WO2013038591A1 - Power-reception device, power-transmission device, and power-transfer device - Google Patents

Power-reception device, power-transmission device, and power-transfer device Download PDF

Info

Publication number
WO2013038591A1
WO2013038591A1 PCT/JP2012/004972 JP2012004972W WO2013038591A1 WO 2013038591 A1 WO2013038591 A1 WO 2013038591A1 JP 2012004972 W JP2012004972 W JP 2012004972W WO 2013038591 A1 WO2013038591 A1 WO 2013038591A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
power transmission
electromagnetic field
holding body
field shield
Prior art date
Application number
PCT/JP2012/004972
Other languages
French (fr)
Japanese (ja)
Inventor
岩宮 裕樹
シュテフェン ヴェルナー
三宅 英司
裕樹 海堀
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013038591A1 publication Critical patent/WO2013038591A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • the present invention relates to a power receiving device, a power transmission device, and a power transmission device that are used to transmit power without contact.
  • FIG. 6 is a schematic diagram of a conventional non-contact power transmission apparatus.
  • the non-contact power transmission device includes a flat plate-shaped first coil 101 wound with a copper wire as a power transmission device, a circular first magnetic body 103, a circular second magnetic body 105 on the back surface thereof, A circular third magnetic body 107 is disposed.
  • the first magnetic body layer 109 is formed by laminating the first magnetic body 103, the second magnetic body 105, and the third magnetic body 107.
  • a flat plate-shaped second coil 111 wound with a copper wire and a circular first magnetic body 113, a circular second magnetic body 115, and a circular third coil on the back surface thereof.
  • the magnetic body 117 is arranged.
  • a second magnetic layer 119 is formed by laminating the first magnetic body 113, the second magnetic body 115, and the third magnetic body 117.
  • the first magnetic bodies 103 and 113 and the second magnetic bodies 105 and 115 are materials having a high magnetic flux density. Since the transmission power is increased by the first magnetic bodies 103 and 113, the power transmission efficiency is improved. In addition, the frequency characteristics of the magnetic permeability are increased by the second magnetic bodies 105 and 115 and the propagation loss is reduced, so that the signal communication distance is improved. Further, the third magnetic bodies 107 and 117 suppress the noise because the electromagnetic field propagating through the magnetic body is suppressed by the loss of the magnetic body.
  • Patent Document 1 is known as the above prior art document.
  • the power receiving device of the present invention includes a first coil, a first holding body that holds the first coil and is formed of a nonmagnetic non-conductive material, and a first electromagnetic field that covers the first holding body. And a space is provided between the first coil and the first electromagnetic shielding body.
  • the power transmission device of the present invention includes a first coil, a first holding body that holds the first coil and is formed of a nonmagnetic non-conductive material, and a first cover that covers the first holding body.
  • An electromagnetic field shield is provided, and a space is provided between the first coil and the first electromagnetic field shield.
  • the power transmission device of the present invention includes a first device and a second device.
  • the first device includes a first coil, a first holder that holds the first coil and is formed of a nonmagnetic non-conductive material, and a first electromagnetic field that covers the first holder And a shield body.
  • the second device includes a second coil arranged so as to face the first coil, a second holding body that holds the second coil, and a second coil of the second holding body.
  • a magnetic body installed on the opposite side of the holding surface; and a second electromagnetic field shield body installed on the opposite side of the surface of the magnetic body facing the second holding body.
  • a space is provided between the first coil and the first electromagnetic field shield.
  • FIG. 1 is a partially cutaway perspective view of a power transmission device according to Embodiment 1 of the present invention.
  • FIG. 2 is a graph showing the relationship between the Q value and the distance d between the planar coil and the electromagnetic field shield of the power transmission device according to Embodiment 1 of the present invention.
  • FIG. 3 is a graph showing the relationship between the resonance frequency f and the distance d between the planar coil and the electromagnetic field shield of the power transmission device according to Embodiment 1 of the present invention.
  • FIG. 4 is a partially cutaway perspective view of the power transmission device according to the second embodiment of the present invention.
  • FIG. 5 is a partially cutaway perspective view of the power transmission device according to the third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a conventional non-contact power transmission apparatus.
  • the conventional non-contact power transmission device power transmission efficiency and signal communication distance are improved, and noise is suppressed.
  • the magnetic layer is disposed in the vicinity of the coil, the leakage magnetic flux is small when there is almost no positional deviation between both coils, but when the positional deviation between both coils occurs, the leakage magnetic flux increases rapidly. As a result, the power transmission efficiency is significantly reduced due to the position shift.
  • FIG. 1 is a partially cutaway perspective view of a power transmission device 11 according to Embodiment 1 of the present invention.
  • the power transmission device 11 includes a power receiving device 40 (first device) as a power receiving device and a coil device 50 (second device) as a power transmitting device.
  • the power receiving device 40 covers the planar coil 13 that is the first coil, the retaining body 15 that is the first retaining body that holds the planar coil 13 and is formed of a nonmagnetic nonconductive material, and the retaining body 15. And an electromagnetic field shield body 17 which is a first electromagnetic field shield body. A space is provided between the planar coil 13 and the electromagnetic field shield body 17. Furthermore, the power receiving device 40 is supported by a nonmagnetic non-conductive material having one end (first end) fixed to the holding body 15 and the other end (second end) fixed to the electromagnetic field shield body 17. It has a body 19.
  • the coil device 50 includes a coil 21 that is a second coil, a holding body 23 that is a second holding body, a magnetic body 25, and an electromagnetic field shielding body 27 that is a second electromagnetic shielding body.
  • the coil 21 is disposed so as to face the planar coil 13.
  • the holding body 23 holds the coil 21.
  • the magnetic body 25 is installed on the opposite side of the surface of the holding body 23 that holds the coil 21.
  • the electromagnetic shielding body 27 is disposed on the opposite side of the surface of the magnetic body 25 facing the holding body 23.
  • the power receiving device 40 is configured only by the electromagnetic field shield body 17, the planar coil 13, the holding body 15, and the support body 19, and no magnetic body is disposed in the vicinity of the planar coil 13. Therefore, even if the positions of the planar coil 13 and the coil 21 are deviated, a change in the coupling coefficient and impedance is small, so that a reduction in power transmission efficiency due to the misregistration is suppressed.
  • the electromagnetic field shield body 17 is arranged at a position away from the planar coil 13 by the support body 19, eddy current loss in the electromagnetic field shield body 17 is reduced. And since the magnetic body is not provided in the vicinity of the planar coil 13, the resistance value and inductance of the planar coil 13 do not increase. Therefore, the Q value of the planar coil 13 does not decrease, and the resonance frequency f does not decrease. Therefore, a decrease in power transmission efficiency due to the electromagnetic field shield body 17 and the magnetic body is suppressed. For these reasons, the power transmission device 11 can suppress a decrease in power transmission efficiency even if a positional shift occurs.
  • the Q value is a value indicating the sharpness of the resonance peak of the resonance circuit. Specifically, it is a value obtained by dividing the peak value at the resonance frequency of the planar coil 13 by the half width.
  • the power transmission device 11 has a planar coil 13 for receiving power.
  • the planar coil 13 is composed of a litz wire. Specifically, the planar coil 13 is inserted and held in a groove formed in the holding body 15 formed of a resin that is a nonmagnetic nonconductive material. In FIG. 1, since the planar coil 13 is configured on the back surface of the holding body 15 (surface facing the holding body 23), it is indicated by a thick dotted line.
  • the planar coil 13 has a spiral circular configuration, but is not limited thereto, and may be a polygonal spiral.
  • the starting point in the center part of the planar coil 13 and the end point in an outer peripheral part are electrically connected with a power receiving circuit (rectifier circuit, DC / DC converter etc.), the power receiving circuit is abbreviate
  • the non-magnetic non-conductive material is a material that has a negligible influence on power transmission by the power transmission device 11, and ceramics or the like is used in addition to resin.
  • a round bar-like support body 19 is fixed. Specifically, as shown in FIG. 1, through holes of the support 19 are provided at the four corners of the holding body 15, and the support 19 is inserted and fixed therein.
  • the support body 19 is not limited to the configuration in which the support body 19 is fixed to the four corners of the holding body 15, and the support body 19 is a portion where the planar coil 13 does not exist other than the four corners of the holding body 15 (e.g. You may provide in the center of the planar coil 13 in the part which does not have a litz wire.
  • the length of the support 19 is defined as a distance d from the planar coil 13 to the electromagnetic field shield 17.
  • the support 19 is also made of a resin that is a nonmagnetic nonconductive material, like the holder 15.
  • the other end of the support 19 is fixed to the electromagnetic field shield 17.
  • the support body 19 is interposed between the holding body 15 and the electromagnetic field shield body 17.
  • the electromagnetic field shield 17 prevents the electromagnetic field generated by the power received by the planar coil 13 from leaking to the outside.
  • it is made of metal (for example, iron).
  • a part of the front surface of the electromagnetic field shield body 17 is notched in order to make the internal structure easy to understand.
  • the electromagnetic field shield body 17 is not limited to the box shape as shown in FIG. 1, and may have other shapes, for example, a hemisphere, as long as the electromagnetic field generated by the planar coil 13 has a shielding effect to the outside. Or a polygonal shape. That is, the electromagnetic field shield body 17 is formed so as to cover the holding body 15.
  • the casing of the device having the planar coil 13 is made of metal, this casing may be used as the electromagnetic field shield body 17. That is, the electromagnetic field shield body 17 may be a housing of a device that constitutes the power receiving device. In this case, it is not necessary to separately provide the electromagnetic field shield body 17, and the power transmission device 11 can be downsized.
  • a coil 21 is disposed at a position facing the planar coil 13.
  • the coil 21 is formed by winding a litz wire in a spiral like the planar coil 13. That is, in the present embodiment, the planar coil 13 and the coil 21 have the same shape.
  • the shape of the coil 21 is not limited to the same shape as the planar coil 13 and may be larger or smaller than the planar coil 13.
  • the coil 21 is not limited to a planar shape, and may have a three-dimensional (for example, spiral) coil configuration wound in an arbitrary axial direction.
  • the coil 21 is electrically connected to a power transmission circuit (not shown).
  • the litz wire of the coil 21 is inserted into a groove provided in the holding body 23.
  • the holding body 23 is made of resin like the holding body 15 and has the same configuration.
  • the holding body 23 may not have the same configuration as the holding body 15 as described above.
  • a magnetic body 25 formed of a ferrite sheet is disposed below the holding body 23 (on the side where the coil 21 is not provided).
  • a metal electromagnetic field shield body 27 is disposed below the magnetic body 25.
  • the coil 21 on the power transmission side is thin so as to be fixed at a specific place. Therefore, the magnetic body 25 that reduces the leakage magnetic flux from the coil 21 is disposed.
  • the coil 21 on the power transmission side is fixed at a specific location, but the planar coil 13 is not fixed at a specific location. Therefore, electric power can be transmitted from the coil 21 to the planar coil 13 in a non-contact manner only by arranging a device incorporating the planar coil 13 above the coil 21. At this time, even if there is a gap between the planar coil 13 and the coil 21, electric power can be transmitted.
  • all the components in the vicinity of the planar coil 13 are made of resin, which is a non-magnetic non-conductive material that has a negligible effect on power transmission. For this reason, even if a positional deviation occurs in the planar coil 13 with respect to the coil 21, the change in the coupling coefficient and impedance is small. Therefore, a decrease in efficiency due to a change in the current flowing through the DC / DC converter of the power receiving circuit is suppressed. Furthermore, since the change in the impedance of the coil 21 is also reduced, a reduction in the efficiency of the power transmission circuit connected to the coil 21 is suppressed. Accordingly, a decrease in power transmission efficiency due to positional deviation is suppressed.
  • the power transmission device 11 can achieve both the suppression of the decrease in the power transmission efficiency with respect to the displacement and the improvement in the efficiency due to the reduction of the leakage magnetic flux.
  • FIG. 2 shows the relationship between the Q value of the planar coil 13 with respect to the distance d between the planar coil 13 and the electromagnetic shielding body 17 in the power transmission device 11 having such a configuration.
  • the horizontal axis indicates the distance d between the planar coil 13 and the electromagnetic field shield body 17, and the vertical axis indicates the Q value.
  • the Q value increases as the distance d between the planar coil 13 and the electromagnetic field shield body 17 increases, but eventually the Q value saturates and becomes substantially equal to the Q value of the planar coil 13 when there is no electromagnetic field shield body 17. .
  • the distance d between the planar coil 13 and the electromagnetic shielding body 17 is saturated at about 10 cm. Since the resistance value and the inductance decrease as the electromagnetic shielding body 17 is closer to the planar coil 13, the Q value proportional to the inductance also decreases. Therefore, the Q value increases and becomes saturated as the distance d between the planar coil 13 and the electromagnetic field shield 17 increases. Therefore, the efficiency of the planar coil 13 can be increased by designing the length of the support 19 so that the Q value is saturated.
  • FIG. 3 shows the relationship between the distance d between the planar coil 13 and the electromagnetic shielding body 17 and the resonance frequency f of the planar coil 13.
  • the horizontal axis indicates the distance d between the planar coil 13 and the electromagnetic field shield body 17, and the vertical axis indicates the resonance frequency f.
  • the resonance frequency f decreases as the distance d between the planar coil 13 and the electromagnetic field shield 17 increases. However, the resonance frequency f eventually becomes saturated and becomes substantially equal to the resonance frequency f of the planar coil 13 when the electromagnetic field shield 17 is not provided. This value is the resonance frequency f in the resonance circuit of the planar coil 13 and a capacitor (not shown). In the present embodiment, as shown in FIG. 3, the distance d between the planar coil 13 and the electromagnetic field shield 17 is saturated at about 10 cm. As described above, the closer the electromagnetic shielding body 17 is to the planar coil 13, the lower the resistance value and inductance. Therefore, the resonance frequency f that is inversely proportional to the inductance increases.
  • the efficiency of the planar coil 13 can be increased by designing the length of the support 19 so that the resonance frequency f is in a converged state.
  • the distance d between the planar coil 13 and the electromagnetic field shield 17, that is, the length of the support 19 was set to 10 cm. Thereby, the fall of the power transmission efficiency from the coil 21 to the planar coil 13 is suppressed. Further, when the positions of the planar coil 13 and the coil 21 are matched, the electromagnetic field shield body 17 is disposed at a position away from the planar coil 13 by the support body 19, so that eddy current loss in the electromagnetic field shield body 17 is reduced. . This also suppresses a decrease in power transmission efficiency from the coil 21 to the planar coil 13.
  • the Q value slightly decreases from FIG. 2, and the resonance frequency f slightly increases from FIG. It's not a big difference.
  • the Q value and the resonance frequency f change relatively greatly if the distance d between the planar coil 13 and the electromagnetic field shield 17 is slightly shifted.
  • the Q value and the resonance frequency f are likely to vary depending on the length accuracy of the support 19 and the mounting accuracy with the holding body 15 and the electromagnetic field shield body 17. Therefore, in the present embodiment, the length of the support 19 is set to 10 cm, which does not significantly affect the Q value and the resonance frequency f even if the above-described accuracy is poor.
  • the Q value, the resonance frequency f, and the eddy current loss of the electromagnetic field shield body 17 vary depending on the size, shape, number of turns, etc. of the planar coil 13. Therefore, the Q value, the resonance frequency f, and the eddy current loss are obtained for the planar coil 13 to be used, and the optimum distance d between the planar coil 13 and the electromagnetic field shield body 17 may be determined.
  • the generated magnetic field changes depending on the above-mentioned coil configuration parameters. Also, the magnetic field changes depending on the required power. As a result, the distance d changes accordingly. Therefore, in order to determine the distance d, the measurement of FIGS. 2 and 3 may be performed according to the coil to be used and the electric power to be transmitted.
  • the magnetic body is not disposed in the vicinity of the planar coil 13, and the power receiving device 40 is configured only by the electromagnetic field shield body 17, the holding body 15 having the planar coil 13, and the support body 19. For this reason, even if the positions of the planar coil 13 and the coil 21 are shifted, changes in the coupling coefficient and impedance are small.
  • the electromagnetic field shield 17 is disposed at a position away from the planar coil 13 by the support 19, the eddy current loss in the electromagnetic field shield 17 is reduced. Since the magnetic body is not provided in the vicinity of the planar coil 13, the resistance value and inductance of the planar coil 13 do not increase. Therefore, the Q value of the planar coil 13 does not decrease, and the resonance frequency f does not decrease. Therefore, a decrease in power transmission efficiency due to the electromagnetic field shield body 17 and the magnetic body is suppressed. For these reasons, the power transmission device 11 can suppress a decrease in efficiency even if a positional deviation occurs.
  • a nonmagnetic nonconductive material holder 15 and support 19 having a planar coil 13 are used as a power receiving device.
  • the power transmission device may also use the nonmagnetic nonconductive material holder 15 and the support 19 having the planar coil 13. That is, the power receiving device 40 can be used as both a power receiving device and a power transmitting device of the power transmission device 11.
  • the power transmitting device is also enlarged, and the leakage magnetic flux in the coil 21 of the power transmitting device is also increased.
  • the non-magnetic non-conductive material holding body 15 and the support body 19 having the planar coil 13 are used as the power receiving apparatus, and the holding body 23 having the coil 21 and the magnetic body 25 are used as the power transmission apparatus.
  • the electromagnetic field shield body 27 was used.
  • the power receiving device and the power transmitting device may have opposite configurations. That is, in FIG. 1, power may be supplied from the planar coil 13 to the coil 21.
  • the coil device 50 may be used as the power receiving device, and the power receiving device 40 may be used as the power transmitting device.
  • the power transmission device 11 can suppress a decrease in power transmission efficiency even if a positional deviation occurs.
  • the coil 21 is fixed in the present embodiment, the coil 21 may be movable. Also in this case, the power transmission device 11 can suppress a decrease in power transmission efficiency even if a positional deviation occurs between the planar coil 13 and the coil 21.
  • resin is applied as the non-magnetic non-conductive material used for the holding body 15 and the support body 19, but the present invention is not limited to this.
  • ceramics may be used.
  • the thermal expansion of ceramics due to changes in ambient temperature is smaller than that of resin, the holding accuracy of the planar coil 13 is improved when the power transmission device is used in an environment where the temperature change is large.
  • the processing of ceramics is more difficult than resin, so the cost is high. Therefore, an optimal material may be selected in consideration of the use environment and cost.
  • the support body 19 has a round bar shape, but is not limited thereto, and may have a square bar shape or a flat plate shape. That is, the support body 19 may have any shape as long as it is interposed between the holding body 15 and the electromagnetic field shield body 17 and can maintain the distance d between the planar coil 13 and the electromagnetic field shield body 17. .
  • FIG. 4 is a partially cutaway perspective view of power transmission device 111 according to Embodiment 2 of the present invention.
  • the power transmission device 111 includes a power reception device 140 as a power reception device and a coil device 150 as a power transmission device.
  • the power transmission device 111 is different from the power transmission device 11 of the first embodiment in that the support body 190 has flexibility, the holding body 15 is provided with the first magnet 31, and the holding body 23.
  • the second magnet 33 is provided at a position facing the first magnet 31. The first magnet 31 and the second magnet 33 are magnetized so as to attract each other.
  • FIG. 4 the same components as those in FIG.
  • the support 190 is made of a flexible resin. Therefore, the support body 190 bends and bends according to the external stress. However, if a flexible and easy-to-bend resin is used, the planar coil 13 is shaken by the vibration each time the power transmission device 111 is moved. As a result, abnormal noise may occur due to the holding body 15 hitting the electromagnetic field shield body 17. Or the possibility of the fracture
  • the material of the support 19 may be ceramics. However, since ceramics are generally harder than resin, the necessary flexibility may not be obtained. Therefore, in the present embodiment, the material of the support 190 is preferably a resin.
  • the shape of the support 19 may be a flat plate.
  • the movable range of the holding body 15 by the magnetic force attracting the first magnet 31 and the second magnet 33 is obtained. Is likely to be narrower. Therefore, the support 190 is preferably a round bar or a square bar.
  • the first magnet 31 is a permanent magnet and is fixed to the four corners of the holding body 15 on the planar coil 13 side.
  • the first magnet 31 may be provided on a part of the holding body 15, but it is preferable that the first magnet 31 does not affect the magnetic flux generated during power transmission between the planar coil 13 and the coil 21 as much as possible. Therefore, when the holding body 15 has a quadrangular shape and the planar coil 13 is formed in a spiral shape from the center of the holding body 15, the first magnet 31 is the position farthest from the planar coil 13 in the holding body 15. , Provided at the four corners of the holding body 15.
  • the shape of the first magnet 31 is a quadrangular shape, the shape is not limited to this and may be a polygonal shape or a cylindrical shape.
  • the second magnet 33 is a permanent magnet and is provided at a position of the holding body 23 facing the first magnet 31. Specifically, since the size of the holding body 23 is the same as that of the holding body 15, the second magnets 33 are provided at the four corners of the holding body 23. In addition, when the dimensions of the holding body 15 and the holding body 23 are different, the holding body 15 that is farthest from the planar coil 13 and the coil 21 and the first magnet 31 and the second magnet 33 face each other, What is necessary is just to provide the 1st magnet 31 and the 2nd magnet 33 in the position of 23. FIG.
  • the magnetic poles of the first magnet 31 and the second magnet 33 may be any combination of magnetic poles as long as they attract each other when the planar coil 13 and the coil 21 face each other.
  • the bottom surface of the first magnet 31 (the surface facing the second magnet 33) may be an N pole
  • the upper surface of the second magnet 33 (the surface facing the first magnet 31) may be an S pole.
  • this reverse magnetic pole may be sufficient.
  • the magnetic poles of the adjacent first magnets 31 arranged on the holding body 15 may be alternately different. In this case, the magnetic poles of the adjacent second magnets 33 are alternately different so as to attract each other.
  • the number of the first magnets 31 and the second magnets 33 is four each as described above. However, the number of the first magnets 31 and the second magnets 33 is the same. If it is, it may be other than four. However, when the number is small, the positional deviation correction accuracy between the planar coil 13 and the coil 21 is lowered. On the other hand, when there are many numbers, the influence of the magnetic force from the 1st magnet 31 and the 2nd magnet 33 will become large. Therefore, what is necessary is just to determine the number of magnets according to electrical specifications, such as the magnitude
  • the coil 21 is fixed at a specific place as in the first embodiment, and the planar coil 13 is not fixed at a specific place but is built in a movable device. Therefore, when a device incorporating the planar coil 13 is disposed on the upper portion of the coil 21, power transmission can be performed as in the first embodiment.
  • the planar coil 13 and the coil 21 are arranged at positions facing each other to some extent, the first magnet 31 and the second magnet 33 attract each other. Thereby, the support 190 is bent by the magnetic force generated by the first magnet 31 and the second magnet 33.
  • the planar coil 13 moves so as to face the coil 21.
  • the positional shift is automatically reduced within a range in which the support 190 can be bent. Therefore, since the positional accuracy of the planar coil 13 and the coil 21 is further improved and the leakage magnetic flux is reduced as compared with the configuration of the first embodiment, a decrease in efficiency is suppressed.
  • the support 190 is bent by the attraction between the first magnet 31 and the second magnet 33, so that the positional deviation between the planar coil 13 and the coil 21 is easily absorbed.
  • the power transmission device 111 can further suppress a decrease in power transmission efficiency with respect to a positional shift.
  • the first magnet 31 is a part of the holding body 15 and is provided at a position farthest from the planar coil 13, but the first magnet 31 and the second magnet 33 are not provided.
  • the position of the first magnet 31 is not limited to the position farthest from the planar coil 13 as long as the generated magnetic force is in a range that hardly affects the planar coil 13 or the coil 21.
  • permanent magnets are used for both the first magnet 31 and the second magnet 33.
  • the present invention is not limited to this, and either one or both may be electromagnets. In this case, electric power for driving the electromagnet is required, but by turning off the electric power of the electromagnet, for example, the possibility that foreign matter including iron is adsorbed can be reduced.
  • FIG. 5 is a partially cutaway perspective view of power transmission device 211 according to Embodiment 3 of the present invention.
  • the power transmission device 211 includes a power receiving device 240 as a power receiving device and a coil device 50 as a power transmitting device.
  • the power transmission device 211 includes a planar coil 13, a holding body 15 having the planar coil 13, and an electromagnetic field shield body 17 that fixes the holding body 15.
  • the holding body 15 is made of a nonmagnetic nonconductive material, and a space is provided between the planar coil 13 and the electromagnetic field shield body 17.
  • the magnetic body is not disposed in the vicinity of the planar coil 13, and the planar coil 13 is fixed to the electromagnetic field shield body 17 only by the holding body 15 formed of a nonmagnetic nonconductive material. Therefore, even if the positions of the planar coil 13 and the coil 21 are deviated, a change in the coupling coefficient and impedance is small, so that a reduction in power transmission efficiency due to the misregistration is suppressed.
  • the electromagnetic field shield body 17 is arranged at a position away from the planar coil 13. Therefore, the eddy current loss in the electromagnetic field shield body 17 is reduced. Since the magnetic body is not provided near the planar coil 13, the resistance value and inductance of the planar coil 13 do not increase. Therefore, the Q value of the planar coil 13 does not decrease, and the resonance frequency f does not decrease. Therefore, a decrease in power transmission efficiency due to the electromagnetic field shield body 17 and the magnetic body is suppressed. For these reasons, the power transmission device 211 can suppress a decrease in power transmission efficiency even if a positional shift occurs.
  • FIG. 5 the same components as those in FIG.
  • the holding body 15 is fixed to the electromagnetic field shield body 17.
  • the periphery of the holding body 15 is fixed to the wall surface of the electromagnetic field shield body 17 in FIG. Accordingly, the support 19 in FIG. 1 may not be used.
  • the wall surface of the electromagnetic field shield body 17 and the periphery of the holding body 15 may be fixed by an adhesive, for example, or may be fixed by screws.
  • a space is provided between the planar coil 13 and the electromagnetic field shield body 17.
  • the distance between the planar coil 13 and the upper surface of the electromagnetic field shield body 17, that is, the distance d is set to 10 cm as in FIG.
  • the method for determining the distance d is the same as the method described in the first embodiment.
  • the holding body 15 has a shape that expands until the periphery thereof comes into contact with the wall surface of the electromagnetic field shield body 17.
  • the holding body 15 is formed of a nonmagnetic nonconductive material as in the first embodiment. Therefore, the planar coil 13 of the present embodiment has the same effect as the first embodiment magnetically.
  • the configuration other than the above is the same as that of the first embodiment.
  • the power transmission device 211 has a small change in coupling coefficient and impedance even if the positions of the planar coil 13 and the coil 21 are shifted, similarly to the power transmission device 11 of FIG. Is suppressed. Further, since a space is provided between the planar coil 13 and the electromagnetic field shield body 17, the electromagnetic field shield body 17 is disposed at a position away from the planar coil 13, and eddy current loss in the electromagnetic field shield body 17 is reduced. The And since the magnetic body is not provided in the vicinity of the planar coil 13, the resistance value and inductance of the planar coil 13 do not increase. Therefore, the Q value of the planar coil 13 does not decrease, and the resonance frequency f does not decrease.
  • the power transmission device 211 can suppress a decrease in power transmission efficiency even if a positional deviation occurs.
  • the power transmission device 211 of the present embodiment does not require the support 19 of FIG.
  • the electromagnetic field shield body 17 is not limited to the electromagnetic field shield body 17 if the housing of the device having the planar coil 13 is made of metal. Good. That is, the electromagnetic field shield body 17 may be a housing of a device that constitutes the power receiving device. In this case as well, the size can be reduced as in the first embodiment.
  • the entire periphery of the holding body 15 is fixed to the wall surface of the electromagnetic field shielding body 17, but a part of the side surface of the holding body 15 is fixed to a part of the wall surface of the electromagnetic field shielding body 17. Also good.
  • the fixed strength is reduced, but the power transmission device 211 can be easily created. Therefore, for example, if there is less vibration and the fixing body 15 can be sufficiently fixed even if the fixing strength is low, a part of the periphery of the holding body 15 may be fixed.
  • the holding body 15 may be fixed to the electromagnetic field shielding body 17 by providing, for example, a protrusion on a part of the periphery of the holding body 15 and fixing only between the protrusion and the wall surface. Also in this case, since the fixing strength is lowered, the power transmission device 211 may be applied to an application with less vibration. Further, by providing the protrusion, the space between the holding body 15 and the electromagnetic field shield body 17 communicates with the outside air.
  • the planar coil 13 can be cooled by positively introducing outside air.
  • the power transmission device according to the present invention is particularly useful as a power transmission device for non-contact power feeding and the like because it can suppress a decrease in power transmission efficiency even if a positional shift occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This power-reception device or power-transmission device has the following: a first coil; a first retainer that holds the first coil and is formed from a non-magnetic, non-conductive material; and a first electromagnetic-field shield that covers the first retainer. A space is provided between the first coil and the first electromagnetic-field shield.

Description

受電装置、送電装置および電力伝送装置Power receiving device, power transmitting device, and power transmitting device
 本発明は、非接触で電力を伝送するために用いられる受電装置、送電装置および電力伝送装置に関する。 The present invention relates to a power receiving device, a power transmission device, and a power transmission device that are used to transmit power without contact.
 近年、直接的な電気的接続ではなく、非接触で電力を伝送する非接触給電技術が開発されている。図6は、従来の非接触電力伝送装置の概略図である。非接触電力伝送装置は、送電装置として、銅線を巻いた平板型の第一のコイル101と、その背面に、円状の第一の磁性体103、円状の第二の磁性体105、円状の第三の磁性体107が配置されている。第一の磁性体103、第二の磁性体105、第三の磁性体107を積層することにより第一の磁性体層109が形成されている。 In recent years, contactless power supply technology has been developed that transmits power in a contactless manner rather than a direct electrical connection. FIG. 6 is a schematic diagram of a conventional non-contact power transmission apparatus. The non-contact power transmission device includes a flat plate-shaped first coil 101 wound with a copper wire as a power transmission device, a circular first magnetic body 103, a circular second magnetic body 105 on the back surface thereof, A circular third magnetic body 107 is disposed. The first magnetic body layer 109 is formed by laminating the first magnetic body 103, the second magnetic body 105, and the third magnetic body 107.
 また、受電装置として、銅線を巻いた平板型の第二のコイル111と、その背面に、円状の第一の磁性体113、円状の第二の磁性体115、円状の第三の磁性体117が配置されている。第一の磁性体113、第二の磁性体115、第三の磁性体117を積層することにより第二の磁性体層119が形成されている。 Further, as a power receiving device, a flat plate-shaped second coil 111 wound with a copper wire, and a circular first magnetic body 113, a circular second magnetic body 115, and a circular third coil on the back surface thereof. The magnetic body 117 is arranged. A second magnetic layer 119 is formed by laminating the first magnetic body 113, the second magnetic body 115, and the third magnetic body 117.
 第一の磁性体103、113、および第二の磁性体105、115は、磁束密度が高い材料である。第一の磁性体103、113により伝送電力が上がるので、電力伝送効率が改善される。また、第二の磁性体105、115により透磁率の周波数特性が上がり、伝播損失が低減されるので、信号通信距離が改善される。また、第三の磁性体107、117により、磁性体内を伝播する電磁界が、磁性体の損失により抑制されるのでノイズが抑制される。 The first magnetic bodies 103 and 113 and the second magnetic bodies 105 and 115 are materials having a high magnetic flux density. Since the transmission power is increased by the first magnetic bodies 103 and 113, the power transmission efficiency is improved. In addition, the frequency characteristics of the magnetic permeability are increased by the second magnetic bodies 105 and 115 and the propagation loss is reduced, so that the signal communication distance is improved. Further, the third magnetic bodies 107 and 117 suppress the noise because the electromagnetic field propagating through the magnetic body is suppressed by the loss of the magnetic body.
 上記の先行技術文献としては、例えば、特許文献1が知られている。 For example, Patent Document 1 is known as the above prior art document.
特開2010-283263号公報JP 2010-283263 A
 本発明の受電装置は、第1のコイルと、第1のコイルを保持し非磁性非導電性材料で形成されている第1の保持体と、第1の保持体を覆う第1の電磁界シールド体とを有し、第1のコイルと、第1の電磁界シールド体との間に空間が設けられている。 The power receiving device of the present invention includes a first coil, a first holding body that holds the first coil and is formed of a nonmagnetic non-conductive material, and a first electromagnetic field that covers the first holding body. And a space is provided between the first coil and the first electromagnetic shielding body.
 また、本発明の送電装置は、第1のコイルと、第1のコイルを保持し非磁性非導電性材料で形成されている第1の保持体と、第1の保持体を覆う第1の電磁界シールド体とを有し、第1のコイルと、第1の電磁界シールド体との間に空間が設けられている。 The power transmission device of the present invention includes a first coil, a first holding body that holds the first coil and is formed of a nonmagnetic non-conductive material, and a first cover that covers the first holding body. An electromagnetic field shield is provided, and a space is provided between the first coil and the first electromagnetic field shield.
 また、本発明の電力伝送装置は、第1の装置と第2の装置を有している。第1の装置は、第1のコイルと、第1のコイルを保持し、非磁性非導電性材料で形成されている第1の保持体と、第1の保持体を覆う第1の電磁界シールド体とを有している。第2の装置は、第1のコイルに対向するように配置される第2のコイルと、第2のコイルを保持する第2の保持体と、第2の保持体の、第2のコイルを保持する面の反対側に設置された磁性体と、磁性体の、第2の保持体に対向する面の反対側に設置された第2の電磁界シールド体とを有している。そして、第1のコイルと、第1の電磁界シールド体との間に空間が設けられている。 Further, the power transmission device of the present invention includes a first device and a second device. The first device includes a first coil, a first holder that holds the first coil and is formed of a nonmagnetic non-conductive material, and a first electromagnetic field that covers the first holder And a shield body. The second device includes a second coil arranged so as to face the first coil, a second holding body that holds the second coil, and a second coil of the second holding body. A magnetic body installed on the opposite side of the holding surface; and a second electromagnetic field shield body installed on the opposite side of the surface of the magnetic body facing the second holding body. A space is provided between the first coil and the first electromagnetic field shield.
図1は、本発明の実施の形態1における電力伝送装置の一部切り欠き斜視図である。FIG. 1 is a partially cutaway perspective view of a power transmission device according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1における電力伝送装置の平面コイルと電磁界シールド体との距離dと、Q値との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the Q value and the distance d between the planar coil and the electromagnetic field shield of the power transmission device according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1における電力伝送装置の平面コイルと電磁界シールド体との距離dと、共振周波数fとの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the resonance frequency f and the distance d between the planar coil and the electromagnetic field shield of the power transmission device according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態2における電力伝送装置の一部切り欠き斜視図である。FIG. 4 is a partially cutaway perspective view of the power transmission device according to the second embodiment of the present invention. 図5は、本発明の実施の形態3における電力伝送装置の一部切り欠き斜視図である。FIG. 5 is a partially cutaway perspective view of the power transmission device according to the third embodiment of the present invention. 図6は、従来の非接触電力伝送装置の概略図である。FIG. 6 is a schematic diagram of a conventional non-contact power transmission apparatus.
 従来の非接触電力伝送装置によると、電力伝送効率と信号通信距離が改善され、ノイズが抑制される。しかしながら、コイル近傍に磁性体層が配されるため、両コイルの位置ずれがほとんどない場合には漏洩磁束が少ないが、両コイルの位置ずれが発生すると、漏洩磁束が急激に多くなる。その結果、位置ずれにより大幅に電力伝送効率が低下する。 According to the conventional non-contact power transmission device, power transmission efficiency and signal communication distance are improved, and noise is suppressed. However, since the magnetic layer is disposed in the vicinity of the coil, the leakage magnetic flux is small when there is almost no positional deviation between both coils, but when the positional deviation between both coils occurs, the leakage magnetic flux increases rapidly. As a result, the power transmission efficiency is significantly reduced due to the position shift.
 以下、本発明を実施するための形態について図面を参照しながら説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 (実施の形態1)
 図1は、本発明の実施の形態1における電力伝送装置11の一部切り欠き斜視図である。電力伝送装置11は、受電装置としての受電装置40(第1の装置)と、送電装置としてのコイル装置50(第2の装置)で構成されている。
(Embodiment 1)
FIG. 1 is a partially cutaway perspective view of a power transmission device 11 according to Embodiment 1 of the present invention. The power transmission device 11 includes a power receiving device 40 (first device) as a power receiving device and a coil device 50 (second device) as a power transmitting device.
 受電装置40は、第1のコイルである平面コイル13と、平面コイル13を保持し非磁性非導電性材料で形成されている第1の保持体である保持体15と、保持体15を覆う第1の電磁界シールド体である電磁界シールド体17とを有している。平面コイル13と電磁界シールド体17との間に空間が設けられている。さらに、受電装置40は、一端(第1端)が保持体15に固定され、他端(第2端)が電磁界シールド体17に固定された非磁性非導電性材料で形成されている支持体19を有している。 The power receiving device 40 covers the planar coil 13 that is the first coil, the retaining body 15 that is the first retaining body that holds the planar coil 13 and is formed of a nonmagnetic nonconductive material, and the retaining body 15. And an electromagnetic field shield body 17 which is a first electromagnetic field shield body. A space is provided between the planar coil 13 and the electromagnetic field shield body 17. Furthermore, the power receiving device 40 is supported by a nonmagnetic non-conductive material having one end (first end) fixed to the holding body 15 and the other end (second end) fixed to the electromagnetic field shield body 17. It has a body 19.
 コイル装置50は、第2のコイルであるコイル21と、第2の保持体である保持体23と、磁性体25と、第2の電磁界シールド体である電磁界シールド体27を有する。コイル21は、平面コイル13に対向するように配置されている。保持体23は、コイル21を保持している。磁性体25は、保持体23の、コイル21を保持する面の反対側に設置されている。電磁界シールド体27は、磁性体25の、保持体23に対向する面の反対側に設置されている。 The coil device 50 includes a coil 21 that is a second coil, a holding body 23 that is a second holding body, a magnetic body 25, and an electromagnetic field shielding body 27 that is a second electromagnetic shielding body. The coil 21 is disposed so as to face the planar coil 13. The holding body 23 holds the coil 21. The magnetic body 25 is installed on the opposite side of the surface of the holding body 23 that holds the coil 21. The electromagnetic shielding body 27 is disposed on the opposite side of the surface of the magnetic body 25 facing the holding body 23.
 電磁界シールド体17と、平面コイル13と、保持体15と、支持体19のみで受電装置40が構成されおり、平面コイル13の近傍に磁性体が配されていない。従って、平面コイル13とコイル21の位置がずれても、結合係数やインピーダンスの変化が小さいため、位置ずれに対する電力伝送効率の低下が抑制される。 The power receiving device 40 is configured only by the electromagnetic field shield body 17, the planar coil 13, the holding body 15, and the support body 19, and no magnetic body is disposed in the vicinity of the planar coil 13. Therefore, even if the positions of the planar coil 13 and the coil 21 are deviated, a change in the coupling coefficient and impedance is small, so that a reduction in power transmission efficiency due to the misregistration is suppressed.
 さらに、支持体19により、電磁界シールド体17が平面コイル13から離れた位置に配されているので、電磁界シールド体17における渦電流損が低減される。そして、平面コイル13の近傍に磁性体が設けられていないため、平面コイル13の抵抗値とインダクタンスが上がらない。よって、平面コイル13のQ値が低下せず、共振周波数fも下がらない。従って、電磁界シールド体17や磁性体に起因した電力伝送効率の低下が抑制される。これらのことから、電力伝送装置11は、位置ずれが発生しても電力伝送効率の低下が抑制される。ここでQ値とは、共振回路の共振ピークの鋭さを示す値である。具体的には、平面コイル13の共振周波数におけるピーク値を半値幅で除した値である。 Furthermore, since the electromagnetic field shield body 17 is arranged at a position away from the planar coil 13 by the support body 19, eddy current loss in the electromagnetic field shield body 17 is reduced. And since the magnetic body is not provided in the vicinity of the planar coil 13, the resistance value and inductance of the planar coil 13 do not increase. Therefore, the Q value of the planar coil 13 does not decrease, and the resonance frequency f does not decrease. Therefore, a decrease in power transmission efficiency due to the electromagnetic field shield body 17 and the magnetic body is suppressed. For these reasons, the power transmission device 11 can suppress a decrease in power transmission efficiency even if a positional shift occurs. Here, the Q value is a value indicating the sharpness of the resonance peak of the resonance circuit. Specifically, it is a value obtained by dividing the peak value at the resonance frequency of the planar coil 13 by the half width.
 以下、より具体的に本実施の形態の電力伝送装置11の構成、動作について説明する。 Hereinafter, the configuration and operation of the power transmission device 11 of the present embodiment will be described more specifically.
 電力伝送装置11は、電力の受電を行うための平面コイル13を有する。平面コイル13は、リッツ線により構成されている。具体的には、平面コイル13は、非磁性非導電性材料である樹脂で形成されている保持体15に形成した溝に挿入され、保持されている。なお、図1において、平面コイル13は保持体15の裏面(保持体23と対向する面)に構成されるため、太点線で示している。また、平面コイル13は渦巻き円形状の構成としているが、これに限定されるものではなく、多角形の渦巻状であってもよい。また、平面コイル13の中央部分における始点と、外周部分における終点は受電回路(整流回路やDC/DCコンバータ等)と電気的に接続されるが、図1では受電回路を省略している。 The power transmission device 11 has a planar coil 13 for receiving power. The planar coil 13 is composed of a litz wire. Specifically, the planar coil 13 is inserted and held in a groove formed in the holding body 15 formed of a resin that is a nonmagnetic nonconductive material. In FIG. 1, since the planar coil 13 is configured on the back surface of the holding body 15 (surface facing the holding body 23), it is indicated by a thick dotted line. The planar coil 13 has a spiral circular configuration, but is not limited thereto, and may be a polygonal spiral. Moreover, although the starting point in the center part of the planar coil 13 and the end point in an outer peripheral part are electrically connected with a power receiving circuit (rectifier circuit, DC / DC converter etc.), the power receiving circuit is abbreviate | omitted in FIG.
 なお、非磁性非導電性材料とは、電力伝送装置11による電力伝送に対し、無視できる程度の影響しか及ぼさない材料のことであり、樹脂以外にセラミックスなどが用いられる。 The non-magnetic non-conductive material is a material that has a negligible influence on power transmission by the power transmission device 11, and ceramics or the like is used in addition to resin.
 保持体15の四隅には、丸棒状の支持体19の一端が固定されている。具体的には、図1に示すように、保持体15の四隅に支持体19の貫通孔が設けられ、その中に支持体19が挿入され固着される。なお、支持体19が保持体15の四隅に固定される構成に限定されるものではなく、支持体19を保持体15の四隅以外で平面コイル13が存在しない部分(例えば保持体15の周辺や平面コイル13の中央でリッツ線がない部分)に設けてもよい。なお、図1に示すように、支持体19の長さを、平面コイル13から電磁界シールド体17までの距離dと定義している。 At the four corners of the holding body 15, one end of a round bar-like support body 19 is fixed. Specifically, as shown in FIG. 1, through holes of the support 19 are provided at the four corners of the holding body 15, and the support 19 is inserted and fixed therein. The support body 19 is not limited to the configuration in which the support body 19 is fixed to the four corners of the holding body 15, and the support body 19 is a portion where the planar coil 13 does not exist other than the four corners of the holding body 15 (e.g. You may provide in the center of the planar coil 13 in the part which does not have a litz wire. As shown in FIG. 1, the length of the support 19 is defined as a distance d from the planar coil 13 to the electromagnetic field shield 17.
 支持体19も保持体15と同様に、非磁性非導電性材料である樹脂で形成されている。支持体19の他端は、電磁界シールド体17に固定される。このような構成から、支持体19は保持体15と電磁界シールド体17との間に介在する。電磁界シールド体17は平面コイル13で受電される電力により発生する電磁界が外部へ漏洩することを防いでいる。本実施の形態では金属製(例えば鉄製)である。なお、図1では、内部構造をわかりやすくするために、電磁界シールド体17の正面の一部を切り欠いている。 The support 19 is also made of a resin that is a nonmagnetic nonconductive material, like the holder 15. The other end of the support 19 is fixed to the electromagnetic field shield 17. With such a configuration, the support body 19 is interposed between the holding body 15 and the electromagnetic field shield body 17. The electromagnetic field shield 17 prevents the electromagnetic field generated by the power received by the planar coil 13 from leaking to the outside. In this embodiment, it is made of metal (for example, iron). In FIG. 1, a part of the front surface of the electromagnetic field shield body 17 is notched in order to make the internal structure easy to understand.
 また、電磁界シールド体17は、図1のように箱型の形状に限定されるものではなく、平面コイル13で発生する電磁界の外部へのシールド効果があれば、他の形状、例えば半球状や多角形状などでもよい。すなわち、電磁界シールド体17は、保持体15を覆うように形成されている。 Further, the electromagnetic field shield body 17 is not limited to the box shape as shown in FIG. 1, and may have other shapes, for example, a hemisphere, as long as the electromagnetic field generated by the planar coil 13 has a shielding effect to the outside. Or a polygonal shape. That is, the electromagnetic field shield body 17 is formed so as to cover the holding body 15.
 さらに、平面コイル13を有する機器の筐体が金属製であれば、この筐体を電磁界シールド体17としてもよい。すなわち、電磁界シールド体17は、受電装置を構成する機器の筐体でもよい。この場合、電磁界シールド体17を別途設ける必要がなくなり、電力伝送装置11の小型化が図れる。 Furthermore, if the casing of the device having the planar coil 13 is made of metal, this casing may be used as the electromagnetic field shield body 17. That is, the electromagnetic field shield body 17 may be a housing of a device that constitutes the power receiving device. In this case, it is not necessary to separately provide the electromagnetic field shield body 17, and the power transmission device 11 can be downsized.
 次に、平面コイル13に電力を供給する送電装置として動作するコイル装置50の構成について説明する。図1に示すように、平面コイル13と対向する位置には、コイル21が配置されている。コイル21は平面コイル13と同様にリッツ線を渦巻状に捲回することにより構成されている。すなわち、本実施の形態では、平面コイル13とコイル21は同形状である。ただし、コイル21の形状は平面コイル13と同形状に限定されるものではなく、平面コイル13より大きい構成や小さい構成であってもよい。また、コイル21は、平面形状に限定されるものではなく、任意の軸方向に捲回された立体形状(例えばスパイラル形状)のコイル構成であってもよい。なお、コイル21は送電回路(図示せず)と電気的に接続されている。コイル21のリッツ線は、保持体23に設けられた溝に挿入されている。本実施の形態では、保持体23は保持体15と同じく樹脂製であり、同じ構成である。ただし、上述のように、保持体23は保持体15と同じ構成でなくてもよい。 Next, the configuration of the coil device 50 that operates as a power transmission device that supplies power to the planar coil 13 will be described. As shown in FIG. 1, a coil 21 is disposed at a position facing the planar coil 13. The coil 21 is formed by winding a litz wire in a spiral like the planar coil 13. That is, in the present embodiment, the planar coil 13 and the coil 21 have the same shape. However, the shape of the coil 21 is not limited to the same shape as the planar coil 13 and may be larger or smaller than the planar coil 13. The coil 21 is not limited to a planar shape, and may have a three-dimensional (for example, spiral) coil configuration wound in an arbitrary axial direction. The coil 21 is electrically connected to a power transmission circuit (not shown). The litz wire of the coil 21 is inserted into a groove provided in the holding body 23. In the present embodiment, the holding body 23 is made of resin like the holding body 15 and has the same configuration. However, the holding body 23 may not have the same configuration as the holding body 15 as described above.
 保持体23の下部(コイル21が設けられない側)にはフェライトシートで形成されている磁性体25が配置されている。磁性体25の下部には、金属製の電磁界シールド体27が配置されている。 A magnetic body 25 formed of a ferrite sheet is disposed below the holding body 23 (on the side where the coil 21 is not provided). A metal electromagnetic field shield body 27 is disposed below the magnetic body 25.
 送電側のコイル21は、特定の場所に固定するために薄型である。従って、コイル21からの漏洩磁束を低減させる磁性体25を配置している。送電側のコイル21は、特定の場所に固定されるが、平面コイル13は特定の場所には固定されない。従って、平面コイル13を内蔵する機器をコイル21の上部に配置するだけで、コイル21から平面コイル13へ非接触で電力を伝送できる。この際、平面コイル13とコイル21との間に隙間があっても、電力が伝送できる。 The coil 21 on the power transmission side is thin so as to be fixed at a specific place. Therefore, the magnetic body 25 that reduces the leakage magnetic flux from the coil 21 is disposed. The coil 21 on the power transmission side is fixed at a specific location, but the planar coil 13 is not fixed at a specific location. Therefore, electric power can be transmitted from the coil 21 to the planar coil 13 in a non-contact manner only by arranging a device incorporating the planar coil 13 above the coil 21. At this time, even if there is a gap between the planar coil 13 and the coil 21, electric power can be transmitted.
 ここで、平面コイル13の近傍の構成要素は全て、電力伝送に対し無視できる程度の影響しか及ぼさない非磁性非導電性材料である樹脂製である。そのため、平面コイル13においてコイル21に対し位置ずれが発生しても、結合係数やインピーダンスの変化が小さい。従って、受電回路のDC/DCコンバータに流れる電流が変化することによる、効率の低下が抑制される。さらに、コイル21のインピーダンスの変化も小さくなるので、コイル21に接続される送電回路の効率の低下が抑制される。従って、位置ずれに対する電力伝送効率の低下が抑制される。また、コイル21には磁性体25が配置されているため、送電側のコイル21においては、漏洩磁束を低減できる。ゆえに、電力伝送装置11は、位置ずれに対する電力伝送効率の低下の抑制と、漏洩磁束の低減による効率の向上を両立できる。 Here, all the components in the vicinity of the planar coil 13 are made of resin, which is a non-magnetic non-conductive material that has a negligible effect on power transmission. For this reason, even if a positional deviation occurs in the planar coil 13 with respect to the coil 21, the change in the coupling coefficient and impedance is small. Therefore, a decrease in efficiency due to a change in the current flowing through the DC / DC converter of the power receiving circuit is suppressed. Furthermore, since the change in the impedance of the coil 21 is also reduced, a reduction in the efficiency of the power transmission circuit connected to the coil 21 is suppressed. Accordingly, a decrease in power transmission efficiency due to positional deviation is suppressed. Moreover, since the magnetic body 25 is disposed in the coil 21, the leakage magnetic flux can be reduced in the coil 21 on the power transmission side. Therefore, the power transmission device 11 can achieve both the suppression of the decrease in the power transmission efficiency with respect to the displacement and the improvement in the efficiency due to the reduction of the leakage magnetic flux.
 このような構成の電力伝送装置11において、平面コイル13と電磁界シールド体17との距離dに対する、平面コイル13のQ値との関係を図2に示す。なお、横軸は、平面コイル13と電磁界シールド体17との距離dを、縦軸はQ値を示している。 FIG. 2 shows the relationship between the Q value of the planar coil 13 with respect to the distance d between the planar coil 13 and the electromagnetic shielding body 17 in the power transmission device 11 having such a configuration. The horizontal axis indicates the distance d between the planar coil 13 and the electromagnetic field shield body 17, and the vertical axis indicates the Q value.
 平面コイル13と電磁界シールド体17との距離dが大きくなるほどQ値は上がるが、やがてQ値は飽和し、電磁界シールド体17がない場合の平面コイル13のQ値とほぼ等しくなっている。本実施の形態で用いた平面コイル13では、平面コイル13と電磁界シールド体17との距離dがおよそ10cmで飽和する。電磁界シールド体17が平面コイル13に近いほど抵抗値やインダクタンスは下がるので、インダクタンスと比例関係にあるQ値も下がる。従って、平面コイル13と電磁界シールド体17との距離dを大きくするほどQ値は大きくなり飽和する。そのため、Q値が飽和状態となるように支持体19の長さを設計することにより、平面コイル13の効率を高められる。 The Q value increases as the distance d between the planar coil 13 and the electromagnetic field shield body 17 increases, but eventually the Q value saturates and becomes substantially equal to the Q value of the planar coil 13 when there is no electromagnetic field shield body 17. . In the planar coil 13 used in the present embodiment, the distance d between the planar coil 13 and the electromagnetic shielding body 17 is saturated at about 10 cm. Since the resistance value and the inductance decrease as the electromagnetic shielding body 17 is closer to the planar coil 13, the Q value proportional to the inductance also decreases. Therefore, the Q value increases and becomes saturated as the distance d between the planar coil 13 and the electromagnetic field shield 17 increases. Therefore, the efficiency of the planar coil 13 can be increased by designing the length of the support 19 so that the Q value is saturated.
 次に、平面コイル13と電磁界シールド体17との距離dと、平面コイル13の共振周波数fとの関係を図3に示す。なお、横軸は、平面コイル13と電磁界シールド体17との距離dを、縦軸は共振周波数fを示している。 Next, FIG. 3 shows the relationship between the distance d between the planar coil 13 and the electromagnetic shielding body 17 and the resonance frequency f of the planar coil 13. The horizontal axis indicates the distance d between the planar coil 13 and the electromagnetic field shield body 17, and the vertical axis indicates the resonance frequency f.
 平面コイル13と電磁界シールド体17との距離dが大きくなるほど共振周波数fは下がっている。しかし、やがて共振周波数fは飽和し、電磁界シールド体17がない場合の平面コイル13の共振周波数fとほぼ等しくなる。この値は、平面コイル13と、コンデンサ(図示せず)との共振回路における共振周波数fである。本実施の形態では、図3より、平面コイル13と電磁界シールド体17との距離dがおよそ10cmで飽和する。上述のように、電磁界シールド体17が平面コイル13に近いほど抵抗値やインダクタンスは下がる。そのため、インダクタンスと反比例関係にある共振周波数fは上がる。従って、平面コイル13と電磁界シールド体17との距離dを大きくするほど共振周波数fが小さくなり、収束する。そのため、共振周波数fが収束状態となるように支持体19の長さを設計することにより、平面コイル13の効率が高められる。 The resonance frequency f decreases as the distance d between the planar coil 13 and the electromagnetic field shield 17 increases. However, the resonance frequency f eventually becomes saturated and becomes substantially equal to the resonance frequency f of the planar coil 13 when the electromagnetic field shield 17 is not provided. This value is the resonance frequency f in the resonance circuit of the planar coil 13 and a capacitor (not shown). In the present embodiment, as shown in FIG. 3, the distance d between the planar coil 13 and the electromagnetic field shield 17 is saturated at about 10 cm. As described above, the closer the electromagnetic shielding body 17 is to the planar coil 13, the lower the resistance value and inductance. Therefore, the resonance frequency f that is inversely proportional to the inductance increases. Accordingly, as the distance d between the planar coil 13 and the electromagnetic field shield body 17 is increased, the resonance frequency f is decreased and converged. Therefore, the efficiency of the planar coil 13 can be increased by designing the length of the support 19 so that the resonance frequency f is in a converged state.
 これらのことから、平面コイル13と電磁界シールド体17との距離d、すなわち支持体19の長さは10cmとした。これにより、コイル21から平面コイル13への電力伝送効率の低下が抑制される。さらに、平面コイル13とコイル21の位置が合うと、電磁界シールド体17が支持体19により平面コイル13から離れた位置に配されるので、電磁界シールド体17における渦電流損が低減される。これによっても、コイル21から平面コイル13への電力伝送効率の低下が抑制される。 For these reasons, the distance d between the planar coil 13 and the electromagnetic field shield 17, that is, the length of the support 19 was set to 10 cm. Thereby, the fall of the power transmission efficiency from the coil 21 to the planar coil 13 is suppressed. Further, when the positions of the planar coil 13 and the coil 21 are matched, the electromagnetic field shield body 17 is disposed at a position away from the planar coil 13 by the support body 19, so that eddy current loss in the electromagnetic field shield body 17 is reduced. . This also suppresses a decrease in power transmission efficiency from the coil 21 to the planar coil 13.
 なお、例えば平面コイル13と電磁界シールド体17との距離dを5cm程度とすると、図2よりQ値はやや低下し、図3より共振周波数fはやや上昇するが、10cmの場合と比べ、それほど大きな差ではない。しかし、5cm近傍の場合、Q値や共振周波数fは、平面コイル13と電磁界シールド体17との距離dが少しでもずれると、比較的大きく変化する。その結果、支持体19の長さ精度や、保持体15、および電磁界シールド体17との取り付け精度によっては、Q値や共振周波数fにばらつきが発生しやすくなる。そこで、本実施の形態では、支持体19の長さを、上記した精度が悪くてもQ値や共振周波数fにそれほど影響しない10cmとした。 For example, if the distance d between the planar coil 13 and the electromagnetic field shield body 17 is about 5 cm, the Q value slightly decreases from FIG. 2, and the resonance frequency f slightly increases from FIG. It's not a big difference. However, in the case of the vicinity of 5 cm, the Q value and the resonance frequency f change relatively greatly if the distance d between the planar coil 13 and the electromagnetic field shield 17 is slightly shifted. As a result, the Q value and the resonance frequency f are likely to vary depending on the length accuracy of the support 19 and the mounting accuracy with the holding body 15 and the electromagnetic field shield body 17. Therefore, in the present embodiment, the length of the support 19 is set to 10 cm, which does not significantly affect the Q value and the resonance frequency f even if the above-described accuracy is poor.
 なお、上記した数値は一例であって、Q値や共振周波数fや電磁界シールド体17の渦電流損は平面コイル13の大きさ、形状、巻き数等によって変化する。そのため、使用する平面コイル13に対してQ値や共振周波数fや渦電流損を求め、最適な平面コイル13と電磁界シールド体17との距離dを決定すればよい。 The numerical values described above are merely examples, and the Q value, the resonance frequency f, and the eddy current loss of the electromagnetic field shield body 17 vary depending on the size, shape, number of turns, etc. of the planar coil 13. Therefore, the Q value, the resonance frequency f, and the eddy current loss are obtained for the planar coil 13 to be used, and the optimum distance d between the planar coil 13 and the electromagnetic field shield body 17 may be determined.
 上記のコイルの構成上のパラメータに応じて発生する磁界が変わる。また、必要とする電力に応じても磁界が変わる。その結果、それらに応じて距離dが変わる。そのため、距離dを決定するためには、使用するコイルや、伝送する電力に応じて、図2や図3の測定を行えばよい。 ¡The generated magnetic field changes depending on the above-mentioned coil configuration parameters. Also, the magnetic field changes depending on the required power. As a result, the distance d changes accordingly. Therefore, in order to determine the distance d, the measurement of FIGS. 2 and 3 may be performed according to the coil to be used and the electric power to be transmitted.
 以上の構成により、平面コイル13の近傍には磁性体が配されず、電磁界シールド体17と、平面コイル13を有する保持体15と支持体19のみで受電装置40が構成されている。そのため、平面コイル13とコイル21の位置がずれても、結合係数やインピーダンスの変化が小さい。 With the above configuration, the magnetic body is not disposed in the vicinity of the planar coil 13, and the power receiving device 40 is configured only by the electromagnetic field shield body 17, the holding body 15 having the planar coil 13, and the support body 19. For this reason, even if the positions of the planar coil 13 and the coil 21 are shifted, changes in the coupling coefficient and impedance are small.
 さらに、支持体19により、電磁界シールド体17が平面コイル13から離れた位置に配されるので、電磁界シールド体17における渦電流損が低減される。そして、平面コイル13近傍に磁性体を設けない構成のため、平面コイル13の抵抗値とインダクタンスが上がらない。よって、平面コイル13のQ値が低下せず、共振周波数fも下がらない。従って、電磁界シールド体17や磁性体に起因した電力伝送効率の低下が抑制される。これらのことから、電力伝送装置11は、位置ずれが発生しても効率の低下を抑制できる。 Furthermore, since the electromagnetic field shield 17 is disposed at a position away from the planar coil 13 by the support 19, the eddy current loss in the electromagnetic field shield 17 is reduced. Since the magnetic body is not provided in the vicinity of the planar coil 13, the resistance value and inductance of the planar coil 13 do not increase. Therefore, the Q value of the planar coil 13 does not decrease, and the resonance frequency f does not decrease. Therefore, a decrease in power transmission efficiency due to the electromagnetic field shield body 17 and the magnetic body is suppressed. For these reasons, the power transmission device 11 can suppress a decrease in efficiency even if a positional deviation occurs.
 なお、本実施の形態では、受電装置として、平面コイル13を有する非磁性非導電性材料の保持体15と支持体19を用いた。しかし、送電装置も平面コイル13を有する非磁性非導電性材料の保持体15と支持体19を用いてもよい。すなわち、受電装置40は、電力伝送装置11の受電装置としても送電装置としても使用できる。受電装置40を受電装置と送電装置の両方に使用する場合は、送電装置も大型化し、送電装置のコイル21における漏洩磁束も増加する。しかし、位置ずれに対する電力伝送効率の低下が、さらに抑制できる。そのため、大型化しても問題のない用途、例えば駐車場に送電側コイルを埋め込んで電気自動車へ電力を供給する用途等に適用できる。 In this embodiment, a nonmagnetic nonconductive material holder 15 and support 19 having a planar coil 13 are used as a power receiving device. However, the power transmission device may also use the nonmagnetic nonconductive material holder 15 and the support 19 having the planar coil 13. That is, the power receiving device 40 can be used as both a power receiving device and a power transmitting device of the power transmission device 11. When the power receiving device 40 is used for both the power receiving device and the power transmitting device, the power transmitting device is also enlarged, and the leakage magnetic flux in the coil 21 of the power transmitting device is also increased. However, it is possible to further suppress a decrease in power transmission efficiency due to the position shift. Therefore, the present invention can be applied to applications that do not cause a problem even if the size is increased, such as applications that supply power to an electric vehicle by embedding a power transmission coil in a parking lot.
 また、本実施の形態では、受電装置として、平面コイル13を有する非磁性非導電性材料の保持体15と支持体19を用い、送電装置として、コイル21を有する保持体23と、磁性体25と、電磁界シールド体27を用いた。しかし、これら受電装置、および送電装置は逆の構成でもよい。すなわち、図1において、平面コイル13からコイル21へ電力を供給してもよい。要するに、受電装置としてコイル装置50を用い、送電装置として受電装置40を用いてもよい。この場合も、電力伝送装置11は、位置ずれが発生しても電力伝送効率の低下を抑制できる。 In the present embodiment, the non-magnetic non-conductive material holding body 15 and the support body 19 having the planar coil 13 are used as the power receiving apparatus, and the holding body 23 having the coil 21 and the magnetic body 25 are used as the power transmission apparatus. The electromagnetic field shield body 27 was used. However, the power receiving device and the power transmitting device may have opposite configurations. That is, in FIG. 1, power may be supplied from the planar coil 13 to the coil 21. In short, the coil device 50 may be used as the power receiving device, and the power receiving device 40 may be used as the power transmitting device. Also in this case, the power transmission device 11 can suppress a decrease in power transmission efficiency even if a positional deviation occurs.
 また、本実施の形態ではコイル21を固定しているが、コイル21は可動式でもよい。この場合も、電力伝送装置11は、平面コイル13とコイル21との間で位置ずれが発生しても電力伝送効率の低下を抑制できる。 In addition, although the coil 21 is fixed in the present embodiment, the coil 21 may be movable. Also in this case, the power transmission device 11 can suppress a decrease in power transmission efficiency even if a positional deviation occurs between the planar coil 13 and the coil 21.
 また、本実施の形態では、保持体15と支持体19に用いられる非磁性非導電性材料として樹脂を適用したが、これに限定されるものではなく、例えばセラミックスでもよい。一般にセラミックスは周囲温度の変化による熱膨張が樹脂に比べ小さいので、温度変化が大きい環境下で電力伝送装置を使用する場合に平面コイル13の保持精度が向上する。但し、セラミックスの加工(特に保持体15の溝加工)は樹脂に比べ困難であるためコストが高くなる。従って、使用環境やコストを勘案して最適な材料を選択すればよい。 In the present embodiment, resin is applied as the non-magnetic non-conductive material used for the holding body 15 and the support body 19, but the present invention is not limited to this. For example, ceramics may be used. In general, since the thermal expansion of ceramics due to changes in ambient temperature is smaller than that of resin, the holding accuracy of the planar coil 13 is improved when the power transmission device is used in an environment where the temperature change is large. However, the processing of ceramics (particularly the groove processing of the holding body 15) is more difficult than resin, so the cost is high. Therefore, an optimal material may be selected in consideration of the use environment and cost.
 また、本実施の形態では、支持体19を丸棒状としたが、これに限定されず、角棒状でもよいし、平板状でもよい。すなわち、支持体19は、保持体15と電磁界シールド体17との間に介在し、平面コイル13と電磁界シールド体17との距離dを維持できるものであれば、どのような形状でもよい。 Further, in the present embodiment, the support body 19 has a round bar shape, but is not limited thereto, and may have a square bar shape or a flat plate shape. That is, the support body 19 may have any shape as long as it is interposed between the holding body 15 and the electromagnetic field shield body 17 and can maintain the distance d between the planar coil 13 and the electromagnetic field shield body 17. .
 (実施の形態2)
 図4は、本発明の実施の形態2における電力伝送装置111の一部切り欠き斜視図である。電力伝送装置111は、受電装置としての受電装置140と、送電装置としてのコイル装置150で構成されている。電力伝送装置111が、実施の形態1の電力伝送装置11と異なる点は、支持体190が可撓性を有しており、保持体15に第1磁石31が設けられており、保持体23の第1磁石31と対向する位置に第2磁石33が設けられている点である。第1の磁石31と第2の磁石33は、互いに引き付け合うように着磁している。
(Embodiment 2)
FIG. 4 is a partially cutaway perspective view of power transmission device 111 according to Embodiment 2 of the present invention. The power transmission device 111 includes a power reception device 140 as a power reception device and a coil device 150 as a power transmission device. The power transmission device 111 is different from the power transmission device 11 of the first embodiment in that the support body 190 has flexibility, the holding body 15 is provided with the first magnet 31, and the holding body 23. The second magnet 33 is provided at a position facing the first magnet 31. The first magnet 31 and the second magnet 33 are magnetized so as to attract each other.
 この構成により、平面コイル13とコイル21に位置ずれがあっても、第1磁石31と第2磁石33とが引き付け合う。さらに支持体19が可撓性を有するので、支持体19が第1磁石31と第2磁石33との引き付け合いにより撓むことで平面コイル13とコイル21の位置ずれが吸収されやすくなる。その結果、位置ずれに対する電力伝送効率の低下をさらに抑制できる。 With this configuration, even if the planar coil 13 and the coil 21 are misaligned, the first magnet 31 and the second magnet 33 attract each other. Furthermore, since the support body 19 has flexibility, the support body 19 bends due to the attraction between the first magnet 31 and the second magnet 33, so that the positional deviation between the planar coil 13 and the coil 21 is easily absorbed. As a result, it is possible to further suppress a decrease in power transmission efficiency due to the positional shift.
 以下、より具体的に本実施の形態の構成、動作について説明する。なお、図4において図1と同じ構成には同じ符号を付してその説明を省略する。 Hereinafter, the configuration and operation of the present embodiment will be described more specifically. In FIG. 4, the same components as those in FIG.
 支持体190は可撓性を有する樹脂で構成されている。従って、支持体190は外部からの応力に応じて、曲がり撓む。但し、可撓性が大きく、曲がりやすい樹脂を用いると、電力伝送装置111を移動させるたびに、その振動で平面コイル13が揺れ動く。その結果、保持体15が電磁界シールド体17に当たることによる異音が発生する場合がある。あるいは、保持体15と支持体190との取り付け部、あるいは支持体190と電磁界シールド体17との取り付け部に不要な応力が印加されることによる破断等の可能性が高まる。従って、第1磁石31と第2磁石33とが引き付け合う磁力で撓み、かつ、十分な強度を有する樹脂材料、および寸法で支持体190が形成される。 The support 190 is made of a flexible resin. Therefore, the support body 190 bends and bends according to the external stress. However, if a flexible and easy-to-bend resin is used, the planar coil 13 is shaken by the vibration each time the power transmission device 111 is moved. As a result, abnormal noise may occur due to the holding body 15 hitting the electromagnetic field shield body 17. Or the possibility of the fracture | rupture etc. by applying unnecessary stress to the attachment part of the holding body 15 and the support body 190 or the attachment part of the support body 190 and the electromagnetic field shield body 17 increases. Accordingly, the support 190 is formed with a resin material and dimensions that are bent by the magnetic force attracted by the first magnet 31 and the second magnet 33 and have sufficient strength.
 なお、実施の形態1では、支持体19の材料がセラミックスでもよいと記載したが、一般にセラミックスは樹脂より硬いため、必要な可撓性が得られない可能性がある。従って、本実施の形態においては、支持体190の材料は樹脂が望ましい。 In the first embodiment, it has been described that the material of the support 19 may be ceramics. However, since ceramics are generally harder than resin, the necessary flexibility may not be obtained. Therefore, in the present embodiment, the material of the support 190 is preferably a resin.
 また、実施の形態1では、支持体19の形状が平板状でもよいと記載したが、平板状にすると、第1磁石31と第2磁石33とが引き付け合う磁力による、保持体15の可動範囲が狭くなる可能性が大きくなる。従って、支持体190は丸棒状や角棒状が望ましい。 In Embodiment 1, it has been described that the shape of the support 19 may be a flat plate. However, when the flat plate is formed, the movable range of the holding body 15 by the magnetic force attracting the first magnet 31 and the second magnet 33 is obtained. Is likely to be narrower. Therefore, the support 190 is preferably a round bar or a square bar.
 次に、第1磁石31について説明する。第1磁石31は、永久磁石であり、保持体15における、平面コイル13側の四隅に固定される。なお、第1磁石31は保持体15の一部に設ければよいが、平面コイル13とコイル21との間の電力伝送時に発生する磁束にできるだけ影響を与えないようにするのが好ましい。そのため、保持体15が四角形状で、平面コイル13が、保持体15の中心から渦巻状に形成されている場合、第1磁石31は、保持体15における平面コイル13から最も離れた位置である、保持体15の四隅に設けられる。 Next, the first magnet 31 will be described. The first magnet 31 is a permanent magnet and is fixed to the four corners of the holding body 15 on the planar coil 13 side. The first magnet 31 may be provided on a part of the holding body 15, but it is preferable that the first magnet 31 does not affect the magnetic flux generated during power transmission between the planar coil 13 and the coil 21 as much as possible. Therefore, when the holding body 15 has a quadrangular shape and the planar coil 13 is formed in a spiral shape from the center of the holding body 15, the first magnet 31 is the position farthest from the planar coil 13 in the holding body 15. , Provided at the four corners of the holding body 15.
 また、第1磁石31の形状は、四角形状としたが、これに限定されるものではなく、多角形状や円柱状でもよい。 Further, although the shape of the first magnet 31 is a quadrangular shape, the shape is not limited to this and may be a polygonal shape or a cylindrical shape.
 次に、第2磁石33について説明する。第2磁石33は、永久磁石であり、保持体23の、第1磁石31と対向する位置に設けられる。具体的には、保持体23の寸法は保持体15と同じであるので、第2磁石33は保持体23の四隅に設けられる。なお、保持体15と保持体23との寸法が異なる場合は、平面コイル13やコイル21から最も離れており、かつ、第1磁石31と第2磁石33とが対向するような保持体15、23の位置に、第1磁石31と第2磁石33を設ければよい。 Next, the second magnet 33 will be described. The second magnet 33 is a permanent magnet and is provided at a position of the holding body 23 facing the first magnet 31. Specifically, since the size of the holding body 23 is the same as that of the holding body 15, the second magnets 33 are provided at the four corners of the holding body 23. In addition, when the dimensions of the holding body 15 and the holding body 23 are different, the holding body 15 that is farthest from the planar coil 13 and the coil 21 and the first magnet 31 and the second magnet 33 face each other, What is necessary is just to provide the 1st magnet 31 and the 2nd magnet 33 in the position of 23. FIG.
 なお、第1磁石31と第2磁石33の磁極は、平面コイル13とコイル21が対向した時に引き付け合えば、どのような磁極の組み合わせであってもよい。例えば、第1磁石31の底面(第2磁石33と対向する面)をN極とし、第2磁石33の上面(第1磁石31と対向する面)をS極とすればよい。また、この逆の磁極であってもよい。さらに、保持体15の上に配置された隣り合う第1磁石31の磁極が交互に異なるようにしてもよい。この場合、隣り合う第2磁石33の磁極は、第1磁石31と引き付け合うように、交互に異なるようにする。 Note that the magnetic poles of the first magnet 31 and the second magnet 33 may be any combination of magnetic poles as long as they attract each other when the planar coil 13 and the coil 21 face each other. For example, the bottom surface of the first magnet 31 (the surface facing the second magnet 33) may be an N pole, and the upper surface of the second magnet 33 (the surface facing the first magnet 31) may be an S pole. Moreover, this reverse magnetic pole may be sufficient. Furthermore, the magnetic poles of the adjacent first magnets 31 arranged on the holding body 15 may be alternately different. In this case, the magnetic poles of the adjacent second magnets 33 are alternately different so as to attract each other.
 また、第1磁石31と第2磁石33の数は、上記したように、それぞれ4個ずつとしたが、これに限定されるものではなく、第1磁石31と第2磁石33が同じ数であれば、4個以外でもよい。但し、数が少ないと、平面コイル13とコイル21との位置ずれ補正精度が低下する。一方、数が多いと、第1磁石31と第2磁石33からの磁力の影響が大きくなる。そのため、平面コイル13とコイル21の大きさや伝送電力等の電気的仕様に応じて、磁石の数を決定すればよい。 In addition, the number of the first magnets 31 and the second magnets 33 is four each as described above. However, the number of the first magnets 31 and the second magnets 33 is the same. If it is, it may be other than four. However, when the number is small, the positional deviation correction accuracy between the planar coil 13 and the coil 21 is lowered. On the other hand, when there are many numbers, the influence of the magnetic force from the 1st magnet 31 and the 2nd magnet 33 will become large. Therefore, what is necessary is just to determine the number of magnets according to electrical specifications, such as the magnitude | size of the planar coil 13 and the coil 21, and transmission power.
 次に、このような電力伝送装置111の電力伝送時の動作について述べる。まず、コイル21は実施の形態1と同様に、特定の場所に固定され、平面コイル13は特定の場所に固定されず、移動可能な機器に内蔵される。従って、平面コイル13を内蔵する機器をコイル21の上部に配置すると、実施の形態1と同様に電力伝送が可能となる。平面コイル13とコイル21がある程度対向する位置に配置されると、第1磁石31および第2磁石33が引き付け合う。これにより、支持体190は、第1磁石31と第2磁石33による磁力により撓む。その結果、電磁界シールド体17が、コイル21が固定された特定の場所よりずれていても、平面コイル13はコイル21と対向するように動く。これにより、平面コイル13とコイル21との位置がずれていても、支持体190の撓むことができる範囲で自動的に位置ずれが小さくなる。ゆえに、実施の形態1の構成よりもさらに平面コイル13とコイル21との位置精度が向上し、漏洩磁束が低減されるので、効率低下が抑制される。 Next, the operation of the power transmission device 111 during power transmission will be described. First, the coil 21 is fixed at a specific place as in the first embodiment, and the planar coil 13 is not fixed at a specific place but is built in a movable device. Therefore, when a device incorporating the planar coil 13 is disposed on the upper portion of the coil 21, power transmission can be performed as in the first embodiment. When the planar coil 13 and the coil 21 are arranged at positions facing each other to some extent, the first magnet 31 and the second magnet 33 attract each other. Thereby, the support 190 is bent by the magnetic force generated by the first magnet 31 and the second magnet 33. As a result, even if the electromagnetic field shield 17 is displaced from a specific place where the coil 21 is fixed, the planar coil 13 moves so as to face the coil 21. Thereby, even if the positions of the planar coil 13 and the coil 21 are shifted, the positional shift is automatically reduced within a range in which the support 190 can be bent. Therefore, since the positional accuracy of the planar coil 13 and the coil 21 is further improved and the leakage magnetic flux is reduced as compared with the configuration of the first embodiment, a decrease in efficiency is suppressed.
 また、このような構成とすることで、平面コイル13を内蔵する機器が、モータを内蔵することにより微小に振動が発生する構造であっても、振動による平面コイル13とコイル21との位置ずれを低減することができる。そのため、効率低下を抑制した電力伝送が可能となる。 Further, with such a configuration, even if the device incorporating the planar coil 13 has a structure in which minute vibration is generated by incorporating the motor, the positional deviation between the planar coil 13 and the coil 21 due to the vibration. Can be reduced. As a result, power transmission with reduced efficiency can be achieved.
 以上の構成、動作により、支持体190が第1磁石31と第2磁石33との引き付け合いにより撓むことで平面コイル13とコイル21の位置ずれが吸収されやすくなる。その結果、電力伝送装置111は、位置ずれに対する、電力伝送効率の低下をさらに抑制できる。 With the above configuration and operation, the support 190 is bent by the attraction between the first magnet 31 and the second magnet 33, so that the positional deviation between the planar coil 13 and the coil 21 is easily absorbed. As a result, the power transmission device 111 can further suppress a decrease in power transmission efficiency with respect to a positional shift.
 なお、本実施の形態では、第1磁石31は、保持体15の一部であって、平面コイル13から最も離れた位置に設けられる構成としたが、第1磁石31や第2磁石33の発生する磁力が平面コイル13やコイル21にほとんど影響しない範囲であれば、第1磁石31の位置が平面コイル13から最も離れた位置に限定されるものではない。 In the present embodiment, the first magnet 31 is a part of the holding body 15 and is provided at a position farthest from the planar coil 13, but the first magnet 31 and the second magnet 33 are not provided. The position of the first magnet 31 is not limited to the position farthest from the planar coil 13 as long as the generated magnetic force is in a range that hardly affects the planar coil 13 or the coil 21.
 また、本実施の形態では、第1磁石31と第2磁石33の両方に永久磁石を用いたが、これに限定されるものではなく、いずれか一方、あるいは両方が電磁石であってもよい。この場合、電磁石を駆動するための電力が必要となるが、電磁石の電力をオフにすることで、例えば鉄を含む異物が吸着する可能性を低減できる。 In this embodiment, permanent magnets are used for both the first magnet 31 and the second magnet 33. However, the present invention is not limited to this, and either one or both may be electromagnets. In this case, electric power for driving the electromagnet is required, but by turning off the electric power of the electromagnet, for example, the possibility that foreign matter including iron is adsorbed can be reduced.
 (実施の形態3)
 図5は、本発明の実施の形態3における電力伝送装置211の一部切り欠き斜視図である。電力伝送装置211は、受電装置としての受電装置240と、送電装置としてのコイル装置50で構成されている。電力伝送装置211は、平面コイル13と、平面コイル13を有する保持体15と、保持体15を固定する電磁界シールド体17と、を有する。保持体15は非磁性非導電性材料からなり、平面コイル13と電磁界シールド体17との間に空間が設けられている。
(Embodiment 3)
FIG. 5 is a partially cutaway perspective view of power transmission device 211 according to Embodiment 3 of the present invention. The power transmission device 211 includes a power receiving device 240 as a power receiving device and a coil device 50 as a power transmitting device. The power transmission device 211 includes a planar coil 13, a holding body 15 having the planar coil 13, and an electromagnetic field shield body 17 that fixes the holding body 15. The holding body 15 is made of a nonmagnetic nonconductive material, and a space is provided between the planar coil 13 and the electromagnetic field shield body 17.
 平面コイル13の近傍に磁性体が配置されておらず、電磁界シールド体17に対して、非磁性非導電性材料で形成されている保持体15のみで平面コイル13が固定されている。従って、平面コイル13とコイル21との位置がずれても、結合係数やインピーダンスの変化が小さいため、位置ずれに対する電力伝送効率の低下が抑制される。 The magnetic body is not disposed in the vicinity of the planar coil 13, and the planar coil 13 is fixed to the electromagnetic field shield body 17 only by the holding body 15 formed of a nonmagnetic nonconductive material. Therefore, even if the positions of the planar coil 13 and the coil 21 are deviated, a change in the coupling coefficient and impedance is small, so that a reduction in power transmission efficiency due to the misregistration is suppressed.
 さらに、平面コイル13と電磁界シールド体17との間に空間を設けているため、電磁界シールド体17が平面コイル13から離れた位置に配される。従って、電磁界シールド体17における渦電流損が低減される。そして、平面コイル13の近傍に磁性体を設けない構成のため、平面コイル13の抵抗値とインダクタンスが上がらない。よって、平面コイル13のQ値が低下せず、共振周波数fも下がらない。従って、電磁界シールド体17や磁性体に起因した電力伝送効率の低下が抑制される。これらのことから、電力伝送装置211は、位置ずれが発生しても電力伝送効率の低下を抑制できる。 Furthermore, since a space is provided between the planar coil 13 and the electromagnetic field shield body 17, the electromagnetic field shield body 17 is arranged at a position away from the planar coil 13. Therefore, the eddy current loss in the electromagnetic field shield body 17 is reduced. Since the magnetic body is not provided near the planar coil 13, the resistance value and inductance of the planar coil 13 do not increase. Therefore, the Q value of the planar coil 13 does not decrease, and the resonance frequency f does not decrease. Therefore, a decrease in power transmission efficiency due to the electromagnetic field shield body 17 and the magnetic body is suppressed. For these reasons, the power transmission device 211 can suppress a decrease in power transmission efficiency even if a positional shift occurs.
 以下、より具体的に本実施の形態の構成、動作について説明する。なお、図5において図1と同じ構成には同じ符号を付してその説明を省略する。 Hereinafter, the configuration and operation of the present embodiment will be described more specifically. In FIG. 5, the same components as those in FIG.
 図5において、保持体15は電磁界シールド体17に固定されている。具体的には、図5における電磁界シールド体17の壁面に保持体15の周囲が固着される。従って、図1における支持体19を用いなくてもよい。なお、電磁界シールド体17の壁面と保持体15の周囲とは、例えば接着剤によって固着されてもよいし、ネジで固定されてもよい。平面コイル13の上方向には、電磁界シールド体17との間に空間が設けられている。そして、平面コイル13から電磁界シールド体17の上面との間隔、すなわち距離dは、図1と同様に10cmとしている。この距離dの決定方法は実施の形態1で述べた方法と同様である。 5, the holding body 15 is fixed to the electromagnetic field shield body 17. Specifically, the periphery of the holding body 15 is fixed to the wall surface of the electromagnetic field shield body 17 in FIG. Accordingly, the support 19 in FIG. 1 may not be used. In addition, the wall surface of the electromagnetic field shield body 17 and the periphery of the holding body 15 may be fixed by an adhesive, for example, or may be fixed by screws. A space is provided between the planar coil 13 and the electromagnetic field shield body 17. The distance between the planar coil 13 and the upper surface of the electromagnetic field shield body 17, that is, the distance d is set to 10 cm as in FIG. The method for determining the distance d is the same as the method described in the first embodiment.
 このような構成とすることで、保持体15は、その周囲が、電磁界シールド体17の壁面と当接するまで広がった形状となる。ここで、保持体15は実施の形態1と同様に非磁性非導電性材料で形成されている。そのため、本実施の形態の平面コイル13は、磁気的には実施の形態1と同じ効果を有する。上記以外の構成は実施の形態1と同じである。 By adopting such a configuration, the holding body 15 has a shape that expands until the periphery thereof comes into contact with the wall surface of the electromagnetic field shield body 17. Here, the holding body 15 is formed of a nonmagnetic nonconductive material as in the first embodiment. Therefore, the planar coil 13 of the present embodiment has the same effect as the first embodiment magnetically. The configuration other than the above is the same as that of the first embodiment.
 これらのことから、電力伝送装置211は、図1の電力伝送装置11と同様に、平面コイル13とコイル21の位置がずれても結合係数やインピーダンスの変化が小さいため、位置ずれに対する電力伝送効率の低下が抑制される。また、平面コイル13と電磁界シールド体17との間に空間が設けられるため、電磁界シールド体17が平面コイル13から離れた位置に配され、電磁界シールド体17における渦電流損が低減される。そして、平面コイル13の近傍に磁性体が設けられていないため、平面コイル13の抵抗値とインダクタンスが上がらない。よって、平面コイル13のQ値が低下せず、共振周波数fも下がらない。従って、電磁界シールド体17や磁性体に起因した電力伝送効率の低下が抑制される。以上の構成により、図5の構成においても、電力伝送装置211は、位置ずれが発生しても電力伝送効率の低下を抑制できる。 For these reasons, the power transmission device 211 has a small change in coupling coefficient and impedance even if the positions of the planar coil 13 and the coil 21 are shifted, similarly to the power transmission device 11 of FIG. Is suppressed. Further, since a space is provided between the planar coil 13 and the electromagnetic field shield body 17, the electromagnetic field shield body 17 is disposed at a position away from the planar coil 13, and eddy current loss in the electromagnetic field shield body 17 is reduced. The And since the magnetic body is not provided in the vicinity of the planar coil 13, the resistance value and inductance of the planar coil 13 do not increase. Therefore, the Q value of the planar coil 13 does not decrease, and the resonance frequency f does not decrease. Therefore, a decrease in power transmission efficiency due to the electromagnetic field shield body 17 and the magnetic body is suppressed. With the above configuration, also in the configuration of FIG. 5, the power transmission device 211 can suppress a decrease in power transmission efficiency even if a positional deviation occurs.
 さらに、本実施の形態の電力伝送装置211では、図1の支持体19が不要となるため、簡単な構成とすることができる。 Furthermore, the power transmission device 211 of the present embodiment does not require the support 19 of FIG.
 なお、本実施の形態においても、実施の形態1と同様に、電磁界シールド体17は、平面コイル13を有する機器の筐体が金属製であれば、電磁界シールド体17を筐体としてもよい。すなわち、電磁界シールド体17は、受電装置を構成する機器の筐体でもよい。この場合も、実施の形態1と同様に小型化が図れる。 Also in the present embodiment, similarly to the first embodiment, the electromagnetic field shield body 17 is not limited to the electromagnetic field shield body 17 if the housing of the device having the planar coil 13 is made of metal. Good. That is, the electromagnetic field shield body 17 may be a housing of a device that constitutes the power receiving device. In this case as well, the size can be reduced as in the first embodiment.
 また、本実施の形態では、保持体15の全周囲を電磁界シールド体17の壁面に固定したが、保持体15の側面の一部を電磁界シールド体17の壁面の一部に固定してもよい。この場合、固定強度は低下するが、電力伝送装置211の作成が容易となる。従って、例えば振動が少なく、固定強度が低くても保持体15の固定が十分に可能な用途であれば、保持体15の周囲の一部を固定すればよい。 In the present embodiment, the entire periphery of the holding body 15 is fixed to the wall surface of the electromagnetic field shielding body 17, but a part of the side surface of the holding body 15 is fixed to a part of the wall surface of the electromagnetic field shielding body 17. Also good. In this case, the fixed strength is reduced, but the power transmission device 211 can be easily created. Therefore, for example, if there is less vibration and the fixing body 15 can be sufficiently fixed even if the fixing strength is low, a part of the periphery of the holding body 15 may be fixed.
 同様に、保持体15の周囲の一部に、例えば突起を設け、突起と壁面との間のみを固着することで、保持体15を電磁界シールド体17に固定してもよい。この場合も、固定強度は低下するので、振動が少ない用途に電力伝送装置211を適用すればよい。また、突起を設けることで、保持体15と電磁界シールド体17との間の空間は外気と連通するので、例えば大電力を扱う用途で、平面コイル13が熱を持つ場合は、突起の周囲へ積極的な外気導入を行うことにより、平面コイル13を冷却できる。 Similarly, the holding body 15 may be fixed to the electromagnetic field shielding body 17 by providing, for example, a protrusion on a part of the periphery of the holding body 15 and fixing only between the protrusion and the wall surface. Also in this case, since the fixing strength is lowered, the power transmission device 211 may be applied to an application with less vibration. Further, by providing the protrusion, the space between the holding body 15 and the electromagnetic field shield body 17 communicates with the outside air. The planar coil 13 can be cooled by positively introducing outside air.
 なお、図1、および図4に示すように、保持体15の外周全部と電磁界シールド体17の壁面との間には空隙が存在するため、上記した外気導入による平面コイル13の冷却構成については、実施の形態1、2においても適用できる。 As shown in FIGS. 1 and 4, since there is a gap between the entire outer periphery of the holding body 15 and the wall surface of the electromagnetic field shield body 17, the cooling configuration of the planar coil 13 by introducing the outside air described above. Can also be applied to the first and second embodiments.
 本発明にかかる電力伝送装置は、位置ずれが発生しても電力伝送効率の低下を抑制することができるので、特に非接触給電用の電力伝送装置等として有用である。 The power transmission device according to the present invention is particularly useful as a power transmission device for non-contact power feeding and the like because it can suppress a decrease in power transmission efficiency even if a positional shift occurs.
 11,111,211  電力伝送装置
 13  平面コイル
 15,23  保持体
 17,27  電磁界シールド体
 19,190  支持体
 21  コイル
 31  第1磁石
 33  第2磁石
 40,140,240  受電装置
 50,150  コイル装置
11, 111, 211 Power transmission device 13 Planar coil 15, 23 Holding body 17, 27 Electromagnetic field shield body 19, 190 Support body 21 Coil 31 First magnet 33 Second magnet 40, 140, 240 Power receiving device 50, 150 Coil device

Claims (15)

  1. 第1のコイルと、
    前記第1のコイルを保持し、非磁性非導電性材料で形成されている第1の保持体と、
    前記第1の保持体を覆う第1の電磁界シールド体と
    を有し、
    前記第1のコイルと、前記第1の電磁界シールド体との間に空間が設けられている
    受電装置。
    A first coil;
    A first holder that holds the first coil and is formed of a non-magnetic non-conductive material;
    A first electromagnetic shielding body covering the first holding body,
    A power receiving device in which a space is provided between the first coil and the first electromagnetic shielding body.
  2. 前記第1の保持体の側面の少なくとも一部が前記第1の電磁界シールド体の壁面の一部と固着されている
    請求項1に記載の受電装置。
    The power receiving device according to claim 1, wherein at least a part of a side surface of the first holding body is fixed to a part of a wall surface of the first electromagnetic field shield body.
  3. 非磁性非導電性材料で形成され、前記第1の保持体に固定された第1端と、前記第1の電磁界シールド体に固定された第2端とを有する支持体
    をさらに備えた
    請求項1に記載の受電装置。
    A support body formed of a nonmagnetic nonconductive material and having a first end fixed to the first holding body and a second end fixed to the first electromagnetic field shield body. Item 14. The power receiving device according to Item 1.
  4. 前記第1の電磁界シールド体は、前記受電装置を構成する機器の筐体である
    請求項1に記載の受電装置。
    The power receiving device according to claim 1, wherein the first electromagnetic field shield body is a housing of a device constituting the power receiving device.
  5. 第1のコイルと、
    前記第1のコイルを保持し、非磁性非導電性材料で形成されている第1の保持体と、
    前記第1の保持体を覆う第1の電磁界シールド体と
    を有し、
    前記第1のコイルと、前記第1の電磁界シールド体との間に空間が設けられている
    送電装置。
    A first coil;
    A first holder that holds the first coil and is formed of a non-magnetic non-conductive material;
    A first electromagnetic shielding body covering the first holding body,
    A power transmission device in which a space is provided between the first coil and the first electromagnetic shielding body.
  6. 前記第1の保持体の側面の少なくとも一部が前記第1の電磁界シールド体の壁面の一部と固着されている
    請求項5に記載の送電装置。
    The power transmission device according to claim 5, wherein at least a part of a side surface of the first holding body is fixed to a part of a wall surface of the first electromagnetic field shield body.
  7. 非磁性非導電性材料で形成され、前記第1の保持体に固定された第1端と、前記第1の電磁界シールド体に固定された第2端とを有する支持体
    をさらに備えた
    請求項5に記載の送電装置。
    A support body formed of a nonmagnetic nonconductive material and having a first end fixed to the first holding body and a second end fixed to the first electromagnetic field shield body. Item 6. The power transmission device according to Item 5.
  8. 前記第1の電磁界シールド体は、前記送電装置を構成する機器の筐体である
    請求項5に記載の送電装置。
    The power transmission device according to claim 5, wherein the first electromagnetic field shield body is a housing of a device constituting the power transmission device.
  9.  第1のコイルと、
     前記第1のコイルを保持し、非磁性非導電性材料で形成されている第1の保持体と、
     前記第1の保持体を覆う第1の電磁界シールド体と
    を有する第1の装置と、
     前記第1のコイルに対向するように配置される第2のコイルと、
     前記第2のコイルを保持する第2の保持体と、
     前記第2の保持体の、前記第2のコイルを保持する面の反対側に設置された磁性体と、
     前記磁性体の、前記第2の保持体に対向する面の反対側に設置された第2の電磁界シールド体
    を有する第2の装置と、
    を備え、
    前記第1のコイルと、前記第1の電磁界シールド体との間に空間が設けられている
    電力伝送装置。
    A first coil;
    A first holder that holds the first coil and is formed of a non-magnetic non-conductive material;
    A first device having a first electromagnetic shielding body covering the first holding body;
    A second coil arranged to face the first coil;
    A second holding body for holding the second coil;
    A magnetic body installed on the opposite side of the surface holding the second coil of the second holding body;
    A second device having a second electromagnetic field shield disposed on the opposite side of the surface of the magnetic body facing the second holding body;
    With
    A power transmission device in which a space is provided between the first coil and the first electromagnetic shielding body.
  10. 前記第1の保持体の側面の少なくとも一部が前記第1の電磁界シールド体の壁面の一部と固着されている
    請求項9に記載の電力伝送装置。
    The power transmission device according to claim 9, wherein at least a part of a side surface of the first holding body is fixed to a part of a wall surface of the first electromagnetic field shield body.
  11. 非磁性非導電性材料で形成され、前記第1の保持体に固定された第1端と、前記第1の電磁界シールド体に固定された第2端とを有する支持体
    をさらに備えた
    請求項9に記載の電力伝送装置。
    A support body formed of a nonmagnetic nonconductive material and having a first end fixed to the first holding body and a second end fixed to the first electromagnetic field shield body. Item 10. The power transmission device according to Item 9.
  12. 前記支持体は可撓性を有し、
    前記第1の保持体は、第1の磁石を有し、
    前記第2の保持体は、第2の磁石を有し、
    前記第1の磁石と前記第2の磁石は、互いに引き付け合うように着磁して対向している
    請求項9記載の電力伝送装置。
    The support has flexibility;
    The first holding body has a first magnet,
    The second holding body has a second magnet,
    The power transmission device according to claim 9, wherein the first magnet and the second magnet are magnetized so as to attract each other.
  13. 前記第1の磁石は、前記第1の保持体の前記第1のコイル側で、かつ前記第1のコイルの中心から最も離れた位置に形成されている請求項12記載の電力伝送装置。 The power transmission device according to claim 12, wherein the first magnet is formed on the first coil side of the first holding body and at a position farthest from the center of the first coil.
  14. 前記第1の保持体が四角形状であり、
    前記第1のコイルが、前記第1の保持体の中心から渦巻状に形成されており、
    前記第1の磁石は、前記第1の保持体の前記第1のコイル側で、かつ前記第1の保持体の四隅に形成されている
    請求項12記載の電力伝送装置。
    The first holding body has a quadrangular shape;
    The first coil is formed in a spiral shape from the center of the first holding body,
    The power transmission device according to claim 12, wherein the first magnet is formed on the first coil side of the first holding body and at four corners of the first holding body.
  15. 前記第1の電磁界シールド体は、前記第1のコイルを有する機器の筐体である
    請求項9記載の電力伝送装置。
    The power transmission device according to claim 9, wherein the first electromagnetic shielding body is a housing of a device having the first coil.
PCT/JP2012/004972 2011-09-16 2012-08-06 Power-reception device, power-transmission device, and power-transfer device WO2013038591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-202649 2011-09-16
JP2011202649 2011-09-16

Publications (1)

Publication Number Publication Date
WO2013038591A1 true WO2013038591A1 (en) 2013-03-21

Family

ID=47882844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004972 WO2013038591A1 (en) 2011-09-16 2012-08-06 Power-reception device, power-transmission device, and power-transfer device

Country Status (1)

Country Link
WO (1) WO2013038591A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012656A (en) * 2013-06-27 2015-01-19 Tdk株式会社 Wireless power transmission device
JP2016103613A (en) * 2014-11-28 2016-06-02 トヨタ自動車株式会社 Coil unit
WO2016162966A1 (en) * 2015-04-08 2016-10-13 日産自動車株式会社 Noncontact charging device for vehicle
EP3379549A1 (en) * 2014-03-24 2018-09-26 Apple Inc. Magnetic connection and alignment of connectable devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112903A (en) * 1996-08-09 1998-04-28 Sumitomo Wiring Syst Ltd Magnetic coupling device for charging electric vehicle
JP2005110357A (en) * 2003-09-29 2005-04-21 Sony Corp Noncontact charging electronic apparatus
WO2010038326A1 (en) * 2008-10-01 2010-04-08 トヨタ自動車株式会社 Noncontact power transfer apparatus, method for manufacturing noncontact power transfer apparatus, and vehicle equipped with noncontact power transfer apparatus
JP2010119187A (en) * 2008-11-12 2010-05-27 Showa Aircraft Ind Co Ltd Non-contact power supply apparatus
JP2011120432A (en) * 2009-12-07 2011-06-16 Sanyo Electric Co Ltd Power transportation system, power receiver, and method of manufacturing the power receiver
JP2011167009A (en) * 2010-02-12 2011-08-25 Nippon Tekumo:Kk Noncontact power supply
JP2012186909A (en) * 2011-03-04 2012-09-27 Nagano Japan Radio Co Non-contact power transmission device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112903A (en) * 1996-08-09 1998-04-28 Sumitomo Wiring Syst Ltd Magnetic coupling device for charging electric vehicle
JP2005110357A (en) * 2003-09-29 2005-04-21 Sony Corp Noncontact charging electronic apparatus
WO2010038326A1 (en) * 2008-10-01 2010-04-08 トヨタ自動車株式会社 Noncontact power transfer apparatus, method for manufacturing noncontact power transfer apparatus, and vehicle equipped with noncontact power transfer apparatus
JP2010119187A (en) * 2008-11-12 2010-05-27 Showa Aircraft Ind Co Ltd Non-contact power supply apparatus
JP2011120432A (en) * 2009-12-07 2011-06-16 Sanyo Electric Co Ltd Power transportation system, power receiver, and method of manufacturing the power receiver
JP2011167009A (en) * 2010-02-12 2011-08-25 Nippon Tekumo:Kk Noncontact power supply
JP2012186909A (en) * 2011-03-04 2012-09-27 Nagano Japan Radio Co Non-contact power transmission device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012656A (en) * 2013-06-27 2015-01-19 Tdk株式会社 Wireless power transmission device
US9672973B2 (en) 2013-06-27 2017-06-06 Tdk Corporation Wireless power transmission device
EP3379549A1 (en) * 2014-03-24 2018-09-26 Apple Inc. Magnetic connection and alignment of connectable devices
JP2016103613A (en) * 2014-11-28 2016-06-02 トヨタ自動車株式会社 Coil unit
WO2016162966A1 (en) * 2015-04-08 2016-10-13 日産自動車株式会社 Noncontact charging device for vehicle
JPWO2016162966A1 (en) * 2015-04-08 2018-03-01 日産自動車株式会社 Non-contact charging device for vehicles
US10304616B2 (en) 2015-04-08 2019-05-28 Nissan Motor Co., Ltd. Contactless charging device for vehicle

Similar Documents

Publication Publication Date Title
US8633792B2 (en) Electronic device having a base part including a soft magnetic layer
JP5839257B2 (en) Coil component and power supply device and charging device using the same
WO2012039245A1 (en) Coil module for contactless electric power transfer, and battery pack and charging device provided with same
RU2593681C2 (en) Electromechanical-electroacoustic transducer with small thickness and wide range of motion and relating method of production
US20130293191A1 (en) Non-contact charging module and non-contact charging instrument
KR20140009127A (en) Selectively controllable electromagnetic shielding
KR20130014546A (en) Magnetic element for wireless power transmission and power supply device
JP2007150318A5 (en)
WO2012132535A1 (en) Power-receiving coil, power-reception device, and contactless power-transmission system
WO2013038591A1 (en) Power-reception device, power-transmission device, and power-transfer device
JP2010284059A (en) Noncontact power transmission apparatus
US11322984B2 (en) Coil device
JP2012039824A (en) Vibration generator
CN103004067B (en) Linear vibrator
WO2011114822A1 (en) Vibration-based power generator
JP6394534B2 (en) Power receiving device and power transmitting device
US20150280634A1 (en) Electro-magnetic transducer and vibration control system
JP2012205450A (en) Vibration power generator
JP5995764B2 (en) Rotor with temperature measurement function
JP2012016173A (en) Vibration generator
JP5742133B2 (en) Electromagnet device
JP2005224004A (en) Magnetic circuit device and its manufacturing method
CN211701625U (en) Device with magnet
JP2002034226A (en) Magnet-movable linear motor
US20220085272A1 (en) Power generating element and apparatus including power generating element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP