys such as Mn and B, which are relatively low-cost. By using this method, it is possible to obtain the ultimate strength and formability in the continuous annealing line without performing secondary rolling.
본 발명은 저탄 계열에 변태를 일으키기 위해 50oC/sec이상의 급속 넁각을 수행하여 마르텐사이트 조직 등을 활용하는 등의 종래기술에 비해, 비슷한 수준의 강도에 마르텐사이트 조직의 특징인 낮은 성형성을 극복할 수 있으며, 전단 (shear)변태로 인한 뒤를림을 방지할 수 있다는 장점을 갖는다. 또한, 본 발명은 연속소둔공정에서 변태시의 넁각 속도를 일반 연속소둔로 (CAL)수준의 냉각속도로 낮춰 고가 합금 첨가나 빠른 넁각속도의 효과 없이도 저온 고강도 변태조직을 얻을 수 있는 장점을 갖는다. 또한, 본 발명은 2차 압연을 수행하지 않아 일반적인 지지용 고강도 극박 소재의 변형 모드인 L-벤딩 (bending)시의 성형 특성이 좋으며, 2차 압연을 수행하지 않아 그 항복강도 (YR) 값이 높은 장점을 갖는다. 이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. The present invention is carried out a rapid angle of 50 ° C / sec or more to cause transformation in low coal series Compared with the prior art, such as utilizing martensitic tissue, it is possible to overcome the low formability characteristic of martensite tissue at a similar level of strength, and to prevent buckling caused by shear deformation. Have In addition, the present invention has the advantage that it is possible to obtain a low temperature high strength transformation structure without the effect of the addition of expensive alloys or fast wetting speed by lowering the wetting speed during transformation in the continuous annealing process to a general continuous annealing furnace (CAL) level cooling rate. In addition, the present invention has a good molding characteristics during L-bending, which is a deformation mode of a general high-strength ultrathin material because it does not perform secondary rolling, and its yield strength (YR) value is not achieved because secondary rolling is not performed. Has a high advantage. Hereinafter, the present invention will be described in more detail with reference to Examples.
(실시예 1) (Example 1)
하기 표 1의 조성을 갖는 강을 열간압연 (가열온도: 1250°C, 마무리압연온도: 900°C, 열연강판두께: 2.7瞧 및 권취온도: 600oC)한 다음, 하기 표 2의 제조조건으로 냉간압연 (1차 넁간압연의 압하율: 89%, 두께: 0.3mm)을 행한 다음, 하기 표 3의 제조조건으로 소둔한 후, 항복강도 및 총연신율, 경도 및 성형성 (L-벤딩시 크랙발생 여부)을 조사하고, 항복강도 및 총연신율은 하기 표 2에, 경도는 하기 표 4에 그리고 성형성 평가결과 (크랙발생여부)는 하기 표 5에 각각 나타내었다. 한편, 발명강의 소둔조건에 따른 변태량을 측정하고, 그 결과를 하기 표 6에 나타내었다. 하기 표 2에서, 비교재 A, B의 경우 2차 압하율에 따른 항복강도 및 연신율을 나타내고 발명재의 경우 연속소둔 직후 2차 압연을 행하지 않은. 상태의 항복강도 및 연신율을 나타낸다. 하기 표 5는 발명강과 비교강의 성형성 테스트 실험 결과를 나타낸 것으로서, L- 벤딩 (bending) 실험은 다이 클리어런스 (die clearances)에 크랙 (crack)형성 유무가 영향을 받으므로, 다이 사이의 간격을 거의 0으로 하는 열악한 조건을 가정하였으며 r=0 벤딩 (bending)을 이용하여 9Q도 L-벤딩 (bending)실험을 실시한 것이다. 그리고 발명강의 소둔 조건은 700oC 수준에서 만들어진 발명강의 경우 목표로 하는 높은 강도를 얻을 수 없었으므로 (소둔 온도가 낮아 역변태를 층분히 일으키지 못하여 조직 내 베이나이트 (bainite) 분율이 적은 결과) 성형 시험을 위한 시험편은 그 소둔 온도를 750oC, 780°C, 800oC로 한정하여 실험하였다. 실험은 총 The steel having the composition of Table 1 is hot rolled (heating temperature: 1250 ° C., finish rolling temperature: 900 ° C, hot rolled steel sheet thickness: 2.7 kPa and winding temperature: 600 ° C), and then to the manufacturing conditions of Table 2 After cold rolling (rolling rate of primary hot rolling: 89%, thickness: 0.3mm), and then annealed to the manufacturing conditions of Table 3 below, yield strength and total elongation, hardness and formability (cracks during L-bending) Occurrence), yield strength and total elongation are shown in Table 2, hardness in Table 4, and moldability evaluation results (cracking) are shown in Table 5, respectively. On the other hand, the amount of transformation according to the annealing conditions of the invention steel was measured, and the results are shown in Table 6 below. In Table 2 below, in the case of Comparative Materials A and B, the yield strength and the elongation according to the secondary reduction ratio were shown, and in the case of the Inventive Materials, secondary rolling was not performed immediately after continuous annealing. Yield strength and elongation of the state are shown. Table 5 below shows the results of the test of the formability of the inventive steel and the comparative steel. In the L-bending experiment, die clearances are affected by the presence of cracks. A poor condition of 0 was assumed and 9Q degree L-bending experiment was performed using r = 0 bending. And the annealing condition of the invention steel was not able to obtain the target high strength for the invention steel made at 700 o C level (the result of low bainite fraction in the tissue due to low annealing temperature, which does not cause reverse transformation). test piece for the test was the experiment by limiting the annealing temperature to 750 o C, 780 ° C, 800 o C. Experiment shot
2회 진행하였다. 표 5에서 O라고 명기된 경우 크랙이 발생한 것을 의미하며, Δ는 크랙이 발생하지 '않았으나 크랙이 발생하기 전단계인 네킹 (necking)이 발생한 경우를 의미하고, X는 크렉이 발생하지 않은 클리어한 표면 (clear surface)을 의미한다 · 하기 표 6에서는 발명강의 소둔 조건이 상변태에 미치는 영향을 시뮬레이션 하기 위해 디라토미터 (dilatometer) 실험한 결과를 이용하여, 350°C 과시효 구간에서 베이나이트 변태되는 양을 상대적으로 나타낸 것이다. 이때 마지막 항의 노말라이즈 (Normalized)된 변태 길이가 바로 350°C 과시효 온도에서 오스테나이트가 베이나이트로 변태되는 상대적인 양을 나타내는 것이다. 하기 표 2 및 표 5에서 조직 B는 베이나이트를 나타내고, F는 페라이트를 나타내고, P는 퍼얼라이트를 나타낸다. Two times. Means the occurrence of the case stipulated that O In Table 5 the crack and, Δ is the surface which means the case did, a crack does not occur a crack occurs to the previous stage of necking (necking) has occurred, and, X is a clear crack did not occur (Table 6) shows the amount of bainite transformation at 350 ° C overaging using the results of dilatometer experiments to simulate the effect of annealing conditions on the phase transformation of the inventive steel. It is shown relatively. The normalized transformation length of the last term is the relative amount of austenite transformation to bainite at 350 ° C overaging temperature. In Tables 2 and 5, tissue B represents bainite, F represents ferrite, and P represents pearlite.
【표 1] [Table 1]
Figure imgf000014_0001
【표 2]
Figure imgf000015_0001
Figure imgf000014_0001
[Table 2]
Figure imgf000015_0001
【표 3]
Figure imgf000015_0002
[Table 3]
Figure imgf000015_0002
【표 4】
Figure imgf000015_0003
Table 4
Figure imgf000015_0003
【표 5]
Figure imgf000015_0004
[Table 5]
Figure imgf000015_0004
【표 6]
Figure imgf000016_0001
상기 표 2에 나타난 바와 같이, 발명강의 경우 조건 A이외의 조건 B, C의 경우 비교재 B의 2차 압연을 수행한 후 항복강도와 연신율의 조합과 비교해 동일 혹은 우위의 물성을 갖는 것을 알 수 있다. 예를 들어, 비교강 A의 경우 630MPa 이상의 항복 강도를 얻기 위해서는 40% 이상의 2차 압연을 수행해야 하는데 이때 얻어지는 연신율은 1.5%수준 정도이다. 또한, 비교강 B의 경우 유사한 수준의 항복강도를 얻기 위해서는 6~10¾> 사이의 2차 압연을 수행해야 하는데 그때의 연신율이 6 >가량으로 높게 형성되는 것을 알 수 있다. 반면에, 2차 압연의 프로세스를 수행하지 않은 발명강은 750oC 이상의 온도에서 소둔을 한 조건 B, C의 경우 그 항복강도 값이 650MPa를 상회하면서도 연신율치가 5.0을 상회하는 특성을 나타내고 있다. 한편, 발명강의 조건 A의 경우, 소둔 온도가 낮아 항복강도가 발명강의 조건 B, C의 것에 비하여 그 연성이 5%이하로 낮음을 알 수 있다. 한편, 실제 극박재의 경우 극박으로 인한 항복강도의 오차로 항복강도 이외에 강도 측정의 기준으로 경도를 많이 사용하고 있다 . 상기 표 4에 나타난 바와 같이, 발명강의 경우 항복 강도값에 비해 경도값은 비교강재에 비해 월등히 높은 것을 알 수 있다. 이러한 현상은 일반적으로 경도 값이 강재의 항복강도보다는 인장강도에 비례한다는사실에서 유추해볼 수 있는데, 2차 압연을 통해 가공 경화가 어느 정도 일어나 있는 비교강 A, B에 비해 발명강의 경우 2차 압연을 행하지 않아 가공 경화가 일어나 있지 않으며 그 베이스 (base)조직 자체가 강도가 있는 베이나이트 조직에 기인함으로써 그 항복비 값 자체가 높은 특징을 갖는다. 예를 들어 비교강 A, B의 경우 인장 시험 시 항복강도에 비해 인장 강도의 경우 30MPa 이상 증가하지 않는데 비해, 발명강 조건 A의 경우 항복강도 495MPa에서 인장 강도 683MPa, 발명강 조건 B의 경우 항복강도 50MPa에서 인장강도 949MPa, 조건 C의 경우 항복강도 790MPa에서 인장강도 1038MPa로 인장강도 수준이 700MPa 근방인 비교강에 비해 월등히 높은 인장 강도를 갖는다. 이러한 높은 인장강도가 높은 경도 값을 보증하며 실제 극박재의 경우 그 효과가 더 크다고 볼 수 있을 것이다. 이러^ 물성은 모두 발명강재와 비교강재의 조직 차이에 기인한다.
[Table 6]
Figure imgf000016_0001
As shown in Table 2, in the case of the inventive steel, after performing the secondary rolling of the comparative material B in the case of conditions B and C other than the condition A, it can be seen that they have the same or superior physical properties compared to the combination of yield strength and elongation. have. For example, in the case of Comparative Steel A, in order to obtain a yield strength of 630 MPa or more, secondary rolling of 40% or more must be performed, and the elongation obtained at this time is about 1.5%. In addition, in the case of comparative steel B, in order to obtain a similar level of yield strength, it is necessary to perform secondary rolling between 6 and 10¾>, and it can be seen that the elongation at that time is formed as high as about 6>. On the other hand, invented steels not subjected to the secondary rolling process exhibited characteristics in which the yield strengths exceeded 650 MPa and the elongation values exceeded 5.0 in the case of conditions B and C annealed at a temperature of 750 ° C. or higher. On the other hand, in the case of the condition A of the invention steel, the annealing temperature is low, the yield strength can be seen that the ductility is less than 5% or less than that of the conditions B, C of the invention steel. On the other hand, in the case of the actual ultrathin material, the strength other than the yield strength due to the error in the yield strength Hardness is used a lot as a standard of measurement. As shown in Table 4, in the case of the inventive steel, it can be seen that the hardness value is significantly higher than that of the comparative steel in comparison with the yield strength value. This phenomenon is generally inferred from the fact that the hardness value is proportional to the tensile strength rather than the yield strength of the steel.In the case of the invented steel in comparison with the comparative steels A and B in which work hardening occurs through the secondary rolling, No hardening occurs because no hardening occurs, and the base structure itself is due to the strong bainite structure, and thus the yield ratio value itself is high. For example, in the case of comparative steels A and B, the tensile strength does not increase by more than 30 MPa compared to the yield strength in the tensile test.In the invention steel condition A, the yield strength is 483MPa, the tensile strength is 683MPa, and the yield steel condition B is the yield strength. Tensile strength of 949 MPa at 50 MPa, and condition C, yield strength of 1038 MPa at yield strength of 790 MPa, significantly higher than that of comparative steel near 700 MPa. This high tensile strength guarantees a high hardness value, and in the case of the actual ultrathin material, the effect will be greater. These properties are all due to the difference in the structure of the inventive and comparative steels.
발명강의 경우 비교 강재에 비해 높은 경도를 갖는 것은 발명강재가 갖고 있는 베이나이트 미세조직에 기인한다. 즉, 비교강재의 경우 페라이트 +필라이트의 이상 조직을 갖으며 2차 압연을 하므로써 강도를 증가시킨 대신 연신율의 하락을 가져온 반면에, 발명강재의 경우 2차 압연을 하지 않아, 그 조직 자체의 연신율을 유지할 수 있으며, 미세조직적 특징으로 인해 본래 강도가 높은 특성을 갖고 있어 비교재와 동등 이상의 물성을 확보할 수 있는 특징이 있다. In the case of the inventive steel, the hardness of the inventive steel is higher than that of the comparative steel due to the bainite microstructure of the inventive steel. In other words, the comparative steels had an abnormal structure of ferrite + pilite and the second rolling resulted in the decrease of elongation instead of the increase of the strength, whereas the invented steels did not undergo the second rolling, and thus the elongation of the structure itself. It can maintain the, and due to the microstructure characteristic has the characteristics of the original strength is high, there is a feature that can secure the physical properties equivalent to the comparative material.
상기 표 5에 나타난 바와 같이, 발명강의 경우, 750°C 소둔재의 경우에는 여러 넁각 속도에서도 모두 크랙이 발생하여 파단이 일어났지만, 780oC 이상의 소둔 은도에서 As shown in Table 5, in the case of the invention steel, various angles in the case of 750 ° C annealing material Cracks occurred at all speeds and fractured, but at annealed paths above 780 o C
15°C/초 정도의 낮은 넁각 속도로 넁각한 경우, L-벤딩 시나 그보다 더 열악한 폴딩에서 조차도 시편이 무사한 것을 확인할 수 있었다. 이에 반하여, 비교재 A의 경우ᅳ 목표 강도를 얻을 수 있는 40% 가량의 2차 압연을 수행한 시험편의 경우 2차 압연, 벤딩 후 시험편에서 모두 크랙이 형성되어 파단되었으며, 비교재 B의 경우 10%이하의 2차 압연을 가한 경우 시험편에 크랙이 발생하지 않았으나 그 이상의 2차 압연을 가한 경우 시험편에 크랙이 발생하거나 네킹이이 발생하였다. At low angles of incidence as low as 15 ° C / sec, it was found that the specimens were safe even at L-bending or worse folding. On the contrary, in the case of comparative material A, in the case of the test piece which performed the secondary rolling of about 40% to obtain the target strength, cracks were formed and fractured in the test piece after the secondary rolling and bending. Cracks did not occur in the test piece when the secondary rolling of less than or equal to% was applied, but cracks or necking occurred in the test piece when more secondary rolling was applied.
따라서, 소둔 온도 780°C 이상, 넁각속도 15°C/초 정도의 소둔을 행한 발명강의 경우 비교강 B와 동등 수준의 성형성을 갖는 것으로 조사되었다. 상기 표 6에 나타난 바와 같이 , 소둔 온도와 소둔 시간에서 소둔 후 넁각속도가 빠를수록 베이나이트 변태량이 늘어나지만, 역변태를 일으키는데 중요한 요소라고 판단되었던 소둔 시간의 경우 그 효과가 거의 없는 것으로 보아 750°C 이상의 온도에서 30초 이상의 유지 시간을 갖는 경우 페라이트에서 오스테나이트 역변태가 층분히 일어남을 유추할 수 있다. 한편, 소둔 온도의 영향은 매우 큰 것으로 나타났는데 소둔 온도가 증가할수록 베이나이트로 변태되는 분율아크게 증가하는 것을 알 수 있다. Therefore, in the case of the invention steel subjected to annealing at an annealing temperature of 780 ° C. or more and an angular rate of 15 ° C./sec. As shown in Table 6, the annealing time after annealing at annealing temperature and annealing time increases, but the amount of bainite transformation increases, but the annealing time, which was determined to be an important factor in causing reverse transformation, has little effect. It can be inferred that austenite reverse transformations occur in ferrites with holding times longer than 30 seconds at temperatures above C. On the other hand, the effect of the annealing temperature was found to be very large, it can be seen that as the annealing temperature increases the fraction transformed to bainite increases significantly.
이러한 상변태 측면에서 보면, 소둔 은도 800°C에서 넁각 속도가 빠를수록 베이나이트 상의 형성이 활발해져 좋지만, 현재 연속 소둔의 설비 문제상 20°C/초 정도의 낮은 넁각 속도에도 충분한 베이나이트 상을 형성할 수 있기 때문에 본 강재의 경우 소둔 조건을 소둔은도 750oC 이상, 소둔 넁각 속도를 10-50°C/초로 한정하다. 이와 같이, 본.발명 강재의 경우, 비교 강재에 비해 2차 압연 등의 추가적인 프로세스를 생략할 수 있다는 장점, 2차 압연을 행하지 않아 압연 방향 성형 특성이 -우수하다는 장점, 소둔 조건이 일반적인 제품을 생산하는 연속소둔 조건이라는 장점, 강도 수준이 인장강도. (TS) 수준 900MPa이상의 고강도라는 장점 등을 갖고 있다. In terms of this phase transformation, the faster the angle of annealing at 800 ° C, the better the formation of the bainite phase. However, due to the problems of continuous annealing, it is still possible to form sufficient bainite phase even at a low angle of about 20 ° C / sec. In this steel, the annealing conditions are annealing degree of more than 750 ° C, the annealing angle is limited to 10-50 ° C / sec. As described above, in the case of the present invention, the additional process such as secondary rolling can be omitted compared to the comparative steels, the rolling direction forming characteristics are not excellent because the secondary rolling is not performed. The advantage of producing continuous annealing conditions, strength level is tensile strength. It has the advantage of high strength (TS) level of 900MPa or more.
(실시예 2) (Example 2 )
상기 실시예 1의 발명재와 비교재 B의 광학 조직 사진 및 발명재의 전자 현미경 사진을 관찰하고, 그 결과를, 광학 조직 사진은 도 1에 나타내고 전자 현미경 사진은 도 2에 나타내었다. · 도 1의 (a)는 발명재의 조직사진을 나타내고, 도 1의 (b)는 비교재의 조직사진을 나타내고, 도 2의 (a)는 배율 1000배 ( X 1000)의 조직사진을 나타내고, 도 2의 (b)는 배율 2000배 (χ2000)의 조직사진을 나타내고, 그리고 도 2의 (c)는 배율 The optical micrograph of the invention material of Example 1 and the comparative material B and the electron micrograph of the invention material were observed, and the result was shown in FIG. 1, and the electron micrograph is shown in FIG. Fig. 1 (a) shows a tissue photograph of the invention material, Fig. 1 (b) shows a tissue photograph of the comparative material, and Fig. 2 (a) shows a tissue photograph with a magnification of 1000 times (X 1000); 2 (b) shows a tissue photograph with a magnification of 2000 times ( χ 2000), and (c) of FIG.
5000배 ( X 5000)의 조직사진을 나타낸다. Represent a tissue photograph of 5000 times (x 5000).
상기 발명재는 800oC에서 소둔한 소둔조건 C로 제조된 것이고, 비교재 B는 소둔 후 14%의 2차 압연을 행한 후 제조된 것이다. 도 1을 보면, 발명재와 비교재의 경우 조직의 확실한 차이를 알 수 있는데, 비교재의 경우 검은색으로 표현된 퍼얼라이트 (pearlite)와 페라이트 (ferrite)의 흔합 이상조직인데 반하여 , 발명재의 경우에는 침상의 단상 조직을 갖는 것으로 보인다. 이러한 조직적인 특성을 파악하기 위해 고 배율의 전자 현미경으로 발명재의 조직을 관찰한 것이 도 2이다. 도 2의 사진은 전자 현미경 상의 1000, 2000, 5000배율을 나타낸 것으로 광학 사진에 비해 선명하여 침상의 페라이트 레스 (ferrite lath)내부에 탄화물이 형성된 전형적인 베이나이트 (bainite) 조직을 갖는 것을 확인할 수 있었다. The invention material is prepared under the annealing condition C annealed at 800 ° C., Comparative material B is produced after the secondary rolling of 14% after annealing. Referring to Figure 1, in the case of the invention and the comparative material can be seen a clear difference, in the case of the comparative material is a mixed abnormal tissue of pearlite and ferrite (black) expressed in black, in the case of the invention material It appears to have a single-phase tissue. In order to understand such a tissue characteristic, the structure of the invention was observed with a high magnification electron microscope in FIG. 2. The photograph of Figure 2 shows the magnification of 1000, 2000, 5000 on an electron microscope and is clearer than that of an optical photograph. It was found to have a typical bainite tissue in which carbides were formed inside the ferrite lath.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
중량 %로, 탄소 (C): 0.15-0.25%, 망간 (Mn): 1.5-2.5%, 규소 (Si): 0.1-1.0%, 티타늄 (Ti): 0.01-0.05%, 붕소 (B): 5~30ppm( 잔부 Fe 및 기타 불순물을 포함하고, 그리고 그 조직이 70~100 vol.%의 베이나이트 및 0~30vol.%의 페라이트를 포함하는 고강도및 고성형성을 갖는 극박 넁연 강판. In weight%, carbon (C): 0.15-0.25%, manganese (Mn): 1.5-2.5%, silicon (Si): 0.1-1.0%, titanium (Ti): 0.01-0.05%, boron (B): 5 ~ 30 ppm ( high strength and high formability steel sheet containing residual Fe and other impurities, and the structure of which is 70-100 vol.% Of bainite and 0-30 vol.% Of ferrite.
【청구항 2】 [Claim 2]
저 U항에 있어서, 상기 C, Mn 및 B 함량의 곱이 1.13*10— 4 < wt C ? wt% Mn ? wt% B < 1.875*10"3 의 관계를 만족하는 것을 특징으로 하는 고강도 및 고성형성을 갖는 극박 넁연 강판. In the low-U, wherein the high-strength and high-performance forming, characterized by satisfying the relationship between the C, Mn, and a product of the B content of 1.13 * 10- 4? <Wt C wt% Mn? Wt% B <1.875 * 10 "3 Ultra-thin steel sheet having a thickness.
【청구항 3】 [Claim 3]
제 1항 또는 제 2항에 있어서, 상기 넁연강판의 두께가 0.5mm 이하인 것을 특징으로 하는 고강도 및 고성형성을 갖는 극박 넁연 강판. The ultra-thin steel sheet having high strength and high formability according to claim 1 or 2, wherein the thickness of the molten steel sheet is 0.5 mm or less.
【청구항 4】 [Claim 4]
제 1항 또는 제 2항에 있어서 , 상기 넁연강판은 이 강판을 r=0 L- 벤딩 (bending)성형 시험 시, 그 코너부에 눈으로 관찰할 수 있는 크택의 수가 단위 m 당 2개 이하인 것을 특징으로 하는 고강도 및 고성형성을 갖는 극박 넁연 강판. The steel sheet according to claim 1 or 2, wherein, in the r = 0 L-bending molding test of the steel sheet, the number of the stacks that can be visually observed at the corners thereof is 2 or less per unit m. Ultrathin thin steel sheet having high strength and high formability.
【청구항 5】 [Claim 5]
중량 %로, 탄소 (C): 0.15-0.25%, 망간 (Mn): 1.5-2.5%, 규소 (Si): 0.1-1.0%, 티타늄 (Ti): 0.01-0.05%, 붕소 (B): 5~30ppm, 잔부 Fe 및 기타 불순물을 포함하는 강 슬라브를 가열한 후 Ar3온도 이상에서 열간 마무리 압연하고 500~800oC에서 권취한 후, 열간압연된 강판을 50~90%의 압하율로 넁간압연한 후, 넁간압연된 강판을 연속소둔라인에서 750~850oC의 소둔온도에서 30초이상 유지한 다음, By weight%, carbon (C): 0.15-0.25%, manganese (Mn): 1.5-2.5%, silicon (Si): 0.1-1.0%, titanium (Ti): 0.01-0.05%, boron (B): 5 After heating the steel slab containing ~ 30ppm, balance Fe and other impurities, hot finish rolling above Ar 3 temperature and winding at 500 ~ 800 o C, and then hot rolled steel sheet at 50 ~ 90% reduction ratio After rolling, the hot rolled steel sheet was maintained at an annealing temperature of 750 to 850 o C in a continuous annealing line for at least 30 seconds,
250~450°C의 온도구간까지 10~50oC/sec의 넁각속도로 넁각하고, 이 온도에서 50초 이상 유지한 다음, 넁각하는 고강도 및 고성형성을 갖는 극박 넁연 강판의 제조방법 Angled at an angular velocity of 10 to 50 o C / sec until a temperature range of 250 to 450 ° C, maintained at this temperature for more than 50 seconds, and then subjected to extreme high strength and high formability. Manufacturing method
【청구항 6】 [Claim 6]
제 5항에 있어서 , 상기 (:, Mn 및 B 함량의 곱이 1.13*10_4 < wt C ? wt% Mn ? wt% B < 1.875*10— 3 의 관계를 만족하는 것을 특징으로 하는 .고강도 및 고성형성을 갖는 극박 넁연 강판의 제조방법 . 6. The high strength and high strength according to claim 5, wherein the product of (: , Mn and B content satisfies a relationship of 1.13 * 104 <wt C? Wt% Mn? Wt% B <1.875 * 10— 3 . Method for producing ultrathin galvanized steel sheet having a form.
【청구항 7] [Claim 7]
제 5항 또는 제 6항에 있어서, 상기 연속소둔시 강판의 이동속도가 100~500m/min인 것을 특징으로 하는 고강도 및 고성형성을 갖는 극박 넁연 강판의 제조방법. 7. The method of claim 5 or 6, wherein the moving speed of the steel sheet during continuous annealing is 100 to 500 m / min.
【청구항 8】 [Claim 8]
제 5항 또는 제 6항에 있어서, 상기 열간압연 마무리 온도가 Ar3~950°C이고, 그리고 상기 넁각속도가 10~30oC/sec인 것을 특징으로 하는 고강도 및 고성형성을 갖는 극박 넁연 강판의 제조방법. . According to claim 5 or 6, wherein the hot rolling finish temperature is Ar3 ~ 950 ° C, and the angular velocity is 10 ~ 30 o C / sec of the ultra-thin sintered steel sheet having high strength and high formability Manufacturing method. .
【청구항 9] [Claim 9]
제 5항 또는 게 6항에 있.어서, 열연강판의 두께가 1.0~3.0睡이고, 그리고 상기 냉연강판의 두께가 0.5隱 이하인 것을 특징으로 하는 고강도 및 고성형성을 갖는 극박 넁연 강판의 제조방법 . The method according to claim 5 or claim 6, wherein the hot rolled steel sheet has a thickness of 1.0 to 3.0 kPa, and the cold rolled steel sheet has a thickness of 0.5 kPa or less.
【청구항 10】 [Claim 10]
제 5항 또는 제 6항에 있어서 , 상기 냉연강판은 이 강판을 r=0 L— 벤딩 (bending)성형 시험 시, 그 코너부에 눈으로 관찰할 수 있는 크택의 수가 단위 m 당 2개 이하인 것을 특징으로 하는 고강도 및 고성형성을 갖는 극박 냉연 강판의 제조방법. 7. The cold rolled steel sheet according to claim 5 or 6, wherein the cold rolled steel sheet has a sheet number of not more than 2 creeks per unit m that can be observed by the corner at the time of r = 0 L—bending molding test. A method for producing an ultra-thin cold rolled steel sheet having high strength and high formability.
PCT/KR2011/006866 2011-09-16 2011-09-16 Thin cold-rolled steel plate having high strength and high formability, and preparation method thereof WO2013039272A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014530576A JP5826398B2 (en) 2011-09-16 2011-09-16 Ultra-thin cold-rolled steel sheet having high strength and high formability and manufacturing method thereof
CN201180073442.3A CN103797143B (en) 2011-09-16 2011-09-16 There is thin cold-rolled steel sheet of high strength and high formability and preparation method thereof
PCT/KR2011/006866 WO2013039272A1 (en) 2011-09-16 2011-09-16 Thin cold-rolled steel plate having high strength and high formability, and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/006866 WO2013039272A1 (en) 2011-09-16 2011-09-16 Thin cold-rolled steel plate having high strength and high formability, and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2013039272A1 true WO2013039272A1 (en) 2013-03-21

Family

ID=47883477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006866 WO2013039272A1 (en) 2011-09-16 2011-09-16 Thin cold-rolled steel plate having high strength and high formability, and preparation method thereof

Country Status (3)

Country Link
JP (1) JP5826398B2 (en)
CN (1) CN103797143B (en)
WO (1) WO2013039272A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107876564A (en) * 2017-12-15 2018-04-06 唐山全丰薄板有限公司 A kind of ferrite rolling control device and its control technique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835039A (en) * 1994-07-21 1996-02-06 Kawasaki Steel Corp Steel sheet for can manufacturing, excellent in baking hardenability and aging resistance and having high strength and high workability, and its production
JP2008106351A (en) * 2006-09-29 2008-05-08 Nippon Steel Corp High strength cold rolled steel sheet excellent in workability and its production method
JP2009185355A (en) * 2008-02-07 2009-08-20 Nippon Steel Corp High strength cold-rolled steel sheet having excellent workability and collision resistance and its production method
KR20110026751A (en) * 2009-09-08 2011-03-16 주식회사 포스코 Thin cold-rolled steel sheet having high strength and good formability and manufacturing thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220647A (en) * 2000-02-04 2001-08-14 Kawasaki Steel Corp High strength cold rolled steel plate excellent in workability and producing method therefor
JP3895986B2 (en) * 2001-12-27 2007-03-22 新日本製鐵株式会社 High-strength steel plate excellent in weldability and hole expansibility and method for producing the same
JP5040197B2 (en) * 2006-07-10 2012-10-03 Jfeスチール株式会社 Hot-rolled thin steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
JP4712842B2 (en) * 2008-07-18 2011-06-29 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
CN101880826A (en) * 2010-07-08 2010-11-10 安徽工业大学 Non-hardened bainite cold heading steel for fastener and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835039A (en) * 1994-07-21 1996-02-06 Kawasaki Steel Corp Steel sheet for can manufacturing, excellent in baking hardenability and aging resistance and having high strength and high workability, and its production
JP2008106351A (en) * 2006-09-29 2008-05-08 Nippon Steel Corp High strength cold rolled steel sheet excellent in workability and its production method
JP2009185355A (en) * 2008-02-07 2009-08-20 Nippon Steel Corp High strength cold-rolled steel sheet having excellent workability and collision resistance and its production method
KR20110026751A (en) * 2009-09-08 2011-03-16 주식회사 포스코 Thin cold-rolled steel sheet having high strength and good formability and manufacturing thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107876564A (en) * 2017-12-15 2018-04-06 唐山全丰薄板有限公司 A kind of ferrite rolling control device and its control technique

Also Published As

Publication number Publication date
CN103797143B (en) 2016-06-08
CN103797143A (en) 2014-05-14
JP2014530296A (en) 2014-11-17
JP5826398B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP6766190B2 (en) Ultra-high-strength, high-ductility steel sheet with excellent yield strength and its manufacturing method
JP5234893B2 (en) High-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
US10094011B2 (en) Superstrength cold-rolled weathering steel sheet and method of manufacturing same
CN114891961A (en) Cold-rolled heat-treated steel sheet
MX2007013676A (en) Cold rolled steel sheet having superior formability and high yield ratio, process for producing the same.
JP2006336065A (en) Low yield-ratio high tensile-strength steel, and method for producing low yield-ratio high tensile-strength steel
CN111218620B (en) High-yield-ratio cold-rolled dual-phase steel and manufacturing method thereof
WO2016035236A1 (en) Cold-rolled ferritic stainless steel sheet
JP6152375B2 (en) Steel for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance, manufacturing method thereof, and deep drawing product manufacturing method
WO2016135793A1 (en) High-strength cold-rolled steel plate and method for producing same
JP2007070648A (en) High strength thin steel sheet having excellent hole expandability, and method for producing the same
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP2007070647A (en) High strength steel sheet, and method for producing the same
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
KR101858857B1 (en) High-strength hot-rolled steel plate having high dwtt toughness at low temperature, and method for manufacturing the same
JP2018502992A (en) Composite steel sheet with excellent formability and method for producing the same
KR101360486B1 (en) Zinc plated steel sheet having excellent coating quality, high ductility, and ultra high strength and method for manufacturing the same
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP2004124114A (en) Non-water-cooled thin low yield ratio high tensile steel having excellent toughness, and production method therefor
JP2006111932A (en) Austenitic stainless steel material with high proportional limit stress, and manufacturing method therefor
WO2013039272A1 (en) Thin cold-rolled steel plate having high strength and high formability, and preparation method thereof
KR20130113670A (en) Ultra high strength high manganese steel sheet with excellent ductility and method of manufacturing the same
KR101899736B1 (en) Thick steel sheet having excellent low temperature toughness and resistance to hydrogen induced cracking, and method of manufacturing the same
JP2004250766A (en) METHOD OF PRODUCING Ni-CONTAINING STEEL HAVING EXCELLENT STRENGTH/LOW TEMPERATURE TOUGHNESS
KR101329922B1 (en) High strength and high bending formability thin cold-rolled sheet and method for manufacturing the cold-rolled sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014530576

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872501

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/07/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11872501

Country of ref document: EP

Kind code of ref document: A1