WO2013037196A1 - 全硅基微流体器件的腔体的制造方法 - Google Patents

全硅基微流体器件的腔体的制造方法 Download PDF

Info

Publication number
WO2013037196A1
WO2013037196A1 PCT/CN2012/070970 CN2012070970W WO2013037196A1 WO 2013037196 A1 WO2013037196 A1 WO 2013037196A1 CN 2012070970 W CN2012070970 W CN 2012070970W WO 2013037196 A1 WO2013037196 A1 WO 2013037196A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide layer
cavity
manufacturing
silicon substrate
deep trench
Prior art date
Application number
PCT/CN2012/070970
Other languages
English (en)
French (fr)
Inventor
杨海波
吕宇强
Original Assignee
上海先进半导体制造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海先进半导体制造股份有限公司 filed Critical 上海先进半导体制造股份有限公司
Publication of WO2013037196A1 publication Critical patent/WO2013037196A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00047Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/058Microfluidics not provided for in B81B2201/051 - B81B2201/054
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0315Cavities

Definitions

  • the present invention relates to a method of fabricating a cavity of an all-silicon-based microfluidic device. Background technique
  • Microfluidic devices are widely used in biomedical applications, especially in the precision manufacturing of biomedical devices and in the pharmaceutical industry, such as chemical analysis, biological and chemical detection, drug delivery, molecular separation (such as DNA analysis), amplification, sequencing, or Nucleic acid synthesis, as well as environmental monitoring, etc. [Kovacs 1998].
  • body silicon is usually etched on the surface of the silicon wafer to form one-half of the cavity, and then the two parts of the cavity are glued or formed with materials such as silicon/glass.
  • the silicon wafer of the cavity is bonded to form a closed channel conduit for the passage of liquid flow.
  • Such methods involve bonding and bonding processes.
  • the chip area is large, the cost is high, and the process is complicated. It is possible to introduce contaminated Na and K ions, which is not conducive to the improvement of reliability in mass production. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a method of manufacturing a cavity of an all-silicon-based microfluidic device, which can form a closed cavity without involving a bonding or bonding process.
  • the present invention provides a method for manufacturing a cavity of an all-silicon-based microfluidic device, comprising the steps of:
  • Patterning the oxide layer by using a photolithographic patterning technique and a dry etching technique to expose a plurality of square window patterns required on the surface of the single crystal silicon substrate;
  • the filler material also covers the surface of the oxide layer;
  • the single crystal silicon substrate is etched by using the patterned oxide layer as a mask to form four reaction cells, and the reaction cell is in communication with the cavity.
  • the oxide layer has a thickness of 3000 to 800 ⁇ .
  • the thickness of the oxide layer is determined according to a design depth of the upper deep trench and the lower deep trench and a selection ratio of the etching machine.
  • the side length of the window graphic is 2 ⁇ 6 ⁇ .
  • the etching method of the upper deep trench is a deep reactive ion etching method.
  • the depth of the upper deep trench is 5-20 ⁇ m.
  • the protective layer has a thickness of 4000 ⁇ 600 ⁇ .
  • the etching method of the lower deep trench is a deep reactive ion etching method.
  • the depth of the lower deep trench is 10 ⁇ 30 ⁇ .
  • the wet etched solution is a ruthenium or osmium solution.
  • the filler material is low stress polysilicon.
  • the thickness of the polysilicon covering the surface of the oxide layer is 2 to 5 ⁇ m.
  • the polysilicon has a stress of -30 MPa.
  • the etching method of the reaction cell is a deep reactive ion etching method.
  • the depth of the reaction cell is the sum of the depth of the upper deep trench and the cavity.
  • the present invention has the following advantages:
  • the process is performed based on a single piece of silicon wafer itself, and the cavity is formed by first forming a bottom cavity and then filling a part of the deep groove, and forming a cavity without involving silicon bonding or glue bonding technology. , to form a capillary channel network of microfluidic devices.
  • the invention can integrate the entire analysis system and the signal processing circuit in a single chip, saving The chip area reduces the process difficulty and reduces costs and reliability when mass production is performed.
  • the above described all-silicon based fluid device cavity can be used in the detection of liquid components and levels of capillary channel networks in any biosensor.
  • FIGS. 2 to 15 are diagrams showing a process of manufacturing a cavity of an all-silicon-based microfluidic device according to an embodiment of the present invention. Schematic diagram of the section structure. detailed description
  • FIG. 1 is a flow chart of a method of fabricating a cavity of an all-silicon-based microfluidic device in accordance with one embodiment of the present invention. As shown, the method flow can include:
  • Step S101 is performed to provide a ⁇ 111> crystal orientation single crystal silicon substrate having an oxide layer formed thereon; performing step S102, patterning the oxide layer by using a photolithography patterning technique and a dry etching technique, in the single crystal silicon The surface of the substrate exposes a plurality of square window patterns required;
  • Step S103 using a patterned oxide layer as a mask, etching a single crystal silicon substrate through a window pattern to form a plurality of upper deep trenches;
  • Step S104 depositing a protective layer on the surface of the oxide layer and the sidewalls and the bottom of the plurality of upper deep trenches; performing step S105, removing the protective layer on the surface of the oxide layer and the bottom of the upper deep trench by dry etching to expose the upper layer a single crystal silicon substrate at the bottom of the deep trench;
  • Step S106 using the patterned oxide layer and the protective layer of the upper deep trench sidewall as a mask, continuing to etch the single crystal silicon substrate to form a plurality of lower deep trenches;
  • Step S107 is performed, the lower deep trench is etched by wet etching, and a cavity is formed inside the single crystal silicon substrate;
  • Step S108 is performed, the filling material is used to fill the holes of the plurality of upper deep grooves, the cavity is closed, and the filling material also covers the surface of the oxide layer;
  • step S109 patterning the filling material and the oxide layer by using a lithography patterning technique and a dry etching technique, leaving the positions of the four reaction cells;
  • Step S110 is performed to etch the single crystal silicon substrate by using the patterned oxide layer as a mask to form four reaction cells, and the reaction cell is connected to the cavity.
  • FIGS. 2 to 15 are schematic cross-sectional views showing a manufacturing process of a cavity of an all-silicon-based microfluidic device according to an embodiment of the present invention. It is to be understood that the appended drawings are not intended to be construed as limiting the scope of the invention.
  • a single crystal silicon substrate 001 of a ⁇ 111> crystal orientation is provided, and an oxide layer 002 is formed on the single crystal silicon substrate 001.
  • the oxide layer 002 may have a thickness of 3000 8000 A as a mask for the subsequent first deep trench etching.
  • the thickness of the oxide layer 002 may be determined according to the design depth of the upper deep trench 004 and the lower deep trench 007 and the selection ratio of the etching machine.
  • the oxide layer 002 is patterned by photolithography patterning technology and dry etching technology, and a plurality of square window patterns 003 are formed on the surface of the single crystal silicon substrate 001, and the side of the window pattern 003 is formed.
  • the length can be selected between 2 ⁇ 6 ⁇ .
  • 4 is a plan view of the structure shown in FIG. 3, and FIG. 3 is a cross-sectional view taken along line ⁇ - ⁇ in the structure shown in FIG.
  • the single crystal silicon substrate 001 is etched through the window pattern 003 by, for example, deep reactive ion etching (DRIE) using the patterned oxide layer 002 as a mask, in the single crystal silicon substrate 001.
  • DRIE deep reactive ion etching
  • a plurality of upper deep trenches 004 are formed.
  • the depth of the upper deep trench 004 may be 5-20 ⁇ m.
  • a protective layer 005 is deposited on the surface of the oxide layer 002 and the sidewalls and bottom portions of the plurality of upper deep trenches 004 by, for example, a PECVD method.
  • the material of the protective layer 005 may be TEOS, and the thickness thereof may be 4000 ⁇ 600 ⁇ . In fact, even if the thickness of the protective layer 005 deposited on the surface of the oxide layer 002 is 6000 ⁇ , due to the limitation of the size of the hole of the upper deep trench 004, the protective layer 005 actually deposited on the sidewall and bottom of the upper deep trench 004 is It is about 4000 miles.
  • the surface of the oxide layer 002 and the protective layer 005 at the bottom of the upper deep trench 004 are removed by a dry etching technique to expose the single crystal silicon substrate 001 at the bottom of the upper deep trench 004, so that the silicon in the next process is deep.
  • the trench etching is performed.
  • DRIE deep reactive ion etching
  • the lower deep trench 007 is etched by wet etching to form a cavity 008 inside the single crystal silicon substrate 001.
  • the wet etched solution may be a ruthenium or osmium solution. Since the upper deep trench 004 is protected by a protective layer 005, the anisotropic etching process is only performed in the lower deep trench portion 007. The etching rate is substantially zero in the ⁇ 111> crystal orientation in the direction of the surface of the vertical single crystal silicon substrate 001, and is performed only in the other two directions, so that the cavity 008 designed according to the layout can be obtained.
  • Figure 10 is a plan view of the structure shown in Figure 9 taken along line BB'
  • Figure 9 is a cross-sectional view of the structure shown in Figure 10.
  • the direction of the flat side of the single crystal silicon substrate 001 is parallel to the X axis
  • the width and length of the three grooves 008 along the x-axis direction are only related to the value of the design layout, and the length of the groove 008 along the X-axis direction. It is only related to the value of the design layout, and its width can be adjusted by controlling the corrosion time.
  • the number of grooves in the X and ⁇ directions can be adjusted according to design requirements (may be thousands), the width of the groove 008' is generally 30 ⁇ 50 ⁇ , and the length is generally lmm ⁇ 5cm, forming a capillary channel in the microfluidic device. Network part.
  • the filling material 009 is used to fill the holes of the plurality of upper deep grooves 004 to close the cavity 008.
  • the fill material 009 can be low stress polysilicon. Specifically, a layer of polycrystalline silicon of 2 ⁇ m to 5 ⁇ m is deposited by LPCVD, and annealed at 1000 ° C for 1 hour to obtain a stress of polycrystalline silicon of about -30 MPa, and the square window pattern 003 can be sufficiently filled to form a closed cavity 008. .
  • Filler material 009 covers the surface of oxide layer 002 during the filling process.
  • the filling material 009 and the oxide layer 002 are patterned by photolithography patterning technology and dry etching technique (RIE), and the window of the reaction cell is etched on the single crystal silicon substrate 001. Graphic (not shown), leaving the positions of four reaction cells 010, 011, 012, 013. Then, the single crystal silicon substrate 001 is etched by using, for example, deep reactive ion etching (DRIE) with the patterned oxide layer 002 as a mask to form four reaction cells 010, 011, 012, and 013, and the reaction cells 010, 01 1.
  • DRIE deep reactive ion etching
  • Figure 13 is a plan view of the line along the line CC in the structure of Figure 12, it can be seen that the four reaction cells are in contact with the outside;
  • Figure 14 is a plan view of the structure shown in Figure 12 along the line DD,
  • Figure 15 is Figure 12 A top view of the line along the EE in the illustrated structure.
  • the reaction chambers 010, 011 and the chamber portion 008 between them form an injection conduit of the microfluidic device for the passage of the liquid analyte to be separated and measured; the reaction cells 012, 013 and the chamber therebetween
  • the body 008 channel portion constitutes a separate conduit for the microfluidic device for separation of liquid analytes.
  • the invention processes a process based on a single piece of silicon wafer itself, and forms a cavity by first forming a bottom cavity and then filling a part of the deep groove, without involving silicon bonding or glue bonding technology.
  • Body the capillary channel network that makes up the biological fluid device, as a channel for liquid flow and separation, can be used for liquid component and content detection applications in any biomedical sensor.
  • the invention can integrate the whole analysis system and the signal processing circuit in a single chip, saves the chip area, reduces the process difficulty, and can reduce the cost and improve the reliability in the mass production.

Abstract

一种全硅基微流体器件的腔体的制造方法,包括步骤:提供<111>晶向的单晶硅衬底(001),其上形成有氧化层(002);将氧化层图形化,露出多个正方形窗口图形(003);以氧化层为掩模,刻蚀硅衬底,形成多个上层深槽(004);在氧化层表面和上层深槽的侧壁及底部淀积保护层(005);将氧化层表面和上层深槽底部的保护层去除;以氧化层和上层深槽侧壁的保护层为掩模,刻蚀硅衬底,形成多个下层深槽(007);湿法刻蚀下层深槽,在硅衬底内部形成腔体(008);将上层深槽的孔洞填满,将腔体封闭;以氧化层为掩模,刻蚀硅衬底,形成四个与腔体连通的反应池。本发明形成腔体的过程中基于单片硅衬底本身进行加工,不涉及硅键合或胶粘合技术即可形成腔体,节省了芯片面积,降低了工艺难度。

Description

全硅基微流体器件的腔体的制造方法 技术领域 一种全硅基微流体器件的腔体的制造方法。 背景技术
微流体器件在生物医学中得到广泛的应用, 特别是生物医疗器材的精密制造 和制药工业中, 如化学分析、 生物和化学检测、 药物输送、 分子分离 (比如 DNA 分析) 、 扩增、 排序或者核酸合成, 以及环境监控等 [Kovacs 1998]。
在常用的生物微流量传感器制造过程中, 通常是在硅片表面进行体硅腐蚀, 形成二分之一的腔体, 然后将两部分腔体进行胶粘合或者用硅 /玻璃等材料与形成 腔体的硅片进行键合, 从而形成封闭的槽体管道, 用于液体流动的通道。 此类方法 涉及到键合及粘合工艺, 芯片面积占用大, 成本较高, 工艺较为复杂, 有可能引入 沾污 Na、 K离子, 不利于大规模生产中可靠性的提高。 发明内容
本发明所要解决的技术问题是提供一种全硅基微流体器件的腔体的制造方 法, 不涉及键合或粘合工艺即可形成封闭腔体。
为解决上述技术问题, 本发明提供一种全硅基微流体器件的腔体的制造方法, 包括步骤:
提供 <111>晶向的单晶硅衬底, 其上形成有氧化层;
采用光刻图形化技术及干法刻蚀技术将所述氧化层图形化, 在所述单晶硅衬 底表面露出所需要的多个正方形窗口图形;
以图形化的所述氧化层为掩模, 透过所述窗口图形刻蚀所述单晶硅衬底, 形 成多个上层深槽;
在所述氧化层表面和多个所述上层深槽的侧壁及底部淀积保护层;
采用干法刻蚀技术将所述氧化层表面和所述上层深槽底部的所述保护层去 除, 露出所述上层深槽底部的所述单晶硅衬底; 以图形化的所述氧化层和所述上层深槽侧壁的所述保护层为掩模, 继续刻蚀 所述单晶硅衬底, 形成多个下层深槽;
采用湿法刻蚀法刻蚀所述下层深槽, 在所述单晶硅衬底内部形成腔体; 应用填充材料将多个所述上层深槽的孔洞填满, 将所述腔体封闭, 所述填充 材料还覆盖到所述氧化层表面;
采用光刻图形化技术及干法刻蚀技术将所述填充材料和所述氧化层图形化, 留出四个反应池的位置;
以图形化的所述氧化层为掩模, 刻蚀所述单晶硅衬底, 形成四个反应池, 所 述反应池与所述腔体连通。
可选地, 所述氧化层的厚度为 3000~800θΑ。
可选地, 所述氧化层的厚度是根据所述上层深槽和所述下层深槽的设计深度 及刻蚀机台的选择比而确定的。
可选地, 所述窗口图形的边长为 2~6μηι。
可选地, 所述上层深槽的刻蚀方法为深反应离子刻蚀法。
可选地, 所述上层深槽的深度为 5~20μηι。
可选地, 所述保护层的厚度为 4000~600θΑ。
可选地, 所述下层深槽的刻蚀方法为深反应离子刻蚀法。
可选地, 所述下层深槽的深度为 10~30μηι。
可选地, 所述湿法刻蚀的溶液为 ΚΟΗ或者 ΤΜΑΗ溶液。
可选地, 所述填充材料为低应力多晶硅。
可选地, 覆盖到所述氧化层表面的多晶硅的厚度为 2~5μηι。
可选地, 所述多晶硅的应力为 -30MPa。
可选地, 所述反应池的刻蚀方法为深反应离子刻蚀法。
可选地, 所述反应池的深度为所述上层深槽和所述腔体的深度之和。
与现有技术相比, 本发明具有以下优点:
本发明形成腔体的过程中基于单片硅片本身进行工艺加工, 通过先分层形成 底部腔体后填充上部分深槽的方式, 不涉及硅键合或胶粘合技术即可形成腔体, 来 组成微流体器件的毛细管道网络。
本发明能够将整个分析系统及信号处理电路在一块单独的芯片集成, 节省了 芯片面积, 降低了工艺难度, 在进行大批量生产时能够降低成本, 提高可靠性等。 上述的全硅基 流体器件腔体可用于任意生物传感器中毛细管道网络的液体 成分及含量的探测应用中。 附图说明
本发明的上述的以及其他的特征、 性质和优势将通过下面结合附图和实施例 的描述而变得更加明显, 其中:
图 1为本发明一个实施例的全硅基微流体器件的腔体的制造方法的流程图; 图 2至图 15为本发明一个实施例的全硅基微流体器件的腔体的制造过程的剖 面结构示意图。 具体实施方式
下面结合具体实施例和附图对本发明作进一步说明, 在以下的描述中阐述了 更多的细节以便于充分理解本发明,但是本发明显然能够以多种不同于此描述地其 它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下根据实际应用情 况作类似推广、 演绎, 因此不应以此具体实施例的内容限制本发明的保护范围。
图 1 为本发明一个实施例的全硅基微流体器件的腔体的制造方法的流程图。 如图所示, 该方法流程可以包括:
执行步骤 S101 , 提供 <111>晶向的单晶硅衬底, 其上形成有氧化层; 执行步骤 S102, 采用光刻图形化技术及干法刻蚀技术将氧化层图形化, 在单 晶硅衬底表面露出所需要的多个正方形窗口图形;
执行步骤 S103 , 以图形化的氧化层为掩模, 透过窗口图形刻蚀单晶硅衬底, 形成多个上层深槽;
执行步骤 S104, 在氧化层表面和多个上层深槽的侧壁及底部淀积保护层; 执行步骤 S105 , 采用干法刻蚀技术将氧化层表面和上层深槽底部的保护层去 除, 露出上层深槽底部的单晶硅衬底;
执行步骤 S106, 以图形化的氧化层和上层深槽侧壁的保护层为掩模, 继续刻 蚀单晶硅衬底, 形成多个下层深槽;
执行步骤 S107,采用湿法刻蚀法刻蚀下层深槽,在单晶硅衬底内部形成腔体; 执行步骤 S108, 应用填充材料将多个上层深槽的孔洞填满, 将腔体封闭, 填 充材料还覆盖到氧化层表面;
执行步骤 S109, 采用光刻图形化技术及干法刻蚀技术将填充材料和氧化层图 形化, 留出四个反应池的位置;
执行步骤 S110, 以图形化的氧化层为掩模, 刻蚀单晶硅衬底, 形成四个反应 池, 反应池与腔体连通。
图 2至图 15为本发明一个实施例的全硅基微流体器件的腔体的制造过程的剖 面结构示意图。 需要注意的是, 这些附图均仅作为示例, 其并非是按照等比例的条 件绘制的, 并且不应该以此作为对本发明实际要求的保护范围构成限制。
如图 2所示, 提供 <111>晶向的单晶硅衬底 001 , 该单晶硅衬底 001上形成有 一层氧化层 002。 该氧化层 002的厚度可以为 3000 8000A, 作为后续首次深槽刻 蚀的掩模。 其中, 氧化层 002的厚度可以是根据下述上层深槽 004和下层深槽 007 的设计深度及刻蚀机台的选择比而确定的。
如图 3所示, 采用光刻图形化技术及干法刻蚀技术将氧化层 002图形化, 在 单晶硅衬底 001表面露出所需要的多个正方形窗口图形 003 , 该窗口图形 003的边 长可以在 2~6μηι之间选择。 图 4为图 3所示结构的俯视图, 图 3为图 4所示结构 中沿着 Α-Α,线的剖面图。
如图 5所示 , 采用例如深反应离子刻蚀法 ( DRIE ) 以图形化的氧化层 002为 掩模, 透过窗口图形 003刻蚀单晶硅衬底 001 , 在单晶硅衬底 001中形成多个上层 深槽 004。 该上层深槽 004的深度可以为 5~20μηι。
如图 6所示, 采用例如 PECVD方法在氧化层 002表面和多个上层深槽 004 的侧壁及底部淀积保护层 005。 该保护层 005的材料可以为 TEOS, 其厚度可以为 4000~600θΑ。事实上,即便在在氧化层 002表面淀积的保护层 005的厚度达 6000Α, 由于上层深槽 004的孔洞大小的限制,实际在上层深槽 004的侧壁及底部淀积的保 护层 005—般也就在 4000Α左右。
如图 7所示, 采用干法刻蚀技术将氧化层 002表面和上层深槽 004底部的保 护层 005去除, 露出上层深槽 004底部的单晶硅衬底 001 , 以便下一道工艺中硅深 槽刻蚀的进行。
如图 8所示, 采用例如深反应离子刻蚀法 ( DRIE ) 以图形化的氧化层 002和 上层深槽 004侧壁的保护层 005为掩模, 继续刻蚀单晶硅衬底 001 , 形成多个下层 深槽 007。 该下层深槽 007的深度可以为 10~30μηι。
如图 9所示, 采用湿法刻蚀法刻蚀下层深槽 007,在单晶硅衬底 001内部形成 腔体 008。 在本实施例中, 该湿法刻蚀的溶液可以为 ΚΟΗ或者 ΤΜΑΗ溶液。 由于 上层深槽 004有保护层 005保护,因此各向异性腐蚀过程只在下层深槽 007部分进 行。 腐蚀速率在垂直单晶硅衬底 001表面方向<111>晶向上基本为零, 仅在其它两 个方向进行, 因此可得到按版图所设计的腔体 008。 图 10为图 9所示结构中沿着 B-B'线的俯视图, 图 9为图 10所示结构的剖面图。 其中, 单晶硅衬底 001平边方 向平行于 X轴, 三条沿 Υ轴方向的沟槽 008,的宽度和长度仅与设计版图的数值有 关, 一条沿 X轴方向的沟槽 008,的长度仅与设计版图的数值有关, 其宽度可通过 控制腐蚀时间来调整。 其中, X、 Υ方向的沟槽数量可根据设计要求来调整(可以 是上千条) , 沟槽 008'的宽度一般为 30~50μηι, 长度一般为 lmm~5cm, 形成微流 体器件中毛细管道网络部分。
如图 11所示, 形成毛细管道网络部分之后, 应用填充材料 009将多个上层深 槽 004的孔洞填满, 将腔体 008封闭。 该填充材料 009可以为低应力多晶硅。 具体 地,采用 LPCVD方法淀积一层 2μηι~5μηι的多晶硅,并且在 1000°C下退火 1小时, 得到多晶硅的应力在 -30MPa左右, 可将正方形窗口图形 003充分填充, 形成封闭 的腔体 008。 在填充过程中, 填充材料 009覆盖到氧化层 002表面。
如图 12至图 15所示, 采用光刻图形化技术及干法刻蚀技术(RIE )将填充材 料 009和氧化层 002图形化,在单晶硅衬底 001上刻蚀出反应池的窗口图形(未图 示) , 留出四个反应池 010、 011、 012、 013的位置。 然后采用例如深反应离子刻 蚀法 (DRIE ) 以图形化的氧化层 002为掩模, 刻蚀单晶硅衬底 001 , 形成四个反 应池 010、 011、 012、 013 , 反应池 010、 01 1、 012、 013与上一道工艺中形成的腔 体 008连通,深度为上层深槽 004和腔体 008的深度之和。 图 13为图 12所示结构 中沿着 C-C,线的俯视图, 可以看出四个反应池与外界接触; 图 14为图 12所示结 构中沿着 D-D,线的俯视图, 图 15为图 12所示结构中沿着 E-E,线的俯视图。
在图 15中, 反应池 010、 011与其之间的腔体 008通道部分组成微流体器件 的注射管道, 可供待分离和测量的液体分析物通过; 反应池 012、 013和其之间的 腔体 008通道部分组成微流体器件的分离管道,可供液体分析物进行分离。 当在反 应池 010和 011之间施加一定数值的外加电场时, 待测液体分析物从反应池 010 流向反应池 011 , 然后在反应池 012和反应池 013之间施加一定数值的外加电场, 在横向和纵向管道交叉口处的液体分析物开始在反应池 012、 013之间的分离管道 中移动,在此过程中, 液体分析物中的不同成分按照各自不同的离子以不同速度流 动, 从而被分离开来, 进行鉴定分析。
本发明在形成腔体的过程中基于单片硅片本身进行工艺加工, 通过先分层形 成底部腔体后填充上部分深槽的方式, 不涉及硅键合或胶粘合技术即可形成腔体, 来组成生物 流体器件的毛细管道网络,作为液体流动及分离的通道,在任意生物 医学传感器中可用于液体成分及含量的探测应用。
本发明能够将整个分析系统及信号处理电路在一块单独的芯片集成, 节省了 芯片面积, 降低了工艺难度, 在进行大批量生产时能够降低成本, 提高可靠性等优 点。
本发明虽然以较佳实施例公开如上, 但其并不是用来限定本发明, 任何本领 域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改。因此, 凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任 何修改、 等同变化及修饰, 均落入本发明权利要求所界定的保护范围之内。

Claims

权 利 要 求
1、 一种全硅基微流体器件的腔体的制造方法, 包括步骤:
提供 <1 11>晶向的单晶硅衬底 (001 ) , 其上形成有氧化层 ( 002 ) ; 采用光刻图形化技术及干法刻蚀技术将所述氧化层 ( 002 ) 图形化, 在所 述单晶硅衬底 (001 ) 表面露出所需要的多个正方形窗口图形 ( 003 ) ;
以图形化的所述氧化层 ( 002 ) 为掩模, 透过所述窗口图形 ( 003 ) 刻蚀所 述单晶硅衬底 (001 ) , 形成多个上层深槽 ( 004 ) ;
在所述氧化层 ( 002 )表面和多个所述上层深槽 ( 004 ) 的侧壁及底部淀积 保护层 ( 005 ) ;
采用干法刻蚀技术将所述氧化层 ( 002 )表面和所述上层深槽 ( 004 )底部 的所述保护层 ( 005 ) 去除, 露出所述上层深槽 ( 004 )底部的所述单晶硅衬底 ( 001 ) ;
以图形化的所述氧化层 ( 002 )和所述上层深槽 ( 004 )侧壁的所述保护层 ( 005 )为掩模, 继续刻蚀所述单晶硅衬底(001 ) , 形成多个下层深槽( 007 ); 采用湿法刻蚀法刻蚀所述下层深槽 ( 007 ) , 在所述单晶硅衬底 (001 ) 内 部形成腔体 ( 008 ) ;
应用填充材料( 009 )将多个所述上层深槽 ( 004 ) 的孔洞填满, 将所述腔 体 ( 008 ) 封闭, 所述填充材料 ( 009 ) 还覆盖到所述氧化层 ( 002 )表面;
采用光刻图形化技术及干法刻蚀技术将所述填充材料 ( 009 ) 和所述氧化 层 ( 002 ) 图形化, 留出四个反应池 (010、 01 1、 012、 013 ) 的位置;
以图形化的所述氧化层 ( 002 ) 为掩模, 刻蚀所述单晶硅衬底 (001 ) , 形 成四个反应池 (010、 011、 012、 013 ) , 所述反应池 (010、 01 1、 012、 013 ) 与所述腔体 ( 008 ) 连通。
2、根据权利要求 1所述的腔体的制造方法,其特征在于,所述氧化层( 002 ) 的厚度为 3000~800θΑ。
3、根据权利要求 2所述的腔体的制造方法,其特征在于,所述氧化层( 002 ) 的厚度是根据所述上层深槽 ( 004 ) 和所述下层深槽 ( 007 ) 的设计深度及刻蚀 机台的选择比而确定的。
4、 根据权利要求 1所述的腔体的制造方法, 其特征在于, 所述窗口图形 ( 003 ) 的边长为 2~6μηι。
5、 根据权利要求 1所述的腔体的制造方法, 其特征在于, 所述上层深槽 ( 004 ) 的刻蚀方法为深反应离子刻蚀法。
6、 根据权利要求 5所述的腔体的制造方法, 其特征在于, 所述上层深槽
( 004 ) 的深度为 5~20μηι。
7、根据权利要求 1所述的腔体的制造方法,其特征在于,所述保护层( 005 ) 的厚度为 4000~600θΑ。
8、 根据权利要求 1所述的腔体的制造方法, 其特征在于, 所述下层深槽 ( 007 ) 的刻蚀方法为深反应离子刻蚀法。
9、 根据权利要求 8所述的腔体的制造方法, 其特征在于, 所述下层深槽 ( 007 ) 的深度为 10~30μηι。
10、 根据权利要求 1所述的腔体的制造方法, 其特征在于, 所述湿法刻蚀 的溶液为 ΚΟΗ或者 ΤΜΑΗ溶液。
11、 根据权利要求 1所述的腔体的制造方法, 其特征在于, 所述填充材料
( 009 ) 为低应力多晶硅。
12、 根据权利要求 11所述的腔体的制造方法, 其特征在于, 覆盖到所述氧 化层 ( 002 )表面的多晶硅的厚度为 2~5μηι。
13、 根据权利要求 12所述的腔体的制造方法, 其特征在于, 所述多晶硅的 应力为 -30MPa。
14、根据权利要求 1所述的腔体的制造方法,其特征在于,所述反应池(010、 011、 012、 013 ) 的刻蚀方法为深反应离子刻蚀法。
15、 根据权利要求 14所述的腔体的制造方法, 其特征在于, 所述反应池 ( 010、 011、 012、 013 ) 的深度为所述上层深槽 ( 004 ) 和所述腔体 ( 008 ) 的 深度之和。
PCT/CN2012/070970 2011-09-13 2012-02-09 全硅基微流体器件的腔体的制造方法 WO2013037196A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110270253.7A CN102320558B (zh) 2011-09-13 2011-09-13 全硅基微流体器件的腔体的制造方法
CN201110270253.7 2011-09-13

Publications (1)

Publication Number Publication Date
WO2013037196A1 true WO2013037196A1 (zh) 2013-03-21

Family

ID=45448439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070970 WO2013037196A1 (zh) 2011-09-13 2012-02-09 全硅基微流体器件的腔体的制造方法

Country Status (2)

Country Link
CN (1) CN102320558B (zh)
WO (1) WO2013037196A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102328900A (zh) * 2011-08-12 2012-01-25 上海先进半导体制造股份有限公司 腔体的制造方法
CN102320558B (zh) * 2011-09-13 2014-03-26 上海先进半导体制造股份有限公司 全硅基微流体器件的腔体的制造方法
CN102942157A (zh) * 2012-10-12 2013-02-27 上海大学 采用正面腐蚀方式制造流量传感器的方法
CN103449358A (zh) * 2013-08-27 2013-12-18 上海先进半导体制造股份有限公司 Mems封闭腔体的制作方法
CN103935953B (zh) 2014-04-25 2016-04-13 上海先进半导体制造股份有限公司 复合腔体及其形成方法
CN105668506A (zh) * 2016-01-22 2016-06-15 厦门大学 一种在001面硅片上腐蚀出111硅面的方法
DE102017213351A1 (de) * 2017-08-02 2019-02-07 Robert Bosch Gmbh Sensorvorrichtung und Herstellungsverfahren für eine Sensorvorrichtung mit zumindest einer chemischen oder elektrochemischen Detektiereinrichtung
DE102017216941A1 (de) * 2017-09-25 2019-03-28 Robert Bosch Gmbh Verfahren zum Herstellen eines mikromechanischen Elements

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180536B1 (en) * 1998-06-04 2001-01-30 Cornell Research Foundation, Inc. Suspended moving channels and channel actuators for microfluidic applications and method for making
EP1279639A2 (en) * 2001-07-24 2003-01-29 Dalsa Semiconductor Inc. Micro-fluidic devices
US20030215972A1 (en) * 2002-05-16 2003-11-20 Quanbo Zou Single wafer fabrication of integrated micro-fluidic system
CN101223101A (zh) * 2005-05-12 2008-07-16 意法半导体股份有限公司 具有集成的微型泵尤其是生化微反应器的微流体装置及其制造方法
CN101668696A (zh) * 2007-04-23 2010-03-10 惠普开发有限公司 微流体器件及包含该微流体器件的流体喷射器件
CN101859699A (zh) * 2009-04-09 2010-10-13 上海先进半导体制造股份有限公司 多晶硅淀积工艺
CN102285633A (zh) * 2011-07-04 2011-12-21 上海先进半导体制造股份有限公司 复合集成传感器结构及其制造方法
CN102320558A (zh) * 2011-09-13 2012-01-18 上海先进半导体制造股份有限公司 全硅基微流体器件的腔体的制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001261026A1 (en) * 2000-04-17 2001-10-30 The Penn State Research Foundation Deposited thin films and their use in separation and sarcrificial layer applications
DE10104868A1 (de) * 2001-02-03 2002-08-22 Bosch Gmbh Robert Mikromechanisches Bauelement sowie ein Verfahren zur Herstellung eines mikromechanischen Bauelements
JP2003053700A (ja) * 2001-08-17 2003-02-26 Fuji Xerox Co Ltd シリコン結晶異方性エッチング方法、インク流路板製造方法、インク流路板、インクジェットプリントヘッドおよびインクジェットプリンタ
US6755982B2 (en) * 2002-01-07 2004-06-29 Xerox Corporation Self-aligned micro hinges
CN1305129C (zh) * 2002-10-08 2007-03-14 南亚科技股份有限公司 瓶型沟槽的形成方法
US7932098B2 (en) * 2002-10-31 2011-04-26 Hewlett-Packard Development Company, L.P. Microfluidic system utilizing thin-film layers to route fluid
CA2522606A1 (en) * 2003-04-16 2004-11-25 The Regents Of The University Of California Metal mems devices and methods of making same
WO2005107938A2 (en) * 2004-05-02 2005-11-17 Fluidigm Corporation Thermal reaction device and method for using the same
TWI283890B (en) * 2005-08-08 2007-07-11 Chien Hui Chuan CMOS compatible piezo-inkjet head
CN1325367C (zh) * 2005-09-16 2007-07-11 中国电子科技集团公司第二十四研究所 一种mems传感器悬梁结构的制造方法
CN101016630A (zh) * 2005-11-14 2007-08-15 肖特股份公司 楔形结构的等离子体刻蚀
CN101441112B (zh) * 2008-12-18 2011-04-20 中国科学院微电子研究所 基于单晶硅pn结的非制冷红外探测器阵列及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180536B1 (en) * 1998-06-04 2001-01-30 Cornell Research Foundation, Inc. Suspended moving channels and channel actuators for microfluidic applications and method for making
EP1279639A2 (en) * 2001-07-24 2003-01-29 Dalsa Semiconductor Inc. Micro-fluidic devices
US20030215972A1 (en) * 2002-05-16 2003-11-20 Quanbo Zou Single wafer fabrication of integrated micro-fluidic system
CN101223101A (zh) * 2005-05-12 2008-07-16 意法半导体股份有限公司 具有集成的微型泵尤其是生化微反应器的微流体装置及其制造方法
CN101668696A (zh) * 2007-04-23 2010-03-10 惠普开发有限公司 微流体器件及包含该微流体器件的流体喷射器件
CN101859699A (zh) * 2009-04-09 2010-10-13 上海先进半导体制造股份有限公司 多晶硅淀积工艺
CN102285633A (zh) * 2011-07-04 2011-12-21 上海先进半导体制造股份有限公司 复合集成传感器结构及其制造方法
CN102320558A (zh) * 2011-09-13 2012-01-18 上海先进半导体制造股份有限公司 全硅基微流体器件的腔体的制造方法

Also Published As

Publication number Publication date
CN102320558B (zh) 2014-03-26
CN102320558A (zh) 2012-01-18

Similar Documents

Publication Publication Date Title
WO2013037196A1 (zh) 全硅基微流体器件的腔体的制造方法
JP6806787B2 (ja) ナノポアセンシングのための絶縁体−膜−絶縁体デバイスのウェハスケールアセンブリ
US9151740B2 (en) Nanopore device with improved sensitivity and method of fabricating the same
EP3596462A2 (en) Nanopore well structures and methods
GB2515571A (en) Fabrication of microfluidic chips having electrodes level with microchannel walls
WO2016019836A1 (zh) 传感装置
JP2005334874A (ja) マイクロチャネルとその製造方法およびマイクロシステム
CN110383055A (zh) 低噪声生物分子传感器
US20180038841A1 (en) Component based on a structurable substrate with a membrane structure having three-dimensional pores in the nm range and semiconductor technology method for manufacturing same
Bahadorimehr et al. Fabrication of glass-based microfluidic devices with photoresist as mask
CN109633154B (zh) 一种新型固态纳米孔结构及其制作方法
CN104249992B (zh) 晶片与晶片之间的对准方法
US7438851B2 (en) Microsensor with a well having a membrane disposed therein
WO2021115047A1 (zh) 一种微流控芯片及基于微流控芯片的全血分离方法
US20220347681A1 (en) Microfluidic chips with one or more vias filled with sacrificial plugs
JP2009198467A (ja) ナノ構造体を用いたセンサ素子、分析チップ、分析装置、およびセンサ素子の製造方法
TWI644102B (zh) 微流體感測元件及其製作方法
TWI787726B (zh) 生物感測器系統封裝及其製造方法
US11891689B2 (en) Low-capacitance nanopore sensors on insulating substrates
KR101163202B1 (ko) 실리콘 나노와이어 소자 제조방법
CN105858593A (zh) 用于高灵敏生化检测的微型双端固支梁传感器的制作方法
KR101220285B1 (ko) 실리콘 나노와이어 바이오 센서 제조방법
CN101430299B (zh) 一种用于生物医学流体的微型可逆密封结构和制作方法
CN104190484A (zh) 一种适于生物分子检测的芯片单元的制备方法
EP4173705A1 (en) Method for manufacturing a microfluidic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831529

Country of ref document: EP

Kind code of ref document: A1