WO2013038029A1 - Method for producing oxygenated additives from crude glycerine - Google Patents

Method for producing oxygenated additives from crude glycerine Download PDF

Info

Publication number
WO2013038029A1
WO2013038029A1 PCT/ES2011/070637 ES2011070637W WO2013038029A1 WO 2013038029 A1 WO2013038029 A1 WO 2013038029A1 ES 2011070637 W ES2011070637 W ES 2011070637W WO 2013038029 A1 WO2013038029 A1 WO 2013038029A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycerin
tert
butanol
obtaining
glycerol
Prior art date
Application number
PCT/ES2011/070637
Other languages
Spanish (es)
French (fr)
Inventor
María DÍAZ MURUAGA
Garikoitz BEOBIDE PACHECO
Ignacio CARVAJO LUCENA
José Manuel BENITEZ FERNANDEZ
Amaia MARTINEZ GOITANDIA
Arrate Marcaide Rodriguez
Ana Aranzabe Garcia
Original Assignee
Befesa Gestión De Residuos Industriales S.L.
Fundación Tekniker
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Befesa Gestión De Residuos Industriales S.L., Fundación Tekniker filed Critical Befesa Gestión De Residuos Industriales S.L.
Priority to ES201490020A priority Critical patent/ES2459865B1/en
Priority to PCT/ES2011/070637 priority patent/WO2013038029A1/en
Publication of WO2013038029A1 publication Critical patent/WO2013038029A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1852Ethers; Acetals; Ketals; Orthoesters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/09Preparation of ethers by dehydration of compounds containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/38Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/40Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation
    • C07C41/42Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel

Definitions

  • the present invention relates to a process for obtaining oxygenated additives derived from crude glycerin, by catalytic etherification thereof with tert-butanol in a discontinuous and hermetic reactor.
  • the present invention focuses on obtaining the two isomers of di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG).
  • DTBG di-tert-butyl glycerol
  • TTBG tri-tert-butyl glycerol
  • crude glycerin In the biodiesel manufacturing process, a large quantity of low quality glycerin that is called crude glycerin is generated as the final product of the reaction.
  • the amount of crude glycerin that is generated is approximately 10% by weight of the amount of biofuel produced.
  • This crude glycerin has a very low economic value, due to the high concentration of impurities it presents.
  • the complete refining of crude glycerin is conditioned by the economy of scale, as well as by the existence of simple purification processes.
  • Morgan presents a continuous glycerin etherification process by means of a reactive distillation process, in which glycerin reacts with an alcohol to obtain glycerin ether in the presence of a catalyst located in the reaction zone of said distillation column.
  • the reaction temperature is set in the range between 120 and 140 ° C.
  • the present invention relates to a process for obtaining oxygenated additives derived from crude glycerin, adapted for the selective obtaining of glycerol ethers.
  • the present invention focuses on obtaining the two isomers of di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG), from crude glycerin and tert-butanol in the presence of a suitable catalyst, which has efficiency and performance advantages superior to those described in the state of the art.
  • DTBG di-tert-butyl glycerol
  • TTBG tri-tert-butyl glycerol
  • the process of the present invention comprises three essential stages defined as: a first stage of purification or pretreatment of the crude glycerin, a subsequent reaction stage, of the purified glycerin obtained in the previous stage with tert-butanol in the presence of a catalyst and a final stage of separation or extraction of the glycerol ethers obtained as final reaction products.
  • the technical problem solved in the present invention is the provision of a process for obtaining certain glycerol ethers that using raw glycerin as a starting material has important advantages in relation to the efficiency and performance of the process.
  • crude glycerin is understood as the glycerin obtained as a byproduct of industrial biodiesel production processes. It is therefore an unpurified glycerol by-product that has a glycerol content greater than 75% and also contains water in an amount not exceeding 10%, ashes in an amount less than 10% and dissolved ions in concentrations between 5,000 and 30,000 ppm of Na + and K + in addition to particles of oily substance not miscible in suspension.
  • purified glycerin refers to the product of purified glycerin through the first stage of purification of the crude glycerin according to the present invention, which has a glycerin content of between 80 and 95% with a concentration in Na + and K + ions of less than 3000 ppm, and a moisture content of less than 6% and which does not have oily matter in perceptible suspension.
  • the term “hermetic discontinuous reactor” refers to a reactor in which an amount of feed is charged and allowed to react during the reaction time. Once that time has elapsed, another amount of power is reloaded. This operation is repeated successively. It also includes an impermeable closure or any system (such as a cooling column) that prevents the leakage of reagents in the liquid phase or in the vapor phase inside.
  • An example of this reactor would be a cylindrical container with conical bottom that facilitates its emptying, with top lid with airtight seal which prevents losses of etherifying agent and reaction intermediates and a stirrer.
  • Another example would be a reactor with the same geometric characteristics and with an agitator with a cooling column located on top of it through which a coolant circulates (for example water) at a temperature that prevents leakage by evaporation of the agent etherifier and reaction intermediates.
  • a coolant for example water
  • acid catalyst refers to a homogeneous or heterogeneous catalyst whose active sites have a protic acid nature.
  • it refers to an "ion exchange resin”.
  • examples include, among others, Zeolite BEA-CP814E, Amberlyst 15, Amberlyst 35, Sulfuric acid, Zeolite ZSM-5, Zeolite CBV-2314, Montmorillonite KSF and Montmorillonite KP10.
  • It is therefore an object of the present invention a process for obtaining ethers of glycerol di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG) from crude glycerin and tert-butanol comprising a step of purification of glycerin, followed by reaction between glycerin and tert-butanol in the presence of a catalyst and separation and recovery of glycerol ethers.
  • An object of the present invention is also a process for obtaining, in particular, ethers of glycerol di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG) from crude glycerin and tert-butanol whose Purification stage comprises a centrifugation stage of the crude glycerin to separate non-miscible impurities (composed mainly of non-glycerinic organic matter or MONG) and a second stage of treatment with an ion exchange resin to remove the alkaline ions from the glycerin.
  • DTBG di-tert-butyl glycerol
  • TTBG tri-tert-butyl glycerol
  • DTBG glycerol di-tert-butyl glycerol
  • TTBG tri-tert-butyl glycerol
  • a further object of the present invention is also a process for obtaining in particular ethers of glycerol di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG) from crude glycerin and tert-butanol in which the ion exchange resin used is regenerated by washing with, preferably, hydrochloric acid after the purification step.
  • DTBG glycerol di-tert-butyl glycerol
  • TTBG tri-tert-butyl glycerol
  • a further object of the present invention is also a process for obtaining in particular ethers of glycerol di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG) from crude glycerin and tert-butanol whose separation stage It comprises a first vacuum distillation followed by a first extraction with pentane or heptane solvent, followed by a second liquid-liquid extraction with water and a second distillation that allows the final reaction products, DTBG and TTBG, to be recovered and reused.
  • DTBG glycerol di-tert-butyl glycerol
  • TTBG tri-tert-butyl glycerol
  • a further object of the present invention is also a process for obtaining in particular ethers of glycerol di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG) from crude glycerin and tert-butanol which additionally allows the catalyst to be recovered through a stage of filtering, washing and drying.
  • DTBG glycerol di-tert-butyl glycerol
  • TTBG tri-tert-butyl glycerol
  • a further object of the present invention is also a process for obtaining in particular ethers of glycerol di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG) from crude glycerin and tert-butanol which allows recovering the tert-butanol for later use in the process of the invention through the addition of preferably calcium oxide (CaO) to the tert-butanol-water solution and subsequent distillation.
  • DTBG glycerol di-tert-butyl glycerol
  • TTBG tri-tert-butyl glycerol
  • a further object of the present invention is also a process for obtaining in particular ethers of glycerol di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG) from crude glycerin and tert-butanol in which the yield of obtaining DTBG is between 1 1 and 13%.
  • DTBG glycerol di-tert-butyl glycerol
  • TTBG tri-tert-butyl glycerol
  • glycerol ethers obtained from glycerin and tert-butanol obtained from glycerin and tert-butanol according to the process of the present invention as oxygenated additives for diesel fuels.
  • the present invention relates to a process for obtaining oxygenated additives derived from crude glycerin, adapted for the selective obtaining of glycerol ethers selected from the group consisting of the two isomers of di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG), ( Figure 1), from crude glycerin and tert-butanol.
  • DTBG di-tert-butyl glycerol
  • TTBG tri-tert-butyl glycerol
  • the process of the present invention is divided into three main stages: pretreatment or purification phase, reaction phase and separation phase.
  • a schematic of the process of the present invention is illustrated in Figure 3.
  • This glycerin comes directly from the biodiesel manufacturing process (transesterification). It contains moisture, non-glycerinic organic matter (MONG), oily matter of lower density than glycerin and dissolved ions (mainly Na + and K + from the previous transesterification process). These impurities must be removed as they directly and negatively affect the etherification reaction of the glycerin that will take place.
  • MONG non-glycerinic organic matter
  • dissolved ions mainly Na + and K + from the previous transesterification process
  • the etherification reaction develops.
  • glycerin in the presence of a catalyst, such as, for example, Amberlyst 15, reacts with the etherifying agent, tert-butanol to give, in serial reactions, mono-ethers, di-ethers and glycerine tri- ethers, preferably di-ethers, in particular, DTBG.
  • the objective products of the process di-ethers and tri-ethers of glycerol
  • di-ethers and tri-ethers of glycerol are isolated by successive processes of distillation and liquid-liquid extraction.
  • the streams composed of unreacted raw material (tert-butanol, glycerin) and by-products (MTBG isomers) can be recovered successively for later reuse in the reaction stage.
  • a centrifugation of the crude glycerin is carried out in which the less dense oily substance particles are removed from the glycerin.
  • This centrifugation is carried out in a centrifuge (eg Digicen model of the Orto Alresa commercial house) at a glycerin temperature of between 45 and 75 ° C, preferably between 50 and 70 ° C to facilitate the separation of the phases by viscosity reduction of glycerin.
  • adsorption of the alkaline ions takes place through the use of an ion exchange resin through which the clean centrifuged glycerin stream is passed.
  • the resin used that has provided better results is Amberlyst 15 (Rohm and Haas), although other options have been tested, such as: Zeolite BEA (H-Form), commercial molecular sieve, hydrotalcite, sepiolite 60/120, sepiolite 15/30 , alumina, cobalt oxalate and combinations of several of them.
  • the contact between the glycerin and the resin can be carried out in filler columns or in a stirred tank with subsequent filtration.
  • the optimum ratio between the amount of glycerin and resin for exchange is 1: 3 to 1: 12
  • Amberlyst 15: Glycerin preferably, 1: 3 by weight (1 kg of resin for every 3 kg of glycerin to be treated).
  • the stirring time should be 60 minutes to 120 minutes, preferably 90 minutes.
  • the agitation tank can be a cylindrical tank with a lower drain valve with an agitator inside.
  • the filling column can be cylindrical with upper or lower feed and with product outlet on the opposite side that should consist of a filter to avoid losses of ion exchange resin.
  • the filter For filtering the mixture (either after stirring or at the bottom of the filler column), the filter should have a mesh light of less than 600 microns, preferably 500 microns (0.5 mm). Any mesh or commercial filter with mesh light less than indicated can serve this purpose.
  • the mixture has been filtered on a laboratory glass funnel on which metallic mesh of 500 microns of mesh light has been placed. It has been proven that this initial purification of crude glycerin improves the results obtained in the subsequent reaction in several aspects:
  • the ion exchange resin used in this stage must be activated prior to use and regenerated after use in order to be reused. This reuse is possible as many times as necessary whenever the process of reactivation of the active sites of the resin is carried out.
  • the activation of the resin consists in washing it with methanol or ethanol for a time of approximately 5 to 30 minutes, preferably 15 minutes (with stirring or recirculation through the filler column) and subsequent drying of the same at a temperature of between 100 and 130 ° C, preferably 100 ° C, for a period of time between 6 and 48 hours, preferably, 12 hours (in an oven or by circulating hot air current through the filler column ).
  • the reactivation of the active sites of the resin is carried out by washing it with 1-6M HCI, preferably 4M, for a period of 2 to 4 hours, preferably 2 hours (under stirring or by recirculation in the column of filling). This reactivation of the active sites must be followed by the washing (activation) process described, prior to its use as an ion exchange resin.
  • HCI any other acid capable of reactivating the active sites of the catalyst can be used, that is to say that it gives protons to the exchange resin and captures the alkaline ions retained therein, such as: HN0 3 , H 2 S0 4 , HCI0 4 , HCI0 3 .
  • purified glycerin Once the glycerin has undergone this purification process it is called purified glycerin, and is apt to be introduced into the reaction phase.
  • the characteristics of this purified glycerin are as follows: it has a glycerin content of between 80 and 95% with a concentration of Na + / K + ions of less than 3000 ppm, and a moisture content of less than 6% and not it presents oily matter in perceptible suspension
  • the purified glycerin is fed to the reactor. It is a hermetic agitated discontinuous reactor or with a cooling column, as described above.
  • the objective is to prevent the leakage of etherifying agent and reaction intermediates (eg isobutene) that favor the development and selectivity of the reaction towards the target products (therefore any type of reactor that serves this purpose could be used).
  • the etherifying agent tert-butanol
  • the catalyst Amberlyst 15
  • the reaction conditions are a reaction temperature between 50 and 120 ° C, preferably 80 ° C and a reaction time between 30 minutes and 8 hours, preferably 120 minutes, which maximize glycerin conversion and yield in obtaining DTBG and TTBG.
  • the resulting mixture is filtered through two successive grid filters, the first one with a mesh light of less than 600 microns, preferably 500 microns and the second one with a mesh light. less than 100 microns, preferably 50 microns.
  • the filtering systems set forth above may be used for this purpose.
  • the synthesis mixture is stored to pass the separation or isolation phase of the target reaction products.
  • the catalyst used in the reaction must be previously activated by washing it with methanol or ethanol, during a stirring period of between 5 and 30 minutes, preferably 15 minutes and subsequent drying at a temperature between 100 and 130 ° C, preferably 100 ° C for a period of between 6 and 48 hours, preferably 12 hours.
  • the catalyst collected in the first grid filter thanks to the initial purification of the glycerin made, can be reused in the reaction. It is necessary to apply a catalyst wash with methanol or ethanol and a drying under the same conditions as in the initial activation. In this way, the catalyst can be reused in up to ten reactions without decreasing the conversion of glycerin obtained or the yield of obtaining DTBG and TTBG.
  • the filtered synthesis mixture is introduced in the separation phase to isolate the target additive (DTBG and TTBG) from the rest of the components of the reactor output current to recover and recirculate the unreacted raw material.
  • target additive DTBG and TTBG
  • a first vacuum distillation is performed (60 ° C and the absolute pressure OOmbar) in which the unreacted tert-butanol (mixed with water) is recovered.
  • the present invention has carried out the distillation in vacuum systems composed as main equipment by a column, a heated vessel into which the fresh feed is introduced, a refrigeration system for the condensate collection of the most volatile compound and a commercial vacuum pump capable of reach up to 100 mbar of absolute pressure.
  • the product stream passes to the first liquid-liquid extraction.
  • a solvent penentane or heptane
  • the mixture is stirred for a period of 10 to 120 minutes, preferably 30 minutes and allowed to stand.
  • Two phases are formed.
  • the densest phase is formed by unreacted glycerin and MTBG mainly, in addition to traces of DTBG.
  • This current is recirculated to the reactor. The recirculation of this current improves the results obtained in the reaction.
  • the less dense phase is formed by DTBG, TTBG and solvent and is fed to a second decanter in which a new liquid-liquid extraction is carried out.
  • the solvent used in this case is water.
  • the mixture is also stirred for a period of 10 to 120 minutes, preferably 30 minutes and allowed to decant.
  • the densest phase of this extraction consists mainly of water and contains some traces of MTBG and glycerin.
  • the objective of this extraction is to eliminate these traces of glycerin and MTBG that would contaminate the product additive stream (DTBG and TTBG). This denser stream is stored waiting to be reused again in the extraction, since it is mostly water.
  • the less dense phase, formed by the solvent of the first extraction (pentane or heptane) and DTBG and TTBG, is introduced into a second distillation column (which operates under the same conditions as the first). In this distillation, the solvent is separated from the additives (DTBG and TTBG) targeted by the process.
  • Extractions with chloroform, pentane, octane, heptane or ethyl ether have been tested in order to assess the suitability of each solvent in the separation process.
  • the compositions of the exit streams are presented after successive extractions with the indicated solvents in the tables and the proportions (ratios) indicated.
  • the separated solvent can be reused in the first liquid-liquid extraction, since the separation is practically total.
  • the tert-butanol that has not reacted and that was separated in the first distillation can also be reused in the reaction. For this it is necessary to separate the water it contains (which forms azeotrope with tert-butanol) from the alcohol. This is achieved by mixing said stream with a drying agent, selected from the group consisting of: sodium sulfate heptahydrate, magnesium sulfate heptahydrate, hydrated calcium carbonate, potassium acetate and CaO, preferably CaO, in a proportion of between 5 and 30%, preferably 22% by weight compared to the water-alcohol mixture fed.
  • a drying agent selected from the group consisting of: sodium sulfate heptahydrate, magnesium sulfate heptahydrate, hydrated calcium carbonate, potassium acetate and CaO, preferably CaO, in a proportion of between 5 and 30%, preferably 22% by weight compared to the water-alcohol mixture fed.
  • the DTBG yields and conversion of the purified glycerin according to the process of the present invention are illustrated in Table 3. It can be concluded that according to the process described above, the catalyst can be reused for up to 10 cycles while maintaining the conversion and obtaining yields of DTBG obtained in the first cycle.
  • the contact between the glycerin and the resin is carried out in an agitated tank consisting of a cylindrical vessel with a lower emptying system and an agitator inside with subsequent filtration.
  • the ratio between the amount of glycerin and resin for exchange is 1: 3 by weight, and the stirring time 90 minutes.
  • the filter For filtering the mixture, after stirring, the filter has a mesh light of less than 600 microns (0.6 mm). For filtering, a 500 micron mesh metal grid is placed on the glass funnel and the mixture from the previous stirred tank is passed through it.
  • the ion exchange resin used in this stage is activated prior to use and regenerated after use to be reused. This reuse is possible as many times as necessary whenever the process of reactivation of the active sites of the resin is carried out.
  • the resin is activated by washing it with methanol for 15 minutes while stirring and drying it at a temperature of 100 ° C, for 12 hours in an oven with forced air convection Binder brand model FD1 15 Reactivation of the active sites of the resin is carried out by washing it with 4M HCI for 2 hours with stirring. This reactivation of the active sites is followed by the washing (activation) process described above.
  • This purified glycerin contains 1.4% moisture and an alkali ion concentration of 1,600 ppm K + ions and 90 ppm Na + ions.
  • the etherifying agent (tert-butanol) is introduced in a ratio of 1: 4 molar to glycerin (4 moles of tert-butanol for each mole of glycerin fed, equivalent to 32.1 grams of tert-butanol) and the catalyst (Amberlyst 15) in an amount of 8% by weight against the fed glycerin (800 milligrams).
  • the reaction conditions are a reaction temperature 80 ° C and a reaction time of 120 minutes, which maximize glycerin conversion and yield in obtaining DTBG.
  • the synthesis mixture is filtered through two successive grid filters, the first one with a 500 micron mesh light and the second one with a 50 micron mesh light. This filtration is carried out as in the previous stage on glass funnels as previously mentioned.
  • the synthesis mixture is stored to pass the separation or isolation phase of the target reaction products.
  • the catalyst used in the reaction is previously activated by washing it with methanol, during a stirring period of 15 minutes and then drying at a temperature of 100 ° C for a period of 12 hours.
  • the catalyst collected in the first grid filter is reused in the reaction.
  • a catalyst wash with methanol and drying under the same conditions as in the initial activation is applied.
  • the catalyst can be reused in up to ten reactions without decreasing the conversion of glycerin obtained or the yield of obtaining DTBG and TTBG.
  • TTBG tri-tert-butyl glycerol
  • a first vacuum distillation is carried out on the type equipment described above at 60 ° C and 100mbar of absolute pressure and the unreacted tert-butanol is recovered (mixed with water). The product stream passes to the first liquid-liquid extraction.
  • the less dense phase is formed by DTBG, TTBG and solvent and is fed to a second decanter in which a new liquid-liquid extraction is carried out.
  • the solvent used in this case is also water in a 2: 1 ratio to the fed mixture.
  • the mixture is also stirred for 30 minutes and allowed to decant.
  • the densest current is stored waiting to be reused again in the extraction, since it is mostly water.
  • the separated solvent is reused in the first liquid-liquid extraction, since the separation is practically total.
  • the tert-butanol that has not reacted and separated in the first distillation is also reused in the reaction. For this it is necessary to separate the water it contains (which forms azeotrope with tert-butanol) from the alcohol. This is achieved by mixing said stream with CaO 22% by weight versus the water-alcohol mixture fed. It is kept under stirring for a period of 7 hours and subsequently distilled at 120-150 ° C, preferably at 135 ° C the resulting paste. The vapor formed is condensed and collected as tert-butanol without water content. The remaining paste formed by hydroxide of Calcium can be distilled again to recover the CaO and reuse it in the process. This distillation takes place at between 80 and 100 ° C, 100 mbar of absolute pressure and a time of 1 hour.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a method for preparing oxygenated additives from crude glycerine, such as the two isomers of di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG), from crude glycerine and tert-butanol. The method includes three essential steps which are defined as: a first step of purification or pretreatment of the crude glycerine; a subsequent step of reaction of the glycerine prepared in the previous step with tert-butanol in a discontinuous, sealed reactor in the presence of a catalyst; and a final step of separating the glycerol ethers prepared as final reaction products. The ethers thus prepared are industrially applicable as oxygenated fuel additives.

Description

PROCEDIMIENTO DE PRODUCCIÓN DE ADITIVOS OXIGENADOS A PARTIR DE  PROCEDURE FOR PRODUCTION OF OXYGEN ADDITIVES FROM
GLICERINA CRUDA  CRUDE GLYCERINE
SECTOR TÉCNICO DE LA INVENCIÓN TECHNICAL SECTOR OF THE INVENTION
La presente invención se refiere a un procedimiento para obtener aditivos oxigenados derivados de glicerina cruda, mediante eterificación catalítica de la misma con terc- butanol en un reactor discontinuo y hermético. De los éteres formados, la presente invención se centra en la obtención de los dos isómeros del di-terc-butil glicerol (DTBG) y el tri-terc-butil glicerol (TTBG). Los éteres así obtenidos encuentran aplicación industrial como aditivos oxigenados de combustibles.  The present invention relates to a process for obtaining oxygenated additives derived from crude glycerin, by catalytic etherification thereof with tert-butanol in a discontinuous and hermetic reactor. Of the ethers formed, the present invention focuses on obtaining the two isomers of di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG). The ethers thus obtained find industrial application as oxygenated fuel additives.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
En el proceso de fabricación del biodiesel se genera como producto final de la reacción gran cantidad de glicerina de baja calidad que recibe el nombre de glicerina cruda. La cantidad de glicerina cruda que se genera es aproximadamente un 10% en peso de la cantidad de biocombustible producido.  In the biodiesel manufacturing process, a large quantity of low quality glycerin that is called crude glycerin is generated as the final product of the reaction. The amount of crude glycerin that is generated is approximately 10% by weight of the amount of biofuel produced.
Esta glicerina cruda posee un valor económico muy bajo, debido a la alta concentración de impurezas que presenta. El refinado completo de la glicerina cruda se encuentra condicionado por la economía de escala, así como por la existencia de procesos sencillos de purificación.  This crude glycerin has a very low economic value, due to the high concentration of impurities it presents. The complete refining of crude glycerin is conditioned by the economy of scale, as well as by the existence of simple purification processes.
No obstante, los productores de biodiesel a gran escala sí refinan su glicerina cruda, con el fin de orientarla a los mercados alimentarios, farmacéuticos y cosméticos. Los tratamientos y procesos de refinado, a los cuales es sometida la glicerina cruda, dependen del rendimiento o grado de pureza comercial requerido. Estos procesos se basan en la filtración, la adición de sustancias químicas y el empleo de sistemas de destilación fraccionada a vacío. La glicerina empleada como materia prima en los mercados cosméticos, farmacéuticos, etc. debe presentar un elevadísimo grado de pureza (superior al 99,7%), por lo que la viabilidad de los costosos procesos de purificación se encuentra muy condicionada por la economía de escala, así como por los precios finales de venta de los productos obtenidos a partir de la misma. However, large-scale biodiesel producers do refine their crude glycerin, in order to target the food, pharmaceutical and cosmetic markets. The refining treatments and processes, to which the crude glycerin is subjected, depend on the required yield or commercial purity. These processes are based on filtration, the addition of chemical substances and the use of vacuum fractional distillation systems. Glycerin used as raw material in cosmetic, pharmaceutical, etc. markets. It must have a very high degree of purity (higher than 99.7%), so that the viability of expensive purification processes is very conditioned by the economy of scale, as well as by the final sales prices of the products obtained at start from it.
Los productores de biodiesel a pequeña o moderada escala no pueden hacer frente a los altos costes de purificación de la glicerina cruda a través de procesos de destilación. Estas glicerinas también pueden ser refinadas haciendo uso de métodos de filtración que requieren menores intensidades energéticas. Sin embargo, estos procesos alcanzan grados de pureza muy inferiores a los obtenidos a través de la destilación. La glicerina filtrada, presenta un grado de pureza muy inferior al denominado grado de "pureza química", requerido para los mercados enunciados. Small or moderate scale biodiesel producers cannot cope with the high purification costs of crude glycerin through distillation processes. These glycerins can also be refined using filtration methods that require lower energy intensities. However, these processes reach much lower degrees of purity than those obtained through distillation. Glycerin filtered, it presents a degree of purity much lower than the so-called "chemical purity" grade, required for the listed markets.
El crecimiento exponencial en la producción mundial del biodiesel, en la última década, lleva asociada la aparición de grandes excedentes de glicerina cruda, de bajo valor económico. Por ello, en los últimos años, ha surgido un gran interés por encontrar nuevas soluciones económicamente viables, para el uso de glicerinas crudas procedentes de las plantas de producción de biodiesel.  The exponential growth in the global production of biodiesel, in the last decade, has been associated with the appearance of large surpluses of crude glycerin, of low economic value. Therefore, in recent years, great interest has emerged in finding new economically viable solutions for the use of crude glycerins from biodiesel production plants.
Recientemente se han desarrollado estudios que ponen de manifiesto las buenas propiedades de los éteres terc-butílicos de glicerina como aditivos oxigenados de los combustibles, que permiten reducir las emisiones contaminantes. En la bibliografía asociada también se encuentra información sobre distintos procedimientos para la obtención de estos éteres a partir de glicerina. Hasta el momento existen diversos estudios que ponen de manifiesto la utilidad del isobuteno como agente eterificante. Estos informes permiten esperar buenos resultados también utilizando otros alcoholes como agentes eterificantes del proceso.  Recently, studies have been carried out that show the good properties of tert-butyl ethers of glycerin as oxygenated fuel additives, which allow reducing polluting emissions. In the associated literature there is also information on different procedures for obtaining these ethers from glycerin. So far there are several studies that show the usefulness of isobutene as an etherifying agent. These reports allow us to expect good results also using other alcohols as etherifying agents of the process.
En la solicitud de patente WO 2009/1 17044, Barsa y colaboradores presentan un proceso de eterificación de glicerina utilizando isobuteno como agente eterificante. In patent application WO 2009/1 17044, Barsa et al. Present a glycerin etherification process using isobutene as the etherifying agent.
En la solicitud de patente WO 2008/1 12910, Morgan presenta un proceso de eterificación de glicerina en continuo mediante un proceso de destilación reactiva, en la que la glicerina reacciona con un alcohol para obtener éter de glicerina en presencia de un catalizador situado en la zona de reacción de dicha columna de destilación. En este proceso la temperatura de reacción se fija en el intervalo entre 120 y 140 °C. In patent application WO 2008/1 12910, Morgan presents a continuous glycerin etherification process by means of a reactive distillation process, in which glycerin reacts with an alcohol to obtain glycerin ether in the presence of a catalyst located in the reaction zone of said distillation column. In this process the reaction temperature is set in the range between 120 and 140 ° C.
Srinivas y colaboradores en la solicitud de patente WO 2009/1 13079 describen un método para la obtención de éteres primarios de glicerol a temperaturas entre 60 y 300 °C y tiempos de reacción de entre 5 y 8 horas en un reactor en continuo agitado. Para su utilización, el catalizador es activado utilizando ácido sulfúrico y los productos finales obtenidos en la reacción se extraen de la corriente de salida mediante extracción con agua. Srinivas et al. In patent application WO 2009/1 13079 describe a method for obtaining primary glycerol ethers at temperatures between 60 and 300 ° C and reaction times between 5 and 8 hours in a continuously stirred reactor. For use, the catalyst is activated using sulfuric acid and the final products obtained in the reaction are extracted from the outlet stream by extraction with water.
Por otra parte, Essayem y colaboradores en la solicitud de patente WO 2009/141564 presentan un método para la obtención de éteres en la misma etapa que la transesterificación en la que se obtiene el biodiesel.  On the other hand, Essayem et al. In patent application WO 2009/141564 present a method for obtaining ethers at the same stage as the transesterification in which biodiesel is obtained.
Se han descrito procesos para la obtención de aditivos de combustible a partir de glicerina, pero en todos ellos, la glicerina de la que se parte tiene una pureza superior al 90%, tratándose por tanto de glicerina purificada y no de la mezcla de glicerina cruda directamente obtenida como subproducto del proceso de producción del biodiesel. Por tanto sería deseable proporcionar un procedimiento para la obtención de aditivos de combustible a partir de la mezcla de glicerina cruda, es decir, un procedimiento adaptado a la utilización como reactivo de partida de la glicerina cruda obtenida directamente del procedimiento de producción del biodiesel, esto es, sin necesidad de utilizar glicerina con un grado de pureza superior al 90%. Processes for obtaining fuel additives from glycerin have been described, but in all of them, the glycerin from which it is split has a purity greater than 90%, therefore being purified glycerin and not the crude glycerin mixture directly obtained as a byproduct of the biodiesel production process. Therefore, it would be desirable to provide a process for obtaining fuel additives from the crude glycerin mixture, that is, a process adapted to the use as a starting reagent of the crude glycerin obtained directly from the biodiesel production process, this It is, without the need to use glycerin with a degree of purity greater than 90%.
La gran mayoría de los procesos existentes utilizan isobuteno como agente eterificante de la glicerina (como por ejemplo en WO 2009/1 17044). También se han descrito procedimientos en los que el agente eterificante es el terc-butanol con relaciones molares grandes (como por ejemplo en WO 2009/1 13079) por lo que el consumo del agente eterificante es grande y por tanto, la rentabilidad de los procesos industriales resulta menos económica. The vast majority of existing processes use isobutene as the glycerin etherifying agent (as for example in WO 2009/1 17044). Methods have also been described in which the etherifying agent is tert-butanol with large molar ratios (as for example in WO 2009/1 13079) whereby the consumption of the etherifying agent is large and therefore, the profitability of the processes industrial is less economical.
Por tanto, también sería deseable proporcionar un procedimiento para la obtención de aditivos de combustible en el que a igual o similar eficiencia productiva el agente eterificante se utilizase en una relación molar inferior, suponiendo por tanto un ahorro en el consumo de este agente y en general una rentabilidad del proceso general superior. Además, los procesos descritos en el estado de la técnica se realizan a elevadas temperaturas (como por ejemplo en WO 2008/1 12910) lo cual implica un gasto de energía elevado. Por tanto, sería deseable proporcionar un procedimiento para la obtención de aditivos de combustible que se pudiese llevar a cabo a temperaturas moderadas.  Therefore, it would also be desirable to provide a method for obtaining fuel additives in which at the same or similar productive efficiency the etherifying agent was used in a lower molar ratio, thus assuming a saving in the consumption of this agent and in general a superior overall process profitability. In addition, the processes described in the state of the art are carried out at high temperatures (as for example in WO 2008/1 12910) which implies a high energy expenditure. Therefore, it would be desirable to provide a process for obtaining fuel additives that could be carried out at moderate temperatures.
Asimismo, los procesos descritos en el estado de la técnica se llevan a cabo en un tiempo de 5 h (como por ejemplo en WO 2009/1 13079). Por tanto, sería deseable reducir el tiempo del proceso para que el mismo resulte más rentable a nivel industrial. Likewise, the processes described in the prior art are carried out in a time of 5 h (as for example in WO 2009/1 13079). Therefore, it would be desirable to reduce the process time so that it is more profitable at the industrial level.
Los procesos descritos en el estado de la técnica se realizan en continuo, por ejemplo en columnas de destilación en las que se encuentra un catalizador situado en bandejas o platos (como por ejemplo en WO 2008/1 12910). También se han descrito procedimientos en los que la reacción se lleva a cabo en reactores agitados y en continuo (como por ejemplo en WO 2009/1 13079) lo cual precisa de la utilización de equipos auxiliares para aumentar la presión y conlleva una disminución en el rendimiento global del proceso, puesto que se producen pérdidas del alcohol. The processes described in the state of the art are carried out continuously, for example in distillation columns in which a catalyst is located in trays or plates (as for example in WO 2008/1 12910). Methods have also been described in which the reaction is carried out in stirred and continuous reactors (as for example in WO 2009/1 13079) which requires the use of auxiliary equipment to increase the pressure and leads to a decrease in the overall performance of the process, since alcohol losses occur.
Por tanto, sería deseable proporcionar un procedimiento en el que se disminuyeran las pérdidas de alcohol, para hacer más eficiente y rentable el proceso a nivel industrial. En el estado de la técnica anterior, la activación del catalizador tiene lugar utilizando ácido sulfúrico (ver por ejemplo WO 2009/1 13079). Así pues, sería deseable proporcionar un proceso mediante el cual la activación no necesitase la utilización de un ácido para disminuir los riesgos asociados a su manejo. Asimismo, el proceso de separación del producto final descrito en el estado de la técnica se realiza mediante una extracción con agua para separar el producto deseado de la corriente de salida del reactor (ver por ejemplo WO 2009/1 13079) lo cual impide que la materia prima no-reaccionada se pueda reutilizar y que los rendimientos de obtención de producto final sean buenos. Therefore, it would be desirable to provide a procedure in which the losses of alcohol were reduced, to make the process more efficient and profitable at the industrial level. In the prior art, catalyst activation takes place using sulfuric acid (see for example WO 2009/1 13079). Thus, it would be desirable to provide a process whereby activation does not require the use of an acid to reduce the risks associated with its management. Likewise, the process of separating the final product described in the state of the art is carried out by means of water extraction to separate the desired product from the reactor output current (see for example WO 2009/1 13079) which prevents the Unreacted raw material can be reused and the yields of obtaining the final product are good.
Por tanto, sería deseable proporcionar un proceso en el que la etapa de separación del producto final permita establecer un proceso de residuo-cero y mejorar, a su vez, el rendimiento global de obtención del aditivo oxigenado. Therefore, it would be desirable to provide a process in which the separation stage of the final product allows to establish a zero-residue process and, in turn, improve the overall yield of obtaining the oxygenated additive.
Existen procedimientos descritos en el estado de la técnica que llevan a cabo la producción de biodiesel y la eterificación de la glicerina en una sola etapa de reacción lo que hace que el proceso sea poco controlable (ver por ejemplo WO 2009/141564).  There are procedures described in the state of the art that carry out the production of biodiesel and the etherification of glycerin in a single reaction stage which makes the process poorly controllable (see for example WO 2009/141564).
Por tanto, sería deseable proporcionar un proceso en el que la eterificación de la glicerina tenga lugar en una etapa diferente a la de producción del biodiesel para poder ejercer un mejor control de la reacción.  Therefore, it would be desirable to provide a process in which the etherification of glycerin takes place at a different stage from that of biodiesel production in order to exert a better reaction control.
En definitiva existe una necesidad en el estado de la técnica, que a su vez, permita reducir el consumo de reactivos y energía, y la cantidad de residuos (o el desecho de materia prima no reaccionada o de subproductos de reacción).  In short, there is a need in the state of the art, which in turn allows reducing the consumption of reagents and energy, and the amount of waste (or the waste of unreacted raw material or reaction by-products).
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La presente invención se refiere a un procedimiento para obtener aditivos oxigenados derivados de glicerina cruda, adaptado para la obtención selectiva de éteres de glicerol. De los éteres formados, la presente invención se centra en la obtención de los dos isómeros del di-terc-butil glicerol (DTBG) y el tri-terc-butil glicerol (TTBG), a partir de glicerina cruda y terc-butanol en presencia de un catalizador idóneo, que presenta ventajas de eficiencia y rendimiento superiores a los descritos en el estado de la técnica. El procedimiento de la presente invención comprende tres etapas esenciales definidas como: una primera etapa de purificación o pretratamiento de la glicerina cruda, una etapa posterior de reacción, de la glicerina purificada obtenida en la etapa anterior con terc- butanol en presencia de un catalizador y una última etapa de separación o extracción de los éteres de glicerol obtenidos como productos finales de reacción.  The present invention relates to a process for obtaining oxygenated additives derived from crude glycerin, adapted for the selective obtaining of glycerol ethers. Of the ethers formed, the present invention focuses on obtaining the two isomers of di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG), from crude glycerin and tert-butanol in the presence of a suitable catalyst, which has efficiency and performance advantages superior to those described in the state of the art. The process of the present invention comprises three essential stages defined as: a first stage of purification or pretreatment of the crude glycerin, a subsequent reaction stage, of the purified glycerin obtained in the previous stage with tert-butanol in the presence of a catalyst and a final stage of separation or extraction of the glycerol ethers obtained as final reaction products.
El problema técnico solucionado en la presente invención es la provisión de un procedimiento de obtención de determinados éteres de glicerol que utilizando como materia de partida la glicerina cruda presenta importantes ventajas en relación a la eficiencia y rendimiento del proceso. The technical problem solved in the present invention is the provision of a process for obtaining certain glycerol ethers that using raw glycerin as a starting material has important advantages in relation to the efficiency and performance of the process.
Dichas ventajas de eficiencia y rendimiento del proceso se consiguen a través de las siguientes características de proceso: - Utilización de menores contenidos de agente eterificante, terc-butanol, como consecuencia de llevar a cabo la etapa de reacción en un reactor discontinuo y hermético, que evita las pérdidas por evaporación del agente eterificante, y recirculación del agente no reaccionado. De esta manera se logran ahorros del 50% del agente eterificante necesario. These advantages of efficiency and process performance are achieved through the following process characteristics: - Use of lower contents of the etherifying agent, tert-butanol, as a consequence of carrying out the reaction stage in a discontinuous and hermetic reactor, which avoids evaporation losses of the etherifying agent, and recirculation of the unreacted agent. In this way savings of 50% of the necessary etherifying agent are achieved.
- Reutilización del catalizador necesario en la etapa de reacción, como consecuencia de realizar una purificación de la glicerina como parte integrante del proceso así como de incluir una etapa de lavado del catalizador, que permite utilizar el mismo catalizador hasta 10 ciclos consecutivos con un rendimiento de obtención de los productos objetivo de la presente invención similar al del primer ciclo.  - Reuse of the necessary catalyst in the reaction stage, as a consequence of performing a purification of the glycerin as an integral part of the process as well as including a stage of washing the catalyst, which allows the same catalyst to be used for up to 10 consecutive cycles with a yield of obtaining the objective products of the present invention similar to that of the first cycle.
Eliminación del uso de ácido sulfúrico o agentes similares para la activación del catalizador, y  Elimination of the use of sulfuric acid or similar agents for catalyst activation, and
Separación y extracción de los éteres de glicerol deseados a través de procesos sucesivos de destilación y extracción líquido-líquido que mejoran el rendimiento de obtención de los productos objetivo de la presente invención y permiten la reutilización de toda la materia prima no convertida en el producto objeto del proceso.  Separation and extraction of the desired glycerol ethers through successive processes of distillation and liquid-liquid extraction that improve the yield of obtaining the objective products of the present invention and allow the reuse of all raw material not converted into the object product of process.
A los efectos de la presente invención, se entiende por "glicerina cruda", la glicerina obtenida como subproducto de los procesos de producción industrial de biodiesel. Es por tanto un subproducto glicerinoso no purificado que presenta un contenido en glicerol superior al 75% y que contiene además agua en cantidad no superior al 10%, cenizas en cantidad inferior al 10% e iones en disolución en concentraciones de entre 5.000 y 30.000 ppm de Na+ y K+ además de partículas de sustancia oleosa no miscible en suspensión. El término "glicerina purificada" se refiere al producto de glicerina purificado a través de la etapa primera de purificación de la glicerina cruda de acuerdo con la presente invención, que presenta un contenido en glicerina de entre el 80 y el 95% con una concentración en iones Na+ y K+ menor de 3000 ppm, y un contenido en humedad inferior al 6%y que no presenta materia oleosa en suspensión perceptible. For the purposes of the present invention, "crude glycerin" is understood as the glycerin obtained as a byproduct of industrial biodiesel production processes. It is therefore an unpurified glycerol by-product that has a glycerol content greater than 75% and also contains water in an amount not exceeding 10%, ashes in an amount less than 10% and dissolved ions in concentrations between 5,000 and 30,000 ppm of Na + and K + in addition to particles of oily substance not miscible in suspension. The term "purified glycerin" refers to the product of purified glycerin through the first stage of purification of the crude glycerin according to the present invention, which has a glycerin content of between 80 and 95% with a concentration in Na + and K + ions of less than 3000 ppm, and a moisture content of less than 6% and which does not have oily matter in perceptible suspension.
El término "reactor discontinuo hermético" se refiere a un reactor en el que se carga una cantidad de alimentación y se deja reaccionar durante el tiempo de reacción. Una vez ha transcurrido ese tiempo se carga de nuevo otra cantidad de alimentación. Esta operación se repite de manera sucesiva. Comprende además un cierre impermeable o cualquier sistema (tal como una columna de refrigeración) que evita las fugas de reactivos en fase líquida o en fase vapor de su interior. Un ejemplo de este reactor sería un recipiente cilindrico con fondo cónico que facilita su vaciado, con tapa superior con cierre hermético que evita las pérdidas de agente eterificante y de intermedios de reacción y un agitador. Otro ejemplo sería un reactor con las mismas características geométricas y con un agitador con una columna de refrigeración situada en la parte superior del mismo por la que circule un líquido refrigerante (por ejemplo agua) a una temperatura tal que evite las fugas por evaporación del agente eterificante y de intermedios de reacción. The term "hermetic discontinuous reactor" refers to a reactor in which an amount of feed is charged and allowed to react during the reaction time. Once that time has elapsed, another amount of power is reloaded. This operation is repeated successively. It also includes an impermeable closure or any system (such as a cooling column) that prevents the leakage of reagents in the liquid phase or in the vapor phase inside. An example of this reactor would be a cylindrical container with conical bottom that facilitates its emptying, with top lid with airtight seal which prevents losses of etherifying agent and reaction intermediates and a stirrer. Another example would be a reactor with the same geometric characteristics and with an agitator with a cooling column located on top of it through which a coolant circulates (for example water) at a temperature that prevents leakage by evaporation of the agent etherifier and reaction intermediates.
El término "catalizador ácido" se refiere a un catalizador homogéneo o heterogéneo cuyos sitios activos presentan una naturaleza ácida prótica. Particularmente, se refiere a una "resina de intercambio iónico". Ejemplos incluyen, entre otros, Zeolita BEA-CP814E, Amberlyst 15, Amberlyst 35, Ácido sulfúrico, Zeolita ZSM-5, Zeolita CBV-2314, Montmorillonita KSF y Montmorillonita KP10. The term "acid catalyst" refers to a homogeneous or heterogeneous catalyst whose active sites have a protic acid nature. In particular, it refers to an "ion exchange resin". Examples include, among others, Zeolite BEA-CP814E, Amberlyst 15, Amberlyst 35, Sulfuric acid, Zeolite ZSM-5, Zeolite CBV-2314, Montmorillonite KSF and Montmorillonite KP10.
Es por tanto un objeto de la presente invención un procedimiento para la obtención de éteres de glicerol di-terc-butil-glicerol (DTBG) y tri-terc-butil-glicerol (TTBG) a partir de glicerina cruda y terc-butanol que comprende una etapa de purificación de la glicerina, seguida de reacción entre la glicerina y el terc-butanol en presencia de un catalizador y separación y recuperación de los éteres de glicerol. It is therefore an object of the present invention a process for obtaining ethers of glycerol di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG) from crude glycerin and tert-butanol comprising a step of purification of glycerin, followed by reaction between glycerin and tert-butanol in the presence of a catalyst and separation and recovery of glycerol ethers.
Es también un objeto de la presente invención un procedimiento para la obtención de en particular éteres de glicerol di-terc-butil-glicerol (DTBG) y tri-terc-butil-glicerol (TTBG) a partir de glicerina cruda y terc-butanol cuya etapa de purificación comprende una etapa de centrifugación de la glicerina cruda para separar impurezas no miscibles (compuestas principalmente por materia orgánica no glicerinosa o MONG ) y una segunda etapa de tratamiento con una resina de intercambio iónico para eliminar los iones alcalinos de la glicerina. An object of the present invention is also a process for obtaining, in particular, ethers of glycerol di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG) from crude glycerin and tert-butanol whose Purification stage comprises a centrifugation stage of the crude glycerin to separate non-miscible impurities (composed mainly of non-glycerinic organic matter or MONG) and a second stage of treatment with an ion exchange resin to remove the alkaline ions from the glycerin.
Es también un objeto adicional de la presente invención un procedimiento para la obtención en particular de éteres de glicerol di-terc-butil-glicerol (DTBG) y tri-terc-butil- glicerol (TTBG) a partir de glicerina cruda y terc-butanol en el cual el catalizador utilizado tanto en la etapa de purificación como de reacción es una resina de intercambio iónico que se activa previo a su utilización a través de un lavado con metanol o etanol y posterior secado.  It is also a further object of the present invention a process for obtaining, in particular, ethers of glycerol di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG) from crude glycerin and tert-butanol in which the catalyst used in both the purification and reaction stage is an ion exchange resin that is activated prior to use through a wash with methanol or ethanol and subsequent drying.
Es también un objeto adicional de la presente invención un procedimiento para la obtención de en particular éteres de glicerol di-terc-butil-glicerol (DTBG) y tri-terc-butil- glicerol (TTBG) a partir de glicerina cruda y terc-butanol en el cual la resina de intercambio iónico utilizada se regenera mediante un lavado con, preferentemente, ácido clorhídrico tras la etapa de purificación.  A further object of the present invention is also a process for obtaining in particular ethers of glycerol di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG) from crude glycerin and tert-butanol in which the ion exchange resin used is regenerated by washing with, preferably, hydrochloric acid after the purification step.
Es también un objeto adicional de la presente invención un procedimiento para la obtención de en particular éteres de glicerol di-terc-butil-glicerol (DTBG) y tri-terc-butil- glicerol (TTBG) a partir de glicerina cruda y terc-butanol, cuya etapa de separación comprende una primera destilación a vacío seguida de una primera extracción con disolvente pentano o heptano, seguida de una segunda extracción líquido-líquido con agua y una segunda destilación que permite recuperar y reutilizar los productos finales de reacción, DTBG y TTBG. A further object of the present invention is also a process for obtaining in particular ethers of glycerol di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG) from crude glycerin and tert-butanol whose separation stage It comprises a first vacuum distillation followed by a first extraction with pentane or heptane solvent, followed by a second liquid-liquid extraction with water and a second distillation that allows the final reaction products, DTBG and TTBG, to be recovered and reused.
Es también un objeto adicional de la presente invención un procedimiento para la obtención de en particular éteres de glicerol di-terc-butil-glicerol (DTBG) y tri-terc-butil- glicerol (TTBG) a partir de glicerina cruda y terc-butanol que adicionalmente permite recuperar el catalizador a través de una etapa de filtrado, lavado y secado.  A further object of the present invention is also a process for obtaining in particular ethers of glycerol di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG) from crude glycerin and tert-butanol which additionally allows the catalyst to be recovered through a stage of filtering, washing and drying.
Es también un objeto adicional de la presente invención un procedimiento para la obtención de en particular éteres de glicerol di-terc-butil-glicerol (DTBG) y tri-terc-butil- glicerol (TTBG) a partir de glicerina cruda y terc-butanol que permite recuperar el terc- butanol para su posterior utilización en el procedimiento de la invención a través de la adición de preferentemente óxido de calcio (CaO) a la solución de terc-butanol-agua y posterior destilación. A further object of the present invention is also a process for obtaining in particular ethers of glycerol di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG) from crude glycerin and tert-butanol which allows recovering the tert-butanol for later use in the process of the invention through the addition of preferably calcium oxide (CaO) to the tert-butanol-water solution and subsequent distillation.
Es también un objeto adicional de la presente invención un procedimiento para la obtención de en particular éteres de glicerol di-terc-butil-glicerol (DTBG) y tri-terc-butil- glicerol (TTBG) a partir de glicerina cruda y terc-butanol en el cual el rendimiento de obtención de DTBG es de entre el 1 1 y el 13%.  A further object of the present invention is also a process for obtaining in particular ethers of glycerol di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG) from crude glycerin and tert-butanol in which the yield of obtaining DTBG is between 1 1 and 13%.
Es finalmente un objeto de la presente invención el uso de los éteres de glicerol obtenidos a partir de glicerina y terc-butanol de acuerdo con el procedimiento de la presente invención como aditivos oxigenados para combustibles diesel.  Finally, it is an object of the present invention to use glycerol ethers obtained from glycerin and tert-butanol according to the process of the present invention as oxygenated additives for diesel fuels.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Figura 1 : Isómeros de DTBG y molécula de TTBG  Figure 1: DTBG isomers and TTBG molecule
Figura 2. Reacciones de formación del MTBG, DTBG y TTBG Figure 2. Formation reactions of MTBG, DTBG and TTBG
Figura 3. Diagrama del proceso de reacción Figure 3. Diagram of the reaction process
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Tal y como se ha descrito anteriormente, la presente invención se refiere a un procedimiento para obtener aditivos oxigenados derivados de glicerina cruda, adaptado para la obtención selectiva de éteres de glicerol seleccionados del grupo que consiste en los dos isómeros del di-terc-butil glicerol (DTBG) y el tri-terc-butil glicerol (TTBG), (Figura 1 ), a partir de glicerina cruda y terc-butanol.  As described above, the present invention relates to a process for obtaining oxygenated additives derived from crude glycerin, adapted for the selective obtaining of glycerol ethers selected from the group consisting of the two isomers of di-tert-butyl glycerol (DTBG) and tri-tert-butyl glycerol (TTBG), (Figure 1), from crude glycerin and tert-butanol.
El proceso de la presente invención se divide en tres etapas principales: fase de pretratamiento o purificación, fase de reacción y fase de separación. Se ilustra en la Figura 3 un esquema del proceso de la presente invención. En la primera fase se lleva a cabo la purificación de la glicerina cruda. Esta glicerina proviene directamente del proceso de fabricación del biodiesel (transesterificación). Contiene humedad, materia orgánica no glicerinosa (MONG), materia oleosa de densidad menor que la glicerina e iones disueltos (principalmente Na+ y K+ procedentes del proceso de transesterificación previo). Estas impurezas deben ser eliminadas ya que afectan directa y negativamente a la reacción de eterificación de la glicerina que tendrá lugar.The process of the present invention is divided into three main stages: pretreatment or purification phase, reaction phase and separation phase. A schematic of the process of the present invention is illustrated in Figure 3. In the first phase the purification of the crude glycerin is carried out. This glycerin comes directly from the biodiesel manufacturing process (transesterification). It contains moisture, non-glycerinic organic matter (MONG), oily matter of lower density than glycerin and dissolved ions (mainly Na + and K + from the previous transesterification process). These impurities must be removed as they directly and negatively affect the etherification reaction of the glycerin that will take place.
En la segunda fase se desarrolla la reacción de eterificación. En ella, la glicerina, en presencia de un catalizador, como por ejemplo, Amberlyst 15, reacciona con el agente eterificante, terc-butanol para dar, en reacciones en serie, mono-éteres, di-éteres y tri- éteres de glicerina, preferiblemente di-éteres, en particular, DTBG. In the second phase the etherification reaction develops. In it, glycerin, in the presence of a catalyst, such as, for example, Amberlyst 15, reacts with the etherifying agent, tert-butanol to give, in serial reactions, mono-ethers, di-ethers and glycerine tri- ethers, preferably di-ethers, in particular, DTBG.
En la tercera fase se aislan los productos objetivo del proceso, di-éteres y tri-eteres de glicerol, mediante procesos sucesivos de destilación y extracción líquido-líquido. Además, las corrientes compuestas por materia prima no reaccionada (terc-butanol, glicerina) y subproductos (isómeros de MTBG) pueden recuperarse sucesivamente para su posterior reutilización en la etapa de reacción. In the third phase, the objective products of the process, di-ethers and tri-ethers of glycerol, are isolated by successive processes of distillation and liquid-liquid extraction. In addition, the streams composed of unreacted raw material (tert-butanol, glycerin) and by-products (MTBG isomers) can be recovered successively for later reuse in the reaction stage.
Fase de Purificación: Purification Phase:
En primer lugar se realiza una centrifugación de la glicerina cruda en la que se eliminan las partículas de sustancia oleosa menos densa de la glicerina. Esta centrifugación se realiza en una centrífuga (p.ej modelo Digicen de la casa comercial Orto Alresa) a una temperatura de la glicerina de entre 45 y 75 °C, preferiblemente, entre 50 y 70°C para facilitar la separación de las fases por reducción de la viscosidad de la glicerina.  First, a centrifugation of the crude glycerin is carried out in which the less dense oily substance particles are removed from the glycerin. This centrifugation is carried out in a centrifuge (eg Digicen model of the Orto Alresa commercial house) at a glycerin temperature of between 45 and 75 ° C, preferably between 50 and 70 ° C to facilitate the separation of the phases by viscosity reduction of glycerin.
De esta centrífuga se obtienen dos corrientes, una formada por la glicerina centrifugada limpia y otra formada por la materia oleosa separada que se deshecha.  From this centrifuge two streams are obtained, one formed by the clean centrifuged glycerin and another formed by the separated oily matter that is discarded.
Posteriormente tiene lugar la adsorción de los iones alcalinos mediante el empleo de una resina de intercambio iónico por donde se hace pasar la corriente de glicerina centrifugada limpia. La resina empleada que ha proporcionado mejores resultados es Amberlyst 15 (Rohm and Haas), aunque se han probado otras opciones, tales como: Zeolita BEA (H-Form), tamiz molecular comercial, hidrotalcita, sepiolita 60/120, sepiolita 15/30, alúmina, oxalato de cobalto y combinaciones de varias de ellas. Subsequently, adsorption of the alkaline ions takes place through the use of an ion exchange resin through which the clean centrifuged glycerin stream is passed. The resin used that has provided better results is Amberlyst 15 (Rohm and Haas), although other options have been tested, such as: Zeolite BEA (H-Form), commercial molecular sieve, hydrotalcite, sepiolite 60/120, sepiolite 15/30 , alumina, cobalt oxalate and combinations of several of them.
El contacto entre la glicerina y la resina se puede realizar en columnas de relleno o en tanque agitado con filtración posterior. La relación óptima entre la cantidad de glicerina y de resina para el intercambio es de 1 :3 a 1 :12 Amberlyst 15:Glicerina preferiblemente, 1 :3 en peso (1 kg de resina por cada 3 kg de glicerina a tratar). En caso de agitación, el tiempo de agitación debe ser de 60 minutos a 120 minutos, preferiblemente de 90 minutos. El tanque de agitación puede ser un tanque cilindrico con válvula de vaciado inferior con un agitador en su interior. La columna de relleno puede ser de tipo cilindrico con alimentación superior o inferior y con salida del producto por la parte opuesta que debe constar de un filtro para evitar las pérdidas de resina de intercambio iónico. The contact between the glycerin and the resin can be carried out in filler columns or in a stirred tank with subsequent filtration. The optimum ratio between the amount of glycerin and resin for exchange is 1: 3 to 1: 12 Amberlyst 15: Glycerin preferably, 1: 3 by weight (1 kg of resin for every 3 kg of glycerin to be treated). In case of stirring, the stirring time should be 60 minutes to 120 minutes, preferably 90 minutes. The agitation tank can be a cylindrical tank with a lower drain valve with an agitator inside. The filling column can be cylindrical with upper or lower feed and with product outlet on the opposite side that should consist of a filter to avoid losses of ion exchange resin.
Para el filtrado de la mezcla (bien tras la agitación o bien en el fondo de la columna de relleno), el filtro debe tener una luz de malla inferior a 600 mieras, preferiblemente, 500 mieras (0,5 mm). Cualquier malla o filtro comercial con luz de malla inferior a la indicada puede servir a este efecto. A modo de ejemplo, en el presente procedimiento se ha filtrado la mezcla sobre un embudo de cristal de laboratorio sobre el que se ha colocado malla metálica de 500 mieras de luz de malla. Se ha comprobado que esta purificación inicial de la glicerina cruda mejora los resultados obtenidos en la reacción posterior en varios aspectos: For filtering the mixture (either after stirring or at the bottom of the filler column), the filter should have a mesh light of less than 600 microns, preferably 500 microns (0.5 mm). Any mesh or commercial filter with mesh light less than indicated can serve this purpose. By way of example, in the present process the mixture has been filtered on a laboratory glass funnel on which metallic mesh of 500 microns of mesh light has been placed. It has been proven that this initial purification of crude glycerin improves the results obtained in the subsequent reaction in several aspects:
- Permite la reutilización del catalizador de reacción en sucesivas reacciones sin rotura y desactivación del mismo, manteniendo valores de conversión de la glicerina y rendimiento de DTBG similares al menos hasta el décimo ciclo de reutilización.  - It allows the reuse of the reaction catalyst in successive reactions without breaking and deactivating it, maintaining glycerin conversion values and DTBG performance at least until the tenth cycle of reuse.
Permite incrementar la selectividad de la reacción hacia el DTBG.  It allows to increase the selectivity of the reaction towards the DTBG.
La resina de intercambio iónico empleada en esta etapa debe ser activada previamente a su utilización y regenerada tras su uso para poder ser reutilizada. Esta reutilización es posible tantas veces como sea necesario siempre que se lleve a cabo el proceso de reactivación de los sitios activos de la resina. The ion exchange resin used in this stage must be activated prior to use and regenerated after use in order to be reused. This reuse is possible as many times as necessary whenever the process of reactivation of the active sites of the resin is carried out.
La activación de la resina consiste en el lavado de la misma con metanol o etanol durante un tiempo de aproximadamente entre 5 y 30 minutos, preferiblemente, 15 minutos (en agitación o en recirculación a través de la columna de relleno) y un posterior secado de la misma a una temperatura de entre 100 y 130 °C, preferiblemente 100°C, durante un periodo de tiempo de entre 6 y 48 horas, preferiblemente, 12 horas (en estufa o mediante circulación de corriente de aire caliente por la columna de relleno).  The activation of the resin consists in washing it with methanol or ethanol for a time of approximately 5 to 30 minutes, preferably 15 minutes (with stirring or recirculation through the filler column) and subsequent drying of the same at a temperature of between 100 and 130 ° C, preferably 100 ° C, for a period of time between 6 and 48 hours, preferably, 12 hours (in an oven or by circulating hot air current through the filler column ).
La reactivación de los sitios activos de la resina se realiza mediante el lavado de la misma con HCI 1 - 6M, preferiblemente 4M, durante un periodo de tiempo de 2 a 4 horas, preferiblemente, 2 horas (en agitación o mediante recirculación en la columna de relleno). Esta reactivación de los sitios activos debe ir seguida del proceso de lavado (activación) descrito, con carácter previo a su uso como resina de intercambio iónico. En sustitución del HCI se puede emplear cualquier otro ácido capaz de reactivar los sitios activos del catalizador, es decir, que ceda protones a la resina de intercambio y capte los iones alcalinos retenidos en esta, como por ejemplo: HN03, H2S04 , HCI04, HCI03. The reactivation of the active sites of the resin is carried out by washing it with 1-6M HCI, preferably 4M, for a period of 2 to 4 hours, preferably 2 hours (under stirring or by recirculation in the column of filling). This reactivation of the active sites must be followed by the washing (activation) process described, prior to its use as an ion exchange resin. In substitution of HCI, any other acid capable of reactivating the active sites of the catalyst can be used, that is to say that it gives protons to the exchange resin and captures the alkaline ions retained therein, such as: HN0 3 , H 2 S0 4 , HCI0 4 , HCI0 3 .
Una vez que la glicerina se ha sometido a este proceso de purificación se denomina glicerina purificada, y es apta para ser introducida en la fase de reacción. Las características de esta glicerina purificada son las siguientes: presenta un contenido en glicerina de entre el 80 y el 95% con una concentración en iones Na+/K+ menor de 3000 ppm, y un contenido en humedad inferior al 6%y que no presenta materia oleosa en suspensión perceptible Once the glycerin has undergone this purification process it is called purified glycerin, and is apt to be introduced into the reaction phase. The characteristics of this purified glycerin are as follows: it has a glycerin content of between 80 and 95% with a concentration of Na + / K + ions of less than 3000 ppm, and a moisture content of less than 6% and not it presents oily matter in perceptible suspension
Fase de Reacción Reaction Phase
La glicerina purificada es alimentada al reactor. Se trata de un reactor discontinuo agitado hermético o con una columna de refrigeración, tal y como se han descrito anteriormente. El objetivo es evitar la fuga de agente eterificante y de intermedios de reacción (ej. isobuteno) que favorecen el desarrollo y la selectividad de la reacción hacia los productos objetivo (por tanto se podría utilizar cualquier tipo de reactor que sirva a este efecto). En el reactor se introduce la glicerina purificada, el agente eterificante (terc-butanol) en una proporción de 1 :3 a 1 :8, preferiblemente de 1 :4 molar frente a la glicerina (4 moles de terc-butanol por cada mol de glicerina alimentada) y preferiblemente el catalizador (Amberlyst 15) en una cantidad de entre un 3 y un 20%, preferiblemente del 8% al 16%, más preferiblemente un 8% en peso frente a la glicerina purificada alimentada. The purified glycerin is fed to the reactor. It is a hermetic agitated discontinuous reactor or with a cooling column, as described above. The objective is to prevent the leakage of etherifying agent and reaction intermediates (eg isobutene) that favor the development and selectivity of the reaction towards the target products (therefore any type of reactor that serves this purpose could be used). The purified glycerin, the etherifying agent (tert-butanol) in a ratio of 1: 3 to 1: 8, preferably 1: 4 molar versus glycerin (4 moles of tert-butanol for each mole of fed glycerin) and preferably the catalyst (Amberlyst 15) in an amount of between 3 and 20%, preferably 8% to 16%, more preferably 8% by weight versus the purified glycerin fed.
Las condiciones de reacción son una temperatura de reacción de entre 50 y 120 °C, preferiblemente, 80°C y un tiempo de reacción de entre 30 minutos y 8 horas, preferiblemente 120 minutos, que maximizan la conversión de la glicerina y el rendimiento en obtención de DTBG y TTBG. The reaction conditions are a reaction temperature between 50 and 120 ° C, preferably 80 ° C and a reaction time between 30 minutes and 8 hours, preferably 120 minutes, which maximize glycerin conversion and yield in obtaining DTBG and TTBG.
En la reacción se producen las reacciones de eterificación en serie, tal y como se muestra en la Figura 2. En primer lugar, de la reacción entre glicerina y terc-butanol se obtiene mono-terc-butil glicerol (MTBG) en sus dos isómeros. A continuación, la molécula de MTBG reacciona de nuevo con terc-butanol para obtener di-terc-butil glicerol (DTBG) en sus dos isómeros. Finalmente, la molécula de DTBG reacciona con terc-butanol para obtener tri-terc-butil glicerol (TTBG).  In the reaction, serial etherification reactions occur, as shown in Figure 2. First, from the reaction between glycerin and tert-butanol, mono-tert-butyl glycerol (MTBG) is obtained in its two isomers . Next, the MTBG molecule reacts again with tert-butanol to obtain di-tert-butyl glycerol (DTBG) in its two isomers. Finally, the DTBG molecule reacts with tert-butanol to obtain tri-tert-butyl glycerol (TTBG).
Una vez finalizada la reacción, la mezcla resultante, llamada mezcla de síntesis, es filtrada mediante dos filtros de rejilla sucesivos, el primero de ellos de luz de malla inferior a 600 mieras, preferiblemente, 500 mieras y el segundo de ellos de luz de malla inferior a 100 mieras, preferiblemente, 50 mieras. Pueden utilizarse a estos efectos los sistemas de filtrado expuestos anteriormente. Once the reaction is finished, the resulting mixture, called the synthesis mixture, is filtered through two successive grid filters, the first one with a mesh light of less than 600 microns, preferably 500 microns and the second one with a mesh light. less than 100 microns, preferably 50 microns. The filtering systems set forth above may be used for this purpose.
Tras el filtrado, la mezcla de síntesis se almacena para pasar a la fase de separación o aislamiento de los productos de reacción objetivo. After filtration, the synthesis mixture is stored to pass the separation or isolation phase of the target reaction products.
El catalizador empleado en la reacción debe ser previamente activado mediante lavado del mismo con metanol o etanol, durante un periodo de agitación de entre 5 y 30 minutos, preferiblemente, 15 minutos y posterior secado a una temperatura de entre 100 y 130°C, preferiblemente 100°C durante un periodo de entre 6 y 48 horas, preferiblemente 12 horas. The catalyst used in the reaction must be previously activated by washing it with methanol or ethanol, during a stirring period of between 5 and 30 minutes, preferably 15 minutes and subsequent drying at a temperature between 100 and 130 ° C, preferably 100 ° C for a period of between 6 and 48 hours, preferably 12 hours.
El catalizador recogido en el primer filtro de rejilla, gracias a la purificación inicial de la glicerina realizada, puede reutilizarse en la reacción. Es necesario aplicar un lavado del catalizador con metanol o etanol y un secado en las mismas condiciones que en la activación inicial. De esta manera, el catalizador puede reutilizarse hasta en diez reacciones sin disminuir la conversión de glicerina obtenida ni el rendimiento de obtención del DTBG y TTBG.  The catalyst collected in the first grid filter, thanks to the initial purification of the glycerin made, can be reused in the reaction. It is necessary to apply a catalyst wash with methanol or ethanol and a drying under the same conditions as in the initial activation. In this way, the catalyst can be reused in up to ten reactions without decreasing the conversion of glycerin obtained or the yield of obtaining DTBG and TTBG.
Fase de Separación Separation Phase
La mezcla de síntesis filtrada se introduce en la fase de separación para aislar el aditivo objetivo (DTBG y TTBG) del resto de componentes de la corriente de salida del reactor para recuperar y recircular la materia prima no reaccionada.  The filtered synthesis mixture is introduced in the separation phase to isolate the target additive (DTBG and TTBG) from the rest of the components of the reactor output current to recover and recirculate the unreacted raw material.
Para ello se realiza una primera destilación a vacío (60°C y l OOmbar de presión absoluta) en la que se recupera el terc-butanol que no ha reaccionado (mezclado con agua).. A modo de ejemplo, en la presente invención se ha llevado a cabo la destilación en sistemas de vacío compuestos como equipos principales por una columna, un recipiente calefactado en el que se introduce la alimentación fresca, un sistema de refrigeración para la recolección del condensado del compuesto más volátil y una bomba de vacío comercial capaz de alcanzar hasta 100 mbar de presión absoluta. La corriente de producto pasa a la primera extracción líquido-líquido.  For this, a first vacuum distillation is performed (60 ° C and the absolute pressure OOmbar) in which the unreacted tert-butanol (mixed with water) is recovered. By way of example, the present invention has carried out the distillation in vacuum systems composed as main equipment by a column, a heated vessel into which the fresh feed is introduced, a refrigeration system for the condensate collection of the most volatile compound and a commercial vacuum pump capable of reach up to 100 mbar of absolute pressure. The product stream passes to the first liquid-liquid extraction.
En esta extracción se añade un disolvente (pentano o heptano) en proporción volumétrica entre 5:1 y 2:1 , preferiblemente 2:1 (2 volúmenes de disolvente por cada volumen de corriente de producto alimentada). La mezcla se agita durante un periodo de entre 10 y 120 minutos, preferiblemente, 30 minutos y se deja reposar. Se forman dos fases. La fase más densa está formada por glicerina no reaccionada y MTBG principalmente, además de trazas de DTBG. Esta corriente se recircula al reactor. La recirculación de esta corriente mejora los resultados obtenidos en la reacción. In this extraction a solvent (pentane or heptane) is added in volumetric ratio between 5: 1 and 2: 1, preferably 2: 1 (2 volumes of solvent for each volume of feed stream). The mixture is stirred for a period of 10 to 120 minutes, preferably 30 minutes and allowed to stand. Two phases are formed. The densest phase is formed by unreacted glycerin and MTBG mainly, in addition to traces of DTBG. This current is recirculated to the reactor. The recirculation of this current improves the results obtained in the reaction.
La fase menos densa está formada por DTBG, TTBG y disolvente y se alimenta a un segundo decantador en el que se lleva a cabo una nueva extracción líquido-líquido. El disolvente empleado en este caso es agua. Se agita igualmente la mezcla durante un periodo de entre 10 y 120 minutos, preferiblemente 30 minutos y se deja decantar.  The less dense phase is formed by DTBG, TTBG and solvent and is fed to a second decanter in which a new liquid-liquid extraction is carried out. The solvent used in this case is water. The mixture is also stirred for a period of 10 to 120 minutes, preferably 30 minutes and allowed to decant.
La fase más densa de esta extracción está formada principalmente por agua y contiene algunas trazas de MTBG y glicerina. El objetivo de esta extracción es eliminar estas trazas de glicerina y MTBG que contaminarían la corriente de aditivo producto (DTBG y TTBG). Esta corriente más densa se almacena a la espera de ser reutilizada de nuevo en la extracción, puesto que se trata en su mayoría de agua. The densest phase of this extraction consists mainly of water and contains some traces of MTBG and glycerin. The objective of this extraction is to eliminate these traces of glycerin and MTBG that would contaminate the product additive stream (DTBG and TTBG). This denser stream is stored waiting to be reused again in the extraction, since it is mostly water.
La fase menos densa, formada por el disolvente de la primera extracción (pentano o heptano) y DTBG y TTBG, se introduce en una segunda columna de destilación (que opera en las mismas condiciones que la primera). En esta destilación se separa el disolvente de los aditivos (DTBG y TTBG) objetivo del proceso.  The less dense phase, formed by the solvent of the first extraction (pentane or heptane) and DTBG and TTBG, is introduced into a second distillation column (which operates under the same conditions as the first). In this distillation, the solvent is separated from the additives (DTBG and TTBG) targeted by the process.
Se han probado extracciones con cloroformo, pentano, octano, heptano o éter etílico de cara a valorar la idoneidad de cada disolvente en el proceso de separación A modo de ejemplo se presentan las composiciones de las corrientes de salida después de sucesivas extracciones con los disolventes indicados en las tablas y las proporciones (ratios) indicadas.  Extractions with chloroform, pentane, octane, heptane or ethyl ether have been tested in order to assess the suitability of each solvent in the separation process. As an example, the compositions of the exit streams are presented after successive extractions with the indicated solvents in the tables and the proportions (ratios) indicated.
Tal y como se puede apreciar en las Tablas 1 y 2, la extracción con pentano seguida de una extracción con agua permite obtener una corriente de salida libre de MTBG y con una cantidad de DTBG mayor del 95%. Cabe señalar que con el heptano se han obtenido valores similares, al igual que con el octano, pero el menor punto de ebullición de estos disolventes (pentano y heptano) facilita la separación en la etapa posterior.  As can be seen in Tables 1 and 2, the extraction with pentane followed by an extraction with water makes it possible to obtain an MTBG free output current and with a DTBG amount greater than 95%. It should be noted that with heptane similar values have been obtained, as with octane, but the lower boiling point of these solvents (pentane and heptane) facilitates separation in the subsequent stage.
Tabla 1 Table 1
Catalizador Amberlyst 15 Amberlyst Catalyst 15
Ratio DTBG MTBG glicerina  DTBG MTBG glycerin ratio
Muestra inicial 10.41 48.76 40.84 Initial sample 10.41 48.76 40.84
Extracción con 1 : 2 Extraction with 1: 2
15.81 72.45 1 1.74 cloroformo síntesis:cloroformo  15.81 72.45 1 1.74 chloroform synthesis: chloroform
1a Extracción con 1 : 2 1 a Extraction with 1: 2
55.37 43.42 1.21 agua cloroformo:agua  55.37 43.42 1.21 water chloroform: water
2a Extracción con 1 : 2 2 a Extraction with 1: 2
93.41 4.42 2.18 agua cloroformo:agua Tabla 2 93.41 4.42 2.18 water chloroform: water Table 2
Ratio DTBG MTBG GCL DTBG MTBG GCL Ratio
Muestra inicial 46,98065 42,75523 10,2641  Initial sample 46,98065 42,75523 10,2641
1 :2  1: 2
Extracción pentano 85,45 1 1 ,71 2,83  Pentane extraction 85.45 1 1, 71 2.83
síntesis:pentano  synthesis: pentane
1 :2  1: 2
Limpieza con agua 96,01 0 3,99  Cleaning with water 96.01 0 3.99
síntesis:pentano  synthesis: pentane
Comparando ambas tablas es claro que la extracción con pentano (o heptano) es más ventajosa puesto que se alcanzan riquezas en DTBG en las corrientes de salida mayores con menor número de extracciones y además no quedan trazas de MTBG en la corriente de salida. Comparing both tables it is clear that the extraction with pentane (or heptane) is more advantageous since wealth is reached in DTBG in the major outflows with less number of extractions and in addition there are no traces of MTBG in the output stream.
El disolvente separado puede ser reutilizado en la primera extracción líquido-líquido, puesto que la separación es prácticamente total.  The separated solvent can be reused in the first liquid-liquid extraction, since the separation is practically total.
El terc-butanol que no ha reaccionado y que se separó en la primera destilación también puede ser reutilizado en la reacción. Para ello es necesario separar el agua que contiene (que forma azeótropo con el terc-butanol) del alcohol. Esto se logra mezclando dicha corriente con un agente desecante, seleccionado del grupo que consiste en: sulfato de sodio heptahidratado, sulfato de magnesio heptahidratado, carbonato de calcio hidratado, acetato de potasio y CaO, preferiblemente CaO, en una proporción de entre un 5 y un 30%, preferiblemente 22% en peso frente a la mezcla de agua-alcohol alimentada. Se mantiene en agitación durante un periodo de 2 a 9 horas, preferiblemente, 7 horas y posteriormente se destila a 120-150°C, preferiblemente a 135°C la pasta resultante. El vapor formado se condensa y se recoge como terc-butanol sin contenido en agua. La pasta restante formada por hidróxido de calcio puede ser destilada de nuevo para recuperar el CaO y reutilizarlo en el proceso. Esta destilación tiene lugar a entre 80 y 100°C, 100 mbar de presión absoluta y un tiempo de 1 hora. The tert-butanol that has not reacted and that was separated in the first distillation can also be reused in the reaction. For this it is necessary to separate the water it contains (which forms azeotrope with tert-butanol) from the alcohol. This is achieved by mixing said stream with a drying agent, selected from the group consisting of: sodium sulfate heptahydrate, magnesium sulfate heptahydrate, hydrated calcium carbonate, potassium acetate and CaO, preferably CaO, in a proportion of between 5 and 30%, preferably 22% by weight compared to the water-alcohol mixture fed. It is kept under stirring for a period of 2 to 9 hours, preferably 7 hours and subsequently distilled at 120-150 ° C, preferably at 135 ° C the resulting paste. The vapor formed is condensed and collected as tert-butanol without water content. The remaining paste formed by calcium hydroxide can be distilled again to recover the CaO and reuse it in the process. This distillation takes place at between 80 and 100 ° C, 100 mbar of absolute pressure and a time of 1 hour.
Se ilustra en la Tabla 3 los rendimientos de DTBG y conversión de la glicerina purificada de acuerdo con el procedimiento de la presente invención. Se puede concluir que de acuerdo con el proceso descrito anteriormente, el catalizador puede reutilizarse hasta 10 ciclos manteniendo los rendimientos de conversión y obtención de DTBG obtenidos en el primer ciclo.  The DTBG yields and conversion of the purified glycerin according to the process of the present invention are illustrated in Table 3. It can be concluded that according to the process described above, the catalyst can be reused for up to 10 cycles while maintaining the conversion and obtaining yields of DTBG obtained in the first cycle.
Tabla 3 . Reutilización de AM15 empleando GCL de Bionet pre-tratada. Table 3 . Reuse of AM15 using pre-treated Bionet GCL.
Ciclo Activación Tiempo de AM15 (gr) Conversión Rendimiento Activation Cycle AM15 Time (gr) Conversion Performance
reacción DTBG (%)  DTBG reaction (%)
1 EtOH, 12h 100 °C 120 min 1.00 45.69 7.41  1 EtOH, 12h 100 ° C 120 min 1.00 45.69 7.41
2 EtOH, 12h 100 °C 120 min 0.99 52.09 9.96  2 EtOH, 12h 100 ° C 120 min 0.99 52.09 9.96
3 EtOH, 12h 100 °C 120 min 0.99 52.72 8.64  3 EtOH, 12h 100 ° C 120 min 0.99 52.72 8.64
4 EtOH, 12h 100 °C 120 min 0.98 45.52 6.20  4 EtOH, 12h 100 ° C 120 min 0.98 45.52 6.20
5 EtOH, 12h 100 °C 120 min 0.97 47.2 7.65  5 EtOH, 12h 100 ° C 120 min 0.97 47.2 7.65
6 EtOH, 12h 100 °C 120 min 0.97 50.01 7.80  6 EtOH, 12h 100 ° C 120 min 0.97 50.01 7.80
7 EtOH, 12h 100 °C 120 min 0.71 39.75 6.08  7 EtOH, 12h 100 ° C 120 min 0.71 39.75 6.08
8 EtOH, 12h 100 °C 120 min 0.65 35.04 4.15  8 EtOH, 12h 100 ° C 120 min 0.65 35.04 4.15
9 EtOH, 12h 100 °C 120 min 0.61 36.44 4.68  9 EtOH, 12h 100 ° C 120 min 0.61 36.44 4.68
10 EtOH, 12h 100 °C 120 min 0.56 46.12 6.05  10 EtOH, 12h 100 ° C 120 min 0.56 46.12 6.05
EJEMPLO EXAMPLE
Fase de Purificación:  Purification Phase:
Se dispone 10 gr. de glicerina cruda con un contenido en humedad del 3% y unas concentraciones en iones alcalinos de 14.300 ppm de iones K+ y 300 ppm de iones Na+ en la centrífuga modelo Digicen de la casa Orto Alresa, a una temperatura de la glicerina de 65°C para facilitar la separación de las fases por reducción de la viscosidad de la glicerina. 10 gr is available. of crude glycerin with a moisture content of 3% and alkaline ion concentrations of 14,300 ppm of K + ions and 300 ppm of Na + ions in the Digicen model centrifuge of the Orto Alresa house, at a glycerin temperature of 65 ° C to facilitate the separation of the phases by reducing the viscosity of glycerin.
Posteriormente tiene lugar la adsorción de los iones alcalinos mediante el empleo de una resina de intercambio iónico por donde se hace pasar la corriente de glicerina centrifugada limpia. La resina empleada es Amberlyst 15 (Rohm and Haas).  Subsequently, adsorption of the alkaline ions takes place through the use of an ion exchange resin through which the clean centrifuged glycerin stream is passed. The resin used is Amberlyst 15 (Rohm and Haas).
El contacto entre la glicerina y la resina se realiza en tanque agitado que consta de un recipiente cilindrico con sistema de vaciado inferior y con un agitador en su interior con filtración posterior. La relación entre la cantidad de glicerina y de resina para el intercambio es de 1 :3 en peso, y el tiempo de agitación 90 minutos. The contact between the glycerin and the resin is carried out in an agitated tank consisting of a cylindrical vessel with a lower emptying system and an agitator inside with subsequent filtration. The ratio between the amount of glycerin and resin for exchange is 1: 3 by weight, and the stirring time 90 minutes.
Para el filtrado de la mezcla, tras la agitación, el filtro tiene una luz de malla inferior a 600 mieras (0,6 mm). Para el filtrado se coloca sobre el embudo de vidrio una rejilla metálica de luz de malla de 500 mieras y se hace pasar por ella la mezcla procedente del tanque agitado anterior. La resina de intercambio iónico empleada en esta etapa es activada previamente a su utilización y regenerada tras su uso para poder ser reutilizada. Esta reutilización es posible tantas veces como sea necesario siempre que se lleve a cabo el proceso de reactivación de los sitios activos de la resina. La activación de la resina consiste en el lavado de la misma con metanol durante 15 minutos en agitación y un posterior secado de la misma a una temperatura de 100°C, durante 12 horas en estufa con convección de aire forzada marca Binder modelo FD1 15 La reactivación de los sitios activos de la resina se realiza mediante el lavado de la misma con HCI 4M durante 2 horas en agitación. Esta reactivación de los sitios activos va seguida del proceso de lavado (activación) anteriormente descrito. For filtering the mixture, after stirring, the filter has a mesh light of less than 600 microns (0.6 mm). For filtering, a 500 micron mesh metal grid is placed on the glass funnel and the mixture from the previous stirred tank is passed through it. The ion exchange resin used in this stage is activated prior to use and regenerated after use to be reused. This reuse is possible as many times as necessary whenever the process of reactivation of the active sites of the resin is carried out. The resin is activated by washing it with methanol for 15 minutes while stirring and drying it at a temperature of 100 ° C, for 12 hours in an oven with forced air convection Binder brand model FD1 15 Reactivation of the active sites of the resin is carried out by washing it with 4M HCI for 2 hours with stirring. This reactivation of the active sites is followed by the washing (activation) process described above.
Esta glicerina purificada contiene un 1 ,4% de humedad y una concentración de iones alcalinos de 1.600 ppm de iones K+ y de 90 ppm de iones Na+. This purified glycerin contains 1.4% moisture and an alkali ion concentration of 1,600 ppm K + ions and 90 ppm Na + ions.
Fase de Reacción Reaction Phase
En el reactor agitado se introduce la glicerina purificada (10 gramos), el agente eterificante (terc-butanol) en una proporción de 1 :4 molar frente a la glicerina (4 moles de terc-butanol por cada mol de glicerina alimentada, equivalente a 32,1 gramos de terc- butanol) y el catalizador (Amberlyst 15) en una cantidad de 8% en peso frente a la glicerina alimentada (800 miligramos).  In the stirred reactor, purified glycerin (10 grams), the etherifying agent (tert-butanol) is introduced in a ratio of 1: 4 molar to glycerin (4 moles of tert-butanol for each mole of glycerin fed, equivalent to 32.1 grams of tert-butanol) and the catalyst (Amberlyst 15) in an amount of 8% by weight against the fed glycerin (800 milligrams).
Las condiciones de reacción son una temperatura de reacción 80°C y un tiempo de reacción de 120 minutos, que maximizan la conversión de la glicerina y el rendimiento en obtención de DTBG.  The reaction conditions are a reaction temperature 80 ° C and a reaction time of 120 minutes, which maximize glycerin conversion and yield in obtaining DTBG.
En la reacción se producen las reacciones de eterificación en serie. En primer lugar, de la reacción entre glicerina y terc-butanol se obtiene mono-terc-butil glicerol (MTBG) en sus dos isómeros. A continuación, la molécula de MTBG reacciona de nuevo con terc-butanol para obtener di-terc-butil glicerol (DTBG) en sus dos isómeros. Finalmente, la molécula de DTBG reacciona con terc-butanol para obtener tri-terc-butil glicerol (TTBG).  In the reaction, serial etherification reactions occur. First, from the reaction between glycerin and tert-butanol, mono-tert-butyl glycerol (MTBG) is obtained in its two isomers. Next, the MTBG molecule reacts again with tert-butanol to obtain di-tert-butyl glycerol (DTBG) in its two isomers. Finally, the DTBG molecule reacts with tert-butanol to obtain tri-tert-butyl glycerol (TTBG).
Una vez finalizada la reacción, la mezcla de síntesis, es filtrada mediante dos filtros de rejilla sucesivos, el primero de ellos de luz de malla de 500 mieras y el segundo de ellos de luz de malla de 50 mieras. Esta filtración se realiza al igual que en la etapa anterior sobre embudos de vidrio tal y como se ha comentado anteriormente. Once the reaction is finished, the synthesis mixture is filtered through two successive grid filters, the first one with a 500 micron mesh light and the second one with a 50 micron mesh light. This filtration is carried out as in the previous stage on glass funnels as previously mentioned.
Tras el filtrado, la mezcla de síntesis se almacena para pasar a la fase de separación o aislamiento de los productos de reacción objetivo.  After filtration, the synthesis mixture is stored to pass the separation or isolation phase of the target reaction products.
El catalizador empleado en la reacción es previamente activado mediante lavado del mismo con metanol, durante un periodo de agitación de 15 minutos y posterior secado a una temperatura de 100°C durante un periodo de 12 horas.  The catalyst used in the reaction is previously activated by washing it with methanol, during a stirring period of 15 minutes and then drying at a temperature of 100 ° C for a period of 12 hours.
El catalizador recogido en el primer filtro de rejilla, es reutilizado en la reacción. Se aplica un lavado del catalizador con metanol y un secado en las mismas condiciones que en la activación inicial. De esta manera, el catalizador puede reutilizarse hasta en diez reacciones sin disminuir la conversión de glicerina obtenida ni el rendimiento de obtención del DTBG y TTBG. Cabe señalar que el tri-terc-butil glicerol (TTBG) obtenido como producto de la reacción que tiene lugar, no es cuantificable. Gracias a técnicas de análisis aplicadas en el desarrollo del proceso se conoce la existencia de este producto en la corriente de salida del reactor, pero debido a la falta de patrones comerciales del producto y a los límites de detección de los equipos disponibles actualmente, no es posible determinar la cantidad exacta de este componente. No obstante, está probada en bibliografía su aportación como aditivo de combustible dadas las propiedades químicas de la molécula de este éter. Fase de Separación The catalyst collected in the first grid filter is reused in the reaction. A catalyst wash with methanol and drying under the same conditions as in the initial activation is applied. In this way, the catalyst can be reused in up to ten reactions without decreasing the conversion of glycerin obtained or the yield of obtaining DTBG and TTBG. It should be noted that the tri-tert-butyl glycerol (TTBG) obtained as a product of the reaction taking place is not quantifiable. Thanks to analysis techniques applied in the development of the process, the existence of this product in the reactor output current is known, but due to the lack of commercial patterns of the product and the detection limits of the equipment currently available, it is not possible Determine the exact amount of this component. However, its contribution as a fuel additive is proven in literature given the chemical properties of the molecule of this ether. Separation Phase
Se realiza una primera destilación a vacío en el equipamiento tipo descrito anteriormente a 60°C y 100mbar de presión absoluta y se recupera el terc-butanol que no ha reaccionado (mezclado con agua). La corriente de producto pasa a la primera extracción líquido-líquido.  A first vacuum distillation is carried out on the type equipment described above at 60 ° C and 100mbar of absolute pressure and the unreacted tert-butanol is recovered (mixed with water). The product stream passes to the first liquid-liquid extraction.
En esta extracción se añade un disolvente (heptano) en proporción volumétrica 2:1 (2 volúmenes de disolvente por cada volumen de corriente de producto alimentada). La mezcla se agita durante 30 minutos y se deja reposar. Se forman dos fases. La fase más densa está formada por glicerina no reaccionada y MTBG principalmente, además de trazas de DTBG. Esta corriente se recircula al reactor.  In this extraction a solvent (heptane) is added in a 2: 1 volumetric ratio (2 volumes of solvent for each volume of feed stream). The mixture is stirred for 30 minutes and allowed to stand. Two phases are formed. The densest phase is formed by unreacted glycerin and MTBG mainly, in addition to traces of DTBG. This current is recirculated to the reactor.
La fase menos densa está formada por DTBG, TTBG y disolvente y se alimenta a un segundo decantador en el que se lleva a cabo una nueva extracción líquido-líquido. El disolvente empleado en este caso es agua también en proporción 2:1 frente a la mezcla alimentada. Se agita igualmente la mezcla durante 30 minutos y se deja decantar.  The less dense phase is formed by DTBG, TTBG and solvent and is fed to a second decanter in which a new liquid-liquid extraction is carried out. The solvent used in this case is also water in a 2: 1 ratio to the fed mixture. The mixture is also stirred for 30 minutes and allowed to decant.
La corriente más densa se almacena a la espera de ser reutilizada de nuevo en la extracción, puesto que se trata en su mayoría de agua.  The densest current is stored waiting to be reused again in the extraction, since it is mostly water.
La fase menos densa, formada por el disolvente de la primera extracción (heptano) y DTBG y TTBG, se introduce en una segunda columna de destilación (que opera en las mismas condiciones que la primera). En esta destilación se separa el disolvente de los aditivos (DTBG y TTBG) objetivo del proceso.  The less dense phase, formed by the solvent of the first extraction (heptane) and DTBG and TTBG, is introduced into a second distillation column (which operates under the same conditions as the first). In this distillation, the solvent is separated from the additives (DTBG and TTBG) targeted by the process.
El disolvente separado es reutilizado en la primera extracción líquido-líquido, puesto que la separación es prácticamente total.  The separated solvent is reused in the first liquid-liquid extraction, since the separation is practically total.
El terc-butanol que no ha reaccionado y se separó en la primera destilación también es reutilizado en la reacción. Para ello es necesario separar el agua que contiene (que forma azeótropo con el terc-butanol) del alcohol. Esto se logra mezclando dicha corriente con CaO 22% en peso frente a la mezcla de agua-alcohol alimentada. Se mantiene en agitación durante un periodo de 7 horas y posteriormente se destila a 120-150°C, preferiblemente a 135°C la pasta resultante. El vapor formado se condensa y se recoge como terc-butanol sin contenido en agua. La pasta restante formada por hidróxido de calcio puede ser destilada de nuevo para recuperar el CaO y reutilizarlo en el proceso. Esta destilación tiene lugar a entre 80 y 100°C, 100 mbar de presión absoluta y un tiempo de 1 hora. The tert-butanol that has not reacted and separated in the first distillation is also reused in the reaction. For this it is necessary to separate the water it contains (which forms azeotrope with tert-butanol) from the alcohol. This is achieved by mixing said stream with CaO 22% by weight versus the water-alcohol mixture fed. It is kept under stirring for a period of 7 hours and subsequently distilled at 120-150 ° C, preferably at 135 ° C the resulting paste. The vapor formed is condensed and collected as tert-butanol without water content. The remaining paste formed by hydroxide of Calcium can be distilled again to recover the CaO and reuse it in the process. This distillation takes place at between 80 and 100 ° C, 100 mbar of absolute pressure and a time of 1 hour.

Claims

REIVINDICACIONES
1 . Procedimiento de obtención de éteres de glicerol di-terc-butil-glicerol (DTBG) y tri- terc-butil-glicerol (TTBG) a partir de glicerina cruda y terc-butanol caracterizado porque comprende las siguientes etapas:  one . Process for obtaining ethers of glycerol di-tert-butyl-glycerol (DTBG) and tri- tert-butyl-glycerol (TTBG) from crude glycerin and tert-butanol characterized in that it comprises the following steps:
a) Purificación de la glicerina.  a) Purification of glycerin.
b) Reacción entre la glicerina y el terc-butanol en presencia de un catalizador, c) Separación y recuperación de los éteres de glicerol  b) Reaction between glycerin and tert-butanol in the presence of a catalyst, c) Separation and recovery of glycerol ethers
caracterizado por que la etapa de reacción b) se lleva a cabo mediante catálisis en un reactor discontinuo y hermético.  characterized in that the reaction stage b) is carried out by catalysis in a discontinuous and hermetic reactor.
2. Procedimiento de obtención de éteres de glicerol a partir de glicerina y terc-butanol de acuerdo con la reivindicación 1 , caracterizado porque se utiliza glicerina cruda, con un contenido en glicerol superior al 75% y que contiene además agua en cantidad no superior al 10%, cenizas en cantidad inferior al 10% e iones en disolución en concentraciones de entre 5.000 y 30.000 ppm de Na+ y K+ además de partículas de sustancia oleosa no miscible en suspensión. 2. Procedure for obtaining glycerol ethers from glycerin and tert-butanol according to claim 1, characterized in that crude glycerin is used, with a glycerol content greater than 75% and also containing water in an amount not exceeding 10%, ashes in quantity less than 10% and ions in solution at concentrations between 5,000 and 30,000 ppm of Na + and K + in addition to particles of oily miscible substance in suspension.
3. Procedimiento de obtención de éteres de glicerol a partir de glicerina y terc-butanol de acuerdo con la reivindicaciones 1 - 2, caracterizado por que la etapa (a) comprende una etapa de centrifugación de la glicerina cruda para separar el material orgánico no glicerinoso no miscible y una segunda etapa de tratamiento con una resina de intercambio iónico para eliminar los iones alcalinos de la glicerina. 3. Procedure for obtaining glycerol ethers from glycerin and tert-butanol according to claims 1-2, characterized in that step (a) comprises a step of centrifuging the crude glycerin to separate the non-glycerol organic material Not miscible and a second stage of treatment with an ion exchange resin to remove alkaline ions from glycerin.
4. Procedimiento de obtención de éteres de glicerol a partir de glicerina y terc-butanol de acuerdo con las reivindicaciones 1 - 3, caracterizado por que la resina de intercambio iónico utilizada en (a) es una resina Amberlyst 15. 4. Process for obtaining glycerol ethers from glycerin and tert-butanol according to claims 1-3, characterized in that the ion exchange resin used in (a) is an Amberlyst resin.
5. Procedimiento de obtención de éteres de glicerol a partir de glicerina y terc-butanol de acuerdo con las reivindicaciones 1 - 4, caracterizado porque la proporción entre la glicerina y la resina es de 1 :3 en peso.  5. Procedure for obtaining glycerol ethers from glycerin and tert-butanol according to claims 1-4, characterized in that the ratio between glycerin and resin is 1: 3 by weight.
6. Procedimiento de obtención de éteres de glicerol de acuerdo con las reivindicaciones 1 - 5, caracterizado por que la resina de intercambio iónico utilizada en (a) se activa previo a su utilización a través de un lavado con metanol o etanol y posterior secado. 6. Procedure for obtaining glycerol ethers according to claims 1-5, characterized in that the ion exchange resin used in (a) is activated prior to use through a wash with methanol or ethanol and subsequent drying.
7. Procedimiento de obtención de éteres de glicerol a partir de glicerina y terc-butanol de acuerdo con las reivindicaciones 1 -6, caracterizado por que la resina de intercambio iónico utilizada en (a) se regenera mediante lavado con ácido clorhídrico y posterior lavado con metanol o etanol y secado. 7. Procedure for obtaining glycerol ethers from glycerin and tert-butanol according to claims 1-6, characterized in that the ion exchange resin used in (a) is regenerated by washing with hydrochloric acid and subsequent washing with methanol or ethanol and dried.
8. Procedimiento de obtención de éteres de glicerol a partir de glicerina y terc-butanol de acuerdo con las reivindicaciones 1 -7, caracterizado por que la etapa (b) de reacción se lleva a cabo entre el terc-butanol y la glicerina purificada obtenida de la  8. Procedure for obtaining glycerol ethers from glycerin and tert-butanol according to claims 1-7, characterized in that the reaction step (b) is carried out between the tert-butanol and the purified glycerin obtained of the
HOJA DE REEMPLAZO (Regla 26) etapa a) en una relación molar de entre 1 :3 y 1 :8, y en presencia de un catalizador en una cantidad del 3 al 20% en peso respecto de la glicerina purificada alimentada. REPLACEMENT SHEET (Rule 26) step a) in a molar ratio between 1: 3 and 1: 8, and in the presence of a catalyst in an amount of 3 to 20% by weight with respect to the purified glycerin fed.
9. Procedimiento de obtención de éteres de glicerol a partir de glicerina y terc-butanol de acuerdo con las reivindicaciones 1 -8, caracterizado por que el catalizador es una resina de intercambio iónico, una zeolita o un catalizador ácido. 9. Process for obtaining glycerol ethers from glycerin and tert-butanol according to claims 1-8, characterized in that the catalyst is an ion exchange resin, a zeolite or an acid catalyst.
1 0. Procedimiento de obtención de éteres de glicerol a partir de glicerina y terc-butanol de acuerdo con las reivindicación 9, caracterizado por que el catalizador es una resina de intercambio iónico, Amberlyst 1 5 con un diámetro de grano entre 600 y 850 μηι. 1 0. Process for obtaining glycerol ethers from glycerin and tert-butanol according to claim 9, characterized in that the catalyst is an ion exchange resin, Amberlyst 1 5 with a grain diameter between 600 and 850 μηι .
1 1 . Procedimiento de obtención de éteres de glicerol a partir de glicerina y terc-butanol de acuerdo con las reivindicaciones 1 - 10, caracterizado por que la resina de intercambio iónico utilizada en (b) se activa previo a su utilización o reutilización a través de un lavado con metanol o etanol y posterior secado.  eleven . Process for obtaining glycerol ethers from glycerin and tert-butanol according to claims 1-10, characterized in that the ion exchange resin used in (b) is activated prior to use or reuse through washing with methanol or ethanol and subsequent drying.
1 2. Procedimiento de obtención de éteres de glicerol a partir de glicerina y terc-butanol de acuerdo con las reivindicaciones 1 -1 1 , caracterizado por que la etapa (c) de separación comprende:  1 2. Process for obtaining glycerol ethers from glycerin and tert-butanol according to claims 1 -1 1, characterized in that the separation step (c) comprises:
- una primera destilación a vacío para eliminar el alcohol que no ha reaccionado en la etapa b),  - a first vacuum distillation to remove alcohol that has not reacted in step b),
- una primera extracción liquido-líquido, para eliminar reactivos que no han reaccionado en la etapa b) de la corriente de producto  - a first liquid-liquid extraction, to remove reagents that have not reacted in step b) of the product stream
- una segunda extracción líquido-líquido para eliminar trazas de glicerina y MTBG de la corriente de producto y  - a second liquid-liquid extraction to remove traces of glycerin and MTBG from the product stream and
- segunda destilación para la recuperación de los éteres de glicerol, DTBG y TTBG. - second distillation for the recovery of glycerol, DTBG and TTBG ethers.
1 3. Procedimiento de obtención de éteres de glicerol a partir de glicerina y terc-butanol de acuerdo con la reivindicación 12, caracterizado por que ambas destilaciones a vacío se llevan a cabo a una temperatura de 50 - 905C, y a una presión absoluta de entre 100 - 200mbar. 1 3. Process for obtaining glycerol ethers from glycerin and tert-butanol according to claim 12, characterized in that both vacuum distillations are carried out at a temperature of 50-90 5 C, and at an absolute pressure between 100 - 200mbar.
14. Procedimiento de obtención de éteres de glicerol a partir de glicerina y terc-butanol de acuerdo con las reivindicaciones 1 2 y 13, caracterizado por que la primera extracción liquido-líquido se lleva a cabo con el disolvente pentano o heptano.  14. Procedure for obtaining glycerol ethers from glycerin and tert-butanol according to claims 1 and 13, characterized in that the first liquid-liquid extraction is carried out with the solvent pentane or heptane.
1 5. Procedimiento de obtención de éteres de glicerol a partir de glicerina y terc-butanol de acuerdo con las reivindicaciones 1 2 a 14, caracterizado por que adicionalmente comprende la recirculación de la corriente de los reactivos glicerina y MTBG recuperados en la primera extracción liquido-líquido al reactor para su reutilización en la etapa b). 1 5. Process for obtaining glycerol ethers from glycerin and tert-butanol according to claims 1 to 14, characterized in that it additionally comprises the recirculation of the glycerin and MTBG reagent stream recovered in the first liquid extraction - liquid to the reactor for reuse in stage b).
HOJA DE REEMPLAZO (Regla 26) REPLACEMENT SHEET (Rule 26)
16. Procedimiento de obtención de éteres de glicerol a partir de glicerina y terc-butanol de acuerdo con las reivindicaciones 12 - 15, caracterizado por que la segunda extracción se lleva a cabo con el disolvente agua. 16. Process for obtaining glycerol ethers from glycerin and tert-butanol according to claims 12-15, characterized in that the second extraction is carried out with the water solvent.
17. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado por que adicionalmente comprende una etapa de recuperación del catalizador tras la etapa b).  17. Method according to any of the preceding claims, characterized in that it additionally comprises a catalyst recovery stage after step b).
18. Procedimiento de acuerdo con la reivindicación 17, caracterizado por que la etapa de recuperación del catalizador comprende:  18. Method according to claim 17, characterized in that the catalyst recovery step comprises:
una primera etapa de filtrado en rejilla que recoge la fracción mayoritaria del catalizador que no ha perdido su estructura,  a first stage of grid filtration that collects the majority fraction of the catalyst that has not lost its structure,
- una segunda etapa de lavado de la fracción mayoritaria del catalizador que no ha perdido su estructura con metanol o etanol, y  - a second stage of washing the majority fraction of the catalyst that has not lost its structure with methanol or ethanol, and
una tercera etapa de secado en estufa del catalizador recuperado en la etapa anterior.  a third oven drying stage of the catalyst recovered in the previous stage.
19. Procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado por que adicionalmente comprende una etapa de recuperación del terc-butanol tras la etapa c).  19. Method according to any of the preceding claims, characterized in that it additionally comprises a stage of recovery of tert-butanol after step c).
20. Procedimiento de acuerdo con la reivindicación 19, caracterizado por que la etapa de recuperación del terc-butanol comprende la adición de óxido de calcio (CaO) a la solución de terc-butanol-agua en un tanque agitado y destilación en columna del producto de la etapa anterior para la extracción de terc-butanol en la fracción volátil. 20. Method according to claim 19, characterized in that the recovery step of tert-butanol comprises the addition of calcium oxide (CaO) to the tert-butanol-water solution in a stirred tank and column distillation of the product of the previous stage for the extraction of tert-butanol in the volatile fraction.
21 . Procedimiento de acuerdo con las reivindicaciones 19 y 20, caracterizado por que adicionalmente comprende la recirculación de la corriente de terc-butanol recuperado tras la etapa c) al reactor para su reutilización en la etapa b). twenty-one . Process according to claims 19 and 20, characterized in that it additionally comprises the recirculation of the tert-butanol stream recovered after step c) to the reactor for reuse in step b).
22. Procedimiento de obtención de éteres de glicerol a partir de glicerina y terc-butanol de acuerdo con cualquiera de las reivindicación anteriores, caracterizado por que el rendimiento de los éteres de glicerol obtenidos es de entre el 1 1 y el 13% de di-terc- butil-glicerol (DTBG)  22. Process for obtaining glycerol ethers from glycerin and tert-butanol according to any of the preceding claims, characterized in that the yield of the glycerol ethers obtained is between 1 and 13% di- tert-butyl glycerol (DTBG)
23. Uso de los éteres de glicerol obtenidos a partir de glicerina y terc-butanol de acuerdo con las reivindicaciones 1 -22, como aditivos oxigenados para combustibles diesel.  23. Use of the glycerol ethers obtained from glycerin and tert-butanol according to claims 1-22, as oxygenated additives for diesel fuels.
HOJA DE REEMPLAZO (Regla 26) REPLACEMENT SHEET (Rule 26)
PCT/ES2011/070637 2011-09-12 2011-09-12 Method for producing oxygenated additives from crude glycerine WO2013038029A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES201490020A ES2459865B1 (en) 2011-09-12 2011-09-12 Production process of oxygenated additives from crude glycerin
PCT/ES2011/070637 WO2013038029A1 (en) 2011-09-12 2011-09-12 Method for producing oxygenated additives from crude glycerine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2011/070637 WO2013038029A1 (en) 2011-09-12 2011-09-12 Method for producing oxygenated additives from crude glycerine

Publications (1)

Publication Number Publication Date
WO2013038029A1 true WO2013038029A1 (en) 2013-03-21

Family

ID=47882661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070637 WO2013038029A1 (en) 2011-09-12 2011-09-12 Method for producing oxygenated additives from crude glycerine

Country Status (2)

Country Link
ES (1) ES2459865B1 (en)
WO (1) WO2013038029A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020006069A1 (en) * 2018-06-29 2020-01-02 Lyondell Chemical Technology, L.P. Process and catalysts for the production of diesel and gasoline additives from glycerol
WO2020120832A1 (en) * 2018-12-14 2020-06-18 Neste Oyj Diesel fuel composition
US11560525B2 (en) 2018-12-14 2023-01-24 Neste Oyj Diesel fuel composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308365A (en) * 1993-08-31 1994-05-03 Arco Chemical Technology, L.P. Diesel fuel
US5476971A (en) * 1995-01-13 1995-12-19 Arco Chemical Technology, L.P. Glycerine ditertiary butyl ether preparation
WO2007113776A2 (en) * 2006-04-05 2007-10-11 The Procter & Gamble Company Processes for converting glycerol to glycerol ethers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308365A (en) * 1993-08-31 1994-05-03 Arco Chemical Technology, L.P. Diesel fuel
US5476971A (en) * 1995-01-13 1995-12-19 Arco Chemical Technology, L.P. Glycerine ditertiary butyl ether preparation
WO2007113776A2 (en) * 2006-04-05 2007-10-11 The Procter & Gamble Company Processes for converting glycerol to glycerol ethers

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FRUSTERI, F. ET AL.: "Catalytic etherification of glycerol by tert-butyl alcohol to produce oxygenated additives for diesel fuel.", APPLIED CATALYSIS A: GENERAL, vol. 367, 2009, pages 77 - 83 *
KLEPACOVA, K. ET AL.: "Etherification of Glycerol with tert-Butyl Alcohol Catalysed by Ion-Exchange Resins.", CHEMICAL PAPERS, vol. 60, no. 3, 2006, pages 224 - 230 *
SUSTOIL.: "Developing advanced Biorefinery schemes for integration into existing oil production/transesterification plants.", June 2008 (2008-06-01), Retrieved from the Internet <URL:http://www.york.ac.uk/res/sustoil/Pages/Deliverable%202-5.pdf> [retrieved on 20120312] *
ZHOU, C.H. ET AL.: "Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals.", CHEMICAL SOCIETY REVIEWS, vol. 37, 2008, pages 527 - 549 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020006069A1 (en) * 2018-06-29 2020-01-02 Lyondell Chemical Technology, L.P. Process and catalysts for the production of diesel and gasoline additives from glycerol
US10774023B2 (en) 2018-06-29 2020-09-15 Lyondell Chemical Technology, L.P. Process and catalysts for the production of diesel and gasoline additives from glycerol
CN112334438A (en) * 2018-06-29 2021-02-05 利安德化学技术有限公司 Process and catalyst for producing diesel and gasoline additives from glycerol
WO2020120832A1 (en) * 2018-12-14 2020-06-18 Neste Oyj Diesel fuel composition
US11560525B2 (en) 2018-12-14 2023-01-24 Neste Oyj Diesel fuel composition

Also Published As

Publication number Publication date
ES2459865A1 (en) 2014-05-12
ES2459865B1 (en) 2015-03-16

Similar Documents

Publication Publication Date Title
Honda et al. Direct cyclic carbonate synthesis from CO2 and diol over carboxylation/hydration cascade catalyst of CeO2 with 2-cyanopyridine
Li et al. Coupling reaction and azeotropic distillation for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate
CN100497527C (en) Process for preparing supported solid catalyst for use in production of bio-diesel oil
JP5105418B2 (en) Solid base catalyst for producing biodiesel oil and method for producing the same, reactor and device for producing biodiesel oil, and method for producing biodiesel oil using the device
CN101380570B (en) Load type solid base catalyst for preparing biology diesel fuel and preparation method thereof
US20130197279A1 (en) Water and Contaminants Removal from Butanol Fermentation Solutions and/or Broths Using a Brine Solution
Zeng et al. Preparation and characterization of a strong solid base from waste eggshell for biodiesel production
CN102887883A (en) Continuous purifying method of crude product of fluoroethylene carbonate
CN103539771A (en) Vinylene carbonate purifying method
WO2013038029A1 (en) Method for producing oxygenated additives from crude glycerine
Jaiswal et al. Ni modified distillation waste derived heterogeneous catalyst utilized for the production of glycerol carbonate from a biodiesel by-product glycerol: Optimization and green metric studies
CN103721697B (en) The catalyst of a kind of synthesizing acrylic ester and preparation method and application
CN103145558A (en) Three-waste-free preparation method for bifenthrin
Chaos-Hernández et al. Functionalization and activation of carbon-based catalysts with KOH and calcium and their application in transesterification to produce biodiesel: Optimization of catalytic properties and kinetic study
CN101723971B (en) Preparation method of 1Beta-methyl carbapenem antibiotic bicyclic mother nucleus
BRPI0907067B1 (en) METHOD FOR THE ALKILATION OF ANhydrous Sugar Compound
CN102442992A (en) Method for synthesizing glycerol carbonate with biodiesel based crude glycerine and dimethyl carbonate
CN104624242B (en) A kind of biodiesel synthesis acidic ion liquid immobilized AlCl_3 catalyst and preparation method thereof
ES2969655T3 (en) Procedure to decolorize and deodorize a polyhydric alcohol
CN103214439B (en) A kind of method of separating-purifying furfural
CN102911042A (en) Preparation method of oxalic acid diisoamyl ester
CN102492559A (en) Method for preparing biodiesel in novel alkaline ionic liquid
EP3689462A1 (en) Method for regenerating catalyst and method for producing carbonate ester
WO2010063780A1 (en) Process for preparing alkanediol and dialkyl carbonate
CN105273838B (en) A kind of biodiesel adsorption deacidification method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872316

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P201490020

Country of ref document: ES

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872316

Country of ref document: EP

Kind code of ref document: A1