WO2013032361A1 - Двигатель внутреннего сгорания - Google Patents

Двигатель внутреннего сгорания Download PDF

Info

Publication number
WO2013032361A1
WO2013032361A1 PCT/RU2012/000436 RU2012000436W WO2013032361A1 WO 2013032361 A1 WO2013032361 A1 WO 2013032361A1 RU 2012000436 W RU2012000436 W RU 2012000436W WO 2013032361 A1 WO2013032361 A1 WO 2013032361A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinders
pair
crank
connecting rods
cylinder
Prior art date
Application number
PCT/RU2012/000436
Other languages
English (en)
French (fr)
Inventor
Алексей Александрович НИКИФОРОВ
Константин Геннадьевич БУРМИСТРОВ
Original Assignee
Nikiforov Aleksey Aleksandrovich
Burmistrov Konstantin Gennadievich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikiforov Aleksey Aleksandrovich, Burmistrov Konstantin Gennadievich filed Critical Nikiforov Aleksey Aleksandrovich
Publication of WO2013032361A1 publication Critical patent/WO2013032361A1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B1/00Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements
    • F01B1/06Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements with cylinders in star or fan arrangement
    • F01B1/062Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements with cylinders in star or fan arrangement the connection of the pistons with an actuating or actuated element being at the inner ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B1/00Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements
    • F01B1/08Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements with cylinders arranged oppositely relative to main shaft and of "flat" type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B1/00Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements
    • F01B1/10Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements with more than one main shaft, e.g. coupled to common output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/042Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft the connections comprising gear transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • F02B75/222Multi-cylinder engines with cylinders in V, fan, or star arrangement with cylinders in star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/24Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups

Definitions

  • the invention relates to mechanical engineering, namely, to internal combustion engines.
  • Internal combustion engine - a heat engine that converts the chemical energy of fuel into useful mechanical work, is currently the main type of automobile engine.
  • the most common piston internal combustion engine Its main unit is the cylinder block.
  • fuel burns inside the cylinders, and the thermal energy released in this case is converted into mechanical work.
  • the set of processes periodically repeating in a certain sequence in the cylinder is a working cycle, and the process taking place in the cylinder during one stroke of its piston is a tact.
  • a piston stroke is the path traveled by a piston from one dead center to another, while the dead points are the extreme upper and lower positions of the piston, where its speed is zero.
  • the duty cycle of a four-stroke engine is completed in 4 piston strokes (cycle), that is, for 2 revolutions of the crankshaft.
  • the first step is the inlet of the working fluid.
  • a working fluid a combustible mixture, for example, gasoline vapor with air — flows from the carburetor through the opening intake valve.
  • the combustible mixture is mixed with the exhaust gases remaining in it from the previous working cycle and forms a working mixture.
  • the second step is the compression of the working fluid.
  • the piston moves upward, with both valves closed. Since the volume in the cylinder decreases, the compression of the working mixture occurs.
  • the mixture is compressed to a pressure of 0.8-2 Mn / m2 (8-20 kgf / cm2).
  • the temperature of the mixture at the end of compression is 200-400 ° C.
  • the third step is the working move.
  • the working mixture is ignited by an electric spark and quickly burns out (in 0.001 - 0.002 s).
  • a large amount of heat and gases are released, expanding, create strong pressure on the piston, moving it down.
  • the gas pressure force from the piston is transmitted through the piston pin and connecting rod to the crankshaft, creating a torque on it.
  • thermal energy is converted into mechanical work.
  • the fourth measure is the release. After completing useful work, the piston moves upward and pushes the exhaust gases out through the opening exhaust valve.
  • the engines are multi-cylinder.
  • an internal goranium engine comprising four cylinders is known.
  • the cylinders are mounted vertically, and their axes are parallel to each other. Duty cycles in each of the cylinders do not coincide in phase, thereby achieving uniform engine operation.
  • a four-cylinder engine for two turns of the crankshaft not one, but four working strokes are obtained.
  • a known internal combustion engine comprising four cylinders, each of which contains a piston in the inner cavity, mounted coaxially with the cylinder and the ability to make reciprocal motion along the axis of the cylinder, as well as an entrance for a fresh working fluid and an outlet for a spent working fluid
  • the invention solves the problem of creating an internal combustion engine having a higher efficiency, low noise and vibration, and not requiring a complex cooling system.
  • an internal combustion engine including four hollow cylinders, each of which is equipped with a piston installed in its cavity and coaxially with it, an input for entering a fresh working fluid into the cylinder cavity and an outlet for removing the spent working fluid from the cylinder cavity , in which the cylinders are arranged in pairs in such a way that the cylinders of one pair have a common axis, and are installed opposite each other with the possibility of reciprocating motion along this axis, approaching and moving away from each other, and the axes of the named pairs of cylinders are located in the common plane of the cylinders and intersect at right angles, and the pistons of the cylinders are installed in the named plane of the cylinders between the cylinders of each pair, while it has four shafts mounted perpendicular to the plane of the cylinders with rotation , each of which is kinematically connected to the corresponding cylinders by crank mechanisms in such a way that the reciprocating movement of the said cylinders is converted a rotational movement
  • the engine is designed in such a way that when the cylinders of one pair approach each other, the cylinders of the other pair move away from each other.
  • the pistons of the cylinders can be installed both motionless and limitedly movable.
  • crank mechanisms are located in two crank - rod planes, four mechanisms in each plane, and these planes are located symmetrically relative to the plane of the cylinders and parallel to it.
  • Each crank mechanism of one crank plane may comprise a crank gear fixedly mounted to a corresponding shaft, to which at one common point it is movably connected by one end of a pair of connecting rods, and by the second end, each connecting rod of a pair of connecting rods is movably connected to a corresponding cylinder, while connecting rods pairs of connecting rods are connected to adjacent cylinders.
  • Each crank mechanism of one crank plane may comprise a crank fixedly to a corresponding shaft to which at one common point it is movably connected by one end of a pair of connecting rods, and by the second end, each connecting rod of a pair of connecting rods is movably connected to a corresponding cylinder, while connecting rods of a pair of connecting rods connected to adjacent cylinders.
  • one pair of crank gears may contain crank gears fixedly mounted on respective shafts
  • the second pair of crank gears may contain crank gears fixedly mounted on corresponding shafts to which it is movably connected at one end to a common point a pair of connecting rods, and at the second end, each connecting rod of a pair of connecting rods is movably connected to the corresponding cylinder, while connecting rods of a pair of connecting rods are connected to adjacent cylinders, and the crank unnye one pair of mechanisms mounted opposite each other.
  • Each cylinder is movably connected to two pairs of connecting rods, and the named pairs of connecting rods are located in different crank - connecting rod planes.
  • Each cylinder can be movably connected to a pair of connecting rods attached to adjacent cranks that rotate in opposite directions.
  • the working fluid of the engine is mainly a fuel - air mixture.
  • each cylinder and the outer surface of each piston may have a wear-resistant coating, with a low roughness, for example, microarc oxidation (MAO) or thermoelectric oxidation (TEO) coating.
  • MAO microarc oxidation
  • TEO thermoelectric oxidation
  • Each cylinder can be equipped with guides for a more even stroke.
  • the engine can be equipped with four hydraulic gear pumps kinematically connected with cylinders, in which case it plays the role of a hydraulic drive.
  • the engine can be equipped with two rotors, each of which is made in the form of a metal bowl with windows, and located opposite the top and bottom of the engine, and a stator made in the form of a metal ring and located between the rotors, and the rotors are kinematically connected with the engine cylinders in this way that they rotate in opposite directions, in which case it acts as an electric generator.
  • Engine cylinders may be provided with guides.
  • the kinematic connection is carried out using gears.
  • the plane of the cylinders here refers to the plane in which the axes of the pairs of cylinders are located and intersect.
  • crank-connecting planes here are the planes passing on the surfaces of the cranks, or crank gears, at the junction of the cranks, or crank gears with connecting rods of the crank mechanisms.
  • FIG. 1 shows the proposed engine with crank gear disks in a crank mechanism and its operation scheme, where: 1 cylinder, 2 - piston, 3 - crank gear disk, 5 -. connecting rod, 6 - shaft.
  • Figure 2 shows the proposed engine with conventional cranks in a crank mechanism and the scheme of its operation, where: 1 cylinder, 2 - piston, 4 - crank, 5 - connecting rod, 6 - shaft.
  • Fig. 3 and Fig. 4 show different layout options of the proposed engine with different methods of removing energy generated by the engine.
  • the engines shown have in each crank plane a pair of crank mechanisms with a crank gear and a pair of crank mechanisms with conventional cranks.
  • the engine of FIG. 3 is made in such a way that energy is removed from two shafts, where: 1 cylinder, 2 - piston, 3 - crank gear, 4 - crank, 5 - connecting rod, 6 - shaft, 7 - energy removal shaft, 8 - gear wheel .
  • the engine of FIG. 4 is made in such a way that energy is removed from all four shafts, where 1 cylinder, 2 - piston, 3 - crank gear, 4 - crank, 5 - connecting rod, 6 - shaft, 7 - energy removal shaft, 8 - gear wheel .
  • FIG. 5 shows the proposed internal combustion engine operating as a hydraulic actuator - it is equipped with four hydraulic gear pumps kinematically connected with cylinders, where: 9 - hydraulic gear pump, 10 - pump inlet, 11 - pump outlet.
  • Figure 6 shows the engine as an electric energy generator, where 12 is the rotor, 13 is the stator.
  • the proposed engine operates as follows (for example, shown in figure 1).
  • each other installed cylinders that is, cylinders having a common axis and located opposite each other and. directed by their cavities towards each other, make up a pair of cylinders.
  • Each cylinder is equipped with a corresponding piston 2 mounted in its cavity motionlessly or movably within the limits of adjustment of the compression ratio.
  • Pistons belonging to one pair of cylinders are mounted on a common axis and heads are directed towards the corresponding cylinder.
  • the axes of two pairs of cylinders are in the same plane, where they intersect at right angles in the plane of the cylinders.
  • Each cylinder is installed with the possibility of reciprocating motion along the axis of a pair of cylinders and the cylinders of each pair of cylinders approach the engine and move away from each other in such a way that the corresponding pistons occupy the extreme dead points in the cylinders, or the points close to the extreme and lower.
  • the phase A shown in FIG. 1 corresponds to the start of engine operation.
  • a vertically arranged pair of cylinders are in the extreme position, while the corresponding pistons are inside the respective cylinders.
  • a horizontally arranged pair of cylinders begins to translate along the axis towards each other.
  • a working fluid namely a fuel-air mixture
  • Fuel - air mixture enters the cavity of each pair cylinders through valves for a fresh working fluid.
  • the first cycle is performed - the inlet of the working fluid into the cylinder cavity.
  • the cylinders continue to move towards each other, forcing toothed crank disks 3, to which the corresponding connecting rods 5 are attached.
  • the engine Since the engine is designed in such a way that when one pair of cylinders comes closer, the other pair of cylinders moves away from each other, that is, their cycles are opposite, different shafts receive torque from the cylinders at different times, but they continue to rotate, receiving additional inertia torque from the connecting rods .
  • the second pair of cylinders performs a cycle similar to that described.
  • the engine must be designed so that when one pair of cylinders reaches top dead center, the second pair of cylinders occupies a position close to bottom dead center.
  • each cylinder makes only two moves along the axis - from the bottom dead center to the top and from the top dead center to the bottom. This is enough to give the shafts torque through the crank mechanisms.
  • Each shaft receives torque from two cylinders operating in antiphase. As a result, the efficiency of the engine is increased in comparison with the prototype. Four shafts receive torque simultaneously, which also improves engine efficiency.
  • Each gear crank disk is fixedly mounted on the corresponding shaft to which it transmits rotational motion.
  • the torque from the shafts is transmitted to the energy removal shafts 7.
  • energy can be transmitted from two motor shafts to the two energy removal shafts.
  • the transmission of torque occurs by means of a gear transmission from a crank gear to a gear fixedly mounted on the energy removal shaft.
  • FIG. 4 shows an embodiment of transmitting torque from all engine shafts to four energy removal shafts. Further, the torque through gears can be transmitted as intended, for example, to the main shaft.
  • cranks operate autonomously, without mutual contact, as shown in Fig.2.
  • the proposed engine can act as a hydraulic actuator, as shown in Fig.5.
  • the engine cylinders are kinematically connected to gear hydraulic pumps 9.
  • the basis of such a pump is a gear transmission that receives torque from the engine shaft and moves the corresponding substance, for example, oil, from input 10 to output 11.
  • the proposed engine can act as an electric generator, as shown in Fig. 6.
  • the in has two rotors 12 and one stator 13.
  • Each rotor is made in the form of a metal bowl with windows mounted on an energy removal shaft.
  • the rotors are stopped at the bottom and top of the engine opposite to each other and so that their rotation is opposite to each other.
  • a stator in the form of a metal ring is fixedly mounted between the rotors. When the rotors rotate, electrical energy is generated, which is removed by known methods.
  • the proposed internal combustion engine has a high efficiency in comparison with existing ones, low noise and vibration, and does not require a complex cooling system.
  • FIG. 1 shows the proposed engine with crank gear disks in the crank mechanism and the scheme of its operation.
  • FIG 2 shows the proposed engine with conventional cranks in the crank mechanism and the scheme of its operation.
  • Fig.3 shows a variant of the layout of the proposed engine with the removal of energy from two shafts.
  • Figure 4 shows a variant of the layout of the proposed engine, with the removal of energy from four shafts.
  • FIG. 5 shows the proposed internal combustion engine operating as a hydraulic actuator.
  • Figure 6 shows the engine as an electric power generator.
  • the proposed internal combustion engine can be used to perform certain mechanical work, for example, as an engine of cars, other vehicles, or power drives of various units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transmission Devices (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

Предложен двигатель внутреннего сгорания, включающий четыре полых цилиндра, каждый из которых снабжен поршнем, установленным в его полости и соосно с ним, входом для поступления в полость цилиндра свежего рабочего тела и выходом для удаления из полости цилиндра отработанного рабочего тела. Цилиндры расположены попарно таким образом, что цилиндры одной пары имеют общую ось и установлены оппозитно друг другу с возможностью возвратно -поступательного движения вдоль этой оси, сближаясь и отдаляясь друг от друга. Оси пар цилиндров расположены в общей плоскости цилиндров и пересекаются между собой под прямым углом. Поршни цилиндров установлены между цилиндрами каждой пары. Двигатель имеет четыре вала, установленных перпендикулярно плоскости цилиндров с возможностью вращения. Каждый из валов кинематически соединен с соответствующими цилиндрами кривошипно-шатунными механизмами таким образом, что возвратно-поступательное движение названных цилиндров преобразуется во вращательное движение валов. Технический результат заключается в снижении шума и вибрации.

Description

ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ
Область техники
Изобретение относится к машиностроению, а именно, к двигателям внутреннего сгорания.
Предшествующий уровень техники
Двигатель внутреннего сгорания - тепловая машина, преобразующая химическую энергию топлива в полезную механическую работу, в настоящее время является основным видом автомобильного двигателя.
Наиболее распространен поршневой двигатель внутреннего сгорания. Его основным узлом является блок цилиндров. В двигателе внутреннего сгорания топливо сгорает внутри цилиндров, а выделяющаяся при этом тепловая энергия, преобразуется в механическую работу.
Совокупность процессов, периодически повторяющихся в определенной последовательности в цилиндре, является рабочим циклом, а процесс, происходящий в цилиндре за один ход его поршня, является тактом.
Ход поршня - путь, проходимый поршнем от одной мертвой точки до другой, при этом мертвыми точками являются крайние верхнее и нижнее положения поршня, где его скорость равна нулю.
Рабочий цикл четырехтактного двигателя совершается за 4 хода поршня (такта), то есть за 2 оборота коленчатого вала.
Первый такт - впуск рабочего тела. При движении поршня от верхней мертвой точки вниз вследствие увеличения объема в цилиндре создается разрежение, под действием которого из карбюратора через открывающийся впускной клапан в цилиндр поступает рабочее тело - горючая смесь, например, паров бензина с воздухом. В цилиндре горючая смесь смешивается с оставшимися в нем от предыдущего рабочего цикла отработавшими газами и образует рабочую смесь.
Второй такт - сжатие рабочего тела. Поршень движется вверх, при этом оба клапана закрыты. Так как объем в цилиндре уменьшается, то происходит сжатие рабочей смеси. Смесь сжимается до давления 0,8-2 Мн./м2 (8-20 кгс/см2) температура смеси в конце сжатия составляет 200-400°С.
Третий такт - рабочий ход. В конце такта сжатия рабочая смесь воспламеняется электрической искрой и быстро сгорает (за 0,001 - 0,002 с). При этом происходит выделение большого количества тепла и газы, расширяясь, создают сильное давление на поршень, перемещая его вниз. Сила давления газов от поршня передается через поршневой палец и шатун на коленчатый вал, создавая на нем крутящий момент. Таким образом, во время рабочего хода происходит преобразование тепловой энергии в механическую работу.
Четвертый такт - выпуск. После совершения полезной работы поршень движется вверх и выталкивает отработавшие газы наружу через открывающийся выпускной клапан.
Из рабочего цикла двигателя видно, что полезная работа совершается только в течение рабочего хода, а остальные три такта являются вспомогательными. Для равномерности вращения коленчатого вала, связанного с цилиндрами, на его конце устанавливают маховик, обладающий значительной массой. Маховик получает энергию при рабочем ходе, и часть ее отдает на совершение вспомогательных тактов.
В целях получения большей мощности и равномерного вращения коленчатого вала, двигатели выполняют многоцилиндровыми. Так, известен двигатель внутреннего горания, содержащий четыре цилиндра. Цилиндры установлены вертикально, а их оси параллельны друг другу. Рабочие циклы в каждом из цилиндров не совпадают по фазе, чем достигается равномерность работы двигателя. В четырехцилиндровом двигателе за два оборота коленчатого вала получается не один, а четыре рабочих хода.
Известен двигатель внутреннего сгорания, включающий четыре цилиндра, каждый из которых содержит во внутренней полости поршень, установленный соосно с цилиндром и возможностью совершения возвратно - поступательного движения вдоль оси цилиндра, а также вход для свежего рабочего тела и выход для отработанного рабочего тела
[http ://www.pdd25. г u/publ/ ustroj stvo avtomobilj a/ obshhee ustroj stvo_i_rabota_ dvigatelja/5- 1-0-48, Рис. 6]. Когда поршень каждого цилиндра, совершает рабочий ход, кривошипно-шатунный механизм преобразует его прямолинейное движение во вращательное движение коленчатого вала двигателя.
Недостатками описанного двигателя и аналогичных ему являются:
- высокий уровень шума и вибраций, обусловленный вращением коленчатого вала с большой частотой и обусловленный наличием боковых нагрузок на цилиндры; '
- необходимость использования компрессионных колец; - низкий коэффициент полезного действия - не более 50%;
-сложность в организации охлаждения двигателя, который значительно нагревается теплом, получаемым от сгорания топлива, а также теплом, выделяемым при трении поршней, снабженных компрессионными кольцами, при трении о поверхность цилиндра.
Раскрытие изобретения
Изобретение решает задачу создания двигателя внутреннего сгорания, имеющего более высокий кпд, низкий уровень шума и вибраций, и не требующего сложной системы охлаждения.
Поставленная задача решается тем, что предлагается двигатель внутреннего сгорания, включающий четыре полых цилиндра, каждый из которых снабжен поршнем, установленным в его полости и соосно с ним, входом для поступления в полость цилиндра свежего рабочего тела и выходом для удаления из полости цилиндра отработанного рабочего тела, в котором цилиндры расположены попарно таким образом, что цилиндры одной пары имеют общую ось, и установлены оппозитно друг другу с возможностью возвратно - поступательного движения вдоль этой оси, сближаясь и отдаляясь друг от друга, причем оси названных пар цилиндров расположены в общей плоскости цилиндров и пересекаются между собой под прямым углом, а поршни цилиндров установлены в названной плоскости цилиндров между цилиндрами каждой пары, при этом он имеет четыре вала, установленных перпендикулярно плоскости цилиндров с возможностью вращения, каждый из которых кинематически соединен с соответствующими цилиндрами кривошипно-шатунными механизмами таким образом, что возвратно - поступательное движение названных цилиндров преобразуется во вращательное движение названных валов.
Двигатель выполнен таким образом, что при сближении цилиндров одной пары, цилиндры другой пары отдаляются друг от друга.
Поршни цилиндров могут быть установлены как неподвижно, так и ограниченно подвижно.
Кривошипно-шатунные механизмы расположены в двух кривошипно - шатунных плоскостях, по четыре механизма в каждой плоскости, причем эти плоскости расположены симметрично относительно плоскости цилиндров и параллельно ей. Каждый кривошипно - шатунный механизм одной кривошипно-шатунной плоскости может содержать кривошипный зубчатый диск, установленный неподвижно на соответствующий вал, к которому в общей точке подвижно присоединена одним концом пара шатунов, а вторым концом каждый шатун пары шатунов подвижно соединен с соответствующим цилиндром, при этом шатуны пары шатунов соединены с соседними цилиндрами.
Каждый кривошипно-шатунный механизм одной кривошипно-шатунной плоскости может содержать кривошип, установленный неподвижно на соответствующий вал, к которому в общей точке подвижно присоединена одним концом пара шатунов, а вторым концом каждый шатун пары шатунов подвижно соединен с соответствующим цилиндром, при этом шатуны пары шатунов соединены с соседними цилиндрами.
В одной кривошипно-шатунной плоскости одна пара кривошипно - шатунных механизмов может содержать кривошипные зубчатые диски, установленные неподвижно на соответствующие валы, а вторая пара кривошипно - шатунных механизмов может содержать кривошипы, установленные неподвижно на соответствующие валы, к которым в общей точке подвижно присоединена одним концом пара шатунов, а вторым концом каждый шатун пары шатунов подвижно соединен с соответствующим цилиндром, при этом шатуны пары шатунов соединены с соседними цилиндрами, а кривошипно-шатунные механизмы одной пары установлены напротив друг друга.
Каждый цилиндр подвижно соединен с двумя парами шатунов, причем названные пары шатунов расположена в разных кривошипно - шатунных плоскостях.
Каждый цилиндр может быть подвижно соединен с парой шатунов, присоединенных к соседним кривошипам, которые вращаются в противоположных направлениях.
При нахождении поршней в цилиндрах одной пары цилиндров в положении верхней мертвой точки, поршни в цилиндрах второй пары цилиндров находятся в положении, близком к нижней мертвой точке.
Рабочим телом двигателя в основном является топливно - воздушная смесь.
Внутренняя поверхность каждого цилиндра и внешняя поверхность каждого поршня могут иметь износостойкое покрытие, с низкой шероховатостью, например, покрытие, выполненное микродуговым оксидированием (МДО), или термоэлектрическим оксидированием (ТЭО).
Каждый цилиндр может быть снабжен направляющими для его более ровного хода.
Двигатель может быть снабжен четырьмя гидравлическими шестеренчатыми насосами, кинематически связанными с цилиндрами, и в этом случае он вьшолняет роль гидропривода.
Двигатель может быть снабжен двумя роторами, каждый из которых выполнен в форме металлической чаши с окнами, и расположенными сверху и снизу двигателя оппозитно друг другу, и статором, выполненный в форме металлического кольца и расположенным между роторами, причем роторы кинематически связаны с цилиндрами двигателя таким образом, что они вращаются в противоположных направлениях, и в этом случае он выполняет роль электрогенератора.
Цилиндры двигателя могут быть снабжены направляющими.
Кинематическая связь при этом осуществляется с помощью зубчатых передач.
Плоскостью цилиндров здесь названа плоскость, в которой расположены и пересекаются оси пар цилиндров.
Кривошипно - шатунными плоскостями здесь названы плоскости, проходящие по поверхностям кривошипов, или кривошипных зубчатых колес, в местах соединения кривошипов, или кривошипных зубчатых колес с шатунами кривошипно-шатунных механизмов.
На фиг. 1 изображен предлагаемый двигатель с кривошипными зубчатыми дисками в кривошипно-шатунном механизме и схема его работы, где: 1 цилиндр, 2 - поршень, 3 - кривошипный зубчатый диск, 5 -. шатун, 6 - вал.
На фиг.2 изображен предлагаемый двигатель с обычными кривошипами в кривошипно-шатунном механизме и схема его работы, где: 1 цилиндр, 2 - поршень, 4 - кривошип, 5 - шатун, 6 - вал.
На фиг.З и фиг.4 приведены разные варианты компоновки предлагаемого двигателя с разными способами съема энергии, вырабатываемой двигателем. Изображенные двигатели имеют в каждой кривошипно- шатунной плоскости пару кривошипно - шатунных механизмов с кривошипным зубчатым диском и пару кривошипно - шатунных механизмов с обычными кривошипами. Двигатель на фиг. 3 выполнен таким образом, что съем энергии происходит с двух валов, где: 1 цилиндр, 2 - поршень, 3 - кривошипный зубчатый диск, 4 - кривошип, 5 - шатун, 6 - вал, 7 - вал съема энергии, 8 - зубчатое колесо.
Двигатель на фиг. 4 выполнен таким образом, что съем энергии происходит со всех четырех валов, где 1 цилиндр, 2 - поршень, 3 - кривошипный зубчатый диск, 4 - кривошип, 5 - шатун, 6 - вал, 7 - вал съема энергии, 8 - зубчатое колесо.
На фиг. 5 изображен предлагаемый двигатель внутреннего сгорания, работающий как гидропривод - он снабжен четырьмя гидравлическими шестеренчатыми насосами, кинематически связанными с цилиндрами, где: 9 - гидравлический шестеренчатый насос, 10 - вход насоса, 11- выход насоса.
На фиг.6 изображен двигатель как генератор электрической энергии, где 12 - ротор, 13 - статор.
Предлагаемый двигатель работает следующим образом (на примере, изображенном на фиг.1).
Оппозитно друг другу установленные цилиндры 1, то есть цилиндры, имеющие общую ось и расположенные оппозитно друг другу и. направленные своими полостями навстречу друг другу, составляют пару цилиндров. Каждый цилиндр снабжен соответствующим ему поршнем 2, установленным в его полости неподвижно, или подвижно в пределах регулировки степени сжатия. Поршни, относящиеся к одной паре цилиндров, установлены на общей оси и направлены головками навстречу соответствующему цилиндру. Оси двух пар цилиндров находятся в одной плоскости, где пересекаются под прямым углом в плоскости цилиндров. Каждый цилиндр установлен с возможностью возвратно - поступательного движения вдоль оси пары цилиндров и цилиндры каждой пары цилиндров при работе двигателя сближаются и отдаляется друг от друга таким образом, что соответствующие им поршни занимают в цилиндрах поочередно крайние мертвые точки, или точки, близкие к крайним - верхнюю и нижнюю.
Изображенная на фиг.1 фаза А соответствует началу работы двигателя. Вертикально расположенная пара цилиндров находятся в крайнем положении, при этом соответствующие поршни находятся внутри соответствующих цилиндров. Далее горизонтально расположенная пара цилиндров начинает поступательное движение вдоль оси навстречу друг другу. При этом в каждый цилиндр этой пары цилиндров подают одновременно рабочее тело, а именно топливно - воздушную смесь. Топливно - воздушная смесь поступает в полости каждого из пары цилиндров через клапаны для свежего рабочего тела. При этом осуществляется первый такт - впуск рабочего тела в полость цилиндра. Цилиндры продолжают движение навстречу друг другу, заставляя вращаться навстречу друг другу зубчатые кривошипные диски 3, к которым присоединены соответствующие им шатуны 5. При этом все цилиндры проходят фазу Б, где они располагаются на одинаковом расстоянии от центра -двигателя Когда каждый цилиндр доходит до точки, где поршень занимает нижнюю мертвую точку, происходит сильное сжатие и воспламенение топливно - воздушной смеси - второй такт работы двигателя. При горении топливно - воздушная смесь увеличивается в объеме и заставляет двигаться цилиндры одной пары в противоположном друг другу направлении к верхней мертвой точке - третий такт работы двигателя, где происходит выпуск отработавшей смеси четвертый такт работы - фаза В. Поскольку каждый цилиндр связан через шатуны с двумя соседними кривошипными дисками, они при движении цилиндров заставляют вращаться кривошипные диски, а поскольку те насажены на валы 6 неподвижно, то и эти валы также вращаются. Поскольку двигатель выполнен таким образом, что при сближении одной пары цилиндров другая пара цилиндров отдаляется друг от друга, то есть их циклы противоположны, в разное время крутящий момент от цилиндров получают разные валы, однако они продолжают вращаться, получая дополнительный крутящий момент по инерции от шатунов. Вторая пара цилиндров осуществляет цикл аналогично описанному. Двигатель должен быть выполнен так, чтобы при достижении одной парой цилиндров верхней мертвой точки вторая пара цилиндров занимала положение, близкое к нижней мертвой точке. Таким образом, при работе двигателя в каждом цилиндре осуществляются следующие такты: впуск рабочего тела через входной клапан, сжатие рабочего тела и его воспламенение, рабочий ход - сгорание и расширение рабочего тела и выпуск рабочего тела через выходной клапан. При этом цилиндр совершает только два хода вдоль оси - от нижней мертвой точки к верхней и от верхней мертвой точки к нижней. Этого достаточно, чтобы придать валам крутящий момент через кривошипно-шатунные механизмы. Каждый вал получает вращающий момент от двух цилиндров, работающих в противофазе. В результате кпд двигателя повышается в сравнении с прототипом. Вращающий момент получают одновременно четыре вала, что также повышает кпд двигателя. Движение цилиндров в общей плоскости и сцепление между собой кривошипных зубчатых дисков способствует равномерной работе двигателя без тряски и шума. Если нанести износостойкое покрытие с низкой шероховатостью на основные детали двигателя, например, покрытие микродуговым оксидированием внутренней поверхности цилиндров и боковых поверхностях поршней, трение поверхностей будет минимальным и минимальным будет выделение тепла, что дает возможность либо вообще обойтись от системы охлаждения двигателя, либо существенно ее упростить.
Каждый зубчатый кривошипный диск неподвижно закреплен на соответствующем валу, которому он передает вращательное движение. Вращательный момент от валов передается валам съема энергии 7. Например, как изображено на фиг.З, энергия может передаваться от двух валов двигателя двум валам съема энергии. Передача крутящего момента происходит посредством зубчатой передачи от кривошипного зубчатого колеса зубчатому колесу, неподвижно установленному на валу съема энергии. На фиг. 4 показан вариант передачи крутящего момента от всех валов двигателя четырем валам съема энергии. Далее крутящий момент посредством зубчатых передач может быть передан по назначению, например, на основной вал.
Аналогично описанному, осуществляется работа двигателя внутреннего сгорания, где вместо зубчатых кривошипных дисков используется традиционный кривошип, только кривошипы работают в автономном режиме, без взаимного соприкосновения, как показано на фиг.2.
Предлагаемый двигатель может выполнять роль гидропривода, как изображено на фиг.5. При этом цилиндры двигателя кинематически соединены с шестеренчатыми гидравлическими насосами 9. Основой такого насоса является шестеренчатая передача, получающая вращательный момент от вала двигателя и осуществляющая перемещение соответствующего вещества, например, масла, от входа 10 к выходу 11.
Предлагаемый двигатель может выполнять роль электрогенератора, как показано на рис. 6. При этом ин имеет два ротора 12 и один статор 13.
Каждый ротор выполнен в форме металлической чаши с окнами, установленной на вал съема энергии. Роторы остановлены снизу и сверху двигателя оппозитно друг другу и таким образом, чтобы их вращение было противоположно друг другу. Между роторами неподвижно установлен статор в форме металлического кольца. При вращении роторов вырабатывается электрическая энергия, которая снимается известными способами. Таким образом, предлагаемый двигатель внутреннего сгорания имеет высокий кпд в сравнении с существующими, низкий уровень шума и вибраций, и не требует сложной системы охлаждения.
Краткое описание фигур чертежей
На фиг. 1 изображен предлагаемый двигатель с кривошипными зубчатыми дисками в кривошипно-шатунном механизме и схема его работы.
На фиг.2 изображен предлагаемый двигатель с обычными кривошипами в кривошипно-шатунном механизме и схема его работы.
На фиг.З изображен вариант компоновки предлагаемого двигателя со съемом энергии с двух валов.
На фиг.4 изображен вариант компоновки предлагаемого двигателя, со съемом энергии с четырех валов.
На фиг. 5 изображен предлагаемый двигатель внутреннего сгорания, работающий как гидропривод.
На фиг.6 изображен двигатель, как генератор электрической энергии..
Промышленная применимость
Предлагаемый двигатель внутреннего сгорания может использоваться для совершения определенной механической работы, например, как двигатель автомобилей, иного транспорта, или силовых приводов различных агрегатов.

Claims

Формула изобретения.
1. Двигатель внутреннего сгорания, включающий четыре полых цилиндра, каждый из которых снабжен поршнем, установленным в его полости и соосно с ним, входом для поступления в полость цилиндра свежего рабочего тела и выходом для удаления из полости цилиндра отработанного рабочего тела, характеризующийся тем, что цилиндры расположены попарно таким образом, что цилиндры одной пары имеют общую ось, и установлены оппозитно друг другу с возможностью возвратно - поступательного движения вдоль этой оси, сближаясь и отдаляясь друг от друга, причем оси названных пар цилиндров расположены в общей плоскости цилиндров и пересекаются между собой под прямым углом, а поршни цилиндров установлены в названной плоскости цилиндров между цилиндрами каждой пары, при этом он имеет четыре вала, установленных перпендикулярно плоскости цилиндров с возможностью вращения, каждый из которых кинематически соединен с соответствующими цилиндрами кривошипно- шатунными механизмами таким образом, что возвратно - поступательное движение названных цилиндров преобразуется во вращательное движение названных валов.
2. Двигатель по п.1, характеризующийся тем, что он выполнен таким образом, что при сближении цилиндров одной пары, цилиндры другой пары отдаляются друг от друга.
3. Двигатель по п.1, характеризующийся тем, что поршни цилиндров установлены ограниченно подвижно.
4. Двигатель по п.1, характеризующийся тем, что поршни цилиндров установлены неподвижно.
5. Двигатель по п.1, характеризующийся тем, что кривошипно-шатунные механизмы расположены в двух кривошипно - шатунных плоскостях, по четыре механизма в каждой плоскости, причем эти плоскости расположены симметрично относительно плоскости цилиндров.
6. Двигатель по п.5, характеризующийся тем, что каждый кривошипно - шатунный механизм одной кривошипно-шатунной плоскости содержит кривошипный зубчатый диск, установленный неподвижно на соответствующий вал, к которому в общей точке подвижно присоединена одним концом пара шатунов, а вторым концом каждый шатун пары шатунов подвижно соединен с соответствующим цилиндром, при этом шатуны пары шатунов соединены с соседними цилиндрами.
7. Двигатель по п.5, характеризующийся тем, что каждый кривошипно - шатунный механизм одной кривошипно-шатунной плоскости содержит кривошип, установленный неподвижно на соответствующий вал, к которому в общей точке подвижно присоединена одним концом пара шатунов, а вторым концом каждый шатун пары шатунов подвижно соединен с соответствующим цилиндром, при этом шатуны пары шатунов соединены с соседними цилиндрами.
8. Двигатель по п.5, характеризующийся тем, что в одной кривошипно- шатунной плоскости одна пара кривошипно - шатунных механизмов содержат кривошипные зубчатые диски, установленные неподвижно на соответствующие валы, а вторая пара кривошипно - шатунных механизмов содержат кривошипы, установленные неподвижно на соответствующие валы, к которым в общей точке подвижно присоединена одним концом пара шатунов, а вторым концом каждый шатун пары шатунов подвижно соединен с соответствующим цилиндром, при этом шатуны пары шатунов соединены с соседними цилиндрами, а кривошипно-шатунные механизмы одной пары установлены напротив друг друга.
9. Двигатель по п.5, характеризующийся тем, что каждый цилиндр подвижно соединен с двумя парами шатунов, причем названные пары шатунов расположена в разных кривошипно - шатунных плоскостях.
10. Двигатель по п.1, характеризующийся тем, что при нахождении поршней в цилиндрах одной пары цилиндров в положении верхней мертвой точки, поршни в цилиндрах второй пары цилиндров находятся в положении, близком к нижней мертвой точке.
11. Двигатель по п.1, характеризующийся тем, что рабочим телом является топливно - воздушная смесь.
12. Двигатель по п.1, характеризующийся тем, что внутренняя поверхность каждого цилиндра и внешняя поверхность каждого поршня имеют износостойкое покрытие, с низкой шероховатостью.
13. Двигатель по п.1, характеризующийся тем, что он содержит четыре гидравлических шестеренчатых насоса, каждый из которых кинематически связан с цилиндрами.
14. Двигатель по п.1, характеризующийся тем, что он содержит два ротора, каждый из которых вьшолнен в форме металлической чаши с окнами, и расположенных сверху и снизу двигателя оппозитно друг другу, и статор, выполненный в форме металлического кольца и расположенный между роторами, причем роторы кинематически связаны с цилиндрами двигателя таким образом, что они вращаются в противоположных направлениях.
15. Двигатель по п.13, или 14, характеризующийся тем, что кинематическая связь осуществляется с помощью зубчатых передач.
16. Двигатель по п.1, характеризующийся тем, что каждый цилиндр снабжен направляющими
PCT/RU2012/000436 2011-06-06 2012-06-05 Двигатель внутреннего сгорания WO2013032361A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2011123386 2011-06-06
RU2011123386/06A RU2516040C2 (ru) 2011-06-06 2011-06-06 Двигатель внутреннего сгорания

Publications (1)

Publication Number Publication Date
WO2013032361A1 true WO2013032361A1 (ru) 2013-03-07

Family

ID=47756619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2012/000436 WO2013032361A1 (ru) 2011-06-06 2012-06-05 Двигатель внутреннего сгорания

Country Status (2)

Country Link
RU (1) RU2516040C2 (ru)
WO (1) WO2013032361A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104747286A (zh) * 2015-02-13 2015-07-01 吴三社 三轮简易双缸发动机缸体结构
WO2020109990A1 (en) * 2018-11-27 2020-06-04 Vaclav Knob Piston internal combustion engine with generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2096638C1 (ru) * 1994-02-25 1997-11-20 Евгений Александрович Стародетко Поршневая машина (ее варианты)
RU2156370C1 (ru) * 1996-12-05 2000-09-20 Ман Б Энд В Диесель А/С Элемент цилиндра, такой как гильза цилиндра, поршень, юбка поршня или поршневое кольцо в двигателе внутреннего сгорания дизельного типа и поршневое кольцо для такого двигателя
US20020124816A1 (en) * 1997-09-02 2002-09-12 Walter Schmied Reciprocating internal combustion engine
US7584725B2 (en) * 2006-10-26 2009-09-08 Honda Motor Co., Ltd. Internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2096638C1 (ru) * 1994-02-25 1997-11-20 Евгений Александрович Стародетко Поршневая машина (ее варианты)
RU2156370C1 (ru) * 1996-12-05 2000-09-20 Ман Б Энд В Диесель А/С Элемент цилиндра, такой как гильза цилиндра, поршень, юбка поршня или поршневое кольцо в двигателе внутреннего сгорания дизельного типа и поршневое кольцо для такого двигателя
US20020124816A1 (en) * 1997-09-02 2002-09-12 Walter Schmied Reciprocating internal combustion engine
US7584725B2 (en) * 2006-10-26 2009-09-08 Honda Motor Co., Ltd. Internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104747286A (zh) * 2015-02-13 2015-07-01 吴三社 三轮简易双缸发动机缸体结构
WO2020109990A1 (en) * 2018-11-27 2020-06-04 Vaclav Knob Piston internal combustion engine with generator

Also Published As

Publication number Publication date
RU2516040C2 (ru) 2014-05-20
RU2011123386A (ru) 2012-12-27

Similar Documents

Publication Publication Date Title
CN102418600B (zh) 一种液压式高速自由活塞直线发电机
RU2423615C2 (ru) Двигатель внутреннего сгорания (варианты)
WO2001065072A1 (en) Internal-combustion engine with improved reciprocating action
CN102418601B (zh) 一种高速自由活塞直线发电机
US9353681B2 (en) Internal combustion engine
WO2001077494A1 (en) Piston motion modifiable internal combustion engine
CN103821612B (zh) 一种磁力传动发动机能量传递系统
US8061326B2 (en) Four cycle engine with load crank
CN101205812A (zh) 四活塞缸体旋转发动机
KR20160089385A (ko) 내연기관
RU2525995C2 (ru) Двигатель внутреннего сгорания
RU2516040C2 (ru) Двигатель внутреннего сгорания
US20040255880A1 (en) Linear motion engine
US20130276761A1 (en) Variable-compression engine assembly
CN101270688B (zh) 活塞转子内燃机
RU2374454C2 (ru) Устройство поршневой машины и способ выполнения ее рабочего объема для организации термодинамического цикла
RU2665766C2 (ru) Однотактный двигатель внутреннего сгорания
CN203822459U (zh) 一种磁力传动发动机能量传递系统
WO2004072441A1 (en) Engine with rotary cylinder block and reciprocating pistons
RU2564725C2 (ru) Четырёхтактный бескривошипный поршневой тепловой двигатель с оппозитным расположением цилиндров
RU2800634C1 (ru) Турбопоршневой двигатель внутреннего сгорания
RU2768430C1 (ru) Гибридная силовая установка
RU121866U1 (ru) Двигатель внутреннего сгорания
RU2647011C1 (ru) Поршневая гибридная энергетическая машина объемного действия с уравновешенным приводом
AU2001246251B2 (en) Piston motion modifiable internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827909

Country of ref document: EP

Kind code of ref document: A1