WO2013034083A1 - 结冰条件探测器 - Google Patents

结冰条件探测器 Download PDF

Info

Publication number
WO2013034083A1
WO2013034083A1 PCT/CN2012/081044 CN2012081044W WO2013034083A1 WO 2013034083 A1 WO2013034083 A1 WO 2013034083A1 CN 2012081044 W CN2012081044 W CN 2012081044W WO 2013034083 A1 WO2013034083 A1 WO 2013034083A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
real
sensing element
aircraft
icing
Prior art date
Application number
PCT/CN2012/081044
Other languages
English (en)
French (fr)
Inventor
史献林
南国鹏
李革萍
辛旭东
Original Assignee
中国商用飞机有限责任公司
中国商用飞机有限责任公司上海飞机设计研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国商用飞机有限责任公司, 中国商用飞机有限责任公司上海飞机设计研究院 filed Critical 中国商用飞机有限责任公司
Publication of WO2013034083A1 publication Critical patent/WO2013034083A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/20Means for detecting icing or initiating de-icing

Definitions

  • the invention relates to the field of aircraft icing detection, in particular to a knot; water condition detector. Background technique
  • Icing detection technology can detect aircraft water in the early stage, so that timely action can be taken, which is an improvement measure of flight safety.
  • SAE AIR4367A Aircraft Inflight Ice Detectors and Icing Rate Measuring Instruments describes the types of icing detection. There are two main ways: Detecting the icing detector on the surface of the aircraft reference surface, or detecting whether the aircraft is in icing conditions. Icing condition detector.
  • the civil aircraft A340/A380/B747/BT77/ERJ/CRJ is equipped with GOODRICH's icing detector.
  • the probe is made of a magnetostrictive material, and the vibration frequency of the probe decreases with the increase of the icing quality, and the water level is lowered after the threshold value is reached.
  • the B787 is equipped with GOODRICH's icing condition detector.
  • the probe consists of two dry and wet platinum resistance thermometers. The icing conditions vary from voltage to voltage and the voltage changes to the threshold to emit an icing signal.
  • the overhang probe destroys the aerodynamic shape of the easy-to-icing surface such as the wing and the engine intake, and is generally installed on the nose of the aircraft, indirectly monitoring the icing state of the free-form surface such as the wing and the engine intake. .
  • the MD-80/90 aircraft is equipped with a flush-mounted water jet detector on the upper surface of the wing.
  • the detector and controller are connected by cables.
  • the increase in icing quality causes the detector vibration frequency to rise. After the frequency exceeds the threshold, the detector emits a water-sending signal.
  • the shortcomings are: After the water quality is reached to a certain extent, the knot can be detected; water, at this time, the ice-prone surface such as the wing and the engine inlet may have accumulated a certain amount of water; moreover, the sensor surface is flat, the wing
  • the easy-to-icing surface such as the engine intake is curved and cannot be completely fitted during installation. Summary of the invention
  • the present invention provides a water-conditioning detector which can be flush mounted on an easy-to-icing surface of an aircraft such as a wing and an engine intake port without damaging its aerodynamic shape and capable of directly reflecting the knot.
  • the icing condition of the ice protection surface is not limited to a wing and an engine intake port.
  • the surface of the detector When the aircraft is flying in dry air (no cold water droplets in the air), the surface of the detector is subjected to convective heat transfer, aerodynamic heating, etc., and the surface temperature is a function of flight conditions (speed, angle of attack, atmospheric temperature and altitude). .
  • flight conditions speed, angle of attack, atmospheric temperature and altitude.
  • wet air which can be characterized by the mass of subcooled water droplets per unit volume, a liquid water content g/m 3
  • the surface of the detector evaporates in water, convection Under the action of heat flow such as heat and pneumatic heating, the surface temperature is a function of flight conditions and icing conditions.
  • the surface temperature of the detector is different between dry air and humid air, which is called the dry and wet temperature difference.
  • the temperature difference is related to the liquid water content. According to this temperature difference, it can be judged whether the aircraft has encountered icing conditions.
  • the theory and calculation method of the temperature difference between the wet and dry surfaces and the temperature threshold can be found in the "Aircraft Waterproof System” written by Yan Gang, Han Fenghua, Chapter 5.6 - Surface Temperature.
  • an icing condition detector comprising: an inductive element mounted flush on an easy-to-frozen surface of an aircraft, the inductive element comprising a temperature sensing layer and a heat insulating layer, the temperature sensing a resistor wire embedded in the layer for heating the temperature sensing layer, the heat insulating layer being fixed on an inner surface of the temperature sensing layer for preventing heat of the temperature sensing layer from being dissipated through the inner surface thereof;
  • a temperature sensor fixed to an inner surface of the temperature sensing layer for measuring a real-time temperature of the sensing element
  • a controller comprising: a heating control module, a data storage module and a processor, wherein: the heating control module is configured to heat the resistance wire with a constant electric power to maintain the temperature of the sensing element above 0 ° C;
  • the data storage module is configured to store a temperature target value of the sensing element under different flight conditions, and collect real-time of the sensing element measured by the temperature sensor Temperature value
  • the processor is configured to retrieve, from the data storage module, a temperature target value of the sensing element under a certain flight condition, and compare it with a real-time temperature value, if the real-time temperature value is less than the temperature target value, It is then determined that the aircraft is subjected to icing conditions.
  • the temperature sensor is connected to the controller through a signal line.
  • the controller is connected to the aircraft power source and the avionics system through an electrical connector.
  • the temperature sensing layer is made of a metal having high thermal conductivity, such as copper or aluminum.
  • an icing condition detecting method wherein the above icing condition detector is used, the method comprising the steps of:
  • the resistance wire is heated by a heating electric control module with a constant electric power to maintain the temperature of the sensing element above o °c to prevent the outer surface of the sensing element from freezing.
  • the temperature sensing layer of the sensing element can be any curved surface, can be flush mounted on the easy-to-icing surface of the wing, engine inlet, etc., and fits perfectly with the mounting surface without affecting the aerodynamic shape of the mounting surface;
  • the temperature sensing layer is made of a highly thermally conductive metal with no restrictions on the type of metal.
  • Figure 1 is a schematic view showing the structure of an icing condition detector according to the present invention. detailed description
  • FIG. 1 it schematically shows an icing condition detector 10 according to the present invention, comprising an inductive element 1 that can be flush mounted to an easy-to-icing surface such as a wing and an engine intake for measurement Temperature sensor 2 for sensing element temperature, controller 3 and electrical connector 4.
  • the sensing element 1 is composed of a temperature sensing layer 5 and a heat insulating layer 6.
  • a resistance wire (not shown) is embedded in the temperature sensing layer 5 for heating the temperature sensing layer 5.
  • the heat insulating layer 6 is fixed to the inner surface of the temperature sensing layer 5 by, for example, an adhesive for preventing heat of the temperature sensing layer 5 from being dissipated through the inner surface thereof.
  • the sensing element 1 is flush mounted on an easy-to-icing surface such as a wing and an engine intake port, for example, by a flange, etc., and the temperature sensing layer 5 is engaged with the mounting surface to be in contact with the outside atmosphere.
  • the temperature sensor 2 is fixed to the inner surface of the temperature sensing layer 5, for example, by bonding to a groove provided on the inner surface by an adhesive for measuring the real-time temperature of the sensing element.
  • the temperature difference between the inner and outer surfaces of the metal sensing element is extremely small, and the temperature referred to herein generally refers to the temperature of the outer surface of the temperature sensing layer of the sensing element.
  • the controller 3 is composed of a heating control module 7, a data storage module 8, and a processor 9.
  • the resistance wire is connected to the controller 3 through a power supply line, and the heating control module 7 heats the resistance wire with a constant electric power, thereby heating the temperature sensing layer 5 so that the temperature of the sensing element 1 is maintained at 0 ° C under different flight conditions and water-sinking conditions. Above, prevent the outer surface of the sensing element 1 Ice.
  • the temperature sensor 2 is connected to the controller 3 via a signal line, and the controller 3 is connected to the aircraft power source and the avionics system via the electrical connector 4.
  • the data storage module 8 is configured to store the surface temperature target value of the sensing element 1 under different flight conditions, and collect the real-time surface temperature value of the sensing element 1 measured by the temperature sensor 2.
  • the processor 9 is configured to retrieve, from the data storage module 8, a surface temperature target value of the sensing element 1 under a certain flight condition, and compare it with the real-time surface temperature value, if the real-time surface temperature value is smaller than the surface
  • the temperature target value determines that the aircraft is subjected to icing conditions.
  • the controller 3 and the sensing element 1 can be of a split design.
  • the sensing element 1 can be made small and the controller 3 is bulky. If the installation space in the slat of the aircraft is limited, the sensing element can be made into a component and connected through a signal line and a power supply line.
  • the present invention also provides a method for detecting icing components, using the icing condition detector 10 shown in FIG. 1, the method comprising the steps of:
  • the real-time surface temperature of the sensing element 1 is measured in real time by the temperature sensor 2 at a certain refresh rate, and the real-time surface temperature value is transmitted to the data storage module 8 of the controller 3 through the signal line.
  • the electric resistance wire is heated by the heating control module 7 at a constant electric power so that the temperature of the sensing element 1 is maintained above 0 ° C to prevent the outer surface of the sensing element 1 from freezing. Since the temperature operating range of the temperature sensor 2 is higher than the temperature of the sensing element 1 after heating, the heating does not affect the real-time surface temperature of the measuring sensing element 1.
  • the data storage module 8 of the controller 3 stores the surface temperature target value of the sensing element 1 under different flight conditions (speed, altitude, angle of attack and atmospheric temperature), ie the temperature threshold.
  • the target value of the surface temperature of the sensing element under different flight conditions is calculated by the previous calculation and Stored in the storage module, the microprocessor does not need to calculate the surface temperature target value of the sensing element under the flight condition in real time, thereby effectively reducing the calculation time.
  • the core of the present invention is to form a new icing condition judging standard by using the temperature drop formed by the evaporative surface of the icing protection surface to evaporate and dissipate heat, and use the temperature threshold instead of the frequency threshold of the traditional icing detector to trigger the icing alarm signal.
  • the temperature sensing layer of the sensing element can be any curved surface, can be flush mounted on the easy-to-icing surface of the wing, engine inlet, etc., and fits perfectly with the mounting surface without affecting the aerodynamic shape of the mounting surface;
  • the temperature sensing layer is made of a highly thermally conductive metal with no restrictions on the type of metal.
  • the specific embodiments described in the present invention are only preferred embodiments of the present invention and are not intended to limit the scope of the present invention. That is, equivalent changes and modifications made by the content of the patent application scope of the present invention fall within the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种结冰条件探测器(10),包括:感应元件(1),其包括温度感应层(5)和绝热层(6),温度感应层(5)中嵌入电阻丝,绝热层(6)固定在所述温度感应层(5)的内表面上;温度传感器(2),用于测量感应元件(1)的实时温度;以及控制器(3),其包括:加热控制模块(7),用于以恒定电功率加热电阻丝,以使感应元件(1)的温度保持在0°C以上;数据存储模块(8),用于存储不同飞行条件下感应元件(1)的温度目标值,并采集通过温度传感器(2)测得的感应元件(1)的实时温度值;处理器(9),用于从数据存储模块(8)中检索出一定飞行条件下感应元件(1)的温度目标值,并将其与实时温度值进行对比,如果实时温度值小于温度目标值,则判定飞机遭遇结冰条件。还公开了一种使用该结冰条件探测器(10)的结冰条件探测方法。

Description

结水条件探测器 技术领域
本发明涉及飞机结冰探测领域, 具体涉及一种结;水条件探测器。 背景技术
飞机结;水可能导致飞机操稳品质降级、 飞行性能损失和飞行安 全裕度下降。 结冰探测技术可以在早期探测到飞机结水, 以便及时 采取相应动作, 是飞行安全的一项改进措施。 《SAE AIR4367A Aircraft Inflight Ice Detectors and Icing Rate Measuring Instruments》对 结冰探测种类进行了介绍, 主要有两种方式: 探测飞机参考表面结 水状态的结冰探测器, 或者探测飞机是否处于结冰条件的结冰条件 探测器。
民机 A340/A380/B747/BT77/ERJ/CRJ装备了 GOODRICH公司的 结冰探测器。 探头由磁致伸缩材料制成, 探头振动频率随着结冰质 量增加振动频率下降, 降低到阀值后发出结水信号。 B787 装备 GOODRICH公司的结冰条件探测器, 探头内由两个干湿铂电阻温度 计构成一个电桥, 结冰条件不同电压不同, 电压变化到阀值发出结 冰信号。 不足之处在于: 外伸探头破坏机翼和发动机进气道等易结 冰表面的气动外形, 一般安装在飞机机头, 间接监控机翼和发动机 进气道等易结水表面的结冰状态。
MD-80/90 飞机在机翼上表面装备了一种齐平安装的结水探测 器, 探测器和控制器通过电缆相连接。 随着探测器表面不断结水, 结冰质量增加使探测器振动频率上升, 频率超过阈值后, 探测器发 出结水信号。 不足之处在于: 结水质量到一定程度后, 才能探测结 ;水, 此时机翼和发动机进气道等易结冰表面可能已经积聚了一定质 量的水; 而且, 传感器表面为平面, 机翼和发动机进气道等易结冰 表面为曲面, 安装时不能完全契合。 发明内容
为了解决上述问题, 本发明提供一种结水条件探测器, 其能够 齐平安装在飞机易结冰表面如机翼和发动机进气道等部位, 而不破 坏其气动外形, 并能够直接反映结冰防护表面的结冰情况。
本发明的设计原理:
飞机在干空气 (空气中没有过冷水滴) 中飞行时, 探测器表面 在对流换热、 气动加热等热流项作用下, 表面温度为飞行条件 (速 度、 攻角、 大气温度和高度) 的函数。 在结水条件 (空气中存在冷 水滴, 也称为湿空气, 可用单位体积内的过冷水滴质量一液态水含 量 g/m3表征) 中飞行时, 探测器表面在水蒸发散热、 对流换热和气 动加热等热流项作用下, 表面温度为飞行条件和结冰条件的函数。 同一飞行条件下, 探测器表面在干空气和湿空气中温度不同, 称为 干湿温差。 温差大小与液态水含量有关, 据此温差可以判断飞机是 否遭遇了结冰条件。 干湿表面温差以及温度阈值的理论和计算方法, 具体内容可参见裘燮纲, 韩凤华编写的 《飞机防水系统》 中 5.6章- 表面温度。
根据本发明的一个方面, 提供一种结冰条件探测器, 包括: 感应元件, 其齐平安装在飞机的易结冰表面上, 所述感应元件 包括温度感应层和绝热层, 所述温度感应层中嵌入电阻丝, 用于加 热所述温度感应层, 所述绝热层固定在所述温度感应层的内表面上, 用于防止所述温度感应层的热量通过其内表面散失;
温度传感器, 其固定在所述温度感应层的内表面上, 用于测量 所述感应元件的实时温度; 以及
控制器, 其包括加热控制模块、 数据存储模块和处理器, 其中: 所述加热控制模块用于以恒定电功率加热所述电阻丝, 以使所 述感应元件的温度保持在 0°C以上;
所述数据存储模块用于存储不同飞行条件下所述感应元件的温 度目标值, 并采集通过所述温度传感器测得的所述感应元件的实时 温度值;
所述处理器用于从所述数据存储模块中检索出一定飞行条件下 所述感应元件的温度目标值, 并将其与实时温度值进行对比, 如果 所述实时温度值小于所述温度目标值, 则判定飞机遭遇结冰条件。
其中, 所述温度传感器通过信号线与所述控制器相连接。
其中, 所述控制器通过电接头与飞机电源和航电系统相连接。 其中, 所述温度感应层使用导热性强的金属制成, 例如铜、 铝 等。
根据本发明的另一个方面, 提供一种结冰条件探测方法, 其中 使用上述结冰条件探测器, 所述方法包括步骤:
( 1 )通过温度传感器以一定的刷新率实时测量感应元件的实时 温度, 并通过信号线将实时温度值传递到所述控制器的数据存储模 块;
( 2 ) 通过所述控制器从飞机航电系统得到飞机当前的飞行条 件, 并通过所述处理器根据飞行条件从数据存储模块中检索出该飞 行条件下感应元件的温度目标值; 对比, 如果所述实时温度值小于所述温度目标值, 则判定飞机遭遇 结冰条件, 并激发结水信号;
( 4 )通过电接头将结水信号传递到飞机航电系统, 提示飞行机 组手动启动防冰系统或者飞机自动启动防冰系统。
其中, 在所述步骤( 1 ) 中, 通过加热控制模块以恒定电功率加 热所述电阻丝, 以使所述感应元件的温度保持在 o°c以上, 防止感应 元件外表面结冰。
本发明的有益效果在于:
1. 感应元件的温度感应层外形可以为任意曲面, 能够齐平安装 在机翼、 发动机进气道等易结冰表面, 与安装表面完全契合, 不影 响安装表面的气动外形;
2. 能够直接反映结冰防护表面的结冰情况, 不存在由于安装位 置引起的临界温度差别;
3. 能够在机翼、 发动机进气道未结冰之前, 探测到飞机进入了 结冰条件, 具有结冰预警的能力, 减少防水系统反应时间;
4. 温度感应层使用导热性强的金属制成, 对金属类型无限制。 附图说明
图 1是根据本发明的结冰条件探测器的结构示意图。 具体实施方式
下面结合附图详细描述本发明的结冰条件探测器的优选实施 例。
如图 1 所示, 其示意性地示出了根据本发明的结冰条件探测器 10 , 包括能够齐平安装在机翼和发动机进气道等易结冰表面的感应 元件 1, 用于测量感应元件温度的温度传感器 2, 控制器 3和电接头 4。
感应元件 1 由温度感应层 5和绝热层 6组成。 温度感应层 5中 嵌入电阻丝(未示出) , 用于加热温度感应层 5。 绝热层 6固定例如 通过粘合剂粘接在温度感应层 5的内表面上,用于防止温度感应层 5 的热量通过其内表面散失。 感应元件 1 例如通过法兰盘等齐平安装 在机翼和发动机进气道等易结冰表面上, 温度感应层 5 与安装表面 契合, 与外界大气相接触。
温度传感器 2 固定在温度感应层 5的内表面上, 例如可通过粘 合剂粘接到内表面上设置的凹槽内, 用于测量所述感应元件的实时 温度。 金属感应元件的内外表面温差极小, 本文中的所述温度一般 指感应元件的温度感应层外表面温度。
控制器 3由加热控制模块 7、 数据存储模块 8和处理器 9组成。 电阻丝通过供电线与控制器 3相连接, 加热控制模块 7以恒定电功 率加热电阻丝, 从而加热温度感应层 5 , 以使感应元件 1在不同飞行 条件和结水条件下温度保持在 0°C以上, 防止感应元件 1 外表面结 冰。 温度传感器 2通过信号线与控制器 3相连接, 控制器 3通过电 接头 4与飞机电源和航电系统相连接。 数据存储模块 8用于存储不 同飞行奈件下感应元件 1 的表面温度目标值, 并采集通过温度传感 器 2测得的感应元件 1的实时表面温度值。 处理器 9用于从数据存 储模块 8 中检索出一定飞行条件下感应元件 1 的表面温度目标值, 并将其与所述实时表面温度值进行对比, 如果所述实时表面温度值 小于所述表面温度目标值, 则判定飞机遭遇结冰条件。
控制器 3与感应元件 1可以采用分体设计。 感应元件 1可以制 造得很小, 而控制器 3 体积较大。 如果飞机缝翼内安装空间有限, 可将感应元件做成分体, 通过信号线和供电线连接。
本发明还提供一种结冰奈件探测方法, 使用图 1 中所示的结冰 条件探测器 10 , 所述方法包括步骤:
( 1 )通过温度传感器 2以一定的刷新率实时测量感应元件 1的 实时表面温度, 并通过信号线将实时表面温度值传递到控制器 3 的 数据存储模块 8。 通过加热控制模块 7以恒定电功率加热电阻丝, 以 使感应元件 1的温度保持在 0°C以上, 防止感应元件 1外表面结冰。 由于温度传感器 2的温度工作范围高于加热后感应元件 1 的温度, 所以加热不会影响测量感应元件 1的实时表面温度。
( 2 )通过控制器 3从飞机航电系统得到飞机当前的飞行条件(速 度、 高度、 攻角和大气温度) , 并通过处理器 9根据飞行条件从数 据存储模块 8中检索出该飞行条件下感应元件的表面温度目标值;
( 3 )通过处理器 9将所述实时表面温度值与所述表面温度目标 值进行对比, 如果所述实时表面温度值小于所述表面温度目标值, 则判定飞机遭遇结水条件, 并激发结水信号。
( 4 )通过电接头将结冰信号传递到飞机航电系统, 提示飞行机 組手动启动防 ¾ 系统或者飞机自动启动防;水系统。
控制器 3的数据存储模块 8存储了不同飞行条件(速度、 高度、 攻角和大气温度) 下感应元件 1 的表面温度目标值即温度阈值。 不 同飞行条件下感应元件的表面温度目标值, 是经过前期计算得到并 存储在存储模块中, 不需要微处理器实时计算该飞行条件下感应元 件的表面温度目标值, 从而有效地减少了计算时间。
本发明的核心是利用结冰防护表面过冷水滴蒸发散热形成的温 降形成新的结冰条件判断标准, 利用温度阈值代替传统结冰探测器 的频率阈值, 来触发结冰报警信号。
本发明结冰条件探测器具有以下优点:
1. 感应元件的温度感应层外形可以为任意曲面, 能够齐平安装 在机翼、 发动机进气道等易结冰表面, 与安装表面完全契合, 不影 响安装表面的气动外形;
2. 能够在机翼、 发动机进气道未结水之前, 探测到飞机进入了 结水条件, 具有结冰预警的能力, 减少防冰系统反应时间;
3. 能够直接反映结冰防护表面的结冰情况, 免了外伸探头式结 水探测器由于安装位置引起的临界温度差别;
4. 温度感应层使用导热性强的金属制成, 对金属类型无限制。 本发明中所述具体实施案例仅为本发明的较佳实施案例而已, 并非用来限定本发明的实施范围。 即凡依本发明申请专利范围的内 容所作的等效变化与修饰, 都属于本发明的保护范围。

Claims

权 利 要 求 书
1. 一种结水条件探测器, 其特征在于, 包括:
感应元件, 其齐平安装在飞机的易结;水表面上, 所述感应元件 包括温度感应层和绝热层, 所述温度感应层中嵌入电阻丝, 用于加 热所述温度感应层, 所述绝热层固定在所述温度感应层的内表面上, 用于防止所述温度感应层的热量通过其内表面散失;
温度传感器, 其固定在所述温度感应层的内表面上, 用于测量 所述感应元件的实时温度; 以及
控制器, 其包括加热控制模块、 数据存储模块和处理器, 其中: 所述加热控制模块用于以恒定电功率加热所述电阻丝, 以使所 述感应元件的温度保持在 o°c以上;
所述数据存储模块用于存储不同飞行条件下所述感应元件的温 度目标值, 并采集通过所述温度传感器测得的所述感应元件的实时 温度值;
所述处理器用于从所述数据存储模块中检索出一定飞行条件下 所述感应元件的温度目标值, 并将其与实时温度值进行对比, 如果 所述实时温度值小于所述温度目标值, 则判定飞机遭遇结冰条件。
2. 根据权利要求 1所述的结冰条件探测器, 其特征在于, 所述 温度传感器通过信号线与所述控制器相连接。
3. 根据权利要求 1或 2所述的结冰条件探测器, 其特征在于, 所述控制器通过电接头与飞机电源和航电系统相连接。
4. 根据权利要求 1所述的结水条件探测器, 其特征在于, 所述 温度感应层使用导热性强的金属制成。
5. 一种结水条件探测方法, 其特征在于,使用根据权利要求 1-4 中任一项所述的结水条件探测器, 所述方法包括步骤:
( 1 )通过温度传感器以一定的刷新率实时测量感应元件的实时 温度, 并通过信号线将实时温度值传递到所述控制器的数据存储模 块;
( 2 ) 通过所述控制器从飞机航电系统得到飞机当前的飞行条 件, 并通过所述处理器根据飞行条件从数据存储模块中检索出该飞 行条件下感应元件的温度目标值;
( 3 )通过所述处理器将所述实时温度值与所述温度目标值进行 对比, 如果所述实时温度值小于所述温度目标值, 则判定飞机遭遇 结冰条件, 并激发结水信号;
( 4 )通过电接头将结冰信号传递到飞机航电系统, 提示飞行机 组手动启动防水系统或者飞机自动启动防冰系统。
其中, 在所述步骤( 1 ) 中, 通过加热控制模块以恒定电功率加 热所述电阻丝, 以使所述感应元件的温度保持在 0°C以上, 防止感应 元件外表面结冰。
PCT/CN2012/081044 2011-09-06 2012-09-06 结冰条件探测器 WO2013034083A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110262725.4A CN102407942B (zh) 2011-09-06 2011-09-06 结冰条件探测器
CN201110262725.4 2011-09-06

Publications (1)

Publication Number Publication Date
WO2013034083A1 true WO2013034083A1 (zh) 2013-03-14

Family

ID=45910359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081044 WO2013034083A1 (zh) 2011-09-06 2012-09-06 结冰条件探测器

Country Status (2)

Country Link
CN (1) CN102407942B (zh)
WO (1) WO2013034083A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932115B2 (en) 2014-12-08 2018-04-03 Zodiac Aerotechnics Aircraft wing element

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102407942B (zh) * 2011-09-06 2016-05-04 中国商用飞机有限责任公司 结冰条件探测器
US20130299637A1 (en) * 2012-05-08 2013-11-14 The Boeing Company Ice protection for aircraft using electroactive polymer surfaces
CN102897324B (zh) * 2012-07-13 2015-06-10 中国商用飞机有限责任公司 一种飞机防冰装置
DE102013217774A1 (de) 2012-09-11 2014-03-13 Infineon Technologies Austria Ag Schaltungen, systeme und verfahren zum integrieren von erkennungs- und beheizungsfunktionen
CN103101626B (zh) * 2012-12-04 2015-09-02 中国商用飞机有限责任公司 结冰探测器
CN105083559A (zh) * 2015-09-21 2015-11-25 成都乐也科技有限公司 一种检测飞机表面结冰情况的温度探测器
CN105416593A (zh) * 2015-12-11 2016-03-23 中国航空工业集团公司西安飞机设计研究所 一种飞行器除冰系统
CN105472801B (zh) * 2015-12-18 2019-04-26 新昌县利果机械有限公司 一种旋转加热感应器
CA3066697A1 (en) 2017-06-29 2019-01-03 Vestas Wind Systems A/S Detecting water on a wind turbine using a temperature-controlled sensor
US11242152B2 (en) * 2017-11-17 2022-02-08 Ge Aviation Systems Llc Method and apparatus for detecting ice accretion
CN108128467B (zh) * 2018-04-26 2018-07-27 中国商用飞机有限责任公司 结冰探测器及结冰探测方法
CN108128466B (zh) * 2018-04-26 2018-07-27 中国商用飞机有限责任公司 图像式结冰探测器及结冰探测方法
CN108820227B (zh) * 2018-07-03 2021-12-03 上海工程技术大学 一种利用石墨烯加热膜的预测型防除冰的方法
CN108956684B (zh) * 2018-07-28 2020-11-03 哈尔滨工业大学 一种埋入式混凝土早期受冻结冰无损检测方法
CN109696383A (zh) * 2019-01-25 2019-04-30 南京航空航天大学 一种基于统计式测量结果的材料表面防冰性能评价方法
CN110606209B (zh) * 2019-09-10 2022-08-16 中国商用飞机有限责任公司 一种结冰探测器
CN112550724B (zh) * 2020-12-25 2023-12-22 武汉航空仪表有限责任公司 一种基于阻抗测量的结冰探测系统及探测方法
CN112678188A (zh) * 2020-12-25 2021-04-20 武汉航空仪表有限责任公司 一种基于阻抗测量原理的结冰探测器
CN113420503B (zh) * 2021-06-11 2022-08-12 中国民航大学 基于温度序列相似性度量的积冰检测方法、系统、终端及应用
CN114476083A (zh) * 2021-12-31 2022-05-13 中国航空工业集团公司西安飞机设计研究所 一种保形式结冰探测系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328467B1 (en) * 1999-05-07 2001-12-11 University Of Tennessee Research Corp. Method and apparatus for detecting ice or frost deposition
WO2002004290A1 (en) * 2000-07-12 2002-01-17 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno System for detecting a deposit on a surface
US20100116940A1 (en) * 2007-04-11 2010-05-13 Nicolas Picco Method and device for detecting rime and/or rime conditions on a flying aircraft
WO2011064531A2 (en) * 2009-11-24 2011-06-03 Qinetiq Limited Improved sensor arrangement
CN102407942A (zh) * 2011-09-06 2012-04-11 中国商用飞机有限责任公司 结冰条件探测器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100476893C (zh) * 2003-08-20 2009-04-08 波音公司 探测结冰条件的方法和系统
FR2875542B1 (fr) * 2004-09-21 2009-02-13 Airbus France Sas Dispositif de protection contre le givrage pour moteurs d'aeronefs et procedes de degivrage associe
ITTO20060400A1 (it) * 2006-05-31 2007-12-01 Lorenzo Battisti Metodo e sistema per la rilevazione di pericolo di formazione di ghiaccio su superfici aerodinamiche

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328467B1 (en) * 1999-05-07 2001-12-11 University Of Tennessee Research Corp. Method and apparatus for detecting ice or frost deposition
WO2002004290A1 (en) * 2000-07-12 2002-01-17 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno System for detecting a deposit on a surface
US20100116940A1 (en) * 2007-04-11 2010-05-13 Nicolas Picco Method and device for detecting rime and/or rime conditions on a flying aircraft
WO2011064531A2 (en) * 2009-11-24 2011-06-03 Qinetiq Limited Improved sensor arrangement
CN102407942A (zh) * 2011-09-06 2012-04-11 中国商用飞机有限责任公司 结冰条件探测器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932115B2 (en) 2014-12-08 2018-04-03 Zodiac Aerotechnics Aircraft wing element

Also Published As

Publication number Publication date
CN102407942B (zh) 2016-05-04
CN102407942A (zh) 2012-04-11

Similar Documents

Publication Publication Date Title
WO2013034083A1 (zh) 结冰条件探测器
EP2389314B1 (en) Icing sensor system and method
CA2829887C (en) Automated water drop measurement and ice detection system
US20120266669A1 (en) Sensor Arrangement
CA2681630C (fr) Procede et dispositif de detection de givre et/ou conditions givrantes sur aeronef en vol
BR102014021839B1 (pt) Método de detecção de formação de gelo sobre uma aeronave, e detector de gelo
EP2870435A1 (en) Cloud ice detector
US11772801B2 (en) Electric field sensor with sensitivity-attenuating ground ring
CN114166460B (zh) 飞行器进气道试验装置、系统和热气防冰试验判稳方法
CN209167342U (zh) 空速管和无人机
US8794018B2 (en) System and method for the measurement and prevention of icing in a conduit
US11618575B2 (en) Ice detector apparatus, system, and method
CA2822630C (en) Ice protection system
BR102021001277A2 (pt) Aparelho detector de gelo multicamadas, aeronave, e, método de detecção de gelo de uma aeronave
RU162213U1 (ru) Термоэлектрический датчик обледенения
EP3885265A1 (en) Heater power modulation based on outside air temperature and aircraft velocity
CN215922568U (zh) 一种无人机用防结冰的空速管装置及无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829924

Country of ref document: EP

Kind code of ref document: A1