WO2013038788A1 - Thermal spray material, thermal spray coating film, and structure - Google Patents

Thermal spray material, thermal spray coating film, and structure Download PDF

Info

Publication number
WO2013038788A1
WO2013038788A1 PCT/JP2012/067469 JP2012067469W WO2013038788A1 WO 2013038788 A1 WO2013038788 A1 WO 2013038788A1 JP 2012067469 W JP2012067469 W JP 2012067469W WO 2013038788 A1 WO2013038788 A1 WO 2013038788A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal spray
mass
coating
spray coating
hardness
Prior art date
Application number
PCT/JP2012/067469
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 寺田
一石 相原
浜田 孝浩
秀信 松山
清水 明
英爾 塩谷
良次 熨斗
ゆか 鈴木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013038788A1 publication Critical patent/WO2013038788A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 

Definitions

  • the present invention relates to a thermal spray material, a thermal spray coating, and a structure. More specifically, the present invention relates to a thermal spray material capable of improving the coating hardness of the thermal spray coating and realizing excellent peeling resistance, a thermal spray coating formed using the thermal spray material, and a structure including the thermal spray coating. Such a structure can be suitably used as a cylinder block, for example.
  • an iron-based sprayed thin film on the cylinder bore inner surface of the cylinder block base material.
  • This iron-based sprayed thin film has a laminated structure formed by laminating a plurality of iron-based sprayed particles in layers.
  • the iron-based sprayed particles have a particle diameter of 30 ⁇ m or less in the film thickness direction and a particle diameter in the axial direction of the cylinder bore of 30 to 300 ⁇ m (see Patent Document 1). .
  • the present invention has been made in view of such problems of the conventional technology.
  • the object of the present invention is to reduce the coating hardness variation of the thermal spray coating, improve the coating hardness, and achieve a superior peeling resistance, and a thermal spray coating formed using the thermal spray material And providing a structure including a thermal spray coating.
  • the present inventors made extensive studies to achieve the above object. As a result, the above object can be achieved by using a thermal spray material containing iron: 50 mass% or more, carbon: 0.20 to 0.33 mass%, and copper: 0.28 to 1.2 mass%. As a result, the present invention has been completed.
  • the thermal spray material of the present invention contains iron: 50 mass% or more, carbon: 0.20 to 0.33 mass%, and copper: 0.28 to 1.2 mass%.
  • thermal spray coating of the present invention is formed using the thermal spray material of the present invention.
  • the structure of the present invention comprises a base material and the thermal spray coating of the present invention formed on the base material.
  • thermal spray material containing iron: 50 mass% or more, carbon: 0.20 to 0.33 mass%, and copper: 0.28 to 1.2 mass% is used. Therefore, thermal spray coating that can improve coating hardness by reducing variation in coating hardness of thermal spray coating, and can achieve excellent peeling resistance, thermal spray coating formed using thermal spray material, and structure provided with thermal spray coating Can be provided.
  • thermal spray material a thermal spray coating, and a structure according to an embodiment of the present invention will be described in detail.
  • the thermal spray material of this embodiment contains iron: 50 mass% or more, carbon: 0.20 to 0.33 mass%, and copper: 0.28 to 1.2 mass%.
  • Carbon (C) is an element effective for improving the hardness of the thermal spray coating. In order to improve the hardness of the thermal spray coating, it is necessary to contain 0.20% by mass or more, and when it exceeds 0.33% by mass, when the thermal spray coating is formed, the opponent attack becomes high, It needs to be 0.33 mass% or less.
  • Cu is effective in improving the peel resistance (wear resistance), and further, the fine precipitation of Cu itself contributes to the improvement of delayed fracture.
  • the amount exceeds 1.2% by mass, it is required that the amount is 1.2% by mass or less because the coating hardness of the thermal sprayed coating varies significantly when the sprayed coating is formed.
  • the content is preferably 0.43 to 0.72% by mass.
  • the spray material preferably contains silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), and contains phosphorus (P), sulfur (S), and other inevitable impurities. The smaller the amount, the better.
  • Si is an element effective for improving deoxidation and peeling resistance (abrasion resistance). Accordingly, it is preferable that the content is 0.15% by mass or more, including the deoxidation material that remains in the steel. However, if excessively contained, the production of iron oxide at the time of forming the sprayed coating may be inhibited, so the content is preferably 0.35 mass% or less.
  • Mn is an element effective for improving the peel resistance (wear resistance). If the content is less than 0.40% by mass, it may be difficult to obtain a desired effect. On the other hand, if the content exceeds 0.60% by mass, not only co-segregation of phosphorus (P) and sulfur (S) may be promoted, but also the production of iron oxide during the formation of a sprayed coating is inhibited. Therefore, the content is preferably 0.60% by mass or less.
  • P is an element to be removed as much as possible in order to reduce the grain boundary strength, and the content is preferably 0.035% by mass or less.
  • S is also an element to be removed as much as possible in order to reduce the grain boundary strength, and the content is preferably 0.04% by mass or less.
  • Mo is an element effective for improving the hardness of the sprayed coating and improving the peel resistance (wear resistance). For example, it is effective for fine graining by forming alloy carbide. If the content is less than 0.15% by mass, it may be difficult to form an alloy carbide, and therefore it is preferably 0.15% by mass or more. On the other hand, since Mo is an expensive alloy element, the content is preferably 0.25% by mass or less.
  • the thermal spray material of this embodiment has, for example, a base material (base material) made of an iron alloy and a coating made of a copper alloy formed in the shape of the base material (base material), and the conductivity of the coating Is preferably higher than the conductivity of the base material (base material).
  • base material made of an iron alloy
  • the conductivity of the coating Is preferably higher than the conductivity of the base material (base material).
  • iron alloy means an iron containing 50 mass% or more, and a typical example is steel.
  • copper alloy means a copper alloy containing 50% by mass or more, and the alloy elements are not particularly limited.
  • “copper alloy” should be interpreted to include pure copper containing inevitable impurities.
  • a thermal spray coating or a structure including the thermal spray coating formed by using this is a thermal spray coating or a structure that further improves the coating hardness and realizes better peeling resistance.
  • a coating having a thickness of 0.28 to 1.2% by mass (on the basis of the thermal spray material) contained in a coating made of a copper alloy for example, a coating having a thickness of 0.28 to 1.2% by mass (on the basis of the thermal spray material) contained in a coating made of a copper alloy.
  • the cylinder block can be applied to a general-purpose engine.
  • a thermal spray coating is formed in the bore of the cylinder block by using a thermal spray material having a coating with a copper content of 0.43 to 0.72 mass% (based on the thermal spray material) in a coating made of a copper alloy.
  • the cylinder block is preferably applied to a high-power engine.
  • the thickness of the coating is less than 0.28% by mass of copper
  • an electric spraying method for example, plasma spraying method
  • the conductivity of a thermal spray material may not be stabilized.
  • the content (solid solution amount) of copper in the sprayed coating formed using this may decrease, and the coating hardness may be easily varied.
  • a more remarkable improvement in peel resistance may not be obtained.
  • the copper content is more than 1.2% by mass (plating film)
  • coarse copper particles are generated in the sprayed coating formed using this, and the coating hardness is likely to vary. There is a risk.
  • the copper content in the plating film made of a copper alloy in the thermal spray material is 0.43 to 0.72% by mass. Is preferred.
  • thermal spray material of the present embodiment for example, powder, rod, and wire can be applied, and among these, it is preferable to apply a wire (wire).
  • a thermal spray coating or a structure including the thermal spray coating formed by using this is a thermal spray coating or a structure that further improves the coating hardness and realizes better peeling resistance. There is also an advantage that it is advantageous in terms of cost.
  • thermal spray coating according to an embodiment of the present invention is formed using the thermal spray material according to one embodiment of the present invention described above.
  • the thermal spray method for obtaining the thermal spray coating of the present embodiment that is, the heat source for melting the powder, rod, and wire thermal spray materials is not particularly limited and has been put into practical use so far. Various methods can be employed.
  • flame spraying using the reaction heat of fuel gas and oxygen For example, flame spraying using the reaction heat of fuel gas and oxygen, explosive spraying using the explosive force of a mixed gas of oxygen and acetylene, laser spraying using a laser, fine particles of a material melted by the heat of an arc with high-speed gas
  • arc spraying that is sprayed and sprayed for example, plasma spraying in which a material melted by feeding into a plasma jet is accelerated by the pressure of the plasma and sprayed, and laser-plasma composite spraying can be applied.
  • the inner surface of the cylinder bore is increased in order to improve the adhesion of the sprayed coating.
  • the base coating is performed, and the above-mentioned sprayed material is sprayed as droplets on the inner surface of the cylinder bore after the base processing to form a sprayed coating.
  • a thermal spray gun inserted in a cylindrical cylinder bore is moved from one end side to the other end side while spraying a spray wire melted by a combustion flame or a droplet of thermal spray powder.
  • An example is a method in which a sprayed coating is formed by spraying from the tip of a gun to the inner surface.
  • FIG. 1 shows a cross-sectional photograph of the sprayed coating thus obtained.
  • the thermal spray coating 1 of the present embodiment includes pores 4 and oxides (mainly iron oxide) 6 in addition to the thermal spray particles 2.
  • pores smaller than the sprayed particles can provide the secondary effect of improving the scuff resistance of the sprayed coating without damaging the peel resistance by exhibiting the function of an oil reservoir.
  • a small amount of oxide as compared with the spray particles can function as a solid lubricant, and can obtain a secondary effect of improving the scuff resistance of the spray coating without impairing the peel resistance.
  • the thickness of the sprayed coating needs to be adjusted according to the type of base material to be applied, but in the case of a part made of aluminum or aluminum alloy, it is generally within a range of several ⁇ m to several hundred ⁇ m. It is preferable that
  • the structure of this embodiment includes a base material and a thermal spray coating according to an embodiment of the present invention formed on the base material.
  • An example of such a structure is a cylinder block.
  • the cylinder blocks from the viewpoint that weight reduction can be achieved, an example in which aluminum or an aluminum alloy is applied as a base material can be given as a suitable example.
  • aluminum alloy cylinder bores with such a thermal spray coating are more efficient in releasing heat generated by the engine to the outside, especially for high-power engines. It can be used suitably.
  • Example 1 to Example 11 Carbon: 0.20 mass%, silicon: 0.15 mass%, manganese: 0.40 mass%, phosphorus: 0.035 mass%, sulfur: 0.04 mass%, chromium: 0.80 mass%, molybdenum 0 .15% by mass, copper: 0.12 to 1.26% by mass, the remainder being inevitable impurities and iron, and thermal spraying having a coating made of a copper alloy on a wire made of an iron alloy as a core material not containing copper The thermal spray coating was formed with a thickness of about 300 ⁇ m on the aluminum alloy plate material as the base material by the plasma spraying method of the electric spraying method using the material to obtain the structures of the respective examples.
  • the coating hardness of the thermal spray coating is improved as compared with Comparative Example 1 outside the present invention.
  • the coating hardness of the thermal spray coating is further improved, and the copper content is 0.43 to 0.72% by mass. It can be seen that in Examples 5 to 7, the coating hardness of the thermal spray coating is further improved.
  • FIG. 4 shows that Examples 4, 6, and 7 belonging to the scope of the present invention have less wear compared to Comparative Example 1 outside the present invention.
  • the coating hardness is improved by reducing the variation in the coating hardness of the thermal spray coating, and an excellent peeling resistance and A structure can be obtained.
  • such an effect was obtained by having a base material (base material) made of an iron alloy and a film made of a copper alloy formed in the shape of the base material (base material) and conducting the film. It is also considered that a thermal spray material having a higher rate than the conductivity of the base material (base material) was used. Moreover, it is thought that such an effect was obtained because a wire was used.
  • the cylinder block is described as an example of the structure, but the structure is not limited to this, and the cylinder head, the piston, etc.
  • the present invention can also be applied.

Abstract

A thermal spray material which is capable of reducing unevenness of coating film hardness in a thermal spray coating film, thereby improving the coating film hardness and achieving excellent separation resistance; a thermal spray coating film which is formed using the thermal spray material; and a structure which is provided with the thermal spray coating film. The thermal spray material contains 50% by mass or more of iron, 0.20-0.33% by mass of carbon and 0.28-1.2% by mass of copper. The thermal spray coating film is formed using a thermal spray material which contains 50% by mass or more of iron, 0.20-0.33% by mass of carbon and 0.28-1.2% by mass of copper. The structure is provided with a base and a thermal spray coating film which is formed on the base using a thermal spray material that contains 50% by mass or more of iron, 0.20-0.33% by mass of carbon and 0.28-1.2% by mass of copper.

Description

溶射材、溶射皮膜及び構造体Thermal spray material, thermal spray coating and structure
 本発明は、溶射材、溶射皮膜及び構造体に関する。更に詳細には、本発明は、溶射皮膜の皮膜硬度を向上させ、優れた耐剥離性を実現し得る溶射材、溶射材を用いて形成した溶射皮膜、及び溶射皮膜を備えた構造体に関する。このような構造体は、例えばシリンダブロックとして好適に用いることができる。 The present invention relates to a thermal spray material, a thermal spray coating, and a structure. More specifically, the present invention relates to a thermal spray material capable of improving the coating hardness of the thermal spray coating and realizing excellent peeling resistance, a thermal spray coating formed using the thermal spray material, and a structure including the thermal spray coating. Such a structure can be suitably used as a cylinder block, for example.
 従来、高面圧下での耐剥離性に優れたシリンダブロックを提供することを目的として、シリンダブロック基材のシリンダボア内面上に鉄系溶射薄膜を形成することが提案されている。この鉄系溶射薄膜は、複数の鉄系溶射粒子が層状に積み重なって形成された積層構造を有する。また、この鉄系溶射薄膜において、この鉄系溶射粒子は、その膜厚方向における粒子径が30μm以下であり、且つシリンダボアの軸方向における粒子径が30~300μmである(特許文献1参照。)。 Conventionally, for the purpose of providing a cylinder block excellent in peeling resistance under high surface pressure, it has been proposed to form an iron-based sprayed thin film on the cylinder bore inner surface of the cylinder block base material. This iron-based sprayed thin film has a laminated structure formed by laminating a plurality of iron-based sprayed particles in layers. In the iron-based sprayed thin film, the iron-based sprayed particles have a particle diameter of 30 μm or less in the film thickness direction and a particle diameter in the axial direction of the cylinder bore of 30 to 300 μm (see Patent Document 1). .
特開2007-302941号公報JP 2007-302941 A
 しかしながら、上記特許文献1に記載のシリンダブロックにあっては、皮膜硬度にバラツキがあり、耐剥離性が十分なものとは言えず、改善の余地があった。 However, in the cylinder block described in the above-mentioned Patent Document 1, there is a variation in film hardness, and it cannot be said that the peel resistance is sufficient, and there is room for improvement.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的とするところは、溶射皮膜の皮膜硬度のバラツキを少なくして、皮膜硬度を向上させ、優れた耐剥離性を実現し得る溶射材、溶射材を用いて形成した溶射皮膜、及び溶射皮膜を備えた構造体を提供することにある。 The present invention has been made in view of such problems of the conventional technology. The object of the present invention is to reduce the coating hardness variation of the thermal spray coating, improve the coating hardness, and achieve a superior peeling resistance, and a thermal spray coating formed using the thermal spray material And providing a structure including a thermal spray coating.
 本発明らは、上記目的を達成するため鋭意検討を重ねた。そして、その結果、鉄:50質量%以上、炭素:0.20~0.33質量%、銅:0.28~1.2質量%を含有する溶射材を用いることにより、上記目的が達成できることを見出し、本発明を完成するに至った。 The present inventors made extensive studies to achieve the above object. As a result, the above object can be achieved by using a thermal spray material containing iron: 50 mass% or more, carbon: 0.20 to 0.33 mass%, and copper: 0.28 to 1.2 mass%. As a result, the present invention has been completed.
 すなわち、本発明の溶射材は、鉄:50質量%以上、炭素:0.20~0.33質量%、銅:0.28~1.2質量%を含有するものである。 That is, the thermal spray material of the present invention contains iron: 50 mass% or more, carbon: 0.20 to 0.33 mass%, and copper: 0.28 to 1.2 mass%.
 また、本発明の溶射皮膜は、上記本発明の溶射材を用いて形成されたものである。 Further, the thermal spray coating of the present invention is formed using the thermal spray material of the present invention.
 更に、本発明の構造体は、基材と、該基材上に形成された上記本発明の溶射皮膜とを備えるものである。 Furthermore, the structure of the present invention comprises a base material and the thermal spray coating of the present invention formed on the base material.
 本発明によれば、鉄:50質量%以上、炭素:0.20~0.33質量%、銅:0.28~1.2質量%を含有する溶射材を用いることとした。そのため、溶射皮膜の皮膜硬度のバラツキを少なくして、皮膜硬度を向上させ、優れた耐剥離性を実現し得る溶射材、溶射材を用いて形成した溶射皮膜、及び溶射皮膜を備えた構造体を提供することができる。 According to the present invention, a thermal spray material containing iron: 50 mass% or more, carbon: 0.20 to 0.33 mass%, and copper: 0.28 to 1.2 mass% is used. Therefore, thermal spray coating that can improve coating hardness by reducing variation in coating hardness of thermal spray coating, and can achieve excellent peeling resistance, thermal spray coating formed using thermal spray material, and structure provided with thermal spray coating Can be provided.
本発明の溶射皮膜の一例を示す断面写真である。It is a cross-sectional photograph which shows an example of the thermal spray coating of this invention. 硬さ試験の結果を示すグラフ図である。It is a graph which shows the result of a hardness test. 耐剥離性試験の要領を示す概略説明図である。It is a schematic explanatory drawing which shows the point of a peeling resistance test. 耐剥離性試験の結果を示すグラフである。It is a graph which shows the result of a peeling resistance test.
 以下、本発明の一実施形態に係る溶射材、溶射皮膜及び構造体について詳細に説明する。 Hereinafter, a thermal spray material, a thermal spray coating, and a structure according to an embodiment of the present invention will be described in detail.
 まず、本発明の一実施形態に係る溶射材について詳細に説明する。本実施形態の溶射材は、鉄:50質量%以上、炭素:0.20~0.33質量%、銅:0.28~1.2質量%を含有するものである。 First, the thermal spray material according to an embodiment of the present invention will be described in detail. The thermal spray material of this embodiment contains iron: 50 mass% or more, carbon: 0.20 to 0.33 mass%, and copper: 0.28 to 1.2 mass%.
 このような構成とすることにより、これを用いて形成された溶射皮膜の皮膜硬度のバラツキを少なくして、皮膜硬度を向上させ、優れた耐剥離性を実現し得る溶射材となる。また、これを用いて形成した溶射皮膜や溶射皮膜を備える構造体は、皮膜硬度が向上し、優れた耐剥離性を実現する溶射皮膜や構造体となる。 By adopting such a configuration, it is possible to reduce the variation in the coating hardness of the sprayed coating formed using this, improve the coating hardness, and provide a thermal spray material capable of realizing excellent peeling resistance. Moreover, the structure provided with the sprayed coating formed using this and a sprayed coating becomes a sprayed coating and a structure which the film hardness improves and implement | achieves the outstanding peeling resistance.
 ここで、溶射材の各組成について詳細に説明する。 Here, each composition of the thermal spray material will be described in detail.
炭素(C):Cは、溶射皮膜の硬度の向上に有効な元素である。溶射皮膜の硬度を向上させるためには0.20質量%以上含有することを要し、0.33質量%を超えると、溶射被膜を形成した際に、相手攻撃性が高くなるという理由から、0.33質量%以下であることを要する。 Carbon (C): C is an element effective for improving the hardness of the thermal spray coating. In order to improve the hardness of the thermal spray coating, it is necessary to contain 0.20% by mass or more, and when it exceeds 0.33% by mass, when the thermal spray coating is formed, the opponent attack becomes high, It needs to be 0.33 mass% or less.
銅(Cu):Cuは、耐剥離性(耐摩耗性)の向上に有効であり、更に、Cu自体の微細析出は遅れ破壊の向上にも寄与するため、0.28質量%以上含有することを要し、1.2質量%を超えると溶射被膜を形成した際に、溶射皮膜の皮膜硬度に著しいバラツキが生じるという理由から、1.2質量%以下であることを要する。また、耐剥離性(耐摩耗性)をより向上させるという観点からは、0.43~0.72質量%であることが好ましい。 Copper (Cu): Cu is effective in improving the peel resistance (wear resistance), and further, the fine precipitation of Cu itself contributes to the improvement of delayed fracture. When the amount exceeds 1.2% by mass, it is required that the amount is 1.2% by mass or less because the coating hardness of the thermal sprayed coating varies significantly when the sprayed coating is formed. Further, from the viewpoint of further improving the peel resistance (wear resistance), the content is preferably 0.43 to 0.72% by mass.
 また、溶射材には、ケイ素(Si)やマンガン(Mn)、クロム(Cr)、モリブデン(Mo)を含んでいることが好ましく、リン(P)や硫黄(S)、その他の不可避不純物の含有量は少なければ少ないほど好ましい。 The spray material preferably contains silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), and contains phosphorus (P), sulfur (S), and other inevitable impurities. The smaller the amount, the better.
ケイ素(Si):Siは、脱酸及び耐剥離性(耐摩耗性)の向上に有効な元素である。従って、脱酸材として含有するもので鋼中に残るものも含め、含有量を0.15質量%以上とすることが好ましい。但し、過剰に含有させると、溶射皮膜を形成する際の酸化鉄の生成が阻害されるおそれがあることから、含有量を0.35質量%以下とすることが好ましい。 Silicon (Si): Si is an element effective for improving deoxidation and peeling resistance (abrasion resistance). Accordingly, it is preferable that the content is 0.15% by mass or more, including the deoxidation material that remains in the steel. However, if excessively contained, the production of iron oxide at the time of forming the sprayed coating may be inhibited, so the content is preferably 0.35 mass% or less.
マンガン(Mn):Mnは、耐剥離性(耐摩耗性)の向上に有効な元素である。含有量が0.40質量%未満では所望の効果が得られにくいことがある。一方、含有量が0.60質量%を超えると、リン(P)、硫黄(S)の共偏析を助長することがあるだけでなく、溶射皮膜を形成する際の酸化鉄の生成が阻害されるおそれがあることから、含有量を0.60%質量以下とすることが好ましい。 Manganese (Mn): Mn is an element effective for improving the peel resistance (wear resistance). If the content is less than 0.40% by mass, it may be difficult to obtain a desired effect. On the other hand, if the content exceeds 0.60% by mass, not only co-segregation of phosphorus (P) and sulfur (S) may be promoted, but also the production of iron oxide during the formation of a sprayed coating is inhibited. Therefore, the content is preferably 0.60% by mass or less.
リン(P):Pは、粒界強度を低下させるため、極力取り除きたい元素であり、含有量が0.035質量%以下とすることが好ましい。 Phosphorus (P): P is an element to be removed as much as possible in order to reduce the grain boundary strength, and the content is preferably 0.035% by mass or less.
硫黄(S):Sも、粒界強度を低下させるため、極力取り除きたい元素であり、含有量が0.04質量%以下とすることが好ましい。 Sulfur (S): S is also an element to be removed as much as possible in order to reduce the grain boundary strength, and the content is preferably 0.04% by mass or less.
クロム(Cr):Crは、溶射皮膜の硬度の向上に有効な元素であり、セメンタイト中に固溶して溶射皮膜の耐剥離性(耐摩耗性)の向上に有効な元素である。従って、少なくとも0.80質量%以上含有することが好適である。一方、過剰に含有させるとその効果が飽和するとともに、溶射皮膜を形成する際の酸化鉄の生成が阻害されるおそれがあることから、含有量を1.10質量%以下とすることが好ましい。 Chromium (Cr): Cr is an element effective for improving the hardness of the thermal spray coating, and is an element effective for improving the peel resistance (wear resistance) of the thermal spray coating by solid solution in cementite. Therefore, it is preferable to contain at least 0.80% by mass or more. On the other hand, when the content is excessive, the effect is saturated, and the production of iron oxide when forming the sprayed coating may be inhibited. Therefore, the content is preferably 1.10% by mass or less.
モリブデン(Mo):Moは、溶射皮膜の硬度の向上や耐剥離性(耐摩耗性)の向上に有効な元素である。例えば、合金炭化物を形成することで微細粒化に有効である。含有量が0.15質量%未満では、合金炭化物の形成が困難になり易いことがあるため、0.15質量以上であることが好ましい。一方、Moは高価な合金元素であるため、含有量が0.25質量%以下であることが好ましい。 Molybdenum (Mo): Mo is an element effective for improving the hardness of the sprayed coating and improving the peel resistance (wear resistance). For example, it is effective for fine graining by forming alloy carbide. If the content is less than 0.15% by mass, it may be difficult to form an alloy carbide, and therefore it is preferably 0.15% by mass or more. On the other hand, since Mo is an expensive alloy element, the content is preferably 0.25% by mass or less.
 また、本実施形態の溶射材は、例えば、鉄合金からなる母材(基材)と、その母材(基材)状に形成された銅合金からなる被膜とを有し、被膜の導電率が母材(基材)の導電率より高いものであることが好ましい。
 なお、本発明において、「鉄合金」は、鉄を50質量%以上含むものを意味し、典型例としては鋼を挙げることができる。また、本発明において、「銅合金」は、銅を50質量%以上含むものを意味し、その合金元素については特に限定されるものではない。更に、本発明において「銅合金」には、不可避不純物を含む純銅をも含む意味に解釈しなければならない。
Moreover, the thermal spray material of this embodiment has, for example, a base material (base material) made of an iron alloy and a coating made of a copper alloy formed in the shape of the base material (base material), and the conductivity of the coating Is preferably higher than the conductivity of the base material (base material).
In the present invention, “iron alloy” means an iron containing 50 mass% or more, and a typical example is steel. In the present invention, “copper alloy” means a copper alloy containing 50% by mass or more, and the alloy elements are not particularly limited. Furthermore, in the present invention, “copper alloy” should be interpreted to include pure copper containing inevitable impurities.
 このような構成とすることにより、これを用いて形成された溶射皮膜の皮膜硬度のバラツキをより少なくして、皮膜硬度をより向上させ、より優れた耐剥離性を実現し得る溶射材となる。また、これを用いて形成した溶射皮膜や溶射皮膜を備える構造体は、皮膜硬度がより向上し、より優れた耐剥離性を実現する溶射皮膜や構造体となる。 By adopting such a configuration, it becomes a thermal spraying material that can reduce the variation in coating hardness of the thermal spray coating formed using this, improve the coating hardness, and realize more excellent peeling resistance. . In addition, a thermal spray coating or a structure including the thermal spray coating formed by using this is a thermal spray coating or a structure that further improves the coating hardness and realizes better peeling resistance.
 なお、このような構造体の一例であるシリンダブロックにおいては、例えば、厚みを銅合金からなる被膜に含まれる銅の含有量を0.28~1.2質量%(溶射材基準)とした被膜を有する溶射材を用いてシリンダブロックのボア内に溶射皮膜を形成した場合、そのシリンダブロックは汎用エンジンに適用することができる。また、厚みを銅合金からなる被膜に含まれる銅の含有量を0.43~0.72質量%(溶射材基準)とした被膜を有する溶射材を用いてシリンダブロックのボア内に溶射皮膜を形成した場合、そのシリンダブロックは高出力エンジンに適用することが好適である。 In the cylinder block which is an example of such a structure, for example, a coating having a thickness of 0.28 to 1.2% by mass (on the basis of the thermal spray material) contained in a coating made of a copper alloy. When a thermal spray coating is formed in the bore of a cylinder block using a thermal spray material having the above, the cylinder block can be applied to a general-purpose engine. Further, a thermal spray coating is formed in the bore of the cylinder block by using a thermal spray material having a coating with a copper content of 0.43 to 0.72 mass% (based on the thermal spray material) in a coating made of a copper alloy. When formed, the cylinder block is preferably applied to a high-power engine.
 銅の含有量が0.28質量%未満となる被膜(メッキ被膜)の厚みであると、溶射皮膜を形成する際に電気式溶射法(例えばプラズマ溶射法など。)を適用する場合、線材である溶射材の導電性が安定化しない場合がある。そして、これを用いて形成された溶射皮膜における銅の含有量(固溶量)が減り、皮膜硬度のバラツキが発生しやすくなるおそれがある。更に、耐剥離性(耐摩耗性)のより顕著な向上が得られない可能性がある。一方、銅の含有量が1.2質量%を超える被膜(メッキ被膜)の厚みであると、これを用いて形成された溶射皮膜において粗大な銅粒子が生じ、皮膜硬度のバラツキが発生しやすくなるおそれがある。更に、耐剥離性(耐摩耗性)のより顕著な向上が得られない可能性がある。更に、皮膜硬度がより向上し、より優れた耐剥離性を実現するという観点からは、溶射材における銅合金からなるメッキ被膜における銅の含有量が0.43~0.72質量%であることが好ましい。 When the thickness of the coating (plating coating) is less than 0.28% by mass of copper, when applying an electric spraying method (for example, plasma spraying method) when forming a sprayed coating, The conductivity of a thermal spray material may not be stabilized. And there exists a possibility that the content (solid solution amount) of copper in the sprayed coating formed using this may decrease, and the coating hardness may be easily varied. Furthermore, there is a possibility that a more remarkable improvement in peel resistance (abrasion resistance) may not be obtained. On the other hand, if the copper content is more than 1.2% by mass (plating film), coarse copper particles are generated in the sprayed coating formed using this, and the coating hardness is likely to vary. There is a risk. Furthermore, there is a possibility that a more remarkable improvement in peel resistance (abrasion resistance) may not be obtained. Furthermore, from the viewpoint of further improving the film hardness and realizing superior peeling resistance, the copper content in the plating film made of a copper alloy in the thermal spray material is 0.43 to 0.72% by mass. Is preferred.
 なお、現時点において、このような効果が得られるメカニズムは明確ではないが、溶射皮膜が形成される際に生じる酸化鉄などの酸化物の量が適切な範囲になるためと考えられる。但し、上記のメカニズムはあくまでも推測に基づくものである。従って、上記のメカニズム以外のメカニズムにより上述のような効果が得られていたとしても、本発明の範囲に含まれることは言うまでもない。また、以下に記載のメカニズムについても同様である。 At this time, the mechanism by which such an effect is obtained is not clear, but it is considered that the amount of oxide such as iron oxide generated when the sprayed coating is formed falls within an appropriate range. However, the above mechanism is based on estimation to the last. Therefore, it goes without saying that even if the above-described effect is obtained by a mechanism other than the above-described mechanism, it is included in the scope of the present invention. The same applies to the mechanism described below.
 更に、本実施形態の溶射材としては、例えば、粉末状、ロッド状、ワイヤ状のものを適用することができるが、その中でも、ワイヤ状のもの(線材)を適用することが好ましい。 Furthermore, as the thermal spray material of the present embodiment, for example, powder, rod, and wire can be applied, and among these, it is preferable to apply a wire (wire).
 このような構成とすることにより、これを用いて形成された溶射皮膜の皮膜硬度のバラツキをより少なくして、皮膜硬度をより向上させ、より優れた耐剥離性を実現し得る溶射材となる。また、これを用いて形成した溶射皮膜や溶射皮膜を備える構造体は、皮膜硬度がより向上し、より優れた耐剥離性を実現する溶射皮膜や構造体となる。また、コスト面においても有利であるという利点がある。 By adopting such a configuration, it becomes a thermal spraying material that can reduce the variation in coating hardness of the thermal spray coating formed using this, improve the coating hardness, and realize more excellent peeling resistance. . In addition, a thermal spray coating or a structure including the thermal spray coating formed by using this is a thermal spray coating or a structure that further improves the coating hardness and realizes better peeling resistance. There is also an advantage that it is advantageous in terms of cost.
 なお、現時点において、このような効果が得られるメカニズムは明確ではないが、溶射皮膜を形成する際に電気式溶射法(例えばプラズマ溶射法など。)を適用する場合、線材である溶射材の導電性が安定化して、安定した皮膜形成が行われるためと考えられる。但し、上記のメカニズムはあくまでも推測に基づくものである。従って、上記のメカニズム以外のメカニズムにより上述のような効果が得られていたとしても、本発明の範囲に含まれることは言うまでもない。 At this time, the mechanism by which such an effect is obtained is not clear. However, when an electric spraying method (for example, a plasma spraying method, etc.) is applied when forming a sprayed coating, the conductivity of the spraying material, which is a wire, is used. It is considered that the property is stabilized, and a stable film formation is performed. However, the above mechanism is based on estimation. Therefore, it goes without saying that even if the above-described effect is obtained by a mechanism other than the above-described mechanism, it is included in the scope of the present invention.
 次に、本発明の一実施形態に係る溶射皮膜について詳細に説明する。本実施形態の溶射皮膜は、上述した本発明の一実施形態に係る溶射材を用いて形成されたものである。 Next, the thermal spray coating according to an embodiment of the present invention will be described in detail. The thermal spray coating of this embodiment is formed using the thermal spray material according to one embodiment of the present invention described above.
 本実施形態の溶射皮膜を得るための溶射方法、すなわち粉末状、ロッド状、ワイヤ状の溶射材を溶融するための熱源については、特に限定されるものではなく、今までに実用化されている種々の方法を採用することができる。 The thermal spray method for obtaining the thermal spray coating of the present embodiment, that is, the heat source for melting the powder, rod, and wire thermal spray materials is not particularly limited and has been put into practical use so far. Various methods can be employed.
 例えば、燃料ガスと酸素の反応熱を利用するフレーム溶射、酸素とアセチレンの混合ガスの爆発力を利用する爆発溶射、レーザを利用したレーザ溶射、アークの熱で溶融させた材料を高速ガスで微粒子化して噴き付けるアーク溶射、プラズマジェット中に送給して溶融させた材料をプラズマの圧力で加速して噴き付けるプラズマ溶射、更には、レーザ・プラズマ複合溶射などを適用することができる。 For example, flame spraying using the reaction heat of fuel gas and oxygen, explosive spraying using the explosive force of a mixed gas of oxygen and acetylene, laser spraying using a laser, fine particles of a material melted by the heat of an arc with high-speed gas For example, arc spraying that is sprayed and sprayed, plasma spraying in which a material melted by feeding into a plasma jet is accelerated by the pressure of the plasma and sprayed, and laser-plasma composite spraying can be applied.
 その中でも、上述したワイヤ状の溶射材を電気式溶射法のプラズマ溶射法を適用することが上述した理由から好ましい。 Among these, it is preferable to apply the plasma spraying method of the electric spraying method to the wire-shaped spraying material described above for the reason described above.
 また、その製造工程であるが、例えば、基材としてアルミニウムやアルミニウム合金を適用し、シリンダブロックなどの種々の構造体を鋳造成型した後、溶射皮膜の密着性を高めるために、シリンダボア内表面を下地加工し、下地加工後のシリンダボア内面に、上述した溶射材を液滴として噴き付け、溶射皮膜を形成する。 In addition, in the manufacturing process, for example, after applying aluminum or an aluminum alloy as a base material and casting and molding various structures such as a cylinder block, the inner surface of the cylinder bore is increased in order to improve the adhesion of the sprayed coating. The base coating is performed, and the above-mentioned sprayed material is sprayed as droplets on the inner surface of the cylinder bore after the base processing to form a sprayed coating.
 溶射皮膜の形成方法一例としては、円筒状をなすシリンダボア内に挿入した溶射ガンを一端側から他端側へと移動させながら、燃焼炎などによって溶融させた溶射ワイヤーや溶射粉末の溶滴を溶射ガンの先端から内面に噴き付けて溶射皮膜を形成する方法を挙げることができる。 As an example of the method of forming a thermal spray coating, a thermal spray gun inserted in a cylindrical cylinder bore is moved from one end side to the other end side while spraying a spray wire melted by a combustion flame or a droplet of thermal spray powder. An example is a method in which a sprayed coating is formed by spraying from the tip of a gun to the inner surface.
 図1は、このようにして得られた溶射皮膜の断面写真を示すものである。図1に示すように、本実施形態の溶射皮膜1は、溶射粒子2の他に、気孔4や酸化物(主として酸化鉄である。)6を含んでいる。
 なお、溶射粒子に比して小さな気孔は、オイル溜まりの機能を発揮し、耐剥離性を損ねることなく、溶射皮膜の耐スカッフ性を向上させるという副次的効果を得ることができる。また、溶射粒子に比して少量の酸化物は、固体潤滑剤として機能し、耐剥離性を損ねることなく、溶射皮膜の耐スカッフ性を向上させるという副次的効果を得ることができる。
 更に、溶射皮膜の厚さとしては、適用する基材の種類に応じて調製することも必要ではあるが、アルミニウムやアルミニウム合金製の部品であれば、概ね、数μm~数百μmの範囲内とすることが好ましい。
FIG. 1 shows a cross-sectional photograph of the sprayed coating thus obtained. As shown in FIG. 1, the thermal spray coating 1 of the present embodiment includes pores 4 and oxides (mainly iron oxide) 6 in addition to the thermal spray particles 2.
In addition, pores smaller than the sprayed particles can provide the secondary effect of improving the scuff resistance of the sprayed coating without damaging the peel resistance by exhibiting the function of an oil reservoir. Further, a small amount of oxide as compared with the spray particles can function as a solid lubricant, and can obtain a secondary effect of improving the scuff resistance of the spray coating without impairing the peel resistance.
Furthermore, the thickness of the sprayed coating needs to be adjusted according to the type of base material to be applied, but in the case of a part made of aluminum or aluminum alloy, it is generally within a range of several μm to several hundred μm. It is preferable that
 次に、本発明の一実施形態に係る構造体について詳細に説明する。本実施形態の構造体は、基材と、基材上に形成された上記本発明の一実施形態に係る溶射皮膜とを備えるものである。このような構造体としては、例えばシリンダブロックを挙げることができる。
 シリンダブロックの中でも、軽量化が図れるといった観点から、基材としてアルミニウムやアルミニウム合金を適用したものを好適例として挙げることができる。
 このような溶射皮膜を備えたアルミニウム合金製のシリンダボアは、鉄製ライナを備えたアルミニウム合金製のシリンダボアと比較して、エンジンで発生する熱を外部に効率的に放出しやすく、特に高出力エンジンに好適に用いることができる。
Next, a structure according to an embodiment of the present invention will be described in detail. The structure of this embodiment includes a base material and a thermal spray coating according to an embodiment of the present invention formed on the base material. An example of such a structure is a cylinder block.
Among the cylinder blocks, from the viewpoint that weight reduction can be achieved, an example in which aluminum or an aluminum alloy is applied as a base material can be given as a suitable example.
Compared to aluminum alloy cylinder bores with an iron liner, aluminum alloy cylinder bores with such a thermal spray coating are more efficient in releasing heat generated by the engine to the outside, especially for high-power engines. It can be used suitably.
 以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
(実施例1~実施例11)
 炭素:0.20質量%、ケイ素:0.15質量%、マンガン:0.40質量%、リン:0.035質量%、硫黄:0.04質量%、クロム:0.80質量%、モリブデン0.15質量%、銅:0.12~1.26質量%を含有し、残部が不可避不純物及び鉄であり、銅を含まない心材となる鉄合金からなる線材に銅合金からなる被膜を有する溶射材を用いた電気式溶射法のプラズマ溶射法によって、基材であるアルミニウム合金製板材に、溶射皮膜を厚さ約300μmで形成して、各例の構造体を得た。
(Example 1 to Example 11)
Carbon: 0.20 mass%, silicon: 0.15 mass%, manganese: 0.40 mass%, phosphorus: 0.035 mass%, sulfur: 0.04 mass%, chromium: 0.80 mass%, molybdenum 0 .15% by mass, copper: 0.12 to 1.26% by mass, the remainder being inevitable impurities and iron, and thermal spraying having a coating made of a copper alloy on a wire made of an iron alloy as a core material not containing copper The thermal spray coating was formed with a thickness of about 300 μm on the aluminum alloy plate material as the base material by the plasma spraying method of the electric spraying method using the material to obtain the structures of the respective examples.
(比較例1)
 炭素:0.20質量%、ケイ素:0.15質量%、マンガン:0.40質量%、リン:0.035質量%、硫黄:0.04質量%、クロム:0.80質量%、モリブデン0.15質量%を含有し、残部が不可避不純物及び鉄である線材からなる溶射材(銅合金からなる被膜を有しない)を用いた電気式溶射法のプラズマ溶射法によって、基材であるアルミニウム合金製板材に、溶射皮膜を厚さ約300μmで形成して、本例の構造体を得た。
(Comparative Example 1)
Carbon: 0.20 mass%, silicon: 0.15 mass%, manganese: 0.40 mass%, phosphorus: 0.035 mass%, sulfur: 0.04 mass%, chromium: 0.80 mass%, molybdenum 0 Aluminum alloy as a base material by plasma spraying method of electric spraying method using a thermal spray material (not having a coating film made of copper alloy) composed of a wire material containing 15 mass% and the balance being inevitable impurities and iron A thermal spray coating was formed to a thickness of about 300 μm on the plate material to obtain the structure of this example.
 なお、上記実施例及び比較例のプラズマ溶射法の基本条件は、プラズマ電流:90A、プラズマ電圧:100V、ガス流量(Ar+H):100L/分、トーチ速度:120cm/分とした。 The basic conditions for the plasma spraying of the above Examples and Comparative Examples, plasma current: 90A, the plasma voltage: 100 V, a gas flow (Ar + H 2): 100L / min, Torch rate: was 120 cm / min.
[性能評価]
(硬さ試験)
 上記各例の溶射皮膜について硬さ(ビッカース硬度)を測定した。得られた結果を図2に示す。
[Performance evaluation]
(Hardness test)
Hardness (Vickers hardness) was measured for the sprayed coatings of the above examples. The obtained results are shown in FIG.
 図2より、本発明の範囲に属する実施例1~実施例11は、本発明外の比較例1と比較して、溶射皮膜の被膜硬度が向上していることが分かる。
 銅含有量が0.28~1.2質量%である実施例3~実施例9は、溶射皮膜の被膜硬度がより向上しており、銅含有量が0.43~0.72質量%である実施例5~実施例7は、溶射皮膜の被膜硬度が更に向上していることが分かる。
As can be seen from FIG. 2, in Examples 1 to 11 belonging to the scope of the present invention, the coating hardness of the thermal spray coating is improved as compared with Comparative Example 1 outside the present invention.
In Examples 3 to 9 where the copper content is 0.28 to 1.2% by mass, the coating hardness of the thermal spray coating is further improved, and the copper content is 0.43 to 0.72% by mass. It can be seen that in Examples 5 to 7, the coating hardness of the thermal spray coating is further improved.
(溶射被膜の耐剥離性試験)
 上記各例のうち、実施例4、6、7及び比較例1の溶射皮膜について対剥離性(耐摩耗性)を測定した。剥離評価として、各例により得られた下記サイズの評価試験片を図3に示すようなブラスト試験機を用いた試験を実施し、ブラスト試験前後の試験片の質量を測定し、質量減少量(溶射被膜の剥離量)を耐剥離性の指標とした。下記の試験条件のもとに得られた試験結果を図4に示す。
(Peeling resistance test of thermal spray coating)
Among the above examples, the peelability (wear resistance) of the thermal spray coatings of Examples 4, 6, and 7 and Comparative Example 1 was measured. As the peeling evaluation, the evaluation test piece of the following size obtained in each example was subjected to a test using a blast tester as shown in FIG. 3, the mass of the test piece before and after the blast test was measured, and the mass reduction amount ( The amount of sprayed coating peeled) was used as an index of peel resistance. The test results obtained under the following test conditions are shown in FIG.
・試験機概要:図3
・試験片形状:50×50mm(肉厚5mm)
・ブラスト材料:アブラックス#54(アルミナ粒子)
・照射時間:4時間
・測定方法:アルミナ粒子を溶射面に照射し、試験前後の溶射試験片の質量差を測定
・ Outline of testing machine: Fig. 3
・ Test specimen shape: 50 × 50 mm (5 mm thick)
・ Blasting material: Ablacks # 54 (alumina particles)
・ Irradiation time: 4 hours ・ Measuring method: Alumina particles are irradiated onto the sprayed surface, and the mass difference between the sprayed specimens before and after the test is measured.
 図4より、本発明の範囲に属する実施例4、6及び7は、本発明外の比較例1と比較して、摩耗量が少ないことが分かる。 FIG. 4 shows that Examples 4, 6, and 7 belonging to the scope of the present invention have less wear compared to Comparative Example 1 outside the present invention.
 このように、本発明の溶射材を用いて基材上に溶射皮膜を形成すると、溶射皮膜の皮膜硬度のバラツキを少なくして、皮膜硬度を向上させ、優れた耐剥離性を示す溶射皮膜及び構造体を得ることができる。
 なお、このような効果が得られたのは、鉄合金からなる母材(基材)と、その母材(基材)状に形成された銅合金からなる被膜とを有し、被膜の導電率が母材(基材)の導電率より高い溶射材を用いたためとも考えられる。また、このような効果が得られたのは、線材を用いたためとも考えられる。
As described above, when the thermal spray coating is formed on the substrate using the thermal spray material of the present invention, the coating hardness is improved by reducing the variation in the coating hardness of the thermal spray coating, and an excellent peeling resistance and A structure can be obtained.
In addition, such an effect was obtained by having a base material (base material) made of an iron alloy and a film made of a copper alloy formed in the shape of the base material (base material) and conducting the film. It is also considered that a thermal spray material having a higher rate than the conductivity of the base material (base material) was used. Moreover, it is thought that such an effect was obtained because a wire was used.
 以上、本発明を若干の実施形態及び実施例によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。 As mentioned above, although this invention was demonstrated by some embodiment and an Example, this invention is not limited to these, A various deformation | transformation is possible within the range of the summary of this invention.
 例えば、上述した各実施形態及び各実施例においては、構造体の一例としてシリンダブロックを例に挙げて説明したが、構造体はこれに限定されるものではなく、シリンダヘッド、ピストンなどに対しても本発明を適用することができる。 For example, in each of the embodiments and examples described above, the cylinder block is described as an example of the structure, but the structure is not limited to this, and the cylinder head, the piston, etc. The present invention can also be applied.
 1 溶射皮膜
 2 溶射粒子
 4 気孔
 6 酸化物
DESCRIPTION OF SYMBOLS 1 Thermal spray coating 2 Thermal spray particle 4 Pore 6 Oxide

Claims (7)

  1.  鉄:50質量%以上、炭素:0.20~0.33質量%、銅:0.28~1.2質量%を含有することを特徴とする溶射材。 A thermal spray material containing iron: 50 mass% or more, carbon: 0.20 to 0.33 mass%, and copper: 0.28 to 1.2 mass%.
  2.  鉄合金からなる母材と、該母材上に形成された銅合金からなる被膜とを有し、
     上記被膜の導電率が上記母材の導電率より高い
    ことを特徴とする請求項1に記載の溶射材。
    Having a base material made of an iron alloy and a coating made of a copper alloy formed on the base material;
    The thermal spray material according to claim 1, wherein the conductivity of the coating is higher than the conductivity of the base material.
  3.  上記溶射材が、線材であることを特徴とする請求項1又は2に記載の溶射材。 The thermal spray material according to claim 1 or 2, wherein the thermal spray material is a wire rod.
  4.  請求項1~3のいずれか1つの項に記載の溶射材を用いて形成されたことを特徴とする溶射皮膜。 A thermal spray coating formed by using the thermal spray material according to any one of claims 1 to 3.
  5.  基材と、該基材上に形成された請求項4に記載された溶射皮膜とを備えることを特徴とする構造体。 A structure comprising a base material and the thermal spray coating according to claim 4 formed on the base material.
  6.  上記構造体が、シリンダブロックであることを特徴とする請求項5に記載の構造体。 The structure according to claim 5, wherein the structure is a cylinder block.
  7.  上記基材がアルミニウム又はアルミニウム合金であることを特徴とする請求項5又は6に記載の構造体。 The structure according to claim 5 or 6, wherein the substrate is aluminum or an aluminum alloy.
PCT/JP2012/067469 2011-09-16 2012-07-09 Thermal spray material, thermal spray coating film, and structure WO2013038788A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011202682A JP5871152B2 (en) 2011-09-16 2011-09-16 Thermal spray material, thermal spray coating and structure
JP2011-202682 2011-09-16

Publications (1)

Publication Number Publication Date
WO2013038788A1 true WO2013038788A1 (en) 2013-03-21

Family

ID=47883030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067469 WO2013038788A1 (en) 2011-09-16 2012-07-09 Thermal spray material, thermal spray coating film, and structure

Country Status (2)

Country Link
JP (1) JP5871152B2 (en)
WO (1) WO2013038788A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3875631A4 (en) * 2018-11-02 2022-02-23 Nissan Motor Co., Ltd. Thermal spray coating for sliding member, and sliding device provided with thermal spray coating for sliding member
JP7437607B2 (en) 2020-03-26 2024-02-26 日産自動車株式会社 Thermal spray coatings and materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134369A (en) * 1974-09-18 1976-03-24 Honda Motor Co Ltd Bureekideisuku no seiho
JP2010275581A (en) * 2009-05-28 2010-12-09 Nissan Motor Co Ltd Iron-based thermal-sprayed film
JP2011012329A (en) * 2009-07-06 2011-01-20 Daido Steel Co Ltd Magnetic exoergic metal sprayed coating for electromagnetic induction heating and wire rod for thermal spraying

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134369A (en) * 1974-09-18 1976-03-24 Honda Motor Co Ltd Bureekideisuku no seiho
JP2010275581A (en) * 2009-05-28 2010-12-09 Nissan Motor Co Ltd Iron-based thermal-sprayed film
JP2011012329A (en) * 2009-07-06 2011-01-20 Daido Steel Co Ltd Magnetic exoergic metal sprayed coating for electromagnetic induction heating and wire rod for thermal spraying

Also Published As

Publication number Publication date
JP2013064173A (en) 2013-04-11
JP5871152B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5534279B2 (en) Wire-like thermal spray material, functional layer that can be produced thereby, and substrate coating method using thermal spray material
EP3034902A1 (en) Brake disc and method for producing same
US10288136B2 (en) Brake disc coating made from an iron alloy composition and method for the production thereof
JP6301060B2 (en) Thermal spraying powder with superferritic iron-based compound and substrate, especially brake disc with thermal spray layer
DE102014211366A1 (en) Method for producing an oxidation protection layer for a piston for use in internal combustion engines and pistons with an oxidation protection layer
CN107810290B (en) Method for coating a cylinder running surface of a cylinder crankcase, cylinder crankcase with a coated cylinder running surface, and engine
US10407776B2 (en) Method and system for die compensation and restoration using high-velocity oxy-fuel thermal spray coating and plasma ion nitriding
EP2413006B1 (en) Piston ring
EP2402474B1 (en) Piston ring
MXPA06013558A (en) Wear resistant alloy powders and coatings.
CN109440049B (en) Method for preparing amorphous aluminum coating by compounding electric arc spraying and laser remelting
JP5871152B2 (en) Thermal spray material, thermal spray coating and structure
US20060014032A1 (en) Thermal spray coating process and thermal spray coating materials
JP5455149B2 (en) Iron-based thermal spray coating
JP2009155720A (en) Thermally sprayed iron-based film, its forming method and sliding member
JP2012041617A (en) Thermal spraying wire for iron-based thermally sprayed coating
US7401586B2 (en) Valve seat rings made of basic Co or Co/Mo alloys, and production thereof
CN105441769B (en) A kind of multi-principal elements alloy and its method for handling aluminum alloy surface
JP6411875B2 (en) Piston ring and manufacturing method thereof
JP2003138367A (en) Thermal spray coating, method for forming thermal spray coating, and thermal spray raw material powder
JP6447859B2 (en) Thermal spray coating member and method for producing thermal spray coating
KR102080540B1 (en) Piston ring and manufacturing method therefor
JP2011231386A (en) Spraying wire for iron-based sprayed coating
Ozdemir et al. Cast iron coatings containing graphite structure by atmospheric plasma spraying
CN113454260A (en) Material composition combination for coating of component of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832211

Country of ref document: EP

Kind code of ref document: A1