WO2013033902A1 - 软碰撞光栅尺及其测量方法 - Google Patents

软碰撞光栅尺及其测量方法 Download PDF

Info

Publication number
WO2013033902A1
WO2013033902A1 PCT/CN2011/079472 CN2011079472W WO2013033902A1 WO 2013033902 A1 WO2013033902 A1 WO 2013033902A1 CN 2011079472 W CN2011079472 W CN 2011079472W WO 2013033902 A1 WO2013033902 A1 WO 2013033902A1
Authority
WO
WIPO (PCT)
Prior art keywords
scale
sliding sub
sliding
movable probe
blocking surface
Prior art date
Application number
PCT/CN2011/079472
Other languages
English (en)
French (fr)
Inventor
巫孟良
Original Assignee
Wu Mengliang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wu Mengliang filed Critical Wu Mengliang
Priority to PCT/CN2011/079472 priority Critical patent/WO2013033902A1/zh
Priority to US13/823,899 priority patent/US9109880B2/en
Publication of WO2013033902A1 publication Critical patent/WO2013033902A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/20Slide gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/08Measuring arrangements characterised by the use of mechanical techniques for measuring diameters
    • G01B5/12Measuring arrangements characterised by the use of mechanical techniques for measuring diameters internal diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/60Mechanical arrangements for preventing or damping vibration or shock

Definitions

  • the invention relates to the field of measuring instruments, in particular to a soft impact grating and a measuring method thereof.
  • the scale displacement sensor (referred to as the grating scale) is a measurement feedback device that works by the optical principle of the grating.
  • the scale displacement sensor is often used in machine tools and current machining centers and measuring instruments, and can be used for linear displacement or angular displacement detection.
  • the signal measured and output is a digital pulse, which has the characteristics of large detection range, high detection precision and fast response speed. For example, in CNC machine tools, it is often used to detect the coordinates of the tool and the workpiece to observe and track the error of the tool to play a role in compensating the motion error of the tool.
  • a grating scale structure currently used includes a fixed main ruler 1 and a sliding sub-foot 2, and the fixed main ruler 1 is fixed relative to the object to be tested 3, and the fixed main ruler 1 is provided with a scale. 4.
  • the sliding sub-foot 2 is slidably disposed relative to the fixed main rule 1, the probe 5 is fixed to the sliding sub-foot 2, and the reference point 6 is provided on the sliding sub-foot 2, and the reference point 6 and the scale 4 correspond to each other.
  • the fixed main rule 1 is fixed to the outside of the test object 3, and the probe 5 is inserted into the hole 7 of the test object 3, and the touch head 2 is moved to drive the probe 5 to move synchronously.
  • the head 5 collides with the first blocking surface 8 and the second blocking surface 9 of the slot 7 in sequence, thereby measuring the distance between the sliding sub-scale 2 and the left-to-right displacement of the fixed main ruler 1, and finally shifting left and right.
  • the distance between the first blocking surface 8 and the second blocking surface 9 can be obtained by adding the distances, plus the diameter or width of the probe.
  • the above-mentioned conventional grating ruler structure can provide the user with the effect of measuring the linear distance between two points, and is indeed progressive, but in actual use, it is found that there are still many deficiencies in its own structure and performance.
  • the existing grating scale fails to achieve the best use effect and work efficiency.
  • the disadvantages are summarized as follows: Firstly, since the probe is fixed on the sliding sub-scale and moves synchronously with the sliding sub-foot, the measurement is performed. During the process, the probe may have a hard collision with the first blocking surface or the second blocking surface, which may cause damage to the probe and affect the normal operation of the measuring operation. Secondly, since the probe collides with the first blocking surface or the second blocking surface, the sliding sub-segment is inertially reversed, resulting in limited measurement accuracy, and it is impossible to measure the measured object quickly and accurately.
  • the present invention is directed to the absence of the prior art, and its main object is to provide a soft impact grating and a measuring method thereof, which can effectively solve the existing grating scale which is easy to be damaged during the measurement process and affect the measurement operation.
  • the problem is normal.
  • Another object of the present invention is to provide a soft impact grating and a measuring method thereof, which can effectively solve the problem of limited measurement accuracy of the existing grating scale.
  • a soft impact grating includes a fixed main ruler, a sliding sub-foot and a movable probe; the sliding sub-slider is slidably disposed relative to the fixed main ruler, and the sliding sub-scale and the fixed main ruler are provided with grating gratings corresponding to each other
  • the movable probe is synchronously moved with the sliding sub-foot, and the movable probe is slidably disposed relative to the sliding sub-foot, and the movable probe and the sliding sub-scale are provided with reference scales corresponding to each other; and, for the active probe setting There is a buffer mechanism.
  • a method for measuring a soft impact grating according to claim 1, comprising the steps
  • the present invention has obvious advantages and advantageous effects compared with the prior art. Specifically, it can be known from the above technical solutions:
  • the buffering action of the buffering mechanism on the movable probe is utilized, and the grating scale and the reference scale are used together to make the movable probe and the first blocking surface or the second blocking surface.
  • the sliding sub-scale does not rebound, but uses the movable probe to move backward relative to the sliding sub-scale to obtain a compensation distance, and the value of the compensation distance is measured, so as to obtain a more accurate measurement value, Achieving fast and accurate measurement operations provides a powerful guarantee.
  • one end of the two buffering elastic members is connected with the sliding sub-foot, and the other end of the two buffering elastics is connected with the two ends of the movable measuring head, and the structure is simple and the operation is simple. It also enables automatic reset of the active probe.
  • the degree of automation is high, for the measurement operation Provides great convenience.
  • FIG. 1 is a schematic structural view of a conventional grating scale
  • Figure 2 is a detailed structural view of a preferred embodiment of the present invention.
  • FIG. 3 is a first schematic diagram of a measurement process of a preferred embodiment of the present invention.
  • FIG. 4 is a schematic view showing a second state of a measurement process of a preferred embodiment of the present invention.
  • Figure 5 is a third state view of the measurement process of the preferred embodiment of the present invention.
  • Figure 6 is a fourth schematic view showing the measurement process of the preferred embodiment of the present invention.
  • Figure 7 is a circuit diagram showing the structure of a reading system in accordance with a preferred embodiment of the present invention.
  • FIG. 2 there is shown a specific structure of a preferred embodiment of the present invention including a fixed main rule 10, a sliding sub-foot 20 and a movable probe 30.
  • the fixed main rule 10 is fixed relative to the object to be tested 40, and the fixed main rule 10 is provided with a first grating scale 11.
  • the sliding sub-foot 20 is slidably disposed relative to the fixed main rule 10, and a second grating scale 21 is disposed on a side of the sliding sub-foot 20 adjacent to the fixed main rule 10, and the other side of the sliding sub-foot 20 is provided with two first references.
  • the scale 22, the second grating scale 21 and the aforementioned first grating scale 11 correspond to each other.
  • the sliding sub-segment 20 is for acquiring an image of the first grating scale 11 of the fixed main rule 10 and calculating the measurement position in conjunction with the position of the second grating scale 21.
  • the movable probe 30 moves synchronously with the sliding sub-segment 20, and the movable probe 30 is slidably disposed relative to the sliding sub-segment 20, which is T-shaped and includes a base 31 and outwardly from the base 31 a head 32 extending; the base 31 is provided with a second reference scale 301, the second reference scale 301 and the first reference scale 22 correspond to each other, and the second reference scale 301 is located at the two first reference scales 22 Between the in-situ state, the second reference scale 301 is located between the two first reference scales 22; the head 32 extends into the slot 401 of the object 40 and is located at the first stop of the slot 401 Between the face 41 and the second blocking surface 42.
  • the movable probe 30 is used to acquire an image of the first reference scale 22 on the sliding sub-scale 20 and calculate the measurement position in conjunction with the position of the second reference scale 301.
  • the movable probe 30 is provided with a buffer mechanism 50 for softly colliding the movable probe 30 with the first blocking surface 41 or the second blocking surface 42 to prevent the movable probe 30 from being damaged.
  • the buffer mechanism 50 is disposed between the movable probe 30 and the sliding sub-segment 20.
  • the buffer mechanism 50 includes two buffering elastic members 51.
  • the two buffering elastic members 51 are respectively located at two ends of the movable probe 30, and the two buffering elasticities are respectively One end of the member 51 is connected to the sliding sub-foot 20, and the other ends of the two cushioning elastic members 51 are respectively connected to the two ends of the movable probe 20.
  • the two cushioning elastic members 51 in this embodiment are springs, but are not limited to springs. .
  • the reading system 60 includes a first optoelectronic device 61, a second optoelectronic device 62, a counter 63, a latch 64, and an operator 65; the first grating scale 11 and the second grating scale 21 are both connected to the first optoelectronic device 61.
  • the first optoelectronic device 61 is connected to the counter 63; the first reference scale 22 and the second reference scale 301 are both connected to the second optoelectronic device 62, and the second optoelectronic device 62 and the counter 63 are connected to the latch 64, the lock
  • the memory 64 is used to temporarily store data, and the latch 64 is connected to an arithmetic unit 65 for performing arithmetic processing on the data in the latch 64 to obtain a final measurement result.
  • the protruding end of the movable probe 30, that is, the aforementioned head 32 is placed between the first blocking surface 41 and the second blocking surface 42 of the object 40, wherein the width of the head 32 is In the case of L, the width data L is stored in the latch 64, and the fixed main ruler 10 is fixed relative to the object to be tested 40, and the original position of the sliding sub-footboard 20 relative to the fixed main ruler 10 and the relative sliding of the movable probe 30 are recorded. The original position of the secondary ruler 20.
  • the sliding sub-foot 20 is slid toward the first blocking surface 41, and the movable probe 30 moves in synchronization with the sliding sub-foot 20 so that the head 32 of the movable probe 30 collides with the first blocking surface 41. .
  • the sliding sub-foot 20 starts to decelerate and stop, and the movable probe 30 slides to the left side with respect to the sliding sub-foot 20, so that the buffer elastic member 51 on the left side is compressed, corresponding to the cushion elastic member on the right side.
  • the second optoelectronic device 62 is triggered to generate a, b phases Signal, one of the two phase signals is selected, and the distance of the movable probe 30 from the displacement of the sliding sub-foot 20 is read as S 1 And reading the read data in the latch 64; at the same time, the first optoelectronic device 61 is also triggered to generate A and B phase signals, the two phase signals are simultaneously input into the counter 63, by the counter 63 The distance at which the sliding sub-scale 20 is displaced relative to the fixed main rule 10 is read as S 2 and store the read data in the latch 64.
  • the sliding sub-foot 20 and the movable probe 30 are returned to the original position, and the sliding sub-segment 20 is slid toward the second blocking surface 42.
  • the movable probe 30 moves synchronously with the sliding sub-scale 20.
  • the head 32 of the movable probe 30 is caused to collide with the second blocking surface 42.
  • the sliding sub-foot 20 starts to decelerate and stop, and the movable probe 30 slides to the right side with respect to the sliding sub-foot 20, so that the buffer elastic member 51 on the right side is compressed, corresponding to the cushion elastic member on the left side.
  • the second optoelectronic device 62 is triggered to generate the a and b-phase signals.
  • One of the two-phase signals is selected, and the distance at which the movable probe 30 is displaced relative to the sliding sub-foot 20 is read as S.
  • the data in the latch 64 is arithmetically processed by the operator 65 to obtain a distance between the first blocking surface 41 and the second blocking surface 42: (S 2 -S 1 )+(S 4 -S 3 )+L .
  • the present invention can be used to measure the linear distance between any two points, and is not limited to the distance between the two blocking faces of the aforementioned measuring holes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

提供一种软碰撞光栅尺及其测量方法,该软碰撞光栅尺包括固定主尺(10)、滑动副尺(20)和活动测头(30);该滑动副尺(20)相对固定主尺(10)可滑动地设置;该活动测头(30)随滑动副尺(20)同步移动,且活动测头(30)相对滑动副尺(20)可滑动地设置;以及针对该活动测头(30)设有缓冲机构(50)。藉此,通过将活动测头(30)相对滑动副尺(20)可滑动地设置,并配合利用缓冲机构(50)对活动测头(30)的缓冲作用,使得活动测头(30)与被测物的第一阻挡面(41)或第二阻挡面(42)发生碰撞时能够自动获得一个反向的补偿作用,实现软碰撞效果,一方面,有效避免损坏活动测头(30),保证测量作业的正常进行;另一方面,滑动副尺(20)不会反弹,二是利用活动测头(30)相对滑动副尺(20)反向移动而获得一个补偿距离,并测出该补偿距离的数值,提高测量值的精确度。

Description

软碰撞光栅尺及其测量方法 技术领域
本发明涉及测量仪器领域技术,尤其是指一种软碰撞光栅尺及其测量方法。
背景技术
光栅尺位移传感器(简称光栅尺),是利用光栅的光学原理工作的测量反馈装置。光栅尺位移传感器经常应用于机床与现在加工中心以及测量仪器等方面,可用作直线位移或者角位移的检测。其测量输出的信号为数字脉冲,具有检测范围大,检测精度高,响应速度快的特点。例如,在数控机床中常用于对刀具和工件的坐标进行检测,来观察和跟踪走刀误差,以起到一个补偿刀具的运动误差的作用。
如图1所示,为目前使用的一种光栅尺结构,包括有固定主尺1和滑动副尺2,该固定主尺1相对被测物3固定不动,固定主尺1上设置有刻度4,该滑动副尺2相对固定主尺1可滑动地设置,滑动副尺2上固定有测头5,且滑动副尺2上设置有参照点6,该参照点6与刻度4彼此对应。测量时,将固定主尺1固定于被测物3外,并使测头5伸入被测物3的孔槽7中,通过移动滑动副尺2而带动测头5同步移动,并使测头5先后与孔槽7的第一阻挡面8和第二阻挡面9碰撞,以此测出滑动副尺2相对固定主尺1左移和右移的距离,最后将左移和右移的距离相加,再加上测头的直径或宽度即可得到第一阻挡面8和第二阻挡面9之间的距离。
上述现有的光栅尺结构,虽可提供给使用者测量两点之间直线距离的功效,确实具有进步性,但是在实际使用时却发现其自身结构和使用性能上仍存在有诸多不足,造成现有的光栅尺在实际应用上,未能达到最佳的使用效果和工作效能,现将其缺点归纳如下:首先,由于测头固定于滑动副尺上随滑动副尺同步移动,在测量的过程中,该测头与第一阻挡面或第二阻挡面会发生硬性的碰撞,容易造成测头损坏,影响测量作业的正常进行。其次,由于该测头与第一阻挡面或第二阻挡面发生碰撞后会使滑动副尺惯性地反向移动,造成测量精度有限,不可能对被测物实现快精准地测量。
发明内容
有鉴于此,本发明针对现有技术存在之缺失,其主要目的是提供一种软碰撞光栅尺及其测量方法,其能有效解决现有之光栅尺在测量过程中容易碰坏而影响测量作业正常进行的问题。
本发明的另一目的是提供一种软碰撞光栅尺及其测量方法,其能有效解决现有之光栅尺测量精度有限的问题。
为实现上述目的,本发明采用如下之技术方案:
一种软碰撞光栅尺,包括有固定主尺、滑动副尺和活动测头;该滑动副尺相对固定主尺可滑动地设置,该滑动副尺和固定主尺上设置有彼此对应的光栅刻度;该活动测头随滑动副尺同步移动,且活动测头相对滑动副尺可滑动地设置,该活动测头和滑动副尺上设置有彼此对应的参照刻度;以及,针对该活动测头设置有缓冲机构。
一种如权利要求1所述软碰撞光栅尺的测量方法,包括的步骤有
(1)将活动测头的伸出端置于被测物的第一阻挡面和第二阻挡面之间,其中该活动测头伸出端的宽度为L,并将固定主尺固定,记录下滑动副尺相对固定主尺的原始位置以及活动测头相对滑动副尺的原始位置;
(2)使滑动副尺朝向第一阻挡面滑动而使得活动测头抵于该第一阻挡面上,测出活动测头相对滑动副尺位移的距离为S 1 ,以及测出滑动副尺相对固定主尺位移的距离为S 2 ;
(3)使滑动副尺和活动测头回到原始位置,并使滑动副尺朝向第二阻挡面滑动而使得活动测头抵于第二阻挡面上,测出活动测头相对滑动副尺位移的距离为S 3 ;以及测出滑动副尺相对固定主尺位移的距离为S 4 ;
(4)计算出被测物之第一阻挡面和第二阻挡面之间的距离为:(S 2 -S 1 )+(S 4 -S 3 )+L 。
本发明与现有技术相比具有明显的优点和有益效果,具体而言,由上述技术方案可知:
一、通过将活动测头相对滑动副尺可滑动地设置,并配合利用缓冲机构对活动测头的缓冲作用,使得活动测头与被测物的第一阻挡面或第二阻挡面发生碰撞时能够自动获得一个反向的补偿作用,实现软碰撞效果,取代了传统之硬性碰撞的方式,有效避免对活动测头造成损坏,延长使用寿命,保证测量作业的正常进行。
二、通过将活动测头相对滑动副尺可滑动地设置,利用缓冲机构对活动测头的缓冲作用,同时配合利用光栅刻度和参照刻度,使得活动测头与第一阻挡面或第二阻挡面软碰撞后,滑动副尺不会反弹,而是利用活动测头相对滑动副尺反向移动而获得一个补偿距离,并测出该补偿距离的数值,以便获得精确度更高的测量值,为实现快精准的测量作业提供有力保证。
三、通过利用两缓冲弹性件组成活动测头的缓冲机构,利用该两缓冲弹性件的一端与滑动副尺连接,两缓冲弹性的另一端与活动测头的两端连接,结构简单,操作简便,还可实现活动测头自动复位。
四、通过配合利用读数系统的第一光电器件、第二光电器件、计数器、锁存器和运算器对数据进行采集及运算处理,并最终得出精确的测量值,自动化程度高,为测量作业提供了很大的便利性。
附图说明
图1是传统之光栅尺的具体结构示意图;
图2是本发明之较佳实施例的具体结构示意图;
图3是本发明之较佳实施例测量过程的第一状态示意图;
图4是本发明之较佳实施例测量过程的第二状态示意图;
图5是本发明之较佳实施例测量过程的第三状态示意图;
图6是本发明之较佳实施例测量过程的第四状态示意图;
图7是本发明之较佳实施例中读数系统的电路结构示意图。
具体实施方式
请参照图2至图7所示,其显示出了本发明之较佳实施例的具体结构,包括有固定主尺10、滑动副尺20和活动测头30。
其中,该固定主尺10相对被测物40固定不动,固定主尺10上设置有第一光栅刻度11。
该滑动副尺20相对固定主尺10可滑动地设置,滑动副尺20上靠近固定主尺10的一侧设置有第二光栅刻度21,滑动副尺20的另一侧设置有两第一参照刻度22,该第二光栅刻度21与前述第一光栅刻度11彼此对应。该滑动副尺20系用于采集固定主尺10的第一光栅刻度11的图像并结合第二光栅刻度21位置计算出测量位置。
该活动测头30随该滑动副尺20同步移动,且活动测头30相对滑动副尺20可滑动地设置,该活动测头30呈T型,其包括有一基部31以及于该基部31向外延伸出的头部32;该基部31上设置有第二参照刻度301,该第二参照刻度301与前述第一参照刻度22彼此对应,且该第二参照刻度301位于前述两第一参照刻度22之间,原位状态时,该第二参照刻度301位于该两第一参照刻度22之间;该头部32伸向被测物40的孔槽401中,并位于孔槽401的第一阻挡面41和第二阻挡面42之间。该活动测头30系用于采集滑动副尺20上的第一参照刻度22的图像并结合第二参照刻度301的位置计算出测量位置。
以及,针对该活动测头30设置有缓冲机构50,该缓冲机构50用于使活动测头30与前述第一阻挡面41或第二阻挡面42实现软碰撞,以避免活动测头30碰坏,该缓冲机构50设置于活动测头30和滑动副尺20之间,缓冲机构50包括有两缓冲弹性件51,该两缓冲弹性件51分别位于活动测头30的两端外,两缓冲弹性件51的一端与滑动副尺20连接,两缓冲弹性件51的另一端分别对应与活动测头20的两端连接,本实施例中的两缓冲弹性件51均为弹簧,但不局限于弹簧。
另外,进一步包括有读数系统60, 该读数系统60包括有第一光电器件61、第二光电器件62、计数器63、锁存器64和运算器65;前述第一光栅刻度11和第二光栅刻度21均与第一光电器件61连接,该第一光电器件61连接该计数器63;前述第一参照刻度22和第二参照刻度301均连接第二光电器件62,该第二光电器件62和计数器63均连接锁存器64,该锁存器64用于对数据进行暂存,该锁存器64连接运算器65,该运算器65用于对锁存器64中的数据进行运算处理,以便得到最终的测量结果。
详述本实施例的测量方法如下:
首先,如图2所示,将活动测头30的伸出端即前述头部32置于被测物40的第一阻挡面41和第二阻挡面42之间,其中该头部32的宽度为L,该宽度数据L储存在锁存器64中,使固定主尺10相对被测物40固定不动,记录下滑动副尺20相对固定主尺10的原始位置以及活动测头30相对滑动副尺20的原始位置。
接着,如图3所示,使滑动副尺20朝向第一阻挡面41滑动,该活动测头30随滑动副尺20同步移动而使得活动测头30的头部32与第一阻挡面41碰撞。
然后,如图4所示,滑动副尺20开始减速停止,该活动测头30相对滑动副尺20向左侧滑动,而使得左侧的缓冲弹性件51压缩,对应该右侧的缓冲弹性件51拉伸,当滑动副尺20滑动到使左侧的第一参照刻度22与活动测头30上的第二参照刻度301正对时,该第二光电器件62被触发而产生a、b相信号,该两相信号的其中一相被选择,读取出活动测头30相对滑动副尺20位移的距离为S 1 ,并将读取到的数据储存在锁存器64中;与此同时,该第一光电器件61亦被触发而产生A、B相信号,该两相信号同时输入计数器63中,由计数器63读取出滑动副尺20相对固定主尺10位移的距离为S 2 ,并将读取到的数据储存在锁存器64中。
接着,使滑动副尺20和活动测头30回到前述原始位置,并使滑动副尺20朝向第二阻挡面42滑动,如图5所示,该活动测头30随滑动副尺20同步移动而使得活动测头30的头部32与第二阻挡面42碰撞。
然后,如图6所示,滑动副尺20开始减速停止,该活动测头30相对滑动副尺20向右侧滑动,而使得右侧的缓冲弹性件51压缩,对应该左侧的缓冲弹性件51拉伸,滑动副尺20滑动到使右侧的第一参照刻度22与活动测头30上的第二参照刻度301正对时,该第二光电器件62被触发而产生a、b相信号,该两相信号的其中一相被选择,读取出活动测头30相对滑动副尺20位移的距离为S 3 ,并将读取到的数据储存在锁存器64中;与此同时,该第一光电器件61亦被触发而产生A、B相信号,该两相信号同时输入计数器63中,由计数器63读取出滑动副尺20相对固定主尺10位移的距离为S 4 ,并将读取到的数据储存在锁存器64中。
最后,通过运算器65将锁存器64中的数据进行运算处理得出第一阻挡面41和第二阻挡面42之间的距离为:(S 2 -S 1 )+(S 4 -S 3 )+L 。
需要特别说明的是,本发明可以用于测量任意两点之间的直线距离,而不局限于前述测量孔槽两阻挡面之间的距离。

Claims (8)

1 、一种软碰撞光栅尺,其特征在于:包括有固定主尺、滑动副尺和活动测头;该滑动副尺相对固定主尺可滑动地设置,该滑动副尺和固定主尺上设置有彼此对应的光栅刻度;该活动测头随滑动副尺同步移动,且活动测头相对滑动副尺可滑动地设置,该活动测头和滑动副尺上设置有彼此对应的参照刻度;以及,针对该活动测头设置有缓冲机构。
2 、根据权利要求1所述的软碰撞光栅尺,其特征在于:所述缓冲机构设置于活动测头和滑动副尺之间,该缓冲机构包括有两缓冲弹性件,该两缓冲弹性件的一端与滑动副尺连接,两缓冲弹性件的另一端分别对应与活动测头的两端连接。
3 、根据权利要求2所述的软碰撞光栅尺,其特征在于:所述缓冲弹性件为弹簧。
4 、根据权利要求1所述的软碰撞光栅尺,其特征在于:所述活动测头包括有一基部以及于该基部向外延伸出的头部。
5 、根据权利要求1所述的软碰撞光栅尺,其特征在于:所述光栅刻度包括有设置于固定主尺上的第一光栅刻度以及设置于滑动副尺上的第二光栅刻度;该参照刻度包括有两设置于滑动副尺上的第一参照刻度和一设置于活动测头上的第二参照刻度,该第二参照刻度位于两第一参照刻度之间,原位状态时,该第二参照刻度位于该两第一参照刻度的中间位置。
6 、根据权利要求5所述的软碰撞光栅尺,其特征在于:进一步包括有读数系统,该读数系统包括有第一光电器件、第二光电器件、计数器、锁存器和运算器;前述第一光栅刻度和第二光栅刻度均与第一光电器件连接,该第一光电器件连接该计数器;前述第一参照刻度和第二参照刻度均连接第二光电器件,该第二光电器件和计数器均连接锁存器,该锁存器连接运算器。
7 、一种如权利要求1所述软碰撞光栅尺的测量方法,其特征在于:包括的步骤有
(1)将活动测头的伸出端置于被测物的第一阻挡面和第二阻挡面之间,其中该活动测头伸出端的宽度为L,并将固定主尺固定,记录下滑动副尺相对固定主尺的原始位置以及活动测头相对滑动副尺的原始位置;
(2)使滑动副尺朝向第一阻挡面滑动而使得活动测头抵于该第一阻挡面上,测出活动测头相对滑动副尺位移的距离为S 1 ,以及测出滑动副尺相对固定主尺位移的距离为S 2 ;
(3)使滑动副尺和活动测头回到原始位置,并使滑动副尺朝向第二阻挡面滑动而使得活动测头抵于第二阻挡面上,测出活动测头相对滑动副尺位移的距离为S 3 ;以及测出滑动副尺相对固定主尺位移的距离为S 4 ;
(4)计算出被测物之第一阻挡面和第二阻挡面之间的距离为:(S 2 -S 1 )+(S 4 -S 3 )+L 。
8 、根据权利要求 7 所述的软碰撞光栅尺的测量方法,其特征在于:在步骤( 2 )和步骤( 3 )中,首先,通过利用第二光电器件读取活动测头相对滑动副尺位移的距离为 S 1 和 S 3 ,并将读取到的数据储存在锁存器中;同时,配合利用第一光电器件和计数器读取滑动副尺相对固定主尺位移的距离为 S 2 和 S 4 ,并将读取到的数据储存在锁存器中;接着,通过运算器将锁存器中的数据进行运算处理得出第一阻挡面和第二阻挡面之间的距离为: (S 2 -S 1 )+(S 4 -S 3 )+L 。
PCT/CN2011/079472 2011-09-08 2011-09-08 软碰撞光栅尺及其测量方法 WO2013033902A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/079472 WO2013033902A1 (zh) 2011-09-08 2011-09-08 软碰撞光栅尺及其测量方法
US13/823,899 US9109880B2 (en) 2011-09-08 2011-09-08 Soft collision grating scale and measuring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079472 WO2013033902A1 (zh) 2011-09-08 2011-09-08 软碰撞光栅尺及其测量方法

Publications (1)

Publication Number Publication Date
WO2013033902A1 true WO2013033902A1 (zh) 2013-03-14

Family

ID=47831446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079472 WO2013033902A1 (zh) 2011-09-08 2011-09-08 软碰撞光栅尺及其测量方法

Country Status (2)

Country Link
US (1) US9109880B2 (zh)
WO (1) WO2013033902A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108106542A (zh) * 2017-12-22 2018-06-01 苏州欧鹏自动化设备有限公司 直线光栅尺的自动检测装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104482871A (zh) * 2014-12-26 2015-04-01 苏州博众精工科技有限公司 一种x方向可移动的镭射检测机构
US10126560B2 (en) * 2016-02-18 2018-11-13 National Engineering Research Center for Optical Instrumentation Spectrum-generation system based on multiple-diffraction optical phasometry

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019514A (ja) * 1996-07-03 1998-01-23 Futaba Corp 測長装置
US5774219A (en) * 1996-01-23 1998-06-30 Mitutoyo Corporation Reflection-type optical encoder with light receiving array
JP2000121316A (ja) * 1998-10-15 2000-04-28 Citizen Watch Co Ltd 光学スケールを用いた寸法測定装置
US6342697B1 (en) * 1998-09-21 2002-01-29 Mitutoyo Corporation Method and apparatus for detecting origin of measurement
CN101113895A (zh) * 2007-09-07 2008-01-30 中国科学院长春光学精密机械与物理研究所 一种采用激光位移传感器进行非接触测量曲率半径的装置
CN201382777Y (zh) * 2009-04-22 2010-01-13 东南大学 温度自补偿光纤光栅位移传感器
CN102359760A (zh) * 2011-08-22 2012-02-22 广东万濠精密仪器股份有限公司 软碰撞光栅尺及其测量方法
CN202166407U (zh) * 2011-08-22 2012-03-14 广东万濠精密仪器股份有限公司 软碰撞光栅尺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172485A (en) * 1991-10-17 1992-12-22 Mitutoyo Corporation Precision linear measuring suspension system having sliding contact between the scale and the pick-off
JPH08178694A (ja) * 1994-12-27 1996-07-12 Canon Inc 変位センサ用のスケール
JP4434452B2 (ja) * 2000-08-15 2010-03-17 ソニーマニュファクチュアリングシステムズ株式会社 測尺装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774219A (en) * 1996-01-23 1998-06-30 Mitutoyo Corporation Reflection-type optical encoder with light receiving array
JPH1019514A (ja) * 1996-07-03 1998-01-23 Futaba Corp 測長装置
US6342697B1 (en) * 1998-09-21 2002-01-29 Mitutoyo Corporation Method and apparatus for detecting origin of measurement
JP2000121316A (ja) * 1998-10-15 2000-04-28 Citizen Watch Co Ltd 光学スケールを用いた寸法測定装置
CN101113895A (zh) * 2007-09-07 2008-01-30 中国科学院长春光学精密机械与物理研究所 一种采用激光位移传感器进行非接触测量曲率半径的装置
CN201382777Y (zh) * 2009-04-22 2010-01-13 东南大学 温度自补偿光纤光栅位移传感器
CN102359760A (zh) * 2011-08-22 2012-02-22 广东万濠精密仪器股份有限公司 软碰撞光栅尺及其测量方法
CN202166407U (zh) * 2011-08-22 2012-03-14 广东万濠精密仪器股份有限公司 软碰撞光栅尺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108106542A (zh) * 2017-12-22 2018-06-01 苏州欧鹏自动化设备有限公司 直线光栅尺的自动检测装置

Also Published As

Publication number Publication date
US9109880B2 (en) 2015-08-18
US20140173924A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
CN107543484B (zh) 用于操作坐标测量机的方法
US7788820B2 (en) Method and device for contacting a surface point on a workpiece
JP6058109B2 (ja) 較正の方法および装置
US7784333B2 (en) Measurement control device and measurement control method
US7286949B2 (en) Method of error correction
EP2167912B2 (en) Compensation of measurement errors due to dynamic deformations in a coordinate measuring machine
KR20190042561A (ko) 기질을 정렬하기 위한 방법 및 장치
WO2013033902A1 (zh) 软碰撞光栅尺及其测量方法
CN104296716B (zh) 一种基于单测头误差分离的超精密直线度测量方法
CN101140155A (zh) 卡尺
EP2013571A1 (en) Method of error correction
JPH06213653A (ja) 表面接触測定プローブを用いたワークピースの測定方法
US11274945B2 (en) Coordinate measuring machine and coordinate measuring program
US7869970B2 (en) Probe straightness measuring method
CN202166407U (zh) 软碰撞光栅尺
CN102359760B (zh) 软碰撞光栅尺及其测量方法
CN105043216A (zh) 一种箱体内间距测量装置及方法
JP6629376B2 (ja) 座標測定装置を動作させる方法
JP2008216122A (ja) 表面性状測定装置
CN205138419U (zh) 一种激光波长修正式角反射镜激光干涉仪
JP2002039743A (ja) 測定機
JP2019158385A (ja) 測定装置
CN212963176U (zh) 一种汽轮机缸胀位移传感器校验装置
JP2012016769A (ja) 視覚センサのマウント装置と方法
CN210242715U (zh) 平面度检测装置和激光切割设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13823899

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872015

Country of ref document: EP

Kind code of ref document: A1