WO2013039237A1 - Current sensor and current measurement method - Google Patents

Current sensor and current measurement method Download PDF

Info

Publication number
WO2013039237A1
WO2013039237A1 PCT/JP2012/073742 JP2012073742W WO2013039237A1 WO 2013039237 A1 WO2013039237 A1 WO 2013039237A1 JP 2012073742 W JP2012073742 W JP 2012073742W WO 2013039237 A1 WO2013039237 A1 WO 2013039237A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
end portion
magnetic core
magnetic shield
current sensor
Prior art date
Application number
PCT/JP2012/073742
Other languages
French (fr)
Japanese (ja)
Inventor
真美子 仲
一成 岡
浦田 秀之
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2013039237A1 publication Critical patent/WO2013039237A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices

Definitions

  • the present invention relates to a current sensor and a current measurement method capable of reducing measurement errors.
  • the current sensor of Patent Document 1 is a closed loop current sensor including a magnetic circuit, a magnetic field sensor, and a compensation circuit.
  • the current sensor comprises a magnetic core formed by at least two core portions assembled together to form a substantially closed magnetic circuit.
  • the current sensor includes an inner wall portion and an outer wall portion in which the second branch portion of the magnetic circuit is coupled by one or more side wall portions. These side walls at least partially surround a cavity that houses the magnetic field sensor therein, and the side walls and the outer wall extend from one or both side edges of the inner wall.
  • the split-type current detector disclosed in Patent Document 2 has a double structure of an inner magnetic shield case and an outer magnetic shield case, and surrounds the detector main body so that the respective split directions cross each other.
  • Patent Document 3 discloses a DC current detector having the same structure as the split-type current detector disclosed in Patent Document 2.
  • the current sensor of Patent Document 1 does not include an inner magnetic shield between the wire to be measured and the magnetic core. Therefore, the current sensor cannot block the magnetic flux that causes measurement errors when used for the purpose of leakage detection.
  • Patent Documents 2 and 3 have an inner magnetic shield case.
  • the inner magnetic shield case is a two-divided type, two connecting portions are required, and the effect as the inner magnetic shield cannot be sufficiently exhibited.
  • Patent Documents 2 and 3 do not mention any structural improvements of the inner magnetic shield for realizing further reduction in measurement error.
  • the present invention has been made to solve the above problems, and an object thereof is to realize a current sensor and a current measurement method capable of reducing measurement errors.
  • a current sensor accommodates a magnetoelectric conversion element, and has a magnetic core having two end portions that overlap each other on the side facing the side accommodating the magnetoelectric conversion element. And a magnetic shielding plate having a first end and a second end inside the magnetic core, wherein the first end and the second end are the two ends of the magnetic core, respectively. It is characterized by being located on the same side as the part.
  • a current sensor includes a magnetic core having an element accommodating opening for accommodating a magnetoelectric conversion element, a first end portion and a first end disposed inside the magnetic core.
  • a magnetic shielding plate having two end portions, wherein the first end portion and the second end portion are respectively located on the side where the element accommodating opening is formed.
  • the current sensor according to the present invention accommodates the magnetoelectric conversion element and has a magnetic core having two end portions that overlap each other on the side facing the side accommodating the magnetoelectric conversion element, and the magnetic A magnetic shielding plate having a first end and a second end on the inside of the core, wherein the first end and the second end are on the same side as the two ends of the magnetic core, respectively. It is the structure located in.
  • the current sensor according to the present invention includes a magnetic core in which an element accommodating opening for accommodating a magnetoelectric conversion element is formed, and a first end and a second end inside the magnetic core. And the first end and the second end are each positioned on the side where the element accommodating opening is formed.
  • Sectional drawing which shows the internal structure of the earth-leakage sensor which concerns on embodiment of this invention is shown.
  • the external view of the leak sensor which concerns on this Embodiment used for a leak detection and the measurement of the amount of leaks is shown.
  • movement of the leakage sensor which concerns on embodiment of this invention is shown. It is a figure for demonstrating the effect of an inner side magnetic shield, (a) is a schematic sectional drawing of an earth-leakage sensor in case an inner side magnetic shield exists, (b) shows an inner side magnetic shield.
  • FIG. 1 shows a schematic cross-sectional view of a leakage sensor according to an embodiment of the present invention.
  • the schematic sectional drawing of the other earth-leakage sensor which concerns on one Embodiment of this invention is shown.
  • the schematic sectional drawing of the other earth-leakage sensor which concerns on one Embodiment of this invention is shown.
  • the schematic sectional drawing of the other earth-leakage sensor which concerns on one Embodiment of this invention is shown.
  • the schematic sectional drawing of the other earth-leakage sensor which concerns on one Embodiment of this invention is shown.
  • the schematic sectional drawing of the earth-leakage sensor as contrast is shown.
  • FIG. 3 is an external view of the leakage sensor according to the present embodiment shown in FIG. 2 and shows the thickness direction of the magnetic core with arrows in the drawing.
  • the internal appearance figure of FIG. 14 is shown.
  • FIG. 2 shows an external view of the leakage sensor 1 according to the present embodiment.
  • the leakage sensor 1 is used for detecting leakage and measuring the amount of leakage.
  • the wires to be measured P1 and P2 are disposed in the through holes provided in the leakage sensor 1.
  • the currents in the two wires to be measured P1 and P2 correspond to the going and returning currents, and if there is no leakage, the total current value is 0A. That is, when a leakage occurs, the total current value is not 0A.
  • the leakage sensor 1 detects the presence or absence of a leakage, and the amount of leakage when there is a leakage.
  • FIG. 3 is a block diagram for explaining the operation of the leakage sensor 1.
  • a current I 0 flows in the measured wire (P1) and a current ⁇ (I 0 -I L ) flows in the measured wire (P2), that is, a case where the current of I L is leaking is shown.
  • a current I 0 flows in the measured wire P1
  • a magnetic field H 0 is generated by the current I 0 .
  • a current ⁇ (I 0 ⁇ I L ) flows in the measured electric wire P2, and a magnetic field ( ⁇ H 0 + H L ) is generated by the current ⁇ (I 0 ⁇ I L ).
  • a magnetic flux ⁇ L is generated in the magnetic core 2 by the two magnetic fields H 0 and ( ⁇ H 0 + H L ).
  • the magnetic flux ⁇ L represents the amount of magnetic flux generated by the sum of the input magnetic fields to the magnetic core 2.
  • the magnetic flux ⁇ L generated in the magnetic core 2 is detected by the magnetoelectric conversion element.
  • the magnetoelectric conversion element converts the detected magnetic flux ⁇ L into a voltage, and outputs the converted voltage V ML to the output signal processing circuit.
  • the output signal processing circuit processes the voltage V ML and outputs a voltage (V 0L ) corresponding to the current value of the leaked current.
  • the leakage sensor 1 measures the amount of leakage corresponding to the voltage (V 0L ).
  • FIG. 1 is a cross-sectional view showing the internal structure of the leakage sensor 1.
  • the earth leakage sensor 1 includes magnetic cores 2a and 2b (hereinafter simply referred to as magnetic core 2 when 2a and 2b are not distinguished), an inner magnetic shield (magnetic shielding plate) 5, and a magnetoelectric conversion element. 20.
  • the earth leakage sensor 1 includes an outer case 31a, an inner case 31b, an output signal processing circuit 32, and fasteners 33a and 33b.
  • the earth leakage sensor 1 is electrically connected to an external device via the input / output terminal 34.
  • the outer case 31a forms the outer shape of the leakage sensor 1.
  • the inner case 31b forms a wall surface of a through hole in which measured wires P1 and P2 (not shown) are disposed. Between the outer case 31a and the inner case 31b, the magnetic cores 2a and 2b, the inner magnetic shield 5, the magnetoelectric transducer 20, the output signal processing circuit 32, and the fasteners 33a and 33b are disposed.
  • the rectangular magnetic core 2 is a dockable type that is composed of a magnetic core 2a and a magnetic core 2b and can be divided into two. More specifically, the surfaces of the magnetic core 2 a and the magnetic core 2 b that are opposite to the magnetoelectric conversion element 20 are overlapped with each other. And the magnetic cores 2a and 2b are fastened to the fasteners 33a and 33b and hold a rectangular shape. Among them, the magnetoelectric transducer 20 is disposed on the magnetic core 2 on the fastener 33a side, and the magnetic cores 2a and 2b are overlapped with each other on the fastener 33b side.
  • the side facing the magnetoelectric conversion element 20 means the side of the rectangular magnetic core 2 as viewed from above that faces the side where the magnetoelectric conversion element 20 is accommodated.
  • the magnetic core 2 is described as having a rectangular shape.
  • the magnetic core 2 is not limited to a rectangular shape, and may be an annular shape.
  • the fastener 33a is connected to and supported by the plate-like output signal processing circuit 32, and functions as a fastener for the magnetic core 2a and the magnetic core 2b.
  • the output signal processing circuit 32 is electrically connected to the input / output terminal 34, processes the voltage output from the magnetoelectric conversion element 20, and outputs the voltage corresponding to the current value of the measured wire to the input / output terminal 34. Output to an external device.
  • the earth leakage sensor 1 includes an inner magnetic shield 5 between the magnetic core 2 and the inner case 31b.
  • the inner magnetic shield 5 is made of a single-plate magnetic body, bends along the rectangular shape of the magnetic core 2 inside the magnetic core 2, and has a first end 5a and a second end 5b.
  • the first end portion 5a and the second end portion 5b each include an end face in the thickness direction of the magnetic core 2 in the inner magnetic shield 5 and are located on the side facing the side where the magnetoelectric transducer 20 is accommodated.
  • the inner magnetic shield 5 blocks magnetic flux that causes measurement errors that occur when the leakage sensor 1 is used for leakage detection. The inner magnetic shield 5 will be described later in more detail.
  • the above-described structure of the leakage sensor 1 is an example and is not limited to the structure. Therefore, the magnetic core 2 and the inner magnetic shield 5 may be configured in different shapes.
  • FIG. 14 is an external view of the leakage sensor 1 shown in FIG. 2 and shows the thickness direction of the magnetic core with arrows in the drawing.
  • measured wires P1 and P2 are arranged in the through holes provided in the leakage sensor 1.
  • the currents in the two wires to be measured P1 and P2 correspond to the going and returning currents and flow in the vertical direction in the figure.
  • the thickness direction of the magnetic core represents the current flow direction of the wires to be measured P1 and P2.
  • FIG. 15 shows the internal appearance of FIG.
  • the rectangular magnetic core 2 is a dockable type that is composed of a magnetic core 2 a and a magnetic core 2 b and can be divided into two.
  • an inner magnetic shield 5 that is bent along the rectangular shape of the magnetic core 2 inside the magnetic core 2 and has a first end 5a and a second end 5b is provided.
  • measured electric wires P ⁇ b> 1 and P ⁇ b> 2 through which current flows in the vertical direction in the figure are arranged inside the rectangular inner magnetic shield 5.
  • the “magnetic core thickness direction” represents the current flow direction of the measured wires P1 and P2, in other words, the axial direction of the measured wires P1 and P2.
  • the expression “the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 each include an end surface in the thickness direction of the magnetic core 2 in the inner magnetic shield 5” is expressed as “the axial direction of the electric wire to be measured” It can also be expressed as “including the end portion of the inner magnetic shield 5 when viewed from above”.
  • Inner magnetic shield 5 [Effect of inner magnetic shield 5]
  • FIG. 4A and 4B are diagrams for explaining the effect of the inner magnetic shield 5.
  • FIG. 4A shows the leakage sensor when the inner magnetic shield is not present
  • FIG. 4B shows the leakage sensor when the inner magnetic shield is present. It is a schematic sectional drawing.
  • each of the leakage sensors in each figure is for detecting leakage and measuring the amount of leakage with respect to the two wires to be measured in which the current of 20A flows in the opposite direction. The above differences exist.
  • the magnetic flux density detectable by the magnetoelectric transducer 20 was measured by simulation.
  • the magnetic flux density is 43.9 ⁇ T in the earth leakage sensor without the inner magnetic shield of FIG. 4A, and the magnetic flux density is 1.8 ⁇ T in the earth leakage sensor having the inner magnetic shield 5 shown in FIG. there were. Therefore, it can be seen that the inner magnetic shield 5 reduces the magnetic flux density by 42.1 ⁇ T (about 96%).
  • FIG. 5 is a diagram for explaining the principle that the magnetic flux that causes measurement errors that occurs in the leakage detection application is reduced by the inner magnetic shield.
  • FIG. 5A illustrates the state of magnetic flux when the inner magnetic shield is not present in the leakage sensor
  • FIG. 5B illustrates the state of magnetic flux when the inner magnetic shield is present in the leakage sensor.
  • FIG. 6 is a diagram for explaining the movement of the magnetic flux at the end of the inner magnetic shield 5.
  • Fig.6 (a) is a figure for demonstrating the mode of the magnetic flux in case an inner side magnetic shield exists in a leak sensor.
  • 6B illustrates the movement of the magnetic flux in the left broken line region of FIG. 6A when the second end 5b of the inner magnetic shield 5 is disposed outside the inner magnetic shield 5.
  • FIG. FIG. 6C illustrates the movement of magnetic flux in the right broken line region of FIG. 6A when the first end 5a of the inner magnetic shield 5 is disposed inside the inner magnetic shield 5.
  • FIG. 6 is a diagram for explaining the movement of the magnetic flux at the end of the inner magnetic shield 5.
  • Fig.6 (a) is a figure for demonstrating the mode of the magnetic flux in case an inner side magnetic shield exists in a leak sensor.
  • 6B illustrates the movement of the magnetic flux in the left broken line region of FIG. 6A when the second end 5b of the inner magnetic shield 5 is disposed outside the inner
  • the second end 5b is arranged outside the inner magnetic shield 5 closed in a rectangular shape. Therefore, the magnetic flux leaks from the second end portion 5 b toward the magnetic core 2.
  • the 1st end part 5a is arrange
  • FIG. 7 shows a case where the positional relationship in which the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 overlap each other is the same as the positional relationship in which the end portion 2c and the end portion 2d of the magnetic core 2 overlap each other. It is a figure for demonstrating the flow of magnetic flux.
  • the positional relationship in which the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 overlap each other is the same as the positional relationship in which the end portion 2c and the end portion 2d of the magnetic core 2 overlap each other. . That is, the end portion 2c and the end portion 2d are positioned such that the end portion 2c on the side extending to the right side in the drawing is located above the end portion 2d on the side extending to the left side in the drawing. Also, the overlapping of the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 is such that the end portion 5a on the right side in the drawing is above the end portion 5b on the left side in the drawing. To position.
  • the positional relationship is the same (opposite) means that the positional relationship in which the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 overlap each other when viewed from the measured electric wire as a reference. In other words, the positional relationship in which the portion 2c and the end portion 2d overlap with each other is the same (opposite).
  • the magnetic core 2 in the vicinity of the first end portion 5a of the inner magnetic shield 5 from which magnetic flux leaks is a region that does not have the end portion 2c and the end portion 2d (hereinafter, this region is referred to as a non-end portion). Called region).
  • the non-end region refers to a region where the end 2c and the end 2d having high magnetic resistance do not exist inside the corner (on the measured wire side) of the rectangular magnetic core 2. Since the non-end region has a low magnetic resistance, the magnetic flux leaking from the first end 5a of the inner magnetic shield 5 is likely to enter the magnetic core 2 from the non-end region having a low magnetic resistance. As a result, an error may occur in the leakage detection of the leakage sensor 1 due to the influence of the magnetic flux.
  • FIG. 8 shows a case where the positional relationship in which the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 overlap each other is opposite to the positional relationship in which the end portion 2c and the end portion 2d of the magnetic core 2 overlap each other. It is a figure for demonstrating the flow of magnetic flux.
  • the positional relationship in which the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 overlap each other is opposite to the positional relationship in which the end portion 2c and the end portion 2d of the magnetic core 2 overlap each other. . That is, the end 2c and the end 2d are overlapped such that the end 2c on the side extending to the right in the drawing is positioned above the end 2d on the side extending to the left in the drawing.
  • the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 are overlapped with each other so that the end portion 5a on the right side in the figure is lower than the end portion 5b on the left side in the figure.
  • the end 2d of the magnetic core 2 exists in the magnetic core 2 in the vicinity of the second end 5b of the inner magnetic shield 5 from which the magnetic flux leaks. Since the end 2d has high magnetic resistance, the magnetic flux leaking from the second end 5b is unlikely to enter the end 2d. That is, it is difficult for magnetic flux to enter the magnetic core 2 from the second end 5b. For this reason, the leakage measurement error is less likely to occur than in the case of FIG.
  • the end of the magnetic core 2 (or the element receiving opening 30 described later) and the first end and the second end of the inner magnetic shield 5 are arranged close to each other. In other words, in other words, the end portion of the magnetic core 2 (or the element accommodating opening 30 described later) and the first end portion and the second end portion of the inner magnetic shield 5 are close enough to face each other. In some cases, error detection is reduced. This will be described with reference to FIG.
  • FIG. 9 shows a schematic cross-sectional view of the leakage sensor 1 according to the present embodiment.
  • the magnetic core 2 has an end 2 c and an end 2 d on the side facing the side where the magnetoelectric conversion element 20 is accommodated, and the end 2 c and the end 2 d are (the magnetoelectric conversion element 20 Are overlapped with each other) (when the side opposite to the side where the material is accommodated is generally the end).
  • first end portion 5a and the second end portion 5b of the inner magnetic shield 5 include end faces (end face 5d, end face 5c) in the thickness direction of the magnetic core 2 in the inner magnetic shield 5, and (the magnetoelectric conversion element 20) Are overlapped with each other) (when the side opposite to the side where the material is accommodated is generally the end).
  • each of the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 includes an end portion of the inner magnetic shield 5 when viewed from the axial direction of the measured electric wire, and the inner magnetic shield 5
  • the first end 5a and the second end 5b overlap each other.
  • the 1st end part 5a and the 2nd end part 5b are located in the side facing the side in which the magnetoelectric conversion element 20 is accommodated.
  • the positional relationship in which the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 overlap each other is opposite to the positional relationship in which the end portion 2c and the end portion 2d of the magnetic core 2 overlap each other. That is, the end 2c and the end 2d are overlapped such that the end 2c on the side extending to the right in the drawing is positioned above the end 2d on the side extending to the left in the drawing. On the other hand, the first end portion 5a and the second end portion 5b are overlapped such that the end portion 5a on the side extending to the right side in the drawing is positioned below the end portion 5b on the side extending to the left side in the drawing.
  • the magnetic flux density was measured when the inner magnetic shield 5 was present and when it was not present. At this time, when the inner magnetic shield 5 was not present, the magnetic flux density was 43.9 ⁇ T, and when the inner magnetic shield 5 was present, the magnetic flux density was 1.9 ⁇ T. That is, the magnetic flux density can be reduced by about 96% by the inner magnetic shield 5. From this, it is understood that the leakage sensor 1 can greatly reduce the measurement error.
  • first end portion 5a and the second end portion 5b of the inner magnetic shield 5 overlap each other when they are overlapped by an adhesive or welding, they may overlap without using a sticking agent such as an adhesive, Both are included in this embodiment. This also applies to other embodiments described with reference to FIG.
  • the first end 5a and the second end 5b of the inner magnetic shield 5 may be simply overlapped, or may be overlapped by an adhesive or welding. However, it is preferable that the first end portion 5a and the second end portion 5b are simply overlapped from the viewpoint of reducing the material cost of the adhesive and the like and the bonding process.
  • reference numeral 30 in the figure corresponds to an element accommodating opening 30 for accommodating the magnetoelectric conversion element 20 in the magnetic core 2.
  • FIG. 10 shows a schematic cross-sectional view of a leakage sensor 50 according to the present embodiment.
  • the magnetic core 2 has an end 2c and an end 2d on the side facing the side where the magnetoelectric conversion element 20 is accommodated, and the end 2c and the end 2d overlap each other.
  • the first end portion 5 a and the second end portion 5 b of the inner magnetic shield 5 include end faces in the thickness direction of the magnetic core 2 in the inner magnetic shield 5 and overlap each other.
  • the 1st end part 5a and the 2nd end part 5b are located in the side in which the magnetoelectric conversion element 20 is accommodated. That is, the first end 5a and the second end 5b are located on the side where the element accommodating opening 30 is formed.
  • the magnetic flux density was measured when the inner magnetic shield 5 was present and when it was not present. At this time, when the inner magnetic shield 5 was not present, the magnetic flux density was 43.9 ⁇ T, and when the inner magnetic shield 5 was present, the magnetic flux density was 1.5 ⁇ T. That is, the inner magnetic shield 5 was able to reduce the magnetic flux density by about 97%. From this, it is understood that the leakage sensor 50 can greatly reduce the measurement error. The reason is as follows.
  • the leakage sensor 50 when compared with the leakage sensor 1 of FIG. 9, the leakage sensor 50 is provided with the above-described configuration, so that the first end 5 a and the second end 5 b of the inner magnetic shield 5 have element receiving openings in the magnetic core 2. It will be located near the part 30. Thereby, in the earth leakage sensor 50, the magnetic flux leaking from the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 having high magnetic resistance is also the element receiving opening 30 having high magnetic resistance (that is, the magnetic core). It can be difficult to enter.
  • the leakage sensor 50 can minimize the influence of the magnetic flux leaking from the first end portion 5a and the second end portion 5b of the inner magnetic shield 5, and realize a current sensor with less leakage measurement error. Can do. This also applies to the leakage sensor 51 and the like shown in FIG.
  • FIG. 11 is a schematic cross-sectional view of the leakage sensor 51 according to the present embodiment.
  • the magnetic core 2 does not have the end 2c and the end 2d.
  • the first end portion 5 a and the second end portion 5 b of the inner magnetic shield 5 include end faces in the thickness direction of the magnetic core 2 in the inner magnetic shield 5 and overlap each other.
  • the first end 5a and the second end 5b are located on the side where the element accommodating opening 30 is formed.
  • the magnetic flux density was measured when the inner magnetic shield 5 was present and when it was not present. At this time, when the inner magnetic shield 5 was not present, the magnetic flux density was 4.2 ⁇ T, and when the inner magnetic shield 5 was present, the magnetic flux density was 0.3 ⁇ T. That is, the magnetic flux density can be reduced by about 93% by the inner magnetic shield 5. From this, it can be seen that the leakage sensor 51 can greatly reduce the measurement error. This effect is due to the same reason described with reference to FIG. That is, since the first end portion 5 a and the second end portion 5 b of the inner magnetic shield 5 are located on the element accommodating opening 30 side, they are located near the element accommodating opening 30.
  • the magnetic flux leaking from the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 having high magnetic resistance is also the element receiving opening 30 having high magnetic resistance (that is, the magnetic core). It can be difficult to enter. Thereby, the leakage sensor 51 can greatly reduce the measurement error.
  • FIG. 12 is a schematic cross-sectional view of the leakage sensor 52 according to the present embodiment.
  • the magnetic core 2 does not have the end 2c and the end 2d.
  • the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 include end faces in the thickness direction of the magnetic core 2 in the inner magnetic shield 5, and the side on which the magnetoelectric transducer 20 of the inner magnetic shield 5 is accommodated.
  • the abutment surfaces are in contact with each other so that they are substantially in the same plane.
  • the magnetic flux density was measured when the inner magnetic shield 5 was present and when it was not present. At this time, when the inner magnetic shield 5 was not present, the magnetic flux density was 4.2 ⁇ T, and when the inner magnetic shield 5 was present, the magnetic flux density was 1.7 ⁇ T. That is, the magnetic flux density can be reduced by about 60% by the inner magnetic shield 5. From this, it is understood that the leakage sensor 52 can greatly reduce the measurement error. This effect is due to the same reason as described with reference to FIGS.
  • FIG. 13 is a schematic cross-sectional view of a leakage sensor 60 that is not included in the present embodiment.
  • the magnetic core 2 has an end 2c and an end 2d on the side facing the side where the magnetoelectric transducer 20 is accommodated, and the end 2c and the end 2d overlap each other.
  • the first end portion 40 a and the second end portion 40 b of the inner magnetic shield 40 include end faces in the thickness direction of the magnetic core 2 in the inner magnetic shield 40 and overlap each other.
  • the 1st end part 40a and the 2nd end part 40b of the inner side magnetic shield 40 are arrange
  • the first end 40a and the second end 40b (and the element accommodating opening 30) of the inner magnetic shield 40 and the end 2c and the end 2d of the magnetic core 2 are farther from each other than the leakage sensor 1 or the like. Is arranged.
  • the magnetic flux density was measured when the inner magnetic shield 5 was present and when it was not present. At this time, when the inner magnetic shield 5 was not present, the magnetic flux density was 43.9 ⁇ T, and when the inner magnetic shield 5 was present, the magnetic flux density was 2.3 ⁇ T. That is, in the leakage sensor 60, the magnetic flux density is reduced by about 95% by the inner magnetic shield 5.
  • the leakage sensor 60 detects a magnetic flux with a larger numerical value (2.3 ⁇ T) than the leakage sensor 1 and the leakage sensors 50 to 52. Accordingly, the leakage sensor 60 is more likely to cause measurement errors than the leakage sensor 1 and the like because the large magnetic flux density is detected, and is inferior to the leakage sensor 1 and the leakage sensors 50 to 52 in terms of effects. .
  • the conventional earth leakage sensor has a two-divided conventional inner magnetic shield case that requires two connecting portions, and the inner magnetic shield 5 according to this embodiment is made of a single-plate magnetic material. This point is also considered to contribute to the effect obtained by the earth leakage sensor 1 and the like that the error detection can be greatly reduced.
  • the first end 5a and the second end 5b of the inner magnetic shield 5 are described as being in contact with each other.
  • the first end portion 5a and the second end portion 5b do not need to be completely in contact with each other, and may be realized by a configuration in which at least a part thereof is in contact.
  • the 1st end part 5a and the 2nd end part 5b may be implement
  • a material for the magnetic core 2 and the inner magnetic shield 5 a material having a high magnetic permeability and a low hysteresis can be used. Can be mentioned. Thereby, high accuracy and high sensitivity of the leakage sensor according to the present embodiment can be realized.
  • the rectangular magnetic core having two end portions that overlap each other on the side that accommodates the magnetoelectric conversion element and faces the side that houses the magnetoelectric conversion element,
  • a magnetic shielding plate having a first end and a second end inside the magnetic core, wherein the first end and the second end are respectively in the thickness direction of the magnetic core in the magnetic shielding plate And is located on the same side as the two end portions of the magnetic core.
  • the current sensor according to one aspect of the present embodiment includes a magnetic shielding plate having a first end and a second end inside the magnetic core. Thereby, the current sensor according to one embodiment of the present embodiment can significantly reduce the magnetic flux that causes the measurement error that occurs in the leakage detection application.
  • each of the first end and the second end includes an end surface of the magnetic shielding plate in the thickness direction of the magnetic core, and is located on the same side as the two ends of the magnetic core. That is, the first end and the second end are located near the two ends of the magnetic core.
  • the current sensor according to one embodiment of the present invention can minimize the influence of magnetic flux leaking from the first end and the second end, and realizes a current sensor with little measurement error of leakage. be able to.
  • the positional relationship in which the first end portion and the second end portion overlap each other is opposite to the positional relationship in which the two end portions of the magnetic core overlap each other. It may be a configuration.
  • one of the first end and the second end is located outside the rectangular magnetic shielding plate (for convenience of explanation, the first end is located outside).
  • one of the two end portions of the magnetic core (for convenience of explanation, the end portion is placed at a position facing the first end portion inside the rectangular magnetic core. End portion A) is arranged.
  • the current sensor according to one embodiment of the present embodiment can further reduce a leakage measurement error.
  • the positional relationship in which the first end portion and the second end portion overlap each other is the same as the positional relationship in which the two end portions of the magnetic core overlap each other. It may be a configuration.
  • one of the first end and the second end is located outside the rectangular magnetic shielding plate (for convenience of explanation, the first end is located outside).
  • one of the two end portions of the magnetic core is located at a position close to the first end portion (for convenience of explanation, the end portion is set to the end portion. A).
  • the current sensor according to one embodiment of the present embodiment can reduce a leakage measurement error.
  • a current sensor includes a rectangular magnetic core in which an element accommodating opening for accommodating a magnetoelectric conversion element is formed, and a first end and a second end on the inner side of the magnetic core.
  • Each of the first end and the second end includes an end surface of the magnetic shielding plate in the thickness direction of the magnetic core, and the element accommodating opening is formed. It is the structure located in the side which is.
  • the current sensor according to one aspect of the present embodiment includes a magnetic shielding plate having a first end and a second end inside the magnetic core. Thereby, the current sensor according to one embodiment of the present embodiment can significantly reduce the magnetic flux that causes the measurement error that occurs in the leakage detection application.
  • each of the first end and the second end includes an end face in the thickness direction of the magnetic core in the magnetic shielding plate, and is located on the side where the element accommodating opening is formed. That is, the first end and the second end are located near the element accommodating opening in the magnetic core.
  • the current sensor according to one embodiment of the present invention can minimize the influence of magnetic flux leaking from the first end and the second end, and realizes a current sensor with little measurement error of leakage. be able to.
  • the first end and the second end may overlap each other.
  • At least a part of the first end portion and the second end portion may be in contact with each other.
  • the first end portion and the second end portion may be configured to overlap each other, or may be configured to be at least partially in contact with each other.
  • the current sensor according to one embodiment of the present invention can realize a current sensor with little measurement error of electric leakage.
  • the current sensor according to one embodiment of the present invention can use various types of magnetic shielding plates, and can increase the degree of design freedom.
  • the current sensor according to one embodiment of the present invention may be configured such that the magnetic shielding plate is any one of permalloy, amorphous magnetic material, silicon steel plate, and ferrite.
  • the current sensor according to one embodiment of the present invention may be configured such that the magnetic core is any one of permalloy, amorphous magnetic material, silicon steel plate, and ferrite.
  • High accuracy and high sensitivity of the current sensor can be realized when the magnetic shielding plate and / or the magnetic core is made of a high permeability / low hysteresis material.
  • the current measurement method may be configured to measure the current value of the current flowing through the measured wire by the current sensor.
  • the present invention can be suitably applied to a current sensor and a current measurement method capable of reducing measurement errors.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

A power leakage sensor (1) is provided with: a magnetic core (2) having end sections (2c, 2d) that overlap each other on the side opposite the side at which a magneto-electric conversion element (20) is housed; and an inside magnetic shield (5) having a first end section (5a) and a second end section (5b), located further inward from the magnetic core (2). The first end section (5a) and the second end section (5b) are positioned on the same side as the end sections (2c, 2d) of the magnetic core (2).

Description

電流センサ、及び電流測定方法Current sensor and current measuring method
 本発明は、計測誤差を低減することが可能な電流センサ、及び電流測定方法に関する。 The present invention relates to a current sensor and a current measurement method capable of reducing measurement errors.
 近年、電流センサは、多くの産業分野において利用されており、高感度化等の要求が年々高まっている。そこで、高感度化を実現すべく種々の電流センサが開発されており、その一例が、特許文献1等に開示されている。 In recent years, current sensors are used in many industrial fields, and demands for higher sensitivity are increasing year by year. In view of this, various current sensors have been developed to achieve high sensitivity, and an example thereof is disclosed in Patent Document 1 and the like.
 特許文献1の電流センサは、磁気回路と、磁界センサと、補償回路とを備えるクローズドループ電流センサである。この電流センサは、実質的に閉じられた磁気回路を形成するように互いに組立てられた、少なくとも二つのコア部分により形成される磁気コアを備える。また、当該電流センサは、磁気回路の第二枝部が、一つ以上の側壁部により結合された内壁部と外壁部とを備える。これらの側壁部は、磁界センサーを内部で収容する空洞部を少なくとも部分的に囲み、側壁部及び外壁部は、内壁部の一方又は両方の側縁部から延在する。 The current sensor of Patent Document 1 is a closed loop current sensor including a magnetic circuit, a magnetic field sensor, and a compensation circuit. The current sensor comprises a magnetic core formed by at least two core portions assembled together to form a substantially closed magnetic circuit. The current sensor includes an inner wall portion and an outer wall portion in which the second branch portion of the magnetic circuit is coupled by one or more side wall portions. These side walls at least partially surround a cavity that houses the magnetic field sensor therein, and the side walls and the outer wall extend from one or both side edges of the inner wall.
 特許文献2の分割型電流検出器は、内側磁気シールドケースと外側磁気シールドケースとの二重構造とし、それぞれの分割方向が互いに交叉する方向にして検出器本体を囲繞する。また、特許文献3は、特許文献2の分割型電流検出器と同様の構造を有する直流電流検出器を開示する。 The split-type current detector disclosed in Patent Document 2 has a double structure of an inner magnetic shield case and an outer magnetic shield case, and surrounds the detector main body so that the respective split directions cross each other. Patent Document 3 discloses a DC current detector having the same structure as the split-type current detector disclosed in Patent Document 2.
日本国特許公開公報「特表2011-510318号公報(2011年 3月31日公開)」Japanese Patent Publication “Special Table 2011-510318 Publication (released March 31, 2011)” 日本国特許公開公報「特開2001-281270号公報(2001年10月10日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2001-281270 (published on October 10, 2001)” 日本国特許公開公報「特開2001-264360号公報(2001年 9月26日公開)」Japanese Patent Publication “JP 2001-264360 A (published September 26, 2001)”
 しかしながら、上記各特許文献には次のような問題がある。 However, each of the above patent documents has the following problems.
 特許文献1の電流センサは、被測定電線と磁気コアとの間に内側磁気シールドを備えていない。そのため、当該電流センサは、漏電検知を目的として使用された場合に、計測誤差の原因となる磁束を遮断することはできない。 The current sensor of Patent Document 1 does not include an inner magnetic shield between the wire to be measured and the magnetic core. Therefore, the current sensor cannot block the magnetic flux that causes measurement errors when used for the purpose of leakage detection.
 特許文献2、3の電流センサは、内側磁気シールドケースを備える。しかしながら、その内側磁気シールドケースは、2分割型であるため、接続部が2箇所必要となり、内側磁気シールドとしての効果を十分に発揮することができない。また、特許文献2、3は、計測誤差のさらなる低減を実現するための、内側磁気シールドの構造上の工夫等にまで言及していない。 The current sensors of Patent Documents 2 and 3 have an inner magnetic shield case. However, since the inner magnetic shield case is a two-divided type, two connecting portions are required, and the effect as the inner magnetic shield cannot be sufficiently exhibited. In addition, Patent Documents 2 and 3 do not mention any structural improvements of the inner magnetic shield for realizing further reduction in measurement error.
 本発明は、上記の問題を解決するためになされたものであり、その目的は、計測誤差を低減することが可能な電流センサ、及び電流測定方法を実現することにある。 The present invention has been made to solve the above problems, and an object thereof is to realize a current sensor and a current measurement method capable of reducing measurement errors.
 本発明に係る電流センサは、上記の課題を解決するために、磁電変換素子を収容し、かつ、当該磁電変換素子を収容する側と対向する側に、互いに重なり合う2つの端部を有する磁気コアと、上記磁気コアの内側に、第1端部および第2端部を有する磁気遮蔽板と、を備え、上記第1端部および上記第2端部はそれぞれ、上記磁気コアにおける上記2つの端部と同じ側に位置することを特徴としている。 In order to solve the above problems, a current sensor according to the present invention accommodates a magnetoelectric conversion element, and has a magnetic core having two end portions that overlap each other on the side facing the side accommodating the magnetoelectric conversion element. And a magnetic shielding plate having a first end and a second end inside the magnetic core, wherein the first end and the second end are the two ends of the magnetic core, respectively. It is characterized by being located on the same side as the part.
 本発明に係る電流センサは、上記の課題を解決するために、磁電変換素子を収容するための素子収容開口部が形成された磁気コアと、上記磁気コアの内側に、第1端部および第2端部を有する磁気遮蔽板と、を備え、上記第1端部および上記第2端部はそれぞれ、上記素子収容開口部が形成されている側に位置することを特徴としている。 In order to solve the above-described problems, a current sensor according to the present invention includes a magnetic core having an element accommodating opening for accommodating a magnetoelectric conversion element, a first end portion and a first end disposed inside the magnetic core. A magnetic shielding plate having two end portions, wherein the first end portion and the second end portion are respectively located on the side where the element accommodating opening is formed.
 本発明に係る電流センサは、以上のように、磁電変換素子を収容し、かつ、当該磁電変換素子を収容する側と対向する側に、互いに重なり合う2つの端部を有する磁気コアと、上記磁気コアの内側に、第1端部および第2端部を有する磁気遮蔽板と、を備え、上記第1端部および上記第2端部はそれぞれ、上記磁気コアにおける上記2つの端部と同じ側に位置する構成である。 As described above, the current sensor according to the present invention accommodates the magnetoelectric conversion element and has a magnetic core having two end portions that overlap each other on the side facing the side accommodating the magnetoelectric conversion element, and the magnetic A magnetic shielding plate having a first end and a second end on the inside of the core, wherein the first end and the second end are on the same side as the two ends of the magnetic core, respectively. It is the structure located in.
 また、本発明に係る電流センサは、以上のように、磁電変換素子を収容するための素子収容開口部が形成された磁気コアと、上記磁気コアの内側に、第1端部および第2端部を有する磁気遮蔽板と、を備え、上記第1端部および上記第2端部はそれぞれ、上記素子収容開口部が形成されている側に位置する構成である。 In addition, as described above, the current sensor according to the present invention includes a magnetic core in which an element accommodating opening for accommodating a magnetoelectric conversion element is formed, and a first end and a second end inside the magnetic core. And the first end and the second end are each positioned on the side where the element accommodating opening is formed.
 それゆえ、計測誤差を低減することが可能な電流センサを実現することができる。 Therefore, a current sensor capable of reducing measurement errors can be realized.
本発明の実施の形態に係る漏電センサの内部構造を示す断面図を示す。Sectional drawing which shows the internal structure of the earth-leakage sensor which concerns on embodiment of this invention is shown. 漏電検知、及び漏電量の測定に用いられる、本実施の形態に係る漏電センサの外観図を示す。The external view of the leak sensor which concerns on this Embodiment used for a leak detection and the measurement of the amount of leaks is shown. 本発明の実施の形態に係る漏電センサの動作を説明するためのブロック図を示す。The block diagram for demonstrating operation | movement of the leakage sensor which concerns on embodiment of this invention is shown. 内側磁気シールドの効果を説明するための図であり、(a)は内側磁気シールドが存在しない場合、(b)は内側磁気シールドが存在する場合の漏電センサの概略断面図を示す。It is a figure for demonstrating the effect of an inner side magnetic shield, (a) is a schematic sectional drawing of an earth-leakage sensor in case an inner side magnetic shield exists, (b) shows an inner side magnetic shield. 漏電検知用途において発生する計測誤差の原因となる磁束が内側磁気シールドによって低減される原理を説明するための図であり、(a)は、漏電センサに内側磁気シールドが存在しない場合の磁束の様子を、(b)は、漏電センサに内側磁気シールドが存在する場合の磁束の様子を説明するための図を示す。It is a figure for demonstrating the principle by which the magnetic flux which causes the measurement error which generate | occur | produces in a leak detection use is reduced with an inner side magnetic shield, (a) is a mode of the magnetic flux when an inner side magnetic shield does not exist in a leak sensor (B) shows the figure for demonstrating the mode of the magnetic flux in case an inner side magnetic shield exists in an earth-leakage sensor. 内側磁気シールドの端部における磁束の動きを説明するための図であり、(a)は、漏電センサに内側磁気シールドが存在する場合の磁束の様子を説明するための図であり、(b)は、内側磁気シールドの端部が内側磁気シールドの外側に配置されているときの、(a)の左側破線領域内での磁束の動きを説明するための図であり、(c)は、内側磁気シールドの端部が内側磁気シールドの内側に配置されているときの、(a)の右側破線領域内での磁束の動きを説明するための図である。It is a figure for demonstrating the motion of the magnetic flux in the edge part of an inner side magnetic shield, (a) is a figure for demonstrating the mode of the magnetic flux in case an inner side magnetic shield exists in a leakage sensor, (b). These are the figures for demonstrating the motion of the magnetic flux in the left broken-line area | region of (a) when the edge part of an inner side magnetic shield is arrange | positioned on the outer side of an inner side magnetic shield, (c) is inner side. It is a figure for demonstrating the motion of the magnetic flux in the right broken line area | region of (a) when the edge part of a magnetic shield is arrange | positioned inside an inner magnetic shield. 内側磁気シールドの第1端部と第2端部とが互いに重なり合う位置関係が、磁気コアにおける2つの端部が互いに重なり合う位置関係と同一である場合の磁束の流れについて説明するための図である。It is a figure for demonstrating the flow of magnetic flux when the positional relationship in which the 1st edge part and 2nd edge part of an inner side magnetic shield mutually overlap is the same as the positional relationship in which two edge parts in a magnetic core overlap each other. . 内側磁気シールドの第1端部と第2端部とが互いに重なり合う位置関係が、磁気コアにおける2つの端部が互いに重なり合う位置関係と反対である場合の磁束の流れについて説明するための図である。It is a figure for demonstrating the flow of magnetic flux in case the positional relationship where the 1st end part and 2nd end part of an inner side magnetic shield mutually overlap is opposite to the positional relationship in which two edge parts in a magnetic core mutually overlap. . 本発明の一実施形態に係る漏電センサの概略断面図を示す。1 shows a schematic cross-sectional view of a leakage sensor according to an embodiment of the present invention. 本発明の一実施形態に係る他の漏電センサの概略断面図を示す。The schematic sectional drawing of the other earth-leakage sensor which concerns on one Embodiment of this invention is shown. 本発明の一実施形態に係る他の漏電センサの概略断面図を示す。The schematic sectional drawing of the other earth-leakage sensor which concerns on one Embodiment of this invention is shown. 本発明の一実施形態に係る他の漏電センサの概略断面図を示す。The schematic sectional drawing of the other earth-leakage sensor which concerns on one Embodiment of this invention is shown. 対比例としての漏電センサの概略断面図を示す。The schematic sectional drawing of the earth-leakage sensor as contrast is shown. 図2に記載の本実施の形態に係る漏電センサの外観図を示し、かつ、磁気コアの厚み方向を図中に矢印で示す図である。FIG. 3 is an external view of the leakage sensor according to the present embodiment shown in FIG. 2 and shows the thickness direction of the magnetic core with arrows in the drawing. 図14の内部外観図を示す。The internal appearance figure of FIG. 14 is shown.
 以下、本発明の一実施の形態について、図面を参照しながら説明する。説明の便宜上、図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
〔電流センサ(漏電センサ)について〕
 最初に、本実施の形態に係る電流センサの基本原理を説明する。電流センサでは、磁性体で形成された磁気コアが、被測定電線の電流から発生する磁界を増幅する。次に、磁電変換素子が、増幅された磁界の磁束密度を検知して電気信号に変換する。その後、その電気信号が出力信号処理回路で処理され、被測定電線の電流値が測定される。この電流センサには複数の用途が存在し、その用途の1つとして漏電センサが挙げられる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. For convenience of explanation, members having the same functions as those shown in the drawings are denoted by the same reference numerals, and description thereof is omitted.
[About current sensor (leakage sensor)]
First, the basic principle of the current sensor according to this embodiment will be described. In the current sensor, a magnetic core made of a magnetic material amplifies a magnetic field generated from the current of the wire to be measured. Next, the magnetoelectric transducer detects the magnetic flux density of the amplified magnetic field and converts it into an electrical signal. Thereafter, the electrical signal is processed by the output signal processing circuit, and the current value of the measured wire is measured. This current sensor has a plurality of uses, and one of the uses is a leakage sensor.
 図2は、本実施の形態に係る漏電センサ1の外観図を示す。漏電センサ1は、漏電検知、及び漏電量の測定に用いられる。図示するように、漏電センサ1に設けられた貫通孔には、被測定電線P1・P2が配置されている。その2本の被測定電線P1・P2における電流は、行きと帰りの電流に該当し、漏電がなければトータルの電流値は0Aとなる。つまり、漏電が発生している場合には、トータルの電流値は0Aとはならない。この原理を利用して、漏電センサ1は、漏電の有無、そして漏電がある場合にはその漏電量を検知する。 FIG. 2 shows an external view of the leakage sensor 1 according to the present embodiment. The leakage sensor 1 is used for detecting leakage and measuring the amount of leakage. As shown in the figure, the wires to be measured P1 and P2 are disposed in the through holes provided in the leakage sensor 1. The currents in the two wires to be measured P1 and P2 correspond to the going and returning currents, and if there is no leakage, the total current value is 0A. That is, when a leakage occurs, the total current value is not 0A. Using this principle, the leakage sensor 1 detects the presence or absence of a leakage, and the amount of leakage when there is a leakage.
 図3は、漏電センサ1の動作を説明するためのブロック図を示す。 FIG. 3 is a block diagram for explaining the operation of the leakage sensor 1.
 まず、被測定電線(P1)内に電流Iが流れ、被測定電線(P2)内に電流-(I-I)が流れるケース、つまり、Iの電流が漏電しているケースを考える。このとき、被測定電線P1内に電流Iが流れ、その電流Iによって磁界Hが発生する。また、被測定電線P2内に電流-(I-I)が流れ、その電流-(I-I)によって磁界(-H+H)が発生する。そして、その2つの磁界Hおよび(-H+H)によって、磁気コア2に磁束Φが発生する。つまり、磁束Φは、磁気コア2への入力磁界の総和により発生した磁束量を表す。次に、その磁気コア2に発生した磁束Φが磁電変換素子により検知される。磁電変換素子は、その検知した磁束Φを電圧に変換し、その変換した電圧VMLを出力信号処理回路に出力する。そして、出力信号処理回路は、電圧VMLを処理して、漏電した電流の電流値に対応する電圧(V0L)を出力する。こうして、漏電センサ1は、電圧(V0L)に対応する漏電量を測定する。 First, a case where a current I 0 flows in the measured wire (P1) and a current − (I 0 -I L ) flows in the measured wire (P2), that is, a case where the current of I L is leaking is shown. Think. At this time, a current I 0 flows in the measured wire P1, and a magnetic field H 0 is generated by the current I 0 . In addition, a current − (I 0 −I L ) flows in the measured electric wire P2, and a magnetic field (−H 0 + H L ) is generated by the current − (I 0 −I L ). A magnetic flux Φ L is generated in the magnetic core 2 by the two magnetic fields H 0 and (−H 0 + H L ). That is, the magnetic flux Φ L represents the amount of magnetic flux generated by the sum of the input magnetic fields to the magnetic core 2. Next, the magnetic flux Φ L generated in the magnetic core 2 is detected by the magnetoelectric conversion element. The magnetoelectric conversion element converts the detected magnetic flux Φ L into a voltage, and outputs the converted voltage V ML to the output signal processing circuit. Then, the output signal processing circuit processes the voltage V ML and outputs a voltage (V 0L ) corresponding to the current value of the leaked current. Thus, the leakage sensor 1 measures the amount of leakage corresponding to the voltage (V 0L ).
 なお、本実施の形態に係る電流センサは、種々の用途に適用することができ、例えば、太陽電池・燃料電池などのパワーコンディショナーの漏電検知、ハイブリッドカーやプラグインハイブリッドカー等に車載されるバッテリー監視、あるいは、データセンタUPSのバッテリー監視など、幅広い分野において利用可能である。
〔漏電センサ1の要部説明〕
 次に、より具体的に、漏電センサ1を図1により説明する。図1は、漏電センサ1の内部構造を示す断面図である。
Note that the current sensor according to the present embodiment can be applied to various applications, for example, detection of electric leakage of power conditioners such as solar cells and fuel cells, batteries mounted on hybrid cars, plug-in hybrid cars, and the like. It can be used in a wide range of fields such as monitoring or battery monitoring of a data center UPS.
[Explanation of main part of earth leakage sensor 1]
Next, the leakage sensor 1 will be described more specifically with reference to FIG. FIG. 1 is a cross-sectional view showing the internal structure of the leakage sensor 1.
 図示するように、漏電センサ1は、磁気コア2a・2b(以下、2a、2bを区別しないときは、単に磁気コア2と称する)と、内側磁気シールド(磁気遮蔽板)5と、磁電変換素子20とを備える。また、漏電センサ1は、外側ケース31aと、内側ケース31bと、出力信号処理回路32と、留め具33a・33bとを備える。そして、漏電センサ1は、入出力端子34を介して、外部装置と電気的に接続される。 As shown in the figure, the earth leakage sensor 1 includes magnetic cores 2a and 2b (hereinafter simply referred to as magnetic core 2 when 2a and 2b are not distinguished), an inner magnetic shield (magnetic shielding plate) 5, and a magnetoelectric conversion element. 20. The earth leakage sensor 1 includes an outer case 31a, an inner case 31b, an output signal processing circuit 32, and fasteners 33a and 33b. The earth leakage sensor 1 is electrically connected to an external device via the input / output terminal 34.
 外側ケース31aは、漏電センサ1の外形を形成する。内側ケース31bは、被測定電線P1・P2(不図示)が配設される貫通孔の壁面を形成する。そして、外側ケース31aと内側ケース31bとの間に、磁気コア2a・2bと、内側磁気シールド5と、磁電変換素子20と、出力信号処理回路32と、留め具33a・33bとが配設される。 The outer case 31a forms the outer shape of the leakage sensor 1. The inner case 31b forms a wall surface of a through hole in which measured wires P1 and P2 (not shown) are disposed. Between the outer case 31a and the inner case 31b, the magnetic cores 2a and 2b, the inner magnetic shield 5, the magnetoelectric transducer 20, the output signal processing circuit 32, and the fasteners 33a and 33b are disposed. The
 矩形形状の磁気コア2は、磁気コア2aと磁気コア2bとからなる2分割可能なドッキング型である。より具体的に、磁気コア2aおよび磁気コア2bは、互いに、磁電変換素子20と対向する側の面が重ね合わせられている。そして、磁気コア2a・2bは、留め具33a・33bに留められて矩形形状を保持している。このうち、留め具33a側において、磁気コア2に磁電変換素子20が配設され、留め具33b側において、磁気コア2a・2bが互いに重ね合わせられている。 The rectangular magnetic core 2 is a dockable type that is composed of a magnetic core 2a and a magnetic core 2b and can be divided into two. More specifically, the surfaces of the magnetic core 2 a and the magnetic core 2 b that are opposite to the magnetoelectric conversion element 20 are overlapped with each other. And the magnetic cores 2a and 2b are fastened to the fasteners 33a and 33b and hold a rectangular shape. Among them, the magnetoelectric transducer 20 is disposed on the magnetic core 2 on the fastener 33a side, and the magnetic cores 2a and 2b are overlapped with each other on the fastener 33b side.
 ここで、「磁電変換素子20と対向する側」とは、上面視した矩形状の磁気コア2において、磁電変換素子20が収容されている辺と対向する辺の側を意味する。 Here, “the side facing the magnetoelectric conversion element 20” means the side of the rectangular magnetic core 2 as viewed from above that faces the side where the magnetoelectric conversion element 20 is accommodated.
 なお、上記では、磁気コア2は、矩形形状として説明しているが、矩形に限らず、環状等であってもよい。 In the above description, the magnetic core 2 is described as having a rectangular shape. However, the magnetic core 2 is not limited to a rectangular shape, and may be an annular shape.
 留め具33aは、板状の出力信号処理回路32に連結・支持され、磁気コア2aおよび磁気コア2bの留め具として機能する。出力信号処理回路32は、入出力端子34と電気的に接続されており、磁電変換素子20から出力された電圧を処理して、被測定電線の電流値に対応した電圧を、入出力端子34を介して外部装置に出力する。 The fastener 33a is connected to and supported by the plate-like output signal processing circuit 32, and functions as a fastener for the magnetic core 2a and the magnetic core 2b. The output signal processing circuit 32 is electrically connected to the input / output terminal 34, processes the voltage output from the magnetoelectric conversion element 20, and outputs the voltage corresponding to the current value of the measured wire to the input / output terminal 34. Output to an external device.
 さらに、漏電センサ1は、磁気コア2と内側ケース31bとの間に、内側磁気シールド5を備える。この内側磁気シールド5は、一枚板の磁性体からなり、磁気コア2の内側において磁気コア2の矩形形状に沿って屈曲し、第1端部5aおよび第2端部5bを有する。その第1端部5aおよび第2端部5bはそれぞれ、内側磁気シールド5における磁気コア2の厚み方向における端面を含み、かつ、磁電変換素子20が収容される側と対向する側に位置する。内側磁気シールド5は、漏電センサ1が漏電検知に用いられたときに発生する計測誤差の原因となる磁束を遮断する。内側磁気シールド5については、より詳細に後述する。 Furthermore, the earth leakage sensor 1 includes an inner magnetic shield 5 between the magnetic core 2 and the inner case 31b. The inner magnetic shield 5 is made of a single-plate magnetic body, bends along the rectangular shape of the magnetic core 2 inside the magnetic core 2, and has a first end 5a and a second end 5b. The first end portion 5a and the second end portion 5b each include an end face in the thickness direction of the magnetic core 2 in the inner magnetic shield 5 and are located on the side facing the side where the magnetoelectric transducer 20 is accommodated. The inner magnetic shield 5 blocks magnetic flux that causes measurement errors that occur when the leakage sensor 1 is used for leakage detection. The inner magnetic shield 5 will be described later in more detail.
 なお、漏電センサ1の上記構造は、一例であって、その構造に限定されるものではない。したがって、磁気コア2と内側磁気シールド5とは異種形状で構成されていてもよい。 The above-described structure of the leakage sensor 1 is an example and is not limited to the structure. Therefore, the magnetic core 2 and the inner magnetic shield 5 may be configured in different shapes.
 ここで、「磁気コアの厚み方向」の示す方向を図14、図15により説明する。図14は、図2に記載の漏電センサ1の外観図を示し、かつ、磁気コアの厚み方向を図中に矢印で示す図である。 Here, the direction indicated by “the thickness direction of the magnetic core” will be described with reference to FIGS. FIG. 14 is an external view of the leakage sensor 1 shown in FIG. 2 and shows the thickness direction of the magnetic core with arrows in the drawing.
 図示するように、漏電センサ1に設けられた貫通孔には、被測定電線P1・P2が配置されている。その2本の被測定電線P1・P2における電流は、行きと帰りの電流に該当し、図中の上下方向に流れる。このとき、「磁気コアの厚み方向」は、被測定電線P1・P2の電流の流れ方向を表す。 As shown in the figure, measured wires P1 and P2 are arranged in the through holes provided in the leakage sensor 1. The currents in the two wires to be measured P1 and P2 correspond to the going and returning currents and flow in the vertical direction in the figure. At this time, “the thickness direction of the magnetic core” represents the current flow direction of the wires to be measured P1 and P2.
 より具体的に、図15により「磁気コアの厚み方向」を説明する。図15は、図14の内部外観図を示す。図1および図15に示すように、矩形形状の磁気コア2は、磁気コア2aと磁気コア2bとからなる2分割可能なドッキング型である。磁気コア2の内部には、磁気コア2の内側において磁気コア2の矩形形状に沿って屈曲し、第1端部5aおよび第2端部5bを有する内側磁気シールド5が設けられている。ここで、図15には不図示であるが、矩形の内側磁気シールド5の内側には、図中の上下方向に電流が流れる被測定電線P1・P2が配置される。このとき、「磁気コアの厚み方向」は、被測定電線P1・P2の電流の流れ方向、言い換えれば、被測定電線P1・P2の軸線方向を表す。 More specifically, the “magnetic core thickness direction” will be described with reference to FIG. FIG. 15 shows the internal appearance of FIG. As shown in FIG. 1 and FIG. 15, the rectangular magnetic core 2 is a dockable type that is composed of a magnetic core 2 a and a magnetic core 2 b and can be divided into two. Inside the magnetic core 2, an inner magnetic shield 5 that is bent along the rectangular shape of the magnetic core 2 inside the magnetic core 2 and has a first end 5a and a second end 5b is provided. Here, although not shown in FIG. 15, measured electric wires P <b> 1 and P <b> 2 through which current flows in the vertical direction in the figure are arranged inside the rectangular inner magnetic shield 5. At this time, the “magnetic core thickness direction” represents the current flow direction of the measured wires P1 and P2, in other words, the axial direction of the measured wires P1 and P2.
 ここで、「内側磁気シールド5の第1端部5aおよび第2端部5bはそれぞれ、内側磁気シールド5における磁気コア2の厚み方向における端面を含む」という表現は、「被測定電線の軸方向から視たときの内側磁気シールド5の端部を含む」とも表現することができる。
〔内側磁気シールド5について〕
 〔内側磁気シールド5の効果〕
 次に、内側磁気シールド5の詳細を説明する。最初に、内側磁気シールド5によって得られる効果を図4により説明する。図4は、内側磁気シールド5の効果を説明するための図であり、図4(a)は内側磁気シールドが存在しない場合、図4(b)は内側磁気シールドが存在する場合の漏電センサの概略断面図である。
Here, the expression “the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 each include an end surface in the thickness direction of the magnetic core 2 in the inner magnetic shield 5” is expressed as “the axial direction of the electric wire to be measured” It can also be expressed as “including the end portion of the inner magnetic shield 5 when viewed from above”.
[Inner magnetic shield 5]
[Effect of inner magnetic shield 5]
Next, details of the inner magnetic shield 5 will be described. First, the effect obtained by the inner magnetic shield 5 will be described with reference to FIG. 4A and 4B are diagrams for explaining the effect of the inner magnetic shield 5. FIG. 4A shows the leakage sensor when the inner magnetic shield is not present, and FIG. 4B shows the leakage sensor when the inner magnetic shield is present. It is a schematic sectional drawing.
 なお、各図の漏電センサはそれぞれ、20Aの電流が反対方向に流れる2本の被測定電線に対して漏電検知、及び漏電量の測定を行うものであり、内側磁気シールド5の有無のみに条件上の差異が存在する。 In addition, each of the leakage sensors in each figure is for detecting leakage and measuring the amount of leakage with respect to the two wires to be measured in which the current of 20A flows in the opposite direction. The above differences exist.
 内側磁気シールド5の効果を確認するために、磁電変換素子20が検知しうる磁束密度をシミュレーションにより測定した。その結果、図4(a)の内側磁気シールドが存在しない漏電センサでは磁束密度が43.9μTであり、図4(b)に示す内側磁気シールド5を有する漏電センサでは磁束密度が1.8μTであった。したがって、内側磁気シールド5によって磁束密度が42.1μT(約96%)低減されることが分かる。 In order to confirm the effect of the inner magnetic shield 5, the magnetic flux density detectable by the magnetoelectric transducer 20 was measured by simulation. As a result, the magnetic flux density is 43.9 μT in the earth leakage sensor without the inner magnetic shield of FIG. 4A, and the magnetic flux density is 1.8 μT in the earth leakage sensor having the inner magnetic shield 5 shown in FIG. there were. Therefore, it can be seen that the inner magnetic shield 5 reduces the magnetic flux density by 42.1 μT (about 96%).
 〔内側磁気シールドによって計測誤差が低減される原理〕
 以上、漏電検知用途において発生する、計測誤差の原因となる磁束が内側磁気シールドによって大幅に低減されることを説明した。そこで、その原理を図5により説明する。
[Principle that measurement error is reduced by inner magnetic shield]
As described above, it has been described that the magnetic flux that causes measurement error in the leakage detection application is greatly reduced by the inner magnetic shield. The principle will be described with reference to FIG.
 図5は、漏電検知用途において発生する、計測誤差の原因となる磁束が内側磁気シールドによって低減される原理を説明するための図である。このうち、図5(a)は、漏電センサに内側磁気シールドが存在しない場合の磁束の様子を、図5(b)は、漏電センサに内側磁気シールドが存在する場合の磁束の様子を説明するための図である。 FIG. 5 is a diagram for explaining the principle that the magnetic flux that causes measurement errors that occurs in the leakage detection application is reduced by the inner magnetic shield. Among these, FIG. 5A illustrates the state of magnetic flux when the inner magnetic shield is not present in the leakage sensor, and FIG. 5B illustrates the state of magnetic flux when the inner magnetic shield is present in the leakage sensor. FIG.
 図5(a)に示すように、漏電センサに内側磁気シールドが存在しない場合には、一部の磁束が2本の電線P1・P2の間を横切り、その磁束が磁気コア2に吸収されてしまう。それにより、磁気コア2に磁束のムラが発生し、磁電変換素子20に近い電流が優勢となる。そして、その影響が出力に現れて計測誤差が発生する。 As shown in FIG. 5A, when there is no inner magnetic shield in the leakage sensor, a part of the magnetic flux crosses between the two electric wires P1 and P2, and the magnetic flux is absorbed by the magnetic core 2. End up. Thereby, magnetic flux unevenness occurs in the magnetic core 2, and the current close to the magnetoelectric conversion element 20 becomes dominant. Then, the influence appears in the output and a measurement error occurs.
 次に、図5(b)に示す、漏電センサに内側磁気シールドが存在する場合を考える。この場合、誤差要因となる2本の電線P1・P2の間を横切る磁束は、内側磁気シールド5に吸収される。そのため、電線P1・P2の間を横切る磁束は磁気コア2に伝わらず、それゆえ、磁気コア2に伝わる磁束はほぼ0となる。これにより、計測誤差の原因となる磁束が磁気コア2に伝わることなく内側磁気シールド5によって遮断され、計測誤差が抑制される。 Next, consider the case where an inner magnetic shield exists in the leakage sensor shown in FIG. In this case, the magnetic flux crossing between the two electric wires P <b> 1 and P <b> 2 that causes an error is absorbed by the inner magnetic shield 5. Therefore, the magnetic flux crossing between the electric wires P1 and P2 is not transmitted to the magnetic core 2, and therefore the magnetic flux transmitted to the magnetic core 2 is almost zero. Thereby, the magnetic flux causing the measurement error is interrupted by the inner magnetic shield 5 without being transmitted to the magnetic core 2, and the measurement error is suppressed.
 ここで、さらに図6等を用いて、内側磁気シールド5の構造上の工夫を説明する。 Here, the structural device of the inner magnetic shield 5 will be described with reference to FIG.
 図6は、内側磁気シールド5の端部における磁束の動きを説明するための図である。このうち、図6(a)は、漏電センサに内側磁気シールドが存在する場合の磁束の様子を説明するための図である。図6(b)は、内側磁気シールド5の第2端部5bが内側磁気シールド5の外側に配置されているときの、図6(a)の左側破線領域内での磁束の動きを説明するための図である。図6(c)は、内側磁気シールド5の第1端部5aが内側磁気シールド5の内側に配置されているときの、図6(a)の右側破線領域内での磁束の動きを説明するための図である。 FIG. 6 is a diagram for explaining the movement of the magnetic flux at the end of the inner magnetic shield 5. Among these, Fig.6 (a) is a figure for demonstrating the mode of the magnetic flux in case an inner side magnetic shield exists in a leak sensor. 6B illustrates the movement of the magnetic flux in the left broken line region of FIG. 6A when the second end 5b of the inner magnetic shield 5 is disposed outside the inner magnetic shield 5. FIG. FIG. FIG. 6C illustrates the movement of magnetic flux in the right broken line region of FIG. 6A when the first end 5a of the inner magnetic shield 5 is disposed inside the inner magnetic shield 5. FIG.
 一般に、内側磁気シールド5を形成する板の端部付近では磁気抵抗が高く、磁束が漏れることが知られている。そのため、漏電センサ1では、内側磁気シールド5の第1端部5aおよび第2端部5bの付近は磁気抵抗が高く、第1端部5aおよび第2端部5bから磁束が漏れる。そのことが図6(b)、および図6(c)に記載されている。 Generally, it is known that the magnetic resistance is high and the magnetic flux leaks near the end of the plate forming the inner magnetic shield 5. Therefore, in the earth leakage sensor 1, the vicinity of the first end 5a and the second end 5b of the inner magnetic shield 5 has high magnetic resistance, and magnetic flux leaks from the first end 5a and the second end 5b. This is described in FIG. 6 (b) and FIG. 6 (c).
 図6(b)では、矩形状に閉じられた内側磁気シールド5の外側に第2端部5bが配置されている。そのため、第2端部5bから磁気コア2に向かって磁束が漏れる。一方、図6(c)では、矩形状に閉じられた内側磁気シールド5の内側に第1端部5aが配置されている。そのため、第1端部5aから漏れた磁束は、内側磁気シールド5自身に再吸収される。 In FIG. 6B, the second end 5b is arranged outside the inner magnetic shield 5 closed in a rectangular shape. Therefore, the magnetic flux leaks from the second end portion 5 b toward the magnetic core 2. On the other hand, in FIG.6 (c), the 1st end part 5a is arrange | positioned inside the inner side magnetic shield 5 closed in rectangular shape. Therefore, the magnetic flux leaking from the first end 5a is reabsorbed by the inner magnetic shield 5 itself.
 次に、図6(b)および図6(c)の特性を考慮した内側磁気シールド5の構造上の工夫を図7等により説明する。 Next, a structural device of the inner magnetic shield 5 in consideration of the characteristics shown in FIGS. 6B and 6C will be described with reference to FIG.
 図7は、内側磁気シールド5の第1端部5aと第2端部5bとが互いに重なり合う位置関係が、磁気コア2における端部2cと端部2dが互いに重なり合う位置関係と同一である場合の磁束の流れについて説明するための図である。 FIG. 7 shows a case where the positional relationship in which the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 overlap each other is the same as the positional relationship in which the end portion 2c and the end portion 2d of the magnetic core 2 overlap each other. It is a figure for demonstrating the flow of magnetic flux.
 図示するように、内側磁気シールド5の第1端部5aと第2端部5bとが互いに重なり合う位置関係は、磁気コア2の端部2cと端部2dとが互いに重なり合う位置関係と同一である。つまり、端部2cと端部2dとの重なり方が、図中右側に延びる側の端部2cが、図中左側に延びる側の端部2dよりも上側に位置する。また、内側磁気シールド5の第1端部5aと第2端部5bとの重なり方も、図中右側に延びる側の端部5aが、図中左側に延びる側の端部5bよりも上側に位置する。位置関係が同一(反対)とは、被測定電線を基準として視たときに、内側磁気シールド5の第1端部5aと第2端部5bとが互いに重なり合う位置関係が、磁気コア2の端部2cと端部2dとが互いに重なり合う位置関係と同一(反対)、と換言することもできる。 As shown in the drawing, the positional relationship in which the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 overlap each other is the same as the positional relationship in which the end portion 2c and the end portion 2d of the magnetic core 2 overlap each other. . That is, the end portion 2c and the end portion 2d are positioned such that the end portion 2c on the side extending to the right side in the drawing is located above the end portion 2d on the side extending to the left side in the drawing. Also, the overlapping of the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 is such that the end portion 5a on the right side in the drawing is above the end portion 5b on the left side in the drawing. To position. The positional relationship is the same (opposite) means that the positional relationship in which the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 overlap each other when viewed from the measured electric wire as a reference. In other words, the positional relationship in which the portion 2c and the end portion 2d overlap with each other is the same (opposite).
 このとき、磁束が漏れる内側磁気シールド5の第1端部5aの近辺における磁気コア2は、端部2cおよび端部2dを有していない領域となっている(以下、その領域を非端部領域と称する)。言い換えると、非端部領域とは、矩形の磁気コア2の角部の内側(被測定電線側)に、磁気抵抗が高い端部2c、端部2dが存在しない領域を言う。その非端部領域は磁気抵抗が低いため、内側磁気シールド5の第1端部5aから漏れた磁束は、その磁気抵抗が低い非端部領域から磁気コア2に入りやすくなる。その結果、その磁束の影響を受けて、漏電センサ1の漏電検知に誤差が生じる場合がある。 At this time, the magnetic core 2 in the vicinity of the first end portion 5a of the inner magnetic shield 5 from which magnetic flux leaks is a region that does not have the end portion 2c and the end portion 2d (hereinafter, this region is referred to as a non-end portion). Called region). In other words, the non-end region refers to a region where the end 2c and the end 2d having high magnetic resistance do not exist inside the corner (on the measured wire side) of the rectangular magnetic core 2. Since the non-end region has a low magnetic resistance, the magnetic flux leaking from the first end 5a of the inner magnetic shield 5 is likely to enter the magnetic core 2 from the non-end region having a low magnetic resistance. As a result, an error may occur in the leakage detection of the leakage sensor 1 due to the influence of the magnetic flux.
 図8は、内側磁気シールド5の第1端部5aと第2端部5bとが互いに重なり合う位置関係が、磁気コア2における端部2cと端部2dが互いに重なり合う位置関係と反対である場合の磁束の流れについて説明するための図である。 FIG. 8 shows a case where the positional relationship in which the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 overlap each other is opposite to the positional relationship in which the end portion 2c and the end portion 2d of the magnetic core 2 overlap each other. It is a figure for demonstrating the flow of magnetic flux.
 図示するように、内側磁気シールド5の第1端部5aと第2端部5bとが互いに重なり合う位置関係は、磁気コア2の端部2cと端部2dとが互いに重なり合う位置関係と反対である。つまり、端部2cと端部2dとの重なり方は、図中右側に延びる側の端部2cが、図中左側に延びる側の端部2dよりも上側に位置する。一方、内側磁気シールド5の第1端部5aと第2端部5bとの重なり方は、図中右側に延びる側の端部5aが、図中左側に延びる側の端部5bよりも下側に位置する。 As shown in the drawing, the positional relationship in which the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 overlap each other is opposite to the positional relationship in which the end portion 2c and the end portion 2d of the magnetic core 2 overlap each other. . That is, the end 2c and the end 2d are overlapped such that the end 2c on the side extending to the right in the drawing is positioned above the end 2d on the side extending to the left in the drawing. On the other hand, the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 are overlapped with each other so that the end portion 5a on the right side in the figure is lower than the end portion 5b on the left side in the figure. Located in.
 このとき、磁束が漏れる内側磁気シールド5の第2端部5bの近辺における磁気コア2には、磁気コア2の端部2dが存在する。そして、その端部2dは磁気抵抗が高いため、第2端部5bから漏れた磁束は端部2dに入りにくい。つまり、第2端部5bから磁気コア2へは磁束が入りにくい。このため、漏電計測誤差は、図7の場合と比べて生じにくい。 At this time, the end 2d of the magnetic core 2 exists in the magnetic core 2 in the vicinity of the second end 5b of the inner magnetic shield 5 from which the magnetic flux leaks. Since the end 2d has high magnetic resistance, the magnetic flux leaking from the second end 5b is unlikely to enter the end 2d. That is, it is difficult for magnetic flux to enter the magnetic core 2 from the second end 5b. For this reason, the leakage measurement error is less likely to occur than in the case of FIG.
 このように、図7と図8とで構成上の差異を比べた場合、図7の構成によっても計測誤差を十分に低減できると考えられるが、内側磁気シールド5の構造上の工夫をすることで、さらなる計測誤差の低減を図ることができる。この結果から得られる考察としては、磁気コア2の端部(あるいは、後述する素子収容開口部30)と内側磁気シールド5の第1端部および第2端部とが互いに近い位置に配置されている場合に、換言すると、磁気コア2の端部(あるいは、後述する素子収容開口部30)と内側磁気シールド5の第1端部および第2端部とが対向するほどに近い位置関係にある場合に、誤差検知が低減されるという点が挙げられる。このことを図9等を用いて説明する。 In this way, when the structural differences between FIG. 7 and FIG. 8 are compared, it can be considered that the measurement error can be sufficiently reduced even with the configuration of FIG. Thus, the measurement error can be further reduced. As a consideration obtained from this result, the end of the magnetic core 2 (or the element receiving opening 30 described later) and the first end and the second end of the inner magnetic shield 5 are arranged close to each other. In other words, in other words, the end portion of the magnetic core 2 (or the element accommodating opening 30 described later) and the first end portion and the second end portion of the inner magnetic shield 5 are close enough to face each other. In some cases, error detection is reduced. This will be described with reference to FIG.
 〔実施例〕
 次に、本実施形態に係る実施例を図9等により説明する。
〔Example〕
Next, an example according to the present embodiment will be described with reference to FIG.
 図9は、本実施の形態に係る漏電センサ1の概略断面図を示す。漏電センサ1では、磁気コア2は、磁電変換素子20が収容される側と対向する側に端部2cおよび端部2dを有し、その端部2cおよび端部2dは、(磁電変換素子20が収容される側と対向する側を総じて端部とした場合に)互いに重なり合っている。また、内側磁気シールド5の第1端部5aおよび第2端部5bは、内側磁気シールド5における磁気コア2の厚み方向における端面(端面5d、端面5c)を含み、かつ、(磁電変換素子20が収容される側と対向する側を総じて端部とした場合に)互いに重なり合っている。言い換えれば、内側磁気シールド5の第1端部5aおよび第2端部5bはそれぞれ、被測定電線の軸方向から視たときの内側磁気シールド5の端部を含み、かつ、内側磁気シールド5の第1端部5aおよび第2端部5bはそれぞれ、重なり合っている。そして、第1端部5aおよび第2端部5bは、磁電変換素子20の収容される側と対向する側に位置している。 FIG. 9 shows a schematic cross-sectional view of the leakage sensor 1 according to the present embodiment. In the leakage sensor 1, the magnetic core 2 has an end 2 c and an end 2 d on the side facing the side where the magnetoelectric conversion element 20 is accommodated, and the end 2 c and the end 2 d are (the magnetoelectric conversion element 20 Are overlapped with each other) (when the side opposite to the side where the material is accommodated is generally the end). Further, the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 include end faces (end face 5d, end face 5c) in the thickness direction of the magnetic core 2 in the inner magnetic shield 5, and (the magnetoelectric conversion element 20) Are overlapped with each other) (when the side opposite to the side where the material is accommodated is generally the end). In other words, each of the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 includes an end portion of the inner magnetic shield 5 when viewed from the axial direction of the measured electric wire, and the inner magnetic shield 5 The first end 5a and the second end 5b overlap each other. And the 1st end part 5a and the 2nd end part 5b are located in the side facing the side in which the magnetoelectric conversion element 20 is accommodated.
 さらに、内側磁気シールド5の第1端部5aと第2端部5bとが互いに重なり合う位置関係が、磁気コア2の端部2cと端部2dとが互いに重なり合う位置関係と反対である。つまり、端部2cと端部2dとの重なり方は、図中右側に延びる側の端部2cが、図中左側に延びる側の端部2dよりも上側に位置する。一方、第1端部5aと第2端部5bとの重なり方は、図中右側に延びる側の端部5aが、図中左側に延びる側の端部5bよりも下側に位置する。 Furthermore, the positional relationship in which the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 overlap each other is opposite to the positional relationship in which the end portion 2c and the end portion 2d of the magnetic core 2 overlap each other. That is, the end 2c and the end 2d are overlapped such that the end 2c on the side extending to the right in the drawing is positioned above the end 2d on the side extending to the left in the drawing. On the other hand, the first end portion 5a and the second end portion 5b are overlapped such that the end portion 5a on the side extending to the right side in the drawing is positioned below the end portion 5b on the side extending to the left side in the drawing.
 上記構成において、内側磁気シールド5の効果を確認するために、内側磁気シールド5が存在する場合、および存在しない場合での磁束密度を測定した。このとき、内側磁気シールド5が存在しない場合には磁束密度は43.9μTであり、内側磁気シールド5が存在する場合には磁束密度は1.9μTであった。つまり、内側磁気シールド5によって磁束密度を約96%低減することができた。このことから、漏電センサ1は、計測誤差を大幅に低減可能であることが分かる。 In the above configuration, in order to confirm the effect of the inner magnetic shield 5, the magnetic flux density was measured when the inner magnetic shield 5 was present and when it was not present. At this time, when the inner magnetic shield 5 was not present, the magnetic flux density was 43.9 μT, and when the inner magnetic shield 5 was present, the magnetic flux density was 1.9 μT. That is, the magnetic flux density can be reduced by about 96% by the inner magnetic shield 5. From this, it is understood that the leakage sensor 1 can greatly reduce the measurement error.
 ここで、上記結果はシミュレーションによるものであり、このことは、図10等を参照して説明する他の実施例においても同様である。 Here, the above result is based on a simulation, and this is the same in other examples described with reference to FIG.
 また、内側磁気シールド5の第1端部5aおよび第2端部5bは、互いに重なるときに、接着剤や溶接等により重なる場合、接着剤等の固着剤を用いずに重なる場合もあるが、いずれも本実施例に含まれる。このことは、図10等を参照して説明する他の実施例においても同様である。 In addition, when the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 overlap each other when they are overlapped by an adhesive or welding, they may overlap without using a sticking agent such as an adhesive, Both are included in this embodiment. This also applies to other embodiments described with reference to FIG.
 なお、内側磁気シールド5の第1端部5aおよび第2端部5bは、単に重なり合っていてもよいし、接着剤や溶接等により重なり合ってもよい。ただし、接着剤等の材料費や接着工程の削減といった観点から、第1端部5aおよび第2端部5bは、単に重なり合っている方が好ましい。 The first end 5a and the second end 5b of the inner magnetic shield 5 may be simply overlapped, or may be overlapped by an adhesive or welding. However, it is preferable that the first end portion 5a and the second end portion 5b are simply overlapped from the viewpoint of reducing the material cost of the adhesive and the like and the bonding process.
 また、図中の参照番号30は、磁気コア2において磁電変換素子20を収容するための素子収容開口部30に該当する。 Further, reference numeral 30 in the figure corresponds to an element accommodating opening 30 for accommodating the magnetoelectric conversion element 20 in the magnetic core 2.
 次に、図10は、本実施の形態に係る漏電センサ50の概略断面図を示す。漏電センサ50では、磁気コア2は、磁電変換素子20が収容される側と対向する側に端部2cおよび端部2dを有し、その端部2cおよび端部2dは、互いに重なり合っている。内側磁気シールド5の第1端部5aおよび第2端部5bは、内側磁気シールド5における磁気コア2の厚み方向における端面を含み、かつ、互いに重なり合っている。そして、第1端部5aおよび第2端部5bは、磁電変換素子20の収容される側に位置する。つまり、第1端部5aおよび第2端部5bは、素子収容開口部30が形成されている側に位置する。 Next, FIG. 10 shows a schematic cross-sectional view of a leakage sensor 50 according to the present embodiment. In the leakage sensor 50, the magnetic core 2 has an end 2c and an end 2d on the side facing the side where the magnetoelectric conversion element 20 is accommodated, and the end 2c and the end 2d overlap each other. The first end portion 5 a and the second end portion 5 b of the inner magnetic shield 5 include end faces in the thickness direction of the magnetic core 2 in the inner magnetic shield 5 and overlap each other. And the 1st end part 5a and the 2nd end part 5b are located in the side in which the magnetoelectric conversion element 20 is accommodated. That is, the first end 5a and the second end 5b are located on the side where the element accommodating opening 30 is formed.
 上記構成において、内側磁気シールド5の効果を確認するために、内側磁気シールド5が存在する場合、および存在しない場合での磁束密度を測定した。このとき、内側磁気シールド5が存在しない場合には磁束密度は43.9μTであり、内側磁気シールド5が存在する場合には磁束密度は1.5μTであった。つまり、内側磁気シールド5によって磁束密度を約97%低減することができた。このことから、漏電センサ50は、計測誤差を大幅に低減可能であることが分かる。その理由として、以下の点が挙げられる。 In the above configuration, in order to confirm the effect of the inner magnetic shield 5, the magnetic flux density was measured when the inner magnetic shield 5 was present and when it was not present. At this time, when the inner magnetic shield 5 was not present, the magnetic flux density was 43.9 μT, and when the inner magnetic shield 5 was present, the magnetic flux density was 1.5 μT. That is, the inner magnetic shield 5 was able to reduce the magnetic flux density by about 97%. From this, it is understood that the leakage sensor 50 can greatly reduce the measurement error. The reason is as follows.
 例えば図9の漏電センサ1と比較した場合、漏電センサ50は、上記の構成を備えることで、内側磁気シールド5の第1端部5aおよび第2端部5bが、磁気コア2における素子収容開口部30の近くに位置することになる。これにより、漏電センサ50では、高い磁気抵抗の内側磁気シールド5の第1端部5aおよび第2端部5bから漏れた磁束を、同じく高い磁気抵抗の素子収容開口部30(すなわち、磁気コア)に入りにくくすることができる。 For example, when compared with the leakage sensor 1 of FIG. 9, the leakage sensor 50 is provided with the above-described configuration, so that the first end 5 a and the second end 5 b of the inner magnetic shield 5 have element receiving openings in the magnetic core 2. It will be located near the part 30. Thereby, in the earth leakage sensor 50, the magnetic flux leaking from the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 having high magnetic resistance is also the element receiving opening 30 having high magnetic resistance (that is, the magnetic core). It can be difficult to enter.
 それゆえ、漏電センサ50は、内側磁気シールド5の第1端部5aおよび第2端部5bから漏れる磁束による影響を最小限に抑えることができ、漏電の計測誤差の少ない電流センサを実現することができる。このことは後述する図11に記載の漏電センサ51等においても同様である。 Therefore, the leakage sensor 50 can minimize the influence of the magnetic flux leaking from the first end portion 5a and the second end portion 5b of the inner magnetic shield 5, and realize a current sensor with less leakage measurement error. Can do. This also applies to the leakage sensor 51 and the like shown in FIG.
 図11は、本実施の形態に係る漏電センサ51の概略断面図を示す。漏電センサ51では、磁気コア2には端部2cおよび端部2dは存在しない。内側磁気シールド5の第1端部5aおよび第2端部5bは、内側磁気シールド5における磁気コア2の厚み方向における端面を含み、かつ、互いに重なり合っている。そして、第1端部5aおよび第2端部5bは、素子収容開口部30が形成されている側に位置する。 FIG. 11 is a schematic cross-sectional view of the leakage sensor 51 according to the present embodiment. In the earth leakage sensor 51, the magnetic core 2 does not have the end 2c and the end 2d. The first end portion 5 a and the second end portion 5 b of the inner magnetic shield 5 include end faces in the thickness direction of the magnetic core 2 in the inner magnetic shield 5 and overlap each other. The first end 5a and the second end 5b are located on the side where the element accommodating opening 30 is formed.
 上記構成において、内側磁気シールド5の効果を確認するために、内側磁気シールド5が存在する場合、および存在しない場合での磁束密度を測定した。このとき、内側磁気シールド5が存在しない場合には磁束密度は4.2μTであり、内側磁気シールド5が存在する場合には磁束密度は0.3μTであった。つまり、内側磁気シールド5によって磁束密度を約93%低減することができた。このことから、漏電センサ51は、計測誤差を大幅に低減可能であることが分かる。この効果は、図10を用いて説明したのと同じ理由による。すなわち、内側磁気シールド5の第1端部5aおよび第2端部5bが、素子収容開口部30の側に位置することから、素子収容開口部30の近くに位置することになる。これにより、漏電センサ50では、高い磁気抵抗の内側磁気シールド5の第1端部5aおよび第2端部5bから漏れた磁束を、同じく高い磁気抵抗の素子収容開口部30(すなわち、磁気コア)に入りにくくできる。これにより、漏電センサ51は、計測誤差を大幅に低減可能となる。 In the above configuration, in order to confirm the effect of the inner magnetic shield 5, the magnetic flux density was measured when the inner magnetic shield 5 was present and when it was not present. At this time, when the inner magnetic shield 5 was not present, the magnetic flux density was 4.2 μT, and when the inner magnetic shield 5 was present, the magnetic flux density was 0.3 μT. That is, the magnetic flux density can be reduced by about 93% by the inner magnetic shield 5. From this, it can be seen that the leakage sensor 51 can greatly reduce the measurement error. This effect is due to the same reason described with reference to FIG. That is, since the first end portion 5 a and the second end portion 5 b of the inner magnetic shield 5 are located on the element accommodating opening 30 side, they are located near the element accommodating opening 30. Thereby, in the earth leakage sensor 50, the magnetic flux leaking from the first end portion 5a and the second end portion 5b of the inner magnetic shield 5 having high magnetic resistance is also the element receiving opening 30 having high magnetic resistance (that is, the magnetic core). It can be difficult to enter. Thereby, the leakage sensor 51 can greatly reduce the measurement error.
 図12は、本実施の形態に係る漏電センサ52の概略断面図を示す。漏電センサ52では、磁気コア2には端部2cおよび端部2dは存在しない。内側磁気シールド5の第1端部5aおよび第2端部5bは、内側磁気シールド5における磁気コア2の厚み方向における端面を含み、かつ、内側磁気シールド5の磁電変換素子20の収容される側の表面が略同一面状となるように当接する。 FIG. 12 is a schematic cross-sectional view of the leakage sensor 52 according to the present embodiment. In the earth leakage sensor 52, the magnetic core 2 does not have the end 2c and the end 2d. The first end portion 5a and the second end portion 5b of the inner magnetic shield 5 include end faces in the thickness direction of the magnetic core 2 in the inner magnetic shield 5, and the side on which the magnetoelectric transducer 20 of the inner magnetic shield 5 is accommodated. The abutment surfaces are in contact with each other so that they are substantially in the same plane.
 上記構成において、内側磁気シールド5の効果を確認するために、内側磁気シールド5が存在する場合、および存在しない場合での磁束密度を測定した。このとき、内側磁気シールド5が存在しない場合には磁束密度は4.2μTであり、内側磁気シールド5が存在する場合には磁束密度は1.7μTであった。つまり、内側磁気シールド5によって磁束密度を約60%低減することができた。このことから、漏電センサ52は、計測誤差を大幅に低減可能であることが分かる。この効果は、図10、図11を用いて説明したのと同じ理由による。 In the above configuration, in order to confirm the effect of the inner magnetic shield 5, the magnetic flux density was measured when the inner magnetic shield 5 was present and when it was not present. At this time, when the inner magnetic shield 5 was not present, the magnetic flux density was 4.2 μT, and when the inner magnetic shield 5 was present, the magnetic flux density was 1.7 μT. That is, the magnetic flux density can be reduced by about 60% by the inner magnetic shield 5. From this, it is understood that the leakage sensor 52 can greatly reduce the measurement error. This effect is due to the same reason as described with reference to FIGS.
 〔比較例〕
 次に、漏電センサ1等によって得られる効果を確認するために、参考例として漏電センサ60に関するシミュレーション結果を図13により説明する。
[Comparative example]
Next, in order to confirm the effect obtained by the leakage sensor 1 etc., the simulation result regarding the leakage sensor 60 will be described with reference to FIG. 13 as a reference example.
 図13は、本実施の形態には含まれない漏電センサ60の概略断面図を示す。漏電センサ60では、磁気コア2は、磁電変換素子20が収容される側と対向する側に端部2cおよび端部2dを有し、その端部2cおよび端部2dは、互いに重なり合っている。内側磁気シールド40の第1端部40aおよび第2端部40bは、内側磁気シールド40における磁気コア2の厚み方向における端面を含み、かつ、互いに重なり合っている。そして、内側磁気シールド40の第1端部40aおよび第2端部40bは、磁電変換素子20の収容される側の側面に該当する位置に配置される。つまり、漏電センサ1等と比べて、内側磁気シールド40の第1端部40aおよび第2端部40b(及び素子収容開口部30)と磁気コア2の端部2cおよび端部2dとが遠い位置に配置されている。 FIG. 13 is a schematic cross-sectional view of a leakage sensor 60 that is not included in the present embodiment. In the leakage sensor 60, the magnetic core 2 has an end 2c and an end 2d on the side facing the side where the magnetoelectric transducer 20 is accommodated, and the end 2c and the end 2d overlap each other. The first end portion 40 a and the second end portion 40 b of the inner magnetic shield 40 include end faces in the thickness direction of the magnetic core 2 in the inner magnetic shield 40 and overlap each other. And the 1st end part 40a and the 2nd end part 40b of the inner side magnetic shield 40 are arrange | positioned in the position applicable to the side surface of the side in which the magnetoelectric conversion element 20 is accommodated. In other words, the first end 40a and the second end 40b (and the element accommodating opening 30) of the inner magnetic shield 40 and the end 2c and the end 2d of the magnetic core 2 are farther from each other than the leakage sensor 1 or the like. Is arranged.
 上記構成において、内側磁気シールド5の効果を確認するために、内側磁気シールド5が存在する場合、および存在しない場合での磁束密度を測定した。このとき、内側磁気シールド5が存在しない場合には磁束密度は43.9μTであり、内側磁気シールド5が存在する場合には磁束密度は2.3μTであった。つまり、漏電センサ60では、内側磁気シールド5によって磁束密度は約95%低減する。 In the above configuration, in order to confirm the effect of the inner magnetic shield 5, the magnetic flux density was measured when the inner magnetic shield 5 was present and when it was not present. At this time, when the inner magnetic shield 5 was not present, the magnetic flux density was 43.9 μT, and when the inner magnetic shield 5 was present, the magnetic flux density was 2.3 μT. That is, in the leakage sensor 60, the magnetic flux density is reduced by about 95% by the inner magnetic shield 5.
 しかしながら、たとえ磁束密度が約95%低減されるとはいえ、漏電センサ60では、漏電センサ1、および漏電センサ50~52よりも大きな数値(2.3μT)の磁束が検知される。したがって、漏電センサ60は、大きな磁束密度が検知される分だけ、漏電センサ1等と比べて計測誤差が生じやすくなり、効果の面で漏電センサ1、および漏電センサ50~52よりも劣ると言える。 However, even though the magnetic flux density is reduced by about 95%, the leakage sensor 60 detects a magnetic flux with a larger numerical value (2.3 μT) than the leakage sensor 1 and the leakage sensors 50 to 52. Accordingly, the leakage sensor 60 is more likely to cause measurement errors than the leakage sensor 1 and the like because the large magnetic flux density is detected, and is inferior to the leakage sensor 1 and the leakage sensors 50 to 52 in terms of effects. .
 〔考察〕
 以上、図6~図12、及び図13を用いて、計測誤差を十分に低減するための内側磁気シールド5の構造上の特徴・工夫について説明した。ここから得られる考察としては、磁気コア2の端部と内側磁気シールド5の第1端部および第2端部とを互いに近い位置に配置することで、漏電センサの誤差検知を低減することができるという点が挙げられる。その具体例が、漏電センサ1である。また、磁気コア2の素子収容開口部30と内側磁気シールド5の第1端部および第2端部とが互いに近い位置に配置される場合であっても、漏電センサの誤差検知を低減することが可能であることも示された。その具体例が、漏電センサ50~52である。
[Discussion]
The structural features and contrivances of the inner magnetic shield 5 for sufficiently reducing the measurement error have been described above with reference to FIGS. 6 to 12 and FIG. As a consideration obtained from this, it is possible to reduce the error detection of the leakage sensor by arranging the end of the magnetic core 2 and the first end and the second end of the inner magnetic shield 5 close to each other. The point that it can do. A specific example is the leakage sensor 1. Further, even when the element accommodating opening 30 of the magnetic core 2 and the first end and the second end of the inner magnetic shield 5 are disposed at positions close to each other, the error detection of the leakage sensor is reduced. It was also shown that this is possible. Specific examples thereof are leakage sensors 50 to 52.
 さらに、従来の漏電センサは接続部が2箇所必要な2分割型の従来の内側磁気シールドケースを有するところ、本実施形態に係る内側磁気シールド5は、一枚板の磁性体からなる。この点も、誤差検知を大幅に低減可能という漏電センサ1等によって得られる効果に貢献していると考えられる。 Furthermore, the conventional earth leakage sensor has a two-divided conventional inner magnetic shield case that requires two connecting portions, and the inner magnetic shield 5 according to this embodiment is made of a single-plate magnetic material. This point is also considered to contribute to the effect obtained by the earth leakage sensor 1 and the like that the error detection can be greatly reduced.
 以上、種々の実施例を示した。なお、本実施形態に係る実施例は、図9等を参照して説明した実施例に限られず、他にも種々のパターンが考えられる。ここに示した実施例はあくまで一例である。 In the above, various examples have been shown. The example according to the present embodiment is not limited to the example described with reference to FIG. 9 and the like, and various other patterns are conceivable. The embodiment shown here is only an example.
 なお、上記構成において、内側磁気シールド5の第1端部5aおよび第2端部5bが互いに当接するという説明をしている。この点については、第1端部5aおよび第2端部5bは、完全に当接する必要はなく、少なくとも一部が当接する構成で実現されてもよい。あるいは、第1端部5aおよび第2端部5bは、当接することなく、僅かの隙間を隔てて離間する構成で実現されてもよい。 In the above configuration, the first end 5a and the second end 5b of the inner magnetic shield 5 are described as being in contact with each other. In this regard, the first end portion 5a and the second end portion 5b do not need to be completely in contact with each other, and may be realized by a configuration in which at least a part thereof is in contact. Or the 1st end part 5a and the 2nd end part 5b may be implement | achieved by the structure which spaces apart and leaves | separates a slight gap, without contact | abutting.
 また、磁気コア2および内側磁気シールド5の材料として、高透磁率、低ヒステリシス材料な材料を用いることができ、例えば、PBパーマロイやPCパーマロイなどの各種パーマロイ、アモルファス磁性材、珪素鋼板、フェライトが挙げられる。これにより、本実施形態に係る漏電センサの高精度化、高感度化を実現することができる。 In addition, as a material for the magnetic core 2 and the inner magnetic shield 5, a material having a high magnetic permeability and a low hysteresis can be used. Can be mentioned. Thereby, high accuracy and high sensitivity of the leakage sensor according to the present embodiment can be realized.
 〔補足〕
 本実施の一態様に係る電流センサでは、磁電変換素子を収容し、かつ、当該磁電変換素子を収容する側と対向する側に、互いに重なり合う2つの端部を有する矩形状の磁気コアと、上記磁気コアの内側に、第1端部および第2端部を有する磁気遮蔽板と、を備え、上記第1端部および上記第2端部はそれぞれ、上記磁気遮蔽板における上記磁気コアの厚み方向における端面を含み、かつ、上記磁気コアにおける上記2つの端部と同じ側に位置する構成である。
[Supplement]
In the current sensor according to one aspect of the present embodiment, the rectangular magnetic core having two end portions that overlap each other on the side that accommodates the magnetoelectric conversion element and faces the side that houses the magnetoelectric conversion element, A magnetic shielding plate having a first end and a second end inside the magnetic core, wherein the first end and the second end are respectively in the thickness direction of the magnetic core in the magnetic shielding plate And is located on the same side as the two end portions of the magnetic core.
 本実施の一態様に係る電流センサは、磁気コアの内側に、第1端部および第2端部を有する磁気遮蔽板を備える。これにより、本実施の一態様に係る電流センサは、漏電検知用途において発生する、計測誤差の原因となる磁束を大幅に軽減することができる。 The current sensor according to one aspect of the present embodiment includes a magnetic shielding plate having a first end and a second end inside the magnetic core. Thereby, the current sensor according to one embodiment of the present embodiment can significantly reduce the magnetic flux that causes the measurement error that occurs in the leakage detection application.
 さらに、上記第1端部および上記第2端部はそれぞれ、上記磁気遮蔽板における上記磁気コアの厚み方向における端面を含み、かつ、上記磁気コアにおける上記2つの端部と同じ側に位置する。つまり、上記第1端部および上記第2端部は、上記磁気コアにおける上記2つの端部の近くに位置することになる。これにより、本実施の一態様に係る電流センサでは、高い磁気抵抗の上記第1端部および上記第2端部から漏れた磁束を、同じく高い磁気抵抗の上記2つの端部(すなわち、磁気コア)に入りにくくすることができる。 Furthermore, each of the first end and the second end includes an end surface of the magnetic shielding plate in the thickness direction of the magnetic core, and is located on the same side as the two ends of the magnetic core. That is, the first end and the second end are located near the two ends of the magnetic core. As a result, in the current sensor according to one aspect of the present embodiment, the magnetic flux leaking from the first end portion and the second end portion having high magnetic resistance is transferred to the two end portions (that is, magnetic cores) having the same high magnetic resistance. ) Can be difficult to enter.
 それゆえ、本実施の一態様に係る電流センサは、上記第1端部および上記第2端部から漏れる磁束による影響を最小限に抑えることができ、漏電の計測誤差の少ない電流センサを実現することができる。 Therefore, the current sensor according to one embodiment of the present invention can minimize the influence of magnetic flux leaking from the first end and the second end, and realizes a current sensor with little measurement error of leakage. be able to.
 また、本実施の一態様に係る電流センサは、上記第1端部と上記第2端部とが互いに重なり合う位置関係が、上記磁気コアにおける上記2つの端部が互いに重なり合う位置関係と反対である構成であってよい。 In the current sensor according to one aspect of the present invention, the positional relationship in which the first end portion and the second end portion overlap each other is opposite to the positional relationship in which the two end portions of the magnetic core overlap each other. It may be a configuration.
 上記構成によれば、第1端部および第2端部のいずれかが、矩形状に閉じられた磁気遮蔽板の外側に位置する(説明の便宜のため、第1端部が外側に位置するものとする)。また、上記構成によれば、矩形状に閉じられた磁気コアの内側の第1端部と向き合う位置に、磁気コアの上記2端部のうちの一方(説明の便宜のため、その端部を端部Aとする)が配置されることになる。 According to the above configuration, one of the first end and the second end is located outside the rectangular magnetic shielding plate (for convenience of explanation, the first end is located outside). Suppose). In addition, according to the above configuration, one of the two end portions of the magnetic core (for convenience of explanation, the end portion is placed at a position facing the first end portion inside the rectangular magnetic core. End portion A) is arranged.
 これにより、磁気遮蔽板の第1端部から磁気コアに向かって漏れた磁束を、磁気抵抗が高い端部A(すなわち、磁気コア)に入りにくくすることができる.それゆえ、本実施の一態様に係る電流センサは、さらに漏電の計測誤差を低減することができる。 This makes it difficult for the magnetic flux leaking from the first end of the magnetic shielding plate to the magnetic core to enter the end A (ie, the magnetic core) having a high magnetic resistance. Therefore, the current sensor according to one embodiment of the present embodiment can further reduce a leakage measurement error.
 また、本実施の一態様に係る電流センサは、上記第1端部と上記第2端部とが互いに重なり合う位置関係が、上記磁気コアにおける上記2つの端部が互いに重なり合う位置関係と同一である構成であってよい。 In the current sensor according to one aspect of the present invention, the positional relationship in which the first end portion and the second end portion overlap each other is the same as the positional relationship in which the two end portions of the magnetic core overlap each other. It may be a configuration.
 上記構成によれば、第1端部および第2端部のいずれかが、矩形状に閉じられた磁気遮蔽板の外側に位置する(説明の便宜のため、第1端部が外側に位置するものとする)。また、上記構成によれば、上記第1端部と近い位置に、上記磁気コアの上記2つの端部のいずれか一方が位置することになる(説明の便宜のため、その端部を端部Aとする)。 According to the above configuration, one of the first end and the second end is located outside the rectangular magnetic shielding plate (for convenience of explanation, the first end is located outside). Suppose). Further, according to the above configuration, one of the two end portions of the magnetic core is located at a position close to the first end portion (for convenience of explanation, the end portion is set to the end portion. A).
 これにより、第1端部から磁気コアに向かって漏れた磁束を、磁気抵抗が高い端部A(すなわち、磁気コア)に入りにくくすることができる。それゆえ、本実施の一態様に係る電流センサは、漏電の計測誤差を低減することができる。 Thereby, it is possible to make it difficult for the magnetic flux leaking from the first end portion toward the magnetic core to enter the end portion A (that is, the magnetic core) having a high magnetic resistance. Therefore, the current sensor according to one embodiment of the present embodiment can reduce a leakage measurement error.
 本実施の一態様に係る電流センサは、磁電変換素子を収容するための素子収容開口部が形成された矩形状の磁気コアと、上記磁気コアの内側に、第1端部および第2端部を有する磁気遮蔽板と、を備え、上記第1端部および上記第2端部はそれぞれ、上記磁気遮蔽板における上記磁気コアの厚み方向における端面を含み、かつ、上記素子収容開口部が形成されている側に位置する構成である。 A current sensor according to an aspect of the present embodiment includes a rectangular magnetic core in which an element accommodating opening for accommodating a magnetoelectric conversion element is formed, and a first end and a second end on the inner side of the magnetic core. Each of the first end and the second end includes an end surface of the magnetic shielding plate in the thickness direction of the magnetic core, and the element accommodating opening is formed. It is the structure located in the side which is.
 本実施の一態様に係る電流センサは、磁気コアの内側に、第1端部および第2端部を有する磁気遮蔽板を備える。これにより、本実施の一態様に係る電流センサは、漏電検知用途において発生する、計測誤差の原因となる磁束を大幅に軽減することができる。 The current sensor according to one aspect of the present embodiment includes a magnetic shielding plate having a first end and a second end inside the magnetic core. Thereby, the current sensor according to one embodiment of the present embodiment can significantly reduce the magnetic flux that causes the measurement error that occurs in the leakage detection application.
 さらに、上記第1端部および上記第2端部はそれぞれ、上記磁気遮蔽板における上記磁気コアの厚み方向における端面を含み、かつ上記素子収容開口部が形成されている側に位置する。つまり、上記第1端部および上記第2端部は、上記磁気コアにおける上記素子収容開口部の近くに位置することになる。これにより、本実施の一態様に係る電流センサでは、高い磁気抵抗の上記第1端部および上記第2端部から漏れた磁束を、同じく高い磁気抵抗の上記素子収容開口部(すなわち、磁気コア)に入りにくくすることができる。 Furthermore, each of the first end and the second end includes an end face in the thickness direction of the magnetic core in the magnetic shielding plate, and is located on the side where the element accommodating opening is formed. That is, the first end and the second end are located near the element accommodating opening in the magnetic core. Thereby, in the current sensor according to one aspect of the present embodiment, the magnetic flux leaking from the first end portion and the second end portion having a high magnetic resistance is transferred to the element housing opening (that is, the magnetic core) having the same high magnetic resistance. ) Can be difficult to enter.
 それゆえ、本実施の一態様に係る電流センサは、上記第1端部および上記第2端部から漏れる磁束による影響を最小限に抑えることができ、漏電の計測誤差の少ない電流センサを実現することができる。 Therefore, the current sensor according to one embodiment of the present invention can minimize the influence of magnetic flux leaking from the first end and the second end, and realizes a current sensor with little measurement error of leakage. be able to.
 また、本実施の一態様に係る電流センサでは、上記第1端部および上記第2端部は、互いに重なり合う構成であってよい。 Further, in the current sensor according to one aspect of the present embodiment, the first end and the second end may overlap each other.
 また、本実施の一態様に係る電流センサでは、上記第1端部および上記第2端部は、少なくとも一部が互いに当接している構成であってよい。 Further, in the current sensor according to one aspect of the present embodiment, at least a part of the first end portion and the second end portion may be in contact with each other.
 上記構成によれば、上記第1端部および上記第2端部は、互いに重なり合う構成であってもよいし、また、少なくとも一部が互いに当接している構成であってもよい。いずれの場合であっても、本実施の一態様に係る電流センサは、漏電の計測誤差の少ない電流センサを実現することができる。 According to the above configuration, the first end portion and the second end portion may be configured to overlap each other, or may be configured to be at least partially in contact with each other. In any case, the current sensor according to one embodiment of the present invention can realize a current sensor with little measurement error of electric leakage.
 それゆえ、本実施の一態様に係る電流センサは、様々なタイプの磁気遮蔽板を用いることができ、設計の自由度を高めることができる。 Therefore, the current sensor according to one embodiment of the present invention can use various types of magnetic shielding plates, and can increase the degree of design freedom.
 また、本実施の一態様に係る電流センサは、上記磁気遮蔽板は、パーマロイ、アモルファス磁性材、珪素鋼板、およびフェライトのいずれかである構成であってよい。 Further, the current sensor according to one embodiment of the present invention may be configured such that the magnetic shielding plate is any one of permalloy, amorphous magnetic material, silicon steel plate, and ferrite.
 また、本実施の一態様に係る電流センサは、上記磁気コアは、パーマロイ、アモルファス磁性材、珪素鋼板、およびフェライトのいずれかである構成であってよい。 Further, the current sensor according to one embodiment of the present invention may be configured such that the magnetic core is any one of permalloy, amorphous magnetic material, silicon steel plate, and ferrite.
 磁気遮蔽板および/または磁気コアが高透磁率・低ヒステリシス材料からなることにより、電流センサの高精度化、高感度化を実現することができる。 High accuracy and high sensitivity of the current sensor can be realized when the magnetic shielding plate and / or the magnetic core is made of a high permeability / low hysteresis material.
 また、本実施の一態様に係る電流測定方法は、上記の電流センサによって、被測定電線に流れる電流の電流値を測定する構成であってよい。 Further, the current measurement method according to one embodiment of the present invention may be configured to measure the current value of the current flowing through the measured wire by the current sensor.
 上記構成によれば、計測誤差の少ない電流測定方法を実現することができる。 According to the above configuration, a current measuring method with little measurement error can be realized.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 本発明は、計測誤差を低減することが可能な電流センサ、及び電流測定方法に好適に適用することができる。 The present invention can be suitably applied to a current sensor and a current measurement method capable of reducing measurement errors.
 1  漏電センサ(電流センサ)
 2  磁気コア
 5  内側磁気シールド(磁気遮蔽板)
 5a 第1端部
 5b 第2端部
 20 磁電変換素子
 30 素子収容開口部
 31a 外側ケース
 31b 内側ケース
 32 出力信号処理回路
 34 入出力端子
1 Earth leakage sensor (current sensor)
2 Magnetic core 5 Inner magnetic shield (magnetic shielding plate)
5a 1st end part 5b 2nd end part 20 Magnetoelectric conversion element 30 Element accommodating opening part 31a Outer case 31b Inner case 32 Output signal processing circuit 34 Input / output terminal

Claims (10)

  1.  磁電変換素子を収容し、かつ、当該磁電変換素子を収容する側と対向する側に、互いに重なり合う2つの端部を有する磁気コアと、
     上記磁気コアの内側に、第1端部および第2端部を有する磁気遮蔽板と、を備え、
     上記第1端部および上記第2端部はそれぞれ、上記磁気コアにおける上記2つの端部と同じ側に位置することを特徴とする電流センサ。
    A magnetic core that houses the magnetoelectric conversion element and has two end portions that overlap each other on the side facing the side that houses the magnetoelectric conversion element;
    A magnetic shielding plate having a first end and a second end on the inside of the magnetic core;
    The current sensor, wherein the first end and the second end are respectively located on the same side as the two ends of the magnetic core.
  2.  磁電変換素子を収容するための素子収容開口部が形成された磁気コアと、
     上記磁気コアの内側に、第1端部および第2端部を有する磁気遮蔽板と、を備え、
     上記第1端部および上記第2端部はそれぞれ、上記素子収容開口部が形成されている側に位置することを特徴とする電流センサ。
    A magnetic core having an element accommodating opening for accommodating a magnetoelectric conversion element;
    A magnetic shielding plate having a first end and a second end on the inside of the magnetic core;
    The current sensor, wherein the first end portion and the second end portion are positioned on the side where the element accommodating opening is formed.
  3.  上記磁気遮蔽板における上記第1端部および上記第2端部はそれぞれ、被測定電線の軸方向から視たときの上記磁気遮蔽板の端部を含むことを特徴とする請求項1または2に記載の電流センサ。 The said 1st end part and said 2nd end part in the said magnetic shielding board each include the edge part of the said magnetic shielding board when it sees from the axial direction of a to-be-measured electric wire. The current sensor described.
  4.  上記磁気遮蔽板における上記第1端部と上記第2端部とが互いに重なり合う位置関係が、上記磁気コアにおける上記2つの端部が互いに重なり合う位置関係と反対であることを特徴とする請求項1に記載の電流センサ。 2. The positional relationship in which the first end portion and the second end portion of the magnetic shielding plate overlap each other is opposite to the positional relationship in which the two end portions of the magnetic core overlap each other. The current sensor described in 1.
  5.  上記磁気遮蔽板における上記第1端部と上記第2端部とが互いに重なり合う位置関係が、上記磁気コアにおける上記2つの端部が互いに重なり合う位置関係と同一であることを特徴とする請求項1に記載の電流センサ。 2. The positional relationship in which the first end portion and the second end portion of the magnetic shielding plate overlap each other is the same as the positional relationship in which the two end portions of the magnetic core overlap each other. The current sensor described in 1.
  6.  上記磁気遮蔽板における上記第1端部および上記第2端部は、互いに重なり合うことを特徴とする請求項2に記載の電流センサ。 The current sensor according to claim 2, wherein the first end and the second end of the magnetic shielding plate overlap each other.
  7.  上記磁気遮蔽板における上記第1端部および上記第2端部は、少なくとも一部が互いに当接していることを特徴とする請求項2に記載の電流センサ。 3. The current sensor according to claim 2, wherein at least a part of the first end portion and the second end portion of the magnetic shielding plate are in contact with each other.
  8.  上記磁気遮蔽板は、パーマロイ、アモルファス磁性材、珪素鋼板、およびフェライトのいずれかであることを特徴とする請求項1または2に記載の電流センサ。 3. The current sensor according to claim 1, wherein the magnetic shielding plate is one of permalloy, amorphous magnetic material, silicon steel plate, and ferrite.
  9.  上記磁気コアは、パーマロイ、アモルファス磁性材、珪素鋼板、およびフェライトのいずれかであることを特徴とする請求項1または2に記載の電流センサ。 3. The current sensor according to claim 1, wherein the magnetic core is one of permalloy, amorphous magnetic material, silicon steel plate, and ferrite.
  10.  請求項1または2に記載の電流センサによって、被測定電線に流れる電流の電流値を測定することを特徴とする電流測定方法。 3. A current measuring method, comprising: measuring a current value of a current flowing through a wire to be measured by the current sensor according to claim 1 or 2.
PCT/JP2012/073742 2011-09-15 2012-09-14 Current sensor and current measurement method WO2013039237A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011202431 2011-09-15
JP2011-202431 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013039237A1 true WO2013039237A1 (en) 2013-03-21

Family

ID=47883452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073742 WO2013039237A1 (en) 2011-09-15 2012-09-14 Current sensor and current measurement method

Country Status (1)

Country Link
WO (1) WO2013039237A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049182A (en) * 2015-09-03 2017-03-09 日立金属株式会社 Leak detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127158A (en) * 1995-10-26 1997-05-16 Kansai Electric Power Co Inc:The Direct current sensor
JP2006046922A (en) * 2004-07-30 2006-02-16 Hioki Ee Corp Current sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127158A (en) * 1995-10-26 1997-05-16 Kansai Electric Power Co Inc:The Direct current sensor
JP2006046922A (en) * 2004-07-30 2006-02-16 Hioki Ee Corp Current sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049182A (en) * 2015-09-03 2017-03-09 日立金属株式会社 Leak detector

Similar Documents

Publication Publication Date Title
JP5531215B2 (en) Current sensor
US8878520B2 (en) Current sensor
US10746821B2 (en) Current sensor
JP5680287B2 (en) Current sensor
JP4998631B2 (en) Magnetic core, current sensor including the magnetic core, and current measuring method
EP3405795B1 (en) Measurement device
JP5673085B2 (en) Current detector
JP2013238580A (en) Current sensor
JP2013117447A (en) Current sensor
JP2013148512A (en) Current sensor
JP2007183221A (en) Electric current sensor
JP2016114558A (en) Current sensor and measuring apparatus
WO2023116278A1 (en) Current sensor
JP2005321206A (en) Current detection device
JP5516947B2 (en) Current sensor
US11204373B2 (en) Electric power converting apparatus
WO2013039237A1 (en) Current sensor and current measurement method
WO2013039236A1 (en) Current sensor and current measurement method
EP4297112A1 (en) Magnetic sensor
JP2012037377A (en) Current sensor
JP5678285B2 (en) Current sensor
WO2012108233A1 (en) Battery pack
JP2012163401A (en) Current sensor
JP2014098634A (en) Current sensor
JP7367657B2 (en) Current sensor and electrical control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP