WO2013037287A1 - 一种数据反馈方法以及相关装置 - Google Patents

一种数据反馈方法以及相关装置 Download PDF

Info

Publication number
WO2013037287A1
WO2013037287A1 PCT/CN2012/081255 CN2012081255W WO2013037287A1 WO 2013037287 A1 WO2013037287 A1 WO 2013037287A1 CN 2012081255 W CN2012081255 W CN 2012081255W WO 2013037287 A1 WO2013037287 A1 WO 2013037287A1
Authority
WO
WIPO (PCT)
Prior art keywords
beamforming
message
receiving device
spatial stream
feedback
Prior art date
Application number
PCT/CN2012/081255
Other languages
English (en)
French (fr)
Inventor
姚宗明
刘孟红
夏林峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16169832.9A priority Critical patent/EP3113384B1/en
Priority to ES12829200.0T priority patent/ES2586828T3/es
Priority to EP12829200.0A priority patent/EP2605419B1/en
Priority to EP20153318.9A priority patent/EP3745609A1/en
Priority to JP2013534160A priority patent/JP5575988B2/ja
Priority to US13/838,420 priority patent/US20130215947A1/en
Publication of WO2013037287A1 publication Critical patent/WO2013037287A1/zh
Priority to US13/869,479 priority patent/US20130235947A1/en
Priority to US15/854,489 priority patent/US10256874B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems

Definitions

  • the present invention relates to the field of communications, and in particular, to a data feedback method and related apparatus.
  • IEEE 802.1 lac is a branch of the IEEE 802.11 protocol family that introduces a high throughput detection mechanism, which is a channel detection that exists between beamforming initiators (Beamformer) and beamforming receivers (Beamformee). mechanism. Through this mechanism, the beamforming initiator can better know the channel condition between the beamforming receiver and the beamforming receiver, thereby improving the communication condition by adjusting the relevant parameters.
  • Beamformer beamforming initiators
  • Beamformee beamforming receivers
  • the physical device corresponding to Beamformer is an access point (AP, Access point), and the physical device corresponding to Beamformee is a station (STA, Station);
  • the physical device corresponding to the Beamformer can be a certain STA, and the physical device corresponding to the Beamformee can be other STAs.
  • the IEEE802.11ac specifies that the number of antennas actually working by the beamforming receiving device must be greater than or equal to that set by the beamforming initiator in the NDPA (Null Data Packet Announcement) message.
  • the feedback dimension (NC) therefore, after the beamforming receiver receives the NDPA message, if the number of antennas that the beamforming receiver actually operates is less than the feedback dimension set by the beamforming initiator in the NDPA message, the beamforming
  • the receiving device does not have a corresponding processing mechanism, which leads to the logic is not tight and confusing, which will ultimately affect the design of the final related products.
  • the embodiment of the present invention provides a data feedback method and related apparatus, where the beamforming initiator is used regardless of whether the number of antennas actually working by the beamforming receiving device is greater than or equal to the feedback dimension set by the beamforming initiator in the NDPA message.
  • the communication state can be adjusted according to the relevant channel information fed back by the beamforming receiving device.
  • the data feedback method provided by the present invention includes: the beamforming receiving device acquires a feedback dimension from the null packet notification NDPA message; detects a first spatial stream that is working; compares the first spatial stream number with the feedback dimension And compare the resulting smaller value as the second spatial stream number that requires feedback; And transmitting, to the beamforming initiator, the spatial stream measurement information of the second spatial stream number and the second spatial stream number.
  • the data feedback method provided by the present invention includes: the beamforming receiving device acquires a feedback dimension from the null packet notification NDPA message; the beamforming receiving device detects the number of spatial streams that are working; and the beamforming receiving device determines the space Whether the number of streams is less than the feedback dimension, and if so, feeding back a null packet to the beamforming initiator.
  • the method for transmitting a null packet notification message includes: the beamforming initiator device acquires the number of antennas that the beamforming receiver device is working in the process of performing capability negotiation with the beamforming receiver device; The number of antennas sets a feedback dimension in the NDPA message such that the feedback dimension is less than the number of antennas; the beamforming initiator transmits the NDPA message to the beamforming receiver.
  • the beamforming receiving apparatus includes: a first acquiring unit, configured to obtain a feedback dimension from an empty packet notification NDPA message; a detecting unit, configured to detect a first spatial stream that is working; and a comparing unit, configured to: Comparing the first spatial stream number and the feedback dimension, and comparing the obtained smaller value as a second spatial stream number that needs feedback; and a feedback unit, configured to feed back the second spatial stream to the beamforming initiator And the spatial flow measurement information of the second spatial stream number.
  • the beamforming receiving apparatus includes: a dimension obtaining unit, configured to obtain a feedback dimension from an empty packet notification NDPA message; a spatial stream number detecting unit, configured to detect a number of spatial streams that are working; And determining whether the number of spatial streams is smaller than the feedback dimension, and if yes, triggering a null packet feedback unit.
  • a null packet feedback unit is configured to feed back an empty data packet to the beamforming initiator.
  • the beamforming initiating device includes: an antenna number acquiring unit, configured to acquire, during a capability negotiation with the beamforming receiving device, an antenna number that the beamforming receiving device is working; a feedback dimension setting unit, configured to: Setting a feedback dimension in the NDPA message according to the number of the antennas, so that the feedback dimension is smaller than the number of antennas; and a message sending unit, configured to send the NDPA message to the beamforming receiving device.
  • the beamforming receiving apparatus in the embodiment of the present invention compares the obtained first spatial stream number and the feedback dimension, and takes the obtained smaller value as the required feedback. Second spatial stream number and feedback to the beamforming initiator The actual number of second spatial streams in operation enables the beamforming initiator to know its actual communication status in time and to optimize and adjust the communication status accordingly.
  • FIG. 1 is a schematic flow chart of a data feedback method in an embodiment of the present invention
  • FIG. 2 is another schematic flowchart of a data feedback method in an embodiment of the present invention.
  • FIG. 3 is a signaling flowchart of a data feedback method in an embodiment of the present invention.
  • FIG. 5 is another schematic flowchart of a data feedback method according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for transmitting a hollow packet notification message according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart of a beamforming receiving device according to an embodiment of the present invention
  • FIG. 8 is another schematic flowchart of a beamforming receiving apparatus according to an embodiment of the present invention
  • FIG. 9 is a schematic flowchart of a beamforming initiating apparatus according to an embodiment of the present invention.
  • the embodiment of the present invention provides a data feedback method and related apparatus, where the beamforming initiator is used regardless of whether the number of antennas actually working by the beamforming receiving device is greater than or equal to the feedback dimension set by the beamforming initiator in the NDPA message.
  • the communication state can be adjusted according to the relevant channel information of the beamforming receiving device.
  • the physical device corresponding to the beamforming initiator (AP) is an access point (AP), and a beamforming receiver (Beamformee)
  • the corresponding physical device is a station (STA, Station); for an ad hoc network that is not a basic service set, the physical device corresponding to the Beamformer can be an STA, and the physical device corresponding to the Beamformee can be other STAs.
  • an embodiment of a data feedback method in an embodiment of the present invention includes:
  • the beamforming receiving device obtains a feedback dimension from the null packet notification message sent by the beamforming initiator.
  • the beamforming receiving device receives the NDPA message, and confirms that the beamforming receiving device is locally requested by the beamforming initiator, and extracts the feedback dimension of the STA information (STA Information) from the NDPA message, where the feedback dimension is
  • the beamforming initiator sets the value of the field Nc Index set in the NDPA message by one to indicate the number of spatial streams that the STA needs to feed back. 102.
  • the beamforming receiving device detects the first spatial stream that is working;
  • the beamforming receiving device detects which spatial streams have data transmissions and confirms the number of first spatial streams that are operating.
  • the beamforming receiving device compares the first spatial stream number and the feedback dimension
  • the beamforming receiving device compares the first spatial stream number in operation with the feedback dimension in the NDPA message, and compares the resulting smaller value as the second spatial stream number requiring feedback.
  • the number of antennas that the beamforming receiving device actually operates in IEEE802.11ac must be greater than or equal to the feedback dimension set by the beamforming initiator in the NDPA message, but in practical applications, there may be no reconfiguration after the beamforming receiver is reconfigured.
  • the beamforming initiator is informed in time, and the beamforming initiator has issued the probe request; or, due to the antenna failure, the beamforming receiver cannot detect the number of antennas, etc., causing the beamforming receiver to actually work.
  • the number of antennas is smaller than the feedback dimension set by the beamforming initiator in the NDPA message.
  • the beamforming initiator may erroneously estimate the current channel condition or delay the optimization of the communication condition. , thereby affecting the actual communication effect of the beamforming receiving device and the beamforming initiator.
  • the smaller value obtained by comparing is used as the second spatial stream number that needs to be fed back, regardless of the actual beamforming receiving device. Whether the number of working antennas is greater than or equal to the feedback dimension set by the beamforming initiator in the NDPA message, the beamforming receiving device can feed back the correct current working spatial stream number to the beamforming initiator.
  • the beamforming receiving device feeds back the second spatial stream number and its corresponding spatial stream measurement information to the beamforming initiator.
  • the beamforming receiving device After obtaining the second spatial stream number, calculates spatial stream measurement information of each of the second spatial stream numbers, and feeds back the second spatial stream number and its corresponding space to the beamforming initiator
  • the flow measurement information enables the beamforming initiator to calculate the relevant V operation matrix based on the spatial flow measurement information, and guide subsequent transmission and reception work, thereby improving the communication performance of the entire system.
  • the spatial stream measurement information may include: average signal to noise ratio information (Average SNR) corresponding to each spatial stream, V matrix information (Feeding Matrix V) and signal to noise ratio difference information (Delta) SNR).
  • Average SNR Average signal to noise ratio information
  • V matrix information Freeding Matrix V
  • Delta signal to noise ratio difference information
  • IEEE802.11ac specifies that the number of antennas that the beamforming receiver actually operates must be greater than or equal to the feedback dimension (NC) set by the beamforming initiator in the NDPA (Null Data Packet Announcement) message. So that the beamforming receiving device returns the relevant channel information of the feedback dimension to the beamforming initiator, so that the beamforming initiator can adjust the communication state according to the channel information of the feedback dimension; if the beamforming receiver is actually working If the number of spatial streams is smaller than the feedback dimension, the following two results will result: 1. The beamforming receiver may force the spatial stream value indicated by the feedback dimension to be invalid for some unsupported spatial stream feedback.
  • N feedback dimension
  • the beamforming receiver may consider itself unable to support the feedback dimension Indicated empty The flow value, so no feedback is made, and this causes the information of the spatial stream in which the beamforming receiving device is actually working cannot be known by the beamforming initiator, so that the communication condition cannot be optimized, which is very large. The extent to which the actual communication effect of the beamforming receiving device is affected.
  • the beamforming receiving apparatus in the embodiment of the present invention compares the obtained first spatial stream number and the feedback dimension, and takes the obtained smaller value as the second spatial stream number that needs to be fed back, and feeds back the correctness to the beamforming initiator device.
  • the second spatial stream is working, so that the beamforming initiator can know its actual communication status in time and optimize and adjust the communication status accordingly.
  • another embodiment of the data feedback method in the embodiment of the present invention includes:
  • the beamforming receiving device acquires an empty packet notification message.
  • the high throughput detection mechanism can be applied to two scenarios: Single-user multiple input multiple output (SU-MIMO) scenario and multi-user multiple input multiple output (MU-MIMO, Multi-user multiple input multiple output) ) Scenes.
  • SU-MIMO Single-user multiple input multiple output
  • MU-MIMO multi-user multiple input multiple output
  • the beamforming receiving device communicates with the beamforming initiator device one-to-one (refer to Figure 3 for the specific signaling flow chart, TXOP for the transmission opportunity, Transmit opportunity; SIFS in the figure) For short frame spacing, Short Inter-Frame Space), Therefore, when the beamforming receiving device receives the unicast NDPA message, if the feedback type (Feedback Type) recorded in the STA Info field of the NDPA message is 0, the transmission is SU-MIMO communication, if local The stored AID matches the AID in the STA Info in the NDPA, and the NDPA message is the NDPA message required by the beamforming receiving device.
  • TXOP for the transmission opportunity, Transmit opportunity
  • SIFS Short Inter-Frame Space
  • a beamforming initiator performs communication with multiple beamforming receivers (refer to FIG. 4 for a specific signaling flowchart). Therefore, the beamforming receiver receives the NDPA message for beamforming.
  • the broadcast packet sent by the device. Therefore, when the beamforming receiving device receives the NDPA message, if the feedback type (Feedback Type) recorded in the STA Info field of the NDPA message is 1, it indicates that the transmission is MU-MIMO communication.
  • the beamforming receiving device needs to perform an association (AID, Association ID) matching.
  • the beamforming receiving device performs matching of the connection identity number.
  • the beamforming receiving device sequentially extracts the STA Info field in the NDPA message, and compares the AID in the STA Info field and the locally stored AID in the same manner. If the same AID is found, the AID is successfully matched, indicating that the NDPA message is If the local NDPA message needs to be received locally, and the local space feedback information needs to be fed back, step 203 is triggered. If the same AID is not found, the AID matching fails, indicating that the local beamforming receiving device is not the specified request feedback.
  • the beamforming receiving device obtains a feedback dimension from the null packet notification.
  • the feedback dimension and feedback type of the STA Info are locally extracted and saved from the NDPA message.
  • the beamforming receiving device detects the first spatial stream that is working
  • step 204 in this embodiment is the same as that of the step 102 in the foregoing embodiment shown in FIG. 1, and details are not described herein again.
  • the beamforming receiving device receives a null packet message or a beamforming report query message.
  • the beamforming receiving device receives a null packet (NDP, Null Data Packet) message, and detects whether the locally stored AID is equal to the first STAInfo in the NDPA message.
  • the AID of the field if yes, trigger step 206;
  • the beamforming receiver detects whether a Beamforming report poll message is received, and if so, triggers step 206.
  • the beamforming initiator first sends a broadcast packet of an NDPA message to all relevant beamforming receivers to prepare for the probe.
  • the beamforming initiator sends a broadcast packet of the NDP message, and all associated beamforming receivers calculate relevant channel feedback information for the broadcast packet of the received NDP message. Note that the broadcast packet of the NDP message is received.
  • the beamforming initiator can immediately send a message according to the received NDP message.
  • the obtained spatial flow measurement information For other beamforming receiving devices, when they respectively receive a beamforming Repot Poll from the beamforming initiator, if the beamforming receiving device has previously received a broadcast packet of the NDP message, The spatial stream measurement information calculated according to the broadcast packet of the received NDP message is sent to the beamforming initiator; if the broadcast packet of the received NDP message is not received, the null packet is sent or not fed back to the beamforming initiator.
  • the beamforming receiving device calculates spatial stream measurement information of the second spatial stream number.
  • the beamforming receiving device calculates spatial stream measurement information corresponding to the second spatial stream number according to the received NDP message.
  • the beamforming receiving device feeds back the second spatial stream number and its corresponding spatial stream measurement information to the beamforming initiator.
  • the beamforming receiving device feeds back the second spatial stream number and its corresponding spatial stream measurement information to the beamforming initiator, so that the beamforming initiator can calculate the relevant V operation matrix according to the spatial stream measurement information, and guide the subsequent transceiver work. Thereby improving the communication performance of the entire system.
  • the beamforming receiving device encapsulates the second spatial stream number and its corresponding spatial stream measurement information in a VHT Compressed Beamforming message, and then feeds back the VHT Compressed to the beamforming initiator. Beamforming message.
  • Another embodiment of the data feedback method in an embodiment includes: 501.
  • the beamforming receiving device obtains a feedback dimension from the null packet notification.
  • the beamforming receiving device receives the NDPA message, confirms that the local beamforming receiving device is requested by the beamforming initiator, and extracts the feedback dimension of the STAInfo from the NDPA message, where the feedback dimension is set by the beamforming initiator in the NDPA message.
  • Field in used to indicate the number of spatial streams that the STA needs to feed back.
  • the beamforming receiving device detects the number of spatial streams that are working
  • the beamforming receiving device detects which spatial streams have data transmissions and confirms the number of spatial streams that are operating.
  • the beamforming receiving device determines whether the number of spatial streams is smaller than a feedback dimension.
  • the beamforming receiving device determines whether the number of spatial streams in operation is less than the feedback dimension in the NDPA message, and if so, triggers step 504, and if not, triggers step 505.
  • the beamforming receiving device feeds back a null data packet to the beamforming initiator.
  • the beamforming receiving device feeds back the null data packet to the beamforming initiator device.
  • the VHT Compressed Beamforming message may be assembled for the beamforming receiving device, and the VHT Compressed Beamforming message does not carry any spatial stream measurement information. Then, the beamforming is initiated. The device feeds back the VHT Compressed Beamforming message.
  • the beamforming receiving device feeds back the null data packet to the beamforming initiator, so that the beamforming initiator can know that the spatial stream actually working by the beamforming receiver is smaller than the feedback set by the beamforming initiator in the NDPA message.
  • the beamforming initiator can react in time, for example, a new NDPA message occurs again for measurement.
  • the beamforming receiving device returns a feedback dimension and its corresponding spatial stream measurement information to the beamforming initiator.
  • the beamforming receiving device After confirming that the number of working spatial streams is greater than or equal to the feedback dimension in the NDPA message, the beamforming receiving device calculates the feedback dimension and the corresponding spatial stream measurement information according to the received NDP message, and obtains a feedback dimension corresponding to After the spatial stream measurement information, the beamforming receiving device returns the spatial stream measurement information corresponding to the feedback dimension to the beamforming initiator, so that the beamforming initiator can calculate the relevant Q operation matrix according to the spatial stream measurement information, and guide the subsequent Transceiver work, thereby improving the communication performance of the entire system.
  • the Q operation matrix is an indication beamforming method derived by the beamforming initiator according to the V matrix information fed back by each beamforming receiving device. The operation matrix of the device for data transceiving work.
  • the embodiment of the present invention further provides a method for solving the problem of the beamforming receiving device feeding back spatial stream measurement information from the beamforming initiator device.
  • the hollow packet notification is performed in the embodiment of the present invention.
  • One embodiment of a message sending method includes:
  • the beamforming initiator acquires the number of antennas that the beamforming receiver is working. In the process of capability negotiation between the beamforming initiator and the beamforming receiver, the beamforming initiator acquires the number of antennas that the beamforming receiver is working on.
  • the beamforming initiator sets the feedback dimension in the NDPA message according to the number of antennas.
  • the beamforming initiator needs to send the NDPA message to the beamforming receiver.
  • the beamforming initiator sets the feedback dimension in the NDPA message according to the number of antennas that the beamforming receiver is working, such that the feedback dimension is less than the number of antennas. .
  • the beamforming initiator sends an NDPA message to the beamforming receiver.
  • the beamforming initiator sends the NDPA message to the beamforming receiving device, so that the beamforming receiving device feeds back the spatial stream measurement information corresponding to the feedback dimension according to the NDPA message.
  • the beamforming initiator obtains the number of antennas that the beamforming receiver is working in during the capability negotiation with the beamforming receiver, so that the beamforming initiator can construct the NDPA message according to the beam.
  • the number of antennas that the shaped receiving device is working must be greater than or equal to the feedback dimension in the NDPA message to set the feedback dimension, so that the beamforming receiving device can feed back and correct the beamforming initiator according to the existing 802.11ac mechanism.
  • Ground space flow measurement information is the number of antennas that the beamforming receiver is working in during the capability negotiation with the beamforming receiver, so that the beamforming initiator can construct the NDPA message according to the beam.
  • the number of antennas that the shaped receiving device is working must be greater than or equal to the feedback dimension in the NDPA message to set the feedback dimension, so that the beamforming receiving device can feed back and correct the beamforming initiator according to the existing 802.11ac mechanism.
  • the logical structure of the beamforming receiving apparatus of the present invention is as follows:
  • the first obtaining unit 701 is configured to obtain a feedback dimension from the null packet notification NDPA message, and the detecting unit 702 is configured to detect the first spatial stream number that is working;
  • the comparing unit 703 is configured to compare the first spatial stream number and the feedback dimension, and compare the obtained smaller value as the second spatial stream number that needs to be fed back;
  • the feedback unit 704 is configured to feed back, to the beamforming initiator, the spatial stream measurement information of the second spatial stream number and the second spatial stream number.
  • a second obtaining unit 705, configured to acquire an NDPA message
  • the matching unit 706 is configured to match the connection identifier number AID of the STA Info field in the NDPA message, and if the AID matches successfully, trigger the first obtaining unit 701.
  • the receiving unit 707 is configured to receive an NDP message, and detect whether the locally stored AID is equal to the AID of the first STAInfo field in the NDPA message, if yes, trigger the comparing unit 703; and the measurement information calculating unit 708 is configured to determine the need After the second spatial stream number is fed back, the spatial stream measurement information of the second spatial stream number is calculated according to the received NDP message.
  • the specific interaction process of each unit in the beamforming receiving apparatus of the embodiment of the present invention is as follows:
  • the first obtaining unit 701 extracts a feedback dimension of the STA Info from the NDPA message, where the feedback dimension is a field set by the beamforming initiator in the NDPA message. , used to indicate the number of spatial streams that the STA needs to feed back.
  • Detection unit 702 detects which of the spatial streams have data transmissions and confirms the number of first spatial streams that are operating.
  • the second obtaining unit 705 of the beamforming receiving device After extracting the feedback dimension of the STA Info from the NDPA message, the second obtaining unit 705 of the beamforming receiving device first acquires the NDPA message, and if the feedback type (Feeding Type) recorded in the STA Info field in the NDPA message is 0, The transmission is the communication of the SU-MIMO. If the AID of the local cache is the same as the AID of the NDPA STA Info field, the NDPA message is the NDPA message that needs to be received locally. If the local space feedback information needs to be fed back, the first acquisition unit is triggered. 701. Otherwise, the localization is not the beamforming receiving device that is requested to be fed back.
  • the matching unit 706 matches the connection identity number AID of the STA Info field in the NDPA message, specifically: the matching unit 706 sequentially extracts the STA Info field in the NDPA message, and compares the AID and the local storage in the STA Info field one by one. If the AID is the same, if the same AID is found, the AID is successfully matched, indicating that the NDPA message is the local NDP that needs to be received. A message, the local need to feed back the spatial stream measurement information, trigger the first obtaining unit 701; if the same AID is not found, the AID fails to match. Indicates that the local is not a beamforming receiver that is requesting feedback.
  • the comparing unit 703 After obtaining the feedback dimension of the NDPA message and the first spatial stream number being worked, the comparing unit 703 compares the first spatial stream number in operation with the feedback dimension in the NDPA message, and compares the obtained smaller value as a requirement. The number of second spatial streams fed back.
  • the receiving unit 707 of the beamforming receiving device receives the NDP message, and detects whether the AID in the NDP message is equal to the AID of the first STA Info field in the NDPA message. If so, the comparison unit 703 is triggered.
  • the measurement information calculation unit 708 calculates spatial flow measurement information corresponding to the second spatial stream number based on the received NDP message.
  • the feedback unit 704 feeds back the second spatial stream number and its corresponding spatial stream measurement information to the beamforming initiator, so that the beamforming initiator can measure the information according to the spatial streams. Calculate the relevant Q operation matrix to guide the subsequent transceiver work, thereby improving the communication performance of the entire system.
  • the beamforming receiving device encapsulates the second spatial stream number and its corresponding spatial stream measurement information in a VHT Compressed Beamforming message, and then feeds back the VHT Compressed to the beamforming initiator. Beamforming message.
  • Another embodiment of the beamforming receiving apparatus in the embodiment of the present invention includes:
  • a dimension obtaining unit 801 configured to obtain a feedback dimension from the null packet notification NDPA message, and a spatial stream number detecting unit 802, configured to detect the number of spatial streams that are working;
  • the determining unit 803 is configured to determine whether the number of the spatial streams is smaller than the feedback dimension, and if yes, trigger the empty packet feedback unit.
  • the null packet feedback unit 804 is configured to feed back a null data packet to the beamforming initiator.
  • the air bag assembly module 8041 is configured to assemble a VHT Compressed Beamforming message, where the VHT Compressed Beamforming message does not carry any spatial stream measurement information;
  • the null packet feedback module 8042 is configured to feed back the VHT Compressed Beamforming message to the beamforming initiator.
  • the specific interaction process of each unit in the beamforming receiving apparatus in the embodiment of the present invention is as follows: The beamforming receiving apparatus receives the NDPA message, and confirms that the local beamforming receiving apparatus is requested by the beamforming initiator, and the dimension obtaining unit 801 is from the NDPA message.
  • the feedback dimension of the STAInfo is extracted, and the feedback dimension is a field set by the beamforming initiator in the NDPA message, and is used to indicate the number of spatial streams that the STA needs to feed back.
  • the spatial stream number detecting unit 802 detects which spatial streams have data transmissions and confirms the number of spatial streams that are operating.
  • the determining unit 803 determines whether the number of working spatial streams is smaller than the feedback dimension in the NDPA message, and if so, triggers the null packet feedback unit 804 to beamforming
  • the initiating device feeds back the null data packet.
  • the VHT Compressed Beamforming message may be assembled by the empty packet assembling module 8041.
  • the VHT Compressed Beamforming message does not carry any spatial stream measurement information.
  • the null packet feedback module 8042 feeds back to the beamforming initiator device. VHT Compressed Beamforming message.
  • An embodiment of the beamforming initiating apparatus of the present invention for performing the foregoing method for transmitting a null packet notification message.
  • An embodiment of the beamforming initiating apparatus in the embodiment of the present invention includes:
  • the antenna number obtaining unit 901 is configured to acquire, during a capability negotiation with the beamforming receiving device, the number of antennas that the beamforming receiving device is working on;
  • the feedback dimension setting unit 902 is configured to set a feedback dimension in the NDPA message according to the number of the antennas, so that the feedback dimension is smaller than the number of the antennas;
  • the message sending unit 903 is configured to send the foregoing NDPA message to the beamforming receiving device.
  • the specific interaction process of each unit in the beamforming initiator device is as follows: In the process of capability negotiation between the beamforming initiator and the beamforming receiver, the antenna number acquisition unit 901 of the beamforming initiator obtains the beamforming receiver. The number of antennas that work.
  • the beamforming initiator After obtaining the number of antennas that the beamforming receiving device is operating, in the process of high throughput detection by the beamforming initiator and the beamforming receiver, the beamforming initiator needs to send an NDPA message to the beamforming receiver, and the beam In the process of framing the NDPA message by the forming initiator, the feedback dimension setting unit 902 is working according to the beamforming receiving device. The number of antennas is set to the feedback dimension in the NDPA message such that the feedback dimension is less than the number of antennas. After the framing of the NDPA message is completed, the message sending unit 903 sends the NDPA message to the beamforming receiving device, so that the beamforming receiving device feeds back the spatial stream measurement information corresponding to the feedback dimension according to the NDPA message.
  • the beamforming initiator obtains the number of antennas that the beamforming receiver is working in during the capability negotiation with the beamforming receiver, so that the beamforming initiator can construct the NDPA message according to the beam.
  • the number of antennas that the shaped receiving device is working must be greater than or equal to the feedback dimension in the NDPA message to set the feedback dimension, so that the beamforming receiving device can feed back and correct the beamforming initiator according to the existing 802.11ac mechanism.
  • Ground space flow measurement information is the number of antennas that the beamforming receiver is working in during the capability negotiation with the beamforming receiver, so that the beamforming initiator can construct the NDPA message according to the beam.
  • the number of antennas that the shaped receiving device is working must be greater than or equal to the feedback dimension in the NDPA message to set the feedback dimension, so that the beamforming receiving device can feed back and correct the beamforming initiator according to the existing 802.11ac mechanism.
  • the disclosed apparatus and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software function unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a computer device which can be a personal computer, The server, or network device, etc.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, and the program code can be stored. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例公开了一种数据反馈方法以及相关装置,用于无论波束成形接收装置实际正在工作的天线数是否大于或者等于波束成形发起装置在NDPA消息中设置的反馈维数,波束成形发起装置都可以根据波束成形接收装置的相关信道信息来调整通信状态。本发明实施例方法包括:波束成形接收装置从空包通知NDPA消息中获取反馈维数;检测正在工作的第一空间流数;比较所述第一空间流数和所述反馈维数,并将比较所得的较小值作为需要反馈的第二空间流数;向波束成形发起装置反馈所述第二空间流数及所述第二空间流数的空间流测量信息。

Description

一种数据反馈方法以及相关装置 技术领域
本发明涉及通信领域, 尤其涉及一种数据反馈方法以及相关装置。
背景技术
IEEE802.1 lac是 IEEE802.11协议系列的一个分支,其引入了高吞吐率探测 机制, 这是一种存在于波束成形发起装置 (Beamformer )和波束成形接收装 置 (Beamformee )之间的信道侦测机制。 通过这种机制, 波束成形发起装置 可以更好的知道和波束成形接收装置之间的信道情况, 从而通过调整相关参 数来达到改善通信状况的目的。通常情况下,对基本服务集( BSS, Basic Service Set ) 构成的网络来说, Beamformer对应的物理设备为接入点 (AP , Access point ) , Beamformee对应的物理设备为站点 ( STA, Station ) ; 对非基本服 务集的自组网络来说, Beamformer对应的物理设备可以为某个 STA , Beamformee对应的物理设备可以为其他 STA。
在现有技术中, 为了防止异常情况出现, IEEE802.11ac规定波束成形接收 装置实际正在工作的天线数必须大于或者等于波束成形发起装置在空包通知 ( NDPA, Null Data Packet Announcement ) 消息中设置的反馈维数( NC ) , 因此, 在波束成形接收装置收到 NDPA消息之后, 若发现波束成形接收装置实 际正在工作的天线数小于波束成形发起装置在 NDPA消息中设置的反馈维数, 则波束成形接收装置没有相应处理机制, 导致了标准在逻辑上的不严密和混 乱, 而这最终会影响到最终相关产品的设计。
发明内容
本发明实施例提供了一种数据反馈方法以及相关装置, 用于无论波束成 形接收装置实际正在工作的天线数是否大于或者等于波束成形发起装置在 NDPA消息中设置的反馈维数,波束成形发起装置都可以根据波束成形接收装 置反馈的相关信道信息来调整通信状态。
本发明提供的数据反馈方法, 包括: 波束成形接收装置从空包通知 NDPA 消息中获取反馈维数; 检测正在工作的第一空间流数; 比较所述第一空间流 数和所述反馈维数, 并将比较所得的较小值作为需要反馈的第二空间流数; 向波束成形发起装置反馈所述第二空间流数及所述第二空间流数的空间流测 量信息。
本发明提供的数据反馈方法, 包括: 波束成形接收装置从空包通知 NDPA 消息中获取反馈维数; 所述波束成形接收装置检测正在工作的空间流数; 所 述波束成形接收装置判断所述空间流数是否小于所述反馈维数, 若是, 向波 束成形发起装置反馈空数据包。
本发明提供的空包通知消息发送方法, 包括: 波束成形发起装置在与波 束成形接收装置进行能力协商的过程中, 获取波束成形接收装置正在工作的 天线数; 所述波束成形发起装置根据所述天线数设置 NDPA消息中的反馈维 数, 使得所述反馈维数小于所述天线数; 所述波束成形发起装置向所述波束 成形接收装置发送所述 NDPA消息。
本发明提供的波束成形接收装置, 包括: 第一获取单元, 用于从空包通 知 NDPA消息中获取反馈维数; 检测单元, 用于检测正在工作的第一空间流 数; 比较单元, 用于比较所述第一空间流数和所述反馈维数, 并将比较所得 的较小值作为需要反馈的第二空间流数; 反馈单元, 用于向波束成形发起装 置反馈所述第二空间流数及所述第二空间流数的空间流测量信息。
本发明提供的波束成形接收装置, 包括: 维数获取单元, 用于从空包通 知 NDPA消息中获取反馈维数; 空间流数检测单元, 用于检测正在工作的空 间流数; 判断单元, 用于判断所述空间流数是否小于所述反馈维数, 若是, 则触发空包反馈单元。 空包反馈单元, 用于向波束成形发起装置反馈空数据 包。
本发明提供的波束成形发起装置, 包括: 天线数获取单元, 用于在与波 束成形接收装置进行能力协商的过程中, 获取波束成形接收装置正在工作的 天线数; 反馈维数设置单元, 用于根据所述天线数设置 NDPA消息中的反馈 维数, 使得所述反馈维数小于所述天线数; 消息发送单元, 用于向所述波束 成形接收装置发送所述 NDPA消息。
从以上技术方案可以看出, 本发明实施例具有以下优点: 本发明实施例 中的波束成形接收装置通过比较正在工作的第一空间流数和反馈维数, 将得 到的较小值作为需要反馈的第二空间流数, 并向波束成形发起装置反馈该正 确的正在工作的第二空间流数, 使得波束成形发起装置可以及时获知其实际 的通信状况并对该通信状况作出相应的优化和调整。
附图说明
图 1是本发明实施例中数据反馈方法的一个流程示意图;
图 2是本发明实施例中数据反馈方法的另一个流程示意图;
图 3是本发明实施例中数据反馈方法的一个信令流程图;
图 4是本发明实施例中数据反馈方法的另一个信令流程图;
图 5是本发明实施例中数据反馈方法的另一个流程示意图;
图 6是本发明实施例中空包通知消息发送方法的一个流程示意图; 图 7是本发明实施例中波束成形接收装置的一个流程示意图;
图 8是本发明实施例中波束成形接收装置的另一个流程示意图; 图 9是本发明实施例中波束成形发起装置的一个流程示意图。
具体实施方式
本发明实施例提供了一种数据反馈方法以及相关装置, 用于无论波束成 形接收装置实际正在工作的天线数是否大于或者等于波束成形发起装置在 NDPA消息中设置的反馈维数,波束成形发起装置都可以根据波束成形接收装 置的相关信道信息来调整通信状态。 通常情况下, 对基本服务集(BSS , Basic Service Set )构成的网络来说, 波束成形发起装置( Beamformer )对应的物理 设备为接入点(AP, Access point ), 波束成形接收装置 (Beamformee)对应的物 理设备为站点(STA, Station ); 对非基本服务集的自组网络来说, Beamformer 对应的物理设备可以为某个 STA, Beamformee对应的物理设备可以为其他 STA。
请参阅图 1 , 本发明实施例中数据反馈方法的一个实施例包括:
101、 波束成形接收装置从波束成形发起装置发送的空包通知消息中获取 反馈维数;
波束成形接收装置接收 NDPA消息, 确认本地为被波束成形发起装置请 求反馈的波束成形接收装置; 再从该 NDPA消息中提取站点信息 (STA Info, STA Information )的反馈维数,该反馈维数为波束成形发起装置设置在 NDPA 消息中的字段 Nc Index的值加 1得到,用于指示 STA所需要反馈的空间流数。 102、 波束成形接收装置检测正在工作的第一空间流数;
波束成形接收装置检测在哪几个空间流上有数据传输, 确认正在工作的 第一空间流数。
103、 波束成形接收装置比较第一空间流数和反馈维数;
波束成形接收装置比较正在工作的第一空间流数和 NDPA消息中的反馈 维数, 并将比较所得的较小值作为需要反馈的第二空间流数。
在 IEEE802.11ac中规定波束成形接收装置实际正在工作的天线数必须大 于或者等于波束成形发起装置在 NDPA消息中设置的反馈维数, 而在实际应 用中, 可能由于波束成形接收装置重配置后没有及时告知波束成形发起装置, 而此时波束成形发起装置已经把探测请求发出; 或者, 由于天线失灵, 使得 波束成形接收装置无法检测到应有的天线数等原因, 造成波束成形接收装置 实际正在工作的天线数小于波束成形发起装置在 NDPA消息中设置的反馈维 数。 此时, 若波束成形接收装置强制反馈一些不支持空间流的无效的信息或 不做任何反馈, 则会导致波束成形发起装置错误地估计了当前的信道情况或 迟迟不能进行通信状况优化的情况, 从而影响波束成形接收装置与波束成形 发起装置的实际通信效果。 而在本发明实施例中, 在了比较上述第一空间流 数和反馈维数的大小后, 以其比较得到的较小值作为需要反馈的第二空间流 数, 则无论波束成形接收装置实际正在工作的天线数是否大于或者等于波束 成形发起装置在 NDPA消息中设置的反馈维数, 波束成形接收装置都可以向 波束成形发起装置反馈正确的当前正在工作的空间流数。
104、 波束成形接收装置向波束成形发起装置反馈第二空间流数及其对应 的空间流测量信息。
在得到上述第二空间流数之后, 波束成形接收装置计算该第二空间流数 中每个空间流的空间流测量信息, 并向波束成形发起装置反馈该第二空间流 数及其对应的空间流测量信息, 使得波束成形发起装置可以根据这些空间流 测量信息计算出相关的 V操作矩阵, 指导后续的收发工作, 从而提高整个系 统的通信性能。
该空间流测量信息可以包括: 各个空间流所对应的平均信噪比信息 ( Average SNR ), V矩阵信息( Feedback Matrix V )和信噪比差值信息( Delta SNR )。
为了防止异常情况出现, IEEE802.11ac规定波束成形接收装置实际正在工 作的天线数必须大于或者等于波束成形发起装置在空包通知 (NDPA, Null Data Packet Announcement ) 消息中设置的反馈维数(NC ) , 这样波束成形接 收装置才会向波束成形发起装置返回反馈维数的相关信道信息, 从而使得波 束成形发起装置可以根据该反馈维数的相关信道信息调整通信状态; 若波束 成形接收装置实际正在工作的空间流数小于反馈维数的情景, 则会导致如下 两种结果: 1、 波束成形接收装置可能会强制按照的反馈维数所指示的空间流 数值, 对某些不支持的空间流反馈无效的信息, 但是波束成形发起装置并不 知晓, 从而导致波束成形发起装置错误地估计了当前的信道情况并据此进行 错误的参数配置; 2、 波束成形接收装置可能会认为自己不能支持反馈维数所 指示的空间流数值, 所以不做任何反馈, 而这导致了该波束成形接收装置实 际正在工作的空间流的信息不能被波束成形发起装置所知道, 从而迟迟不能 进行通信状况的优化, 这会在很大程度上影响波束成形接收装置的实际通信 效果。
本发明实施例中的波束成形接收装置通过比较正在工作的第一空间流数 和反馈维数, 将得到的较小值作为需要反馈的第二空间流数, 并向波束成形 发起装置反馈该正确的正在工作的第二空间流数, 使得波束成形发起装置可 以及时获知其实际的通信状况并对该通信状况作出相应的优化和调整。
为了便于理解, 下面以一具体应用场景对上述的实施例中描述的数据反 馈方法进行详细描述, 请参考图 2 , 本发明实施例中数据反馈方法的另一个实 施例包括:
201、 波束成形接收装置获取空包通知消息;
高吞吐率探测机制可以应用于两种场景: 单用户多入多出 SU-MIMO ( Single-user multiple input multiple output ) 场景和多用户多入多 出 ( MU-MIMO, Multi-user multiple input multiple output ) 场景。
在 SU-MIMO 场景中, 是波束成形接收装置与波束成形发起装置一对一 进行的通信(具体的信令流程图可以参考图 3 , 图中的 TXOP为传输机会, Transmit opportunity; 图中的 SIFS为短帧间距, Short Inter-Frame Space ), 因 此,当波束成形接收装置接收到单播的 NDPA消息时,若该 NDPA消息中 STA Info 字段所记录的反馈类型 (Feedback Type ) 为 0 , 则说明这次传输为 SU-MIMO的通信,如果本地存储的 AID与 NDPA中的 STA Info中的 AID匹 配, 则该 NDPA消息就是波束成形接收装置所需要的 NDPA消息。
而 MU-MIMO场景中, 是一个波束成形发起装置对多个波束成形接收装 置的通信(具体的信令流程图可以参考图 4 ), 因此, 波束成形接收装置所接 收到 NDPA消息为波束成形发起装置发送的广播包, 因此, 当波束成形接收 装置接收到 NDPA消息时, 若该 NDPA消息中 STA Info字段所记录的反馈类 型 (Feedback Type )为 1 , 则说明这次传输为 MU-MIMO的通信, 波束成形 接收装置需要进行连接身份号 (AID, Association ID ) 匹配。
202、 波束成形接收装置进行连接身份号的匹配;
波束成形接收装置依次提取上述 NDPA消息中的 STA Info字段, 并依次 逐个比较该 STA Info字段中的 AID和本地存储的 AID是否相同,若找到相同 的 AID,则 AID匹配成功,说明该 NDPA消息为本地需要接收的 NDPA消息, 本地需要反馈空间流测量信息, 则触发步骤 203; 若没有找到相同的 AID, 则 AID匹配失败, 说明本地不是被指定请求反馈的波束成形接收装置。
203、 波束成形接收装置从空包通知中获取反馈维数;
在确认本地为被波束成形发起装置请求反馈的波束成形接收装置之后, 本地从该 NDPA消息中提取并保存 STA Info的反馈维数和反馈类型。
204、 波束成形接收装置检测正在工作的第一空间流数;
本实施例中的步骤 204的内容与前述图 1所示的实施例中步骤 102的内 容相同, 此处不再赘述。
205、 波束成形接收装置接收空包消息或波束成形报告查询消息; 波束成形接收装置接收空包(NDP, Null Data Packet )消息, 并检测本地 存储的 AID是否等于上述 NDPA消息中的第一个 STAInfo字段的 AID,若是, 则触发步骤 206;
或,
波束成形接收装置检测是否收到波束成形 告查询 (Beamforming report poll ) 消息, 若是, 则触发步骤 206。 请参阅图 4,在 MU-MIMO场景中,波束成形发起装置会先发一个 NDPA 消息的广播包通知所有相关的波束成形接收装置做好探测准备。 接下来波束 成形发起装置会发送一个 NDP消息的广播包, 所有相关的波束成形接收装置 针对收到的 NDP消息的广播包计算相关的信道反馈信息, 需要注意的是在收 到 NDP 消息的广播包后, 只有当波束成形接收装置的 AID 和先前收到的 NDPA消息的广播包的第一个 STA Info字段中的 AID相等, 才可以立即向波 束成形发起装置发送根据收到的 NDP 消息的消息计算得到的空间流测量信 息。 对于其他的波束成形接收装置, 当它们分别收到来自波束成形发起装置 的波束成形 4艮告查询 ( Beamforming Repot Poll ) 的时候, 若之前该波束成形 接收装置已经收到 NDP消息的广播包, 则向波束成形发起装置发送根据收到 的 NDP消息的广播包计算得到的空间流测量信息; 若没有收到收到 NDP消 息的广播包, 则向波束成形发起装置发送空的数据包或者不反馈。
206、 波束成形接收装置计算第二空间流数的空间流测量信息; 波束成形接收装置根据接收到的 NDP消息计算上述第二空间流数对应的 空间流测量信息。
207、 波束成形接收装置向波束成形发起装置反馈第二空间流数及其对应 的空间流测量信息。
波束成形接收装置向波束成形发起装置反馈第二空间流数及其对应的空 间流测量信息, 使得波束成形发起装置可以根据这些空间流测量信息计算出 相关的 V操作矩阵, 指导后续的收发工作, 从而提高整个系统的通信性能。 具体的, 波束成形接收装置将该第二空间流数及其对应的空间流测量信息封 装在高吞吐率波束成形压缩包(VHT Compressed Beamforming ) 消息中, 然 后, 向波束成形发起装置反馈该 VHT Compressed Beamforming消息。
上面仅以一些例子对本发明实施例中的应用场景进行了说明, 可以理解 的是, 在实际应用中, 还可以有更多的应用场景, 具体此处不作限定。
为了避免波束成形发起装置错误地估计了当前的信道情况或迟迟不能进 行通信状况优化的情况, 除了上述实施例所描述的方法, 还可以使用其它的 反馈机制, 具体请参阅图 5 , 本发明实施例中数据反馈方法的另一个实施例包 括: 501、 波束成形接收装置从空包通知中获取反馈维数;
波束成形接收装置接收 NDPA消息, 确认本地为被波束成形发起装置请 求反馈的波束成形接收装置;再从该 NDPA消息中提取 STAInfo的反馈维数, 该反馈维数为波束成形发起装置设置在 NDPA消息中的字段, 用于指示 STA 所需要反馈的空间流数。
502、 波束成形接收装置检测正在工作的空间流数;
波束成形接收装置检测在哪几个空间流上有数据传输, 确认正在工作的 空间流数。
503、 波束成形接收装置判断空间流数是否小于反馈维数;
波束成形接收装置判断上述正在工作的空间流数是否小于 NDPA消息中 的反馈维数, 若是, 则触发步骤 504, 若否, 则触发步骤 505。
504、 波束成形接收装置向波束成形发起装置反馈空数据包;
波束成形接收装置向波束成形发起装置反馈空数据包, 具体的, 可以为 波束成形接收装置组装 VHT Compressed Beamforming 消息, 而该 VHT Compressed Beamforming消息中不携带任何空间流测量信息; 然后, 向波束 成形发起装置反馈所述 VHT Compressed Beamforming消息。
在本发明实施例中, 波束成形接收装置向波束成形发起装置反馈空数据 包, 使得波束成形发起装置可以获知波束成形接收装置实际正在工作的空间 流小于波束成形发起装置在 NDPA消息中设置的反馈维数, 波束成形发起装 置可以及时的做出反应, 如, 再次发生新的 NDPA消息进行测量。
505、 波束成形接收装置向波束成形发起装置返回反馈维数及其对应的空 间流测量信息。
在确认正在工作的空间流数大于或等于 NDPA消息中的反馈维数之后, 波束成形接收装置根据接收到的 NDP消息计算该反馈维数及其对应的空间流 测量信息, 在得到反馈维数对应的空间流测量信息之后, 波束成形接收装置 向波束成形发起装置返回该反馈维数对应的空间流测量信息, 使得波束成形 发起装置可以根据这些空间流测量信息计算出相关的 Q操作矩阵, 指导后续 的收发工作, 从而提高整个系统的通信性能。 该 Q操作矩阵为波束成形发起 装置根据各个波束成形接收装置反馈的 V矩阵信息推导出的指示波束成形发 起装置进行数据收发工作的操作矩阵。
除了上述波束成形接收装置端的方法, 本发明实施例还提供了从波束成 形发起装置端解决波束成形接收装置反馈空间流测量信息的问题的相关方 法, 请参阅图 6, 本发明实施例中空包通知消息发送方法的一个实施例包括:
601、 波束成形发起装置获取波束成形接收装置正在工作的天线数; 在波束成形发起装置与波束成形接收装置进行能力协商的过程中, 波束 成形发起装置获取波束成形接收装置正在工作的天线数。
602、 波束成形发起装置根据天线数设置 NDPA消息中的反馈维数; 在波束成形发起装置与波束成形接收装置进行高吞吐率探测的过程中, 波束成形发起装置需要向波束成形接收装置发送 NDPA消息, 而在波束成形 发起装置对该 NDPA消息进行组帧的过程中, 波束成形发起装置根据波束成 形接收装置正在工作的天线数设置 NDPA消息中的反馈维数, 使得该反馈维 数小于该天线数。
603、 波束成形发起装置向波束成形接收装置发送 NDPA消息。
波束成形发起装置向波束成形接收装置发送上述 NDPA消息, 使得波束 成形接收装置根据上述 NDPA消息反馈该反馈维数对应的空间流测量信息。
在本发明实施例中, 波束成形发起装置在与波束成形接收装置进行能力 协商的过程中就获取到波束成形接收装置正在工作的天线数, 使得波束成形 发起装置在构造 NDPA消息时, 可以根据波束成形接收装置正在工作的天线 数必须大于或等于 NDPA消息中的反馈维数来设置反馈维数, 从而使得在波 束成形接收装置端可以按照现有 802.11ac的机制向波束成形发起装置反馈正 确而有效地空间流测量信息。
下面对用于执行上述数据反馈方法的本发明波束成形接收装置的实施例 进行说明, 其逻辑结构请参考图 7 , 本发明实施例中的波束成形接收装置一个 实施例包括:
第一获取单元 701 , 用于从空包通知 NDPA消息中获取反馈维数; 检测单元 702, 用于检测正在工作的第一空间流数;
比较单元 703 , 用于比较上述第一空间流数和上述反馈维数, 并将比较所 得的较小值作为需要反馈的第二空间流数; 反馈单元 704,用于向波束成形发起装置反馈上述第二空间流数及该第二 空间流数的空间流测量信息。
本发明实施例中的波束成形接收装置可以进一步包括:
第二获取单元 705 , 用于获取 NDPA消息;
匹配单元 706 , 用于匹配上述 NDPA消息中站点信息 STA Info字段的连 接身份号 AID, 若该 AID匹配成功, 则触发第一获取单元 701。
接收单元 707 , 用于接收 NDP消息, 并检测本地存储的 AID是否等于上 述 NDPA消息中的第一个 STAInfo字段的 AID, 若是, 则触发比较单元 703; 测量信息计算单元 708, 用于在确定需要反馈的第二空间流数之后, 根据 接收到的 NDP消息计算该第二空间流数的空间流测量信息。
本发明实施例波束成形接收装置中各个单元具体的交互过程如下: 第一获取单元 701从 NDPA消息中提取 STA Info的反馈维数, 该反馈维 数为波束成形发起装置设置在 NDPA消息中的字段, 用于指示 STA所需要反 馈的空间流数。
检测单元 702检测在哪几个空间流上有数据传输, 确认正在工作的第一 空间流数。
在从 NDPA消息中提取 STA Info的反馈维数, 波束成形接收装置的第二 获取单元 705先获取 NDPA消息 , 若该 NDPA消息中 STA Info字段所记录的 反馈类型( Feedback Type )为 0, 则说明这次传输为 SU-MIMO的通信, 如果 本地緩存 AID与 NDPA STA Info字段的 AID相同, 则说明该 NDPA消息为 本地需要接收的 NDPA消息, 本地需要反馈空间流测量信息, 则触发第一获 取单元 701 , 否则说明本地不是被指定请求反馈的波束成形接收装置; 若该 NDPA消息中 STA Info字段所记录的反馈类型 (Feedback Type )为 1 , 则说 明这次传输为 MU-MIMO的通信, 需要触发匹配单元 706匹配上述 NDPA消 息中站点信息 STA Info字段的连接身份号 AID, 具体为: 匹配单元 706依次 提取上述 NDPA消息中的 STA Info字段, 并依次逐个比较该 STA Info字段中 的 AID和本地存储的 AID是否相同, 若找到相同的 AID, 则 AID匹配成功, 说明该 NDPA消息为本地需要接收的 NDPA消息, 本地需要反馈空间流测量 信息, 则触发第一获取单元 701 ; 若没有找到相同的 AID, 则 AID匹配失败, 说明本地不是被指定请求反馈的波束成形接收装置。
在得到 NDPA消息的反馈维数以及正在工作的第一空间流数之后, 比较 单元 703比较正在工作的第一空间流数和 NDPA消息中的反馈维数, 并将比 较所得的较小值作为需要反馈的第二空间流数。 可选的, 在比较单元 703执 行操作之前, 波束成形接收装置的接收单元 707接收装置接收 NDP消息, 并 检测该 NDP消息中的 AID是否等于上述 NDPA消息中的第一个 STA Info字 段的 AID, 若是, 则触发比较单元 703。
在确认了第二空间流数之后, 测量信息计算单元 708根据接收到的 NDP 消息计算上述第二空间流数对应的空间流测量信息。
在得到第二空间流数对应的空间流测量信息之后, 反馈单元 704 向波束 成形发起装置反馈第二空间流数及其对应的空间流测量信息, 使得波束成形 发起装置可以根据这些空间流测量信息计算出相关的 Q操作矩阵, 指导后续 的收发工作, 从而提高整个系统的通信性能。 具体的, 波束成形接收装置将 该第二空间流数及其对应的空间流测量信息封装在高吞吐率波束成形压缩包 ( VHT Compressed Beamforming ) 消息中, 然后, 向波束成形发起装置反馈 该 VHT Compressed Beamforming消息。
下面对用于执行上述数据反馈方法的本发明波束成形接收装置的实施例 进行说明, 其逻辑结构请参考图 8 , 本发明实施例中波束成形接收装置的另一 个实施例包括:
维数获取单元 801 , 用于从空包通知 NDPA消息中获取反馈维数; 空间流数检测单元 802, 用于检测正在工作的空间流数;
判断单元 803 , 用于判断上述空间流数是否小于上述反馈维数, 若是, 则 触发空包反馈单元。
空包反馈单元 804, 用于向波束成形发起装置反馈空数据包。
本发明实施例中的空包反馈单元可以包括:
空包组装模块 8041 , 用于组装 VHT Compressed Beamforming消息, 该 VHT Compressed Beamforming消息中不携带任何空间流测量信息;
空包反馈模块 8042, 用于向波束成形发起装置反馈该 VHT Compressed Beamforming消息。 本发明实施例波束成形接收装置中各个单元具体的交互过程如下: 波束成形接收装置接收 NDPA消息, 确认本地为被波束成形发起装置请 求反馈的波束成形接收装置;维数获取单元 801从 NDPA消息中提取 STAInfo 的反馈维数, 该反馈维数为波束成形发起装置设置在 NDPA消息中的字段, 用于指示 STA所需要反馈的空间流数。
空间流数检测单元 802检测在哪几个空间流上有数据传输, 确认正在工 作的空间流数。
在得到 NDPA消息的反馈维数以及正在工作的空间流数之后, 判断单元 803判断上述正在工作的空间流数是否小于 NDPA消息中的反馈维数, 若是, 则触发空包反馈单元 804 向波束成形发起装置反馈空数据包, 具体的, 可以 由空包组装模块 8041 组装 VHT Compressed Beamforming 消息, 该 VHT Compressed Beamforming消息中不携带任何空间流测量信息; 然后空包反馈 模块 8042向波束成形发起装置反馈所述 VHT Compressed Beamforming消息。
下面对用于执行上述空包通知消息发送方法的本发明波束成形发起装置 的实施例进行说明, 其逻辑结构请参考图 9, 本发明实施例中的波束成形发起 装置一个实施例包括:
天线数获取单元 901 , 用于在与波束成形接收装置进行能力协商的过程 中, 获取波束成形接收装置正在工作的天线数;
反馈维数设置单元 902 ,用于根据上述天线数设置 NDPA消息中的反馈维 数, 使得该反馈维数小于该天线数;
消息发送单元 903 , 用于向波束成形接收装置发送上述 NDPA消息。 本发明实施例波束成形发起装置中各个单元具体的交互过程如下: 在波束成形发起装置与波束成形接收装置进行能力协商的过程中, 波束 成形发起装置的天线数获取单元 901 获取波束成形接收装置正在工作的天线 数。
在获取到波束成形接收装置正在工作的天线数之后, 在波束成形发起装 置与波束成形接收装置进行高吞吐率探测的过程中, 波束成形发起装置需要 向波束成形接收装置发送 NDPA消息, 而在波束成形发起装置对该 NDPA消 息进行组帧的过程中, 反馈维数设置单元 902根据波束成形接收装置正在工 作的天线数设置 NDPA消息中的反馈维数, 使得该反馈维数小于该天线数。 在完成 NDPA消息的组帧后, 消息发送单元 903向波束成形接收装置发 送上述 NDPA消息, 使得波束成形接收装置根据上述 NDPA消息反馈该反馈 维数对应的空间流测量信息。 在本发明实施例中, 波束成形发起装置在与波 束成形接收装置进行能力协商的过程中就获取到波束成形接收装置正在工作 的天线数, 使得波束成形发起装置在构造 NDPA消息时, 可以根据波束成形 接收装置正在工作的天线数必须大于或等于 NDPA消息中的反馈维数来设置 反馈维数, 从而使得在波束成形接收装置端可以按照现有 802.11ac的机制向 波束成形发起装置反馈正确而有效地空间流测量信息。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的装置和方法可 以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外 的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或 一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或 直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信连 接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用软件功能单 元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本 发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的 全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个 存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步 骤。 而前述的存储介质包括: U盘、移动硬盘、只读存储器(ROM, Read-Only Memory )、 随机存取存者器( RAM, Random Access Memory ), 磁碟或者光盘 等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种数据反馈方法, 其特征在于, 包括:
波束成形接收装置从空包通知 NDPA消息中获取反馈维数;
所述波束成形接收装置检测正在工作的第一空间流数;
所述波束成形接收装置比较所述第一空间流数和所述反馈维数, 并将比 较所得的较小值作为需要反馈的第二空间流数;
所述波束成形接收装置向波束成形发起装置反馈所述第二空间流数及所 述第二空间流数的空间流测量信息。
2、根据权利要求 1所述的方法,其特征在于, 所述空间流测量信息包括: 各个空间流所对应的平均信噪比信息, V矩阵信息和信噪比差值信息。
3、 根据权利要求 1所述的方法, 其特征在于, 所述波束成形接收装置从 NDPA消息中获取反馈维数之前, 包括:
所述波束成形接收装置获取所述 NDPA消息;
所述波束成形接收装置匹配所述 NDPA消息中站点信息 STA Info字段的 连接身份号 AID;
若所述 AID匹配成功,则触发所述从 NDPA消息中获取反馈维数的步骤。
4、 根据权利要求 3所述的方法, 其特征在于, 所述波束成形接收装置匹 配所述 NDPA消息中 STA Info字段的 AID , 包括:
所述波束成形接收装置依次提取所述 NDPA消息中的 STAInfo字段; 所述波束成形接收装置逐个比较所述 STAInfo字段中的 AID和本地存储 的 AID是否相同, 若找到相同的 AID, 则 AID匹配成功, 若没有找到相同的
AID, 则 AID匹配失败。
5、 根据权利要求 3所述的方法, 其特征在于, 所述波束成形接收装置比 较所述第一空间流数和所述反馈维数之前, 包括:
所述波束成形接收装置接收空包 NDP消息,并检测本地存储的 AID是否 等于所述 NDPA消息中的第一个 STA Info字段的 AID, 若是, 则触发所述比 较所述第一空间流数和所述反馈维数的步骤。
6、 根据权利要求 5所述的方法, 其特征在于, 所述波束成形接收装置向 波束成形发起装置反馈所述第二空间流数及所述第二空间流数的空间流测量 信息之前, 包括:
所述波束成形接收装置根据接收到的所述 NDP消息计算所述第二空间流 数的空间流测量信息。
7、 根据权利要求 1至 5任意一项所述的方法, 其特征在于, 所述波束成 形接收装置向波束成形发起装置反馈所述第二空间流数及所述第二空间流数 的空间流测量信息, 包括:
所述波束成形接收装置将所述第二空间流数及所述第二空间流数的空间 流测量信息封装在高吞吐率波束成形压缩包 VHT Compressed Beamforming消 息中;
所述波束成形接收装置向所述波束成形发起装置反馈所述 VHT Compressed Beamforming消息。
8、 一种数据反馈方法, 其特征在于, 包括:
波束成形接收装置从空包通知 NDPA消息中获取反馈维数;
所述波束成形接收装置检测正在工作的空间流数;
所述波束成形接收装置判断所述空间流数是否小于所述反馈维数, 若是, 向波束成形发起装置反馈空数据包。
9、 根据权利要求 8所述的方法, 其特征在于, 所述向波束成形发起装置 反馈空数据包, 包括:
所述波束成形接收装置组装 VHT Compressed Beamforming消息, 所述 VHT Compressed Beamforming消息中携带有空的 V矩阵信息;
所述波束成形接收装置向波束成形发起装置反馈所述 VHT Compressed Beamforming消息。
10、 一种空包通知消息发送方法, 其特征在于, 包括:
波束成形发起装置在与波束成形接收装置进行能力协商的过程中, 获取 波束成形接收装置正在工作的天线数;
所述波束成形发起装置根据所述天线数设置 NDPA消息中的反馈维数, 使得所述反馈维数小于所述天线数;
所述波束成形发起装置向所述波束成形接收装置发送所述 NDPA消息。
11、 一种波束成形接收装置, 其特征在于, 包括: 第一获取单元, 用于从空包通知 NDPA消息中获取反馈维数; 检测单元, 用于检测正在工作的第一空间流数;
比较单元, 用于比较所述第一空间流数和所述反馈维数, 并将比较所得 的较小值作为需要反馈的第二空间流数;
反馈单元, 用于向波束成形发起装置反馈所述第二空间流数及所述第二 空间流数的空间流测量信息。
12、 根据权利要求 11所述的装置, 其特征在于, 所述装置还包括: 第二获取单元, 用于获取 NDPA消息;
匹配单元, 用于匹配所述 NDPA消息中站点信息 STA Info字段的连接身 份号 AID, 若所述 AID匹配成功, 则触发所述第一获取单元。
13、 根据权利要求 11所述的装置, 其特征在于, 所述装置还包括: 接收单元, 用于接收 NDP消息, 并检测本地緩存的 AID是否等于所述
NDPA消息中的第一个 STAInfo字段的 AID, 若是, 则触发所述比较单元; 测量信息计算单元, 用于在确定需要反馈的第二空间流数之后, 根据接 收到的 NDP消息计算所述第二空间流数的空间流测量信息。
14、 一种波束成形接收装置, 其特征在于, 包括:
维数获取单元, 用于从空包通知 NDPA消息中获取反馈维数;
空间流数检测单元, 用于检测正在工作的空间流数;
判断单元, 用于判断所述空间流数是否小于所述反馈维数, 若是, 则触 发空包反馈单元;
空包反馈单元, 用于向波束成形发起装置反馈空数据包。
15、根据权利要求 14所述的装置,其特征在于, 所述空包反馈单元包括: 空包组装模块,用于组装 VHT Compressed Beamforming消息,所述 VHT
Compressed Beamforming消息中携带有空的 V矩阵信息;
空包反馈模块, 用于向波束成形发起装置反馈所述 VHT Compressed Beamforming消息。
16、 一种波束成形发起装置, 其特征在于, 包括:
天线数获取单元, 用于在与波束成形接收装置进行能力协商的过程中, 获取波束成形接收装置正在工作的天线数; 反馈维数设置单元,用于根据所述天线数设置 NDPA消息中的反馈维数, 使得所述反馈维数小于所述天线数;
消息发送单元, 用于向所述波束成形接收装置发送所述 NDPA消息。
PCT/CN2012/081255 2011-09-14 2012-09-11 一种数据反馈方法以及相关装置 WO2013037287A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP16169832.9A EP3113384B1 (en) 2011-09-14 2012-09-11 Computer readable storage medium for a feedback method
ES12829200.0T ES2586828T3 (es) 2011-09-14 2012-09-11 Método de respuesta de datos y dispositivo para el mismo
EP12829200.0A EP2605419B1 (en) 2011-09-14 2012-09-11 Data feedback method and device thereof
EP20153318.9A EP3745609A1 (en) 2011-09-14 2012-09-11 Data feedback methods and related apparatuses
JP2013534160A JP5575988B2 (ja) 2011-09-14 2012-09-11 データフィードバック方法及び関連装置
US13/838,420 US20130215947A1 (en) 2011-09-14 2013-03-15 Data feedback methods and related apparatuses
US13/869,479 US20130235947A1 (en) 2011-09-14 2013-04-24 Data feedback methods and related apparatuses
US15/854,489 US10256874B2 (en) 2011-09-14 2017-12-26 Data feedback methods and related apparatuses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110271898.2A CN103001682B (zh) 2011-09-14 2011-09-14 一种数据反馈方法以及相关装置
CN201110271898.2 2011-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/838,420 Continuation US20130215947A1 (en) 2011-09-14 2013-03-15 Data feedback methods and related apparatuses

Publications (1)

Publication Number Publication Date
WO2013037287A1 true WO2013037287A1 (zh) 2013-03-21

Family

ID=47882614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081255 WO2013037287A1 (zh) 2011-09-14 2012-09-11 一种数据反馈方法以及相关装置

Country Status (6)

Country Link
US (3) US20130215947A1 (zh)
EP (3) EP3745609A1 (zh)
JP (1) JP5575988B2 (zh)
CN (1) CN103001682B (zh)
ES (1) ES2586828T3 (zh)
WO (1) WO2013037287A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102304975B1 (ko) * 2014-04-09 2021-09-24 엘지전자 주식회사 사운딩 절차 기반의 프레임 전송 방법 및 장치
US9788317B2 (en) * 2015-03-30 2017-10-10 Intel IP Corporation Access point (AP), user station (STA) and method for channel sounding using sounding trigger frames
US9999069B2 (en) * 2016-03-31 2018-06-12 Qualcomm Incorporated MU-MIMO dynamic bandwidth selection
CN108024376B (zh) 2016-11-04 2021-06-15 华为技术有限公司 无线局域网中的调度方法、接入点和站点
US10194442B2 (en) 2017-02-10 2019-01-29 Qualcomm Incorporated Uplink resources for beam recovery
US10079626B1 (en) * 2017-05-03 2018-09-18 Litepoint Corporation Method for enabling confirmation of expected phase shifts of radio frequency signals emitted from an antenna array
WO2018227546A1 (en) * 2017-06-16 2018-12-20 Thomson Licensing Method and device for channel sounding
US10630357B2 (en) * 2017-06-30 2020-04-21 Qualcomm Incorporated Wireless personal area network transmit beamforming
CN110022613B (zh) * 2018-01-10 2019-12-17 展讯通信(上海)有限公司 波束接收失败的上报方法、用户设备及通信系统
US20220303030A1 (en) * 2019-09-12 2022-09-22 Panasonic Intellectual Property Corporation Of America Communication device and communication method
US20220216937A1 (en) * 2021-01-04 2022-07-07 Samsung Electronics Co., Ltd. System and method for downlink feedback
US11510204B1 (en) * 2021-04-30 2022-11-22 Hewlett Packard Enterprise Development Lp Uplink multi-user transmission beamforming in wireless networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064543A (zh) * 2006-04-27 2007-10-31 索尼株式会社 无线通信系统、无线通信装置及无线通信方法
CN101064544A (zh) * 2006-04-27 2007-10-31 索尼株式会社 无线通信系统、无线通信装置以及无线通信方法
US20080187062A1 (en) * 2007-02-06 2008-08-07 Interdigital Technology Corporation Method and apparatus for multiple-input multiple- output feedback generation
CN101326742A (zh) * 2006-04-27 2008-12-17 索尼株式会社 无线通信系统、无线通信设备和无线通信方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020193146A1 (en) * 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
JP4356756B2 (ja) * 2006-04-27 2009-11-04 ソニー株式会社 無線通信システム、並びに無線通信装置及び無線通信方法
JP2010081360A (ja) * 2008-09-26 2010-04-08 Toshiba Corp 無線通信装置および無線通信方法
US8908519B2 (en) * 2009-01-19 2014-12-09 Nec Corporation SCTP communication method
JP5718346B2 (ja) * 2009-10-23 2015-05-13 マーベル ワールド トレード リミテッド データユニットのプリアンブルを生成又は受信する方法及び装置
US8923219B2 (en) * 2010-02-17 2014-12-30 Qualcomm Incorporated Method and apparatus for supporting adaptive channel state information feedback rate in multi-user communication systems
EP2567467A2 (en) * 2010-05-04 2013-03-13 Celeno Communications Ltd. System and method for channel state related feedback in multi-user multiple-input-multiple-output systems
US9882624B2 (en) * 2010-09-29 2018-01-30 Qualcomm, Incorporated Systems and methods for communication of channel state information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064543A (zh) * 2006-04-27 2007-10-31 索尼株式会社 无线通信系统、无线通信装置及无线通信方法
CN101064544A (zh) * 2006-04-27 2007-10-31 索尼株式会社 无线通信系统、无线通信装置以及无线通信方法
CN101326742A (zh) * 2006-04-27 2008-12-17 索尼株式会社 无线通信系统、无线通信设备和无线通信方法
US20080187062A1 (en) * 2007-02-06 2008-08-07 Interdigital Technology Corporation Method and apparatus for multiple-input multiple- output feedback generation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Proposed TGac Draft Amendment", IEE MENTOR, 19 January 2011 (2011-01-19), pages 1 - 154
See also references of EP2605419A4

Also Published As

Publication number Publication date
JP2013545370A (ja) 2013-12-19
EP2605419A1 (en) 2013-06-19
US20130235947A1 (en) 2013-09-12
US20180123655A1 (en) 2018-05-03
JP5575988B2 (ja) 2014-08-20
EP3113384B1 (en) 2020-02-26
CN103001682B (zh) 2015-03-11
EP2605419A4 (en) 2013-09-04
EP2605419B1 (en) 2016-05-18
ES2586828T3 (es) 2016-10-19
US10256874B2 (en) 2019-04-09
EP3113384A1 (en) 2017-01-04
CN103001682A (zh) 2013-03-27
US20130215947A1 (en) 2013-08-22
EP3745609A1 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
WO2013037287A1 (zh) 一种数据反馈方法以及相关装置
US10727918B2 (en) Interference avoidance for beamforming transmissions in wireless communication devices and systems
EP3245824B1 (en) Location reporting for extremely high frequency (ehf) devices
US9930552B2 (en) Method for indicating channel measurement feedback and sending station
CN109547072B (zh) 信道探测的方法、通信设备和计算机可读存储介质
EP3844521A1 (en) System and method for determining line of sight (los)
CN102769516B (zh) 一种信道测量信息反馈方法及系统
JP6205667B2 (ja) チャンネル情報フィードバックのための方法および装置
US20190373583A1 (en) Beamforming training in orthogonal frequency division multiple access (ofdma) communication systems
WO2019029562A1 (zh) 波束失败恢复方法和用户终端
WO2017112264A1 (en) Initiating and protecting multi-user multiple input multiple output transmissions in communication networks
US8867394B2 (en) Interference avoidance method and apparatus for supporting same in a wireless LAN system
CN108023618B (zh) 基于mimo天线的波束训练方法及装置
CN114600381B (zh) 无线网络的空间重用
CN111937234B (zh) 用于毫米波mimo模式选择的方法和设备
US20180124778A1 (en) Back-to-back uplink transmissions from multiple stations
WO2011124112A1 (zh) 多天线故障检测方法及系统
US20170367101A1 (en) Method and apparatus for de-centralized spatial reuse in wireless communications systems
EP4355020A1 (en) Communication method and device
WO2023088114A1 (zh) 波束恢复方法、波束失败检测方法以及相关装置
US20240015541A1 (en) Client station to client station sensing
WO2023185656A1 (zh) 一种信息传输方法和装置
CN111095969B (zh) 用于信道探测的方法和设备
JPWO2022153458A5 (ja) 端末、無線通信方法、基地局及びシステム
KR20120116872A (ko) 통신 시스템에서 데이터 송수신 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012829200

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013534160

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE