WO2013037773A1 - Dispositif thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile - Google Patents

Dispositif thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile Download PDF

Info

Publication number
WO2013037773A1
WO2013037773A1 PCT/EP2012/067736 EP2012067736W WO2013037773A1 WO 2013037773 A1 WO2013037773 A1 WO 2013037773A1 EP 2012067736 W EP2012067736 W EP 2012067736W WO 2013037773 A1 WO2013037773 A1 WO 2013037773A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubes
hot
circuit
fluid
cold
Prior art date
Application number
PCT/EP2012/067736
Other languages
English (en)
Inventor
Patrick Boisselle
Samuel BRY
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2013037773A1 publication Critical patent/WO2013037773A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • F01N5/025Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat the device being thermoelectric generators

Definitions

  • Thermoelectric device in particular for generating an electric current in a motor vehicle
  • the present invention relates to a thermoelectric device, in particular for generating an electric current in a motor vehicle.
  • thermoelectric devices using elements
  • These devices comprise a stack of first so-called hot tubes intended for the circulation of the exhaust gases of an engine, and second tubes, said to be cold, intended for circulation.
  • the electrodes are interposed between the tubes to be subjected to a temperature gradient from the temperature difference between the hot exhaust gases and the coolant.
  • thermo element the electrical performance of a thermo element is directly related to
  • thermo elements whose distribution or materials differ between the inlet and the inlet
  • the invention aims to improve the situation.
  • thermoelectric device comprising a first circuit, said to be hot, capable of allowing the circulation of a first fluid, and a second circuit, said to be cold, capable of allowing the circulation of a second fluid of temperature less than that of the first fluid, and so-called electrical thermo elements, for generating an electric current in the presence of a temperature gradient generated by the first and the second circuit.
  • the first circuit comprises so-called hot tubes with a length less than or equal to 150 mm.
  • the length of the hot tubes is less than a limit substantially equal to 100 mm.
  • a reduced length of the tubes makes it possible to reduce the difference in temperature of the fluid between an inlet of the tubes and an outlet of the tubes.
  • the difference in temperature gradient between the hot tubes and the cold circuit, between the inlet and the outlet of the hot tubes is thus reduced, which makes it possible, in particular, to arrange the thermo element along the hot tubes in a homogeneous manner and to use, for example, thermo elements made of identical materials and / or arranged in the same distribution throughout the device.
  • Another advantage of reducing the length of the hot tubes is the reduction of the pressure drop of the first fluid passing through them, the pressure drop being directly related to the length of the tube.
  • the thermo elements employed have optimum electrical efficiency when the temperature gradient is located between a first temperature and a second temperature higher than the first temperature.
  • the hot tubes are, for example, provided flat, that is to say, having two large opposite flat faces at which the electric thermo elements are arranged.
  • the device comprises fins in heat exchange relationship with said cold circuit, the electric thermo elements being in contact with said hot tubes and said fins.
  • the fins are substantially planar elements so that the contact between the thermo elements and the fins is optimized.
  • the device comprises several rows of hot tubes superimposed in parallel in a first direction, the hot tubes of the same row being arranged parallel to each other and extending in a second direction, the fins being superposed alternately with the rows of tubes. hot in the first direction.
  • the thermo elements may have a face in contact with the fins and a face in contact with the hot tubes.
  • each of the fins is traversed by cold tubes of the second circuit, extending in the first direction.
  • the fins are thus in thermal contact with the cold tubes.
  • the cold tubes extend transversely to the fins and the hot tubes, and for example perpendicular to the fins and to the hot tubes.
  • said hot tubes are shorter than said cold tubes.
  • the device comprises several rows of cold tubes superimposed parallel to each other in a third direction, the cold tubes of the same rank being arranged parallel to each other.
  • the device comprises rows of hot tubes superimposed parallel to each other in the third direction, the rows of hot tubes being superimposed alternately with the rows of cold tubes in the third direction.
  • thermoelectric elements are in contact with cold fluid circulation tubes. Said thermoelectric elements are then disposed between said hot tubes and said cold tubes, provided flat.
  • the device is arranged to guide the first fluid from an input of the device to the first circuit in an input direction and to guide the first fluid of the first circuit to an output of the device in a direction of outlet, said hot tubes extending transversely to the direction of entry and / or the direction of exit.
  • the first circuit deflects in this way the travels of the first fluid and can easily integrate along an exhaust line.
  • the first circuit is intended to deflect the flow of the first fluid so that the latter has an S-shaped path between the input and the output of the device.
  • the device comprises an inlet manifold of the first fluid and a manifold outlet of the first fluid.
  • the inlet manifold of the first fluid guides the latter in the direction of entry before it enters the first circuit to exit in the outlet manifold which then guides it in the direction of exit.
  • the collector boxes are located on the lateral faces of the device and are traversed by the hot tubes so that the latter open into the collector boxes.
  • the input manifold converges from an input face of the device to an output face of the device, the output manifold diverging from the input face to the output face.
  • the hot tubes are configured to allow the circulation of a gas and / or the cold circuit is configured to allow the circulation of a liquid.
  • FIG. 1 illustrates in perspective an exemplary embodiment of the device according to the invention
  • FIG. 1 illustrates in perspective and partially the device of Figure 1.
  • thermoelectric device 10 comprising a first circuit 1, said to be hot, capable of allowing the circulation of a first fluid, in particular the exhaust gases of an engine, and a second circuit 2, said to be cold, capable of allowing the circulation of a second fluid, in particular a heat transfer fluid of a cooling circuit, of a temperature lower than that of the first fluid.
  • the hot circuit 1 here comprises tubes 8, called hot, for the circulation of hot fluid.
  • the device also comprises elements 3, called electrical thermo, for generating an electric current in the presence of a temperature gradient generated by the first and the second circuit.
  • substantially parallelepiped shaped elements generating an electric current, according to the Seebeck effect, when they are subjected to said gradient between two of their opposite faces 4a, 4b, said active faces.
  • Such elements allow the creation of an electric current in a load connected between said active faces 4a, 4b.
  • such elements are constituted, for example, of Bismuth and Tellurium (Bi 2 Te 3 ) or of Cerium or Cobalt, Iron and Antimony (Ce y Co x Fe 4x Sbi2) or Lead and Tellurium (PbTe) or Silicon and Germanium (SiGe).
  • the device 10 comprises a beam of, for example, a substantially parallelepiped shape so that it comprises six faces. It thus comprises an inlet face 21 located on the side of an inlet of the first fluid in the device 10, an outlet face 22 located on the side of an outlet of the first fluid of the device and opposite the inlet face 21 , a first lateral face 23 and a second lateral face 24 opposite to each other with respect to the hot circuit 1 and connecting the inlet face 21 to the outlet face 22, an opposite upper face 25 and a lower face (not visible) between they and connecting the input face 21 to the outlet face 22 and the first lateral face 23 to the second lateral face 24.
  • the six faces 21, 22, 23, 24, 25 of the device 10 define between them an internal volume to inside which is the hot circuit 1, the cold circuit 2 and the thermo elements 3.
  • a first direction L is defined in the direction of a length of the device 10, that is to say a direction perpendicular to the input and output faces 22 and 22, a second direction I in the width direction of the device 10, that is to say perpendicular to the first and second lateral faces 23, 24, and a third direction H in the direction of the height of the device 10, that is to say perpendicular to the lower face and to the upper face 25.
  • the first, second and third directions L, I, H are here perpendicular to each other.
  • the hot tubes 8 comprise a length less than or equal to 150 mm, in particular the length of the hot tubes 8 is less than a limit substantially equal to 100 mm.
  • the first fluid then travels less than 150 mm, for example less than 100 mm, between an inlet and an outlet of the hot tubes 8.
  • the hot tubes 8 extend here between the first lateral face 23 and the second lateral face 24, c that is to say that their length is measured according to the second direction I.
  • the device 10 also comprises fins 5, here in heat exchange relation with the cold circuit 2. A temperature gradient is thus provided between said fins 5 and the hot circuit 1. Said thermo elements 3 are here in contact with the fins 5 at the level, in particular, of their active faces 4a, 4b. In other words the electric thermo elements are arranged between the fins 5 and the hot circuit 1 so as to be in contact with the fins 5 and the hot tubes 8. This ensures a current generation by the electric thermo elements 3.
  • thermo elements 3 are chosen so as to have an optimum electrical efficiency when the temperature gradient between the hot tubes 8 and the fins 5 is situated between a first temperature and a second temperature higher than the first temperature. It is understood here that the electrical performances of the thermo elements increase when the temperature gradient increases to reach an optimum before decreasing when the temperature gradient continues to increase.
  • thermo elements 3 the temperature gradient between the hot circuit 1 and the cold circuit 2 can remain as close to the optimum efficiency of the thermo elements, and this along the hot tubes 8.
  • the temperature gradient between the hot circuit 1 and the cold circuit 2 will be, for example, located on one side of the optimum electrical efficiency of the thermo elements 3 at the inlet of the hot tubes 8 while it will be located on the other side of this optimum at the outlet of the hot tubes 8. In this way we can choose to maintain a high efficiency, for example greater than 80% of the optimum, of the same thermo elements 3 in the device 10 whatever its layout along hot tubes 8.
  • the invention is chosen to maintain a temperature gradient between the hot circuit 1 and the cold circuit 2, which does not vary much between the inlets of the hot tubes 8 and their outlet, in particular of not more than 200 degrees.
  • the fins having two large surfaces 7a, 7b opposite planar and for establishing a surface contact between one of said large surfaces 7a, 7b and the thermoelectric elements 3 at the or their active faces opposite 4a.
  • said fins 5 may have tracks (not shown) for conduction of the current generated by said electric thermo elements 3. It will thus be possible to conduct the current, according to any desired circuit topology, to the surface of the fins 5 by grouping the tracks. in series and / or in parallel. Such tracks may also be provided on the hot tubes 8 in order to fulfill the same function as that present on the cold circuit 2.
  • Said tracks may extend to the periphery of the fins 5 and / or hot tubes 8 to form connection terminals which will allow, for example, a connection of electrical connectors provided between at least said fins 5. It is possible to so a setting at the same potential of the fins having said terminals or, more specifically, electric thermo elements in contact with the tracks of said fins connected to said terminals. It may also be noted that said fins 5 are here associated in pairs, a compressible material that can be provided between the fins of the same pair. It is thus possible to ensure an absorption of the mechanical stress generated by the expansion of the hot and / or cold circuits at the level of said material.
  • Said hot tubes 8 are, for example, flat tubes, that is to say, tubes of substantially rectangular section comprising two large opposite parallel faces on which are disposed the electric thermo elements 3 by one of their active face 4a, 4b. They are configured to allow the circulation of exhaust gas and are, in particular, stainless steel. They are formed, for example, by profiling, welding and / or brazing. They may have a plurality of passage channels of the first fluid, separated by partitions connecting the opposite planar faces of the tubes.
  • the cold circuit 2 comprises, for example, tubes 9, said to be cold, for the circulation of the cold fluid, in particular a liquid.
  • the fins 5 are provided in heat exchange relation with the cold tubes 9.
  • the fins 5 are crossed by the cold tubes 9.
  • the fins 5 have, for example, orifices 12 for the passage of the cold tubes 9.
  • Said tubes cold 9 are, for example, aluminum or copper and have a round and / or oval section.
  • Cold tubes 9 extend, for example, in the first direction L, that is to say that they extend from the inlet face 21 to the outlet face 22.
  • the hot tubes 8 thus extend from substantially perpendicular to the cold tubes 9 and substantially parallel to the fins 5.
  • the contact between the cold tubes 9 and the cold fins 5 is achieved, for example, by an expansion of the material of the cold tubes 9 as in the heat exchangers known as mechanical exchangers in the field of heat exchangers for motor vehicles.
  • the device comprises several rows of hot tubes 8 superimposed in parallel in the first direction L.
  • the rows of hot tubes are thus superimposed from the inlet face 21 to the outlet face 22.
  • the hot tubes 8 of the same row are here arranged parallel to each other and extend in the second direction I.
  • the fins 5 are arranged between each row of hot tube, parallel thereto, that is to say that the fins 5 are superposed alternately with the rows of hot tubes 8 according to the first direction L.
  • the device 10 also comprises several rows of cold tubes 9 superposed parallel to each other in the third direction H.
  • the rows of cold tubes 9 are thus superimposed from the lower face to the upper face 25 of the device 10.
  • the cold tubes 9 d the same rank are here arranged parallel to each other.
  • Hot tubes 8 are called the hot tubes 8 situated at the same level in the direction H and belonging to rows of different hot tubes 8.
  • the rows of hot tubes 8 are superimposed parallel to each other in the third direction H, that is to say between the lower face and the upper face 25 of the device 10.
  • the rows of hot tubes 8 are here superimposed alternately with the rows of cold tubes in the third direction H.
  • the cold tubes 9 may also be positioned, parallel to each other, in rows lying in planes parallel to the directions L and H.
  • the rows of cold tubes are therefore orthogonal to the hot tubes. It can be seen that the number of rows of hot tubes 8 (according to I, H) is greater than the number of rows of cold tubes 9 (according to L, H).
  • the hot tubes and cold tubes may also be inclined relative to each other to promote the flow of hot and / or cold liquid.
  • the device 10 also comprises an inlet manifold 30 of the first fluid and an outlet manifold 31 of the first fluid.
  • the inlet and outlet manifolds 30, 31 each have a collector (not visible) and a cover respectively of inputs and outputs.
  • the collectors here are plates arranged on the lateral faces of the device 10 and of dimensions substantially identical to the latter. It is the manifolds of the inlet manifolds 30 and exit 31 which are traversed by the ends of the hot tubes 8.
  • the hot tubes 8 thus extend transversely to the collectors, in particular perpendicular to the collectors.
  • the header manifold is located at the first side face
  • the device 30 has an inlet opening 33 defining the inlet of the device 10 through which the fluid enters the device 30. It guides the hot fluid to the inlet of the hot tubes 8. A first end of the hot tubes 8 thus enters the inlet manifold 30 to open into it and allow the fluid to enter the hot tubes.
  • An inlet cover 35 of the inlet manifold box 30 forms with the inlet manifold an internal volume within which the first fluid flows from the inlet opening 33 to the inlet into the tubes. 8.
  • the inlet cover 35 has a first portion projecting from the inlet face 21 of the device 10 which extends in the first direction L and a second portion opposite the collector Entrance.
  • the inlet opening 33 is at the level of the first part.
  • the first fluid circulates in the inlet manifold 35 in a direction of entry substantially parallel to the first direction L.
  • the first part of the inlet cover 35 diverges, in the direction H, from the inlet opening 33 to the inlet face 21 of the device 10 while its second part converges, in the direction I, from the input face 21 to the output face 22 of the device 10.
  • the outlet manifold is located at the second side face 24 of the device 30. It has an outlet opening 34 defining an outlet of the device 10 through which the fluid exits the device 30.
  • a second end of the hot tubes 8 penetrates the outlet manifold 31 in order to open inside thereof and allow the fluid out of the hot tubes 8.
  • the outlet manifold then guides the first fluid until the opening of output 34 to exit the device 10.
  • the outlet cover 36 of the outlet manifold box 31 forms with the outlet manifold an internal volume inside which the first fluid flows from the outlet of the hot tubes 8 until at the exit aperture 34.
  • the outlet cover 36 has a first portion protruding from the outlet face 22 of the device 10 which extends in the first direction L and a second portion vis-à-vis the outlet manifold.
  • the exit opening 34 is at the first part.
  • the first fluid circulates in the outlet manifold 36 in a direction of exit substantially parallel to the first direction L.
  • the first portion of the outlet cover 36 diverges, in the direction H, from the outlet opening 34 towards the face 22 of the device 10 while its second part diverges, in the direction I of the input face 21 to the output face 22 of the device 10.
  • the hot tubes 8 here extend transversely to the direction of entry and the direction of exit. They thus deflect the flow of the first fluid in the device 10 represented by the arrow referenced 40.
  • the circulation of the first fluid 40 then has an S-shaped path between the inlet opening 33 and the outlet opening 34
  • the inlet manifold 30 here represents a first branch of the S, the hot tubes 8 a central branch of the S and the outlet manifold 31 a third branch of the S. It may be noted that the use of a liquid as a cold fluid avoids heat losses along the cold tubes.
  • thermo elements are first assembled with the hot tubes 8 and then are assembled with the fins 5, after stacking thereof.
  • the cold tubes 9 are then assembled in the fins 5.
  • the hot tubes 8 are then connected to the manifolds.

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

L'invention concerne un dispositif thermoélectrique (10), comprenant un premier circuit, dit chaud, apte à permettre la circulation d'un premier fluide, et un deuxième circuit (2), dit froid, apte à permettre la circulation d'un deuxième fluide de température inférieure à celle du premier fluide, et des éléments, dits thermoélectriques, permettant de générer un courant électrique en présence d'un gradient de température généré par le premier et le deuxième circuit (2). Selon l'invention, le premier circuit (1) comprend des tubes (8), dits chauds, d'une longueur inférieure ou égale à 150 mm.

Description

Dispositif thermo électrique, notamment destiné à générer un courant électrique dans un véhicle automobile
La présente invention concerne un dispositif thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile.
Il a déjà été proposé des dispositifs thermo électriques utilisant des éléments,
5 dits thermo électriques, permettant de générer un courant électrique en présence
d'un gradient de température entre deux de leurs faces opposées selon le phénomène connu sous le nom d'effet Seebeck. Ces dispositifs comprennent un empilement de premiers tubes, dits chauds, destinés à la circulation des gaz d'échappement d'un moteur, et de seconds tubes, dits froids, destinés à la circulation
10 d'un fluide caloporteur d'un circuit de refroidissement. Les éléments thermo
électriques sont intercalés entre les tubes de façon à être soumis à un gradient de température provenant de la différence de température entre les gaz d'échappement, chauds, et le fluide de refroidissement, froid.
15 Des tels dispositifs sont particulièrement intéressants car ils permettent de
produire de l'électricité à partir d'une conversion de la chaleur provenant des gaz d'échappement du moteur. Ils offrent ainsi la possibilité de réduire la consommation en carburant du véhicule en venant se substituer, au moins partiellement, à l'alternateur habituellement prévu dans celui-ci pour générer de l'électricité à partir
20 d'une courroie entraînée par le vilebrequin du moteur.
L'encombrement disponible pour l'intégration du dispositif dans le véhicule et l'écoulement rectiligne des gaz entre l'entrée et la sortie conduisent à réaliser des tubes chauds de longueurs importantes. Cette longueur engendre alors une 25 différence de température importante le long des tubes chauds. Autrement dit, la
température du fluide en entrée des tubes chauds est nettement supérieure à sa température en sortie. Le gradient de température entre le fluide chaud et le fluide froid est donc susceptible de décroître fortement le long du dispositif.
30 Or, la performance électrique d'un thermo élément est directement liée au
gradient de température auquel il est soumis. Afin de s'adapter à l'importante évolution de la température le long des tubes chauds, il a été envisagé d'utiliser des thermo éléments dont la distribution ou les matériaux diffèrent entre l'entrée et la
FEUILLE DE REMPLACEMENT (RÈGLE 26) sortie du dispositif. Cependant, cette solution complexifie la fabrication du dispositif et engendre un surcoût de production.
L'invention vise à améliorer la situation.
Elle propose pour cela un dispositif thermo électrique, comprenant un premier circuit, dit chaud, apte à permettre la circulation d'un premier fluide, et un deuxième circuit, dit froid, apte à permettre la circulation d'un deuxième fluide de température inférieure à celle du premier fluide, et des éléments, dits thermo électriques, permettant de générer un courant électrique en présence d'un gradient de température généré par le premier et le deuxième circuit.
Selon l'invention, le premier circuit comprend des tubes, dits chauds, d'une longueur inférieure ou égale à 150 mm. Avantageusement, la longueur des tubes chauds est inférieure à une limite sensiblement égale à 100 mm.
Ainsi, une longueur réduite des tubes permet de réduire la différence de température du fluide entre une entrée des tubes et une sortie des tubes. La différence de gradient de température entre les tubes chauds et le circuit froid, entre l'entrée et la sortie des tubes chaud est ainsi réduite, ce qui permet, notamment, de disposer les thermo élément le long des tubes chauds de manière homogène et d'utiliser, par exemple, des thermo éléments constitués de matériaux identique et/ou disposé selon une même distribution sur tout le dispositif. Un autre avantage de la réduction de longueur des tubes chauds est la réduction de la perte de charge du premier fluide les traversants, la perte de charge étant directement liée à la longueur du tube.
Selon un aspect de l'invention, les thermo éléments employés ont une efficacité électrique optimale lorsque le gradient de température est situé entre une première température et une deuxième température supérieure à la première température. Les tubes chauds sont, par exemple, prévus plats, c'est-à-dire, présentant deux grandes faces planes opposées au niveau desquels les éléments thermo électriques sont disposés. Selon un exemple de réalisation le dispositif comprend des ailettes en relation d'échange thermique avec ledit circuit froid, les éléments thermo électriques étant en contact desdits tubes chauds et desdites ailettes. Les ailettes sont des éléments sensiblement plans de sorte que le contact entre les thermo éléments et les ailettes est optimisé.
Avantageusement le dispositif comprend plusieurs rangées de tubes chauds superposées parallèlement selon une première direction, les tubes chauds d'une même rangée étant disposés parallèlement entre eux et s'étendant selon une deuxième direction, les ailettes étant superposées de manière alternée avec les rangées de tubes chauds selon la première direction. De cette manière, les thermo éléments peuvent avoir une face en contact avec les ailettes et une face en contact avec les tubes chauds.
Selon un aspect de l'invention, chacune des ailettes est traversée par des tubes froids du deuxième circuit, s'étendant selon la première direction. Les ailettes sont ainsi en contact thermique avec les tubes froids. Les tubes froids s'étendent transversalement aux ailettes et aux tubes chauds, et par exemple perpendiculairement aux ailettes et aux tubes chauds. Selon un exemple de réalisation lesdits tubes chauds sont plus courts que lesdits tubes froids. On dispose ainsi d'un dispositif de forme allongé, dans ladite première direction, et sa configuration reste favorable à l'intégration sous un véhicule. Avantageusement le dispositif comprend plusieurs rangs de tubes froids superposés parallèlement les uns aux autres selon une troisième direction, les tubes froids d'un même rang étant disposés parallèlement entre eux. Selon un aspect de l'invention, le dispositif comprend des rangs de tubes chauds superposés parallèlement les uns aux autres dans la troisième direction, les rangs de tubes chauds étant superposés de manière alternée avec les rangs de tubes froids selon la troisième direction.
Cela étant, selon une variante de réalisation, les éléments thermo électriques sont en contact avec des tubes de circulation du fluide froid. Lesdits éléments thermo électriques sont alors disposés entre lesdits tubes chauds et lesdits tubes froids, prévus plats.
Selon un exemple de réalisation, le dispositif est agencé pour guider le premier fluide d'une entrée du dispositif jusqu'au premier circuit selon une direction d'entrée et pour guider le premier fluide du premier circuit vers une sortie du dispositif selon une direction de sortie, lesdits tubes chauds s'étendant transversalement à la direction d'entrée et/ou à la direction de sortie. Le premier circuit défléchit de la sorte le parcourt du premier fluide et peut s'intégrer facilement le long d'une ligne d'échappement.
Avantageusement, le premier circuit est destiné à défléchir la circulation du premier fluide de sorte que ce dernier ait un parcourt en forme de S entre l'entrée et la sortie du dispositif.
Selon un aspect de l'invention, le dispositif comprend une boite collectrice d'entrée du premier fluide et une boite collectrice de sortie du premier fluide. La boite collectrice d'entrée du premier fluide guide ce dernier selon la direction d'entrée avant qu'il n'entre dans le premier circuit pour en sortir dans la boite collectrice de sortie qui le guide alors selon la direction de sortie.
Selon un exemple de réalisation, les boites collectrices sont situées sur des faces latérales du dispositif et sont traversées par les tubes chauds de sorte que ces derniers débouchent à l'intérieur des boites collectrices. Avantageusement, la boite collectrice d'entrée converge depuis une face d'entrée du dispositif vers une face de sortie du dispositif, la boite collectrice de sortie divergeant depuis la face d'entrée vers la face de sortie. Selon un aspect de l'invention, les tubes chauds sont configurés pour permettre la circulation d'un gaz et/ou le circuit froid est configuré pour permettre la circulation d'un liquide.
L'invention sera mieux comprise à la lumière de la description suivante qui n'est donnée qu'à titre indicatif et qui n'a pas pour but de la limiter, accompagnée des dessins joints parmi lesquels :
- la figure 1 illustre en perspective un exemple de réalisation du dispositif selon l'invention,
- la figure 2 illustre en perspective et de manière partielle le dispositif de la figure 1 .
Comme illustré aux figures 1 et 2, l'invention concerne un dispositif thermo électrique 10, comprenant un premier circuit 1 , dit chaud, apte à permettre la circulation d'un premier fluide, notamment des gaz d'échappement d'un moteur, et un deuxième circuit 2, dit froid, apte à permettre la circulation d'un deuxième fluide, notamment un fluide caloporteur d'un circuit de refroidissement, de température inférieure à celle du premier fluide. Le circuit chaud 1 comprend ici des tubes 8, dits chauds, pour la circulation du fluide chaud. Le dispositif comprend également des éléments 3, dits thermo électriques, permettant de générer un courant électrique en présence d'un gradient de température généré par le premier et le deuxième circuit. Il s'agit, par exemple, d'éléments de forme sensiblement parallélépipédiques générant un courant électrique, selon l'effet Seebeck, lorsqu'ils sont soumis audit gradient entre deux de leurs faces opposées 4a, 4b, dites faces actives. De tels éléments permettent la création d'un courant électrique dans une charge connectée entre lesdites faces actives 4a, 4b. De façon connue de l'homme du métier, de tels éléments sont constitués, par exemple, de Bismuth et de Tellure (Bi2Te3) ou de Cérium, de Cobalt, de Fer et d'Antimoine (CeyCoxFe4xSbi2) ou de Plomb et de Tellure (PbTe) ou de Silicium et de Germanium (SiGe).
Le dispositif 10 comprend un faisceau se présentant, par exemple, sous une forme sensiblement parallélépipédique de sorte qu'il comprend six faces. Il comprend ainsi une face d'entrée 21 située du coté d'une entrée du premier fluide dans le dispositif 10, une face de sortie 22 située du coté d'une sortie du premier fluide du dispositif et opposée à la face d'entrée 21 , une première face latérale 23 et une deuxième face latérale 24 opposées entre elles par rapport au circuit chaud 1 et reliant la face d'entrée 21 à la face de sortie 22, un face supérieure 25 et une face inférieure (non visible) opposées entre elles et reliant la face d'entrée 21 à la face de sortie 22 et la première face latérale 23 à la deuxième face latérale 24. Les six faces 21 , 22, 23, 24, 25 du dispositif 10 définissent entre elle un volume interne à l'intérieur duquel se trouve le circuit chaud 1 , le circuit froid 2 et les thermo éléments 3.
On définit une première direction L dans le sens d'une longueur du dispositif 10, c'est-à-dire une direction perpendiculaire aux faces d'entrée 21 et de sortie 22, une deuxième direction I dans le sens de la largeur du dispositif 10, c'est-à-dire perpendiculaire aux première et deuxième faces latérales 23, 24, et une troisième direction H dans le sens de la hauteur du dispositif 10, c'est-à-dire perpendiculaire à la face inférieure et à la face supérieure 25. Les première, deuxième et troisième directions L, I, H sont donc ici perpendiculaires entre elles.
Selon l'invention, les tubes chauds 8 comprennent une longueur inférieure ou égale à 150 mm, en particulier la longueur des tubes chauds 8 est inférieure à une limite sensiblement égale à 100 mm. Le premier fluide parcourt alors moins que 150 mm, par exemple moins que 100 mm, entre une entrée et une sortie des tubes chauds 8. Les tubes chauds 8 s'étendent ici entre la première face latérale 23 et la deuxième face latérale 24, c'est-à-dire que leur longueur se mesure selon la deuxième direction I.
Le dispositif 10 comprend également des ailettes 5, ici en relation d'échange thermique avec le circuit froid 2. Un gradient de température est ainsi assuré entre lesdites ailettes 5 et le circuit chaud 1 . Lesdits thermo éléments 3 sont ici en contact avec les ailettes 5 au niveau, notamment, de leurs faces actives 4a, 4b. Autrement dit les éléments thermo électriques sont disposés entre les ailettes 5 et le circuit chaud 1 de manière à être en contact avec les ailettes 5 et le tubes chauds 8. On assure ainsi une génération de courant par les éléments thermo électriques 3.
Les thermo éléments 3 sont choisis de façon à avoir une efficacité électrique optimale lorsque le gradient de température entre les tubes chauds 8 et les ailettes 5 est situé entre une première température et une deuxième température supérieure à la première température. On comprend ici que les performances électriques des thermo éléments augmentent lorsque le gradient de température augmente pour atteindre un optimum avant de décroître lorsque le gradient de température continue d'augmenter.
Le fait de munir le dispositif 10 de tubes selon l'invention, c'est-à-dire de tubes de faible longueur, permet de restreindre la différence, entre deux extrémités des tubes, du gradient de température entre le circuit chaud 1 et le circuit froid 2. Avec cette différence restreinte, le gradient de température entre le circuit chaud 1 et le circuit froid 2 pourra rester au plus près de l'optimum d'efficacité des thermo éléments, et cela tout le long des tubes chauds 8. Le gradient de température entre le circuit chaud 1 et le circuit froid 2 sera, par exemple, situé d'un coté de l'optimum d'efficacité électrique du thermo éléments 3 au niveau d'une entrée des tubes chaud 8 alors qu'il sera situé de l'autre coté de cet optimum au niveau de la sortie des tubes chauds 8. On peut de la sorte choisir de maintenir une efficacité importante, par exemple supérieur à 80% de l'optimum, d'un même thermo éléments 3 dans le dispositif 10 quelque soit sa disposition le long des tubes chauds 8.
Par exemple, grâce à l'invention, on choisit de conserver un gradient de température entre le circuit chaud 1 et le circuit froid 2, qui ne varie pas beaucoup entre les entrées des tubes chauds 8 et leur sortie, notamment de pas plus de 200 degrés.
Les ailettes présentant deux grandes surfaces 7a, 7b opposées planes et permettant d'établir un contact surfacique entre l'une desdites grandes surfaces 7a, 7b et les éléments thermo électrique 3 au niveau de la ou de leurs faces actives opposées 4a. Par ailleurs, lesdites ailettes 5 peuvent présenter des pistes (non représentée) de conduction du courant généré par lesdits éléments thermo électriques 3. On pourra ainsi conduire le courant, selon toute topologie de circuit voulue, à la surface des ailettes 5 en regroupant les pistes en série et/ou en parallèle. De telles pistes peuvent également être prévues sur les tubes chauds 8 afin de remplir la même fonction que celle présentes sur le circuit froid 2.
Lesdites pistes pourront se prolonger jusqu'à la périphérie des ailettes 5 et/ou des tubes chauds 8 pour former des bornes de connexion qui autoriseront, par exemple, un branchement de connecteurs électriques prévus entre certaines au moins desdites ailettes 5. On permet de la sorte une mise au même potentiel des ailettes présentant lesdites bornes ou, plus précisément, des éléments thermo électriques en contact avec les pistes desdites ailettes reliées auxdites bornes. On peut également noter que lesdites ailettes 5 sont ici associées par paire, un matériau compressible pouvant prévu entre les ailettes d'une même paire. On peut ainsi assurer une absorption du stress mécanique généré par la dilatation des circuits chaud et/ou froid au niveau dudit matériau. Lesdits tubes chauds 8 sont, par exemple, des tubes plats, c'est-à-dire, des tubes de section sensiblement rectangulaire comprenant deux grandes faces opposées parallèles sur laquelle sont disposés les éléments thermo électriques 3 par l'une de leur face active 4a, 4b. Ils sont configurés pour permettre la circulation de gaz d'échappement et sont, notamment, en acier inoxydable. Ils sont formés, par exemple, par profilage, soudage et/ou brasage. Ils pourront présenter une pluralité de canaux de passage du premier fluide, séparés par des cloisons reliant les faces planes opposées des tubes.
Le circuit froid 2 comprend, par exemple, des tubes 9, dits froids, pour la circulation du fluide froid, notamment un liquide. Les ailettes 5 sont prévues en relation d'échange thermique avec les tubes froids 9. Les ailettes 5 sont ici traversées par les tubes froids 9. Les ailettes 5 présentent, par exemple, des orifices 12 pour le passage des tubes froids 9. Lesdits tubes froids 9 sont, par exemple, en aluminium ou en cuivre et présentent une section ronde et/ou ovale. Les tubes froids 9 s'étendent, par exemple, selon la première direction L, c'est-à-dire qu'ils s'étendent de la face d'entrée 21 à la face de sortie 22. Les tubes chauds 8 s'étendent ainsi de manière sensiblement perpendiculaire aux tubes froids 9 et de manière sensiblement parallèle aux ailettes 5.
Le contact entre les tubes froids 9 et les ailettes froides 5 est réalisé, par exemple, par une expansion de la matière des tubes froids 9 comme dans les échangeurs de chaleur connus sous le nom d'échangeurs mécaniques dans le domaine des échangeurs de chaleur pour les véhicules automobile.
Le dispositif comprend plusieurs rangées de tubes chauds 8 superposées parallèlement selon la première direction L. Les rangées de tubes chauds sont ainsi superposées de la face d'entrée 21 à la face de sortie 22. Les tubes chauds 8 d'une même rangée sont ici disposés parallèlement entre eux et s'étendent selon la deuxième direction I. On dispose les ailettes 5 entre chaque rangée de tube chaud, parallèlement à celle-ci, c'est-à-dire que les ailettes 5 sont superposées de manière alternée avec les rangées de tubes chauds 8 selon la première direction L.
Cette configuration permet ainsi d'avoir les tubes chauds 8 plus courts que les tubes froids 9. On pourra également disposer plus de tubes chauds 8 que de tubes froids 9 dans le dispositif 10.
Le dispositif 10 comprend également plusieurs rangs de tubes froids 9 superposés parallèlement les uns aux autres selon la troisième direction H. Les rangs de tubes froids 9 sont ainsi superposés de la face inférieure à la face supérieure 25 du dispositif 10. Les tubes froids 9 d'un même rang sont ici disposés parallèlement entre eux.
On appelle rang de tubes chauds 8 les tubes chauds 8 situées au même niveau selon la direction H et appartenant à des rangées de tubes chauds 8 différentes. Ainsi, les rangs de tubes chauds 8 sont superposés parallèlement les uns aux autres dans la troisième direction H, c'est-à-dire entre la face inférieure et la face supérieure 25 du dispositif 10. Les rangs de tubes chauds 8 sont ici superposés de manière alternée avec les rangs de tubes froids selon la troisième direction H. Les tubes froids 9 pourront également être positionnés, parallèle les uns aux autres, en rangées situées dans des plans parallèles aux directions L et H. Les rangées de tubes froids sont donc orthogonales aux tubes chauds. On constate alors que le nombre de rangées de tubes chauds 8 (selon I, H) est supérieure au nombre de rangées de tubes froids 9 (selon L, H). Cela étant, les tubes chauds et les tubes froids pourront aussi être inclinés les uns par rapport aux autres pour favoriser l'écoulement du liquide chaud et/ou froid. Le dispositif 10 comprend également une boite collectrice d'entrée 30 du premier fluide et une boite collectrice de sortie 31 du premier fluide. Les boites collectrices d'entrée et de sortie 30, 31 , possèdent chacune un collecteur (non visible) et un couvercle respectivement d'entrées et de sorties. Les collecteurs sont ici des plaques, disposées sur les faces latérales du dispositif 10 et de dimensions sensiblement identiques à ces dernières. Ce sont les collecteurs des boites collectrices d'entrée 30 et de sortie 31 qui sont traversés par les extrémités des tubes chauds 8. Les tubes chauds 8 s'étendent ainsi transversalement aux collecteurs, en particulier perpendiculairement aux collecteurs. La boite collectrice d'entrée est située au niveau de la première face latérale
23 du dispositif 30. Elle possède une ouverture d'entrée 33 définissant l'entrée du dispositif 10 par laquelle le fluide entre dans le dispositif 30. Elle guide le fluide chaud jusqu'aux entrées des tubes chauds 8. Une première extrémité des tubes chauds 8 pénètre ainsi la boite collectrice d'entrée 30 afin de déboucher à l'intérieur de celle-ci et de permettre au fluide d'entrer dans les tubes chauds. Un couvercle d'entrée 35 de la boite collectrice d'entrée 30 forme avec le collecteur d'entrée un volume interne à l'intérieur duquel le premier fluide circule depuis l'ouverture d'entrée 33 jusqu'à l'entrée dans les tubes chauds 8. Le couvercle d'entrée 35 possède une première partie faisant saillie par rapport à la face d'entrée 21 du dispositif 10 qui s'étend selon la première direction L et une deuxième partie en vis-à-vis du collecteur d'entrée. L'ouverture d'entrée 33 se situe au niveau de la première partie. Ainsi le premier fluide circule dans la boite collectrice d'entrée 35 selon une direction d'entrée sensiblement parallèle à la première direction L. La première partie du couvercle d'entrée 35 diverge, selon la direction H, de l'ouverture d'entrée 33 vers la face d'entrée 21 du dispositif 10 alors que sa deuxième partie converge, selon la direction I, de la face d'entrée 21 vers la face de sortie 22 du dispositif 10.
De la même manière, la boite collectrice de sortie est située au niveau de la deuxième face latérale 24 du dispositif 30. Elle possède une ouverture de sortie 34 définissant une sortie du dispositif 10 par laquelle le fluide sort du dispositif 30. Une deuxième extrémité des tubes chauds 8 pénètre la boite collectrice de sortie 31 afin de déboucher à l'intérieur de celle-ci et de permettre au fluide de sortir des tubes chauds 8. La boite collectrice de sortie guide ensuite le premier fluide jusqu'à l'ouverture de sortie 34 afin qu'il sorte du dispositif 10. Le couvercle de sortie 36 de la boite collectrice de sortie 31 forme avec le collecteur de sortie un volume interne à l'intérieur duquel le premier fluide circule depuis la sortie des tubes chauds 8 jusqu'à l'ouverture de sortie 34.
Le couvercle de sortie 36 possède une première partie faisant saillie par rapport à la face de sortie 22 du dispositif 10 qui s'étend selon la première direction L et une deuxième partie en vis-à-vis du collecteur de sortie. L'ouverture de sortie 34 se situe au niveau de la première partie. Ainsi le premier fluide circule dans la boite collectrice de sortie 36 selon une direction de sortie sensiblement parallèle à la première direction L. La première partie du couvercle de sortie 36 diverge, selon la direction H, de l'ouverture de sortie 34 vers la face de sortie 22 du dispositif 10 alors que sa deuxième partie diverge, selon la direction I de la face d'entrée 21 vers la face de sortie 22 du dispositif 10.
Comme déjà dit, les tubes chauds 8 s'étendent ici transversalement à la direction d'entrée et à la direction de sortie. Ils défléchissent de la sorte la circulation du premier fluide dans le dispositif 10 représentée par la flèche référencée 40. La circulation du premier fluide 40 possède alors un parcourt en forme de S entre l'ouverture d'entrée 33 et l'ouverture de sortie 34. La boite collectrice d'entrée 30 représente ici une première branche du S, les tubes chauds 8 une branche centrale du S et la boite collectrice de sortie 31 une troisième branche du S. On pourra noter que l'utilisation d'un liquide comme fluide froid permet d'éviter les déperditions de chaleur le long des tubes froids.
On décrit dans la suite un procédé de fabrication d'un dispositif conforme à l'invention. Selon un tel procédé, on prévoit une étape dans laquelle les éléments thermo électriques sont d'abord assemblés avec les tubes chauds 8 puis sont ensuite assemblés avec les ailettes 5, après empilement de ceux-ci. Les tubes froids 9 sont alors assemblés dans les ailettes 5. Les tubes chauds 8 sont ensuite reliés aux boites collectrices.

Claims

REVEN DICATIONS
1 . Dispositif thermo électrique (10), comprenant un premier circuit (1 ), dit chaud, apte à permettre la circulation d'un premier fluide, et un deuxième circuit (2), dit froid, apte à permettre la circulation d'un deuxième fluide de température inférieure à celle du premier fluide, et des éléments (3), dits thermo électriques, permettant de générer un courant électrique en présence d'un gradient de température généré par le premier et le deuxième circuit (1 , 2), caractérisé par le fait que le premier circuit (1 ) comprend des tubes (8), dits chauds, d'une longueur inférieure ou égale à 150 mm.
2. Dispositif (10) selon la revendication 1 , dans lequel la longueur des tubes chauds (8) est inférieure à une limite sensiblement égale à 100 mm.
3. Dispositif (10) selon l'une quelconque des revendications 1 ou 2, dans lequel les thermo éléments (3) ont une efficacité électrique optimale lorsque le gradient de température est situé entre une première température et une deuxième température supérieure à la première température.
4. Dispositif (10) selon l'une quelconque des revendications précédentes, dans lequel le dispositif (10) comprend des ailettes (5) en relation d'échange thermique avec ledit circuit froid (2), les éléments thermo électriques (3) étant en contact desdits tubes chauds et desdites ailettes.
5. Dispositif (10) selon la revendication 4, dans lequel le dispositif (10) comprend plusieurs rangées de tubes chauds (8) superposées parallèlement selon une première direction (L), les tubes chauds (8) d'une même rangée étant disposés parallèlement entre eux et s'étendant selon une deuxième direction (I), les ailettes (5) étant superposées de manière alternée avec les rangées de tubes chauds (8) selon la première direction (L).
6. Dispositif (10) selon la revendication 5, dans lequel chacune des ailettes (5) est traversée par des tubes froids (9) du deuxième circuit (2) s'étendant selon la première direction (L).
7. Dispositif (10) selon la revendication 6, dans lequel lesdits tubes chauds (8) sont plus courts que lesdits tubes froids (9).
8. Dispositif (10) selon la revendication 6 ou 7, dans lequel le dispositif (10) comprend plusieurs rangs de tubes froids (9) superposés parallèlement les uns aux autres selon une troisième direction (H), les tubes froids (9) d'un même rang étant disposés parallèlement entre eux.
9. Dispositif (10) selon la revendication 8, dans lequel le dispositif (10) comprend des rangs de tubes chauds (8) superposés parallèlement les uns aux autres dans la troisième direction (H), les rangs de tubes chauds (8) étant superposés de manière alternée avec les rangs de tubes froids (9) selon la troisième direction (H).
10. Dispositif (10) selon l'une quelconque des revendications précédentes, dans lequel le dispositif (10) est agencé pour guider le premier fluide d'une entrée (33) du dispositif (10) jusqu'au premier circuit (1 ) selon une direction d'entrée et pour guider le premier fluide du premier circuit (1 ) vers une sortie (34) du dispositif (10) selon une direction de sortie, lesdits tubes chauds (8) s'étendant transversalement à la direction d'entrée et/ou à la direction de sortie.
1 1 . Dispositif (10) selon la revendication 10, dans lequel le premier circuit (1 ) est destiné à défléchir la circulation du premier fluide de sorte que ce dernier ait un parcourt en forme de S entre l'entrée (33) et la sortie (34) du dispositif (10).
12. Dispositif (10) selon l'une quelconque des revendications précédentes, dans lequel le dispositif comprend une boite collectrice d'entrée (30) du premier fluide et une boite collectrice de sortie (31 ) du premier fluide.
13. Dispositif (10) selon la revendication 1 1 , dans lequel les boites collectrices (30, 31 ) sont situées sur des faces latérales (23, 24) du dispositif (10) et sont traversées par les tubes chauds (8) de sorte que ces derniers débouchent à l'intérieur des boites collectrices (30, 31 ).
14. Dispositif (10) selon l'une quelconque des revendications 12 ou 13, dans lequel la boite collectrice d'entrée (30) converge depuis une face d'entrée (21 ) du dispositif (10) vers une face de sortie (22) du dispositif (10), la boite collectrice de sortie (31 ) divergeant depuis la face d'entrée (21 ) vers la face de sortie (22).
15. Dispositif (10) selon l'une quelconque des revendications, dans lequel les tubes chauds (8) sont configurés pour permettre la circulation d'un gaz et/ou le circuit froid (2) est configuré pour permettre la circulation d'un liquide.
PCT/EP2012/067736 2011-09-13 2012-09-11 Dispositif thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile WO2013037773A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1158157A FR2980038B1 (fr) 2011-09-13 2011-09-13 Dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile
FR1158157 2011-09-13

Publications (1)

Publication Number Publication Date
WO2013037773A1 true WO2013037773A1 (fr) 2013-03-21

Family

ID=46880688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/067736 WO2013037773A1 (fr) 2011-09-13 2012-09-11 Dispositif thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile

Country Status (2)

Country Link
FR (1) FR2980038B1 (fr)
WO (1) WO2013037773A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017203163A1 (de) * 2017-02-27 2018-08-30 Mahle International Gmbh Wärmeübertrager für ein Kraftfahrzeug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086402A (ja) * 2004-09-17 2006-03-30 Hitachi Metals Ltd 管状熱電モジュールおよび熱電変換装置
WO2007026432A1 (fr) * 2005-08-31 2007-03-08 Hitachi, Ltd. Générateur d’énergie à gaz de rge
DE102008005334A1 (de) * 2008-01-21 2009-07-30 Christian Vitek Thermoelektrischer Generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086402A (ja) * 2004-09-17 2006-03-30 Hitachi Metals Ltd 管状熱電モジュールおよび熱電変換装置
WO2007026432A1 (fr) * 2005-08-31 2007-03-08 Hitachi, Ltd. Générateur d’énergie à gaz de rge
DE102008005334A1 (de) * 2008-01-21 2009-07-30 Christian Vitek Thermoelektrischer Generator

Also Published As

Publication number Publication date
FR2980038A1 (fr) 2013-03-15
FR2980038B1 (fr) 2014-08-29

Similar Documents

Publication Publication Date Title
WO2012041560A1 (fr) Procédé de fabrication d'un dispositif thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile
WO2012041559A1 (fr) Dispositif thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile
EP2874191B1 (fr) Dispositif hybride comprenant un module thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile, et un échangeur de chaleur de chaleur
EP2622658A1 (fr) Dispositf thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile
EP2939280A1 (fr) Module et dispositif thermo-électriques, notamment destinés à générer un courant électrique dans un véhicule automobile
EP2936573B1 (fr) Ensemble comprenant un élément thermo électrique et un moyen de connexion électrique dudit élément thermo électrique, module et dispositif thermo électrique comprenant un tel ensemble
WO2012041561A1 (fr) Dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile
EP3017486B1 (fr) Dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile
FR2994025A1 (fr) Module thermo electrique
WO2013037773A1 (fr) Dispositif thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile
EP2912704A1 (fr) Module thermo electrique et echangeur de chaleur comprenant un tel module
FR3010504A1 (fr) Module et dispositif thermo electrique, notamment destines a generer un courant electrique dans un vehicule automobile
EP2691995A1 (fr) Ensemble et dispositif thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile
WO2014095988A1 (fr) Générateur thermo électrique
EP2546594A1 (fr) Echangeur de chaleur, notamment pour véhicule automobile, faisant dispositif thermo électrique
EP3012428A1 (fr) Module thermo électrique, notamment destinés à générer un courant électrique dans un véhicule automobile
WO2014019901A1 (fr) Ensemble comprenant un element thermo electrique et un moyen de connexion electrique dudit element thermo electrique, module thermo electrique comprenant un tel ensemble.
EP3012427A1 (fr) Elément, ensemble et module thermo électrique, notamment destinés à générer un courant électrique dans un véhicule automobile
FR3013429A1 (fr) Module thermo electrique et dispositif thermo electrique comprenant au moins un tel module.
FR2965405A1 (fr) Procédé de fabrication d'un dispositif thermo électrique, notamment destine a générer un courant électrique dans un véhicule automobile.
FR2994336A1 (fr) Procede de fabrication d'un module thermo electrique, notamment, destine a generer un courant electrique dans un vehicule automobile et module thermo electrique obtenu par ledit procede.
FR2998954A1 (fr) Echangeur de chaleur, notamment generateur thermo electrique.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12761576

Country of ref document: EP

Kind code of ref document: A1