WO2010038326A1 - Noncontact power transfer apparatus, method for manufacturing noncontact power transfer apparatus, and vehicle equipped with noncontact power transfer apparatus - Google Patents

Noncontact power transfer apparatus, method for manufacturing noncontact power transfer apparatus, and vehicle equipped with noncontact power transfer apparatus Download PDF

Info

Publication number
WO2010038326A1
WO2010038326A1 PCT/JP2008/073212 JP2008073212W WO2010038326A1 WO 2010038326 A1 WO2010038326 A1 WO 2010038326A1 JP 2008073212 W JP2008073212 W JP 2008073212W WO 2010038326 A1 WO2010038326 A1 WO 2010038326A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
coil
resonant coil
bobbin
power transmission
Prior art date
Application number
PCT/JP2008/073212
Other languages
French (fr)
Japanese (ja)
Inventor
山本 幸宏
和良 高田
慎平 迫田
Original Assignee
トヨタ自動車株式会社
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 株式会社豊田自動織機 filed Critical トヨタ自動車株式会社
Publication of WO2010038326A1 publication Critical patent/WO2010038326A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/006Details of transformers or inductances, in general with special arrangement or spacing of turns of the winding(s), e.g. to produce desired self-resonance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/02Coils wound on non-magnetic supports, e.g. formers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a non-contact power transmission device, a method for manufacturing a non-contact power transmission device, and a vehicle including the non-contact power transmission device, and more particularly, a non-contact power that can receive power from a power source provided outside the vehicle in a non-contact manner.
  • the present invention relates to a contact power transmission device and a vehicle.
  • Electric vehicles such as electric cars and hybrid cars are attracting a great deal of attention as environmentally friendly vehicles. These vehicles are equipped with an electric motor that generates driving force and a rechargeable power storage device that stores electric power supplied to the electric motor.
  • the hybrid vehicle is a vehicle in which an internal combustion engine is further mounted as a power source together with an electric motor, or a fuel cell is further mounted as a direct current power source for driving the vehicle together with a power storage device.
  • a vehicle capable of charging an in-vehicle power storage device from a power source external to the vehicle in the same manner as an electric vehicle.
  • a so-called “plug-in hybrid vehicle” that can charge a power storage device from a general household power supply by connecting a power outlet provided in a house and a charging port provided in the vehicle with a charging cable is known. Yes.
  • a power transmission method wireless power transmission that does not use a power cord or a power transmission cable has recently attracted attention.
  • this wireless power transmission technology three technologies known as power transmission using electromagnetic induction, power transmission using electromagnetic waves, and power transmission using a resonance method are known.
  • the resonance method is a non-contact power transmission technique in which a pair of resonators (for example, a pair of self-resonant coils) are resonated in an electromagnetic field (near field) and transmitted through the electromagnetic field. It is also possible to transmit power over a long distance (for example, several meters) (see Non-Patent Document 1 and Patent Document 3).
  • Examples of the non-contact power feeding device that performs power transmission based on the mutual dielectric action of electromagnetic induction include the non-contact power feeding device described in Japanese Patent Application Laid-Open No. 2008-87733.
  • This contactless power supply device supplies power from the primary coil on the power supply side to the secondary coil on the power reception side based on the mutual dielectric action of electromagnetic induction.
  • the primary coil and the secondary coil have a structure in which a plurality of parallel conductors are spirally wound on the same surface as a set, and are twisted at a constant pitch.
  • the primary magnetic core and the secondary magnetic core where the primary coil and the secondary coil are disposed are made of ferrite or the like, and are formed in a flat plate shape. The surfaces of the primary coil and the primary magnetic core and the surfaces of the secondary coil and the secondary magnetic core are covered and fixed with a mold resin, respectively.
  • the antenna device described in Japanese Patent Laid-Open No. 10-341105 is provided on a cylindrical bobbin having a smooth inner peripheral surface and an outer peripheral surface of the bobbin, and has an impedance characteristic corresponding to a desired first frequency. And a first coil. Further, the antenna device includes a top plate that slides on the inner peripheral surface of the bobbin, an adjustment knob that rotates integrally with the top plate on the upper surface side of the top plate, and a desired second on the lower surface side of the adjustment knob. And a second coil having impedance characteristics corresponding to the frequency of the first, and a cover is provided so as to cover the first coil and the bobbin.
  • the non-contact power feeding apparatus using the resonance method includes a secondary self-resonant coil that receives power by resonating with a primary self-resonant coil provided outside.
  • the primary self-resonant coil and the secondary self-resonant coil are configured by winding a winding around an outer surface of a bobbin. Since a high-voltage alternating current flows through each primary self-resonant coil and secondary self-resonant coil, it is necessary to provide a cover that covers the bobbin and the winding in order to protect each winding from the outside. As a result, many parts such as a bobbin and a cover are required.
  • a cover is disposed so as to cover the first coil and the bobbin.
  • both the primary coil and the secondary coil are covered with resin.
  • a capacitor is formed by the resin material located between the windings of the primary coil and the secondary coil and between the windings.
  • the present invention has been made in view of the problems as described above, and an object thereof is a non-contact power transmission device in which the number of components is reduced and power transmission and power reception efficiency are improved, and this non-contact power transmission device The manufacturing method of this and the vehicle provided with this non-contact electric power transmission apparatus are provided.
  • a non-contact power transmission device includes a second self-resonant coil capable of transmitting and receiving power by resonance of a magnetic field with a first self-resonant coil arranged oppositely, and a hollow shape. And a bobbin having a second self-resonant coil held along the inner peripheral surface.
  • the second self-resonant coil and the dielectric coil are mounted on the vehicle, the first self-resonant coil is disposed outside the vehicle, the first self-resonant coil transmits power to the second self-resonant coil, and the second The self-resonant coil receives power transmitted from the first self-resonant coil, and the second self-resonant coil and the dielectric coil constitute at least a part of the power receiving device.
  • the first self-resonant coil is mounted on the vehicle, the second self-resonant coil and the dielectric coil are disposed outside the vehicle, the second self-resonant coil transmits power to the first self-resonant coil, and the first The self-resonant coil receives power transmitted from the second self-resonant coil, and the second self-resonant coil and the dielectric coil constitute at least a part of the power transmission device.
  • the second self-resonant coil includes a first engagement portion
  • the bobbin has a second engagement portion capable of locking the second self-resonance coil by engaging with the first engagement portion.
  • the first engaging portion and the second engaging portion can be engaged with each other by the elastic force of the second self-resonant coil.
  • the inner peripheral surface of the bobbin is formed with a groove portion that extends in the axial direction of the bobbin and can receive the second self-resonant coil as it goes in the circumferential direction of the bobbin, and defines the groove portion.
  • a coil locking portion that locks the second self-resonant coil received in the groove is formed on the inner peripheral surface of the.
  • the inner peripheral surface of the bobbin is formed such that the length in the circumferential direction of the inner peripheral surface of the bobbin decreases from one end side to the other end of the bobbin.
  • the inner peripheral surface of the bobbin is formed with a groove that extends in the axial direction of the bobbin as it goes in the circumferential direction of the bobbin and can receive the second self-resonant coil. Are arranged in the axial direction.
  • the bobbin is formed in a bottomed cylindrical shape, and a housing portion that houses the second self-resonant coil is partitioned from the outside.
  • the bobbin is housed inside and further includes a shield member capable of defining a magnetic field radiation region.
  • a method for manufacturing a non-contact power transmission device includes a step of preparing a bobbin formed in a cylindrical shape, a second self-resonant coil having a reduced diameter by applying a load from the outside, and the second reduced diameter.
  • the step of inserting the self-resonant coil into the bobbin and the load applied to the secondary self-resonant coil are removed, and the second self-resonant coil is locked into the bobbin using the elastic force of the second self-resonant coil.
  • an insulating plate-like member having a main surface, and one provided on the main surface and arranged in the extending direction of the plate-like member And a plurality of conductors arranged at intervals between one side portion and the other side portion arranged in the width direction of the plate-like member, while extending from one end portion to the other end portion.
  • the plate member is curved so that the main surface on which the conductive wire is disposed is located on the inner side, and one end side of the plate member and the other end side are brought close to or in contact with each other.
  • the conductive wires are arranged at equal intervals from each other, and the lengths of one end side and the other end side are formed to coincide with each other, and one end side is the other end side.
  • the conductors are positioned so as to be shifted by the interval length of the conductors.
  • a vehicle according to the present invention includes a rechargeable battery and the non-contact power transmission device according to any one of claims 1 to 6, and uses the non-contact power transmission device.
  • the battery can be charged.
  • the number of parts can be reduced and power transmission and power reception efficiency can be improved.
  • FIG. 1 is an overall configuration diagram of a power feeding system according to Embodiment 1 of the present invention. It is a figure for demonstrating the principle of the power transmission by the resonance method. It is the figure which showed the relationship between the distance from an electric current source (magnetic current source), and the intensity
  • FIG. 13 is a cross-sectional view in which a part of FIG. 12 is enlarged. It is sectional drawing which shows schematic structure of the injection molding machine which shape
  • FIG. 16 is a cross-sectional view in which a part of FIG. 15 is enlarged.
  • FIG. 2 It is a perspective view of the bobbin provided in the non-contact electric power receiving apparatus which concerns on Embodiment 2 of this invention. It is a perspective view which shows the 1st process of the manufacturing process of a non-contact power receiving apparatus. It is a perspective view which shows the 2nd process of the manufacturing process of a non-contact power receiving apparatus. It is a perspective view which shows the 3rd process of the manufacturing process of a non-contact power receiving apparatus. It is a perspective view which shows the 4th process of the manufacturing process of a non-contact power receiving apparatus. It is a top view of the plate-shaped member for demonstrating the other manufacturing method of a non-contact electric power receiving apparatus. It is sectional drawing which shows a part of electric power feeder.
  • 100 electric vehicle 110 secondary self-resonant coil, 120 secondary coil, 130 rectifier, 140 converter, 150 power storage device, 170 motor, 190 communication device, 200 power supply device, 210 AC power supply, 220 high frequency power driver, 230 primary coil, 240 primary self-resonant coil, 250 communication device, 310 high frequency power supply, 320 primary coil, 330 primary self-resonant coil, 340 secondary self-resonant coil, 350 secondary coil, 360 load, 400 power receiving device, 401 shield, 402 bobbin, 403 Fixed member, 404 support member, 405 connector, 410 top plate portion, 411 peripheral wall portion, 412 collar, 413 top plate portion, 414 opening portion, 415 peripheral wall portion, 416 bottom portion, 417 opening portion, 418 closing member, 4 0 coil receiving groove, 421 locking groove 422 engagement portion, 423 bottom 430 locking portion.
  • the power feeding system includes a power receiving device (non-contact power transmission device) and a power feeding device (non-contact power transmission device) 200 provided in electric vehicle 100.
  • Power receiving device provided in electrically powered vehicle 100 includes a secondary self-resonant coil 110, a secondary coil 120, a rectifier 130, a DC / DC converter 140, and a power storage device 150.
  • Electric vehicle 100 includes a power receiving device, a power control unit (hereinafter also referred to as “PCU (Power Control Unit)”) 160, a motor 170, a vehicle ECU (Electronic Control Unit) 180, and a communication device 190.
  • PCU Power Control Unit
  • the secondary self-resonant coil 110 is disposed at the lower part of the vehicle body, but may be disposed at the upper part of the vehicle body as long as the power feeding device 200 is disposed above the vehicle.
  • the secondary self-resonant coil 110 is an LC resonant coil whose both ends are open (not connected), and receives power from the power feeder 200 by resonating with a primary self-resonant coil 240 (described later) of the power feeder 200 via an electromagnetic field.
  • the capacitance component of the secondary self-resonant coil 110 is the stray capacitance of the coil, but capacitors connected to both ends of the coil may be provided.
  • the secondary self-resonant coil 110 and the secondary self-resonant coil 240 are connected to the primary self-resonant coil 240 and the secondary self-resonant coil 240 based on the distance from the primary self-resonant coil 240 and the resonance frequency of the primary self-resonant coil 240 and the secondary self-resonant coil 110.
  • the number of turns is appropriately set so that the Q value (for example, Q> 100) indicating the resonance intensity with the self-resonant coil 110 and ⁇ indicating the degree of coupling increase.
  • the secondary coil 120 is disposed coaxially with the secondary self-resonant coil 110 and can be magnetically coupled to the secondary self-resonant coil 110 by electromagnetic induction.
  • the secondary coil 120 takes out the electric power received by the secondary self-resonant coil 110 by electromagnetic induction and outputs it to the rectifier 130.
  • the rectifier 130 rectifies the AC power extracted by the secondary coil 120.
  • DC / DC converter 140 converts the power rectified by rectifier 130 into a voltage level of power storage device 150 based on a control signal from vehicle ECU 180 and outputs the voltage level to power storage device 150.
  • DC / DC converter 140 includes a rectifier.
  • the power rectified by 130 may be converted into a system voltage and supplied directly to the PCU 160.
  • DC / DC converter 140 is not necessarily required, and the AC power extracted by secondary coil 120 may be directly rectified by rectifier 130 and then directly supplied to power storage device 150.
  • the power storage device 150 is a rechargeable DC power source and includes, for example, a secondary battery such as lithium ion or nickel metal hydride.
  • the power storage device 150 stores power supplied from the DC / DC converter 140 and also stores regenerative power generated by the motor 170. Then, power storage device 150 supplies the stored power to PCU 160.
  • a large-capacity capacitor can also be used as the power storage device 150, and is a power buffer that can temporarily store the power supplied from the power supply device 200 and the regenerative power from the motor 170 and supply the stored power to the PCU 160. Anything is acceptable.
  • the PCU 160 drives the motor 170 with power output from the power storage device 150 or power directly supplied from the DC / DC converter 140. PCU 160 also rectifies the regenerative power generated by motor 170 and outputs the rectified power to power storage device 150 to charge power storage device 150.
  • the motor 170 is driven by the PCU 160 to generate a vehicle driving force and output it to driving wheels. Motor 170 generates electricity using kinetic energy received from driving wheels or an engine (not shown), and outputs the generated regenerative power to PCU 160.
  • the vehicle ECU 180 controls the PCU 160 based on the traveling state of the vehicle and the state of charge of the power storage device 150 (hereinafter also referred to as “SOC (State Of Charge)”) when the vehicle is traveling.
  • Communication device 190 is a communication interface for performing wireless communication with power supply device 200 outside the vehicle.
  • power supply apparatus 200 includes AC power supply 210, high-frequency power driver 220, primary coil 230, primary self-resonant coil 240, communication apparatus 250, and ECU 260.
  • AC power supply 210 is a power supply external to the vehicle, for example, a system power supply.
  • the high frequency power driver 220 converts power received from the AC power source 210 into high frequency power, and supplies the converted high frequency power to the primary coil 230.
  • the frequency of the high-frequency power generated by the high-frequency power driver 220 is, for example, 1 M to several tens of MHz.
  • the primary coil 230 is disposed coaxially with the primary self-resonant coil 240, and can be magnetically coupled to the primary self-resonant coil 240 by electromagnetic induction.
  • the primary coil 230 feeds high-frequency power supplied from the high-frequency power driver 220 to the primary self-resonant coil 240 by electromagnetic induction.
  • the primary self-resonant coil 240 is disposed near the ground, but may be disposed above the vehicle when power is supplied to the electric vehicle 100 from above the vehicle.
  • the primary self-resonant coil 240 is also an LC resonant coil whose both ends are open (not connected), and transmits electric power to the electric vehicle 100 by resonating with the secondary self-resonant coil 110 of the electric vehicle 100 via an electromagnetic field.
  • the capacitance component of the primary self-resonant coil 240 is also the stray capacitance of the coil, but capacitors connected to both ends of the coil may be provided.
  • the primary self-resonant coil 240 also has a Q value (for example, Q> based on the distance from the secondary self-resonant coil 110 of the electric vehicle 100, the resonance frequency of the primary self-resonant coil 240 and the secondary self-resonant coil 110, etc. 100), and the number of turns is appropriately set so that the degree of coupling ⁇ and the like are increased.
  • Q value for example, Q> based on the distance from the secondary self-resonant coil 110 of the electric vehicle 100, the resonance frequency of the primary self-resonant coil 240 and the secondary self-resonant coil 110, etc. 100
  • the communication device 250 is a communication interface for performing wireless communication with the electric powered vehicle 100 that is a power supply destination.
  • the ECU 260 controls the high frequency power driver 220 so that the received power of the electric vehicle 100 becomes a target value. Specifically, ECU 260 acquires the received power of electric vehicle 100 and its target value from electric vehicle 100 by communication device 250, and outputs high-frequency power driver 220 so that the received power of electric vehicle 100 matches the target value. To control. In addition, ECU 260 can transmit the impedance value of power supply apparatus 200 to electrically powered vehicle 100.
  • FIG. 2 is a diagram for explaining the principle of power transmission by the resonance method.
  • this resonance method in the same way as two tuning forks resonate, two LC resonance coils having the same natural frequency resonate in an electromagnetic field (near field), and thereby, from one coil. Electric power is transmitted to the other coil via an electromagnetic field.
  • the primary coil 320 is connected to the high-frequency power source 310, and high-frequency power of 1 to 10 MHz is fed to the primary self-resonant coil 330 that is magnetically coupled to the primary coil 320 by electromagnetic induction.
  • the primary self-resonant coil 330 is an LC resonator having an inductance and stray capacitance of the coil itself, and resonates with a secondary self-resonant coil 340 having the same resonance frequency as the primary self-resonant coil 330 via an electromagnetic field (near field). .
  • energy electrical power moves from the primary self-resonant coil 330 to the secondary self-resonant coil 340 via the electromagnetic field.
  • the energy (electric power) transferred to the secondary self-resonant coil 340 is taken out by the secondary coil 350 magnetically coupled to the secondary self-resonant coil 340 by electromagnetic induction and supplied to the load 360.
  • power transmission by the resonance method is realized when the Q value indicating the resonance intensity between the primary self-resonant coil 330 and the secondary self-resonant coil 340 is greater than 100, for example.
  • the AC power supply 210 and the high-frequency power driver 220 in FIG. 1 correspond to the high-frequency power supply 310 in FIG.
  • the primary coil 230 and the primary self-resonant coil 240 in FIG. 1 correspond to the primary coil 320 and the primary self-resonant coil 330 in FIG. 2, respectively, and the secondary self-resonant coil 110 and the secondary coil 120 in FIG. This corresponds to the secondary self-resonant coil 340 and the secondary coil 350 in FIG.
  • FIG. 3 is a diagram showing the relationship between the distance from the current source (magnetic current source) and the strength of the electromagnetic field.
  • the electromagnetic field includes three components.
  • a curve k1 is a component inversely proportional to the distance from the wave source, and is referred to as a “radiating electric field”.
  • a curve k2 is a component inversely proportional to the square of the distance from the wave source, and is referred to as an “induced electric field”.
  • the curve k3 is a component that is inversely proportional to the cube of the distance from the wave source, and is referred to as an “electrostatic field”.
  • the “electrostatic field” is a region where the intensity of the electromagnetic wave suddenly decreases with the distance from the wave source.
  • energy electric power
  • the near field evanescent field
  • Is transmitted That is, by resonating a pair of resonators having the same natural frequency (for example, a pair of LC resonance coils) in a near field where the “electrostatic field” is dominant, the resonance from one resonator (primary self-resonance coil) to the other Energy (electric power) is transmitted to the resonator (secondary self-resonant coil). Since this “electrostatic field” does not propagate energy far away, the resonance method can transmit power with less energy loss than electromagnetic waves that transmit energy (electric power) by “radiant electric field” that propagates energy far away. it can.
  • FIG. 4 is a cross-sectional view of the power receiving device 400
  • FIG. 5 is a perspective view of the bobbin 402 with the inside partially visualized.
  • the power receiving device 400 includes a secondary self-resonant coil 110, a secondary coil 120, a bobbin 402 that supports the secondary self-resonant coil 110, and a shield 401 that houses the bobbin 402. And.
  • the bobbin 402 is formed in a bottomed cylindrical shape, and an accommodating portion capable of accommodating the secondary self-resonant coil 110 is defined therein. And the accommodating part in the bobbin 402 is divided from the exterior by arrange
  • the secondary self-resonant coil 110 is supported and fixed in the bobbin 402, and exposure of the secondary self-resonant coil 110 to the outside is suppressed.
  • the bobbin 402 not only supports the secondary self-resonant coil 110 but also has a function as a cover that covers the secondary self-resonant coil 110, and can reduce the number of parts.
  • the bobbin 402 has a top plate portion 410 arranged toward the primary self-resonant coil 240 at the time of power reception, a peripheral wall portion 411 depending from the peripheral portion of the top plate portion 410, and an opening 417 defined by the peripheral wall portion 411. And an eaves part 412 formed at the opening edge.
  • the top plate portion 410 is formed at the end portion of the bobbin 402 that faces the primary self-resonant coil 240 when receiving power, and separates the housing portion that houses the secondary self-resonant coil 110 from the outside. Yes.
  • the secondary self-resonant coil 110 can be prevented from being exposed to the outside, and adverse effects such as adhesion of foreign matter to the secondary self-resonant coil 110 can be suppressed. can do.
  • the flange portion 412 is formed so as to protrude outward from the opening edge portion of the opening portion 417, and the flange portion 412 includes a plurality of fixing members 403 for fixing the top plate portion 410 to the shield 401. It is connected.
  • the shield 401 is made of, for example, a metal material such as copper or a cloth or sponge containing a metal material, and is made of a material that can reflect electromagnetic waves generated between the secondary self-resonant coil 110 and the primary self-resonant coil 240. It is configured.
  • the shield 401 is formed in a hollow shape, and a bobbin 402 is accommodated therein.
  • the shield 401 is connected to the top plate portion 413 that faces the primary self-resonant coil 240 at the time of power reception, the peripheral wall portion 415 that hangs downward from the outer peripheral edge portion of the top plate portion 413, and the end portion of the peripheral wall portion 415. And a bottom portion 416 provided.
  • the opening 414 of the top plate 413 is closed by an insulating closing member 418.
  • the shield 401 is mounted on the floor panel of the electric vehicle 100 so that the closing member 418 faces downward.
  • the electromagnetic wave generated by the secondary self-resonant coil 110 is radiated to the outside through the blocking member 418 (opening 414), and is radiated toward the electric vehicle 100 side. Is suppressed.
  • the secondary coil 120 is located on the opposite side of the closing member 418 with respect to the secondary self-resonant coil 110 and is connected to a connector 405 provided on the bottom 416.
  • the secondary coil 120 is supported and fixed by a support member 404 provided on the bottom 416.
  • the secondary coil 120 is located on the side opposite to the closing member 418 with respect to the secondary self-resonant coil 110, but is not limited to this position, and the secondary self-resonant coil is not limited thereto. 110 may be provided on the closing member 418 side.
  • the secondary self-resonant coil 110 and the bobbin 402 are fixed to the bottom portion 416, and the distance from the bottom portion 416 of the secondary coil 120 is also defined by the support member 404.
  • both the secondary self-resonant coil 110 and the secondary coil 120 are fixed to the bottom part 416, and the distance from the bottom part 416 is defined.
  • the distance between the secondary coil 120 and the secondary self-resonant coil 110 can be accurately positioned, the resonant frequency of the secondary self-resonant coil 110 can be accurately set, and the power receiving efficiency can be improved. Improvements can be made.
  • the bobbin 402 is formed with a coil receiving groove 420 that receives at least a part of the secondary self-resonant coil 110 and can support the secondary self-resonant coil 110.
  • the coil housing groove 420 extends from the opening 417 side toward the top plate 410 as it goes in the circumferential direction of the bobbin 402, and is formed in a spiral shape.
  • FIG. 6 is a perspective view of the secondary self-resonant coil 110.
  • locking portions (first engaging portions) 430 are formed at both ends of the secondary self-resonant coil 110, and the locking portions 430 are formed of the secondary self-resonant coil 110. Is bent radially outward from the end of the.
  • FIG. 7 is a partial cross-sectional view of the bobbin 402
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII of FIG.
  • the portions located at both ends of the coil housing groove 420 are provided with locking grooves (second grooves) that can be engaged with the locking portions 430.
  • Engaging portion) 421 is formed.
  • the locking groove 421 extends from the bottom of the coil housing groove (groove portion) 420 toward the radially outer side of the bobbin 402 and can receive the locking portion 430.
  • the engaging part 430 formed in the both ends of the secondary self-resonant coil 110 engages with the inner surface of the surrounding wall part 411 which defines the engaging groove 421, respectively, so that the secondary self-resonant coil 110 is a bobbin. Locked in 402.
  • the diameter of the secondary self-resonant coil 110 is larger than the diameter of the inner surface of the bobbin 402 when no load is applied from the outside.
  • the secondary self-resonant coil 110 housed in the bobbin 402 is housed in the bobbin 402 in a reduced diameter state compared to the unloaded state. For this reason, the secondary self-resonant coil 110 accommodated in the bobbin 402 is about to expand in diameter, and due to this elastic force, the locking portion 430 of the secondary self-resonant coil 110 defines the locking groove 421. Is engaged with the inner surface.
  • the secondary self-resonant coil 110 can be locked in the bobbin 402 by using the elastic force of the secondary self-resonant coil 110, so that, for example, no other fixture or adhesive is required.
  • the number of parts can be reduced.
  • the fixing adhesive does not enter between the secondary self-resonant coils 110 and suppresses the formation of a large capacitor between the coil wires of the secondary self-resonant coil 110. Can do. Thereby, suppression of heat generation and improvement of power reception efficiency can be achieved.
  • FIG. 9 is a cross-sectional view illustrating a first step in the manufacturing process of the power receiving device 400.
  • a secondary self-resonant coil 110 and a bobbin 402 are prepared.
  • the diameter of the secondary self-resonant coil 110 is larger than the opening diameter of the opening 417 of the bobbin 402.
  • FIG. 10 is a cross-sectional view showing a second step of the manufacturing process of power reception device 400.
  • the locking portion 430 of the secondary self-resonant coil 110 is gripped by a gripping device (not shown). Then, the gripping device deforms the secondary self-resonant coil 110 so that the diameter of the secondary self-resonant coil 110 is reduced in a state where the locking portion 430 is gripped. Then, the secondary self-resonant coil 110 is inserted into the bobbin 402 with the diameter reduced.
  • FIG. 11 is a cross-sectional view showing a third step of the manufacturing process of power reception device 400.
  • the secondary self-resonant coil 110 having a reduced diameter is completely accommodated in the bobbin 402
  • the engaging portions 430 of the secondary self-resonant coil 110 are inserted into the engaging grooves 421.
  • the secondary self-resonant coil 110 is accommodated in the coil accommodating groove 420 by the gripping device opening the secondary self-resonant coil 110.
  • the bobbin 402 to which the secondary self-resonant coil 110 is attached is attached in the shield 401 to which the secondary coil 120 is attached. Thereafter, a closing member 418 is attached to the opening 414 of the shield 401 to close the opening 414.
  • FIG. 12 is a cross-sectional view showing a modification of the bobbin 402
  • FIG. 13 is a cross-sectional view in which a part of FIG. 12 is enlarged.
  • the circumferential length of the inner peripheral surface of the peripheral wall portion 411 is formed so as to decrease from the opening 417 side toward the top plate portion 410 side.
  • the bobbin 402 is molded using, for example, an injection molding machine shown in FIG.
  • FIG. 14 is a cross-sectional view showing a schematic configuration of an injection molding machine 460 that molds the bobbin 402.
  • the injection molding machine 460 includes an outer mold 461 in which a cavity 463 is formed, And an inner mold 462 in which a core portion 466 is formed.
  • a groove forming portion 465 extending in a spiral shape is formed on the outer peripheral surface of the core portion 466, and a resin passage 464 through which resin flows is formed in the core portion 466.
  • the circumferential length of the inner peripheral surface of the cavity 463 is formed so as to decrease from the opening side to the bottom side of the cavity 463.
  • the groove forming portion 465 is formed so as to protrude from the surface of the core portion 466, and the height of each apex portion of each groove forming portion 465 is formed to coincide.
  • the apex portion of the upper groove forming portion 465 is located on virtual axis lines L1 and L2 that are parallel to the rotation axis O1 of the inner mold 462.
  • the diameter of the secondary self-resonant coil 110 is kept constant at any position. Therefore, by attaching the secondary self-resonant coil 110 to the coil housing groove 420, it is possible to suppress fluctuation of the resonance frequency of the secondary self-resonant coil 110.
  • the engaging portion 422 is made of resin, when the secondary self-resonant coil 110 is mounted in the coil housing groove 420, the secondary self-resonant coil 110 is pressed toward the coil housing groove 420. Thus, the engaging portion 422 can be deformed and the secondary self-resonant coil 110 can be mounted in the coil housing groove 420.
  • Embodiment 2 A contactless power receiving device according to Embodiment 2 of the present invention will be described with reference to FIGS. 17 to 22.
  • the same or corresponding components as those shown in FIGS. 1 to 16 may be denoted by the same reference numerals and description thereof may be omitted. .
  • FIG. 17 is a perspective view of the bobbin 402 provided in the power receiving device according to the second embodiment of the present invention.
  • the bobbin 402 includes a peripheral wall portion 411 formed by forming an insulating plate-like member into a cylindrical shape, and a top plate portion 410 attached to one end of the peripheral wall portion 411. And.
  • a secondary self-resonant coil 110 configured by connecting a plurality of conductive wires to each other with solder is mounted on the inner peripheral surface of the peripheral wall portion 411. Also in the example shown in FIG. 17, the secondary self-resonant coil 110 is mounted in a bobbin 402 formed in a bottomed cylindrical shape. For this reason, the bobbin 402 has a function of holding the secondary self-resonant coil 110 and a function of protecting the secondary self-resonant coil 110 from the outside. Compared with a conventional coil having a bobbin and a cover, the bobbin 402 The number of points can be reduced.
  • FIG. 18 is a perspective view showing a first step in the manufacturing process of the non-contact power receiving apparatus. As shown in FIG. 18, an insulating plate-like member 450 having a plurality of conducting wires 435A to 435D mounted on the main surface is prepared.
  • a plurality of conductive wires 435A to 435D extending from the end side portion 436 to the end side portion 437 are arranged at equal intervals at intervals in the width direction of the plate-like member 450.
  • four conductors 435A to 435D are arranged between the side part 438 and the side part 439, and the conductors 435A to 435D are connected to the side parts 438 and 439, respectively. It arrange
  • each conducting wire 435A to 435D is formed with an engaging portion that engages with an engaging groove formed in the plate-like member 450, and the engaging portion is engaged with the engaging groove, whereby each conducting wire 435A to 435D. May be held on the main surface of the plate-like member 450.
  • FIG. 21 is a perspective view showing a fourth step in the manufacturing process of the non-contact power receiving apparatus. As shown in FIG. 21, a part of the side part 439 and a part of the side part 438 are cut to form a peripheral wall part 411 in which the opening edge part is flush.
  • FIG. 22 is a plan view of a plate-like member 450 for explaining another manufacturing method of the non-contact power receiving apparatus.
  • the plate-like member 450 is formed to be a parallelogram, and the lengths of the end side part 436 and the end side part 437 are the same, and further, the end side The portion 436 and the end side portion 437 are positioned so as to be shifted from each other by the interval length of the conductive wires 435A to 435D.
  • the conductive wires 435A to 435D are disposed so as to be perpendicular to the end side portion 436 and the end side portion 437, and the conductive wires 435A to 435D are disposed at equal intervals in the width direction of the plate-like member 450.
  • the formed plate-like member 450 is bent, and the end side part 436 and the end side part 437 are brought into contact with each other. At this time, both end portions of the end side portion 436 and both end portions of the end side portion 437 are brought into contact with each other. Thereby, the peripheral wall part 411 in which the opening part was made flush is formed.
  • the ends of the conducting wires 435D, 435C, and 435B are in contact with the ends of the conducting wires 435C, 435B, and 435A on the end side 436 side or Proximity.
  • the secondary self-resonant coil 110 can be formed and the bobbin 402 can be formed.
  • the power receiving device 400 has been described.
  • the present invention is not limited to this.
  • the present invention can also be applied to the bobbin that holds the primary self-resonant coil 240 and the primary coil 230 of the power feeding apparatus 200.
  • the primary self-resonant coil 240 is attached to the inner peripheral surface of the bobbin 402 shown in FIG. 4, and the bobbin 402 and the primary self-resonant coil 240 to which the primary self-resonant coil 240 is attached are embedded in the ground, for example. .
  • the non-contact power receiving device shown in each of the above embodiments can be mounted on various electric vehicles.
  • the electric vehicle can be applied to other types of hybrid vehicles besides the series / parallel type hybrid vehicle in which the power of the engine can be divided and transmitted to the drive wheels and the motor generator by the power split device. That is, for example, a so-called series-type hybrid vehicle that uses an engine only to drive a motor generator and generates the driving force of the vehicle only by the motor generator, or only regenerative energy of the kinetic energy generated by the engine is electric energy.
  • the present invention can also be applied to a hybrid vehicle that is recovered as a motor, a motor-assist type hybrid vehicle in which a motor assists the engine as the main power.
  • the present invention can also be applied to an electric vehicle that runs only on electric power without an engine, and a fuel cell vehicle that further includes a fuel cell as a DC power source in addition to a power storage device.
  • the present invention is also applicable to an electric vehicle that does not include a boost converter.
  • the present invention can be applied to a non-contact power transmission device, a method for manufacturing the non-contact power transmission device, and a vehicle including the non-contact power transmission device.
  • the power from a power source provided outside the vehicle is not connected. It is suitable for a non-contact power transmission device and a vehicle that can receive power.

Abstract

A noncontact power receiving apparatus has a secondary self-resonant coil (110) capable of at least transmitting or receiving of power to or from a primary self-resonance coil disposed to face the noncontact power receiving apparatus by the resonance of a magnetic field, and a hollow bobbin (402) which holds the secondary self-resonant coil (110) along the inner peripheral surface thereof.

Description

非接触電力伝達装置、非接触電力伝達装置の製造方法および非接触電力伝達装置を備えた車両Non-contact power transmission device, method for manufacturing non-contact power transmission device, and vehicle equipped with non-contact power transmission device
 この発明は、非接触電力伝達装置、非接触電力伝達装置の製造方法および非接触電力伝達装置を備えた車両に関し、特に、車両外部に設けられた電源からの電力を非接触で受電可能な非接触電力伝達装置および車両に関する。 The present invention relates to a non-contact power transmission device, a method for manufacturing a non-contact power transmission device, and a vehicle including the non-contact power transmission device, and more particularly, a non-contact power that can receive power from a power source provided outside the vehicle in a non-contact manner. The present invention relates to a contact power transmission device and a vehicle.
 環境に配慮した車両として、電気自動車やハイブリッド車などの電動車両が大きく注目されている。これらの車両は、走行駆動力を発生する電動機と、その電動機に供給される電力を蓄える再充電可能な蓄電装置とを搭載する。なお、ハイブリッド車は、電動機とともに内燃機関をさらに動力源として搭載した車両や、車両駆動用の直流電源として蓄電装置とともに燃料電池をさらに搭載した車両である。 電動 Electric vehicles such as electric cars and hybrid cars are attracting a great deal of attention as environmentally friendly vehicles. These vehicles are equipped with an electric motor that generates driving force and a rechargeable power storage device that stores electric power supplied to the electric motor. Note that the hybrid vehicle is a vehicle in which an internal combustion engine is further mounted as a power source together with an electric motor, or a fuel cell is further mounted as a direct current power source for driving the vehicle together with a power storage device.
 ハイブリッド車においても、電気自動車と同様に、車両外部の電源から車載の蓄電装置を充電可能な車両が知られている。たとえば、家屋に設けられた電源コンセントと車両に設けられた充電口とを充電ケーブルで接続することにより、一般家庭の電源から蓄電装置を充電可能ないわゆる「プラグイン・ハイブリッド車」が知られている。 Also in a hybrid vehicle, a vehicle capable of charging an in-vehicle power storage device from a power source external to the vehicle is known in the same manner as an electric vehicle. For example, a so-called “plug-in hybrid vehicle” that can charge a power storage device from a general household power supply by connecting a power outlet provided in a house and a charging port provided in the vehicle with a charging cable is known. Yes.
 一方、送電方法として、電源コードや送電ケーブルを用いないワイヤレス送電が近年注目されている。このワイヤレス送電技術としては、有力なものとして、電磁誘導を用いた送電、電磁波を用いた送電、および共鳴法による送電の3つの技術が知られている。 On the other hand, as a power transmission method, wireless power transmission that does not use a power cord or a power transmission cable has recently attracted attention. As this wireless power transmission technology, three technologies known as power transmission using electromagnetic induction, power transmission using electromagnetic waves, and power transmission using a resonance method are known.
 このうち、共鳴法は、一対の共鳴器(たとえば一対の自己共振コイル)を電磁場(近接場)において共鳴させ、電磁場を介して送電する非接触の送電技術であり、数kWの大電力を比較的長距離(たとえば数m)送電することも可能である(非特許文献1および特許文献3参照)。 Among them, the resonance method is a non-contact power transmission technique in which a pair of resonators (for example, a pair of self-resonant coils) are resonated in an electromagnetic field (near field) and transmitted through the electromagnetic field. It is also possible to transmit power over a long distance (for example, several meters) (see Non-Patent Document 1 and Patent Document 3).
 電磁誘導の相互誘電作用に基づき送電を行う非接触給電装置としては、特開2008-87733号公報に記載された非接触給電装置が挙げられる。 Examples of the non-contact power feeding device that performs power transmission based on the mutual dielectric action of electromagnetic induction include the non-contact power feeding device described in Japanese Patent Application Laid-Open No. 2008-87733.
 この非接触給電装置は、電磁誘導の相互誘電作用に基づき、給電側の1次コイルから受電側の2次コイルに電力を供給する。そして、1次コイルおよび2次コイルは、複数本の平行導線を1セットとして同一面で扁平に渦巻き巻回した構造とされ、一定ピッチで捻回されている。1次コイルや2次コイルが配設される1次磁心コアや2次磁心コアは、フェライト製等より構成されており、平板状に形成されている。1次コイルと1次磁心コアの表面、および2次コイルと2次磁心コアの表面は、それぞれモールド樹脂にて被覆固定されている。 This contactless power supply device supplies power from the primary coil on the power supply side to the secondary coil on the power reception side based on the mutual dielectric action of electromagnetic induction. The primary coil and the secondary coil have a structure in which a plurality of parallel conductors are spirally wound on the same surface as a set, and are twisted at a constant pitch. The primary magnetic core and the secondary magnetic core where the primary coil and the secondary coil are disposed are made of ferrite or the like, and are formed in a flat plate shape. The surfaces of the primary coil and the primary magnetic core and the surfaces of the secondary coil and the secondary magnetic core are covered and fixed with a mold resin, respectively.
 なお、ワイヤレス送電技術に近似する技術として、たとえば、特開平10-341105号公報に記載された無線携帯機および無線携帯機のアンテナに関する技術が挙げられる。 In addition, as a technique approximate to the wireless power transmission technique, for example, a technique related to a wireless portable device and an antenna of the wireless portable device described in JP-A-10-341105 is cited.
 この特開平10-341105号公報に記載されたアンテナ装置は、内周面上が平滑な円筒状のボビンと、ボビンの外周面上に設けられ、所望の第1の周波数に対応するインピーダンス特性を有する第1のコイルとを備えている。さらに、このアンテナ装置は、ボビンの内周面を摺動する天板と、この天板の上面側に天板と一体に回動する調整ツマミと、この調整ツマミの下面側に所望の第2の周波数に対応するインピーダンス特性を有する第2のコイルとを備え、第1のコイルおよびボビンを覆うようにカバーが設けられている。
Andre Kurs et al., "Wireless Power Transfer via Strongly Coupled Magnetic Resonances)"[online]、2007年7月6日、SCIENCE、第317巻、p.83-86、[2007年9月12日検索]、インターネット<URL:http://www.sciencemag.org/cgi/reprint/317/5834/83.pdf> 特開2008-87733号公報 特開平10-341105号公報 国際公開第2007/008646号パンフレット
The antenna device described in Japanese Patent Laid-Open No. 10-341105 is provided on a cylindrical bobbin having a smooth inner peripheral surface and an outer peripheral surface of the bobbin, and has an impedance characteristic corresponding to a desired first frequency. And a first coil. Further, the antenna device includes a top plate that slides on the inner peripheral surface of the bobbin, an adjustment knob that rotates integrally with the top plate on the upper surface side of the top plate, and a desired second on the lower surface side of the adjustment knob. And a second coil having impedance characteristics corresponding to the frequency of the first, and a cover is provided so as to cover the first coil and the bobbin.
Andre Kurs et al., "Wireless Power Transfer via Strongly Coupled Magnetic Resonances" [online], July 6, 2007, SCIENCE, Vol. 317, p. 83-86, [Search September 12, 2007], Internet <URL: http://www.sciencemag.org/cgi/reprint/317/5834/83.pdf> JP 2008-87733 A Japanese Patent Laid-Open No. 10-341105 International Publication No. 2007/008646 Pamphlet
 上記共鳴法を用いた非接触給電装置は、外部に設けられた一次自己共振コイルと共鳴することで、電力を受電する二次自己共振コイルを備えている。この一次自己共振コイルおよび二次自己共振コイルは、巻線をボビンの外表面に巻回することで構成されている。そして、各一次自己共振コイルおよび二次自己共振コイルには高電圧の交流電流が流れるため、外部から各巻線を保護するために、ボビンおよび巻線を覆うようなカバーを設ける必要がある。このため、結果的にボビンおよびカバー等の多くの部品を要する。 The non-contact power feeding apparatus using the resonance method includes a secondary self-resonant coil that receives power by resonating with a primary self-resonant coil provided outside. The primary self-resonant coil and the secondary self-resonant coil are configured by winding a winding around an outer surface of a bobbin. Since a high-voltage alternating current flows through each primary self-resonant coil and secondary self-resonant coil, it is necessary to provide a cover that covers the bobbin and the winding in order to protect each winding from the outside. As a result, many parts such as a bobbin and a cover are required.
 同様に、特開平10-341105号公報に記載されたアンテナ装置においても、第1のコイルおよびボビンを覆うようにカバーが配置されている。 Similarly, in the antenna device described in JP-A-10-341105, a cover is disposed so as to cover the first coil and the bobbin.
 そして、特開2008-87733号公報に記載された非接触給電装置においては、1次コイルおよび2次コイルのいずれもが樹脂によって覆われている。 In the non-contact power feeding device described in Japanese Patent Laid-Open No. 2008-87733, both the primary coil and the secondary coil are covered with resin.
 このため、1次コイルおよび2次コイルの巻線間と、この巻線間に位置する樹脂材によってキャパシタが形成される。そして、各コイル巻線に交流電流が流れると、当該キャパシタによる誘電損失が生じ、送電および受電効率が低くなる。 Therefore, a capacitor is formed by the resin material located between the windings of the primary coil and the secondary coil and between the windings. When an alternating current flows through each coil winding, dielectric loss due to the capacitor occurs, and the power transmission and power reception efficiency decreases.
 本発明は、上記のような課題に鑑みてなされたものであって、その目的は、部品点数の低減および送電および受電効率の向上が図られた非接触電力伝達装置、この非接触電力伝達装置の製造方法およびこの非接触電力伝達装置を備えた車両を提供することである。 The present invention has been made in view of the problems as described above, and an object thereof is a non-contact power transmission device in which the number of components is reduced and power transmission and power reception efficiency are improved, and this non-contact power transmission device The manufacturing method of this and the vehicle provided with this non-contact electric power transmission apparatus are provided.
 本発明に係る非接触電力伝達装置は、対向配置される第1自己共振コイルとの間で、磁場の共鳴により電力の送電および受電の少なくとも一方が可能な第2自己共振コイルと、中空状に形成され、内周面に沿って第2自己共振コイルが保持されたボビンとを備える。 A non-contact power transmission device according to the present invention includes a second self-resonant coil capable of transmitting and receiving power by resonance of a magnetic field with a first self-resonant coil arranged oppositely, and a hollow shape. And a bobbin having a second self-resonant coil held along the inner peripheral surface.
 好ましくは、上記第2自己共振コイルおよび誘電コイルは車両に搭載され、第1自己共振コイルは車両の外部に配置され、第1自己共振コイルは第2自己共振コイルに電力を送電し、第2自己共振コイルは第1自己共振コイルから送電される電力を受電し、第2自己共振コイルおよび誘電コイルは受電装置の少なくとも一部を構成する。 Preferably, the second self-resonant coil and the dielectric coil are mounted on the vehicle, the first self-resonant coil is disposed outside the vehicle, the first self-resonant coil transmits power to the second self-resonant coil, and the second The self-resonant coil receives power transmitted from the first self-resonant coil, and the second self-resonant coil and the dielectric coil constitute at least a part of the power receiving device.
 好ましくは、上記第1自己共振コイルは車両に搭載され、第2自己共振コイルおよび誘電コイルは車両の外部に配置され、第2自己共振コイルは第1自己共振コイルに電力を送電し、第1自己共振コイルは第2自己共振コイルから送電される電力を受電し、第2自己共振コイルおよび誘電コイルは送電装置の少なくとも一部を構成する。 Preferably, the first self-resonant coil is mounted on the vehicle, the second self-resonant coil and the dielectric coil are disposed outside the vehicle, the second self-resonant coil transmits power to the first self-resonant coil, and the first The self-resonant coil receives power transmitted from the second self-resonant coil, and the second self-resonant coil and the dielectric coil constitute at least a part of the power transmission device.
 好ましくは、上記第2自己共振コイルは、第1係合部を含み、ボビンは、第1係合部と係合することで、第2自己共振コイルを係止可能な第2係合部を含む。そして、上記第1係合部と第2係合部とは、第2自己共振コイルの弾性力によって互いに係合可能とされる。 Preferably, the second self-resonant coil includes a first engagement portion, and the bobbin has a second engagement portion capable of locking the second self-resonance coil by engaging with the first engagement portion. Including. The first engaging portion and the second engaging portion can be engaged with each other by the elastic force of the second self-resonant coil.
 好ましくは、上記ボビンの内周面には、該ボビンの周方向に向かうにしたがって、ボビンの軸線方向に向けて延び、第2自己共振コイルを受け入れ可能な溝部が形成され、溝部を規定するボビンの内周面には、溝部内に受け入れられた第2自己共振コイルを係止するコイル係止部が形成される。 Preferably, the inner peripheral surface of the bobbin is formed with a groove portion that extends in the axial direction of the bobbin and can receive the second self-resonant coil as it goes in the circumferential direction of the bobbin, and defines the groove portion. A coil locking portion that locks the second self-resonant coil received in the groove is formed on the inner peripheral surface of the.
 好ましくは、上記ボビンの内周面は、ボビンの一方端側から他方端に向けてボビンの内周面の周方向の長さが短くなるように形成される。そして、上記ボビンの内周面には、該ボビンの周方向に向かうにしたがって、ボビンの軸線方向に向けて延び、第2自己共振コイルを受け入れ可能な溝部が形成され、溝部の底部は、ボビンの軸方向に配列する。 Preferably, the inner peripheral surface of the bobbin is formed such that the length in the circumferential direction of the inner peripheral surface of the bobbin decreases from one end side to the other end of the bobbin. The inner peripheral surface of the bobbin is formed with a groove that extends in the axial direction of the bobbin as it goes in the circumferential direction of the bobbin and can receive the second self-resonant coil. Are arranged in the axial direction.
 好ましくは、上記ボビンは、有底筒状に形成され、第2自己共振コイルを収容する収容部が外部から区画される。好ましくは、上記ボビンを内部に収容し、磁場の放射領域を規定可能なシールド部材をさらに備える。 Preferably, the bobbin is formed in a bottomed cylindrical shape, and a housing portion that houses the second self-resonant coil is partitioned from the outside. Preferably, the bobbin is housed inside and further includes a shield member capable of defining a magnetic field radiation region.
 本発明に係る非接触電力伝達装置の製造方法は、筒状に形成されたボビンを準備する工程と、外部から負荷を加えることで第2自己共振コイルを縮径させ、縮径された第2自己共振コイルをボビン内に挿入する工程と、2次自己共振コイルに加えられた負荷を除き、第2自己共振コイルを該第2自己共振コイルの弾性力を用いて、ボビン内に係止させる工程とを備える。 A method for manufacturing a non-contact power transmission device according to the present invention includes a step of preparing a bobbin formed in a cylindrical shape, a second self-resonant coil having a reduced diameter by applying a load from the outside, and the second reduced diameter. The step of inserting the self-resonant coil into the bobbin and the load applied to the secondary self-resonant coil are removed, and the second self-resonant coil is locked into the bobbin using the elastic force of the second self-resonant coil. A process.
 本発明に係る非接触電力伝達装置の製造方法は、他の局面では、主表面を有する絶縁性の板状部材と、主表面上に設けられ、該板状部材の延在方向に配列する一方の端辺部から他方の端辺部に延びると共に、板状部材の幅方向に配列する一方の側辺部および他方の側辺部の間に間隔を隔てて複数配置された導線とを準備する工程と、導線が配置された主表面が内側に位置するように板状部材を湾曲させ、板状部材の一方の端辺部と他方の端辺部とを近接または接触させると共に、導線の一方の端辺部側の端部を該導線に対して一方の側辺部側に隣り合う他の導線の他方の端辺部側の端部に近接または接触させる工程と、導線の端部同士を接続することで、第2自己共振コイルを形成する工程とを備える。 In another aspect of the method for manufacturing a non-contact power transmission device according to the present invention, an insulating plate-like member having a main surface, and one provided on the main surface and arranged in the extending direction of the plate-like member And a plurality of conductors arranged at intervals between one side portion and the other side portion arranged in the width direction of the plate-like member, while extending from one end portion to the other end portion. The plate member is curved so that the main surface on which the conductive wire is disposed is located on the inner side, and one end side of the plate member and the other end side are brought close to or in contact with each other. A step of bringing the end of the other side close to or in contact with the end of the other side of the other conducting wire adjacent to the side of the conducting wire, and the ends of the conducting wires. Forming a second self-resonant coil by connecting.
 好ましくは、上記導線は、互いに等間隔に配置され、一方端辺部と他方の端辺部との長さは、互いに一致するように形成され、一方の端辺部は、他方の端辺部に対して導線の配列方向に、導線の間隔長さ分ずれるように位置する。 Preferably, the conductive wires are arranged at equal intervals from each other, and the lengths of one end side and the other end side are formed to coincide with each other, and one end side is the other end side. In the arrangement direction of the conductors, the conductors are positioned so as to be shifted by the interval length of the conductors.
 本発明に係る車両は、充電可能な蓄電器と、請求の範囲第1項から請求の範囲第6項のいずれかに記載の非接触電力伝達装置とを備え、非接触電力伝達装置を用いて、蓄電器を充電可能とする。 A vehicle according to the present invention includes a rechargeable battery and the non-contact power transmission device according to any one of claims 1 to 6, and uses the non-contact power transmission device. The battery can be charged.
 本発明に係る非接触電力伝達装置およびこの非接触電力伝達装置を備えた車両によれば、部品点数の低減を図ることができると共に、送電および受電効率の向上を図ることができる。 According to the non-contact power transmission device and the vehicle equipped with the non-contact power transmission device according to the present invention, the number of parts can be reduced and power transmission and power reception efficiency can be improved.
この発明の実施の形態1による給電システムの全体構成図である。1 is an overall configuration diagram of a power feeding system according to Embodiment 1 of the present invention. 共鳴法による送電の原理を説明するための図である。It is a figure for demonstrating the principle of the power transmission by the resonance method. 電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。It is the figure which showed the relationship between the distance from an electric current source (magnetic current source), and the intensity | strength of an electromagnetic field. 非接触受電装置の断面図である。It is sectional drawing of a non-contact power receiving apparatus. 内部を一部可視化したボビンの斜視図である。It is a perspective view of the bobbin which visualized the inside partially. 二次自己共振コイルの斜視図である。It is a perspective view of a secondary self-resonant coil. ボビンの一部の断面図である。It is a sectional view of a part of the bobbin. 図7のVIII-VIII線における断面図である。FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 非接触受電装置の製造工程の第1工程を示す断面図である。It is sectional drawing which shows the 1st process of the manufacturing process of a non-contact power receiving apparatus. 非接触受電装置の製造工程の第2工程を示す断面図である。It is sectional drawing which shows the 2nd process of the manufacturing process of a non-contact power receiving apparatus. 非接触受電装置の製造工程の第3工程を示す断面図である。It is sectional drawing which shows the 3rd process of the manufacturing process of a non-contact power receiving apparatus. ボビンの変形例を示す断面図である。It is sectional drawing which shows the modification of a bobbin. 図12の一部を拡大視した断面図である。FIG. 13 is a cross-sectional view in which a part of FIG. 12 is enlarged. ボビンを成形する射出成形機の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the injection molding machine which shape | molds a bobbin. ボビンの他の例を示すボビンの断面図である。It is sectional drawing of the bobbin which shows the other example of a bobbin. 図15の一部を拡大視した断面図である。FIG. 16 is a cross-sectional view in which a part of FIG. 15 is enlarged. 本発明の実施の形態2に係る非接触受電装置に設けられたボビンの斜視図である。It is a perspective view of the bobbin provided in the non-contact electric power receiving apparatus which concerns on Embodiment 2 of this invention. 非接触受電装置の製造工程の第1工程を示す斜視図である。It is a perspective view which shows the 1st process of the manufacturing process of a non-contact power receiving apparatus. 非接触受電装置の製造工程の第2工程を示す斜視図である。It is a perspective view which shows the 2nd process of the manufacturing process of a non-contact power receiving apparatus. 非接触受電装置の製造工程の第3工程を示す斜視図である。It is a perspective view which shows the 3rd process of the manufacturing process of a non-contact power receiving apparatus. 非接触受電装置の製造工程の第4工程を示す斜視図である。It is a perspective view which shows the 4th process of the manufacturing process of a non-contact power receiving apparatus. 非接触受電装置の他の製造方法を説明するための板状部材の平面図である。It is a top view of the plate-shaped member for demonstrating the other manufacturing method of a non-contact electric power receiving apparatus. 給電装置の一部を示す断面図である。It is sectional drawing which shows a part of electric power feeder.
符号の説明Explanation of symbols
 100 電動車両、110 二次自己共振コイル、120 二次コイル、130 整流器、140 コンバータ、150 蓄電装置、170 モータ、190 通信装置、200 給電装置、210 交流電源、220 高周波電力ドライバ、230 一次コイル、240 一次自己共振コイル、250 通信装置、310 高周波電源、320 一次コイル、330 一次自己共振コイル、340 二次自己共振コイル、350 二次コイル、360 負荷、400 受電装置、401 シールド、402 ボビン、403 固定部材、404 支持部材、405 コネクタ、410 天板部、411 周壁部、412 鍔部、413 天板部、414 開口部、415 周壁部、416 底部、417 開口部、418 閉塞部材、420 コイル収容溝、421 係止溝、422 係合部、423 底部、430 係止部。 100 electric vehicle, 110 secondary self-resonant coil, 120 secondary coil, 130 rectifier, 140 converter, 150 power storage device, 170 motor, 190 communication device, 200 power supply device, 210 AC power supply, 220 high frequency power driver, 230 primary coil, 240 primary self-resonant coil, 250 communication device, 310 high frequency power supply, 320 primary coil, 330 primary self-resonant coil, 340 secondary self-resonant coil, 350 secondary coil, 360 load, 400 power receiving device, 401 shield, 402 bobbin, 403 Fixed member, 404 support member, 405 connector, 410 top plate portion, 411 peripheral wall portion, 412 collar, 413 top plate portion, 414 opening portion, 415 peripheral wall portion, 416 bottom portion, 417 opening portion, 418 closing member, 4 0 coil receiving groove, 421 locking groove 422 engagement portion, 423 bottom 430 locking portion.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 (実施の形態1)
 図1は、この発明の実施の形態1による給電システムの全体構成図である。図1を参照して、この給電システムは、電動車両100に設けられた受電装置(非接触電力伝達装置)と、給電装置(非接触電力伝達装置)200とを備える。電動車両100に設けられた受電装置は、二次自己共振コイル110と、二次コイル120と、整流器130と、DC/DCコンバータ140と、蓄電装置150とを含む。また、電動車両100は、受電装置と、パワーコントロールユニット(以下「PCU(Power Control Unit)」とも称する。)160と、モータ170と、車両ECU(Electronic Control Unit)180と、通信装置190とをさらに含む。
(Embodiment 1)
1 is an overall configuration diagram of a power feeding system according to Embodiment 1 of the present invention. Referring to FIG. 1, the power feeding system includes a power receiving device (non-contact power transmission device) and a power feeding device (non-contact power transmission device) 200 provided in electric vehicle 100. Power receiving device provided in electrically powered vehicle 100 includes a secondary self-resonant coil 110, a secondary coil 120, a rectifier 130, a DC / DC converter 140, and a power storage device 150. Electric vehicle 100 includes a power receiving device, a power control unit (hereinafter also referred to as “PCU (Power Control Unit)”) 160, a motor 170, a vehicle ECU (Electronic Control Unit) 180, and a communication device 190. In addition.
 二次自己共振コイル110は、車体下部に配設されるが、給電装置200が車両上方に配設されていれば、車体上部に配設されてもよい。二次自己共振コイル110は、両端がオープン(非接続)のLC共振コイルであり、給電装置200の一次自己共振コイル240(後述)と電磁場を介して共鳴することにより給電装置200から電力を受電する。なお、二次自己共振コイル110の容量成分は、コイルの浮遊容量とするが、コイルの両端に接続されるコンデンサを設けてもよい。 The secondary self-resonant coil 110 is disposed at the lower part of the vehicle body, but may be disposed at the upper part of the vehicle body as long as the power feeding device 200 is disposed above the vehicle. The secondary self-resonant coil 110 is an LC resonant coil whose both ends are open (not connected), and receives power from the power feeder 200 by resonating with a primary self-resonant coil 240 (described later) of the power feeder 200 via an electromagnetic field. To do. The capacitance component of the secondary self-resonant coil 110 is the stray capacitance of the coil, but capacitors connected to both ends of the coil may be provided.
 二次自己共振コイル110は、給電装置200の一次自己共振コイル240との距離や、一次自己共振コイル240および二次自己共振コイル110の共鳴周波数等に基づいて、一次自己共振コイル240と二次自己共振コイル110との共鳴強度を示すQ値(たとえば、Q>100)およびその結合度を示すκ等が大きくなるようにその巻数が適宜設定される。 The secondary self-resonant coil 110 and the secondary self-resonant coil 240 are connected to the primary self-resonant coil 240 and the secondary self-resonant coil 240 based on the distance from the primary self-resonant coil 240 and the resonance frequency of the primary self-resonant coil 240 and the secondary self-resonant coil 110. The number of turns is appropriately set so that the Q value (for example, Q> 100) indicating the resonance intensity with the self-resonant coil 110 and κ indicating the degree of coupling increase.
 二次コイル120は、二次自己共振コイル110と同軸上に配設され、電磁誘導により二次自己共振コイル110と磁気的に結合可能である。この二次コイル120は、二次自己共振コイル110により受電された電力を電磁誘導により取出して整流器130へ出力する。整流器130は、二次コイル120によって取出された交流電力を整流する。 The secondary coil 120 is disposed coaxially with the secondary self-resonant coil 110 and can be magnetically coupled to the secondary self-resonant coil 110 by electromagnetic induction. The secondary coil 120 takes out the electric power received by the secondary self-resonant coil 110 by electromagnetic induction and outputs it to the rectifier 130. The rectifier 130 rectifies the AC power extracted by the secondary coil 120.
 DC/DCコンバータ140は、車両ECU180からの制御信号に基づいて、整流器130によって整流された電力を蓄電装置150の電圧レベルに変換して蓄電装置150へ出力する。なお、車両の走行中に給電装置200から受電する場合には(その場合には、給電装置200はたとえば車両上方または側方に配設されてもよい。)、DC/DCコンバータ140は、整流器130によって整流された電力をシステム電圧に変換してPCU160へ直接供給してもよい。また、DC/DCコンバータ140は、必ずしも必要ではなく、二次コイル120によって取出された交流電力が整流器130によって整流された後に直接蓄電装置150に与えられるようにしても良い。 DC / DC converter 140 converts the power rectified by rectifier 130 into a voltage level of power storage device 150 based on a control signal from vehicle ECU 180 and outputs the voltage level to power storage device 150. When power is received from power supply device 200 while the vehicle is traveling (in that case, power supply device 200 may be disposed above or to the side of the vehicle, for example), DC / DC converter 140 includes a rectifier. The power rectified by 130 may be converted into a system voltage and supplied directly to the PCU 160. DC / DC converter 140 is not necessarily required, and the AC power extracted by secondary coil 120 may be directly rectified by rectifier 130 and then directly supplied to power storage device 150.
 蓄電装置150は、再充電可能な直流電源であり、たとえばリチウムイオンやニッケル水素などの二次電池を含む。蓄電装置150は、DC/DCコンバータ140から供給される電力を蓄えるほか、モータ170によって発電される回生電力も蓄える。そして、蓄電装置150は、その蓄えた電力をPCU160へ供給する。なお、蓄電装置150として大容量のキャパシタも採用可能であり、給電装置200から供給される電力やモータ170からの回生電力を一時的に蓄え、その蓄えた電力をPCU160へ供給可能な電力バッファであれば如何なるものでもよい。 The power storage device 150 is a rechargeable DC power source and includes, for example, a secondary battery such as lithium ion or nickel metal hydride. The power storage device 150 stores power supplied from the DC / DC converter 140 and also stores regenerative power generated by the motor 170. Then, power storage device 150 supplies the stored power to PCU 160. Note that a large-capacity capacitor can also be used as the power storage device 150, and is a power buffer that can temporarily store the power supplied from the power supply device 200 and the regenerative power from the motor 170 and supply the stored power to the PCU 160. Anything is acceptable.
 PCU160は、蓄電装置150から出力される電力あるいはDC/DCコンバータ140から直接供給される電力によってモータ170を駆動する。また、PCU160は、モータ170により発電された回生電力を整流して蓄電装置150へ出力し、蓄電装置150を充電する。モータ170は、PCU160によって駆動され、車両駆動力を発生して駆動輪へ出力する。また、モータ170は、駆動輪や図示されないエンジンから受ける運動エネルギーによって発電し、その発電した回生電力をPCU160へ出力する。 The PCU 160 drives the motor 170 with power output from the power storage device 150 or power directly supplied from the DC / DC converter 140. PCU 160 also rectifies the regenerative power generated by motor 170 and outputs the rectified power to power storage device 150 to charge power storage device 150. The motor 170 is driven by the PCU 160 to generate a vehicle driving force and output it to driving wheels. Motor 170 generates electricity using kinetic energy received from driving wheels or an engine (not shown), and outputs the generated regenerative power to PCU 160.
 車両ECU180は、車両の走行時、車両の走行状況や蓄電装置150の充電状態(以下「SOC(State Of Charge)」とも称する。)に基づいてPCU160を制御する。通信装置190は、車両外部の給電装置200と無線通信を行なうための通信インターフェースである。 The vehicle ECU 180 controls the PCU 160 based on the traveling state of the vehicle and the state of charge of the power storage device 150 (hereinafter also referred to as “SOC (State Of Charge)”) when the vehicle is traveling. Communication device 190 is a communication interface for performing wireless communication with power supply device 200 outside the vehicle.
 一方、給電装置200は、交流電源210と、高周波電力ドライバ220と、一次コイル230と、一次自己共振コイル240と、通信装置250と、ECU260とを含む。 Meanwhile, power supply apparatus 200 includes AC power supply 210, high-frequency power driver 220, primary coil 230, primary self-resonant coil 240, communication apparatus 250, and ECU 260.
 交流電源210は、車両外部の電源であり、たとえば系統電源である。高周波電力ドライバ220は、交流電源210から受ける電力を高周波の電力に変換し、その変換した高周波電力を一次コイル230へ供給する。なお、高周波電力ドライバ220が生成する高周波電力の周波数は、たとえば1M~10数MHzである。 AC power supply 210 is a power supply external to the vehicle, for example, a system power supply. The high frequency power driver 220 converts power received from the AC power source 210 into high frequency power, and supplies the converted high frequency power to the primary coil 230. Note that the frequency of the high-frequency power generated by the high-frequency power driver 220 is, for example, 1 M to several tens of MHz.
 一次コイル230は、一次自己共振コイル240と同軸上に配設され、電磁誘導により一次自己共振コイル240と磁気的に結合可能である。そして、一次コイル230は、高周波電力ドライバ220から供給される高周波電力を電磁誘導により一次自己共振コイル240へ給電する。 The primary coil 230 is disposed coaxially with the primary self-resonant coil 240, and can be magnetically coupled to the primary self-resonant coil 240 by electromagnetic induction. The primary coil 230 feeds high-frequency power supplied from the high-frequency power driver 220 to the primary self-resonant coil 240 by electromagnetic induction.
 一次自己共振コイル240は、地面近傍に配設されるが、車両上方から電動車両100へ給電する場合には車両上方に配設されてもよい。一次自己共振コイル240も、両端がオープン(非接続)のLC共振コイルであり、電動車両100の二次自己共振コイル110と電磁場を介して共鳴することにより電動車両100へ電力を送電する。なお、一次自己共振コイル240の容量成分も、コイルの浮遊容量とするが、コイルの両端に接続されるコンデンサを設けてもよい。 The primary self-resonant coil 240 is disposed near the ground, but may be disposed above the vehicle when power is supplied to the electric vehicle 100 from above the vehicle. The primary self-resonant coil 240 is also an LC resonant coil whose both ends are open (not connected), and transmits electric power to the electric vehicle 100 by resonating with the secondary self-resonant coil 110 of the electric vehicle 100 via an electromagnetic field. The capacitance component of the primary self-resonant coil 240 is also the stray capacitance of the coil, but capacitors connected to both ends of the coil may be provided.
 この一次自己共振コイル240も、電動車両100の二次自己共振コイル110との距離や、一次自己共振コイル240および二次自己共振コイル110の共鳴周波数等に基づいて、Q値(たとえば、Q>100)および結合度κ等が大きくなるようにその巻数が適宜設定される。 The primary self-resonant coil 240 also has a Q value (for example, Q> based on the distance from the secondary self-resonant coil 110 of the electric vehicle 100, the resonance frequency of the primary self-resonant coil 240 and the secondary self-resonant coil 110, etc. 100), and the number of turns is appropriately set so that the degree of coupling κ and the like are increased.
 通信装置250は、給電先の電動車両100と無線通信を行なうための通信インターフェースである。ECU260は、電動車両100の受電電力が目標値となるように高周波電力ドライバ220を制御する。具体的には、ECU260は、電動車両100の受電電力およびその目標値を通信装置250によって電動車両100から取得し、電動車両100の受電電力が目標値に一致するように高周波電力ドライバ220の出力を制御する。また、ECU260は、給電装置200のインピーダンス値を電動車両100へ送信することができる。 The communication device 250 is a communication interface for performing wireless communication with the electric powered vehicle 100 that is a power supply destination. The ECU 260 controls the high frequency power driver 220 so that the received power of the electric vehicle 100 becomes a target value. Specifically, ECU 260 acquires the received power of electric vehicle 100 and its target value from electric vehicle 100 by communication device 250, and outputs high-frequency power driver 220 so that the received power of electric vehicle 100 matches the target value. To control. In addition, ECU 260 can transmit the impedance value of power supply apparatus 200 to electrically powered vehicle 100.
 図2は、共鳴法による送電の原理を説明するための図である。図2を参照して、この共鳴法では、2つの音叉が共鳴するのと同様に、同じ固有振動数を有する2つのLC共振コイルが電磁場(近接場)において共鳴することによって、一方のコイルから他方のコイルへ電磁場を介して電力が伝送される。 FIG. 2 is a diagram for explaining the principle of power transmission by the resonance method. Referring to FIG. 2, in this resonance method, in the same way as two tuning forks resonate, two LC resonance coils having the same natural frequency resonate in an electromagnetic field (near field), and thereby, from one coil. Electric power is transmitted to the other coil via an electromagnetic field.
 具体的には、高周波電源310に一次コイル320を接続し、電磁誘導により一次コイル320と磁気的に結合される一次自己共振コイル330へ1M~10数MHzの高周波電力を給電する。一次自己共振コイル330は、コイル自身のインダクタンスと浮遊容量とによるLC共振器であり、一次自己共振コイル330と同じ共振周波数を有する二次自己共振コイル340と電磁場(近接場)を介して共鳴する。そうすると、一次自己共振コイル330から二次自己共振コイル340へ電磁場を介してエネルギー(電力)が移動する。二次自己共振コイル340へ移動したエネルギー(電力)は、電磁誘導により二次自己共振コイル340と磁気的に結合される二次コイル350によって取出され、負荷360へ供給される。なお、共鳴法による送電は、一次自己共振コイル330と二次自己共振コイル340との共鳴強度を示すQ値がたとえば100よりも大きいときに実現される。 Specifically, the primary coil 320 is connected to the high-frequency power source 310, and high-frequency power of 1 to 10 MHz is fed to the primary self-resonant coil 330 that is magnetically coupled to the primary coil 320 by electromagnetic induction. The primary self-resonant coil 330 is an LC resonator having an inductance and stray capacitance of the coil itself, and resonates with a secondary self-resonant coil 340 having the same resonance frequency as the primary self-resonant coil 330 via an electromagnetic field (near field). . Then, energy (electric power) moves from the primary self-resonant coil 330 to the secondary self-resonant coil 340 via the electromagnetic field. The energy (electric power) transferred to the secondary self-resonant coil 340 is taken out by the secondary coil 350 magnetically coupled to the secondary self-resonant coil 340 by electromagnetic induction and supplied to the load 360. Note that power transmission by the resonance method is realized when the Q value indicating the resonance intensity between the primary self-resonant coil 330 and the secondary self-resonant coil 340 is greater than 100, for example.
 なお、図1との対応関係について説明すると、図1の交流電源210および高周波電力ドライバ220は、図2の高周波電源310に相当する。また、図1の一次コイル230および一次自己共振コイル240は、それぞれ図2の一次コイル320および一次自己共振コイル330に相当し、図1の二次自己共振コイル110および二次コイル120は、それぞれ図2の二次自己共振コイル340および二次コイル350に相当する。そして、図1の整流器130以降が負荷360として総括的に示されている。 1 will be described. The AC power supply 210 and the high-frequency power driver 220 in FIG. 1 correspond to the high-frequency power supply 310 in FIG. Further, the primary coil 230 and the primary self-resonant coil 240 in FIG. 1 correspond to the primary coil 320 and the primary self-resonant coil 330 in FIG. 2, respectively, and the secondary self-resonant coil 110 and the secondary coil 120 in FIG. This corresponds to the secondary self-resonant coil 340 and the secondary coil 350 in FIG. In addition, the rectifier 130 and the subsequent parts in FIG.
 図3は、電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。図3を参照して、電磁界は3つの成分を含む。曲線k1は、波源からの距離に反比例した成分であり、「輻射電界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電界」と称される。 FIG. 3 is a diagram showing the relationship between the distance from the current source (magnetic current source) and the strength of the electromagnetic field. Referring to FIG. 3, the electromagnetic field includes three components. A curve k1 is a component inversely proportional to the distance from the wave source, and is referred to as a “radiating electric field”. A curve k2 is a component inversely proportional to the square of the distance from the wave source, and is referred to as an “induced electric field”. The curve k3 is a component that is inversely proportional to the cube of the distance from the wave source, and is referred to as an “electrostatic field”.
 「静電界」は、波源からの距離とともに急激に電磁波の強度が減少する領域であり、共鳴法では、この「静電界」が支配的な近接場(エバネッセント場)を利用してエネルギー(電力)の伝送が行なわれる。すなわち、「静電界」が支配的な近接場において、同じ固有振動数を有する一対の共鳴器(たとえば一対のLC共振コイル)を共鳴させることにより、一方の共鳴器(一次自己共振コイル)から他方の共鳴器(二次自己共振コイル)へエネルギー(電力)を伝送する。この「静電界」は遠方にエネルギーを伝播しないので、遠方までエネルギーを伝播する「輻射電界」によりエネルギー(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギー損失で送電することができる。 The “electrostatic field” is a region where the intensity of the electromagnetic wave suddenly decreases with the distance from the wave source. In the resonance method, energy (electric power) is utilized using the near field (evanescent field) in which this “electrostatic field” is dominant. Is transmitted. That is, by resonating a pair of resonators having the same natural frequency (for example, a pair of LC resonance coils) in a near field where the “electrostatic field” is dominant, the resonance from one resonator (primary self-resonance coil) to the other Energy (electric power) is transmitted to the resonator (secondary self-resonant coil). Since this “electrostatic field” does not propagate energy far away, the resonance method can transmit power with less energy loss than electromagnetic waves that transmit energy (electric power) by “radiant electric field” that propagates energy far away. it can.
 図4は、受電装置400の断面図であり、図5は、内部を一部可視化したボビン402の斜視図である。この図4および図5に示すように、受電装置400は、二次自己共振コイル110と、二次コイル120と、二次自己共振コイル110を支持するボビン402と、ボビン402を収容するシールド401とを備えている。 FIG. 4 is a cross-sectional view of the power receiving device 400, and FIG. 5 is a perspective view of the bobbin 402 with the inside partially visualized. As shown in FIGS. 4 and 5, the power receiving device 400 includes a secondary self-resonant coil 110, a secondary coil 120, a bobbin 402 that supports the secondary self-resonant coil 110, and a shield 401 that houses the bobbin 402. And.
 ボビン402は、有底円筒状に形成されており、内部に二次自己共振コイル110を収容可能な収容部が規定されている。そして、開口部側を電動車両100のフロアパネル側に向けて配置することで、ボビン402内の収容部が外部から区画される。 The bobbin 402 is formed in a bottomed cylindrical shape, and an accommodating portion capable of accommodating the secondary self-resonant coil 110 is defined therein. And the accommodating part in the bobbin 402 is divided from the exterior by arrange | positioning an opening part side toward the floor panel side of the electric vehicle 100. FIG.
 二次自己共振コイル110は、このボビン402内に支持固定されており、外部に二次自己共振コイル110が露出することが抑制されている。このように、ボビン402は、二次自己共振コイル110を支持するのみならず、二次自己共振コイル110を覆うカバーとしての機能を兼ね備えており、部品点数の低減を図ることができる。 The secondary self-resonant coil 110 is supported and fixed in the bobbin 402, and exposure of the secondary self-resonant coil 110 to the outside is suppressed. As described above, the bobbin 402 not only supports the secondary self-resonant coil 110 but also has a function as a cover that covers the secondary self-resonant coil 110, and can reduce the number of parts.
 ボビン402は、受電時に、一次自己共振コイル240に向けて配置される天板部410と、この天板部410の周縁部から垂下する周壁部411と、周壁部411によって規定された開口部417の開口縁部に形成された鍔部412とを備えている。 The bobbin 402 has a top plate portion 410 arranged toward the primary self-resonant coil 240 at the time of power reception, a peripheral wall portion 411 depending from the peripheral portion of the top plate portion 410, and an opening 417 defined by the peripheral wall portion 411. And an eaves part 412 formed at the opening edge.
 天板部410は、ボビン402の端部のうち、受電時に、一次自己共振コイル240と対向する端部に形成されており、二次自己共振コイル110を収容する収容部と外部を区画している。これにより、たとえば、シールド401を設けない場合においても、二次自己共振コイル110が外部に露出することを抑制することができ、二次自己共振コイル110に異物が付着する事などの弊害を抑制することができる。 The top plate portion 410 is formed at the end portion of the bobbin 402 that faces the primary self-resonant coil 240 when receiving power, and separates the housing portion that houses the secondary self-resonant coil 110 from the outside. Yes. Thus, for example, even when the shield 401 is not provided, the secondary self-resonant coil 110 can be prevented from being exposed to the outside, and adverse effects such as adhesion of foreign matter to the secondary self-resonant coil 110 can be suppressed. can do.
 鍔部412は、開口部417の開口縁部から外方に向けて張り出すように形成されており、鍔部412には、天板部410をシールド401に固定するための固定部材403が複数接続されている。 The flange portion 412 is formed so as to protrude outward from the opening edge portion of the opening portion 417, and the flange portion 412 includes a plurality of fixing members 403 for fixing the top plate portion 410 to the shield 401. It is connected.
 シールド401は、たとえば、銅等の金属材料や金属材料を含む布またはスポンジ等によって構成されており、二次自己共振コイル110と一次自己共振コイル240との間に生じる電磁波を反射可能な材料によって構成されている。 The shield 401 is made of, for example, a metal material such as copper or a cloth or sponge containing a metal material, and is made of a material that can reflect electromagnetic waves generated between the secondary self-resonant coil 110 and the primary self-resonant coil 240. It is configured.
 このシールド401は、中空状に形成されており、内部にボビン402が収容されている。このシールド401は、受電時に一次自己共振コイル240と対向する天板部413と、天板部413の外周縁部から下方に向けて垂下する周壁部415と、この周壁部415の端部に連設された底部416とを備えている。 The shield 401 is formed in a hollow shape, and a bobbin 402 is accommodated therein. The shield 401 is connected to the top plate portion 413 that faces the primary self-resonant coil 240 at the time of power reception, the peripheral wall portion 415 that hangs downward from the outer peripheral edge portion of the top plate portion 413, and the end portion of the peripheral wall portion 415. And a bottom portion 416 provided.
 そして、天板部413の開口部414は、絶縁性の閉塞部材418によって閉塞されている。シールド401は、閉塞部材418が下方に向くように、電動車両100のフロアパネル上に搭載される。 The opening 414 of the top plate 413 is closed by an insulating closing member 418. The shield 401 is mounted on the floor panel of the electric vehicle 100 so that the closing member 418 faces downward.
 このため、受電装置400の受電時において、二次自己共振コイル110によって生じる電磁波は、閉塞部材418(開口部414)を通して外部に放射される一方で、電動車両100側に向けて放射されることが抑制されている。 For this reason, when the power receiving device 400 receives power, the electromagnetic wave generated by the secondary self-resonant coil 110 is radiated to the outside through the blocking member 418 (opening 414), and is radiated toward the electric vehicle 100 side. Is suppressed.
 二次コイル120は、二次自己共振コイル110に対して閉塞部材418と反対側に位置しており、底部416に設けられたコネクタ405に接続されている。 The secondary coil 120 is located on the opposite side of the closing member 418 with respect to the secondary self-resonant coil 110 and is connected to a connector 405 provided on the bottom 416.
 この二次コイル120は、底部416に設けられた支持部材404によって支持固定されている。 The secondary coil 120 is supported and fixed by a support member 404 provided on the bottom 416.
 なお、この図4に示す例においては、二次コイル120は、二次自己共振コイル110に対して閉塞部材418と反対側に位置しているが、当該位置に限られず、二次自己共振コイル110に対して、閉塞部材418側に設けられていてもよい。 In the example shown in FIG. 4, the secondary coil 120 is located on the side opposite to the closing member 418 with respect to the secondary self-resonant coil 110, but is not limited to this position, and the secondary self-resonant coil is not limited thereto. 110 may be provided on the closing member 418 side.
 ここで、二次自己共振コイル110およびボビン402は、底部416に固定されており、二次コイル120も支持部材404によって底部416からの距離が規定されている。このように、二次自己共振コイル110および二次コイル120のいずれもが、底部416に固定され、底部416からの距離が規定されている。 Here, the secondary self-resonant coil 110 and the bobbin 402 are fixed to the bottom portion 416, and the distance from the bottom portion 416 of the secondary coil 120 is also defined by the support member 404. Thus, both the secondary self-resonant coil 110 and the secondary coil 120 are fixed to the bottom part 416, and the distance from the bottom part 416 is defined.
 これにより、二次コイル120と二次自己共振コイル110との間の距離を正確に位置決めすることができ、二次自己共振コイル110の共振周波数を正確に設定することができると共に、受電効率の向上を図ることができる。 As a result, the distance between the secondary coil 120 and the secondary self-resonant coil 110 can be accurately positioned, the resonant frequency of the secondary self-resonant coil 110 can be accurately set, and the power receiving efficiency can be improved. Improvements can be made.
 ボビン402には、二次自己共振コイル110の少なくとも一部を受け入れ、二次自己共振コイル110を支持可能なコイル収容溝420が形成されている。 The bobbin 402 is formed with a coil receiving groove 420 that receives at least a part of the secondary self-resonant coil 110 and can support the secondary self-resonant coil 110.
 コイル収容溝420は、ボビン402の周方向に向かうにしたがって、開口部417側から天板部410に向けて延び、螺旋状に形成されている。 The coil housing groove 420 extends from the opening 417 side toward the top plate 410 as it goes in the circumferential direction of the bobbin 402, and is formed in a spiral shape.
 図6は、二次自己共振コイル110の斜視図である。この図6に示されるように、二次自己共振コイル110の両端部には、係止部(第1係合部)430が形成されており、係止部430は、二次自己共振コイル110の端部から径方向外方に向けて屈曲している。 FIG. 6 is a perspective view of the secondary self-resonant coil 110. As shown in FIG. 6, locking portions (first engaging portions) 430 are formed at both ends of the secondary self-resonant coil 110, and the locking portions 430 are formed of the secondary self-resonant coil 110. Is bent radially outward from the end of the.
 図7は、ボビン402の一部の断面図であり、図8は、図7のVIII-VIII線における断面図である。 7 is a partial cross-sectional view of the bobbin 402, and FIG. 8 is a cross-sectional view taken along the line VIII-VIII of FIG.
 この図7および図8に示すように、周壁部411の内周面のうち、コイル収容溝420の両端部に位置する部分には、係止部430と係合可能な係止溝(第2係合部)421が形成されている。この係止溝421は、コイル収容溝(溝部)420の底部より、ボビン402の径方向外方側に向けてのびており、係止部430を受け入れ可能となっている。 As shown in FIGS. 7 and 8, in the inner peripheral surface of the peripheral wall portion 411, the portions located at both ends of the coil housing groove 420 are provided with locking grooves (second grooves) that can be engaged with the locking portions 430. Engaging portion) 421 is formed. The locking groove 421 extends from the bottom of the coil housing groove (groove portion) 420 toward the radially outer side of the bobbin 402 and can receive the locking portion 430.
 そして、二次自己共振コイル110の両端部に形成された係止部430がそれぞれ、係止溝421を規定する周壁部411の内表面と係合することで、二次自己共振コイル110がボビン402内に係止される。 And the engaging part 430 formed in the both ends of the secondary self-resonant coil 110 engages with the inner surface of the surrounding wall part 411 which defines the engaging groove 421, respectively, so that the secondary self-resonant coil 110 is a bobbin. Locked in 402.
 ここで、二次自己共振コイル110は、外部から負荷が加えられていない状態においては、二次自己共振コイル110の直径は、ボビン402の内表面の直径よりも大きくなっている。 Here, in the secondary self-resonant coil 110, the diameter of the secondary self-resonant coil 110 is larger than the diameter of the inner surface of the bobbin 402 when no load is applied from the outside.
 そして、ボビン402内に収容された二次自己共振コイル110は、無負荷状態のときよりも、縮径した状態でボビン402内に収容されている。このため、ボビン402内に収容された二次自己共振コイル110は拡径しようとしており、この弾性力によって、二次自己共振コイル110の係止部430は、係止溝421を規定するボビン402の内表面と係合している。 The secondary self-resonant coil 110 housed in the bobbin 402 is housed in the bobbin 402 in a reduced diameter state compared to the unloaded state. For this reason, the secondary self-resonant coil 110 accommodated in the bobbin 402 is about to expand in diameter, and due to this elastic force, the locking portion 430 of the secondary self-resonant coil 110 defines the locking groove 421. Is engaged with the inner surface.
 このように、二次自己共振コイル110の弾性力を用いて、二次自己共振コイル110をボビン402内に係止させることができるので、たとえば、他の固定具や接着剤等を要さず、部品点数の低減を図ることができる。 In this way, the secondary self-resonant coil 110 can be locked in the bobbin 402 by using the elastic force of the secondary self-resonant coil 110, so that, for example, no other fixture or adhesive is required. The number of parts can be reduced.
 さらに、従来のコイルのように、固定用の接着剤が二次自己共振コイル110間に入り込むことがなく、二次自己共振コイル110のコイル線間に大きなキャパシタが形成されることを抑制することができる。これにより、発熱の抑制および受電効率の向上を図ることができる。 Furthermore, unlike the conventional coil, the fixing adhesive does not enter between the secondary self-resonant coils 110 and suppresses the formation of a large capacitor between the coil wires of the secondary self-resonant coil 110. Can do. Thereby, suppression of heat generation and improvement of power reception efficiency can be achieved.
 上記のように構成された受電装置400の製造方法について図9から図11を用いて説明する。 A method for manufacturing the power receiving device 400 configured as described above will be described with reference to FIGS.
 図9は、受電装置400の製造工程の第1工程を示す断面図である。この図9に示すように、二次自己共振コイル110とボビン402とを準備する。この際、二次自己共振コイル110の直径は、ボビン402の開口部417の開口直径よりも大きくなっている。 FIG. 9 is a cross-sectional view illustrating a first step in the manufacturing process of the power receiving device 400. As shown in FIG. 9, a secondary self-resonant coil 110 and a bobbin 402 are prepared. At this time, the diameter of the secondary self-resonant coil 110 is larger than the opening diameter of the opening 417 of the bobbin 402.
 図10は、受電装置400の製造工程の第2工程を示す断面図である。この図10に示す工程においては、まず、図示されない把持装置によって、二次自己共振コイル110の係止部430を把持する。そして、把持装置は、係止部430を把持した状態で、二次自己共振コイル110の径が小さくなるように二次自己共振コイル110を変形させる。そして、二次自己共振コイル110を縮径させた状態で、ボビン402内に挿入する。 FIG. 10 is a cross-sectional view showing a second step of the manufacturing process of power reception device 400. In the process shown in FIG. 10, first, the locking portion 430 of the secondary self-resonant coil 110 is gripped by a gripping device (not shown). Then, the gripping device deforms the secondary self-resonant coil 110 so that the diameter of the secondary self-resonant coil 110 is reduced in a state where the locking portion 430 is gripped. Then, the secondary self-resonant coil 110 is inserted into the bobbin 402 with the diameter reduced.
 図11は、受電装置400の製造工程の第3工程を示す断面図である。この図11に示すように、縮径させた二次自己共振コイル110を完全にボビン402内に収容した後、二次自己共振コイル110の各係止部430を係止溝421に挿入する。その後、把持装置が二次自己共振コイル110を開放することで、二次自己共振コイル110がコイル収容溝420内に収容される。 FIG. 11 is a cross-sectional view showing a third step of the manufacturing process of power reception device 400. As shown in FIG. 11, after the secondary self-resonant coil 110 having a reduced diameter is completely accommodated in the bobbin 402, the engaging portions 430 of the secondary self-resonant coil 110 are inserted into the engaging grooves 421. Thereafter, the secondary self-resonant coil 110 is accommodated in the coil accommodating groove 420 by the gripping device opening the secondary self-resonant coil 110.
 そして、二次コイル120が装着されたシールド401内に、二次自己共振コイル110が装着されたボビン402を装着する。その後、シールド401の開口部414に閉塞部材418を装着して、開口部414を閉塞する。 Then, the bobbin 402 to which the secondary self-resonant coil 110 is attached is attached in the shield 401 to which the secondary coil 120 is attached. Thereafter, a closing member 418 is attached to the opening 414 of the shield 401 to close the opening 414.
 図12は、ボビン402の変形例を示す断面図であり、図13は、図12の一部を拡大視した断面図である。この図12および図13に示すように、周壁部411の内周面の周方向の長さは、開口部417側から天板部410側に向かうにしたがって、小さくなるように形成されている。ここで、ボビン402は、たとえば、図14に示す射出成形機などを用いて成形する。 FIG. 12 is a cross-sectional view showing a modification of the bobbin 402, and FIG. 13 is a cross-sectional view in which a part of FIG. 12 is enlarged. As shown in FIGS. 12 and 13, the circumferential length of the inner peripheral surface of the peripheral wall portion 411 is formed so as to decrease from the opening 417 side toward the top plate portion 410 side. Here, the bobbin 402 is molded using, for example, an injection molding machine shown in FIG.
 図14は、ボビン402を成形する射出成形機460の概略構成を示す断面図であり、この図14に示すように、射出成形機460は、キャビティー463が形成された外金型461と、コア部466が形成された内金型462とを備えている。 FIG. 14 is a cross-sectional view showing a schematic configuration of an injection molding machine 460 that molds the bobbin 402. As shown in FIG. 14, the injection molding machine 460 includes an outer mold 461 in which a cavity 463 is formed, And an inner mold 462 in which a core portion 466 is formed.
 コア部466の外周面には、螺旋状に延びる溝成形部465が形成され、コア部466内には、樹脂が流通する樹脂通路464が形成されている。 A groove forming portion 465 extending in a spiral shape is formed on the outer peripheral surface of the core portion 466, and a resin passage 464 through which resin flows is formed in the core portion 466.
 そして、ボビン402を成形する際には、まず、外金型461と内金型462とを接着させて、コア部466をキャビティー463内に挿入する。これにより、キャビティー463の内表面と、コア部466との間に空間が規定される。そして、樹脂が樹脂通路464から上記規定された空間内に供給される。その後、充填された樹脂を冷却し、内金型462を回転させながら外金型461から離間させ、成形品を取り出す。そして、成形品の内表面に、係止溝421を形成することで、ボビン402が成形される。 In forming the bobbin 402, first, the outer mold 461 and the inner mold 462 are bonded, and the core portion 466 is inserted into the cavity 463. Thereby, a space is defined between the inner surface of the cavity 463 and the core portion 466. Then, the resin is supplied from the resin passage 464 into the defined space. Thereafter, the filled resin is cooled, and the inner mold 462 is rotated away from the outer mold 461, and the molded product is taken out. And the bobbin 402 is shape | molded by forming the locking groove 421 in the inner surface of a molded article.
 ここで、コア部466は、基部側から先端部側に向けて先細状に形成されており、コア部466を成形品から後退させる際にコア部466に生じる摩擦力の低減が図られている。これにより、成形品の内周面にヒケ(sink
mark)等が生じることを抑制することができ、成形品を良好に成形することができる。
Here, the core part 466 is formed in a tapered shape from the base part side toward the tip part side, and the frictional force generated in the core part 466 when the core part 466 is retracted from the molded product is reduced. . As a result, sink (sink)
mark) and the like can be suppressed, and a molded product can be molded satisfactorily.
 さらに、キャビティー463の内周面の周方向の長さは、キャビティー463の開口部側から底部側に向かうにしたがって、小さくなるように形成されている。これにより、成形された成形品をキャビティー463から押し出す際に、キャビティー463の内表面と成形された成形品の外表面との間に生じる摩擦力を低減することができ、成形品の外表面を良好に成形することができる。 Furthermore, the circumferential length of the inner peripheral surface of the cavity 463 is formed so as to decrease from the opening side to the bottom side of the cavity 463. As a result, when the molded product is extruded from the cavity 463, the frictional force generated between the inner surface of the cavity 463 and the outer surface of the molded product can be reduced. The surface can be molded well.
 ここで、溝成形部465は、コア部466の表面から突出するように形成されており、各溝成形部465の各頂点部の高さは、一致するように形成されている。具体的には、上溝成形部465の頂点部は、内金型462の回転軸線O1と平行な仮想軸線L1,L2上に位置している。 Here, the groove forming portion 465 is formed so as to protrude from the surface of the core portion 466, and the height of each apex portion of each groove forming portion 465 is formed to coincide. Specifically, the apex portion of the upper groove forming portion 465 is located on virtual axis lines L1 and L2 that are parallel to the rotation axis O1 of the inner mold 462.
 これにより、図12および図13に示すように、成形されたボビン402に形成されたコイル収容溝420の底部423は、ボビン402の中心軸線O2方向に配列することになる。具体的には、コイル収容溝420の底部423は、回転軸線O1に平行な仮想軸線L3,L4上に配列することになる。 Accordingly, as shown in FIGS. 12 and 13, the bottom portion 423 of the coil housing groove 420 formed in the molded bobbin 402 is arranged in the direction of the central axis O <b> 2 of the bobbin 402. Specifically, the bottom 423 of the coil accommodation groove 420 is arranged on virtual axes L3 and L4 parallel to the rotation axis O1.
 このため、二次自己共振コイル110がコイル収容溝420内に装着されると、二次自己共振コイル110の径がいずれの位置においても一定に保たれる。これにより、二次自己共振コイル110がコイル収容溝420に装着されることで、二次自己共振コイル110の共振周波数が変動することを抑制することができる。 Therefore, when the secondary self-resonant coil 110 is installed in the coil housing groove 420, the diameter of the secondary self-resonant coil 110 is kept constant at any position. Thereby, by attaching the secondary self-resonant coil 110 to the coil housing groove 420, it is possible to suppress fluctuation of the resonance frequency of the secondary self-resonant coil 110.
 図15は、ボビン402の他の例を示すボビン402の断面図であり、図16は、図15の一部を拡大視した断面図である。これら図15および図16に示すように、コイル収容溝420の開口縁部には、コイル収容溝420内に受け入れられた二次自己共振コイル110を係止する係合部(コイル係止部)422が形成されている。係合部422は、コイル収容溝420に沿って延びており、コイル収容溝420の開口縁部の両側辺部からコイル収容溝420の開口面積を狭めるように張り出している。そして、この係合部422によって、二次自己共振コイル110がコイル収容溝420から脱落することが抑制されている。 15 is a cross-sectional view of a bobbin 402 showing another example of the bobbin 402, and FIG. 16 is a cross-sectional view in which a part of FIG. 15 is enlarged. As shown in FIGS. 15 and 16, an engaging portion (coil locking portion) that locks the secondary self-resonant coil 110 received in the coil receiving groove 420 at the opening edge of the coil receiving groove 420. 422 is formed. The engaging portion 422 extends along the coil housing groove 420 and projects from both sides of the opening edge of the coil housing groove 420 so as to narrow the opening area of the coil housing groove 420. The engagement portion 422 prevents the secondary self-resonant coil 110 from dropping from the coil housing groove 420.
 なお、係合部422は、樹脂により形成されているので、二次自己共振コイル110をコイル収容溝420内に装着する際には、二次自己共振コイル110をコイル収容溝420に向けて押し付けることで、係合部422を変形させて、二次自己共振コイル110をコイル収容溝420に装着させることができる。 Since the engaging portion 422 is made of resin, when the secondary self-resonant coil 110 is mounted in the coil housing groove 420, the secondary self-resonant coil 110 is pressed toward the coil housing groove 420. Thus, the engaging portion 422 can be deformed and the secondary self-resonant coil 110 can be mounted in the coil housing groove 420.
 (実施の形態2)
 図17から図22を用いて、本発明の実施の形態2に係る非接触受電装置について説明する。なお、図17から図22に示された構成のうち、上記図1から図16に示された構成と同一または相当する構成については、同一の符号を付してその説明を省略する場合がある。
(Embodiment 2)
A contactless power receiving device according to Embodiment 2 of the present invention will be described with reference to FIGS. 17 to 22. Of the configurations shown in FIGS. 17 to 22, the same or corresponding components as those shown in FIGS. 1 to 16 may be denoted by the same reference numerals and description thereof may be omitted. .
 図17は、本発明の実施の形態2に係る受電装置に設けられたボビン402の斜視図である。この図17に示すように、ボビン402は、絶縁性の板状部材を筒状に成形することで形成された周壁部411と、周壁部411の一方の端部に装着された天板部410とを備えている。 FIG. 17 is a perspective view of the bobbin 402 provided in the power receiving device according to the second embodiment of the present invention. As shown in FIG. 17, the bobbin 402 includes a peripheral wall portion 411 formed by forming an insulating plate-like member into a cylindrical shape, and a top plate portion 410 attached to one end of the peripheral wall portion 411. And.
 そして、周壁部411の内周面には、複数の導線を互いに半田で接続することで構成された二次自己共振コイル110が装着されている。この図17に示す例においても、二次自己共振コイル110は、有底円筒状に形成されたボビン402内に装着されている。このため、ボビン402は、二次自己共振コイル110を保持する機能と外部から二次自己共振コイル110を保護する機能を兼ねており、従来のボビンとカバーを備えたコイルと比較して、部品点数の低減を図ることができる。 Further, a secondary self-resonant coil 110 configured by connecting a plurality of conductive wires to each other with solder is mounted on the inner peripheral surface of the peripheral wall portion 411. Also in the example shown in FIG. 17, the secondary self-resonant coil 110 is mounted in a bobbin 402 formed in a bottomed cylindrical shape. For this reason, the bobbin 402 has a function of holding the secondary self-resonant coil 110 and a function of protecting the secondary self-resonant coil 110 from the outside. Compared with a conventional coil having a bobbin and a cover, the bobbin 402 The number of points can be reduced.
 図18から図21を用いて、本実施の形態に係る受電装置について説明する。図18は、非接触受電装置の製造工程の第1工程を示す斜視図である。この図18に示すように、主表面上に複数の導線435A~435Dが装着された絶縁性の板状部材450を準備する。 The power receiving device according to the present embodiment will be described with reference to FIGS. FIG. 18 is a perspective view showing a first step in the manufacturing process of the non-contact power receiving apparatus. As shown in FIG. 18, an insulating plate-like member 450 having a plurality of conducting wires 435A to 435D mounted on the main surface is prepared.
 板状部材450は、長方形(方形形状)に形成されており、板状部材450の外周縁部は、板状部材450の長手方向(板状部材450の延在方向)に配列する端辺部436,437と、板状部材450の短手方向(板状部材450の幅方向)に配列する側辺部438,439とによって規定されている。 The plate-like member 450 is formed in a rectangular shape (square shape), and the outer peripheral edge portion of the plate-like member 450 is an end side portion arranged in the longitudinal direction of the plate-like member 450 (the extending direction of the plate-like member 450). 436 and 437 and side portions 438 and 439 arranged in the short direction of the plate-like member 450 (the width direction of the plate-like member 450).
 そして、板状部材450の主表面上には、端辺部436から端辺部437に亘って延びる複数の導線435A~435Dが、板状部材450の幅方向に間隔を隔てて等間隔に配置されている。この図18に示す例においては、4本の導線435A~435Dが、側辺部438と側辺部439との間に配列しており、各導線435A~435Dは、側辺部438,439に対して平行となるように配置されている。 On the main surface of the plate-like member 450, a plurality of conductive wires 435A to 435D extending from the end side portion 436 to the end side portion 437 are arranged at equal intervals at intervals in the width direction of the plate-like member 450. Has been. In the example shown in FIG. 18, four conductors 435A to 435D are arranged between the side part 438 and the side part 439, and the conductors 435A to 435D are connected to the side parts 438 and 439, respectively. It arrange | positions so that it may become parallel with respect to.
 板状部材450の主表面上には、各導線435A~435Dを受け入れると共に、各導線435A~435Dを係止する係止部が形成されており、各導線435A~435Dは、板状部材450の主表面上に保持されている。各導線435A~435Dの保持の方法としては、上記の例に限られない。たとえば、各導線435A~435Dに、板状部材450に形成された係合溝と係合する係合部を形成し、係合部を係合溝に係合させることで、各導線435A~435Dを板状部材450の主表面上に保持するようにしてもよい。 On the main surface of the plate-like member 450, there are formed engaging portions for receiving the respective conductors 435A to 435D and latching the respective conductors 435A to 435D. The conductors 435A to 435D are formed on the plate-like member 450. It is held on the main surface. The method of holding the conductive wires 435A to 435D is not limited to the above example. For example, each conducting wire 435A to 435D is formed with an engaging portion that engages with an engaging groove formed in the plate-like member 450, and the engaging portion is engaged with the engaging groove, whereby each conducting wire 435A to 435D. May be held on the main surface of the plate-like member 450.
 図19は、非接触受電装置の製造工程の第2工程を示す斜視図である。この図19に示すように、端辺部436と端辺部437とが互いに近接すると共に、各導線435A~435Dが内側に位置するように、板状部材450を湾曲させる。なお、板状部材450を湾曲させる際には、外部から板状部材450を加熱させながら湾曲させてもよい。 FIG. 19 is a perspective view showing a second step of the manufacturing process of the non-contact power receiving apparatus. As shown in FIG. 19, the plate-like member 450 is bent so that the end side portion 436 and the end side portion 437 are close to each other, and the conducting wires 435A to 435D are positioned inside. When the plate-like member 450 is bent, the plate-like member 450 may be bent while being heated from the outside.
 図20は、非接触受電装置の製造工程の第3工程を示す斜視図である。この図20に示すように、端辺部437と、端辺部436とを接触させる。この際、導線435Dの端辺部436側の端部は、導線435Dに対して、側辺部438側に隣り合う導線435Cの端辺部437側の端部と接触する。同様に、導線435C,435Bの端辺部436側の端部は、導線435C,435Bに対して、側辺部438側に隣り合う導線435B,435Aの端辺部437側の端部と接触する。そして、互いに接触する端部同士を半田で接続する。これにより、二次自己共振コイル110が形成される。 FIG. 20 is a perspective view showing a third step of the manufacturing process of the non-contact power receiving device. As shown in FIG. 20, the end side portion 437 and the end side portion 436 are brought into contact with each other. At this time, the end portion on the end side portion 436 side of the conducting wire 435D contacts the end portion on the end side portion 437 side of the conducting wire 435C adjacent to the side portion 438 side with respect to the conducting wire 435D. Similarly, the ends of the conducting wires 435C and 435B on the end side 436 side are in contact with the ends of the conducting wires 435B and 435A adjacent to the side portion 438 side of the conducting wires 435C and 435B. . Then, the ends that contact each other are connected by solder. Thereby, the secondary self-resonant coil 110 is formed.
 なお、導線435A~435Dの端部同士を接続する半田部440は、板状部材450の端辺部436および端辺部437同士をも接続する。これにより、板状部材450が筒状に形成される。 The solder part 440 that connects the ends of the conductive wires 435A to 435D also connects the end side part 436 and the end side part 437 of the plate-like member 450. Thereby, the plate-shaped member 450 is formed in a cylindrical shape.
 図21は、非接触受電装置の製造工程の第4工程を示す斜視図である。この図21に示すように、側辺部439の一部と、側辺部438の一部を切断して、開口縁部が面一とされた周壁部411を形成する。 FIG. 21 is a perspective view showing a fourth step in the manufacturing process of the non-contact power receiving apparatus. As shown in FIG. 21, a part of the side part 439 and a part of the side part 438 are cut to form a peripheral wall part 411 in which the opening edge part is flush.
 このように、周壁部411を形成したのち、側辺部438に天板部410を接着させることで、図17に示すボビン402を成形することができる。このように、内部に二次自己共振コイル110が装着されたボビン402を成形した後、図4に示すように、シールド401内にボビン402を装着して、受電装置400を製作する。 Thus, the bobbin 402 shown in FIG. 17 can be molded by forming the peripheral wall portion 411 and then bonding the top plate portion 410 to the side portion 438. In this manner, after forming the bobbin 402 having the secondary self-resonant coil 110 mounted therein, the bobbin 402 is mounted in the shield 401 as shown in FIG.
 このように、本実施の形態2に係る非接触受電装置の製造方法によれば、ボビン402を製作する工程と、二次自己共振コイル110を製作する工程とを同時に行うことができ、製造工程の低減を図ることができる。 Thus, according to the manufacturing method of the non-contact power receiving device according to the second embodiment, the process of manufacturing the bobbin 402 and the process of manufacturing the secondary self-resonant coil 110 can be performed simultaneously. Can be reduced.
 図22は、非接触受電装置の他の製造方法を説明するための板状部材450の平面図である。この図22に示す例においては、板状部材450は、平行四辺形となるように形成されており、端辺部436と端辺部437との長さは一致しており、さらに、端辺部436と端辺部437とは、互いに、各導線435A~435Dの間隔長さ分ずれるように位置している。 FIG. 22 is a plan view of a plate-like member 450 for explaining another manufacturing method of the non-contact power receiving apparatus. In the example shown in FIG. 22, the plate-like member 450 is formed to be a parallelogram, and the lengths of the end side part 436 and the end side part 437 are the same, and further, the end side The portion 436 and the end side portion 437 are positioned so as to be shifted from each other by the interval length of the conductive wires 435A to 435D.
 各導線435A~435Dは、端辺部436および端辺部437に垂直となるように配置されており、各導線435A~435Dは、板状部材450の幅方向に等間隔に配置されている。 The conductive wires 435A to 435D are disposed so as to be perpendicular to the end side portion 436 and the end side portion 437, and the conductive wires 435A to 435D are disposed at equal intervals in the width direction of the plate-like member 450.
 このように、形成された板状部材450を湾曲させて、端辺部436と端辺部437とを接触させる。この際、端辺部436の両端部と、端辺部437の両端部とが互いに接触するようにする。これにより、開口部が面一とされた周壁部411が形成される。 In this way, the formed plate-like member 450 is bent, and the end side part 436 and the end side part 437 are brought into contact with each other. At this time, both end portions of the end side portion 436 and both end portions of the end side portion 437 are brought into contact with each other. Thereby, the peripheral wall part 411 in which the opening part was made flush is formed.
 また、上記のように板状部材450を湾曲させることで、導線435D,435C,435Bの端辺部437側の端部が導線435C,435B,435Aの端辺部436側の端部と接触または近接する。 In addition, by bending the plate-like member 450 as described above, the ends of the conducting wires 435D, 435C, and 435B are in contact with the ends of the conducting wires 435C, 435B, and 435A on the end side 436 side or Proximity.
 そして、各導線の端部同士を半田付けすることで、二次自己共振コイル110を成形すると共に、ボビン402を形成することができる。 Then, by soldering the ends of each conductive wire, the secondary self-resonant coil 110 can be formed and the bobbin 402 can be formed.
 なお、上記の実施の形態1,2においては、受電装置400について説明したが、これに限られない。 In the first and second embodiments, the power receiving device 400 has been described. However, the present invention is not limited to this.
 すなわち、図23に示すように、給電装置200の一次自己共振コイル240および一次コイル230を保持するボビンについても、適用することができる。この場合、図4に示すボビン402の内周面に一次自己共振コイル240が装着され、一次自己共振コイル240が装着されたボビン402および一次自己共振コイル240がたとえば地面に埋設されることになる。 That is, as shown in FIG. 23, the present invention can also be applied to the bobbin that holds the primary self-resonant coil 240 and the primary coil 230 of the power feeding apparatus 200. In this case, the primary self-resonant coil 240 is attached to the inner peripheral surface of the bobbin 402 shown in FIG. 4, and the bobbin 402 and the primary self-resonant coil 240 to which the primary self-resonant coil 240 is attached are embedded in the ground, for example. .
 そして、上記の各実施の形態で示した非接触受電装置は各種電動車両に搭載することができる。電動車両としては、動力分割装置によりエンジンの動力を分割して駆動輪とモータジェネレータとに伝達可能なシリーズ/パラレル型のハイブリッド車以外にも、その他の形式のハイブリッド車にも適用可能である。すなわち、たとえば、モータジェネレータを駆動するためにのみエンジンを用い、モータジェネレータでのみ車両の駆動力を発生する、いわゆるシリーズ型のハイブリッド車や、エンジンが生成した運動エネルギーのうち回生エネルギーのみが電気エネルギーとして回収されるハイブリッド車、エンジンを主動力として必要に応じてモータがアシストするモータアシスト型のハイブリッド車などにもこの発明は適用可能である。 And the non-contact power receiving device shown in each of the above embodiments can be mounted on various electric vehicles. The electric vehicle can be applied to other types of hybrid vehicles besides the series / parallel type hybrid vehicle in which the power of the engine can be divided and transmitted to the drive wheels and the motor generator by the power split device. That is, for example, a so-called series-type hybrid vehicle that uses an engine only to drive a motor generator and generates the driving force of the vehicle only by the motor generator, or only regenerative energy of the kinetic energy generated by the engine is electric energy. The present invention can also be applied to a hybrid vehicle that is recovered as a motor, a motor-assist type hybrid vehicle in which a motor assists the engine as the main power.
 また、この発明は、エンジンを備えずに電力のみで走行する電気自動車や、直流電源として蓄電装置に加えて燃料電池をさらに備える燃料電池車にも適用可能である。また、この発明は、昇圧コンバータを備えない電動車両にも適用可能である。 The present invention can also be applied to an electric vehicle that runs only on electric power without an engine, and a fuel cell vehicle that further includes a fuel cell as a DC power source in addition to a power storage device. The present invention is also applicable to an electric vehicle that does not include a boost converter.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 本発明は、非接触電力伝達装置、非接触電力伝達装置の製造方法および非接触電力伝達装置を備えた車両に適用することができ、特に、車両外部に設けられた電源からの電力を非接で受電可能な非接触電力伝達装置および車両に好適である。 The present invention can be applied to a non-contact power transmission device, a method for manufacturing the non-contact power transmission device, and a vehicle including the non-contact power transmission device. In particular, the power from a power source provided outside the vehicle is not connected. It is suitable for a non-contact power transmission device and a vehicle that can receive power.

Claims (12)

  1.  対向配置される第1自己共振コイル(240,110)との間で、磁場の共鳴により電力の送電および受電の少なくとも一方が可能な第2自己共振コイル(110,240)と、
     中空状に形成され、内周面に沿って前記第2自己共振コイルが保持されたボビン(402)と、
     を備えた非接触電力伝達装置。
    A second self-resonant coil (110, 240) capable of at least one of transmitting and receiving electric power by resonance of a magnetic field with the first self-resonant coil (240, 110) arranged oppositely;
    A bobbin (402) formed in a hollow shape and holding the second self-resonant coil along an inner peripheral surface;
    A non-contact power transmission device.
  2.  前記第2自己共振コイル(110)および誘電コイル(120)は車両に搭載され、前記第1自己共振コイル(240)は前記車両の外部に配置され、前記第1自己共振コイルは前記第2自己共振コイルに電力を送電し、前記第2自己共振コイルは前記第1自己共振コイルから送電される電力を受電し、前記第2自己共振コイルおよび前記誘電コイルは受電装置(400)の少なくとも一部を構成する、請求の範囲第1項に記載の非接触電力伝達装置。 The second self-resonant coil (110) and the dielectric coil (120) are mounted on a vehicle, the first self-resonant coil (240) is disposed outside the vehicle, and the first self-resonant coil is the second self-resonant coil. Electric power is transmitted to the resonance coil, the second self-resonance coil receives electric power transmitted from the first self-resonance coil, and the second self-resonance coil and the dielectric coil are at least part of the power receiving device (400). The non-contact power transmission device according to claim 1, comprising:
  3.  前記第1自己共振コイル(110)は車両に搭載され、前記第2自己共振コイル(240)および誘電コイル(230)は前記車両の外部に配置され、前記第2自己共振コイルは前記第1自己共振コイルに電力を送電し、前記第1自己共振コイルは前記第2自己共振コイルから送電される電力を受電し、前記第2自己共振コイルおよび前記誘電コイルは送電装置(200)の少なくとも一部を構成する、請求の範囲第1項に記載の非接触電力伝達装置。 The first self-resonant coil (110) is mounted on the vehicle, the second self-resonant coil (240) and the dielectric coil (230) are disposed outside the vehicle, and the second self-resonant coil is the first self-resonant coil. Electric power is transmitted to the resonance coil, the first self-resonance coil receives electric power transmitted from the second self-resonance coil, and the second self-resonance coil and the dielectric coil are at least part of the power transmission device (200). The non-contact power transmission device according to claim 1, comprising:
  4.  前記第2自己共振コイルは、第1係合部(430)を含み、前記ボビン(402)は、前記第1係合部と係合することで、前記第2自己共振コイルを係止可能な第2係合部(421)を含み、
     前記第1係合部と前記第2係合部とは、前記第2自己共振コイルの弾性力によって互いに係合可能とされた、請求の範囲第1項に記載の非接触電力伝達装置。
    The second self-resonant coil includes a first engagement part (430), and the bobbin (402) can engage with the first engagement part to lock the second self-resonance coil. Including a second engagement portion (421),
    2. The non-contact power transmission device according to claim 1, wherein the first engagement portion and the second engagement portion can be engaged with each other by an elastic force of the second self-resonant coil.
  5.  前記ボビンの内周面には、該ボビンの周方向に向かうにしたがって、前記ボビンの軸線方向に向けて延び、前記第2自己共振コイル(110,240)を受け入れ可能な溝部(420)が形成され、前記溝部を規定する前記ボビンの内周面には、前記溝部内に受け入れられた前記第2自己共振コイルを係止するコイル係止部(422)が形成された、請求の範囲第1項に記載の非接触電力伝達装置。 A groove (420) is formed on the inner peripheral surface of the bobbin so as to extend in the axial direction of the bobbin as it goes in the circumferential direction of the bobbin and to receive the second self-resonant coil (110, 240). The coil locking portion (422) for locking the second self-resonant coil received in the groove portion is formed on the inner peripheral surface of the bobbin that defines the groove portion. The non-contact power transmission device according to item.
  6.  前記ボビンの内周面は、前記ボビンの一方端側から他方端に向けて前記ボビンの内周面の周方向の長さが短くなるように形成され、
     前記ボビンの内周面には、該ボビンの周方向に向かうにしたがって、前記ボビンの軸線方向に向けて延び、前記第2自己共振コイルを受け入れ可能な溝部(420)が形成され、
     前記溝部の底部は、前記ボビンの軸方向(O2)に配列する、請求の範囲第1項に記載の非接触電力伝達装置。
    The inner peripheral surface of the bobbin is formed so that the length in the circumferential direction of the inner peripheral surface of the bobbin decreases from one end side to the other end of the bobbin,
    On the inner peripheral surface of the bobbin, a groove (420) is formed that extends in the axial direction of the bobbin as it goes in the circumferential direction of the bobbin and can receive the second self-resonant coil.
    The non-contact power transmission device according to claim 1, wherein the bottom of the groove is arranged in the axial direction (O2) of the bobbin.
  7.  前記ボビンは、有底筒状に形成され、前記第2自己共振コイルを収容する収容部が外部から区画された、請求の範囲第1項に記載の非接触電力伝達装置。 The non-contact power transmission device according to claim 1, wherein the bobbin is formed in a bottomed cylindrical shape, and a housing portion that houses the second self-resonant coil is partitioned from the outside.
  8.  前記ボビンを内部に収容し、前記磁場の放射領域を規定可能なシールド部材(401)をさらに備えた、請求の範囲第1項に記載の非接触電力伝達装置。 The non-contact power transmission device according to claim 1, further comprising a shield member (401) capable of accommodating the bobbin therein and defining a radiation region of the magnetic field.
  9.  筒状に形成されたボビン(402)を準備する工程と、
     外部から負荷を加えることで第2自己共振コイル(110)を縮径させ、縮径された前記第2自己共振コイルを前記ボビン内に挿入する工程と、
     前記2次自己共振コイルに加えられた前記負荷を除き、前記第2自己共振コイルを該第2自己共振コイルの弾性力を用いて、前記ボビン内に係止させる工程と、
     を備えた、非接触電力伝達装置の製造方法。
    Preparing a bobbin (402) formed in a cylindrical shape;
    Reducing the diameter of the second self-resonant coil (110) by applying a load from the outside, and inserting the reduced second self-resonant coil into the bobbin;
    Removing the load applied to the secondary self-resonant coil, and locking the second self-resonant coil in the bobbin using the elastic force of the second self-resonant coil;
    The manufacturing method of the non-contact electric power transmission apparatus provided with.
  10.  主表面を有する絶縁性の板状部材(450)と、前記主表面上に設けられ、該板状部材の延在方向に配列する一方の端辺部(437)から他方の端辺部(436)に延びると共に、前記板状部材の幅方向に配列する一方の側辺部および他方の側辺部の間に間隔を隔てて複数配置された導線(435A~435D)とを準備する工程と、
     前記導線が配置された前記主表面が内側に位置するように前記板状部材を湾曲させ、前記板状部材の一方の端辺部と他方の端辺部とを近接または接触させると共に、前記導線の前記一方の端辺部側の端部を該導線に対して前記一方の側辺部側に隣り合う他の導線の前記他方の端辺部側の端部に近接または接触させる工程と、
     前記導線の端部同士を接続することで、第2自己共振コイルを形成する工程と、
     を備えた、非接触電力伝達装置の製造方法。
    An insulating plate-like member (450) having a main surface, and one end side (437) provided on the main surface and arranged in the extending direction of the plate-like member to the other end side (436) And a plurality of conductive wires (435A to 435D) arranged at intervals between one side portion and the other side portion arranged in the width direction of the plate-shaped member; and
    The plate member is curved so that the main surface on which the conductor is disposed is located on the inner side, and one end side and the other end side of the plate member are brought close to or in contact with each other, and the conductor A step of bringing the end of the one side of the other side close to or in contact with the end of the other side of the other conducting wire adjacent to the side of the conducting wire;
    Connecting the ends of the conducting wires to form a second self-resonant coil;
    The manufacturing method of the non-contact electric power transmission apparatus provided with.
  11.  前記導線は、互いに等間隔に配置され、
     前記一方端辺部と前記他方の端辺部との長さは、互いに一致するように形成され、
     前記一方の端辺部は、他方の端辺部に対して前記導線の配列方向に、前記導線の間隔長さ分ずれるように位置する、請求の範囲第10項に記載の非接触電力伝達装置の製造方法。
    The conducting wires are arranged at equal intervals from each other,
    The lengths of the one end side and the other end side are formed to coincide with each other,
    The non-contact power transmission device according to claim 10, wherein the one end side portion is positioned so as to be shifted by an interval length of the conducting wires in the arrangement direction of the conducting wires with respect to the other end side portion. Manufacturing method.
  12.  充電可能な蓄電器(150)と、
     請求の範囲第1項に記載の非接触電力伝達装置とを備え、前記非接触電力伝達装置を用いて、前記蓄電器を充電可能とされた車両。
    A rechargeable battery (150);
    A vehicle comprising the non-contact power transmission device according to claim 1 and capable of charging the battery using the non-contact power transmission device.
PCT/JP2008/073212 2008-10-01 2008-12-19 Noncontact power transfer apparatus, method for manufacturing noncontact power transfer apparatus, and vehicle equipped with noncontact power transfer apparatus WO2010038326A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-256465 2008-10-01
JP2008256465A JP2010087353A (en) 2008-10-01 2008-10-01 Noncontact power transmission device, method of manufacturing same, and vehicle including same device

Publications (1)

Publication Number Publication Date
WO2010038326A1 true WO2010038326A1 (en) 2010-04-08

Family

ID=42073116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073212 WO2010038326A1 (en) 2008-10-01 2008-12-19 Noncontact power transfer apparatus, method for manufacturing noncontact power transfer apparatus, and vehicle equipped with noncontact power transfer apparatus

Country Status (2)

Country Link
JP (1) JP2010087353A (en)
WO (1) WO2010038326A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038591A1 (en) * 2011-09-16 2013-03-21 パナソニック株式会社 Power-reception device, power-transmission device, and power-transfer device
CN103635980A (en) * 2011-06-27 2014-03-12 丰田自动车株式会社 Power receiving device, power transmitting device, and power transmission system
WO2013150365A3 (en) * 2012-04-05 2014-05-22 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
CN103827997A (en) * 2011-09-28 2014-05-28 丰田自动车株式会社 Power receiving device, power transmitting device, and power transmission system
CN103843084A (en) * 2011-10-04 2014-06-04 丰田自动车株式会社 Power reception device, power transmission device, and power transmission system
JP2016534691A (en) * 2013-08-01 2016-11-04 ボンバルディアー プリモーフ ゲゼルシャフト ミット ベシュレンクテル ハフツングBombardier Primove GmbH Carrier device and power receiving device

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023931A (en) * 2010-07-16 2012-02-02 Equos Research Co Ltd Resonance coil
JP5888542B2 (en) * 2011-01-18 2016-03-22 矢崎総業株式会社 Resonance coil holding member, resonance coil unit, and non-contact power transmission device
US9296349B2 (en) 2011-02-04 2016-03-29 Toyota Jidosha Kabushiki Kaisha Vehicle and external power feeding apparatus
JP2012257443A (en) * 2011-05-17 2012-12-27 Nissan Motor Co Ltd Mounting structure of contactless charger
JP5857795B2 (en) * 2011-05-17 2016-02-10 日産自動車株式会社 Non-contact charger mounting structure
JP2012254782A (en) * 2011-05-17 2012-12-27 Nissan Motor Co Ltd Mounting structure of non-contact charger
CN103534771A (en) * 2011-05-19 2014-01-22 丰田自动车株式会社 Power-reception device, power-transmission device, and power-transfer system
KR101294465B1 (en) 2011-10-11 2013-08-07 엘지이노텍 주식회사 Wireless power relay apparatus, wireless power repeater, wireless power transmitting system and method for transmitting wireless power
JP5843271B2 (en) * 2012-03-07 2016-01-13 パイオニア株式会社 Power transmission equipment
JP5839120B2 (en) 2012-06-04 2016-01-06 トヨタ自動車株式会社 Power receiving device and power transmitting device
JP6124085B2 (en) 2012-07-05 2017-05-10 パナソニックIpマネジメント株式会社 Wireless power transmission device, wireless power transmission device and power reception device
JP2014060888A (en) * 2012-09-19 2014-04-03 Kojima Press Industry Co Ltd Electric vehicle
DE102012023363B4 (en) * 2012-11-29 2014-06-26 Audi Ag Subframe for a motor vehicle
KR102020307B1 (en) * 2013-01-22 2019-11-04 엘지전자 주식회사 Receiver device having magnetic resonance wireless power transmission and near field communication
JP5688549B2 (en) 2013-04-10 2015-03-25 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Coil module and electronic device
WO2014181669A1 (en) 2013-05-10 2014-11-13 株式会社Ihi Contactless power supply system
JP6149499B2 (en) 2013-05-14 2017-06-21 株式会社Ihi Contactless power supply system
JP6370564B2 (en) * 2014-02-28 2018-08-08 矢崎総業株式会社 Power receiving unit and power supply system having the same
JP6337610B2 (en) 2014-05-22 2018-06-06 株式会社Ihi Coil device
JP6417713B2 (en) 2014-05-22 2018-11-07 株式会社Ihi Coil device
KR101665111B1 (en) * 2015-02-24 2016-10-12 주식회사 덴티스 Flexible printed circuit board device for transmitting wireless power
JP6287993B2 (en) * 2015-08-04 2018-03-07 トヨタ自動車株式会社 vehicle
JP6814608B2 (en) * 2016-11-14 2021-01-20 矢崎総業株式会社 Coil unit and non-contact power supply system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367217U (en) * 1986-10-22 1988-05-06
JPH0228906A (en) * 1988-07-19 1990-01-31 Tokin Corp Rotary transformer, manufacture thereof and coil for rotary transformer
JPH07227007A (en) * 1994-02-09 1995-08-22 Toyota Autom Loom Works Ltd Electromagnetic power feeding device for electric motorcar
JP2002152996A (en) * 2000-11-10 2002-05-24 Toyota Motor Corp Electric power receiving and supplying system
JP2005005535A (en) * 2003-06-12 2005-01-06 Seiko Epson Corp Electromagnetic induction coil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367217U (en) * 1986-10-22 1988-05-06
JPH0228906A (en) * 1988-07-19 1990-01-31 Tokin Corp Rotary transformer, manufacture thereof and coil for rotary transformer
JPH07227007A (en) * 1994-02-09 1995-08-22 Toyota Autom Loom Works Ltd Electromagnetic power feeding device for electric motorcar
JP2002152996A (en) * 2000-11-10 2002-05-24 Toyota Motor Corp Electric power receiving and supplying system
JP2005005535A (en) * 2003-06-12 2005-01-06 Seiko Epson Corp Electromagnetic induction coil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANDRE KURS ET AL.: "Wireless Power Transfer via Strongly Coupled Magnetic Resonances", SCIENCE, vol. 317, 6 July 2007 (2007-07-06), pages 83 - 86 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103635980A (en) * 2011-06-27 2014-03-12 丰田自动车株式会社 Power receiving device, power transmitting device, and power transmission system
WO2013038591A1 (en) * 2011-09-16 2013-03-21 パナソニック株式会社 Power-reception device, power-transmission device, and power-transfer device
CN103827997A (en) * 2011-09-28 2014-05-28 丰田自动车株式会社 Power receiving device, power transmitting device, and power transmission system
CN103843084A (en) * 2011-10-04 2014-06-04 丰田自动车株式会社 Power reception device, power transmission device, and power transmission system
EP2765584A4 (en) * 2011-10-04 2015-08-12 Toyota Motor Co Ltd Power reception device, power transmission device, and power transmission system
WO2013150365A3 (en) * 2012-04-05 2014-05-22 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
CN104245400A (en) * 2012-04-05 2014-12-24 丰田自动车株式会社 Vehicle
CN104245400B (en) * 2012-04-05 2016-10-05 丰田自动车株式会社 Motor vehicle driven by mixed power
US9826670B2 (en) 2012-04-05 2017-11-21 Toyota Jidosha Kabushiki Kaisha Vehicle
JP2016534691A (en) * 2013-08-01 2016-11-04 ボンバルディアー プリモーフ ゲゼルシャフト ミット ベシュレンクテル ハフツングBombardier Primove GmbH Carrier device and power receiving device
US10173531B2 (en) 2013-08-01 2019-01-08 Bombardier Primove Gmbh Carrying device and a receiving device

Also Published As

Publication number Publication date
JP2010087353A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
WO2010038326A1 (en) Noncontact power transfer apparatus, method for manufacturing noncontact power transfer apparatus, and vehicle equipped with noncontact power transfer apparatus
US20110148351A1 (en) Noncontact electric power receiving device, noncontact electric power transmitting device, noncontact electric power feeding system, and electrically powered vehicle
JP4962621B2 (en) Non-contact power transmission device and vehicle equipped with non-contact power transmission device
US20110049978A1 (en) Self-resonant coil, non-contact electric power transfer device and vehicle
EP2515314B1 (en) Non-contact power reception device and corresponding transmission device
JP2010098807A (en) Noncontact power supply system
JP4947241B2 (en) Coil unit, contactless power receiving device, contactless power transmitting device, contactless power feeding system, and vehicle
JP5077340B2 (en) Non-contact power receiving apparatus and manufacturing method thereof
JP5718619B2 (en) Coil unit, contactless power transmission device, vehicle, and contactless power supply system
JP5781882B2 (en) Power transmission device, vehicle, and power transmission system
JP5867511B2 (en) Power transmission device, power reception device, and power transmission system
JP5625263B2 (en) Coil unit, non-contact power transmission device, non-contact power supply system, and electric vehicle
JP2010074937A (en) Non-contact power receiving apparatus and vehicle equipped with the same
JP2010073885A (en) Resonance coil and non-contact feeding system
JP2011166931A (en) Power receiving device and vehicle with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877176

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877176

Country of ref document: EP

Kind code of ref document: A1