WO2013032304A2 - Organic electronic device and method for manufacturing same - Google Patents

Organic electronic device and method for manufacturing same Download PDF

Info

Publication number
WO2013032304A2
WO2013032304A2 PCT/KR2012/007030 KR2012007030W WO2013032304A2 WO 2013032304 A2 WO2013032304 A2 WO 2013032304A2 KR 2012007030 W KR2012007030 W KR 2012007030W WO 2013032304 A2 WO2013032304 A2 WO 2013032304A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
group
carbon atoms
thickness
formula
Prior art date
Application number
PCT/KR2012/007030
Other languages
French (fr)
Korean (ko)
Other versions
WO2013032304A3 (en
Inventor
권오관
정준호
최정옥
이상희
김형선
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Publication of WO2013032304A2 publication Critical patent/WO2013032304A2/en
Publication of WO2013032304A3 publication Critical patent/WO2013032304A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Definitions

  • the present invention relates to an organic electronic device and a method of manufacturing the organic electronic device, the organic electronic device includes a novel laminated structure formed between the first electrode and the light emitting layer.
  • the organic electronic device refers to a self-luminous device using an electroluminescence phenomenon that emits light when a current flows through a light emitting organic compound.
  • the organic electronic device has an advantage of excellent thermal stability and low driving voltage, and may be utilized in various industrial fields.
  • the organic electronic device has an unstable interface between the electrode and the organic layer, heat applied to the device or heat generated from the inside may adversely affect the device performance.
  • the driving voltage of the device may increase due to an energy barrier present at the interface of each laminate. Therefore, it is important not only to stabilize the interface of each layer of the laminate, but also to easily inject holes by minimizing the energy barrier in the process of injecting holes from the electrode to the light emitting layer.
  • An object of the present invention is to provide an organic electronic device comprising a novel structure capable of improving the injection and transport of holes in the device and a method of manufacturing the same.
  • An organic electronic device the first electrode; Second electrode; And at least one organic layer formed between the first electrode and the second electrode and including an emission layer, wherein the doping layer comprises a hole transporting compound and a P-type dopant between the first electrode and the emission layer; And it provides a structure in which the undoped layer comprising the hole transport compound is repeated.
  • a method for forming a doping layer including a hole transporting compound and a P-type dopant on a first electrode And forming a non-doped layer including the hole transporting compound on the formed doped layer.
  • the organic electronic device according to the present invention improves the injection and transport of holes in the device structure, proposes a novel laminated structure capable of improving power efficiency and device life, and can be effectively applied to various kinds of devices.
  • 1 to 7 are schematic diagrams each showing a laminated structure of an organic electronic device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a manufacturing process of an organic electronic device according to an embodiment of the present invention.
  • a doping layer comprising a hole transporting compound and a P-type dopant
  • It may include a structure in which an undoped layer including the hole transport compound is formed.
  • the first electrode and the second electrode may mean an anode and a cathode, respectively, and vice versa.
  • the first electrode is an anode and the second electrode is a cathode.
  • the organic layer is a laminated structure including an organic material formed between the first electrode and the second electrode, and in some cases, may further include an inorganic material.
  • the organic layer may include a plurality of layers injecting or transporting electrons and / or holes and a light emitting layer emitting light therethrough, and include all of the various stacking structures known in the art.
  • holes injected from the first electrode are supplied to the light emitting layer through the doped layer and the undoped layer.
  • the hole-transporting compound is a generic name for a material that serves to inject and / or transport holes from the first electrode to the light emitting layer, and various materials applicable to the hole injection layer and / or hole transport layer known in the art may be used. Can be.
  • the doping layer may include a hole transport compound that induces hole transport as a host material, and may have a structure in which a P-type dopant is doped in the host material.
  • the organic electronic device may have a structure in which at least one doped layer is adjacent to the first electrode.
  • the doped layer is characterized by a relatively higher hole concentration than the non-doped layer through the doping of the P-type dopant.
  • hole mobility from the doped layer to the adjacent undoped layer can be improved.
  • the improvement of hole mobility has the effect of lowering the driving voltage of the device and increasing the luminous efficiency.
  • the holes reaching the light emitting layer meet electrons injected from the second electrode, that is, the cathode, and reach the light emitting layer to form excitons, and light of a specific wavelength region is generated in the process of the excitons transitioning to the ground state.
  • the doped layer and the undoped layer according to the present invention may have the same composition except for the P-type dopant.
  • the doping layer and the non-doped layer may include the same hole transport compound, the doping layer may have a structure further comprising a P-type dopant.
  • the organic electronic device according to the present invention proposes a structure including the P-type dopant only in the doped layer while the same components of the hole transporting compound constituting the doped layer and the undoped layer, and the structure is a doped layer and an undoped layer
  • the mobility of holes can be improved by lowering an energy barrier that inhibits hole movement at an interface of.
  • the organic electronic device can easily control the difference between the HOMO (High Occupied Molecular Orbital) level and the LUMO (Lowest Unoccupied Molecular Orbital) level of the doped layer and the undoped layer.
  • the same components of the hole transport material included in the doped layer and the undoped layer it is possible to reduce the physicochemical defects that may occur at the interface between different materials to facilitate hole injection into the light emitting layer. have.
  • the doping layer and the non-doping layer can be continuously formed in one chamber, thereby simplifying the manufacturing process and reducing the manufacturing time. Furthermore, since physical properties such as glass transition temperatures of adjacent doped layers and undoped layers become similar, there is an advantage of increasing durability of the device.
  • the intermediate layer may be formed between the first electrode and the doping layer, and may be made of a compound for a P-type dopant.
  • the intermediate layer means a structure in which one layer is formed using a compound for a P-type dopant without a separate hole transport compound.
  • the intermediate layer is the same P-type dopant compound as the P-type dopant included in the doping layer. It can be formed using.
  • the intermediate layer serves to increase hole mobility between the first electrode and the doped layer.
  • the compound for the P-type dopant includes various kinds of compounds that can be used as the P-type dopant injected into the doping layer, and is used as a main compound constituting the intermediate layer of the present invention. It demonstrates with reference.
  • the thickness of the intermediate layer is not particularly limited, and for example, 5 to 70 Pa, 6 to 60 Pa, 8 to 40 Pa, 10 to 30 Pa, 8 to 32 Pa, 8 to 12 Pa, 15 kV to 35 kV or 10 kV to 20 kV.
  • the HOMO level (E1) of the hole-transporting compound and the LUMO level (E2) of the P-type dopant may satisfy the relationship of Equation 1 below.
  • Equation 1 may be -0.2 or more, -0.1 or more, 0 or more, 0.01 or more, 0.05 or more, or 0.1 or more.
  • the value of Equation 1 may be, for example, 2 or less, 1 or less, or 0.8 or less. This minimizes the energy level difference between the doped layer and the undoped layer, and facilitates the hole movement to the light emitting layer.
  • the HOMO level of the hole transporting compound may range from -6 to -4.5 eV, or -6 to -5.2 eV, or -5.8 to -5 eV, or -5.8 to -5.2 eV.
  • the LUMO level of the hole transporting compound may range from -3 to -1.5 eV, or -3 to -2 eV, or -2.5 to -1.5 eV, or -3 to -2.5 eV, or -2.5 to -2 eV.
  • the HOMO level of the P-type dopant is -10 to -7.5 eV, or -8.2 to -7.5 eV, or -10 to -8.2 eV, or -9.2 to -8.2 eV, or -9 to- May be 8.5eV.
  • the LUMO level of the P-type dopant may range from -6.5 to -5 eV, or -5.4 to -5 eV, or -6.5 to -5.4 eV, or -6.2 to -5.4 eV.
  • hole mobility between the first electrode and the light emitting layer may be improved.
  • the HOMO level or LUMO level means an energy difference from a vacuum level, and is expressed as a negative value.
  • the hole transporting compound may satisfy the structure of Formula 1 below.
  • L 1 , L 2 , L 3 and L 4 are each independently an arylene group having 6 to 60 carbon atoms, a heterocyclic group having 2 to 60 carbon atoms, an alkenylene group having 2 to 60 carbon atoms, an alkynylene group having 2 to 60 carbon atoms, or A cycloalkylene group having 3 to 60 carbon atoms is represented,
  • p, q, r and s each independently represent an integer of 0 to 2, and the sum of p, q, r and s is an integer of 1 to 8,
  • R 1 is hydrogen, an alkyl group having 1 to 60 carbon atoms, an alkenyl group having 2 to 60 carbon atoms, a cycloalkyl group having 3 to 60 carbon atoms, an alkoxy group having 1 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, a hetero group having 2 to 60 carbon atoms A cyclic group, an aryloxy group having 6 to 60 carbon atoms, an arylthio group having 6 to 60 carbon atoms, an alkoxycarbonyl group having 1 to 60 carbon atoms, a halogen group, a cyano group, a nitro group, a hydroxyl group, or a carboxy group,
  • R 2 is hydrogen, an alkyl group having 1 to 60 carbon atoms or an aryl group having 6 to 60 carbon atoms,
  • R 3 and R 4 are each independently represented by * -A 1 -A 2 -A 3 -A 4 ,
  • a 1 , A 2 and A 3 are each independently a single bond, -O-, -S-, a linear or branched alkylene group having 1 to 60 carbon atoms (-(CH 2 ) j- , where j is 1 To an integer of 60 to 60), an arylene group having 6 to 60 carbon atoms, a heterocyclic group having 2 to 60 carbon atoms, a cycloalkylene group having 3 to 60 carbon atoms, an adamantylene group, a bicycloalkylene group having 7 to 60 carbon atoms, and a carbon atoms having 2 to 60 carbon atoms.
  • 60 alkenylene group or C2-C60 alkynylene group is shown,
  • a 4 is hydrogen, an alkyl group having 1 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, a heterocyclic group having 2 to 60 carbon atoms, a cycloalkyl group having 3 to 60 carbon atoms, an adamantyl group, a bicycloalkyl group having 7 to 60 carbon atoms, An alkenyl group having 2 to 60 carbon atoms, an alkynyl group having 2 to 60 carbon atoms, or * -NR 5 R 6 ;
  • R 5 and R 6 each independently represent hydrogen, an alkyl group having 1 to 60 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an arylamine group having 6 to 60 carbon atoms, or an aryl group having 6 to 60 carbon atoms,
  • At least one of hydrogens of L, R 1 , R 2 , R 3, and R 4 is each independently an alkyl group having 1 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, and an arylamine having 6 to 60 carbon atoms. It may be substituted or unsubstituted with a group or heterocyclic group having 6 to 60 carbon atoms.
  • the hole transport compound having the structure of Formula 1 may be represented by the following formula (2).
  • L 1 , L 2 , L 3 and L 4 each independently represent an arylene group having 6 to 60 carbon atoms or a heterocyclic group having 2 to 60 carbon atoms,
  • p, q, r and s each independently represent an integer of 0 to 2, and the sum of p, q, r and s is an integer of 1 to 8,
  • R 3 and R 4 are each independently represented by * -A 1 -A 2 -A 3 -A 4 ,
  • a 1 , A 2 and A 3 each independently represent a single bond, an arylene group having 6 to 60 carbon atoms or a heterocyclic group having 2 to 60 carbon atoms,
  • a 4 represents hydrogen, an alkyl group having 1 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, a heterocyclic group having 2 to 60 carbon atoms, or * -NR 5 R 6 ,
  • R 5 and R 6 each independently represent hydrogen, an alkyl group having 1 to 60 carbon atoms, an arylamine group having 6 to 60 carbon atoms, or an aryl group having 6 to 60 carbon atoms,
  • R 7 represents hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 40 carbon atoms, or a heterocyclic group having 2 to 40 carbon atoms,
  • At least one of hydrogen of L, R 3 , R 4, and R 7 is each independently an alkyl group having 1 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, an arylamine group having 6 to 60 carbon atoms, or carbon atoms It may be substituted or unsubstituted with 6 to 60 heterocyclic groups.
  • heterocyclic group is meant to include all cases where heteroatoms other than carbon atoms are included in the ring structure.
  • the heterocyclic group includes a heterocycloalkyl group, heteroaryl group, heterocycloalkylene group or heteroarylene group, and the like, and may refer to, for example, a carbazole, dibenzofuran, or dibenzothiophene structure.
  • aryl group means a monovalent substituent derived from an aromatic hydrocarbon.
  • the aryl group include a phenyl group, indenyl group, 1-naphthyl group, 2-naphthyl group, azulenyl group, heptalenyl group, biphenyl group, indasenyl group, acenaphthyl group, fluorenyl group, penalenyl group and phenanthre Monocyclic, bicyclic, or tricyclic aromatic hydrocarbon rings, such as a silyl group, anthracenyl group, a dihydropyrenyl group, a cyclopentacyclo octenyl group, and a benzocyclooctenyl group, etc. are mentioned.
  • R 7 is hydrogen or a phenyl group
  • L may be selected from the structure of Table 1 below.
  • adjacent benzene rings may be connected to have a straight line as a whole by being connected to a para position.
  • the plurality of benzene rings may be connected to each other so that the benzene rings are not limited only to the para position, so that L of Formula 1 may have a bent shape as a whole.
  • R 3 and R 4 of Chemical Formula 2 may be independently selected from the structures of Table 2 below.
  • the hole transport compound represented by Formula 1 according to the present invention may be selected from the hole transport compounds shown in Table 3 below.
  • the organic electronic device may include 0.3 to 20 parts by weight, 0.5 to 15 parts by weight, 0.5 to 5 parts by weight, 1 to 10 parts by weight, 1 to 5 parts by weight, or 1.5 to 100 parts by weight of the hole transporting compound. To 6 parts by weight, or 2 to 5 parts by weight. In the above range, excessive leakage current can be prevented without damaging the physical properties of the hole transporting compound, and the energy barrier with the undoped layer can be effectively lowered.
  • the type of the P-type dopant is not particularly limited as long as it does not prevent hole movement in the device.
  • the P-type dopant for example, the P-type dopant, the P-type dopant, and the P-type dopant.
  • the P-type dopant may have a structure of Formula 3.
  • R represents a cyano group, a sulfonamide group, a nitro group or a trifluoromethyl group, or
  • the sulfone group, sulfoxide group, and sulfonate group unsubstituted or substituted by the alkyl group having 1 to 60 carbon atoms, the aryl group having 6 to 60 carbon atoms, or the heteroaryl group having 2 to 60 carbon atoms.
  • a doping layer including the hole transport compound and a P-type dopant; And the undoped layer comprising the hole-transporting compound may have a structure repeated 2 to 4 times, or a structure repeated 2 or 3 times.
  • the doped layer and the undoped layer may have a structure that is repeated twice.
  • the total thickness of the structure in which the doped layer and the undoped layer formed between the first electrode and the light emitting layer is repeated may range from 500 to 3000 m 3.
  • the total thickness of the structure in which the doped and undoped layers are repeated is 700 to 2000 mm 3, 1000 to 1600 mm 3, 1000 to 1300 mm 3, 1400 to 2100 mm 1300 to 2000 mm 1300-1600 mm or 1350 mm. To 1500 ms.
  • the thickness of the above-mentioned doped layer and the undoped layer is not particularly limited.
  • the thickness of the doped layer including the hole transporting compound and the P-type dopant may be 50 kPa to 400 kPa, 60 kPa to 300 kPa, 150 kPa. To 350 kPa or 80 kPa to 120 kPa.
  • the thickness of the undoped layer may range from 200 kPa to 2000 kPa, 300 kPa to 600 kPa, 450 kPa to 550 kPa, 600 kPa to 1800 kPa or 700 kPa to 1500 kPa.
  • the thickness of the undoped layer may be formed relatively thicker than the thickness of the doped layer, and various experiments may be performed to improve the power efficiency and lifespan of the device. It was confirmed through.
  • a doping layer comprising a hole transport compound and a P-type dopant; And a non-doped layer including the hole transporting compound is repeated twice.
  • a first doped layer having a thickness of 50 kPa to 200 kPa;
  • a first undoped layer having a thickness of 300 kPa to 650 kPa;
  • a second doped layer having a thickness of 50 kV to 200 kV;
  • a structure in which a second undoped layer having a thickness of 300 kV to 1500 kV is sequentially stacked.
  • the thicknesses of the first and second doped layers are preferably adjusted to the same to similar ranges.
  • the thickness of the first and second undoped layers may be thicker than that of the doped layer.
  • the thickness of the second undoped layer may be relatively thicker than that of the first undoped layer.
  • the light emitting layer has a light emitting peak in the range of 400 nm to 500 nm, and between the first electrode and the light emitting layer, a first doped layer having a thickness of 80 kPa to 120 kPa; A first undoped layer having a thickness of 450 kPa to 550 kPa; A second doped layer having a thickness of 80 kV to 120 kV; And a second undoped layer having a thickness of 600 kPa to 800 kPa.
  • the light emitting layer has a light emitting peak in the range of 500 nm to 600 nm, and between the first electrode and the light emitting layer, a first doped layer having a thickness of 80 kPa to 120 kPa; A first undoped layer having a thickness of 450 kPa to 550 kPa; A second doped layer having a thickness of 80 kV to 120 kV; And a second undoped layer having a thickness of 850 kV to 1200 kV.
  • the light emitting layer has a light emitting peak in the range of 600 nm to 700 nm, and between the first electrode and the light emitting layer, a first doped layer having a thickness of 80 kPa to 120 kPa; A first undoped layer having a thickness of 450 kPa to 550 kPa; A second doped layer having a thickness of 80 kV to 120 kV; And a second undoped layer having a thickness of 1300 kPa to 1600 kPa.
  • the organic electronic device according to the present invention may further include an electron blocking layer formed between the light emitting layer and the repeating structure of the doped and undoped layers.
  • an electron blocking layer formed between the light emitting layer and the repeating structure of the doped and undoped layers.
  • the electron blocking layer may serve to prevent electrons introduced from the second electrode from being injected into the hole transporting compound through the light emitting layer.
  • the thickness of the electron blocking layer can be adjusted so that the excitons can be formed in the central portion of the light emitting layer.
  • the device including the organic electronic device according to the present invention is not particularly limited and includes, for example, a lighting device, a display device, an organic solar cell or an organic thin film transistor.
  • 1 to 6 illustrate the stacked structure of devices according to one embodiment of the present invention, respectively.
  • a doping layer 20 including a hole transporting compound and a P-type dopant was laminated on the ITO electrode 10 to a thickness of 100 GPa.
  • the doping layer 20 is prepared by doping a P-type dopant to a hole transporting compound.
  • the content of the P-type dopant may be variously adjusted in a range of 0.3 to 20 parts by weight based on 100 parts by weight of the doping layer 20.
  • the undoped layer 30 having a thickness of 500 ⁇ was laminated on the doped layer 20 using the hole transporting compound. Thereafter, the light emitting layer 40, the electron transport layer 50, the electron injection layer 60, and the aluminum electrode 70 may be sequentially stacked to form a device.
  • a doping layer 20 including a hole transporting compound and a P-type dopant is laminated on the ITO electrode 10 to a thickness of 100 GPa, and the undoped layer 30 including the hole transporting compound is 500. It laminated
  • the light emitting layer 40, the electron transporting layer 50, the electron injection layer 60, and the aluminum electrode 70 were sequentially stacked on the repeating structures 20, 21, 30, and 31 of the doped and undoped layers.
  • FIG. 3 illustrates a structure in which the doped layers 20, 21, 22 and the undoped layers 30, 31, and 32 each containing the hole transporting compound and the P-type dopant are repeatedly stacked three times on the ITO electrode 10. Shown. Then, the light emitting layer 40, the electron transporting layer 50, the electron injection layer 60 and the aluminum electrode 70 on the repeating structures 20, 21, 22, 30, 31, and 32 of the doped and undoped layers. Were sequentially stacked.
  • middle layer 80 was laminated
  • the doped layer 20 including the hole transporting compound and the P-type dopant was laminated on the stacked intermediate layer 80 to a thickness of 100 GPa.
  • the content of the P-type dopant was adjusted in the range of 0.3 to 20 parts by weight based on 100 parts by weight of the doping layer 20.
  • the undoped layer 30 having a thickness of 500 ⁇ was laminated on the doped layer 20 using the hole transporting compound. Then, the light emitting layer 40, the electron transport layer 50, the electron injection layer 60 and the aluminum electrode 70 were sequentially stacked.
  • 5 and 6 are structures in which the intermediate layer 80 mentioned in FIG. 4 is additionally formed in the laminated structure of FIGS. 2 and 3, respectively.
  • a first doped layer 30 including a hole transporting compound and a P-type dopant is laminated on the ITO electrode 10 to a thickness of 100 GPa, and the first undoped layer 30 including the hole transporting compound.
  • the second doped layer 21 was laminated to a thickness of 100 kPa.
  • the second undoped layer 31 may have various thicknesses in the range of about 700 kW to 1400 kW, in order to adjust the resonance distances of the light emitting layers 41, 42, and 43.
  • the thickness of the second undoped layer 31 may be 700 ⁇ in the blue light emitting area 41, and the green light emitting area 42 may be 1,000 ⁇ or 1,400 ⁇ in the red light emitting area 43, respectively. Can be. Then, the electron transporting layer 50, the electron injection layer 60 and the aluminum electrode 70 were sequentially stacked on the light emitting layers 41, 42, 43.
  • the present invention provides a method for manufacturing the organic electronic device described above.
  • the manufacturing method In one embodiment, the manufacturing method,
  • the method may include forming an undoped layer including a hole transporting compound on the formed doped layer.
  • the deposition process may use, for example, a vacuum vapor deposition process.
  • the deposition process can be applied without particular limitation, and includes all of the various deposition processes known in the art.
  • the present invention does not exclude the use of various coating or film lamination methods other than vapor deposition.
  • the forming of the doped layer and the forming of the undoped layer may be repeatedly performed in the same chamber through a deposition process.
  • the forming of the doping layer may be performed through simultaneous deposition of the hole transporting compound and the P-type dopant.
  • the undoped layer may be performed by depositing a hole transporting compound, and the process of forming the doped layer and the undoped layer may be performed in one chamber.
  • forming the doped layer may include depositing a hole transport compound at a rate of 1 to 5 kW / sec, and simultaneously depositing a P-type dopant at a rate of 0.005 to 0.3 kW / sec. have.
  • the step of forming the doping layer the hole transport compound is deposited at a rate of 1.5 kW / sec to 2.5 kW / sec, while the P-type dopant is deposited at a rate of 0.01 kW / sec to 0.1 kW / sec Process may be included.
  • the step of forming the undoped layer is not particularly limited, and for example, the hole transporting compound may be deposited at a rate of 1 ⁇ / sec to 5 sec / sec, or 1.5 ⁇ / sec to 2.5 ⁇ / Can be deposited at a rate of sec.
  • the method may further include forming an intermediate layer with a compound for a P-type dopant substantially the same as the P-type dopant included in the doping layer.
  • the compound for the P-type dopant may be a compound having a different structure from the P-type dopant.
  • each component is evaporated from the hole transporting compound evaporation source 200 and the P-type dopant material evaporation source 300 on one surface of the substrate 100 including the ITO layer and deposited on the substrate 100.
  • the hole transporting compound may be deposited at a rate of 1 kW / sec
  • the P-type dopant material may be deposited at a rate of 0.05 kW / sec to form a doped layer.
  • the P-type dopant material evaporation source 300 may be blocked and the undoped layer may be deposited using the hole transporting compound evaporation source 200.
  • the above-described process of forming the doped layer and the undoped layer can be repeatedly performed in the same chamber.
  • Purification was carried out to increase the purity of the compounds of Examples 1 to 5 synthesized above.
  • the reason for such purification is that if impurities are mixed as the greatest factor affecting the light emitting characteristics of the device, the purity of the organic material included in the organic electronic device may cause quenching or deterioration of the device. Because it can be.
  • High purity sublimation purification was performed to remove impurities contained in the compounds of Examples 1 to 5, thereby obtaining a high purity organic material of 99.95% or more.
  • the hole transporting compound (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 2 to 3 kW / sec, and at the same time, a P-type dopant having a structure of Formula 4 was 0.002 to 0.20 kW / sec. It was deposited at a rate of to form a doped layer of 10 to 500 kPa thick.
  • the material prepared in Example 1 was deposited to a thickness of 500 ⁇ to form an undoped layer.
  • a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed at a thickness of 300 kHz.
  • BPhen having a structure of Chemical Formula 7 was formed to have a thickness of 200 ⁇ on the formed light emitting layer, and a material Liq having a structure of Chemical Formula 8 was formed to have a thickness of 10 ⁇ .
  • aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • the power efficiency of the organic electronic device manufactured in Experimental Example 1 was measured. Specifically, in the process of forming the doping layer, based on 100 parts by weight of the hole-transporting compound, the content of the P-type dopant was adjusted in the range of 0.1 to 20 parts by weight, and the thickness of the doping layer was changed to 10 to 500 kPa. .
  • the power efficiency value when the luminance is 500 cd / m 2 is shown in Table 4 below, and the unit is lm / W.
  • a hole transport compound (host) prepared in Example 3 which is a hole transport compound, and F4-TCNQ having a structure of Formula 4, which is a P-type dopant material, were deposited together.
  • the material prepared in Example 3 is deposited on the ITO electrode at a rate of 2 to 3 kW / sec, and at the same time, a P-type dopant having a structure of Formula 4 is deposited at a rate of 0.002 to 0.20 kW / sec.
  • a doped layer of 10 to 500 mm 3 thickness was formed.
  • the material prepared in Example 3 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer.
  • a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed at a thickness of 300 kHz.
  • BPhen having a structure of Chemical Formula 7 was formed to have a thickness of 200 ⁇ on the formed light emitting layer, and a material Liq having a structure of Chemical Formula 8 was formed to have a thickness of 10 ⁇ .
  • aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • the power efficiency of the organic electronic device manufactured in Experimental Example 2 was measured. Specifically, in the process of forming the doping layer, based on 100 parts by weight of the hole-transporting compound, the content of the P-type dopant was adjusted in the range of 0.1 to 20 parts by weight, and the thickness of the doping layer was changed to 10 to 500 kPa. . Power efficiency values when the luminance is 500 cd / m 2 are shown in Table 5 below, and the unit is lm / W.
  • the thickness of the doping layer was 50 kPa, the content of the P-type dopant was found to be the best power efficiency when 5 parts by weight.
  • a doping layer was formed by depositing together the material prepared in Example 1, which is a hole transporting compound, and F4-TCNQ having a structure of Formula 4, which is a P-type dopant material, on the ITO electrode. Specifically, the material prepared in Example 1 was deposited on the ITO electrode at a rate of 1 ⁇ / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was deposited at a rate of 0.05 ⁇ / sec. A doped layer of thickness ⁇ was formed. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. Next, a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed at a thickness of 300 kHz.
  • BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • a doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 kW / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was deposited at a speed of 0.05 kW / sec. To form a 300 ⁇ thick doped layer. The material prepared in Example 1 was deposited to a thickness of 300 kPa on the formed doped layer to form an undoped layer.
  • a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed to a thickness of 300 kHz.
  • BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • a 300 TO thick layer was formed on the ITO electrode using the material prepared in Example 1 as a hole transporting compound. Then, the material prepared in Example 1 and F4-TCNQ having a structure of Formula 4 which is a P-type dopant material was deposited together. Specifically, the material (host) prepared in Example 1 was deposited on the formed laminated structure at a rate of 1 ⁇ / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was 0.05 ⁇ / sec. Was deposited to form a 300 mm thick layer.
  • a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed to a thickness of 300 kHz.
  • BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • the power efficiency of the organic electronic device manufactured in Experimental Example 2 was measured.
  • the power efficiency values when the luminance is 500 cd / m 2 are shown in Table 6 below, and the unit is lm / W.
  • the device structures 1 and 2 are structures in which a dopant-free layer (undoped layer) is formed on a dopant-containing layer (doped layer) on an ITO substrate.
  • the device structure of 3 is a structure in which a dopant free layer is directly stacked on an ITO substrate. It can be seen that 1 and 2 show a significantly better power efficiency than the structure of 3. In particular, the structure of 1 shows twice the power efficiency as the structure of 3.
  • a dopant layer was formed by depositing a hole transporting compound and F4-TCNQ, which is a dopant having the structure of Formula 4, together on the ITO electrode. Specifically, a hole transporting compound is deposited on the ITO electrode at a rate of 1 kW / sec, and at the same time, a P-type dopant F4-TCNQ having a structure of Chemical Formula 4 is deposited at a rate of 0.05 kW / sec, thereby doping 100 kW thick. A layer was formed. A hole transporting compound was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer.
  • a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed to a thickness of 300 kHz.
  • BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • the kind of the hole transport compound used in each organic electronic device is as shown in Table 7.
  • power efficiency and device life were measured, and the results are shown in Table 7.
  • the life measurement of the organic electronic device was measured through the following process.
  • the fabricated organic electronic device was dispensed with a UV curing sealant at the edge of the cover glass in a glove box in a nitrogen atmosphere, and then the organic electronic device and the cover glass were laminated and cured by irradiating UV light. Then, the lifetime of the device was measured in an oven at 85 ° C.
  • T 75 means the time taken for the luminance of the device to be 75% of the initial luminance.
  • Device life is based on initial luminance of 1000 cd / m 2 .
  • a doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 ⁇ / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 ⁇ / sec. It was deposited to form a 100 ⁇ thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The processes of forming the doped and undoped layers were repeated 1 to 5 times, respectively.
  • a light emitting layer doped with 2 parts by weight of C545T having a structure of Formula 6 to tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed to a thickness of 300 kHz.
  • BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • the doped layer was formed by depositing together the material prepared in Example 3, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 3 was deposited on the ITO electrode at a rate of 1 ⁇ / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 ⁇ / sec. It was deposited to form a 100 ⁇ thick doped layer. The material prepared in Example 3 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The processes of forming the doped and undoped layers were repeated 1 to 5 times, respectively.
  • a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed to a thickness of 300 kHz.
  • BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • a doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 ⁇ / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 ⁇ / sec. It was deposited to form a 100 ⁇ thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated one more time, but the thickness of the second undoped layer was varied in the range of 100 to 2000 mm 3.
  • a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed to a thickness of 300 kHz.
  • BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • the power efficiency is the best when the thickness of the second undoped layer is 1000 mW, and the second ratio in terms of device life. It can be seen that it is the best when the thickness of the doped layer is 1500 kPa. In consideration of power efficiency and device life, it is preferable that the thickness of the second undoped layer is 1000 GPa.
  • the doped layer was formed by depositing together the material prepared in Example 3, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 3 was deposited on the ITO electrode at a rate of 1 ⁇ / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 ⁇ / sec. It was deposited to form a 100 ⁇ thick doped layer. The material prepared in Example 3 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated one more time, but the thickness of the second undoped layer was varied in the range of 100 to 2000 mm 3.
  • a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed to a thickness of 300 kHz.
  • BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • the repetition frequency of the doped layer and the undoped layer is the highest when the thickness of the second undoped layer is 1000 mW, and the second ratio is the second in terms of device life. It can be seen that the case where the thickness of the doping layer is 1500 kPa is the best. In consideration of power efficiency and device life, it is preferable that the thickness of the second undoped layer is 1000 GPa.
  • a doping layer was formed by depositing together the material prepared in Example 1, which is a hole transporting compound, and F4-TCNQ having a structure of Formula 4, which is a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 ⁇ / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 ⁇ / sec. It was deposited to form a 100 ⁇ thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated one more time, but the thickness of the second undoped layer was varied in the range of 500 to 1800 mm 3.
  • a doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 ⁇ / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 ⁇ / sec. It was deposited to form a 100 ⁇ thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated one more time, but the thickness of the second undoped layer was varied in the range of 500 to 1800 mm 3.
  • a light emitting layer (Blue) doped with 2 parts by weight of DSBP having a structure of Formula 15 to DPVBi having a structure of Formula 14 was formed to a thickness of 300 kHz.
  • BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz.
  • aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • the thickness of the second undoped layer is 1400 ⁇ , which is the best power efficiency.
  • the power efficiency is the best when the thickness of the second undoped layer is 700 GPa.
  • the organic electronic device according to the present invention can realize the optimum device efficiency by varying the thickness of the laminated structure according to the light emitting region or type of the light emitting layer.
  • a P-type dopant material having a structure of Formula 16 alone was used on the ITO electrode to form an intermediate layer having a thickness of 5 to 70 mm 3.
  • the doped layer was formed by depositing the material prepared in Example 1, which is a hole transporting compound, and the P-type dopant material having the structure of Formula 16 together on the formed intermediate layer. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 ⁇ / sec, and at the same time, a P-type dopant having a structure of Formula 16 was deposited at a rate of 0.05 ⁇ / sec. A doped layer of thickness ⁇ was formed. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated once more.
  • a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed to a thickness of 300 kHz.
  • BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz.
  • aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • the thickness of the intermediate layer is the most excellent power efficiency in the case of 10 kHz, it can be seen that the device characteristics are similar when more than 20 kHz.
  • a doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 ⁇ / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 ⁇ / sec. It was deposited to form a 100 ⁇ thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated once more, but the thickness of the second undoped layer was formed to be 700 kPa.
  • the blue light emitting region was formed to a thickness of 300 kV by doping 2 parts by weight of DSBP having the structure of Formula 15 to DPVBi having the structure of Formula 14.
  • the red light emitting region is doped with 50 parts by weight of Ruburen having the structure of Formula 12 and 2.5 parts by weight of DCJTB having the structure of Formula 13 to tris (8-hydroxyquinoline) aluminum (Alq 3 ) having the structure of Formula 5 To form a thickness of 300 mm.
  • the green light emitting region was formed to a thickness of 300 kHz by doping C545T having the structure of Formula 6 to 2 parts by weight of tris (8-hydroxyquinoline) aluminum (Alq 3 ) having the structure of Formula 5.
  • BPhen having a structure of Formula 7 was formed to have a thickness of 200 ⁇ on each of the formed light emitting layers, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 ⁇ . Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • the thickness of the second doped layer is formed to be the same regardless of the type of the light emitting layer applied to the pixel portion, the power efficiency and lifespan are different for each pixel. In particular, the lifespan of each pixel may adversely affect the device.
  • a doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 ⁇ / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 ⁇ / sec. It was deposited to form a 100 ⁇ thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated once more, but the thickness of the second undoped layer was formed in the range of 700 to 1400 kPa.
  • the blue light emitting region was formed to a thickness of 300 kV by doping 2 parts by weight of DSBP having the structure of Formula 15 to DPVBi having the structure of Formula 14.
  • the red light emitting region is doped with 50 parts by weight of Ruburen having the structure of Formula 12 and 2.5 parts by weight of DCJTB having the structure of Formula 13 to tris (8-hydroxyquinoline) aluminum (Alq 3 ) having the structure of Formula 5 To form a thickness of 300 mm.
  • the green light emitting region was formed to a thickness of 300 kHz by doping C545T having the structure of Formula 6 to 2 parts by weight of tris (8-hydroxyquinoline) aluminum (Alq 3 ) having the structure of Formula 5.
  • BPhen having a structure of Formula 7 was formed to have a thickness of 200 ⁇ on each of the formed light emitting layers, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 ⁇ . Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • a doping layer was formed by depositing together the material prepared in Example 1, which is a hole transporting compound, and F4-TCNQ having a structure of Formula 4, which is a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 ⁇ / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 ⁇ / sec. It was deposited to form a 100 ⁇ thick doped layer. The material prepared in Example 1 was deposited to a thickness of 370 kPa over the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated two more times.
  • DPVBi having the structure of Formula 14 was doped with 2 parts by weight of DSBP having the structure of Formula 15 to form a light emitting layer (Blue) having a thickness of 300 kHz.
  • BPhen having a structure of Formula 7 was formed to have a thickness of 200 ⁇ on each of the formed light emitting layers, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 ⁇ .
  • aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • a doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 ⁇ / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 ⁇ / sec. It was deposited to form a 100 ⁇ thick doped layer. On the doped layer formed, the material prepared in Example 1 was deposited to a thickness of 470 kPa to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated two more times.
  • Tris (8-hydroxyquinoline) aluminum (Alq 3 ) having the structure of Formula 5 was doped with 2 parts by weight of C545T having the structure of Formula 6 to form a light emitting layer (Green) having a thickness of 300 kHz.
  • BPhen having a structure of Formula 7 was formed to have a thickness of 200 ⁇ on each of the formed light emitting layers, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 ⁇ . Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • a doping layer was formed by depositing together the material prepared in Example 1, which is a hole transporting compound, and F4-TCNQ having the structure of Formula 4, which is a P-type dopant, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 ⁇ / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 ⁇ / sec. It was deposited to form a 100 ⁇ thick doped layer. The material prepared in Example 1 was deposited to a thickness of 600 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated two more times.
  • a doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 ⁇ / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 ⁇ / sec. It was deposited to form a 100 ⁇ thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated once more, but the thickness of the second undoped layer was formed to be 1000 kPa.
  • the electron blocking layer was formed in the range of 50 to 150 kV using the material having the structure of Formula 17 on the formed laminate structure.
  • tris (8-hydroxyquinoline) aluminum (Alq 3 ) having the structure of Formula 5 was doped with 2 parts by weight of C545T having the structure of Formula 6 to form a light emitting layer (Green) having a thickness of 300 kHz.
  • BPhen having a structure of Chemical Formula 7 was formed to have a thickness of 200 ⁇ on the formed light emitting layer, and a material Liq having a structure of Chemical Formula 8 was formed to have a thickness of 10 ⁇ .
  • aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • a doping layer was formed by depositing together the material prepared in Example 1, which is a hole transporting compound, and F4-TCNQ having a structure of Formula 4, which is a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 ⁇ / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 ⁇ / sec. It was deposited to form a 100 ⁇ thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated once more, but the second undoped layer was formed to a thickness of 700 ⁇ .
  • An electron blocking layer was formed to a thickness of 100 kHz on the formed laminated structure using a material having a structure of Formula 17.
  • DPVBi having a structure of Formula 14 was doped with 2 parts by weight of DSBP having a structure of Formula 15 to form a light emitting layer (Blue) having a thickness of 300 kHz.
  • BPhen having a structure of Formula 7 was formed to have a thickness of 200 ⁇ on each of the formed light emitting layers, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 ⁇ .
  • aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • a doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 ⁇ / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 ⁇ / sec. It was deposited to form a 100 ⁇ thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated once more, but the second undoped layer was formed to a thickness of 1400 kPa.
  • An electron blocking layer was formed to a thickness of 100 kHz on the formed laminated structure using a material having a structure of Formula 17.
  • BPhen having a structure of Chemical Formula 7 was formed to have a thickness of 200 ⁇ on the formed light emitting layer, and a material Liq having a structure of Chemical Formula 8 was formed to have a thickness of 10 ⁇ .
  • aluminum electrodes were laminated to a thickness of 1000 mm 3.
  • the electron blocking layer is formed to a thickness of 100 kHz, which is excellent in power efficiency and device life even when the blue and red light emitting layers are applied.

Abstract

The present invention relates to an organic electronic device, and to a method for manufacturing same, the device comprising: a first electrode; a second electrode; one or more organic layers which are formed between the first electrode and the second electrode, and which include a light-emitting layer; a doping layer including a hole transporting compound and a p-type dopant; and a non-doping layer including the hole transporting compound, wherein the doping layer and the non-doping layer are repeatedly formed between the first electrode and the light-emitting layer. Injection of holes into the device is easy, enabling improved luminous efficacy.

Description

유기전자소자 및 그 제조방법Organic electronic device and its manufacturing method
본 발명은 유기전자소자 및 그 제조방법에 관한 것으로, 상기 유기전자소자는 제1 전극과 발광층 사이에 형성된 신규 적층 구조를 포함한다.The present invention relates to an organic electronic device and a method of manufacturing the organic electronic device, the organic electronic device includes a novel laminated structure formed between the first electrode and the light emitting layer.
유기전자소자는 발광성 유기 화합물에 전류가 흐르면 빛을 내는 전계 발광 현상을 이용한 자체 발광형 소자를 의미한다. 상기 유기전자소자는 열 안정성이 우수하고 구동 전압이 낮다는 장점이 있으며, 다양한 산업 분야에서 활용 가능하다. The organic electronic device refers to a self-luminous device using an electroluminescence phenomenon that emits light when a current flows through a light emitting organic compound. The organic electronic device has an advantage of excellent thermal stability and low driving voltage, and may be utilized in various industrial fields.
그러나, 유기전자소자는 전극과 유기층의 계면이 불안정하기 때문에, 외부에서 가해지거나 내부에서 발생되는 열 또는 소자에 가해지는 전계 등은 소자의 성능에 악영향을 줄 수 있다. 또한, 전극에서 발광층으로 정공이 공급되는 과정에서 각 적층체의 계면에 존재하는 에너지 장벽으로 인해 소자의 구동전압이 커질 수 있다. 따라서, 적층체의 각 층들의 계면을 안정화시키는 것뿐만 아니라, 전극으로부터 발광층으로 정공을 주입하는 과정에서의 에너지 장벽을 최소화하여 정공의 주입을 쉽게 만드는 것이 중요하다. However, since the organic electronic device has an unstable interface between the electrode and the organic layer, heat applied to the device or heat generated from the inside may adversely affect the device performance. In addition, in the process of supplying holes from the electrode to the light emitting layer, the driving voltage of the device may increase due to an energy barrier present at the interface of each laminate. Therefore, it is important not only to stabilize the interface of each layer of the laminate, but also to easily inject holes by minimizing the energy barrier in the process of injecting holes from the electrode to the light emitting layer.
본 발명은 소자 내 정공의 주입 및 수송을 향상시킬 수 있는 신규 구조를 포함하는 유기전자소자 및 그 제조방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide an organic electronic device comprising a novel structure capable of improving the injection and transport of holes in the device and a method of manufacturing the same.
본 발명의 하나의 실시예에 따른 유기전자소자는, 제1 전극; 제2 전극; 및 제1 전극과 제2 전극 사이에 형성되고, 발광층을 포함하는 1 층 이상의 유기층을 포함하며, 제1 전극과 발광층 사이에는, 정공 수송성 화합물과 P형 도펀트를 포함하는 도핑층; 및 상기 정공 수송성 화합물을 포함하는 비도핑층이 반복되는 구조를 제공한다.An organic electronic device according to an embodiment of the present invention, the first electrode; Second electrode; And at least one organic layer formed between the first electrode and the second electrode and including an emission layer, wherein the doping layer comprises a hole transporting compound and a P-type dopant between the first electrode and the emission layer; And it provides a structure in which the undoped layer comprising the hole transport compound is repeated.
또한, 본 발명의 또 다른 하나의 실시예로서, 제1 전극 상에 정공 수송성 화합물 및 P형 도펀트를 포함하는 도핑층을 형성하는 단계; 및 형성된 도핑층 위에 상기 정공 수송성 화합물을 포함하는 비도핑층을 형성하는 단계를 포함하는 유기전자소자의 제조방법을 제공한다.In still another embodiment of the present invention, there is provided a method for forming a doping layer including a hole transporting compound and a P-type dopant on a first electrode; And forming a non-doped layer including the hole transporting compound on the formed doped layer.
본 발명에 따른 유기전자소자는, 소자 구조 내에 정공의 주입 및 수송을 향상시키고, 전력효율과 소자수명을 향상시킬 수 있는 신규 적층 구조를 제시하며, 다양한 종류의 장치 등에 효과적으로 적용 가능하다.The organic electronic device according to the present invention improves the injection and transport of holes in the device structure, proposes a novel laminated structure capable of improving power efficiency and device life, and can be effectively applied to various kinds of devices.
도 1 내지 7은 각각 본 발명의 하나의 실시예에 따른 유기전자소자의 적층 구조를 나타낸 모식도들이다;1 to 7 are schematic diagrams each showing a laminated structure of an organic electronic device according to an embodiment of the present invention;
도 8은 본 발명의 하나의 실시예에 따른 유기전자소자의 제조공정을 나타낸 모식도이다.8 is a schematic diagram showing a manufacturing process of an organic electronic device according to an embodiment of the present invention.
본 발명의 하나의 실시예에 따른 유기전자소자는,An organic electronic device according to an embodiment of the present invention,
제1 전극; 제2 전극; 및 제1 전극과 제2 전극 사이에 형성되고, 발광층을 포함하는 1 층 이상의 유기층을 포함하며, 제1 전극과 발광층 사이에는, A first electrode; Second electrode; And at least one organic layer formed between the first electrode and the second electrode and including a light emitting layer, between the first electrode and the light emitting layer,
정공 수송성 화합물과 P형 도펀트를 포함하는 도핑층; 및A doping layer comprising a hole transporting compound and a P-type dopant; And
상기 정공 수송성 화합물을 포함하는 비도핑층이 형성되는 구조를 포함할 수 있다. It may include a structure in which an undoped layer including the hole transport compound is formed.
제1 전극 및 제2 전극은 각각 양극(anode) 및 음극(cathode)를 의미할 수 있으며, 경우에 따라서는 그 반대의 경우도 포함한다. 이하 설명에서는 제1 전극이 양극이고, 제2 전극이 음극인 경우를 기준으로 설명한다. The first electrode and the second electrode may mean an anode and a cathode, respectively, and vice versa. In the following description, the first electrode is an anode and the second electrode is a cathode.
본 발명에서 유기층은 제1 전극 및 제2 전극 사이에 형성되는 유기물을 포함하는 적층 구조로서, 경우에 따라서는 무기물을 더 포함할 수 있다. 또한, 상기 유기층은 전자 및/또는 정공을 주입 내지 수송하는 다수의 층과 이를 통해 발광하는 발광층을 포함할 수 있으며, 당해 기술분야에서 알려진 다양한 적층구조를 모두 포함한다.In the present invention, the organic layer is a laminated structure including an organic material formed between the first electrode and the second electrode, and in some cases, may further include an inorganic material. In addition, the organic layer may include a plurality of layers injecting or transporting electrons and / or holes and a light emitting layer emitting light therethrough, and include all of the various stacking structures known in the art.
본 발명의 하나의 실시예에 따른 유기전자소자에서는 제1 전극으로부터 주입된 정공이 도핑층 및 비도핑층을 거쳐 발광층으로 공급된다. In the organic electronic device according to the exemplary embodiment of the present invention, holes injected from the first electrode are supplied to the light emitting layer through the doped layer and the undoped layer.
본 발명에서 정공 수송성 화합물은 제1 전극으로부터 발광층으로 정공을 주입 및/또는 수송하는 역할을 수행하는 물질을 총칭하며, 당해 기술분야에서 알려진 정공 주입층 및/또는 정공 수송층으로 적용가능한 다양한 물질이 사용될 수 있다.In the present invention, the hole-transporting compound is a generic name for a material that serves to inject and / or transport holes from the first electrode to the light emitting layer, and various materials applicable to the hole injection layer and / or hole transport layer known in the art may be used. Can be.
도핑층은 정공 수송을 유도하는 정공 수송성 화합물을 호스트 재료로 포함하고, 상기 호스트 재료에 P형 도펀트가 일정 함량으로 도핑된 구조일 수 있다. The doping layer may include a hole transport compound that induces hole transport as a host material, and may have a structure in which a P-type dopant is doped in the host material.
본 발명의 하나의 실시예에 따른 유기전자소자는 적어도 하나의 도핑층이 제1 전극에 인접하도록 형성된 구조일 수 있다. 도핑층은 P형 도펀트의 도핑을 통해 비도핑층에 비해 상대적으로 정공의 농도가 높다는 특징이 있다. 그 결과, 도핑층으로부터 그에 인접하는 비도핑층으로의 정공 이동성이 향상될 수 있다. 이러한 정공 이동성의 향상은 소자의 구동전압을 낮추고, 발광효율을 높이는 효과가 있다. The organic electronic device according to an embodiment of the present invention may have a structure in which at least one doped layer is adjacent to the first electrode. The doped layer is characterized by a relatively higher hole concentration than the non-doped layer through the doping of the P-type dopant. As a result, hole mobility from the doped layer to the adjacent undoped layer can be improved. The improvement of hole mobility has the effect of lowering the driving voltage of the device and increasing the luminous efficiency.
발광층에 도달한 정공은 제2 전극, 즉 음극으로부터 주입되어 발광층에 도달한 전자를 만나 여기자(exciton)을 형성하게 되며, 이러한 여기자가 기저 상태로 천이되는 과정에서 특정 파장 영역의 빛이 생성된다.The holes reaching the light emitting layer meet electrons injected from the second electrode, that is, the cathode, and reach the light emitting layer to form excitons, and light of a specific wavelength region is generated in the process of the excitons transitioning to the ground state.
하나의 예로서, 본 발명에 따른 도핑층 및 비도핑층은 P형 도펀트를 제외한 성분은 동일한 조성일 수 있다. 구체적으로는, 상기 도핑층 및 비도핑층은 동일한 정공 수송성 화합물을 포함하되, 도핑층은 P형 도펀트를 더 포함하는 구조일 수 있다. 본 발명에 따른 유기전자소자는 도핑층과 비도핑층을 구성하는 정공 수송성 화합물의 성분을 동일하게 하면서 도핑층에만 P형 도펀트를 더 포함하는 구조를 제시하며, 이러한 구조는 도핑층과 비도핑층의 계면에서 정공 이동을 저해하는 에너지 장벽을 낮춰 정공의 이동성을 향상시킬 수 있다. 또한, 본 발명에 따른 유기전자소자는 도핑층과 비도핑층의 HOMO(Highest Occupied Molecular Orbital) 준위 내지 LUMO(Lowest Unoccupied Molecular Orbital) 준위의 차이를 용이하게 조절할 수 있다. 또 다른 측면에서, 상기 도핑층과 비도핑층에 포함되는 정공 수송 물질의 성분을 동일하게 함으로써, 이종 물질간의 계면에서 발생될 수 있는 물리화학적 결함을 감소시켜 발광층으로의 정공 주입을 용이하게 할 수 있다. As an example, the doped layer and the undoped layer according to the present invention may have the same composition except for the P-type dopant. Specifically, the doping layer and the non-doped layer may include the same hole transport compound, the doping layer may have a structure further comprising a P-type dopant. The organic electronic device according to the present invention proposes a structure including the P-type dopant only in the doped layer while the same components of the hole transporting compound constituting the doped layer and the undoped layer, and the structure is a doped layer and an undoped layer The mobility of holes can be improved by lowering an energy barrier that inhibits hole movement at an interface of. In addition, the organic electronic device according to the present invention can easily control the difference between the HOMO (High Occupied Molecular Orbital) level and the LUMO (Lowest Unoccupied Molecular Orbital) level of the doped layer and the undoped layer. In another aspect, by making the same components of the hole transport material included in the doped layer and the undoped layer, it is possible to reduce the physicochemical defects that may occur at the interface between different materials to facilitate hole injection into the light emitting layer. have.
이와 같이, 동일한 정공 수송성 화합물을 사용하면 하나의 챔버 내에서 도핑층과 비도핑층을 연속적으로 형성할 수 있게 되므로, 제작 공정이 단순해지고 제작 시간을 단축시킬 수 있는 이점이 있다. 나아가, 인접하고 있는 도핑층과 비도핑층의 유리전이온도 등의 물성이 유사하게 되므로 소자의 내구성을 높일 수 있는 이점도 있다.As such, when the same hole-transporting compound is used, the doping layer and the non-doping layer can be continuously formed in one chamber, thereby simplifying the manufacturing process and reducing the manufacturing time. Furthermore, since physical properties such as glass transition temperatures of adjacent doped layers and undoped layers become similar, there is an advantage of increasing durability of the device.
또 다른 하나의 예로서, 상기 제1 전극과 도핑층 사이에 형성되며, P형 도펀트용 화합물로 이루어진 중간층을 더 포함할 수 있다. 상기 중간층은 별도의 정공 수송성 화합물 없이 P형 도펀트용 화합물을 이용하여 하나의 층을 형성한 구조를 의미하며, 예를 들어, 상기 중간층은 도핑층에 포함된 P형 도펀트와 동일한 P형 도펀트용 화합물을 이용하여 형성할 수 있다. 상기 중간층은 제1 전극과 도핑층 사이의 정공 이동성을 높이는 역할을 한다. 상기 P형 도펀트용 화합물은 상기 도핑층에 주입되는 P형 도펀트로 이용될 수 있는 다양한 종류의 화합물들을 포함하는 것으로, 본 발명의 상기 중간층을 구성하는 메인 화합물로 이용되므로 "P형 도펀트용 화합물"로 지칭하여 설명한다.As another example, the intermediate layer may be formed between the first electrode and the doping layer, and may be made of a compound for a P-type dopant. The intermediate layer means a structure in which one layer is formed using a compound for a P-type dopant without a separate hole transport compound. For example, the intermediate layer is the same P-type dopant compound as the P-type dopant included in the doping layer. It can be formed using. The intermediate layer serves to increase hole mobility between the first electrode and the doped layer. The compound for the P-type dopant includes various kinds of compounds that can be used as the P-type dopant injected into the doping layer, and is used as a main compound constituting the intermediate layer of the present invention. It demonstrates with reference.
상기 중간층의 두께는 특별히 한정되지 않으며, 예를 들어, 5 Å 내지 70 Å, 6 Å 내지 60 Å, 8 Å 내지 40 Å, 10 Å 내지 30 Å, 8 Å 내지 32 Å, 8 Å 내지 12 Å, 15 Å 내지 35 Å 또는 10 Å 내지 20 Å 범위일 수 있다. The thickness of the intermediate layer is not particularly limited, and for example, 5 to 70 Pa, 6 to 60 Pa, 8 to 40 Pa, 10 to 30 Pa, 8 to 32 Pa, 8 to 12 Pa, 15 kV to 35 kV or 10 kV to 20 kV.
하나의 예로서, 상기 정공 수송성 화합물의 HOMO 준위(E1)와 P형 도펀트의 LUMO 준위(E2)는 하기 수학식 1의 관계를 만족할 수 있다. As one example, the HOMO level (E1) of the hole-transporting compound and the LUMO level (E2) of the P-type dopant may satisfy the relationship of Equation 1 below.
[수학식 1][Equation 1]
|E2| - |E1| ≥ -0.2 (eV)| E2 | -| E1 | ≥ -0.2 (eV)
상기 수학식 1의 값은 -0.2 이상, -0.1 이상, 0 이상, 0.01 이상, 0.05 이상, 또는 0.1 이상일 수 있다. 상기 수학식 1의 값은 예를 들어, 2 이하, 1 이하, 또는 0.8 이하일 수 있다. 이를 통해, 도핑층과 비도핑층 사이의 에너지 준위차를 최소화하고, 발광층으로의 정공 이동을 용이하게 한다.The value of Equation 1 may be -0.2 or more, -0.1 or more, 0 or more, 0.01 or more, 0.05 or more, or 0.1 or more. The value of Equation 1 may be, for example, 2 or less, 1 or less, or 0.8 or less. This minimizes the energy level difference between the doped layer and the undoped layer, and facilitates the hole movement to the light emitting layer.
하나의 예로서, 상기 정공 수송성 화합물의 HOMO 준위는 -6 내지 -4.5eV, 또는 -6 내지 -5.2eV, 또는 -5.8 내지 -5eV, 또는 -5.8 내지 -5.2eV 범위일 수 있다. 상기 정공 수송성 화합물의 LUMO 준위는 -3 내지 -1.5eV, 또는 -3 내지 -2eV, 또는 -2.5 내지 -1.5eV, 또는 -3 내지 -2.5eV, 또는 -2.5 내지 -2eV 범위일 수 있다. 또 다른 예로서, 상기 P형 도펀트의 HOMO 준위는 -10 내지 -7.5eV, 또는 -8.2 내지 -7.5eV, 또는 -10 내지 -8.2eV, 또는 -9.2 내지 -8.2eV 범위, 또는 -9 내지 -8.5eV일 수 있다. 또한, P형 도펀트의 LUMO 준위는 -6.5 내지 -5eV, 또는 -5.4 내지 -5eV, 또는 -6.5 내지 -5.4eV, 또는 -6.2 내지 -5.4eV 범위일 수 있다. As an example, the HOMO level of the hole transporting compound may range from -6 to -4.5 eV, or -6 to -5.2 eV, or -5.8 to -5 eV, or -5.8 to -5.2 eV. The LUMO level of the hole transporting compound may range from -3 to -1.5 eV, or -3 to -2 eV, or -2.5 to -1.5 eV, or -3 to -2.5 eV, or -2.5 to -2 eV. As another example, the HOMO level of the P-type dopant is -10 to -7.5 eV, or -8.2 to -7.5 eV, or -10 to -8.2 eV, or -9.2 to -8.2 eV, or -9 to- May be 8.5eV. In addition, the LUMO level of the P-type dopant may range from -6.5 to -5 eV, or -5.4 to -5 eV, or -6.5 to -5.4 eV, or -6.2 to -5.4 eV.
이를 통해, 제1 전극과 발광층 사이의 정공 이동성을 향상시킬 수 있다.Through this, hole mobility between the first electrode and the light emitting layer may be improved.
상기 HOMO 준위 또는 LUMO 준위는 진공 준위와의 에너지 차이를 의미하며, 음의 값으로 표시하였다.The HOMO level or LUMO level means an energy difference from a vacuum level, and is expressed as a negative value.
본 발명에 따른 하나의 실시예로서, 상기 정공 수송성 화합물은 하기 화학식 1의 구조를 만족할 수 있다.In one embodiment according to the present invention, the hole transporting compound may satisfy the structure of Formula 1 below.
[화학식 1][Formula 1]
Figure PCTKR2012007030-appb-I000001
Figure PCTKR2012007030-appb-I000001
상기 화학식 1에서, In Chemical Formula 1,
L은
Figure PCTKR2012007030-appb-I000002
를 나타내고,
L is
Figure PCTKR2012007030-appb-I000002
Indicates,
L1, L2, L3 및 L4는 각각 독립적으로 탄소수 6 내지 60의 아릴렌기, 탄소수 2 내지 60의 헤테로고리기, 탄소수 2 내지 60의 알케닐렌기, 탄소수 2 내지 60의 알키닐렌기 또는 탄소수 3 내지 60의 시클로알킬렌기를 나타내고,L 1 , L 2 , L 3 and L 4 are each independently an arylene group having 6 to 60 carbon atoms, a heterocyclic group having 2 to 60 carbon atoms, an alkenylene group having 2 to 60 carbon atoms, an alkynylene group having 2 to 60 carbon atoms, or A cycloalkylene group having 3 to 60 carbon atoms is represented,
p, q, r 및 s는 각각 독립적으로 0 내지 2의 정수를 나타내며, p, q, r 및 s의 합은 1 내지 8의 정수이고, p, q, r and s each independently represent an integer of 0 to 2, and the sum of p, q, r and s is an integer of 1 to 8,
R1은 수소, 탄소수 1 내지 60의 알킬기, 탄소수 2 내지 60의 알케닐기, 탄소수 3 내지 60의 시클로알킬기, 탄소수 1 내지 60의 알콕시기, 탄소수 6 내지 60의 아릴기, 탄소수 2 내지 60의 헤테로고리기, 탄소수 6 내지 60의 아릴옥시기, 탄소수 6 내지 60의 아릴티오기, 탄소수 1 내지 60의 알콕시카르보닐기, 할로겐기, 시아노기, 나이트로기, 하이드록시기 또는 카르복시기를 나타내고,R 1 is hydrogen, an alkyl group having 1 to 60 carbon atoms, an alkenyl group having 2 to 60 carbon atoms, a cycloalkyl group having 3 to 60 carbon atoms, an alkoxy group having 1 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, a hetero group having 2 to 60 carbon atoms A cyclic group, an aryloxy group having 6 to 60 carbon atoms, an arylthio group having 6 to 60 carbon atoms, an alkoxycarbonyl group having 1 to 60 carbon atoms, a halogen group, a cyano group, a nitro group, a hydroxyl group, or a carboxy group,
R2는 수소, 탄소수 1 내지 60의 알킬기 또는 탄소수 6 내지 60의 아릴기이고,R 2 is hydrogen, an alkyl group having 1 to 60 carbon atoms or an aryl group having 6 to 60 carbon atoms,
R3 및 R4은 각각 독립적으로, *-A1-A2-A3-A4로 나타내고,R 3 and R 4 are each independently represented by * -A 1 -A 2 -A 3 -A 4 ,
A1, A2 및 A3은 각각 독립적으로 단일 결합, -O-, -S-, 탄소수 1 내지 60의 직쇄형 또는 분지형의 알킬렌기(-(CH2)j-, 여기서, j는 1 내지 60의 정수), 탄소수 6 내지 60의 아릴렌기, 탄소수 2 내지 60의 헤테로고리기, 탄소수 3 내지 60의 시클로알킬렌기, 아다만틸렌기, 탄소수 7 내지 60의 바이시클로알킬렌기, 탄소수 2 내지 60의 알케닐렌기 또는 탄소수 2 내지 60의 알키닐렌기를 나타내고,A 1 , A 2 and A 3 are each independently a single bond, -O-, -S-, a linear or branched alkylene group having 1 to 60 carbon atoms (-(CH 2 ) j- , where j is 1 To an integer of 60 to 60), an arylene group having 6 to 60 carbon atoms, a heterocyclic group having 2 to 60 carbon atoms, a cycloalkylene group having 3 to 60 carbon atoms, an adamantylene group, a bicycloalkylene group having 7 to 60 carbon atoms, and a carbon atoms having 2 to 60 carbon atoms. 60 alkenylene group or C2-C60 alkynylene group is shown,
A4는 수소, 탄소수 1 내지 60의 알킬기, 탄소수 6 내지 60의 아릴기, 탄소수 2 내지 60의 헤테로고리기, 탄소수 3 내지 60의 시클로알킬기, 아다만틸기, 탄소수 7 내지 60의 바이시클로알킬기, 탄소수 2 내지 60의 알케닐기, 탄소수 2 내지 60의 알키닐기 또는 *-NR5R6를 나타내고,A 4 is hydrogen, an alkyl group having 1 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, a heterocyclic group having 2 to 60 carbon atoms, a cycloalkyl group having 3 to 60 carbon atoms, an adamantyl group, a bicycloalkyl group having 7 to 60 carbon atoms, An alkenyl group having 2 to 60 carbon atoms, an alkynyl group having 2 to 60 carbon atoms, or * -NR 5 R 6 ;
R5 및 R6은 각각 독립적으로, 수소, 탄소수 1 내지 60의 알킬기, 탄소수 1 내지 6의 알콕시기, 탄소수 6 내지 60의 아릴아민기 또는 탄소수 6 내지 60의 아릴기를 나타내고,R 5 and R 6 each independently represent hydrogen, an alkyl group having 1 to 60 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an arylamine group having 6 to 60 carbon atoms, or an aryl group having 6 to 60 carbon atoms,
상기 화학식 1에서, L, R1, R2, R3 및 R4의 수소들 중에서 하나 이상은 각각 독립적으로 탄소수 1 내지 60의 알킬기, 탄소수 6 내지 60의 아릴기, 탄소수 6 내지 60의 아릴아민기 또는 탄소수 6 내지 60의 헤테로고리기로 치환 또는 비치환될 수 있다.In Formula 1, at least one of hydrogens of L, R 1 , R 2 , R 3, and R 4 is each independently an alkyl group having 1 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, and an arylamine having 6 to 60 carbon atoms. It may be substituted or unsubstituted with a group or heterocyclic group having 6 to 60 carbon atoms.
하나의 예로서, 상기 화학식 1의 구조를 갖는 정공 수송성 화합물은 하기 화학식 2를 통해 나타낼 수 있다.As one example, the hole transport compound having the structure of Formula 1 may be represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2012007030-appb-I000003
Figure PCTKR2012007030-appb-I000003
L은
Figure PCTKR2012007030-appb-I000004
를 나타내고,
L is
Figure PCTKR2012007030-appb-I000004
Indicates,
L1, L2, L3 및 L4는 각각 독립적으로 탄소수 6 내지 60의 아릴렌기 또는 탄소수 2 내지 60의 헤테로고리기를 나타내고,L 1 , L 2 , L 3 and L 4 each independently represent an arylene group having 6 to 60 carbon atoms or a heterocyclic group having 2 to 60 carbon atoms,
p, q, r 및 s는 각각 독립적으로 0 내지 2의 정수를 나타내며, p, q, r 및 s의 합은 1 내지 8의 정수이고, p, q, r and s each independently represent an integer of 0 to 2, and the sum of p, q, r and s is an integer of 1 to 8,
R3 및 R4은 각각 독립적으로, *-A1-A2-A3-A4로 나타내고,R 3 and R 4 are each independently represented by * -A 1 -A 2 -A 3 -A 4 ,
A1, A2 및 A3은 각각 독립적으로 단일 결합, 탄소수 6 내지 60의 아릴렌기 또는 탄소수 2 내지 60의 헤테로고리기를 나타내고,A 1 , A 2 and A 3 each independently represent a single bond, an arylene group having 6 to 60 carbon atoms or a heterocyclic group having 2 to 60 carbon atoms,
A4는 수소, 탄소수 1 내지 60의 알킬기, 탄소수 6 내지 60의 아릴기, 탄소수 2 내지 60의 헤테로고리기 또는 *-NR5R6를 나타내고,A 4 represents hydrogen, an alkyl group having 1 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, a heterocyclic group having 2 to 60 carbon atoms, or * -NR 5 R 6 ,
R5 및 R6은 각각 독립적으로, 수소, 탄소수 1 내지 60의 알킬기, 탄소수 6 내지 60의 아릴아민기 또는 탄소수 6 내지 60의 아릴기를 나타내고,R 5 and R 6 each independently represent hydrogen, an alkyl group having 1 to 60 carbon atoms, an arylamine group having 6 to 60 carbon atoms, or an aryl group having 6 to 60 carbon atoms,
R7은 수소, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 40의 아릴기 또는 탄소수 2 내지 40의 헤테로고리기를 나타내고,R 7 represents hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 40 carbon atoms, or a heterocyclic group having 2 to 40 carbon atoms,
상기 화학식 2에서, L, R3, R4 및 R7의 수소들 중에서 하나 이상은 각각 독립적으로 탄소수 1 내지 60의 알킬기, 탄소수 6 내지 60의 아릴기, 탄소수 6 내지 60의 아릴아민기 또는 탄소수 6 내지 60의 헤테로고리기로 치환 또는 비치환될 수 있다.In Formula 2, at least one of hydrogen of L, R 3 , R 4, and R 7 is each independently an alkyl group having 1 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, an arylamine group having 6 to 60 carbon atoms, or carbon atoms It may be substituted or unsubstituted with 6 to 60 heterocyclic groups.
본 발명에서, "헤테로고리기"는 탄소 원자가 아닌 이종 원자가 고리 구조 내에 포함되어 있는 경우를 모두 포함하는 의미이다. 구체적으로, 상기 헤테로고리기는 헤테로시클로알킬기, 헤테로아릴기, 헤테로시클로알킬렌기 또는 헤테로아릴렌기 등을 포함하며, 예를 들어, 카바졸, 디벤조퓨란 또는 디벤조싸이오펜 구조를 지칭할 수 있다.In the present invention, "heterocyclic group" is meant to include all cases where heteroatoms other than carbon atoms are included in the ring structure. Specifically, the heterocyclic group includes a heterocycloalkyl group, heteroaryl group, heterocycloalkylene group or heteroarylene group, and the like, and may refer to, for example, a carbazole, dibenzofuran, or dibenzothiophene structure.
본 발명에서, "아릴기"는 방향족 탄화수소로부터 유도된 1가의 치환기를 의미한다. 상기 아릴기의 예로서는, 페닐기, 인데닐기, 1-나프틸기, 2-나프틸기, 아줄레닐기, 헵탈레닐기, 비페닐기, 인다세닐기, 아세나프틸기, 플루오레닐기, 페날레닐기, 페난트레닐기, 안트라세닐기, 디하이드로피레닐기, 사이클로펜타사이클로옥테닐기, 벤조사이클로옥테닐기 등의 단환식, 2환식 또는 3환식의 방향족 탄화수소환 등을 들 수 있다. In the present invention, "aryl group" means a monovalent substituent derived from an aromatic hydrocarbon. Examples of the aryl group include a phenyl group, indenyl group, 1-naphthyl group, 2-naphthyl group, azulenyl group, heptalenyl group, biphenyl group, indasenyl group, acenaphthyl group, fluorenyl group, penalenyl group and phenanthre Monocyclic, bicyclic, or tricyclic aromatic hydrocarbon rings, such as a silyl group, anthracenyl group, a dihydropyrenyl group, a cyclopentacyclo octenyl group, and a benzocyclooctenyl group, etc. are mentioned.
구체적으로, 상기 화학식 2에서, R7은 수소 또는 페닐기이고, L은 하기 표 1의 구조로부터 선택될 수 있다.Specifically, in Formula 2, R 7 is hydrogen or a phenyl group, L may be selected from the structure of Table 1 below.
표 1
No. 치환기 구조
1
Figure PCTKR2012007030-appb-I000005
2
Figure PCTKR2012007030-appb-I000006
3
Figure PCTKR2012007030-appb-I000007
4
Figure PCTKR2012007030-appb-I000008
5
Figure PCTKR2012007030-appb-I000009
6
Figure PCTKR2012007030-appb-I000010
7
Figure PCTKR2012007030-appb-I000011
8
Figure PCTKR2012007030-appb-I000012
9
Figure PCTKR2012007030-appb-I000013
10
Figure PCTKR2012007030-appb-I000014
11
Figure PCTKR2012007030-appb-I000015
12
Figure PCTKR2012007030-appb-I000016
13
Figure PCTKR2012007030-appb-I000017
Table 1
No. Substituent structure
One
Figure PCTKR2012007030-appb-I000005
2
Figure PCTKR2012007030-appb-I000006
3
Figure PCTKR2012007030-appb-I000007
4
Figure PCTKR2012007030-appb-I000008
5
Figure PCTKR2012007030-appb-I000009
6
Figure PCTKR2012007030-appb-I000010
7
Figure PCTKR2012007030-appb-I000011
8
Figure PCTKR2012007030-appb-I000012
9
Figure PCTKR2012007030-appb-I000013
10
Figure PCTKR2012007030-appb-I000014
11
Figure PCTKR2012007030-appb-I000015
12
Figure PCTKR2012007030-appb-I000016
13
Figure PCTKR2012007030-appb-I000017
예를 들어, 상기 표 1의 치환기들 각각의 경우, 서로 인접한 벤젠 고리들이 모두 파라(para) 위치로 연결됨으로써 전체적으로 직선형을 가지도록 연결될 수 있다. 이와 달리, 다수의 벤젠 고리들은 파라 위치에만 한정되지 않도록 서로 연결됨으로써, 전체적으로는 상기 화학식 1의 L은 굽어진 형태를 가질 수도 있다. For example, in each case of the substituents of Table 1, adjacent benzene rings may be connected to have a straight line as a whole by being connected to a para position. On the contrary, the plurality of benzene rings may be connected to each other so that the benzene rings are not limited only to the para position, so that L of Formula 1 may have a bent shape as a whole.
또한, 상기 화학식 2의 R3 및 R4는 각각 독립적으로 하기 표 2의 구조로부터 선택될 수 있다.In addition, R 3 and R 4 of Chemical Formula 2 may be independently selected from the structures of Table 2 below.
표 2
No. 치환기 구조 No. 치환기 구조
1
Figure PCTKR2012007030-appb-I000018
7
Figure PCTKR2012007030-appb-I000019
2
Figure PCTKR2012007030-appb-I000020
8
Figure PCTKR2012007030-appb-I000021
3
Figure PCTKR2012007030-appb-I000022
9
Figure PCTKR2012007030-appb-I000023
4
Figure PCTKR2012007030-appb-I000024
10
Figure PCTKR2012007030-appb-I000025
5
Figure PCTKR2012007030-appb-I000026
11
Figure PCTKR2012007030-appb-I000027
6
Figure PCTKR2012007030-appb-I000028
12
Figure PCTKR2012007030-appb-I000029
TABLE 2
No. Substituent structure No. Substituent structure
One
Figure PCTKR2012007030-appb-I000018
7
Figure PCTKR2012007030-appb-I000019
2
Figure PCTKR2012007030-appb-I000020
8
Figure PCTKR2012007030-appb-I000021
3
Figure PCTKR2012007030-appb-I000022
9
Figure PCTKR2012007030-appb-I000023
4
Figure PCTKR2012007030-appb-I000024
10
Figure PCTKR2012007030-appb-I000025
5
Figure PCTKR2012007030-appb-I000026
11
Figure PCTKR2012007030-appb-I000027
6
Figure PCTKR2012007030-appb-I000028
12
Figure PCTKR2012007030-appb-I000029
예를 들어, 본 발명에 따른 상기 화학식 1로 나타내는 정공 수송성 화합물은 하기 표 3에서 나타낸 정공 수송성 화합물로부터 선택될 수 있다.For example, the hole transport compound represented by Formula 1 according to the present invention may be selected from the hole transport compounds shown in Table 3 below.
표 3
No. 화합물 구조
1
Figure PCTKR2012007030-appb-I000030
2
Figure PCTKR2012007030-appb-I000031
3
Figure PCTKR2012007030-appb-I000032
4
Figure PCTKR2012007030-appb-I000033
5
Figure PCTKR2012007030-appb-I000034
6
Figure PCTKR2012007030-appb-I000035
7
Figure PCTKR2012007030-appb-I000036
8
Figure PCTKR2012007030-appb-I000037
9
Figure PCTKR2012007030-appb-I000038
10
Figure PCTKR2012007030-appb-I000039
11
Figure PCTKR2012007030-appb-I000040
12
Figure PCTKR2012007030-appb-I000041
13
Figure PCTKR2012007030-appb-I000042
14
Figure PCTKR2012007030-appb-I000043
15
Figure PCTKR2012007030-appb-I000044
16
Figure PCTKR2012007030-appb-I000045
17
Figure PCTKR2012007030-appb-I000046
18
19
Figure PCTKR2012007030-appb-I000048
20
Figure PCTKR2012007030-appb-I000049
21
Figure PCTKR2012007030-appb-I000050
22
Figure PCTKR2012007030-appb-I000051
23
Figure PCTKR2012007030-appb-I000052
24
Figure PCTKR2012007030-appb-I000053
25
Figure PCTKR2012007030-appb-I000054
26
Figure PCTKR2012007030-appb-I000055
27
Figure PCTKR2012007030-appb-I000056
28
Figure PCTKR2012007030-appb-I000057
29
Figure PCTKR2012007030-appb-I000058
30
Figure PCTKR2012007030-appb-I000059
31
Figure PCTKR2012007030-appb-I000060
32
Figure PCTKR2012007030-appb-I000061
33
Figure PCTKR2012007030-appb-I000062
34
Figure PCTKR2012007030-appb-I000063
35
Figure PCTKR2012007030-appb-I000064
36
Figure PCTKR2012007030-appb-I000065
37
Figure PCTKR2012007030-appb-I000066
38
Figure PCTKR2012007030-appb-I000067
39
Figure PCTKR2012007030-appb-I000068
40
Figure PCTKR2012007030-appb-I000069
41
Figure PCTKR2012007030-appb-I000070
42
Figure PCTKR2012007030-appb-I000071
43
Figure PCTKR2012007030-appb-I000072
44
Figure PCTKR2012007030-appb-I000073
45
Figure PCTKR2012007030-appb-I000074
46
Figure PCTKR2012007030-appb-I000075
47
Figure PCTKR2012007030-appb-I000076
48
Figure PCTKR2012007030-appb-I000077
49
Figure PCTKR2012007030-appb-I000078
50
Figure PCTKR2012007030-appb-I000079
51
Figure PCTKR2012007030-appb-I000080
52
Figure PCTKR2012007030-appb-I000081
53
Figure PCTKR2012007030-appb-I000082
54
Figure PCTKR2012007030-appb-I000083
55
Figure PCTKR2012007030-appb-I000084
56
Figure PCTKR2012007030-appb-I000085
57
Figure PCTKR2012007030-appb-I000086
58
Figure PCTKR2012007030-appb-I000087
59
Figure PCTKR2012007030-appb-I000088
60
Figure PCTKR2012007030-appb-I000089
61
Figure PCTKR2012007030-appb-I000090
62
Figure PCTKR2012007030-appb-I000091
63
Figure PCTKR2012007030-appb-I000092
TABLE 3
No. Compound structure
One
Figure PCTKR2012007030-appb-I000030
2
Figure PCTKR2012007030-appb-I000031
3
Figure PCTKR2012007030-appb-I000032
4
Figure PCTKR2012007030-appb-I000033
5
Figure PCTKR2012007030-appb-I000034
6
Figure PCTKR2012007030-appb-I000035
7
Figure PCTKR2012007030-appb-I000036
8
Figure PCTKR2012007030-appb-I000037
9
Figure PCTKR2012007030-appb-I000038
10
Figure PCTKR2012007030-appb-I000039
11
Figure PCTKR2012007030-appb-I000040
12
Figure PCTKR2012007030-appb-I000041
13
Figure PCTKR2012007030-appb-I000042
14
Figure PCTKR2012007030-appb-I000043
15
Figure PCTKR2012007030-appb-I000044
16
Figure PCTKR2012007030-appb-I000045
17
Figure PCTKR2012007030-appb-I000046
18
19
Figure PCTKR2012007030-appb-I000048
20
Figure PCTKR2012007030-appb-I000049
21
Figure PCTKR2012007030-appb-I000050
22
Figure PCTKR2012007030-appb-I000051
23
Figure PCTKR2012007030-appb-I000052
24
Figure PCTKR2012007030-appb-I000053
25
Figure PCTKR2012007030-appb-I000054
26
Figure PCTKR2012007030-appb-I000055
27
Figure PCTKR2012007030-appb-I000056
28
Figure PCTKR2012007030-appb-I000057
29
Figure PCTKR2012007030-appb-I000058
30
Figure PCTKR2012007030-appb-I000059
31
Figure PCTKR2012007030-appb-I000060
32
Figure PCTKR2012007030-appb-I000061
33
Figure PCTKR2012007030-appb-I000062
34
Figure PCTKR2012007030-appb-I000063
35
Figure PCTKR2012007030-appb-I000064
36
Figure PCTKR2012007030-appb-I000065
37
Figure PCTKR2012007030-appb-I000066
38
Figure PCTKR2012007030-appb-I000067
39
Figure PCTKR2012007030-appb-I000068
40
Figure PCTKR2012007030-appb-I000069
41
Figure PCTKR2012007030-appb-I000070
42
Figure PCTKR2012007030-appb-I000071
43
Figure PCTKR2012007030-appb-I000072
44
Figure PCTKR2012007030-appb-I000073
45
Figure PCTKR2012007030-appb-I000074
46
Figure PCTKR2012007030-appb-I000075
47
Figure PCTKR2012007030-appb-I000076
48
Figure PCTKR2012007030-appb-I000077
49
Figure PCTKR2012007030-appb-I000078
50
Figure PCTKR2012007030-appb-I000079
51
Figure PCTKR2012007030-appb-I000080
52
Figure PCTKR2012007030-appb-I000081
53
Figure PCTKR2012007030-appb-I000082
54
Figure PCTKR2012007030-appb-I000083
55
Figure PCTKR2012007030-appb-I000084
56
Figure PCTKR2012007030-appb-I000085
57
Figure PCTKR2012007030-appb-I000086
58
Figure PCTKR2012007030-appb-I000087
59
Figure PCTKR2012007030-appb-I000088
60
Figure PCTKR2012007030-appb-I000089
61
Figure PCTKR2012007030-appb-I000090
62
Figure PCTKR2012007030-appb-I000091
63
Figure PCTKR2012007030-appb-I000092
상기 유기전자소자는, 정공 수송성 화합물 100 중량부에 대하여, P형 도펀트 0.3 내지 20 중량부, 0.5 내지 15 중량부, 0.5 내지 5 중량부, 1 내지 10 중량부, 1 내지 5 중량부, 또는 1.5 내지 6 중량부, 또는 2 내지 5 중량부를 포함할 수 있다. 상기 범위에서는 정공 수송성 화합물의 물성을 해치지 않으면서, 과도한 누설 전류의 발생을 방지하고, 비도핑층과의 에너지 장벽을 효과적으로 낮출 수 있다. The organic electronic device may include 0.3 to 20 parts by weight, 0.5 to 15 parts by weight, 0.5 to 5 parts by weight, 1 to 10 parts by weight, 1 to 5 parts by weight, or 1.5 to 100 parts by weight of the hole transporting compound. To 6 parts by weight, or 2 to 5 parts by weight. In the above range, excessive leakage current can be prevented without damaging the physical properties of the hole transporting compound, and the energy barrier with the undoped layer can be effectively lowered.
상기 P형 도펀트의 종류는 소자 내의 정공 이동을 방해하지 않는 경우라면 특별히 제한되지 않는다. The type of the P-type dopant is not particularly limited as long as it does not prevent hole movement in the device.
예를 들어, 상기 P형 도펀트는,For example, the P-type dopant,
2,3,5,6-테트라플루오르-7,7,8,8-테트라시아노퀴노디메탄;2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinomidimethane;
디시아노메틸렌비스(4-옥소-[3,5-디-t-부틸]-2,5-시클로헥사디에닐리덴)시클로프로판;Dicyanomethylenebis (4-oxo- [3,5-di-t-butyl] -2,5-cyclohexadienylidene) cyclopropane;
1,3-비스(디시아노메틸렌)인단-2-일리덴-비스(4-옥소-[3,5-디-t-부틸]-2,5-시클로헥사디에닐리덴)시클로프로판; 1,3-bis (dicyanomethylene) indane-2-ylidene-bis (4-oxo- [3,5-di-t-butyl] -2,5-cyclohexadienylidene) cyclopropane;
(N,N',N'',N'''-시클로부탄-1,2,3,4-테트라일리덴)테트라아닐린;(N, N ', N ", N'"-cyclobutane-1,2,3,4-tetralidene) tetraaniline;
(2E,2'E,2''E,2'''E)-2,2',2'',2'''-(시클로부탄-1,2,3-테트라일리덴)N,N',N'',N'''-시클로부탄-1,2,3,4-테트라일리덴(테트라키스(2-펜타플루오로페닐)아세토니트릴);(2E, 2'E, 2''E, 2 '' 'E) -2,2', 2 '', 2 '' '-(cyclobutane-1,2,3-tethylidene) N, N ', N', N ''-cyclobutane-1,2,3,4-tetralidene (tetrakis (2-pentafluorophenyl) acetonitrile);
2-(6-디시아노메틸렌-1,3,4,5,7,8-헥사플루오로-6H-나프탈렌-2-일리덴)말로노니트릴;2- (6-dicyanomethylene-1,3,4,5,7,8-hexafluoro-6H-naphthalene-2-ylidene) malononitrile;
1,3,4,5,7,8-헥사플루오로나프토-2,6-퀴논테트라시아노메탄;1,3,4,5,7,8-hexafluoronaphtho-2,6-quinonetetracyanomethane;
(2E,2'E,2''E)-2,2',2''-(시클로프로판-1,2,3-트리일리덴)트리스(2-[2',3',5',6'-테트라플루오로피리드-4'-일]아세토니트릴); 및(2E, 2'E, 2''E) -2,2 ', 2' '-(cyclopropane-1,2,3-triylidene) tris (2- [2', 3 ', 5', 6'-tetrafluoropyrid-4'-yl] acetonitrile); And
2,2'-(2-(3-((1r,3s)-아다만탄-1-일)프로필)-3,5,6-트리플루오로시클로헥사-2,5-디엔-1,4-디일리덴)디말로노니트릴디피라지노[2,3-f:2',3'-h]퀴녹살린-2,3,6,7,10,11-헥사카보니트릴 중 1종 이상을 포함할 수 있다.2,2 '-(2- (3-((1r, 3s) -adamantan-1-yl) propyl) -3,5,6-trifluorocyclohexa-2,5-diene-1,4 -Diylidene) dimalononitriledipyrazino [2,3-f: 2 ', 3'-h] quinoxaline-2,3,6,7,10,11-hexacarbonitrile It may include.
또 다른 예로서, 상기 P형 도펀트는 화학식 3의 구조를 가질 수 있다.As another example, the P-type dopant may have a structure of Formula 3.
[화학식 3][Formula 3]
Figure PCTKR2012007030-appb-I000093
Figure PCTKR2012007030-appb-I000093
화학식 3에서,In Formula 3,
R은, 시아노기, 설폰아미드기, 니트로기 또는 트리플루오로메틸기를 나타내거나,R represents a cyano group, a sulfonamide group, a nitro group or a trifluoromethyl group, or
탄소수 1 내지 60을 갖는 알킬기, 탄소수 6 내지 60의 아릴기, 또는 탄소수 2 내지 60을 갖는 헤테로아릴기로 치환 또는 비치환된 설폰기, 설폭사이드기, 설포네이트기를 나타낸다.The sulfone group, sulfoxide group, and sulfonate group unsubstituted or substituted by the alkyl group having 1 to 60 carbon atoms, the aryl group having 6 to 60 carbon atoms, or the heteroaryl group having 2 to 60 carbon atoms.
본 발명의 하나의 예로서, 상기 정공 수송성 화합물 및 P형 도펀트를 포함하는 도핑층; 및 상기 정공 수송성 화합물을 포함하는 비도핑층은 2회 내지 4회 반복되는 구조, 또는 2회 또는 3회 반복되는 구조일 수 있다. 예를 들어, 상기 도핑층 및 비도핑층은 2회 반복되는 구조일 수 있다. 본 발명자는 다양한 실험을 통해, 제1 전극 상에 도핑층과 비도핑층이 1회 반복된 경우에 비해서, 2회 내지 4회 반복된 경우에, 소자의 전력효율 및 수명이 현저히 향상되는 것을 확인하였다.As an example of the present invention, a doping layer including the hole transport compound and a P-type dopant; And the undoped layer comprising the hole-transporting compound may have a structure repeated 2 to 4 times, or a structure repeated 2 or 3 times. For example, the doped layer and the undoped layer may have a structure that is repeated twice. Through various experiments, the inventors have found that the power efficiency and lifespan of the device are remarkably improved when the doped layer and the undoped layer are repeated once on the first electrode, when repeated two to four times. It was.
또한, 상기 제1 전극과 발광층 사이에 형성되는 도핑층 및 비도핑층이 반복되는 구조의 전체 두께는 500 내지 3000 Å 범위일 수 있다. 하나의 예로서, 도핑층 및 비도핑층이 반복되는 구조의 전체 두께는 700 내지 2000 Å, 1000 내지 1600 Å, 1000 내지 1300 Å, 1400 내지 2100 Å, 1300 내지 2000 Å, 1300 내지 1600 Å 또는 1350 내지 1500 Å 범위일 수 있다. 도핑층 및 비도핑층의 두께를 상기 범위로 조절함으로써, 유기전자소자가 지나치게 두꺼워지는 것을 방지하면서, 우수한 발광효율을 구현할 수 있다. In addition, the total thickness of the structure in which the doped layer and the undoped layer formed between the first electrode and the light emitting layer is repeated may range from 500 to 3000 m 3. As an example, the total thickness of the structure in which the doped and undoped layers are repeated is 700 to 2000 mm 3, 1000 to 1600 mm 3, 1000 to 1300 mm 3, 1400 to 2100 mm 1300 to 2000 mm 1300-1600 mm or 1350 mm. To 1500 ms. By adjusting the thicknesses of the doped layer and the undoped layer in the above range, it is possible to implement excellent luminous efficiency while preventing the organic electronic device from becoming too thick.
앞서 언급한 도핑층 및 비도핑층의 두께는 특별히 제한되지 않으며, 예를 들어, 정공 수송성 화합물 및 P형 도펀트를 포함하는 도핑층의 두께는 50 Å 내지 400 Å, 60 Å 내지 300 Å, 150 Å 내지 350 Å 또는 80 Å 내지 120 Å일 수 있다. 도핑층의 두께를 상기 범위로 조절함으로써, 도핑 효과를 충분히 구현하고, 동시에 과도한 누설 전류의 발생을 방지할 수 있다. 비도핑층의 두께는 200 Å 내지 2000 Å, 300 Å 내지 600 Å, 450 Å 내지 550 Å, 600 Å 내지 1800 Å 또는 700 Å 내지 1500 Å 범위일 수 있다. 상기 도핑층과 비도핑층이 적층되는 구조에서, 도핑층의 두께에 비해 비도핑층의 두께를 상대적으로 두껍게 형성할 수 있으며, 이를 통해 소자의 전력효율 및 수명을 향상시킬 수 있음을 다양한 실험을 통해 확인하였다.The thickness of the above-mentioned doped layer and the undoped layer is not particularly limited. For example, the thickness of the doped layer including the hole transporting compound and the P-type dopant may be 50 kPa to 400 kPa, 60 kPa to 300 kPa, 150 kPa. To 350 kPa or 80 kPa to 120 kPa. By adjusting the thickness of the doping layer in the above range, it is possible to sufficiently realize the doping effect, and at the same time prevent the occurrence of excessive leakage current. The thickness of the undoped layer may range from 200 kPa to 2000 kPa, 300 kPa to 600 kPa, 450 kPa to 550 kPa, 600 kPa to 1800 kPa or 700 kPa to 1500 kPa. In the structure in which the doped layer and the undoped layer are stacked, the thickness of the undoped layer may be formed relatively thicker than the thickness of the doped layer, and various experiments may be performed to improve the power efficiency and lifespan of the device. It was confirmed through.
하나의 예로서, 제1 전극과 발광층 사이에는, 정공 수송성 화합물 및 P형 도펀트를 포함하는 도핑층; 및 상기 정공 수송성 화합물을 포함하는 비도핑층이 2회 반복되는 구조일 수 있다. 이 경우에는, 상기 제1 전극과 발광층 사이에는, 50 Å 내지 200 Å 두께의 제1 도핑층; 300 Å 내지 650 Å 두께의 제1 비도핑층; 50 Å 내지 200 Å 두께의 제2 도핑층; 및 300 Å 내지 1500 Å 두께의 제2 비도핑층이 순차 적층된 구조가 형성될 수 있다. 상기 도핑층과 비도핑층이 2회 반복 적층되는 구조에서, 제1 및 제2 도핑층의 두께는 동일 내지 유사한 범위로 조절하는 것이 바람직하다. 제1 및 제2 비도핑층의 두께는 도핑층에 비해 두껍게 형성할 수 있다. 또한, 제1 비도핑층에 비해 제2 비도핑층의 두께를 상대적으로 두껍게 형성할 수 있다. As one example, between the first electrode and the light emitting layer, a doping layer comprising a hole transport compound and a P-type dopant; And a non-doped layer including the hole transporting compound is repeated twice. In this case, between the first electrode and the light emitting layer, a first doped layer having a thickness of 50 kPa to 200 kPa; A first undoped layer having a thickness of 300 kPa to 650 kPa; A second doped layer having a thickness of 50 kV to 200 kV; And a structure in which a second undoped layer having a thickness of 300 kV to 1500 kV is sequentially stacked. In the structure in which the doped layer and the undoped layer are repeatedly stacked twice, the thicknesses of the first and second doped layers are preferably adjusted to the same to similar ranges. The thickness of the first and second undoped layers may be thicker than that of the doped layer. In addition, the thickness of the second undoped layer may be relatively thicker than that of the first undoped layer.
하나의 예로서, 발광층은 400 nm 내지 500 nm 범위에서 발광피크를 가지며, 제1 전극과 발광층 사이에는, 80 Å 내지 120 Å 두께의 제1 도핑층; 450 Å 내지 550 Å 두께의 제1 비도핑층; 80 Å 내지 120 Å 두께의 제2 도핑층; 및 600 Å 내지 800 Å 두께의 제2 비도핑층을 포함할 수 있다. As one example, the light emitting layer has a light emitting peak in the range of 400 nm to 500 nm, and between the first electrode and the light emitting layer, a first doped layer having a thickness of 80 kPa to 120 kPa; A first undoped layer having a thickness of 450 kPa to 550 kPa; A second doped layer having a thickness of 80 kV to 120 kV; And a second undoped layer having a thickness of 600 kPa to 800 kPa.
또 다른 예로서, 발광층은 500 nm 내지 600 nm 범위에서 발광피크를 가지며, 제1 전극과 발광층 사이에는, 80 Å 내지 120 Å 두께의 제1 도핑층; 450 Å 내지 550 Å 두께의 제1 비도핑층; 80 Å 내지 120 Å 두께의 제2 도핑층; 및 850 Å 내지 1200 Å 두께의 제2 비도핑층을 포함할 수 있다. As another example, the light emitting layer has a light emitting peak in the range of 500 nm to 600 nm, and between the first electrode and the light emitting layer, a first doped layer having a thickness of 80 kPa to 120 kPa; A first undoped layer having a thickness of 450 kPa to 550 kPa; A second doped layer having a thickness of 80 kV to 120 kV; And a second undoped layer having a thickness of 850 kV to 1200 kV.
또 다른 예로서, 발광층은 600 nm 내지 700 nm 범위에서 발광피크를 가지며, 제1 전극과 발광층 사이에는, 80 Å 내지 120 Å 두께의 제1 도핑층; 450 Å 내지 550 Å 두께의 제1 비도핑층; 80 Å 내지 120 Å 두께의 제2 도핑층; 및 1300 Å 내지 1600 Å 두께의 제2 비도핑층을 포함할 수 있다.As another example, the light emitting layer has a light emitting peak in the range of 600 nm to 700 nm, and between the first electrode and the light emitting layer, a first doped layer having a thickness of 80 kPa to 120 kPa; A first undoped layer having a thickness of 450 kPa to 550 kPa; A second doped layer having a thickness of 80 kV to 120 kV; And a second undoped layer having a thickness of 1300 kPa to 1600 kPa.
또 다른 하나의 예로서, 본 발명에 따른 유기전자소자는 도핑층 및 비도핑층의 반복 구조와 발광층 사이에 형성된 전자 저지층을 더 포함할 수 있다. 상기 전자 저지층을 형성하는 물질은 당업계에서 상업적으로 입수 가능한 다양한 물질이 제한 없이 사용할 수 있다. 상기 전자 저지층은 제2 전극에서 유입된 전자가 발광층을 지나 정공 수송성 화합물 쪽으로 주입되는 것을 방지하는 역할을 수행할 수 있다. 또한, 발광층의 공진 길이에 맞게 전자 저지층의 두께를 조절하면 발광 효율을 보다 증대시킬 수 있다. 나아가, 전자 저지층의 두께는 여기자가 발광층의 중앙부에서 형성될 수 있도록 조절할 수 있다. As another example, the organic electronic device according to the present invention may further include an electron blocking layer formed between the light emitting layer and the repeating structure of the doped and undoped layers. As the material for forming the electron blocking layer, various materials commercially available in the art may be used without limitation. The electron blocking layer may serve to prevent electrons introduced from the second electrode from being injected into the hole transporting compound through the light emitting layer. In addition, by adjusting the thickness of the electron blocking layer to match the resonance length of the light emitting layer, the light emission efficiency may be further increased. Furthermore, the thickness of the electron blocking layer can be adjusted so that the excitons can be formed in the central portion of the light emitting layer.
본 발명에 따른 유기전자소자를 포함하는 장치는 특별히 제한되지 않으며, 예를 들어, 조명기기, 디스플레이 장치, 유기태양전지 또는 유기박막트랜지스터 등이 포함된다. The device including the organic electronic device according to the present invention is not particularly limited and includes, for example, a lighting device, a display device, an organic solar cell or an organic thin film transistor.
도 1 내지 6에는 각각 본 발명의 하나의 실시예에 따른 소자의 적층 구조를 도시하였다.1 to 6 illustrate the stacked structure of devices according to one embodiment of the present invention, respectively.
도 1을 참조하면, ITO 전극(10) 상에 정공 수송성 화합물과 P형 도펀트를 포함하는 도핑층(20)을 100 Å의 두께로 적층하였다. 상기 도핑층(20)은 정공 수송성 화합물에 P형 도펀트를 도핑하여 제조한다. 상기 P형 도펀트의 함량은 도핑층(20) 100 중량부를 기준으로, 0.3 내지 20 중량부 범위에서 다양하게 조절할 수 있다. 도핑층(20) 상에 상기 정공 수송성 화합물을 이용하여 500 Å 두께의 비도핑층(30)을 적층하였다. 그런 다음, 발광층(40), 전자 수송층(50), 전자 주입층(60) 및 알루미늄 전극(70)을 순차 적층하여 소자를 형성할 수 있다. Referring to FIG. 1, a doping layer 20 including a hole transporting compound and a P-type dopant was laminated on the ITO electrode 10 to a thickness of 100 GPa. The doping layer 20 is prepared by doping a P-type dopant to a hole transporting compound. The content of the P-type dopant may be variously adjusted in a range of 0.3 to 20 parts by weight based on 100 parts by weight of the doping layer 20. The undoped layer 30 having a thickness of 500 Å was laminated on the doped layer 20 using the hole transporting compound. Thereafter, the light emitting layer 40, the electron transport layer 50, the electron injection layer 60, and the aluminum electrode 70 may be sequentially stacked to form a device.
도 2에는, ITO 전극(10) 상에 정공 수송성 화합물과 P형 도펀트를 포함하는 도핑층(20)을 100 Å의 두께로 적층하고, 상기 정공 수송성 화합물을 포함하는 비도핑층(30)을 500 Å의 두께로 적층하였다. 그런 다음, 도핑층(21) 및 비도핑층(31)을 동일한 조성으로 한번 더 적층하였다. 도핑층 및 비도핑층의 반복 구조(20, 21, 30, 31) 상에 발광층(40), 전자 수송층(50), 전자 주입층(60) 및 알루미늄 전극(70)을 순차 적층하였다.In FIG. 2, a doping layer 20 including a hole transporting compound and a P-type dopant is laminated on the ITO electrode 10 to a thickness of 100 GPa, and the undoped layer 30 including the hole transporting compound is 500. It laminated | stacked in the thickness of Å. Then, the doped layer 21 and the undoped layer 31 were laminated once more with the same composition. The light emitting layer 40, the electron transporting layer 50, the electron injection layer 60, and the aluminum electrode 70 were sequentially stacked on the repeating structures 20, 21, 30, and 31 of the doped and undoped layers.
도 3에는, ITO 전극(10) 상에 정공 수송성 화합물과 P형 도펀트를 포함하는 도핑층(20, 21, 22) 및 비도핑층(30, 31, 32)을 각각 3회 반복 적층한 구조를 도시하였다. 그런 다음, 도핑층 및 비도핑층의 반복 구조(20, 21, 22, 30, 31, 32) 상에 발광층(40), 전자 수송층(50), 전자 주입층(60) 및 알루미늄 전극(70)을 순차 적층하였다.3 illustrates a structure in which the doped layers 20, 21, 22 and the undoped layers 30, 31, and 32 each containing the hole transporting compound and the P-type dopant are repeatedly stacked three times on the ITO electrode 10. Shown. Then, the light emitting layer 40, the electron transporting layer 50, the electron injection layer 60 and the aluminum electrode 70 on the repeating structures 20, 21, 22, 30, 31, and 32 of the doped and undoped layers. Were sequentially stacked.
도 4에는, ITO 전극(10) 상에 중간층(80)을 10 Å의 두께로 적층하였다. 적층된 중간층(80) 상에 정공 수송성 화합물과 P형 도펀트를 포함하는 도핑층(20)을 100 Å의 두께로 적층하였다. 상기 P형 도펀트의 함량은 도핑층(20) 100 중량부를 기준으로, 0.3 내지 20 중량부 범위에서 조절하였다. 도핑층(20) 상에 상기 정공 수송성 화합물을 이용하여 500 Å 두께의 비도핑층(30)을 적층하였다. 그런 다음, 발광층(40), 전자 수송층(50), 전자 주입층(60) 및 알루미늄 전극(70)을 순차 적층하였다. 도 5 및 6은 각각 도 2 및 3의 적층구조에 도 4에서 언급된 중간층(80)이 추가로 형성된 구조이다. In FIG. 4, the intermediate | middle layer 80 was laminated | stacked on the ITO electrode 10 in thickness of 10 microseconds. The doped layer 20 including the hole transporting compound and the P-type dopant was laminated on the stacked intermediate layer 80 to a thickness of 100 GPa. The content of the P-type dopant was adjusted in the range of 0.3 to 20 parts by weight based on 100 parts by weight of the doping layer 20. The undoped layer 30 having a thickness of 500 Å was laminated on the doped layer 20 using the hole transporting compound. Then, the light emitting layer 40, the electron transport layer 50, the electron injection layer 60 and the aluminum electrode 70 were sequentially stacked. 5 and 6 are structures in which the intermediate layer 80 mentioned in FIG. 4 is additionally formed in the laminated structure of FIGS. 2 and 3, respectively.
도 7에는, ITO 전극(10) 상에 정공 수송성 화합물과 P형 도펀트를 포함하는 제1 도핑층(20)을 100 Å의 두께로 적층하고, 정공 수송성 화합물을 포함하는 제1 비도핑층(30)을 500 Å의 두께로 적층하였다. 그런 다음, 제2 도핑층(21)을 100 Å의 두께로 적층하였다. 제2 비도핑층(31)은 발광층(41, 42, 43)의 공진거리를 조절하기 위해서, 대략 700 Å 내지 1400 Å 범위에서 다양한 두께를 가질 수 있다. 예를 들어, 제2 비도핑층(31)의 두께는 블루 발광 영역(41)에서는 700 Å, 그린 발광 영역(42)는 1,000 Å 또는 레드 발광 영역(43)에서는 1,400 Å의 두께로 각각 형성될 수 있다. 그런 다음, 발광층(41, 42, 43) 상에 전자 수송층(50), 전자 주입층(60) 및 알루미늄 전극(70)을 순차 적층하였다.In FIG. 7, a first doped layer 30 including a hole transporting compound and a P-type dopant is laminated on the ITO electrode 10 to a thickness of 100 GPa, and the first undoped layer 30 including the hole transporting compound. ) Was laminated to a thickness of 500 mm 3. Then, the second doped layer 21 was laminated to a thickness of 100 kPa. The second undoped layer 31 may have various thicknesses in the range of about 700 kW to 1400 kW, in order to adjust the resonance distances of the light emitting layers 41, 42, and 43. For example, the thickness of the second undoped layer 31 may be 700 Å in the blue light emitting area 41, and the green light emitting area 42 may be 1,000 Å or 1,400 두께 in the red light emitting area 43, respectively. Can be. Then, the electron transporting layer 50, the electron injection layer 60 and the aluminum electrode 70 were sequentially stacked on the light emitting layers 41, 42, 43.
또한, 본 발명은 앞서 설명한 유기전자소자를 제조하는 방법을 제공한다.In addition, the present invention provides a method for manufacturing the organic electronic device described above.
하나의 실시예에서, 상기 제조방법은, In one embodiment, the manufacturing method,
제1 전극 상에 정공 수송성 화합물 및 P형 도펀트를 포함하는 도핑층을 형성하는 단계; 및 Forming a doping layer comprising a hole transporting compound and a P-type dopant on the first electrode; And
형성된 도핑층 위에 정공 수송성 화합물을 포함하는 비도핑층을 형성하는 단계를 포함할 수 있다.The method may include forming an undoped layer including a hole transporting compound on the formed doped layer.
하나의 예로서, 상기 도핑층을 형성하는 단계 및 비도핑층을 형성하는 단계 중 어느 하나 이상은, 증착 공정을 통해 수행할 수 있다. 본 발명에서 상기 증착 공정은 예를 들어, 진공증기증착 공정을 이용할 수 있다. 상기 증착 공정은 특별한 제한 없이 적용할 수 있으며, 당해 기술분야에 알려진 다양한 증착 공정을 모두 포함한다. 또한, 본 발명은 증착 이외의 다양한 코팅 내지 필름 적층 방법을 이용하는 것을 제외하는 것은 아니다. As one example, at least one of forming the doped layer and forming the undoped layer may be performed through a deposition process. In the present invention, the deposition process may use, for example, a vacuum vapor deposition process. The deposition process can be applied without particular limitation, and includes all of the various deposition processes known in the art. In addition, the present invention does not exclude the use of various coating or film lamination methods other than vapor deposition.
또한, 상기 도핑층을 형성하는 단계 및 비도핑층을 형성하는 단계는, 증착 공정을 통해 동일 챔버 내에서 반복적으로 이루어질 수 있다. 예를 들어, 상기 도핑층을 형성하는 단계는, 정공 수송성 화합물과 P형 도펀트의 동시 증착을 통해 수행할 수 있다. 또한, 비도핑층은 정공 수송성 화합물을 증착하여 수행할 수 있으며, 이러한 도핑층 및 비도핑층을 형성하는 과정은 모두 하나의 챔버 내에서 수행할 수 있다. In addition, the forming of the doped layer and the forming of the undoped layer may be repeatedly performed in the same chamber through a deposition process. For example, the forming of the doping layer may be performed through simultaneous deposition of the hole transporting compound and the P-type dopant. In addition, the undoped layer may be performed by depositing a hole transporting compound, and the process of forming the doped layer and the undoped layer may be performed in one chamber.
하나의 예로서, 도핑층을 형성하는 단계는, 정공 수송성 화합물은 1 내지 5 Å/sec의 속도로 증착하고, 동시에 P형 도펀트는 0.005 내지 0.3 Å/sec의 속도로 증착하는 과정을 포함할 수 있다. 예를 들어, 도핑층을 형성하는 단계는, 정공 수송성 화합물은 1.5 Å/sec 내지 2.5 Å/sec의 속도로 증착하고, 동시에 P형 도펀트는 0.01 Å/sec 내지 0.1 Å/sec의 속도로 증착하는 과정을 포함할 수 있다. 또한, 상기 비도핑층을 형성하는 단계는, 특별히 제한되는 것은 아니며, 예를 들어, 상기 정공 수송성 화합물은 1 Å/sec 내지 5 Å/sec의 속도로 증착하거나, 1.5 Å/sec 내지 2.5 Å/sec의 속도로 증착할 수 있다. As one example, forming the doped layer may include depositing a hole transport compound at a rate of 1 to 5 kW / sec, and simultaneously depositing a P-type dopant at a rate of 0.005 to 0.3 kW / sec. have. For example, the step of forming the doping layer, the hole transport compound is deposited at a rate of 1.5 kW / sec to 2.5 kW / sec, while the P-type dopant is deposited at a rate of 0.01 kW / sec to 0.1 kW / sec Process may be included. In addition, the step of forming the undoped layer is not particularly limited, and for example, the hole transporting compound may be deposited at a rate of 1 Å / sec to 5 sec / sec, or 1.5 Å / sec to 2.5 Å / Can be deposited at a rate of sec.
본 발명에 따른 제조방법의 하나의 예로서, 도핑층을 형성하는 단계 이전에, 도핑층에 포함되는 P형 도펀트와 실질적으로 동일한 P형 도펀트용 화합물로 중간층을 형성하는 단계를 더 포함할 수 있다. 이와 달리, 상기 P형 도펀트용 화합물은, 상기 P형 도펀트와 서로 다른 구조를 갖는 화합물일 수 있다.As an example of the manufacturing method according to the present invention, before forming the doping layer, the method may further include forming an intermediate layer with a compound for a P-type dopant substantially the same as the P-type dopant included in the doping layer. . In contrast, the compound for the P-type dopant may be a compound having a different structure from the P-type dopant.
도 8에는 본 발명의 하나의 실시예에 따른 제조방법의 모식도를 도시하였다. ITO층을 포함하는 기재(100)의 일면에 정공 수송성 화합물 증발원(200)과 P형 도펀트 물질 증발원(300)에서 각 성분들이 증발되어 기재(100)에 증착된다. 예를 들어, 정공 수송성 화합물은 1 Å/sec의 속도로 증착하고, P형 도펀트 물질은 0.05 Å/sec의 속도로 증착하여 도핑층을 형성할 수 있다. 그런 다음, 동일 챔버 내에서, P형 도펀트 물질 증발원(300)은 차단하고 정공 수송성 화합물 증발원(200)을 이용하여 비도핑층을 증착할 수 있다. 본 발명에서는, 위와 같은 도핑층 및 비도핑층을 형성하는 과정을 동일 챔버 내에서 반복 수행할 수 있다. 8 is a schematic view of a manufacturing method according to an embodiment of the present invention. Each component is evaporated from the hole transporting compound evaporation source 200 and the P-type dopant material evaporation source 300 on one surface of the substrate 100 including the ITO layer and deposited on the substrate 100. For example, the hole transporting compound may be deposited at a rate of 1 kW / sec, and the P-type dopant material may be deposited at a rate of 0.05 kW / sec to form a doped layer. Then, in the same chamber, the P-type dopant material evaporation source 300 may be blocked and the undoped layer may be deposited using the hole transporting compound evaporation source 200. In the present invention, the above-described process of forming the doped layer and the undoped layer can be repeatedly performed in the same chamber.
이하 실시예 등을 통해 본 발명을 더 상세히 설명한다. 본 발명의 실시예 등은 발명의 상세한 설명을 위한 것일 뿐, 이에 의해 권리범위를 제한하려는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. Embodiments of the present invention, etc. are for the purpose of detailed description of the invention, thereby not intended to limit the scope of the right.
실시예 1: 정공 수송성 화합물의 합성 Example 1 Synthesis of Hole Transporting Compound
단계 1) 중간체 A의 합성Step 1) Synthesis of Intermediate A
Figure PCTKR2012007030-appb-I000094
Figure PCTKR2012007030-appb-I000094
Figure PCTKR2012007030-appb-I000095
Figure PCTKR2012007030-appb-I000095
질소 분위기 하에서, 1L 3구 둥근 바닥 플라스크에 3-(4-브로모페닐)-9-페닐-9H-카바졸(3-(4-bromophenyl)-9-phenyl-9H-carbazole) 30g(0.0753mol), 4-클로로페닐보로닉 산(4-chlorophenylboronic acid) 12.9g(0.0828mol), 테트라히드로퓨란(THF, Tetrahydrofuran) 300㎖ 및 에탄올(EtOH, Ethanol) 150㎖를 넣고 30분 동안 교반하였다. 또한, 탄산칼륨(K2CO3) 41.84 g(0.3012 mol)을 물(H2O) 150㎖에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4, tetrakis(triphenylphosphine)palladium) 3.48g(0.0030mol)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 3시간 동안 환류(reflux)시킨 다음, 실온으로 냉각하였다. 상기 반응 혼합물에서 생성된 침전물을 여과한 후, 에틸 아세테이트(EA, ethyl acetate) 900㎖, 메탄올(MeOH, methanol) 300㎖ 및 증류수 200㎖를 사용하여 순차적으로 세척한 다음, 건조시킴으로써 흰색의 고체인 중간체 A를 27.7g 수득하였다.Under a nitrogen atmosphere, 30 g (0.0753 mol) of 3- (4-bromophenyl) -9-phenyl-9H-carbazole in a 1 L three-necked round bottom flask ), 4-chlorophenylboronic acid (4-chlorophenylboronic acid) 12.9g (0.0828mol), tetrahydrofuran (THF, Tetrahydrofuran) 300ml and 150ml ethanol (EtOH, Ethanol) was added and stirred for 30 minutes. In addition, 41.84 g (0.3012 mol) of potassium carbonate (K 2 CO 3 ) was dissolved in 150 mL of water (H 2 O), and then added to the 1 L three neck round bottom flask. Subsequently, 3.48 g (0.0030 mol) of tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 , tetrakis (triphenylphosphine) palladium) were added to the 1 L three-necked round bottom flask, and the light was blocked for 3 hours. Reflux and then cooled to room temperature. The precipitate produced in the reaction mixture was filtered, washed sequentially with 900 ml of ethyl acetate (EA, ethyl acetate), 300 ml of methanol (MeOH, methanol), and 200 ml of distilled water, and then dried to obtain a white solid. 27.7g of intermediate A was obtained.
수율: 85.5%Yield: 85.5%
MALDI-TOF: m/z=429.0116 (C30H20ClN = 429.10) MALDI-TOF: m / z = 429.0116 (C 30 H 20 ClN = 429.10)
1H-NMR(DMSO-d6, 500 MHz) δ: 8.67~8.66 (s, 1H), 8.39~8.37 (d, 1H), 7.92~7.91 (d, 2H), 7.83~7.78 (m, 5H), 7.73~7.66 (m, 4H), 7.58~7.54 (m, 3H), 7.47~7.45 (m, 2H), 7.41~7.39 (d, 1H), 7.34~7.31 (t, 1H) 1 H-NMR (DMSO-d 6 , 500 MHz) δ: 8.67 to 8.66 (s, 1H), 8.39 to 8.37 (d, 1H), 7.92 to 7.91 (d, 2H), 7.83 to 7.78 (m, 5H) , 7.73 ~ 7.66 (m, 4H), 7.58 ~ 7.54 (m, 3H), 7.47 ~ 7.45 (m, 2H), 7.41 ~ 7.39 (d, 1H), 7.34 ~ 7.31 (t, 1H)
단계 2) 중간체 B의 합성Step 2) Synthesis of Intermediate B
Figure PCTKR2012007030-appb-I000096
Figure PCTKR2012007030-appb-I000096
Figure PCTKR2012007030-appb-I000097
Figure PCTKR2012007030-appb-I000097
질소 분위기 하에서, 1L 3구 둥근 바닥 플라스크에 4-브로모바이페닐(4-bromobiphenyl) 100g(0.4289mol), 4-아미노비페닐(4-aminobiphenyl) 72.6g(0.4289mol), 소듐 tert-부톡시드(NaOt-Bu, sodium tert-butoxide) 41.2g(0.4289mol), 트리스(디벤질리덴아세톤)디팔라듐(tris(dibenzylideneaceton)dipalladium 3.9g(0.0042mol) 및 톨루엔 500㎖를 넣고 30분 동안 교반하였다. 이어서, 트리-tert-부틸포스핀(tri-tert-butylphosphine, 헥산에 10 중량%로 용해된 상태) 20.7㎖(0.0857mol)를 상기 1L 3구 둥근 바닥 플라스크에 첨가하고, 2시간 동안 환류 (reflux)시킨 후 실온으로 냉각하였다. 상기 반응 혼합물에서 생성된 침전물을 여과한 후, 메탄올(methanol) 1L로 세척한 다음, 건조시킴으로써 상아색의 고체인 중간체 B를 99.27g 수득하였다. In a nitrogen atmosphere, in a 1 L three necked round bottom flask, 100 g (0.4289 mol) of 4-bromobiphenyl, 72.6 g (0.4289 mol) of 4-aminobiphenyl, sodium tert-butoxide ( 41.2 g (0.4289 mol) of NaOt-Bu, sodium tert-butoxide), 3.9 g (0.0042 mol) of tris (dibenzylideneaceton) dipalladium and 500 ml of toluene were added and stirred for 30 minutes. , 20.7 mL (0.0857 mol) of tri-tert-butylphosphine (dissolved in hexane at 10% by weight) was added to the 1 L three-necked round bottom flask, and reflux for 2 hours. The precipitate produced in the reaction mixture was filtered, washed with 1 L of methanol and dried to obtain 99.27 g of intermediate B as an ivory solid.
수율: 97.3%Yield: 97.3%
MALDI-TOF: m/z= 321.0799 (C24H19N = 312.20)MALDI-TOF: m / z = 321.0799 (C 24 H 19 N = 312.20)
1H-NMR(DMSO-d6, 500 MHz) δ: 8.47 (s, 1H), 7.63~7.57 (d, 8H), 7.44~7.41 (t, 4H), 7.30~7.27 (t, 2H), 7.22~7.20 (d, 4H) 1 H-NMR (DMSO-d 6 , 500 MHz) δ: 8.47 (s, 1H), 7.63 to 7.57 (d, 8H), 7.44 to 7.41 (t, 4H), 7.30 to 7.27 (t, 2H), 7.22 ~ 7.20 (d, 4H)
단계 3) 화합물 1의 합성Step 3) Synthesis of Compound 1
Figure PCTKR2012007030-appb-I000098
Figure PCTKR2012007030-appb-I000098
Figure PCTKR2012007030-appb-I000099
Figure PCTKR2012007030-appb-I000099
질소 분위기 하에서, 250㎖ 3구 둥근 바닥 플라스크에 상기 중간체 A 6g(0.0134mol), 상기 중간체 B 4.9g(0.0153mol), 소듐 tert-부톡시드(NaOt-Bu, sodium tert-butoxide) 1.6g(0.0167mol), 팔라듐 아세테이트(Pd(OAc)2, palladium acetate) 0.06g(0.0002mol) 및 o-자일렌(o-xylene) 30㎖를 넣고 10분 동안 교반하였다. 이어서 트리-tert-부틸포스핀(tri-tert-butylphosphine, 자일렌에 10 중량부로 용해된 상태) 0.65㎖(0.0026mol)를 첨가하고 3시간 동안 환류(reflux)시킨 후 실온으로 냉각하였다. 그 후, 반응 혼합물에 THF 90㎖를 넣어 20분간 교반하였으며, 반응 혼합물을 메탄올 500㎖에 부어 침전시키고, 메탄올로 세척하며 여과한 후 건조하여, 흰색 고체 화합물 1을 8.7g 수득하였다. Under a nitrogen atmosphere, 6 g (0.0134 mol) of the intermediate A, 4.9 g (0.0153 mol) of the intermediate B, 1.6 g (0.0Ot-Bu, sodium tert-butoxide) in a 250 ml three-necked round bottom flask mol), palladium acetate (Pd (OAc) 2 , palladium acetate) 0.06g (0.0002mol) and 30 ml of o-xylene were added and stirred for 10 minutes. Subsequently, 0.65 ml (0.0026 mol) of tri-tert-butylphosphine (dissolved at 10 parts by weight in xylene) was added, refluxed for 3 hours, and then cooled to room temperature. Thereafter, 90 ml of THF was added to the reaction mixture, which was stirred for 20 minutes. The reaction mixture was poured into 500 ml of methanol, precipitated, washed with methanol, filtered, and dried to obtain 8.7 g of a white solid compound 1.
수율: 87 %Yield: 87%
MALDI-TOF: m/z=714.13 (C54H38N2=714.30)MALDI-TOF: m / z = 714.13 (C 54 H 38 N 2 = 714.30)
1H-NMR(DMSO-d6, 500 MHz) δ: 8.66 (s, 1H), 8.39~8.38 (d, 1H), 7.91~7.89 (d, 2H), 7.83~7.67 (m, 19H), 7.58~7.19 (m, 16H) 1 H-NMR (DMSO-d 6 , 500 MHz) δ: 8.66 (s, 1H), 8.39 to 8.38 (d, 1H), 7.91 to 7.89 (d, 2H), 7.83 to 7.57 (m, 19H), 7.58 ~ 7.19 (m, 16H)
실시예 2: 정공 수송성 화합물의 합성 Example 2 Synthesis of Hole Transporting Compound
Figure PCTKR2012007030-appb-I000100
Figure PCTKR2012007030-appb-I000100
Figure PCTKR2012007030-appb-I000101
Figure PCTKR2012007030-appb-I000101
질소 분위기 하에서, 250㎖ 3구 둥근 바닥 플라스크에 상기 중간체 A 12g(0.0279mol), 상기 중간체 C 9.07g(0.0307mol), 소듐 tert-부톡시드(NaOt-Bu, sodium tert-butoxide) 3.21g(0.0334mol), 팔라듐 아세테이트(Pd(OAc)2, palladium acetate) 0.12g(0.0005mol) 및 o-자일렌(o-xylene) 60㎖를 넣고 10분 동안 교반하였다. 이어서 트리-tert-부틸포스핀(tri-tert-butylphosphine, 자일렌에 10 중량부로 용해된 상태) 1.35㎖(0.0055mol)를 첨가하고 3시간 동안 환류(reflux)시킨 후 실온으로 냉각하였다. 반응 혼합물에 THF 180㎖를 넣어 20분간 교반하였으며, 반응 혼합물을 메탄올 500㎖에 부어 침전시키고, 메탄올로 세척하며 여과한 후 건조시켜 갈색 고체 화합물2를 18.2g 수득하였다. Under a nitrogen atmosphere, 12 g (0.0279 mol) of the intermediate A, 9.07 g (0.0307 mol) of the intermediate C, and 3.21 g of sodium tert-butoxide (NaOt-Bu, sodium tert-butoxide) in a 250 ml three-necked round bottom flask mol), palladium acetate (Pd (OAc) 2 , palladium acetate) 0.12g (0.0005mol) and 60ml of o-xylene were added and stirred for 10 minutes. Subsequently, 1.35 ml (0.0055 mol) of tri-tert-butylphosphine (dissolved at 10 parts by weight in xylene) was added, refluxed for 3 hours, and then cooled to room temperature. 180 ml of THF was added to the reaction mixture, which was stirred for 20 minutes. The reaction mixture was poured into 500 ml of methanol, precipitated, washed with methanol, filtered, and dried to yield 18.2 g of a brown solid compound 2.
수율: 95 %Yield: 95%
MALDI-TOF: m/z=688.24 (C52H36N2=688.29)MALDI-TOF: m / z = 688.24 (C 52 H 36 N 2 = 688.29)
1H-NMR(DMSO-d6, 500 MHz) δ: 8.63(s, 1H), 8.37~8.36(d, 1H), 8.05~8.04(d, 1H), 7.97~7.92(m, 2H), 7.86~7.84(d, 2H), 7.80~7.79(d, 1H), 7.68~7.76 (m, 4H), 7.65~7.52(m, 11H), 7.50~7.38 (m, 7H), 7.34~7.28 (m, 2H), 7.10~7.04 (m, 4H) 1 H-NMR (DMSO-d 6 , 500 MHz) δ: 8.63 (s, 1H), 8.37 to 8.36 (d, 1H), 8.05 to 8.04 (d, 1H), 7.97 to 7.82 (m, 2H), 7.86 ~ 7.84 (d, 2H), 7.80-7.79 (d, 1H), 7.68-7.72 (m, 4H), 7.65-7.52 (m, 11H), 7.50-7.38 (m, 7H), 7.34-7.28 (m, 2H), 7.10-7.04 (m, 4H)
실시예 3: 정공 수송성 화합물의 합성 Example 3 Synthesis of Hole Transporting Compound
Figure PCTKR2012007030-appb-I000102
Figure PCTKR2012007030-appb-I000102
Figure PCTKR2012007030-appb-I000103
Figure PCTKR2012007030-appb-I000103
질소 분위기 하에서, 250㎖ 3구 둥근 바닥 플라스크에 상기 중간체 A 10g(0.0232mol), 중간체 D 9.25g(0.0255mol), 소듐 tert-부톡시드(NaOt-Bu, sodium tert-butoxide) 2.68g(0.0279mol), 팔라듐 아세테이트(Pd(OAc)2, palladium acetate) 0.1g(0.0004mol) 및 o-자일렌(o-xylene) 50㎖를 넣고 10분 동안 교반하였다. 이어서 트리-tert-부틸포스핀(tri-tert-butylphosphine, 자일렌에 10 중량부로 용해된 상태) 1.12㎖(0.0046mol)를 첨가하고 3시간 동안 환류(reflux)시킨 후 실온으로 냉각하였다. 반응 혼합물에 THF 150㎖를 넣어 20분간 교반하였으며, 반응 혼합물을 메탄올 800㎖에 부어 침전시키고, 메탄올로 세척하며 여과한 후 건조시켜 회색 고체 화합물3을 17.2g 수득하였다. Under a nitrogen atmosphere, 10 g (0.0232 mol) of the intermediate A, 9.25 g (0.0255 mol) of the intermediate D, and 2.68 g (0.0279 mol) of sodium tert-butoxide (NaOt-Bu) in a 250 ml three-necked round bottom flask ), Palladium acetate (Pd (OAc) 2 , palladium acetate) 0.1g (0.0004mol) and 50ml of o-xylene (o-xylene) was added and stirred for 10 minutes. Subsequently, 1.12 ml (0.0046 mol) of tri-tert-butylphosphine (dissolved in 10 parts by weight of xylene) was added, refluxed for 3 hours, and then cooled to room temperature. 150 ml of THF was added to the reaction mixture, which was then stirred for 20 minutes. The reaction mixture was poured into 800 ml of methanol, precipitated, washed with methanol, filtered, and dried to obtain 17.2 g of a gray solid compound 3.
수율: 98 %Yield: 98%
MALDI-TOF: m/z=754.03 (C57H42N2=754.33)MALDI-TOF: m / z = 754.03 (C 57 H 42 N 2 = 754.33)
1H-NMR(DMSO-d6, 500 MHz) δ: 8.62 (s, 1H), 8.36~8.34 (d, 1H), 7.83~7.81 (d, 2H), 7.74~7.71 (m, 5H), 7.68~7.59 (m, 10H), 7.54~7.48 (m, 2H), 7.44~7.36 (m, 5H), 7.34~7.24 (m, 5H), 7.15~7.10 (d, 4H), 7.04~7.0 (d, 1H), 1.36 (s, 6H) 1 H-NMR (DMSO-d 6 , 500 MHz) δ: 8.62 (s, 1H), 8.36-8.34 (d, 1H), 7.83-7.81 (d, 2H), 7.74-7.71 (m, 5H), 7.68 ~ 7.59 (m, 10H), 7.54 ~ 7.48 (m, 2H), 7.44 ~ 7.36 (m, 5H), 7.34 ~ 7.24 (m, 5H), 7.15 ~ 7.10 (d, 4H), 7.04 ~ 7.0 (d, 1H), 1.36 (s, 6H)
실시예 4: 정공 수송성 화합물의 합성 Example 4 Synthesis of Hole Transporting Compound
Figure PCTKR2012007030-appb-I000104
Figure PCTKR2012007030-appb-I000104
Figure PCTKR2012007030-appb-I000105
Figure PCTKR2012007030-appb-I000105
질소 분위기 하에서, 250㎖ 3구 둥근 바닥 플라스크에 상기 중간체 A 9g(0.0209mol), 상기 중간체 E 5.64g(0.0230mol), 소듐 tert-부톡시드(NaOt-Bu, sodium tert-butoxide) 2.41g(0.0251mol), 팔라듐 아세테이트(Pd(OAc)2, palladium acetate) 0.09g(0.0004mol) 및 o-자일렌(o-xylene) 45㎖를 넣고 10분 동안 교반하였다. 이어서 트리-tert-부틸포스핀(tri-tert-butylphosphine, 자일렌에 10 중량부로 용해된 상태) 1.01㎖(0.0041mol)를 첨가하고 3시간 동안 환류(reflux)시킨 후 실온으로 냉각하였다. 반응 혼합물에 THF 135㎖를 넣어 20분간 교반하였으며, 반응 혼합물을 메탄올 500㎖에 부어 침전시키고, 메탄올로 세척하며 여과 후 건조시켜 회색 고체 화합물4를 12.6g 수득하였다. In a nitrogen atmosphere, a 250 ml three necked round bottom flask was placed in a 250 ml three necked round bottom flask with 9 g (0.0209 mol) of Intermediate A, 5.64 g (0.0230 mol) of Intermediate E, and 2.41 g (0.0251 g of sodium tert-butoxide). mol), palladium acetate (Pd (OAc) 2 , palladium acetate) 0.09g (0.0004mol) and o-xylene (45ml) were added and stirred for 10 minutes. Subsequently, 1.01 ml (0.0041 mol) of tri-tert-butylphosphine (dissolved at 10 parts by weight in xylene) was added, refluxed for 3 hours, and then cooled to room temperature. 135 ml of THF was added to the reaction mixture, which was then stirred for 20 minutes. The reaction mixture was poured into 500 ml of methanol, precipitated, washed with methanol, filtered, and dried to obtain 12.6 g of a gray solid compound 4.
수율: 94 %Yield: 94%
MALDI-TOF: m/z=638.24 (C48H34N2=638.27)MALDI-TOF: m / z = 638.24 (C 48 H 34 N 2 = 638.27)
1H-NMR(DMSO-d6, 500 MHz) δ: 8.65 (s, 1H), 8.38~8.37 (d, 1H), 7.89~7.87 (d, 2H), 7.82~7.77 (m, 3H), 7.72~7.69 (m, 4H), 7.67~7.62 (m, 6H), 7.57~7.55 (t, 1H), 7.47~7.31 (m, 9H), 7.14~7.13 (m, 7H) 1 H-NMR (DMSO-d 6 , 500 MHz) δ: 8.65 (s, 1H), 8.38 to 8.37 (d, 1H), 7.89 to 7.87 (d, 2H), 7.82 to 7.77 (m, 3H), 7.72 ~ 7.69 (m, 4H), 7.67 ~ 7.62 (m, 6H), 7.57 ~ 7.55 (t, 1H), 7.47 ~ 7.31 (m, 9H), 7.14 ~ 7.13 (m, 7H)
실시예 5: 정공 수송성 화합물의 합성 Example 5 Synthesis of Hole Transporting Compound
Figure PCTKR2012007030-appb-I000106
Figure PCTKR2012007030-appb-I000106
Figure PCTKR2012007030-appb-I000107
Figure PCTKR2012007030-appb-I000107
질소 분위기 하에서, 250㎖ 3구 둥근 바닥 플라스크에 상기 중간체 A 10g(0.0232mol), 상기 중간체 F 8.83g(0.0255mol), 소듐 tert-부톡시드(NaOt-Bu, sodium tert-butoxide) 2.68g(0.0279mol), 팔라듐 아세테이트(Pd(OAc)2, palladium acetate) 0.1g(0.0004mol) 및 o-자일렌(o-xylene) 30㎖를 넣고 10분 동안 교반하였다. 이어서 트리-tert-부틸포스핀(tri-tert-butylphosphine, 자일렌에 10 중량%로 용해된 상태) 1.12㎖(0.0046mol)를 첨가하고 3시간 동안 환류(reflux)시킨 후 실온으로 냉각하였다. 반응 혼합물에 THF 100㎖를 넣어 20분간 교반하였으며, 반응 혼합물을 메탄올 500㎖에 부어 침전시키고, 메탄올로 세척하며 여과 후 건조시켜 갈색 고체 화합물5를 16.7g 수득하였다. Under a nitrogen atmosphere, 10 g (0.0232 mol) of the intermediate A, 8.83 g (0.0255 mol) of the intermediate F, and 2.68 g of sodium tert-butoxide (NaOt-Bu, sodium tert-butoxide) in a 250 ml three-necked round bottom flask mol), palladium acetate (Pd (OAc) 2 , palladium acetate) 0.1g (0.0004mol) and 30ml of o-xylene were added and stirred for 10 minutes. Subsequently, 1.12 ml (0.0046 mol) of tri-tert-butylphosphine (dissolved in xylene at 10% by weight) was added, refluxed for 3 hours, and then cooled to room temperature. 100 ml of THF was added to the reaction mixture, which was stirred for 20 minutes. The reaction mixture was poured into 500 ml of methanol, precipitated, washed with methanol, filtered and dried to obtain 16.7 g of a brown solid compound 5.
수율: 97 %Yield: 97%
MALDI-TOF: m/z=738.35 (C56H38N2=738.3)MALDI-TOF: m / z = 738.35 (C 56 H 38 N 2 = 738.3)
1H-NMR(DMSO-d6, 500 MHz) δ: 8.96~8.94 (d, 1H), 8.90~8.88 (d, 1H), 8.62 (s, 1H), 8.36~8.35 (d, 1H), 7.98~7.97 (d, 1H), 7.86~7.84 (d, 1H), 7.82~7.77 (m, 3H), 7.75~7.54 (m, 18H), 7.45~7.37 (m, 5H), 7.32~7.29 (m, 2H), 7.18~7.15 (m, 4H) 1 H-NMR (DMSO-d 6 , 500 MHz) δ: 8.96 to 8.94 (d, 1H), 8.90 to 8.88 (d, 1H), 8.62 (s, 1H), 8.36 to 8.35 (d, 1H), 7.98 ~ 7.97 (d, 1H), 7.86-7.84 (d, 1H), 7.82-7.77 (m, 3H), 7.75-7.54 (m, 18H), 7.45-7.37 (m, 5H), 7.32-7.29 (m, 2H), 7.18 ~ 7.15 (m, 4H)
앞서 합성한 실시예 1 내지 5의 화합물에 대해서 순도를 높이기 위한 정제를 실시하였다. 이러한 정제를 실시하는 이유는, 유기전자소자에 포함되는 유기재료의 순도가 소자의 발광특성에 영향을 주는 가장 큰 요인으로 불순물이 혼입되어 있으면, 그로 인해 소자의 소광현상이 발생되거나 효율 저하가 유발될 수 있기 때문이다. 상기 실시예 1 내지 5의 화합물에 함유된 불순물을 제거하기 위하여 고순도 승화 정제를 진행한 결과 99.95% 이상의 고순도 유기재료를 수득하였다.Purification was carried out to increase the purity of the compounds of Examples 1 to 5 synthesized above. The reason for such purification is that if impurities are mixed as the greatest factor affecting the light emitting characteristics of the device, the purity of the organic material included in the organic electronic device may cause quenching or deterioration of the device. Because it can be. High purity sublimation purification was performed to remove impurities contained in the compounds of Examples 1 to 5, thereby obtaining a high purity organic material of 99.95% or more.
실험예 1: 유기전자소자의 제작 및 전력효율 측정Experimental Example 1: Fabrication of organic electronic devices and measurement of power efficiency
ITO 전극상에 정공 수송 물질인 실시예 1에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하였다. 구체적으로는, ITO 전극 상에 실시예 1에서 제조한 정공 수송성 화합물(호스트)을 2 내지 3 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트를 0.002 내지 0.20 Å/sec의 속도로 증착하여 10 내지 500 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 1에서 제조한 물질을 500 Å 두께로 증착하여 비도핑층을 형성하였다. 다음으로, 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 6의 구조를 갖는 C545T를 2 중량부로 도핑한 발광층을 300 Å 두께로 형성하였다. 형성된 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.The material prepared in Example 1, a hole transport material, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, were deposited on the ITO electrode. Specifically, the hole transporting compound (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 2 to 3 kW / sec, and at the same time, a P-type dopant having a structure of Formula 4 was 0.002 to 0.20 kW / sec. It was deposited at a rate of to form a doped layer of 10 to 500 kPa thick. On the formed doped layer, the material prepared in Example 1 was deposited to a thickness of 500 Å to form an undoped layer. Next, a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed at a thickness of 300 kHz. BPhen having a structure of Chemical Formula 7 was formed to have a thickness of 200 위에 on the formed light emitting layer, and a material Liq having a structure of Chemical Formula 8 was formed to have a thickness of 10 Å. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
[화학식 4] [Formula 4]
Figure PCTKR2012007030-appb-I000108
Figure PCTKR2012007030-appb-I000108
[화학식 5][Formula 5]
Figure PCTKR2012007030-appb-I000109
Figure PCTKR2012007030-appb-I000109
[화학식 6][Formula 6]
Figure PCTKR2012007030-appb-I000110
Figure PCTKR2012007030-appb-I000110
[화학식 7][Formula 7]
Figure PCTKR2012007030-appb-I000111
Figure PCTKR2012007030-appb-I000111
[화학식 8][Formula 8]
Figure PCTKR2012007030-appb-I000112
Figure PCTKR2012007030-appb-I000112
본 실험예 1에서 제작한 유기전자소자에 대하여 전력효율을 측정하였다. 구체적으로는, 도핑층을 형성하는 과정에서, 정공 수송성 화합물 100 중량부를 기준으로 P형 도펀트의 함량을 0.1 내지 20 중량부 범위에서 조절하였고, 도핑층의 두께는 10 내지 500 Å까지 달리하여 적층하였다. 휘도가 500cd/m2일 때의 전력효율 값은 하기 표 4와 같으며, 단위는 lm/W이다. The power efficiency of the organic electronic device manufactured in Experimental Example 1 was measured. Specifically, in the process of forming the doping layer, based on 100 parts by weight of the hole-transporting compound, the content of the P-type dopant was adjusted in the range of 0.1 to 20 parts by weight, and the thickness of the doping layer was changed to 10 to 500 kPa. . The power efficiency value when the luminance is 500 cd / m 2 is shown in Table 4 below, and the unit is lm / W.
표 4
도핑층의 두께
P형 도펀트의 함량 10Å 50Å 100Å 200Å 400Å 500Å
0.1 중량부 1.4 2.1 3.3 4.1 2.7 2.1
0.3 중량부 2.9 4.8 5.7 6.5 4.2 2.8
0.5 중량부 3.4 5.2 6.1 7.2 4.9 3.5
1 중량부 3.8 5.6 6.8 8.2 5.4 4.8
3 중량부 4.2 7.2 10.4 9.6 7.6 6.3
5 중량부 4.6 8.2 12.2 10.4 6.6 5.2
10 중량부 4.0 7.0 9.6 8.2 6.4 5.8
20 중량부 3.4 5.0 6.2 5.6 3.8 3.2
Table 4
Thickness of doping layer
P-type dopant content 10Å 50Å 100Å 200Å 400 yen 500Å
0.1 parts by weight 1.4 2.1 3.3 4.1 2.7 2.1
0.3 parts by weight 2.9 4.8 5.7 6.5 4.2 2.8
0.5 parts by weight 3.4 5.2 6.1 7.2 4.9 3.5
1 part by weight 3.8 5.6 6.8 8.2 5.4 4.8
3 parts by weight 4.2 7.2 10.4 9.6 7.6 6.3
5 parts by weight 4.6 8.2 12.2 10.4 6.6 5.2
10 parts by weight 4.0 7.0 9.6 8.2 6.4 5.8
20 parts by weight 3.4 5.0 6.2 5.6 3.8 3.2
표 4의 결과로부터, 도핑층의 두께가 100 Å이고, P형 도펀트의 함량은 5 중량부인 경우에 전력효율이 가장 우수한 것을 알 수 있다.From the results in Table 4, it can be seen that the power efficiency is the best when the thickness of the doping layer is 100 kPa and the content of the P-type dopant is 5 parts by weight.
실험예 2: 유기전자소자의 제작 및 전력효율 측정Experimental Example 2: Fabrication of organic electronic devices and measurement of power efficiency
ITO 전극상에 정공 수송성 화합물인 실시예 3에서 제조한 정공 수송성 화합물(호스트)과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하였다. 구체적으로는, ITO 전극 상에 실시예 3에서 제조한 물질을 2 내지 3 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트를 0.002 내지 0.20 Å/sec의 속도로 증착하여 10 내지 500 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 3에서 제조한 물질을 500 Å의 두께로 증착하여 비도핑층을 형성하였다. 다음으로, 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 6의 구조를 갖는 C545T를 2 중량부로 도핑한 발광층을 300 Å 두께로 형성하였다. 형성된 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.On the ITO electrode, a hole transport compound (host) prepared in Example 3, which is a hole transport compound, and F4-TCNQ having a structure of Formula 4, which is a P-type dopant material, were deposited together. Specifically, the material prepared in Example 3 is deposited on the ITO electrode at a rate of 2 to 3 kW / sec, and at the same time, a P-type dopant having a structure of Formula 4 is deposited at a rate of 0.002 to 0.20 kW / sec. A doped layer of 10 to 500 mm 3 thickness was formed. The material prepared in Example 3 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. Next, a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed at a thickness of 300 kHz. BPhen having a structure of Chemical Formula 7 was formed to have a thickness of 200 위에 on the formed light emitting layer, and a material Liq having a structure of Chemical Formula 8 was formed to have a thickness of 10 Å. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
본 실험예 2에서 제작한 유기전자소자에 대하여 전력효율을 측정하였다. 구체적으로는, 도핑층을 형성하는 과정에서, 정공 수송성 화합물 100 중량부를 기준으로 P형 도펀트의 함량을 0.1 내지 20 중량부 범위에서 조절하였고, 도핑층의 두께는 10 내지 500 Å까지 달리하여 적층하였다. 휘도가 500cd/m2일 때의 전력효율 값은 하기 표 5와 같으며, 단위는 lm/W이다.The power efficiency of the organic electronic device manufactured in Experimental Example 2 was measured. Specifically, in the process of forming the doping layer, based on 100 parts by weight of the hole-transporting compound, the content of the P-type dopant was adjusted in the range of 0.1 to 20 parts by weight, and the thickness of the doping layer was changed to 10 to 500 kPa. . Power efficiency values when the luminance is 500 cd / m 2 are shown in Table 5 below, and the unit is lm / W.
표 5
도핑층의 두께
P형 도펀트의 함량 10Å 50Å 100Å 200Å 400Å 500Å
0.1 중량부 1.8 2.0 3.8 3.2 1.2 0.9
0.3 중량부 3.1 3.3 5.1 4.7 2.4 2.2
0.5 중량부 3.5 3.9 5.8 5.1 3.0 2.9
1 중량부 4.0 4.4 6.4 5.8 3.8 3.2
3 중량부 4.6 9.2 11.2 9.4 5.8 5.3
5 중량부 4.8 11.6 10.8 10.0 7.0 6.5
10 중량부 3.8 6.8 9.0 7.6 5.4 4.8
20 중량부 3.6 4.6 6.0 5.0 3.4 2.9
Table 5
Thickness of doping layer
P-type dopant content 10Å 50Å 100Å 200Å 400 yen 500Å
0.1 parts by weight 1.8 2.0 3.8 3.2 1.2 0.9
0.3 parts by weight 3.1 3.3 5.1 4.7 2.4 2.2
0.5 parts by weight 3.5 3.9 5.8 5.1 3.0 2.9
1 part by weight 4.0 4.4 6.4 5.8 3.8 3.2
3 parts by weight 4.6 9.2 11.2 9.4 5.8 5.3
5 parts by weight 4.8 11.6 10.8 10.0 7.0 6.5
10 parts by weight 3.8 6.8 9.0 7.6 5.4 4.8
20 parts by weight 3.6 4.6 6.0 5.0 3.4 2.9
표 5의 결과로부터, 도핑층의 두께는 50 Å이고, P형 도펀트의 함량은 5 중량부인 경우에 전력효율이 가장 우수한 것으로 나타났다.From the results in Table 5, the thickness of the doping layer was 50 kPa, the content of the P-type dopant was found to be the best power efficiency when 5 parts by weight.
실험예 3: 전력효율의 비교측정Experimental Example 3: Comparative Measurement of Power Efficiency
(1) ITO 전극상에 정공 수송성 화합물인 실시예 1에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 1에서 제조한 물질을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 1에서 제조한 물질을 500 Å의 두께로 증착하여 비도핑층을 형성하였다. 다음으로, 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 6의 구조를 갖는 C545T를 2 중량부로 도핑한 발광층을 300 Å 두께로 형성하였다.(1) A doping layer was formed by depositing together the material prepared in Example 1, which is a hole transporting compound, and F4-TCNQ having a structure of Formula 4, which is a P-type dopant material, on the ITO electrode. Specifically, the material prepared in Example 1 was deposited on the ITO electrode at a rate of 1 Å / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was deposited at a rate of 0.05 Å / sec. A doped layer of thickness 형성 was formed. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. Next, a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed at a thickness of 300 kHz.
형성된 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
(2) ITO 전극상에 정공 수송성 화합물인 실시예 1에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 1에서 제조한 물질(호스트)을 1Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 300 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 1에서 제조한 물질을 300 Å의 두께로 증착하여 비도핑층을 형성하였다. 그런 다음, 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 6의 구조를 갖는 C545T를 2 중량부로 도핑한 발광층을 300 Å 두께로 형성하였다.(2) A doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 kW / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was deposited at a speed of 0.05 kW / sec. To form a 300 Å thick doped layer. The material prepared in Example 1 was deposited to a thickness of 300 kPa on the formed doped layer to form an undoped layer. Then, a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed to a thickness of 300 kHz.
형성된 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
(3) ITO 전극상에 정공 수송성 화합물인 실시예 1에서 제조한 물질을 이용하여 300 Å 두께의 층을 형성하였다. 그런 다음, 실시예 1에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하였다. 구체적으로는, 형성된 적층 구조 상에 실시예 1에서 제조한 물질(호스트)을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 300 Å 두께의 층을 형성하였다. 그런 다음, 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 6의 구조를 갖는 C545T를 2 중량부로 도핑한 발광층을 300 Å 두께로 형성하였다.(3) A 300 TO thick layer was formed on the ITO electrode using the material prepared in Example 1 as a hole transporting compound. Then, the material prepared in Example 1 and F4-TCNQ having a structure of Formula 4 which is a P-type dopant material was deposited together. Specifically, the material (host) prepared in Example 1 was deposited on the formed laminated structure at a rate of 1 Å / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was 0.05 Å / sec. Was deposited to form a 300 mm thick layer. Then, a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed to a thickness of 300 kHz.
형성된 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
실험예 2에서 제작한 유기전자소자에 대하여 전력효율을 측정하였다. 휘도가 500cd/m2일 때의 전력효율 값은 하기 표 6과 같으며, 단위는 lm/W이다. The power efficiency of the organic electronic device manufactured in Experimental Example 2 was measured. The power efficiency values when the luminance is 500 cd / m 2 are shown in Table 6 below, and the unit is lm / W.
표 6
전력효율[lm/W]
1 12.2
2 8.6
3 6.2
Table 6
Power Efficiency [lm / W]
One 12.2
2 8.6
3 6.2
표 6에서 1 및 2의 소자 구조는 ITO 기판 상에 도펀트 함유 층(도핑층) 위에 도펀트 미함유층(비도핑층)을 형성한 구조이다. 이에 비해, 3의 소자 구조는 도펀트 미함유층이 ITO 기판 상에 바로 적층된 구조이다. 1 및 2는 3의 구조에 비해 현저히 우수한 전력효율을 나타내는 것을 알 수 있다. 특히 1의 구조는 3의 구조에 비해 2배 가까운 전력효율을 보이고 있다.In Table 6, the device structures 1 and 2 are structures in which a dopant-free layer (undoped layer) is formed on a dopant-containing layer (doped layer) on an ITO substrate. In comparison, the device structure of 3 is a structure in which a dopant free layer is directly stacked on an ITO substrate. It can be seen that 1 and 2 show a significantly better power efficiency than the structure of 3. In particular, the structure of 1 shows twice the power efficiency as the structure of 3.
실험예 4: 전력효율 및 소자수명 비교측정Experimental Example 4: Comparative Measurement of Power Efficiency and Device Life
ITO 전극상에 정공 수송성 화합물과 화학식 4의 구조를 갖는 도펀트인 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 정공 수송성 화합물을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 정공 수송성 화합물을 500 Å의 두께로 증착하여 비도핑층을 형성하였다. 그런 다음, 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 6의 구조를 갖는 C545T를 2 중량부로 도핑한 발광층을 300 Å 두께로 형성하였다.A dopant layer was formed by depositing a hole transporting compound and F4-TCNQ, which is a dopant having the structure of Formula 4, together on the ITO electrode. Specifically, a hole transporting compound is deposited on the ITO electrode at a rate of 1 kW / sec, and at the same time, a P-type dopant F4-TCNQ having a structure of Chemical Formula 4 is deposited at a rate of 0.05 kW / sec, thereby doping 100 kW thick. A layer was formed. A hole transporting compound was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. Then, a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed to a thickness of 300 kHz.
형성된 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
각 유기전자소자에서 사용된 정공 수송성 화합물의 종류는 표 7에 기재된 바와 같다. 각 제조된 유기전자소자에 대해 전력효율과 소자 수명을 측정하였으며, 그 결과는 표 7에 나타내었다. The kind of the hole transport compound used in each organic electronic device is as shown in Table 7. For each organic electronic device manufactured, power efficiency and device life were measured, and the results are shown in Table 7.
본 발명에서 유기전자소자의 수명 측정은 다음과 같은 과정을 거쳐 측정하였다. 제작된 유기전자소자를 질소 분위기의 글로브 박스 안에서 커버 글래스 가장자리에 UV 경화용 실런트를 디스펜싱한 후, 유기전자소자와 커버 글래스를 합지하고 UV 광을 조사하여 경화 과정을 거쳤다. 그런 다음, 85℃ 조건의 오븐에서 소자의 수명을 측정하였다. T75는 소자의 휘도가 초기 휘도의 75%가 되기까지 걸린 시간을 의미한다.In the present invention, the life measurement of the organic electronic device was measured through the following process. The fabricated organic electronic device was dispensed with a UV curing sealant at the edge of the cover glass in a glove box in a nitrogen atmosphere, and then the organic electronic device and the cover glass were laminated and cured by irradiating UV light. Then, the lifetime of the device was measured in an oven at 85 ° C. T 75 means the time taken for the luminance of the device to be 75% of the initial luminance.
표 7
No. 도펀트 농도: 5 중량부도핑층 두께: 100Å 전력효율[lm/W] 수명*T75@85℃[hr]
1 비도핑층 [실시예 1]도핑층 [실시예 1: 화학식 4] 12.2 200
2 비도핑층 [실시예 3]도핑층 [실시예 3: 화학식 4] 11.3 176
3 비도핑층 [실시예 3]도핑층 [실시예 1: 화학식 4] 9.8 112
4 비도핑층 [실시예 9]도핑층 [실시예 9: 화학식 4] 6.4 62
5 비도핑층 [실시예 10]도핑층 [실시예 10: 화학식 4] 5.6 65
6 비도핑층 [실시예 11]도핑층 [실시예 11: 화학식 4] 4.6 55
7 비도핑층 [실시예 9]도핑층 [실시예 10: 화학식 4] 5.0 60
TABLE 7
No. Dopant Concentration: 5 parts by weight Doping Layer Thickness: 100 kPa Power Efficiency [lm / W] Life Span * T 75 @ 85 ℃ [hr]
One Undoped Layer [Example 1] Doped Layer [Example 1: Formula 4] 12.2 200
2 Undoped Layer [Example 3] Doped Layer [Example 3: Formula 4] 11.3 176
3 Undoped Layer [Example 3] Doped Layer [Example 1: Formula 4] 9.8 112
4 Undoped Layer [Example 9] Doped Layer [Example 9: Formula 4] 6.4 62
5 Undoped Layer [Example 10] Doped Layer [Example 10: Formula 4] 5.6 65
6 Undoped Layer [Example 11] Doped Layer [Example 11: Formula 4] 4.6 55
7 Undoped Layer [Example 9] Doped Layer [Example 10: Formula 4] 5.0 60
*소자 수명은 초기 휘도 1000cd/m2을 기준으로 측정.* Device life is based on initial luminance of 1000 cd / m 2 .
*표 6에서 실시예 1 및 3은 각각 해당 실시예에서 합성된 물질을 의미하고, 화학식 9-11의 구조는 아래와 같다.In Table 6, Examples 1 and 3 respectively refer to materials synthesized in the examples, and the structure of Chemical Formula 9-11 is as follows.
[화학식 9][Formula 9]
Figure PCTKR2012007030-appb-I000113
Figure PCTKR2012007030-appb-I000113
[화학식 10][Formula 10]
Figure PCTKR2012007030-appb-I000114
Figure PCTKR2012007030-appb-I000114
[화학식 11][Formula 11]
Figure PCTKR2012007030-appb-I000115
Figure PCTKR2012007030-appb-I000115
표 7의 결과를 참조하면, 실시예 1 및 3에서 합성한 구조를 정공 수송성 화합물로 사용한 경우에는 다른 경우에 비해, 전력효율은 약 2배 정도, 그리고 소자수명은 2 내지 4배 향상됨을 알 수 있다. Referring to the results of Table 7, it can be seen that when the structures synthesized in Examples 1 and 3 are used as the hole transporting compound, the power efficiency is about 2 times higher and the device life is 2 to 4 times higher than the other cases. have.
실험예 5: 전력효율 및 소자수명 비교측정Experimental Example 5: Comparative Measurement of Power Efficiency and Device Life
ITO 전극상에 정공 수송성 화합물인 실시예 1에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 1에서 제조한 물질(호스트)을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 1에서 제조한 물질을 500 Å의 두께로 증착하여 비도핑층을 형성하였다. 상기 도핑층 및 비도핑층을 형성하는 과정을 각각 1 내지 5회 반복하였다. A doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 Å / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 Å / sec. It was deposited to form a 100 Å thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The processes of forming the doped and undoped layers were repeated 1 to 5 times, respectively.
그런 다음, 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 6의 구조를 갖는 C545T를 2중량부로 도핑한 발광층을 300 Å 두께로 형성하였다.Subsequently, a light emitting layer doped with 2 parts by weight of C545T having a structure of Formula 6 to tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed to a thickness of 300 kHz.
형성된 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
제작된 각각의 유기전자소자에 대해서 전력효율 및 소자수명을 각각 측정하였다. 측정한 결과는 하기 표 8과 같다.For each organic electronic device manufactured, power efficiency and device life were measured, respectively. The measurement results are shown in Table 8 below.
표 8
도핑층 및 비도핑층의반복회수 [회] 전력효율[lm/W] 수명*T75@85℃[hr]
1 12.2 200
2 14.4 275
3 11.6 289
4 10.7 302
5 8.5 213
Table 8
Repeated number of doped and undoped layers [times] Power Efficiency [lm / W] Life Span * T 75 @ 85 ℃ [hr]
One 12.2 200
2 14.4 275
3 11.6 289
4 10.7 302
5 8.5 213
표 8의 결과로부터, 도핑층 및 비도핑층의 반복회수는 2회인 경우에 전력효율이 가장 우수한 것을 알 수 있다. 또한, 소자수명 측면에서는 반복회수가 4회인 경우가 가장 우수한 것을 알 수 있다.From the results in Table 8, it can be seen that the repetition frequency of the doped layer and the undoped layer is the best power efficiency when two times. In addition, in terms of device life, it can be seen that the number of repetitions is the best.
실험예 6: 전력효율 및 소자수명 비교측정Experimental Example 6: Comparative Measurement of Power Efficiency and Device Life
ITO 전극상에 정공 수송성 화합물인 실시예 3에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 3에서 제조한 물질(호스트)을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 3에서 제조한 물질을 500 Å의 두께로 증착하여 비도핑층을 형성하였다. 상기 도핑층 및 비도핑층을 형성하는 과정을 각각 1 내지 5회 반복하였다. The doped layer was formed by depositing together the material prepared in Example 3, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 3 was deposited on the ITO electrode at a rate of 1 Å / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 Å / sec. It was deposited to form a 100 Å thick doped layer. The material prepared in Example 3 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The processes of forming the doped and undoped layers were repeated 1 to 5 times, respectively.
그런 다음, 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 6의 구조를 갖는 C545T를 2 중량부로 도핑한 발광층을 300 Å 두께로 형성하였다.Then, a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed to a thickness of 300 kHz.
형성된 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
제작된 각각의 유기전자소자에 대해서 전력효율 및 소자수명을 각각 측정하였다. 측정한 결과는 하기 표 9와 같다.For each organic electronic device manufactured, power efficiency and device life were measured, respectively. The measurement results are shown in Table 9 below.
표 9
도핑층 및 비도핑층의반복회수 [회] 전력효율[lm/W] 수명*T75@85℃[hr]
1 10.8 120
2 11.8 152
3 9.6 160
4 8.3 175
5 6.8 131
Table 9
Repeated number of doped and undoped layers [times] Power Efficiency [lm / W] Life Span * T 75 @ 85 ℃ [hr]
One 10.8 120
2 11.8 152
3 9.6 160
4 8.3 175
5 6.8 131
표 9의 결과로부터, 도핑층 및 비도핑층의 반복회수는 2회인 경우에 전력효율이 가장 우수한 것을 알 수 있다. 또한, 소자수명 측면에서는 반복회수가 4회인 경우가 가장 우수한 것을 알 수 있다.From the results in Table 9, it can be seen that the repetitive frequency of the doped layer and the undoped layer is the best power efficiency when two times. In addition, in terms of device life, it can be seen that the number of repetitions is the best.
실험예 7: 전력효율 및 소자수명 비교측정Experimental Example 7: Comparative Measurement of Power Efficiency and Device Life
ITO 전극상에 정공 수송성 화합물인 실시예 1에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 1에서 제조한 물질(호스트)을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 1에서 제조한 물질을 500 Å의 두께로 증착하여 비도핑층을 형성하였다. 상기 도핑층 및 비도핑층을 형성하는 과정을 1회 더 반복하되, 제2 비도핑층의 두께는 100 내지 2000 Å 범위에서 달리하였다. A doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 Å / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 Å / sec. It was deposited to form a 100 Å thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated one more time, but the thickness of the second undoped layer was varied in the range of 100 to 2000 mm 3.
그런 다음, 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 6의 구조를 갖는 C545T를 2 중량부로 도핑한 발광층을 300 Å 두께로 형성하였다.Then, a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed to a thickness of 300 kHz.
형성된 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
제작된 각각의 유기전자소자에 대해서 전력효율 및 소자수명을 각각 측정하였다. 측정한 결과는 하기 표 10과 같다.For each organic electronic device manufactured, power efficiency and device life were measured, respectively. The measurement results are shown in Table 10 below.
표 10
제2 비도핑층 두께[Å] 전력효율[lm/W] 수명*T75@85℃[hr]
100 9.0 189
200 12.5 233
300 13.8 257
500 14.4 275
1000 15.8 310
1500 11.2 322
2000 8.6 252
Table 10
Second undoped layer thickness [Å] Power Efficiency [lm / W] Life Span * T 75 @ 85 ℃ [hr]
100 9.0 189
200 12.5 233
300 13.8 257
500 14.4 275
1000 15.8 310
1500 11.2 322
2000 8.6 252
표 10의 결과로부터, 도핑층 및 비도핑층의 반복회수는 2회인 경우를 기준으로, 제2 비도핑층의 두께가 1000 Å인 경우가 전력효율이 가장 우수하고, 소자수명 측면에서는 제2 비도핑층의 두께가 1500 Å인 경우에 가장 우수한 것을 알 수 있다. 전력효율과 소자수명을 함께 고려하면, 제2 비도핑층의 두께가 1000 Å인 경우가 바람직하다.From the results in Table 10, based on the case where the number of repetitions of the doped layer and the undoped layer is two times, the power efficiency is the best when the thickness of the second undoped layer is 1000 mW, and the second ratio in terms of device life. It can be seen that it is the best when the thickness of the doped layer is 1500 kPa. In consideration of power efficiency and device life, it is preferable that the thickness of the second undoped layer is 1000 GPa.
실험예 8: 전력효율 및 소자수명 비교측정Experimental Example 8: Comparative Measurement of Power Efficiency and Device Life
ITO 전극상에 정공 수송성 화합물인 실시예 3에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 3에서 제조한 물질(호스트)을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 3에서 제조한 물질을 500 Å의 두께로 증착하여 비도핑층을 형성하였다. 상기 도핑층 및 비도핑층을 형성하는 과정을 1회 더 반복하되, 제2 비도핑층의 두께는 100 내지 2000 Å 범위에서 달리하였다. The doped layer was formed by depositing together the material prepared in Example 3, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 3 was deposited on the ITO electrode at a rate of 1 Å / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 Å / sec. It was deposited to form a 100 Å thick doped layer. The material prepared in Example 3 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated one more time, but the thickness of the second undoped layer was varied in the range of 100 to 2000 mm 3.
그런 다음, 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 6의 구조를 갖는 C545T를 2 중량부로 도핑한 발광층을 300 Å 두께로 형성하였다.Then, a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed to a thickness of 300 kHz.
형성된 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
제작된 각각의 유기전자소자에 대해서 전력효율 및 소자수명을 각각 측정하였다. 측정한 결과는 하기 표 11과 같다.For each organic electronic device manufactured, power efficiency and device life were measured, respectively. The measurement results are shown in Table 11 below.
표 11
제2 비도핑층 두께[Å] 전력효율[lm/W] 수명*T75@85℃[hr]
100 5.6 101
200 8.9 125
300 10.1 130
500 11.8 152
1000 12.8 165
1500 9.8 178
2000 8.2 152
Table 11
Second undoped layer thickness [Å] Power Efficiency [lm / W] Life Span * T 75 @ 85 ℃ [hr]
100 5.6 101
200 8.9 125
300 10.1 130
500 11.8 152
1000 12.8 165
1500 9.8 178
2000 8.2 152
표 11의 결과로부터, 도핑층 및 비도핑층의 반복회수는 2회인 경우를 기준으로, 제2 비도핑층의 두께가 1000 Å인 경우가 전력효율이 가장 우수하고, 소자수명 측면에서는 제2 비도핑층의 두께가 1500 Å인 경우가 가장 우수한 것을 알 수 있다. 전력효율과 소자수명을 함께 고려하면, 제2 비도핑층의 두께가 1000 Å인 경우가 바람직하다.Based on the results of Table 11, the repetition frequency of the doped layer and the undoped layer is the highest when the thickness of the second undoped layer is 1000 mW, and the second ratio is the second in terms of device life. It can be seen that the case where the thickness of the doping layer is 1500 kPa is the best. In consideration of power efficiency and device life, it is preferable that the thickness of the second undoped layer is 1000 GPa.
실험예 9: 전력효율 및 소자수명 비교측정Experimental Example 9: Comparative Measurement of Power Efficiency and Device Life
(1) ITO 전극상에 정공 수송성 화합물인 실시예 1에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 1에서 제조한 물질(호스트)을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 1에서 제조한 물질을 500 Å의 두께로 증착하여 비도핑층을 형성하였다. 상기 도핑층 및 비도핑층을 형성하는 과정을 1회 더 반복하되, 제2 비도핑층의 두께는 500 내지 1800 Å 범위에서 달리하였다.(1) A doping layer was formed by depositing together the material prepared in Example 1, which is a hole transporting compound, and F4-TCNQ having a structure of Formula 4, which is a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 Å / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 Å / sec. It was deposited to form a 100 Å thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated one more time, but the thickness of the second undoped layer was varied in the range of 500 to 1800 mm 3.
그런 다음, 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 12의 구조를 갖는 루브렌(Ruburen) 50 중량부와 하기 화학식 13의 구조를 갖는 DCJTB 2.5중량부를 도핑한 발광층(Red)을 300 Å 두께로 형성하였다. 형성된 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.Then, 50 parts by weight of Ruburen having the structure of Formula 12 and 2.5 parts by weight of DCJTB having the structure of Formula 13 were doped into Tris (8-hydroxyquinoline) aluminum (Alq 3 ) having the structure of Formula 5 One light emitting layer (Red) was formed to a thickness of 300 kHz. BPhen having a structure of Chemical Formula 7 was formed to have a thickness of 200 위에 on the formed light emitting layer, and a material Liq having a structure of Chemical Formula 8 was formed to have a thickness of 10 Å. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
[화학식 12][Formula 12]
Figure PCTKR2012007030-appb-I000116
Figure PCTKR2012007030-appb-I000116
[화학식 13][Formula 13]
Figure PCTKR2012007030-appb-I000117
Figure PCTKR2012007030-appb-I000117
(2) ITO 전극상에 정공 수송성 화합물인 실시예 1에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 1에서 제조한 물질(호스트)을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 1에서 제조한 물질을 500 Å의 두께로 증착하여 비도핑층을 형성하였다. 상기 도핑층 및 비도핑층을 형성하는 과정을 1회 더 반복하되, 제2 비도핑층의 두께는 500 내지 1800 Å 범위에서 달리하였다.(2) A doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 Å / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 Å / sec. It was deposited to form a 100 Å thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated one more time, but the thickness of the second undoped layer was varied in the range of 500 to 1800 mm 3.
그런 다음, 하기 화학식 14의 구조를 갖는 DPVBi에 화학식 15의 구조를 갖는 DSBP 2 중량부를 도핑한 발광층(Blue)을 300 Å 두께로 형성하였다. 형성된 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.Thereafter, a light emitting layer (Blue) doped with 2 parts by weight of DSBP having a structure of Formula 15 to DPVBi having a structure of Formula 14 was formed to a thickness of 300 kHz. BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
[화학식 14][Formula 14]
Figure PCTKR2012007030-appb-I000118
Figure PCTKR2012007030-appb-I000118
[화학식 15][Formula 15]
Figure PCTKR2012007030-appb-I000119
Figure PCTKR2012007030-appb-I000119
본 실험예에서 제작된 각각의 유기전자소자에 대해서 전력효율을 측정하였다. 측정한 결과는 하기 표 12와 같다.Power efficiency was measured for each organic electronic device manufactured in this experimental example. The measurement results are shown in Table 12 below.
표 12
제2 비도핑층 두께[Å] 전력효율 [lm/W]
Red Blue
500 8.8 13.1
700 10.9 14.2
1000 12.5 12.8
1400 13.9 11.2
1800 12.3 9.8
Table 12
Second undoped layer thickness [Å] Power Efficiency [lm / W]
Red Blue
500 8.8 13.1
700 10.9 14.2
1000 12.5 12.8
1400 13.9 11.2
1800 12.3 9.8
표 12의 결과로부터, 도핑층 및 비도핑층의 반복회수는 2회인 경우를 기준으로, 적색(Red) 발광층을 적용한 경우에는 제2 비도핑층의 두께는 1400 Å인 경우가 전력효율이 가장 우수하고, 청색(Blue) 발광층을 적용한 경우에는 제2 비도핑층의 두께가 700 Å인 경우에 전력효율이 가장 우수한 것을 알 수 있다. From the results in Table 12, based on the case where the number of repetitions of the doped layer and the undoped layer is two times, when the red light emitting layer is applied, the thickness of the second undoped layer is 1400 Å, which is the best power efficiency. In addition, when the blue light emitting layer is applied, it can be seen that the power efficiency is the best when the thickness of the second undoped layer is 700 GPa.
본 발명에 따른 유기전자소자는 발광층의 발광 영역 또는 종류에 따라 적층 구조의 두께를 달리함으로써, 최적의 소자효율을 구현할 수 있다.The organic electronic device according to the present invention can realize the optimum device efficiency by varying the thickness of the laminated structure according to the light emitting region or type of the light emitting layer.
실험예 10: 전력효율 및 소자수명 비교측정Experimental Example 10: Comparative Measurement of Power Efficiency and Device Life
ITO 전극상에 화학식 16의 구조를 갖는 P형 도펀트 물질을 단독으로 사용하여 5 내지 70 Å 두께의 중간층을 형성하였다. 형성된 중간층 위에 정공 수송성 화합물인 실시예 1에서 제조한 물질과 화학식 16의 구조를 갖는 P형 도펀트 물질을 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 1에서 제조한 물질(호스트)을 1 Å/sec의 속도로 증착하고, 동시에 화학식 16의 구조를 갖는 P형 도펀트를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 1에서 제조한 물질을 500 Å의 두께로 증착하여 비도핑층을 형성하였다. 상기 도핑층 및 비도핑층을 형성하는 과정을 1회 더 반복하였다. A P-type dopant material having a structure of Formula 16 alone was used on the ITO electrode to form an intermediate layer having a thickness of 5 to 70 mm 3. The doped layer was formed by depositing the material prepared in Example 1, which is a hole transporting compound, and the P-type dopant material having the structure of Formula 16 together on the formed intermediate layer. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 Å / sec, and at the same time, a P-type dopant having a structure of Formula 16 was deposited at a rate of 0.05 Å / sec. A doped layer of thickness 형성 was formed. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated once more.
그런 다음, 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 6의 구조를 갖는 C545T를 2 중량부로 도핑한 발광층을 300 Å 두께로 형성하였다. 형성된 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.Then, a light emitting layer doped with 3 parts by weight of C545T having a structure of Formula 6 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having a structure of Formula 5 was formed to a thickness of 300 kHz. BPhen having a structure of Formula 7 was formed to have a thickness of 200 kHz on the formed light emitting layer, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 kHz. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
[화학식 16][Formula 16]
Figure PCTKR2012007030-appb-I000120
Figure PCTKR2012007030-appb-I000120
제작된 각각의 유기전자소자에 대해서 전력효율 및 소자수명을 각각 측정하였다. 측정한 결과는 하기 표 13과 같다.For each organic electronic device manufactured, power efficiency and device life were measured, respectively. The measurement results are shown in Table 13 below.
표 13
제2 비도핑층 두께[Å] 전력효율 [lm/W]
Red Blue
500 8.8 13.1
700 10.9 14.2
1000 12.5 12.8
1400 13.9 11.2
1800 12.3 9.8
Table 13
Second undoped layer thickness [Å] Power Efficiency [lm / W]
Red Blue
500 8.8 13.1
700 10.9 14.2
1000 12.5 12.8
1400 13.9 11.2
1800 12.3 9.8
표 13의 결과로부터, ITO 기판 위에 별도의 중간층을 형성함으로써, 소자의 전력효율 및 수명이 향상되었음을 알 수 있다. 특히, 중간층의 두께는 10 Å인 경우에 전력효율이 가장 우수하고, 20 Å 이상인 경우에 소자 특성이 유사함을 알 수 있다.From the results in Table 13, it can be seen that by forming a separate intermediate layer on the ITO substrate, the power efficiency and life of the device is improved. In particular, the thickness of the intermediate layer is the most excellent power efficiency in the case of 10 kHz, it can be seen that the device characteristics are similar when more than 20 kHz.
실험예 11: 전력효율 및 소자수명 비교측정Experimental Example 11: Comparative Measurement of Power Efficiency and Device Life
ITO 전극상에 정공 수송성 화합물인 실시예 1에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 1에서 제조한 물질(호스트)을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 1에서 제조한 물질을 500 Å의 두께로 증착하여 비도핑층을 형성하였다. 상기 도핑층 및 비도핑층을 형성하는 과정을 1회 더 반복하되, 제2 비도핑층의 두께는 700 Å로 형성하였다. A doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 Å / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 Å / sec. It was deposited to form a 100 Å thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated once more, but the thickness of the second undoped layer was formed to be 700 kPa.
그런 다음, 청색, 적색 및 녹색 발광 영역의 화소부를 형성하였다. 청색 발광 영역은 화학식 14의 구조를 갖는 DPVBi에 화학식 15의 구조를 갖는 DSBP 2 중량부를 도핑하여 300 Å 두께로 형성하였다. 적색 발광 영역은 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 12의 구조를 갖는 루브렌(Ruburen) 50 중량부와 화학식 13의 구조를 갖는 DCJTB 2.5 중량부를 도핑하여 300 Å 두께로 형성하였다. 그리고, 녹색 발광 영역은 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 6의 구조를 갖는 C545T를 2 중량부로 도핑하여 300 Å 두께로 형성하였다.Then, pixel portions of the blue, red, and green light emitting regions were formed. The blue light emitting region was formed to a thickness of 300 kV by doping 2 parts by weight of DSBP having the structure of Formula 15 to DPVBi having the structure of Formula 14. The red light emitting region is doped with 50 parts by weight of Ruburen having the structure of Formula 12 and 2.5 parts by weight of DCJTB having the structure of Formula 13 to tris (8-hydroxyquinoline) aluminum (Alq 3 ) having the structure of Formula 5 To form a thickness of 300 mm. The green light emitting region was formed to a thickness of 300 kHz by doping C545T having the structure of Formula 6 to 2 parts by weight of tris (8-hydroxyquinoline) aluminum (Alq 3 ) having the structure of Formula 5.
형성된 각 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.BPhen having a structure of Formula 7 was formed to have a thickness of 200 위에 on each of the formed light emitting layers, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 Å. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
제작된 각각의 유기전자소자에 대해서 전력효율 및 소자수명을 각각 측정하였다. 측정한 결과는 하기 표 14와 같다.For each organic electronic device manufactured, power efficiency and device life were measured, respectively. The measurement results are shown in Table 14 below.
표 14
제2 비도핑층두께 [Å] 전력효율[lm/W] 수명*T75@85℃[hr]
Blue 700 14.2 313
Green 700 14.8 290
Red 700 10.9 262
Table 14
Second undoped layer thickness [Å] Power Efficiency [lm / W] Life Span * T 75 @ 85 ℃ [hr]
Blue 700 14.2 313
Green 700 14.8 290
Red 700 10.9 262
표 14의 결과로부터, 화소부에 적용되는 발광층의 종류와 무관하게 제2 도핑층의 두께를 동일하게 형성하게 되면, 각 화소별로 전력효율 및 수명이 각기 달라지게 된다. 특히, 각 화소별로 수명이 달라지면 소자에 악영향을 미칠 수 있다.From the results of Table 14, if the thickness of the second doped layer is formed to be the same regardless of the type of the light emitting layer applied to the pixel portion, the power efficiency and lifespan are different for each pixel. In particular, the lifespan of each pixel may adversely affect the device.
실험예 12: 전력효율 및 소자수명 비교측정Experimental Example 12: Comparative Measurement of Power Efficiency and Device Life
ITO 전극상에 정공 수송성 화합물인 실시예 1에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 1에서 제조한 물질(호스트)을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 1에서 제조한 물질을 500 Å의 두께로 증착하여 비도핑층을 형성하였다. 상기 도핑층 및 비도핑층을 형성하는 과정을 1회 더 반복하되, 제2 비도핑층의 두께는 700 내지 1400 Å 범위에서 형성하였다. A doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 Å / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 Å / sec. It was deposited to form a 100 Å thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated once more, but the thickness of the second undoped layer was formed in the range of 700 to 1400 kPa.
그런 다음, 청색, 적색 및 녹색 발광 영역의 화소부를 형성하였다. 청색 발광 영역은 화학식 14의 구조를 갖는 DPVBi에 화학식 15의 구조를 갖는 DSBP 2 중량부를 도핑하여 300 Å 두께로 형성하였다. 적색 발광 영역은 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 12의 구조를 갖는 루브렌(Ruburen) 50 중량부와 화학식 13의 구조를 갖는 DCJTB 2.5 중량부를 도핑하여 300 Å 두께로 형성하였다. 그리고, 녹색 발광 영역은 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 6의 구조를 갖는 C545T를 2 중량부로 도핑하여 300 Å 두께로 형성하였다.Then, pixel portions of the blue, red, and green light emitting regions were formed. The blue light emitting region was formed to a thickness of 300 kV by doping 2 parts by weight of DSBP having the structure of Formula 15 to DPVBi having the structure of Formula 14. The red light emitting region is doped with 50 parts by weight of Ruburen having the structure of Formula 12 and 2.5 parts by weight of DCJTB having the structure of Formula 13 to tris (8-hydroxyquinoline) aluminum (Alq 3 ) having the structure of Formula 5 To form a thickness of 300 mm. The green light emitting region was formed to a thickness of 300 kHz by doping C545T having the structure of Formula 6 to 2 parts by weight of tris (8-hydroxyquinoline) aluminum (Alq 3 ) having the structure of Formula 5.
형성된 각 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.BPhen having a structure of Formula 7 was formed to have a thickness of 200 위에 on each of the formed light emitting layers, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 Å. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
제작된 각각의 유기전자소자에 대해서 전력효율 및 소자수명을 각각 측정하였다. 측정한 결과는 하기 표 15와 같다.For each organic electronic device manufactured, power efficiency and device life were measured, respectively. The measurement results are shown in Table 15 below.
표 15
제2 비도핑층두께 [Å] 전력효율[lm/W] 수명*T75@85℃[hr]
Blue 700 14.2 313
Green 1000 15.8 310
Red 1400 13.9 308
Table 15
Second undoped layer thickness [Å] Power Efficiency [lm / W] Life Span * T 75 @ 85 ℃ [hr]
Blue 700 14.2 313
Green 1000 15.8 310
Red 1400 13.9 308
표 14의 결과로부터, 소자의 화소부에 청색, 녹색 및 적색 발광층을 적용한 경우, 제2 비도핑층의 두께를 동일하게 형성하면 수명 차이가 발생할 수 있다. 그에 비해, 표 15의 결과로부터 청색, 녹색 및 적색 발광층에 최적화된 두께의 제2 비도핑층을 형성한 경우에는 각 발광층의 수명이 유사하게 나타나는 것을 알 수 있다.From the results of Table 14, when the blue, green, and red light emitting layers are applied to the pixel portion of the device, if the thickness of the second undoped layer is formed to be the same, the difference in lifespan may occur. In contrast, it can be seen from the results in Table 15 that when the second undoped layer having a thickness optimized for the blue, green, and red light emitting layers is formed, the lifespan of each light emitting layer is similar.
실험예 13: 전력효율 및 소자수명 비교측정Experimental Example 13: Comparative Measurement of Power Efficiency and Device Life
(1) ITO 전극상에 정공 수송성 화합물인 실시예 1에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 1에서 제조한 물질(호스트)을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 1에서 제조한 물질을 370 Å의 두께로 증착하여 비도핑층을 형성하였다. 상기 도핑층 및 비도핑층을 형성하는 과정을 2회 더 반복하였다. (1) A doping layer was formed by depositing together the material prepared in Example 1, which is a hole transporting compound, and F4-TCNQ having a structure of Formula 4, which is a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 Å / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 Å / sec. It was deposited to form a 100 Å thick doped layer. The material prepared in Example 1 was deposited to a thickness of 370 kPa over the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated two more times.
그런 다음, 화학식 14의 구조를 갖는 DPVBi에 화학식 15의 구조를 갖는 DSBP 2 중량부를 도핑하여 300 Å 두께로 발광층(Blue) 형성하였다. 형성된 각 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.Thereafter, DPVBi having the structure of Formula 14 was doped with 2 parts by weight of DSBP having the structure of Formula 15 to form a light emitting layer (Blue) having a thickness of 300 kHz. BPhen having a structure of Formula 7 was formed to have a thickness of 200 위에 on each of the formed light emitting layers, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 Å. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
(2) ITO 전극상에 정공 수송성 화합물인 실시예 1에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 1에서 제조한 물질(호스트)을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 1에서 제조한 물질을 470 Å의 두께로 증착하여 비도핑층을 형성하였다. 상기 도핑층 및 비도핑층을 형성하는 과정을 2회 더 반복하였다. (2) A doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 Å / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 Å / sec. It was deposited to form a 100 Å thick doped layer. On the doped layer formed, the material prepared in Example 1 was deposited to a thickness of 470 kPa to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated two more times.
화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 6의 구조를 갖는 C545T를 2 중량부로 도핑하여 300 Å 두께로 발광층(Green)을 형성하였다. 형성된 각 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.Tris (8-hydroxyquinoline) aluminum (Alq 3 ) having the structure of Formula 5 was doped with 2 parts by weight of C545T having the structure of Formula 6 to form a light emitting layer (Green) having a thickness of 300 kHz. BPhen having a structure of Formula 7 was formed to have a thickness of 200 위에 on each of the formed light emitting layers, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 Å. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
(3) ITO 전극상에 정공 수송성 화합물인 실시예 1에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 1에서 제조한 물질(호스트)을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 1에서 제조한 물질을 600 Å의 두께로 증착하여 비도핑층을 형성하였다. 상기 도핑층 및 비도핑층을 형성하는 과정을 2회 더 반복하였다. (3) A doping layer was formed by depositing together the material prepared in Example 1, which is a hole transporting compound, and F4-TCNQ having the structure of Formula 4, which is a P-type dopant, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 Å / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 Å / sec. It was deposited to form a 100 Å thick doped layer. The material prepared in Example 1 was deposited to a thickness of 600 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated two more times.
화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 12의 구조를 갖는 루브렌(Ruburen) 50 중량부와 화학식 13의 구조를 갖는 DCJTB 2.5 중량부를 도핑하여 300 Å 두께로 발광층(Red)을 형성하였다. 형성된 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.300 Å thick by doping 50 parts by weight of Ruburen having the structure of Formula 12 and 2.5 parts by weight of DCJTB having the structure of Formula 13 to tris (8-hydroxyquinoline) aluminum (Alq 3 ) having the structure of Formula 5 The light emitting layer Red was formed. BPhen having a structure of Chemical Formula 7 was formed to have a thickness of 200 위에 on the formed light emitting layer, and a material Liq having a structure of Chemical Formula 8 was formed to have a thickness of 10 Å. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
위에서 제작된 각각의 유기전자소자에 대하여 전력효율 및 소자수명을 측정하였다. 측정된 결과는 표 16에 나타내었다.For each organic electronic device manufactured above, power efficiency and device life were measured. The measured results are shown in Table 16.
표 16
소자구조 전력효율[lm/W] 수명*T75@85℃[hr]
1 16.5 292
2 17.1 287
3 15.3 253
Table 16
Device structure Power Efficiency [lm / W] Life Span * T 75 @ 85 ℃ [hr]
One 16.5 292
2 17.1 287
3 15.3 253
실험예 14의 결과와 비교하면, 청색, 녹색 및 적색 발광층에 대응되는 최적화된 두께로 도핑층 및 비도핑층이 3회 반복된 구조를 적용함으로써, 소자의 전력효율은 향상되고 유사한 수준의 소자수명을 구현할 수 있다.Compared with the results of Experimental Example 14, by applying a structure in which the doped layer and the undoped layer are repeated three times at an optimized thickness corresponding to the blue, green, and red light emitting layers, the power efficiency of the device is improved and the device life of the comparable level is improved. Can be implemented.
실험예 14: 전력효율 및 소자수명 비교측정Experimental Example 14: Comparative Measurement of Power Efficiency and Device Life
ITO 전극상에 정공 수송성 화합물인 실시예 1에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 1에서 제조한 물질(호스트)을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 1에서 제조한 물질을 500 Å의 두께로 증착하여 비도핑층을 형성하였다. 상기 도핑층 및 비도핑층을 형성하는 과정을 1회 더 반복하되, 제2 비도핑층의 두께는 1000 Å로 형성하였다.A doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 Å / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 Å / sec. It was deposited to form a 100 Å thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated once more, but the thickness of the second undoped layer was formed to be 1000 kPa.
형성된 적층구조 위에 하기 화학식 17의 구조를 갖는 물질을 이용하여 전자 저지층을 50 내지 150 Å 범위에서 형성하였다.The electron blocking layer was formed in the range of 50 to 150 kV using the material having the structure of Formula 17 on the formed laminate structure.
[화학식 17][Formula 17]
Figure PCTKR2012007030-appb-I000121
Figure PCTKR2012007030-appb-I000121
그런 다음, 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 6의 구조를 갖는 C545T를 2 중량부로 도핑하여 300 Å 두께로 발광층(Green)을 형성하였다. 형성된 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.Then, tris (8-hydroxyquinoline) aluminum (Alq 3 ) having the structure of Formula 5 was doped with 2 parts by weight of C545T having the structure of Formula 6 to form a light emitting layer (Green) having a thickness of 300 kHz. BPhen having a structure of Chemical Formula 7 was formed to have a thickness of 200 위에 on the formed light emitting layer, and a material Liq having a structure of Chemical Formula 8 was formed to have a thickness of 10 Å. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
위에서 제작된 각각의 유기전자소자의 전자저지층 두께에 따른 전력효율 및 소자수명을 측정하였다. 측정된 결과는 표 17에 나타내었다.Power efficiency and device life were measured according to the thickness of the electronic blocking layer of each organic electronic device manufactured above. The measured results are shown in Table 17.
표 17
전자저지층두께 [Å] 전력효율[lm/W] 수명*T75@85℃[hr]
50 16.2 325
100 17.8 350
150 14.8 316
Table 17
Electronic blocking layer thickness [Å] Power Efficiency [lm / W] Life Span * T 75 @ 85 ℃ [hr]
50 16.2 325
100 17.8 350
150 14.8 316
표 17의 결과로부터, 전자 저지층을 100 Å 두께로 형성한 경우에 전력효율 및 소자수명이 가장 우수한 것을 알 수 있다.From the results in Table 17, it can be seen that when the electron blocking layer is formed to a thickness of 100 kW, the power efficiency and the device life are excellent.
실험예 15: 전력효율 및 소자수명 비교측정Experimental Example 15: Comparative Measurement of Power Efficiency and Device Life
(1) ITO 전극상에 정공 수송성 화합물인 실시예 1에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 1에서 제조한 물질(호스트)을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 1에서 제조한 물질을 500 Å의 두께로 증착하여 비도핑층을 형성하였다. 상기 도핑층 및 비도핑층을 형성하는 과정을 1회 더 반복하되, 제2 비도핑층은 700 Å의 두께로 형성하였다. (1) A doping layer was formed by depositing together the material prepared in Example 1, which is a hole transporting compound, and F4-TCNQ having a structure of Formula 4, which is a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 Å / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 Å / sec. It was deposited to form a 100 Å thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated once more, but the second undoped layer was formed to a thickness of 700 Å.
형성된 적층구조 위에 화학식 17의 구조를 갖는 물질을 이용하여 전자 저지층을 100 Å의 두께로 형성하였다. 형성된 전자 저지층 상에 화학식 14의 구조를 갖는 DPVBi에 화학식 15의 구조를 갖는 DSBP 2 중량부를 도핑하여 300 Å 두께로 발광층(Blue) 형성하였다. 형성된 각 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.An electron blocking layer was formed to a thickness of 100 kHz on the formed laminated structure using a material having a structure of Formula 17. On the formed electron blocking layer, DPVBi having a structure of Formula 14 was doped with 2 parts by weight of DSBP having a structure of Formula 15 to form a light emitting layer (Blue) having a thickness of 300 kHz. BPhen having a structure of Formula 7 was formed to have a thickness of 200 위에 on each of the formed light emitting layers, and a material Liq having a structure of Formula 8 was formed to have a thickness of 10 Å. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
(2) ITO 전극상에 정공 수송성 화합물인 실시예 1에서 제조한 물질과 P형 도펀트 물질인 화학식 4의 구조를 갖는 F4-TCNQ를 함께 증착하여 도핑층을 형성하였다. 구체적으로는, ITO 전극 상에 실시예 1에서 제조한 물질(호스트)을 1 Å/sec의 속도로 증착하고, 동시에 화학식 4의 구조를 갖는 P형 도펀트 F4-TCNQ를 0.05 Å/sec의 속도로 증착하여 100 Å 두께의 도핑층을 형성하였다. 형성된 도핑층 위에 실시예 1에서 제조한 물질을 500 Å의 두께로 증착하여 비도핑층을 형성하였다. 상기 도핑층 및 비도핑층을 형성하는 과정을 1회 더 반복하되, 제2 비도핑층은 1400 Å의 두께로 형성하였다. (2) A doping layer was formed by depositing together the material prepared in Example 1, a hole transporting compound, and F4-TCNQ having a structure of Formula 4, a P-type dopant material, on the ITO electrode. Specifically, the material (host) prepared in Example 1 was deposited on the ITO electrode at a rate of 1 Å / sec, and at the same time, the P-type dopant F4-TCNQ having the structure of Formula 4 was carried out at a rate of 0.05 Å / sec. It was deposited to form a 100 Å thick doped layer. The material prepared in Example 1 was deposited to a thickness of 500 kPa on the formed doped layer to form an undoped layer. The process of forming the doped layer and the undoped layer was repeated once more, but the second undoped layer was formed to a thickness of 1400 kPa.
형성된 적층구조 위에 화학식 17의 구조를 갖는 물질을 이용하여 전자 저지층을 100 Å의 두께로 형성하였다. 형성된 전자 저지층 상에 화학식 5의 구조를 갖는 트리스(8-히드록시퀴놀린)알루미늄(Alq3)에 화학식 12의 구조를 갖는 루브렌(Ruburen) 50 중량부와 화학식 13의 구조를 갖는 DCJTB 2.5 중량부를 도핑하여 300 Å 두께로 발광층(Red)을 형성하였다. 형성된 발광층 위에 화학식 7의 구조를 갖는 BPhen을 200 Å 두께로 형성하고, 화학식 8의 구조를 갖는 물질 Liq를 10 Å 두께로 형성하였다. 그 이후, 알루미늄 전극을 1000 Å 두께로 적층하였다.An electron blocking layer was formed to a thickness of 100 kHz on the formed laminated structure using a material having a structure of Formula 17. 50 parts by weight of Ruburen having the structure of Formula 12 and 2.5 parts of DCJTB having the structure of Formula 13 in tris (8-hydroxyquinoline) aluminum (Alq 3 ) having the structure of Formula 5 on the formed electron blocking layer Doped portions to form a light emitting layer (Red) with a thickness of 300 kHz. BPhen having a structure of Chemical Formula 7 was formed to have a thickness of 200 위에 on the formed light emitting layer, and a material Liq having a structure of Chemical Formula 8 was formed to have a thickness of 10 Å. Thereafter, aluminum electrodes were laminated to a thickness of 1000 mm 3.
위에서 제작된 각각의 유기전자소자에 대하여 전력효율 및 소자수명을 측정하였다. 측정된 결과는 표 18에 나타내었다.For each organic electronic device manufactured above, power efficiency and device life were measured. The measured results are shown in Table 18.
표 18
전력효율[lm/W] 수명*T75@85℃[hr]
Blue 15.8 336
Red 15.1 320
Table 18
Power Efficiency [lm / W] Life Span * T 75 @ 85 ℃ [hr]
Blue 15.8 336
Red 15.1 320
표 18의 결과로부터, 전자 저지층을 100 Å 두께로 형성함으로써, 청색 및 적색 발광층을 적용한 경우에도 전력효율 및 소자수명이 우수함을 알 수 있다.From the results in Table 18, it can be seen that the electron blocking layer is formed to a thickness of 100 kHz, which is excellent in power efficiency and device life even when the blue and red light emitting layers are applied.
10: ITO 전극 10: ITO electrode
20, 21, 22: 도핑층20, 21, 22: doping layer
30, 31, 32: 비도핑층 30, 31, 32: undoped layer
40, 41, 42, 43: 발광층40, 41, 42, 43: light emitting layer
50: 전자 수송층 50: electron transport layer
60: 전자 주입층60: electron injection layer
70: 알루미늄 전극 70: aluminum electrode
80: 중간층80: middle layer
100: 기재 100: substrate
200: 정공 수송성 화합물 증발원200: hole transport compound evaporation source
300: P형 도펀트 물질 증발원300: P-type dopant material evaporation source

Claims (28)

  1. 제1 전극; 제2 전극; 및 제1 전극과 제2 전극 사이에 형성되고, 발광층을 포함하는 1 층 이상의 유기층을 포함하며, A first electrode; Second electrode; And at least one organic layer formed between the first electrode and the second electrode and including a light emitting layer,
    제1 전극과 발광층 사이에는, 정공 수송성 화합물과 P형 도펀트를 포함하는 도핑층; 및 상기 정공 수송성 화합물을 포함하는 비도핑층이 형성되는 구조를 포함하는 유기전자소자.A doping layer comprising a hole transporting compound and a P-type dopant between the first electrode and the light emitting layer; And a structure in which an undoped layer including the hole transport compound is formed.
  2. 제 1 항에 있어서,The method of claim 1,
    제1 전극과 도핑층 사이에 형성되며, P형 도펀트용 화합물로 이루어진 중간층을 더 포함하는 유기전자소자.An organic electronic device formed between the first electrode and the doped layer, further comprising an intermediate layer made of a compound for a P-type dopant.
  3. 제 2 항에 있어서,The method of claim 2,
    도핑층의 P형 도펀트와, 상기 중간층의 P형 도펀트용 화합물은 서로 동일한 화합물인 것을 특징으로 하는 유기전자소자.An organic electronic device, wherein the P-type dopant of the doping layer and the compound for P-type dopant of the intermediate layer are the same compound.
  4. 제 1 항에 있어서,The method of claim 1,
    정공 수송성 화합물의 HOMO 준위(E1)와 P형 도펀트의 LUMO 준위(E2)는 하기 수학식 1의 관계를 만족하는 유기전자소자:The HOMO level (E1) of the hole-transporting compound and the LUMO level (E2) of the P-type dopant satisfy the relationship of Equation 1 below:
    [수학식 1][Equation 1]
    |E2| - |E1| ≥ -0.2(eV).| E2 | -| E1 | ≥ -0.2 (eV).
  5. 제 1 항에 있어서,The method of claim 1,
    정공 수송성 화합물은 하기 화학식 1의 구조를 갖는 것을 특징으로 하는 유기전자소자:The hole transport compound is an organic electronic device, characterized in that it has a structure of Formula 1:
    [화학식 1][Formula 1]
    Figure PCTKR2012007030-appb-I000122
    Figure PCTKR2012007030-appb-I000122
    상기 화학식 1에서, In Chemical Formula 1,
    L은
    Figure PCTKR2012007030-appb-I000123
    를 나타내고,
    L is
    Figure PCTKR2012007030-appb-I000123
    Indicates,
    L1, L2, L3 및 L4는 각각 독립적으로 탄소수 6 내지 60의 아릴렌기, 탄소수 2 내지 60의 헤테로고리기, 탄소수 2 내지 60의 알케닐렌기, 탄소수 2 내지 60의 알키닐렌기 또는 탄소수 3 내지 60의 시클로알킬렌기를 나타내고,L 1 , L 2 , L 3 and L 4 are each independently an arylene group having 6 to 60 carbon atoms, a heterocyclic group having 2 to 60 carbon atoms, an alkenylene group having 2 to 60 carbon atoms, an alkynylene group having 2 to 60 carbon atoms, or A cycloalkylene group having 3 to 60 carbon atoms is represented,
    p, q, r 및 s는 각각 독립적으로 0 내지 2의 정수를 나타내며, p, q, r 및 s의 합은 1 내지 8의 정수이고, p, q, r and s each independently represent an integer of 0 to 2, and the sum of p, q, r and s is an integer of 1 to 8,
    R1은 수소, 탄소수 1 내지 60의 알킬기, 탄소수 2 내지 60의 알케닐기, 탄소수 3 내지 60의 시클로알킬기, 탄소수 1 내지 60의 알콕시기, 탄소수 6 내지 60의 아릴기, 탄소수 2 내지 60의 헤테로고리기, 탄소수 6 내지 60의 아릴옥시기, 탄소수 6 내지 60의 아릴티오기, 탄소수 1 내지 60의 알콕시카르보닐기, 할로겐기, 시아노기, 나이트로기, 하이드록시기 또는 카르복시기를 나타내고,R 1 is hydrogen, an alkyl group having 1 to 60 carbon atoms, an alkenyl group having 2 to 60 carbon atoms, a cycloalkyl group having 3 to 60 carbon atoms, an alkoxy group having 1 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, a hetero group having 2 to 60 carbon atoms A cyclic group, an aryloxy group having 6 to 60 carbon atoms, an arylthio group having 6 to 60 carbon atoms, an alkoxycarbonyl group having 1 to 60 carbon atoms, a halogen group, a cyano group, a nitro group, a hydroxyl group, or a carboxy group,
    R2는 수소, 탄소수 1 내지 60의 알킬기 또는 탄소수 6 내지 60의 아릴기이고,R 2 is hydrogen, an alkyl group having 1 to 60 carbon atoms or an aryl group having 6 to 60 carbon atoms,
    R3 및 R4은 각각 독립적으로, *-A1-A2-A3-A4로 나타내고,R 3 and R 4 are each independently represented by * -A 1 -A 2 -A 3 -A 4 ,
    A1, A2 및 A3은 각각 독립적으로 단일 결합, -O-, -S-, 탄소수 1 내지 60의 직쇄형 또는 분지형의 알킬렌기(-(CH2)j-, 여기서, j는 1 내지 60의 정수), 탄소수 6 내지 60의 아릴렌기, 탄소수 2 내지 60의 헤테로고리기, 탄소수 3 내지 60의 시클로알킬렌기, 아다만틸렌기, 탄소수 7 내지 60의 바이시클로알킬렌기, 탄소수 2 내지 60의 알케닐렌기 또는 탄소수 2 내지 60의 알키닐렌기를 나타내고,A 1 , A 2 and A 3 are each independently a single bond, -O-, -S-, a linear or branched alkylene group having 1 to 60 carbon atoms (-(CH 2 ) j- , where j is 1 To an integer of 60 to 60), an arylene group having 6 to 60 carbon atoms, a heterocyclic group having 2 to 60 carbon atoms, a cycloalkylene group having 3 to 60 carbon atoms, an adamantylene group, a bicycloalkylene group having 7 to 60 carbon atoms, and a carbon atoms having 2 to 60 carbon atoms. 60 alkenylene group or C2-C60 alkynylene group is shown,
    A4는 수소, 탄소수 1 내지 60의 알킬기, 탄소수 6 내지 60의 아릴기, 탄소수 2 내지 60의 헤테로고리기, 탄소수 3 내지 60의 시클로알킬기, 아다만틸기, 탄소수 7 내지 60의 바이시클로알킬기, 탄소수 2 내지 60의 알케닐기, 탄소수 2 내지 60의 알키닐기 또는 *-NR5R6를 나타내고,A 4 is hydrogen, an alkyl group having 1 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, a heterocyclic group having 2 to 60 carbon atoms, a cycloalkyl group having 3 to 60 carbon atoms, an adamantyl group, a bicycloalkyl group having 7 to 60 carbon atoms, An alkenyl group having 2 to 60 carbon atoms, an alkynyl group having 2 to 60 carbon atoms, or * -NR 5 R 6 ;
    R5 및 R6은 각각 독립적으로, 수소, 탄소수 1 내지 60의 알킬기, 탄소수 1 내지 6의 알콕시기, 탄소수 6 내지 60의 아릴아민기 또는 탄소수 6 내지 60의 아릴기를 나타내고,R 5 and R 6 each independently represent hydrogen, an alkyl group having 1 to 60 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an arylamine group having 6 to 60 carbon atoms, or an aryl group having 6 to 60 carbon atoms,
    상기 화학식 1에서, L, R1, R2, R3 및 R4의 수소들 중에서 하나 이상은 각각 독립적으로 탄소수 1 내지 60의 알킬기, 탄소수 6 내지 60의 아릴기, 탄소수 6 내지 60의 아릴아민기 또는 탄소수 6 내지 60의 헤테로고리기로 치환 또는 비치환된다.In Formula 1, at least one of hydrogens of L, R 1 , R 2 , R 3, and R 4 is each independently an alkyl group having 1 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, and an arylamine having 6 to 60 carbon atoms. It is unsubstituted or substituted by a group or a heterocyclic group having 6 to 60 carbon atoms.
  6. 제 5 항에 있어서, The method of claim 5,
    상기 화학식 1의 구조를 갖는 정공 수송성 화합물은 하기 화학식 2로 나타내는 것을 특징으로 하는 유기전자소자:The hole-transporting compound having the structure of Chemical Formula 1 is represented by Chemical Formula 2 below:
    [화학식 2][Formula 2]
    Figure PCTKR2012007030-appb-I000124
    Figure PCTKR2012007030-appb-I000124
    상기 화학식 2에서,In Chemical Formula 2,
    L은
    Figure PCTKR2012007030-appb-I000125
    를 나타내고,
    L is
    Figure PCTKR2012007030-appb-I000125
    Indicates,
    L1, L2, L3 및 L4는 각각 독립적으로 탄소수 6 내지 60의 아릴렌기 또는 탄소수 2 내지 60의 헤테로고리기를 나타내고,L 1 , L 2 , L 3 and L 4 each independently represent an arylene group having 6 to 60 carbon atoms or a heterocyclic group having 2 to 60 carbon atoms,
    p, q, r 및 s는 각각 독립적으로 0 내지 2의 정수를 나타내며, p, q, r 및 s의 합은 1 내지 8의 정수이고, p, q, r and s each independently represent an integer of 0 to 2, and the sum of p, q, r and s is an integer of 1 to 8,
    R3 및 R4은 각각 독립적으로, *-A1-A2-A3-A4로 나타내고,R 3 and R 4 are each independently represented by * -A 1 -A 2 -A 3 -A 4 ,
    A1, A2 및 A3은 각각 독립적으로 단일 결합, 탄소수 6 내지 60의 아릴렌기 또는 탄소수 2 내지 60의 헤테로고리기를 나타내고,A 1 , A 2 and A 3 each independently represent a single bond, an arylene group having 6 to 60 carbon atoms or a heterocyclic group having 2 to 60 carbon atoms,
    A4는 수소, 탄소수 1 내지 60의 알킬기, 탄소수 6 내지 60의 아릴기, 탄소수 2 내지 60의 헤테로고리기 또는 *-NR5R6를 나타내고,A 4 represents hydrogen, an alkyl group having 1 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, a heterocyclic group having 2 to 60 carbon atoms, or * -NR 5 R 6 ,
    R5 및 R6은 각각 독립적으로, 수소, 탄소수 1 내지 60의 알킬기, 탄소수 6 내지 60의 아릴아민기 또는 탄소수 6 내지 60의 아릴기를 나타내고,R 5 and R 6 each independently represent hydrogen, an alkyl group having 1 to 60 carbon atoms, an arylamine group having 6 to 60 carbon atoms, or an aryl group having 6 to 60 carbon atoms,
    R7은 수소, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 40의 아릴기 또는 탄소수 2 내지 40의 헤테로고리기를 나타내고,R 7 represents hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 40 carbon atoms, or a heterocyclic group having 2 to 40 carbon atoms,
    상기 화학식 2에서, L, R3, R4 및 R7의 수소들 중에서 하나 이상은 각각 독립적으로 탄소수 1 내지 60의 알킬기, 탄소수 6 내지 60의 아릴기, 탄소수 6 내지 60의 아릴아민기 또는 탄소수 6 내지 60의 헤테로고리기로 치환 또는 비치환된다.In Formula 2, at least one of hydrogen of L, R 3 , R 4 and R 7 is each independently an alkyl group having 1 to 60 carbon atoms, an aryl group having 6 to 60 carbon atoms, an arylamine group having 6 to 60 carbon atoms or carbon atoms Or substituted or unsubstituted with 6 to 60 heterocyclic groups.
  7. 제 6 항에 있어서, 상기 화학식 2에서,The method of claim 6, wherein in Formula 2,
    L은 하기 치환기 1 내지 13 중에서 선택되고;L is selected from the following substituents 1 to 13;
    <치환기 1>
    Figure PCTKR2012007030-appb-I000126
    <Substituent 1>
    Figure PCTKR2012007030-appb-I000126
    <치환기 2>
    Figure PCTKR2012007030-appb-I000127
    <Substituent 2>
    Figure PCTKR2012007030-appb-I000127
    <치환기 3>
    Figure PCTKR2012007030-appb-I000128
    <Substituent 3>
    Figure PCTKR2012007030-appb-I000128
    <치환기 4>
    Figure PCTKR2012007030-appb-I000129
    <Substituent 4>
    Figure PCTKR2012007030-appb-I000129
    <치환기 5>
    Figure PCTKR2012007030-appb-I000130
    <Substituent 5>
    Figure PCTKR2012007030-appb-I000130
    <치환기 6>
    Figure PCTKR2012007030-appb-I000131
    <Substituent 6>
    Figure PCTKR2012007030-appb-I000131
    <치환기 7>
    Figure PCTKR2012007030-appb-I000132
    <Substituent 7>
    Figure PCTKR2012007030-appb-I000132
    <치환기 8>
    Figure PCTKR2012007030-appb-I000133
    <Substituent 8>
    Figure PCTKR2012007030-appb-I000133
    <치환기 9>
    Figure PCTKR2012007030-appb-I000134
    <Substituent 9>
    Figure PCTKR2012007030-appb-I000134
    <치환기 10>
    Figure PCTKR2012007030-appb-I000135
    <Substituent 10>
    Figure PCTKR2012007030-appb-I000135
    <치환기 11>
    Figure PCTKR2012007030-appb-I000136
    <Translator 11>
    Figure PCTKR2012007030-appb-I000136
    <치환기 12>
    Figure PCTKR2012007030-appb-I000137
    <Substituent 12>
    Figure PCTKR2012007030-appb-I000137
    <치환기 13>
    Figure PCTKR2012007030-appb-I000138
    <13 substituent>
    Figure PCTKR2012007030-appb-I000138
    상기 화학식 2의 R3 및 R4는 각각 독립적으로 하기 치환기 14 내지 25의 구조로부터 선택되며,R 3 and R 4 of Formula 2 are each independently selected from the structures of substituents 14 to 25,
    <치환기 14>
    Figure PCTKR2012007030-appb-I000139
    <Exchanger 14>
    Figure PCTKR2012007030-appb-I000139
    <치환기 15>
    Figure PCTKR2012007030-appb-I000140
    <Substituent 15>
    Figure PCTKR2012007030-appb-I000140
    <치환기 16>
    Figure PCTKR2012007030-appb-I000141
    <Substituent 16>
    Figure PCTKR2012007030-appb-I000141
    <치환기 17>
    Figure PCTKR2012007030-appb-I000142
    <Substituent 17>
    Figure PCTKR2012007030-appb-I000142
    <치환기 18>
    Figure PCTKR2012007030-appb-I000143
    <Substituent 18>
    Figure PCTKR2012007030-appb-I000143
    <치환기 19>
    Figure PCTKR2012007030-appb-I000144
    <Substitution 19>
    Figure PCTKR2012007030-appb-I000144
    <치환기 20>
    Figure PCTKR2012007030-appb-I000145
    <Substituent 20>
    Figure PCTKR2012007030-appb-I000145
    <치환기 21>
    Figure PCTKR2012007030-appb-I000146
    <Translator 21>
    Figure PCTKR2012007030-appb-I000146
    <치환기 22>
    Figure PCTKR2012007030-appb-I000147
    <Substituent 22>
    Figure PCTKR2012007030-appb-I000147
    <치환기 23>
    Figure PCTKR2012007030-appb-I000148
    <Substituent 23>
    Figure PCTKR2012007030-appb-I000148
    <치환기 24>
    Figure PCTKR2012007030-appb-I000149
    <Substituent 24>
    Figure PCTKR2012007030-appb-I000149
    <치환기 25>
    Figure PCTKR2012007030-appb-I000150
    <Substituent 25>
    Figure PCTKR2012007030-appb-I000150
    상기 화학식 2의 R7은 수소 또는 페닐기인 유기전자소자.R 7 in Chemical Formula 2 is hydrogen or a phenyl group.
  8. 제 5 항에 있어서,The method of claim 5,
    상기 화학식 1의 구조를 갖는 정공 수송성 화합물은 하기 구조 1 내지 63으로부터 선택되는 것을 특징으로 하는 유기전자소자.The hole transport compound having the structure of Formula 1 is selected from the following structures 1 to 63 organic electronic device.
    <구조 1><Structure 1>
    Figure PCTKR2012007030-appb-I000151
    Figure PCTKR2012007030-appb-I000151
    <구조 2><Structure 2>
    Figure PCTKR2012007030-appb-I000152
    Figure PCTKR2012007030-appb-I000152
    <구조 3><Structure 3>
    Figure PCTKR2012007030-appb-I000153
    Figure PCTKR2012007030-appb-I000153
    <구조 4><Structure 4>
    Figure PCTKR2012007030-appb-I000154
    Figure PCTKR2012007030-appb-I000154
    <구조 5><Structure 5>
    Figure PCTKR2012007030-appb-I000155
    Figure PCTKR2012007030-appb-I000155
    <구조 6><Structure 6>
    Figure PCTKR2012007030-appb-I000156
    Figure PCTKR2012007030-appb-I000156
    <구조 7><Structure 7>
    Figure PCTKR2012007030-appb-I000157
    Figure PCTKR2012007030-appb-I000157
    <구조 8><Structure 8>
    Figure PCTKR2012007030-appb-I000158
    Figure PCTKR2012007030-appb-I000158
    <구조 9><Structure 9>
    Figure PCTKR2012007030-appb-I000159
    Figure PCTKR2012007030-appb-I000159
    <구조 10><Structure 10>
    Figure PCTKR2012007030-appb-I000160
    Figure PCTKR2012007030-appb-I000160
    <구조 11><Structure 11>
    Figure PCTKR2012007030-appb-I000161
    Figure PCTKR2012007030-appb-I000161
    <구조 12<Structure 12
    >
    Figure PCTKR2012007030-appb-I000162
    >
    Figure PCTKR2012007030-appb-I000162
    <구조 13><Structure 13>
    Figure PCTKR2012007030-appb-I000163
    Figure PCTKR2012007030-appb-I000163
    <구조 14><Structure 14>
    Figure PCTKR2012007030-appb-I000164
    Figure PCTKR2012007030-appb-I000164
    <구조 15><Structure 15>
    Figure PCTKR2012007030-appb-I000165
    Figure PCTKR2012007030-appb-I000165
    <구조 16><Structure 16>
    Figure PCTKR2012007030-appb-I000166
    Figure PCTKR2012007030-appb-I000166
    <구조 17><Structure 17>
    Figure PCTKR2012007030-appb-I000167
    Figure PCTKR2012007030-appb-I000167
    <구조 18><Structure 18>
    Figure PCTKR2012007030-appb-I000168
    Figure PCTKR2012007030-appb-I000168
    <구조 19><Structure 19>
    Figure PCTKR2012007030-appb-I000169
    Figure PCTKR2012007030-appb-I000169
    <구조 20><Structure 20>
    Figure PCTKR2012007030-appb-I000170
    Figure PCTKR2012007030-appb-I000170
    <구조 21><Structure 21>
    Figure PCTKR2012007030-appb-I000171
    Figure PCTKR2012007030-appb-I000171
    <구조 22><Structure 22>
    Figure PCTKR2012007030-appb-I000172
    Figure PCTKR2012007030-appb-I000172
    <구조 23><Structure 23>
    Figure PCTKR2012007030-appb-I000173
    Figure PCTKR2012007030-appb-I000173
    <구조 24><Structure 24>
    Figure PCTKR2012007030-appb-I000174
    Figure PCTKR2012007030-appb-I000174
    <구조 25><Structure 25>
    Figure PCTKR2012007030-appb-I000175
    Figure PCTKR2012007030-appb-I000175
    <구조 26><Structure 26>
    Figure PCTKR2012007030-appb-I000176
    Figure PCTKR2012007030-appb-I000176
    <구조 27><Structure 27>
    Figure PCTKR2012007030-appb-I000177
    Figure PCTKR2012007030-appb-I000177
    <구조 28><Structure 28>
    Figure PCTKR2012007030-appb-I000178
    Figure PCTKR2012007030-appb-I000178
    <구조 29><Structure 29>
    Figure PCTKR2012007030-appb-I000179
    Figure PCTKR2012007030-appb-I000179
    <구조 30><Structure 30>
    Figure PCTKR2012007030-appb-I000180
    Figure PCTKR2012007030-appb-I000180
    <구조 31><Structure 31>
    Figure PCTKR2012007030-appb-I000181
    Figure PCTKR2012007030-appb-I000181
    <구조 32><Structure 32>
    Figure PCTKR2012007030-appb-I000182
    Figure PCTKR2012007030-appb-I000182
    <구조 33><Structure 33>
    Figure PCTKR2012007030-appb-I000183
    Figure PCTKR2012007030-appb-I000183
    <구조 34><Structure 34>
    Figure PCTKR2012007030-appb-I000184
    Figure PCTKR2012007030-appb-I000184
    <구조 35>Structure 35
    Figure PCTKR2012007030-appb-I000185
    Figure PCTKR2012007030-appb-I000185
    <구조 36><Structure 36>
    Figure PCTKR2012007030-appb-I000186
    Figure PCTKR2012007030-appb-I000186
    <구조 37><Structure 37>
    Figure PCTKR2012007030-appb-I000187
    Figure PCTKR2012007030-appb-I000187
    <구조 38><Structure 38>
    Figure PCTKR2012007030-appb-I000188
    Figure PCTKR2012007030-appb-I000188
    <구조 39><Structure 39>
    Figure PCTKR2012007030-appb-I000189
    Figure PCTKR2012007030-appb-I000189
    <구조 40><Structure 40>
    Figure PCTKR2012007030-appb-I000190
    Figure PCTKR2012007030-appb-I000190
    <구조 41><Structure 41>
    Figure PCTKR2012007030-appb-I000191
    Figure PCTKR2012007030-appb-I000191
    <구조 42><Structure 42>
    Figure PCTKR2012007030-appb-I000192
    Figure PCTKR2012007030-appb-I000192
    <구조 43><Structure 43>
    Figure PCTKR2012007030-appb-I000193
    Figure PCTKR2012007030-appb-I000193
    <구조 44>Structure 44
    Figure PCTKR2012007030-appb-I000194
    Figure PCTKR2012007030-appb-I000194
    <구조 45><Structure 45>
    Figure PCTKR2012007030-appb-I000195
    Figure PCTKR2012007030-appb-I000195
    <구조 46><Structure 46>
    Figure PCTKR2012007030-appb-I000196
    Figure PCTKR2012007030-appb-I000196
    <구조 47><Structure 47>
    Figure PCTKR2012007030-appb-I000197
    Figure PCTKR2012007030-appb-I000197
    <구조 48><Structure 48>
    Figure PCTKR2012007030-appb-I000198
    Figure PCTKR2012007030-appb-I000198
    <구조 49><Structure 49>
    Figure PCTKR2012007030-appb-I000199
    Figure PCTKR2012007030-appb-I000199
    <구조 50><Structure 50>
    Figure PCTKR2012007030-appb-I000200
    Figure PCTKR2012007030-appb-I000200
    <구조 51>Structure 51
    Figure PCTKR2012007030-appb-I000201
    Figure PCTKR2012007030-appb-I000201
    <구조 52>Structure 52
    Figure PCTKR2012007030-appb-I000202
    Figure PCTKR2012007030-appb-I000202
    <구조 53>Structure 53
    Figure PCTKR2012007030-appb-I000203
    Figure PCTKR2012007030-appb-I000203
    <구조 54><Structure 54>
    Figure PCTKR2012007030-appb-I000204
    Figure PCTKR2012007030-appb-I000204
    <구조 55><Structure 55>
    Figure PCTKR2012007030-appb-I000205
    Figure PCTKR2012007030-appb-I000205
    <구조 56><Structure 56>
    Figure PCTKR2012007030-appb-I000206
    Figure PCTKR2012007030-appb-I000206
    <구조 57><Structure 57>
    Figure PCTKR2012007030-appb-I000207
    Figure PCTKR2012007030-appb-I000207
    <구조 58><Structure 58>
    Figure PCTKR2012007030-appb-I000208
    Figure PCTKR2012007030-appb-I000208
    <구조 59><Structure 59>
    Figure PCTKR2012007030-appb-I000209
    Figure PCTKR2012007030-appb-I000209
    <구조 60><Structure 60>
    Figure PCTKR2012007030-appb-I000210
    Figure PCTKR2012007030-appb-I000210
    <구조 61>Structure 61
    Figure PCTKR2012007030-appb-I000211
    Figure PCTKR2012007030-appb-I000211
    <구조 62><Structure 62>
    Figure PCTKR2012007030-appb-I000212
    Figure PCTKR2012007030-appb-I000212
    <구조 63><Structure 63>
    Figure PCTKR2012007030-appb-I000213
    Figure PCTKR2012007030-appb-I000213
  9. 제 1 항에 있어서, 상기 도핑층은The method of claim 1, wherein the doped layer
    정공 수송성 화합물 100 중량부에 대하여,Per 100 parts by weight of the hole-transporting compound,
    P형 도펀트를 0.3 내지 20 중량부를 포함하는 것을 특징으로 하는 유기전자소자.An organic electronic device comprising 0.3 to 20 parts by weight of a P-type dopant.
  10. 제 1 항에 있어서,The method of claim 1,
    P형 도펀트는,P-type dopant,
    2,3,5,6-테트라플루오르-7,7,8,8-테트라시아노퀴노디메탄;2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinomidimethane;
    디시아노메틸렌비스(4-옥소-[3,5-디-t-부틸]-2,5-시클로헥사디에닐리덴)시클로프로판;Dicyanomethylenebis (4-oxo- [3,5-di-t-butyl] -2,5-cyclohexadienylidene) cyclopropane;
    1,3-비스(디시아노메틸렌)인단-2-일리덴-비스(4-옥소-[3,5-디-t-부틸]-2,5-시클로헥사디에닐리덴)시클로프로판; 1,3-bis (dicyanomethylene) indane-2-ylidene-bis (4-oxo- [3,5-di-t-butyl] -2,5-cyclohexadienylidene) cyclopropane;
    (N,N',N'',N'''-시클로부탄-1,2,3,4-테트라일리덴)테트라아닐린;(N, N ', N ", N'"-cyclobutane-1,2,3,4-tetralidene) tetraaniline;
    (2E,2'E,2''E,2'''E)-2,2',2'',2'''-(시클로부탄-1,2,3-테트라일리덴)N,N',N'',N'''-시클로부탄-1,2,3,4-테트라일리덴(테트라키스(2-펜타플루오로페닐)아세토니트릴);(2E, 2'E, 2''E, 2 '' 'E) -2,2', 2 '', 2 '' '-(cyclobutane-1,2,3-tethylidene) N, N ', N', N ''-cyclobutane-1,2,3,4-tetralidene (tetrakis (2-pentafluorophenyl) acetonitrile);
    2-(6-디시아노메틸렌-1,3,4,5,7,8-헥사플루오로-6H-나프탈렌-2-일리덴)말로노니트릴;2- (6-dicyanomethylene-1,3,4,5,7,8-hexafluoro-6H-naphthalene-2-ylidene) malononitrile;
    1,3,4,5,7,8-헥사플루오로나프토-2,6-퀴논테트라시아노메탄;1,3,4,5,7,8-hexafluoronaphtho-2,6-quinonetetracyanomethane;
    (2E,2'E,2''E)-2,2',2''-(시클로프로판-1,2,3-트리일리덴)트리스(2-[2',3',5',6'-테트라플루오로피리드-4'-일]아세토니트릴); 및(2E, 2'E, 2''E) -2,2 ', 2' '-(cyclopropane-1,2,3-triylidene) tris (2- [2', 3 ', 5', 6'-tetrafluoropyrid-4'-yl] acetonitrile); And
    2,2'-(2-(3-((1r,3s)-아다만탄-1-일)프로필)-3,5,6-트리플루오로시클로헥사-2,5-디엔-1,4-디일리덴)디말로노니트릴디피라지노[2,3-f:2',3'-h]퀴녹살린-2,3,6,7,10,11-헥사카보니트릴 중 1종 이상을 포함하는 유기전자소자.2,2 '-(2- (3-((1r, 3s) -adamantan-1-yl) propyl) -3,5,6-trifluorocyclohexa-2,5-diene-1,4 -Diylidene) dimalononitriledipyrazino [2,3-f: 2 ', 3'-h] quinoxaline-2,3,6,7,10,11-hexacarbonitrile Organic electronic device comprising.
  11. 제 1 항에 있어서,The method of claim 1,
    P형 도펀트는 하기 화학식 3의 구조를 갖는 것을 특징으로 하는 유기전자소자:An organic electronic device, characterized in that the p-type dopant has a structure of Formula 3 below:
    [화학식 3][Formula 3]
    Figure PCTKR2012007030-appb-I000214
    Figure PCTKR2012007030-appb-I000214
    상기 화학식 3에서,In Chemical Formula 3,
    R은, 시아노기, 설폰아미드기, 니트로기 또는 트리플루오로메틸기를 나타내거나,R represents a cyano group, a sulfonamide group, a nitro group or a trifluoromethyl group, or
    탄소수 1 내지 60을 갖는 알킬기, 탄소수 6 내지 60의 아릴기, 또는 탄소수 2 내지 60을 갖는 헤테로아릴기로 치환 또는 비치환된 설폰기, 설폭사이드기, 설포네이트기를 나타낸다.The sulfone group, sulfoxide group, and sulfonate group unsubstituted or substituted by the alkyl group having 1 to 60 carbon atoms, the aryl group having 6 to 60 carbon atoms, or the heteroaryl group having 2 to 60 carbon atoms.
  12. 제 1 항에 있어서,The method of claim 1,
    도핑층 및 비도핑층을 기본 반복단위로 2회 내지 4회 반복되는 구조를 포함하는 유기전자소자.An organic electronic device comprising a structure in which the doped layer and the undoped layer are repeated two to four times in basic repeating units.
  13. 제 1 항 또는 제 12 항에 있어서,The method according to claim 1 or 12,
    제1 전극과 발광층 사이에 형성되는 도핑층 및 비도핑층이 반복되는 구조의 전체 두께는 500 Å 내지 3000 Å 범위인 유기전자소자.An organic electronic device having a total thickness of a structure in which a doped layer and an undoped layer formed between the first electrode and the light emitting layer are repeated is in a range of 500 kV to 3000 kV.
  14. 제 1 항 또는 제 12 항에 있어서,The method of claim 1 or 12,
    도핑층의 두께는 50 Å 내지 400 Å이고,The thickness of the doping layer is 50 kPa to 400 kPa,
    비도핑층의 두께는 200 Å 내지 2000 Å인 유기전자소자.The thickness of the undoped layer is 200 kPa to 2000 kPa organic electronic device.
  15. 제 1 항에 있어서,The method of claim 1,
    제1 전극과 발광층 사이에는, 도핑층 및 비도핑층을 기본 반복단위로 2회 반복되는 구조를 포함하는 유기전자소자.An organic electronic device comprising a structure in which a doped layer and an undoped layer are repeated twice in basic repeating units between the first electrode and the light emitting layer.
  16. 제 15항에 있어서,The method of claim 15,
    제1 전극과 발광층 사이에는,Between the first electrode and the light emitting layer,
    50 Å 내지 200 Å 두께의 제1 도핑층;A first doped layer having a thickness of 50 kV to 200 kV;
    300 Å 내지 650 Å 두께의 제1 비도핑층;A first undoped layer having a thickness of 300 kPa to 650 kPa;
    50 Å 내지 200 Å 두께의 제2 도핑층; 및A second doped layer having a thickness of 50 kV to 200 kV; And
    300 Å 내지 1500 Å 두께의 제2 비도핑층을 포함하는 유기전자소자.An organic electronic device comprising a second undoped layer having a thickness of 300 GPa to 1500 GPa.
  17. 제 15 항에 있어서,The method of claim 15,
    발광층은 400 nm 내지 500 nm 범위에서 발광피크를 가지며,The light emitting layer has a light emitting peak in the range of 400 nm to 500 nm,
    제1 전극과 발광층 사이에는,Between the first electrode and the light emitting layer,
    80 Å내지 120 Å 두께의 제1 도핑층;A first doped layer having a thickness of 80 kPa to 120 kPa;
    450 Å 내지 550 Å 두께의 제1 비도핑층;A first undoped layer having a thickness of 450 kPa to 550 kPa;
    80 Å 내지 120 Å 두께의 제2 도핑층; 및A second doped layer having a thickness of 80 kV to 120 kV; And
    600 Å 내지 800 Å 두께의 제2 비도핑층을 포함하는 유기전자소자. An organic electronic device comprising a second undoped layer having a thickness of 600 kPa to 800 kPa.
  18. 제 15 항에 있어서,The method of claim 15,
    발광층은 500 nm 내지 600 nm 범위에서 발광피크를 가지며,The light emitting layer has a light emitting peak in the range of 500 nm to 600 nm,
    제1 전극과 발광층 사이에는,Between the first electrode and the light emitting layer,
    80 Å 내지 120 Å 두께의 제1 도핑층;A first doped layer having a thickness of 80 kV to 120 kV;
    450 Å 내지 550 Å 두께의 제1 비도핑층;A first undoped layer having a thickness of 450 kPa to 550 kPa;
    80 Å 내지 120 Å 두께의 제2 도핑층; 및A second doped layer having a thickness of 80 kV to 120 kV; And
    850 Å 내지 1200 Å 두께의 제2 비도핑층을 포함하는 유기전자소자.An organic electronic device comprising a second undoped layer of 850 1200 to 1200 Å thickness.
  19. 제 15 항에 있어서,The method of claim 15,
    발광층은 600 nm 내지 700 nm 범위에서 발광피크를 가지며,The light emitting layer has a light emitting peak in the range of 600 nm to 700 nm,
    제1 전극과 발광층 사이에는,Between the first electrode and the light emitting layer,
    80 Å 내지 120 Å 두께의 제1 도핑층;A first doped layer having a thickness of 80 kV to 120 kV;
    450 Å 내지 550 Å 두께의 제1 비도핑층;A first undoped layer having a thickness of 450 kPa to 550 kPa;
    80 Å내지 120 Å 두께의 제2 도핑층; 및A second doped layer having a thickness of 80 kPa to 120 kPa; And
    1300 Å 내지 1600 Å 두께의 제2 비도핑층을 포함하는 유기전자소자.An organic electronic device comprising a second undoped layer having a thickness of 1300 kPa to 1600 kPa.
  20. 제 1 항에 있어서,The method of claim 1,
    도핑층 및 비도핑층의 반복 구조와 발광층 사이에 형성된 전자 저지층을 더 포함하는 유기전자소자.An organic electronic device further comprising an electron blocking layer formed between the repeating structure of the doped layer and the undoped layer and the light emitting layer.
  21. 제 20 항에 있어서,The method of claim 20,
    전자 저지층은 발광층에 인접되도록 형성되는 것을 특징으로 하는 유기전자소자.The electron blocking layer is formed to be adjacent to the light emitting layer.
  22. 제1 전극 상에 정공 수송성 화합물 및 P형 도펀트를 포함하는 도핑층을 형성하는 단계; 및 Forming a doping layer comprising a hole transporting compound and a P-type dopant on the first electrode; And
    형성된 도핑층 위에 상기 정공 수송성 화합물을 포함하는 비도핑층을 형성하는 단계를 포함하는 유기전자소자의 제조방법.A method of manufacturing an organic electronic device comprising forming a non-doped layer including the hole transport compound on the formed doped layer.
  23. 제 22 항에 있어서,The method of claim 22,
    도핑층을 형성하는 단계; 및 비도핑층을 형성하는 단계를 2회 내지 4회 반복하는 것을 특징으로 하는 유기전자소자의 제조방법.Forming a doped layer; And forming the undoped layer twice or four times.
  24. 제 22 항에 있어서,The method of claim 22,
    도핑층을 형성하는 단계 및 비도핑층을 형성하는 단계 중 어느 하나 이상은, 증착 공정을 통해 수행하는 것을 특징으로 하는 유기전자소자의 제조방법.At least one of the steps of forming the doped layer and the step of forming the undoped layer, manufacturing method of an organic electronic device, characterized in that performed through the deposition process.
  25. 제 24 항에 있어서,The method of claim 24,
    도핑층을 형성하는 단계 및 비도핑층을 형성하는 단계는, 증착 공정을 통해 동일 챔버 내에서 수행하는 것을 특징으로 하는 유기전자소자의 제조방법.Forming the doped layer and the step of forming the undoped layer, a method of manufacturing an organic electronic device, characterized in that performed in the same chamber through a deposition process.
  26. 제 22 항에 있어서,The method of claim 22,
    도핑층을 형성하는 단계는, 정공 수송성 화합물과 P형 도펀트의 동시 증착을 통해 수행하는 것을 특징으로 하는 유기전자소자의 제조방법.Forming the doping layer is a method of manufacturing an organic electronic device, characterized in that carried out through the simultaneous deposition of a hole-transporting compound and a P-type dopant.
  27. 제 26 항에 있어서,The method of claim 26,
    도핑층을 형성하는 단계는,Forming the doping layer,
    정공 수송성 화합물은 1 Å/sec 내지 5 Å/sec의 속도로 증착하고, 동시에 P형 도펀트는 0.005 Å/sec내지 0.3 Å/sec의 속도로 증착하는 과정을 포함하는 것을 특징으로 하는 유기전자소자의 제조방법.The hole transport compound is deposited at a rate of 1 kW / sec to 5 kW / sec, and at the same time, the P-type dopant is deposited at a rate of 0.005 kW / sec to 0.3 kW / sec. Manufacturing method.
  28. 제 22 항에 있어서,The method of claim 22,
    도핑층을 형성하는 단계 이전에,Prior to forming the doped layer,
    도핑층에 포함되는 P형 도펀트와 동일한 화합물을 이용하여 중간층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 유기전자소자의 제조방법.The method of manufacturing an organic electronic device, further comprising the step of forming an intermediate layer using the same compound as the P-type dopant included in the doping layer.
PCT/KR2012/007030 2011-09-02 2012-09-01 Organic electronic device and method for manufacturing same WO2013032304A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0089265 2011-09-02
KR20110089265 2011-09-02
KR10-2012-0006806 2012-01-20
KR20120006806 2012-01-20

Publications (2)

Publication Number Publication Date
WO2013032304A2 true WO2013032304A2 (en) 2013-03-07
WO2013032304A3 WO2013032304A3 (en) 2013-05-02

Family

ID=47757091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007030 WO2013032304A2 (en) 2011-09-02 2012-09-01 Organic electronic device and method for manufacturing same

Country Status (2)

Country Link
KR (2) KR101320449B1 (en)
WO (1) WO2013032304A2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034795A1 (en) * 2012-08-31 2014-03-06 出光興産株式会社 Aromatic amine derivative, and organic electroluminescent element using same
JP2015502338A (en) * 2011-10-27 2015-01-22 メルク パテント ゲーエムベーハー Materials for electronic devices
CN104362254A (en) * 2014-09-30 2015-02-18 中山大学 Organic light emitting device with composite hole-injection layer
CN104681730A (en) * 2015-02-09 2015-06-03 桂林电子科技大学 Ultraviolet organic electroluminescence device based on gradient structure hole injection transmission and preparation method thereof
US20150228915A1 (en) * 2013-06-14 2015-08-13 Samsung Display Co., Ltd. Organic light-emitting devices
EP2978040A1 (en) * 2014-07-22 2016-01-27 Samsung Display Co., Ltd. Organic light-emitting device
JP2016084333A (en) * 2014-10-29 2016-05-19 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Amine derivative, material for organic electroluminescence element and organic electroluminescence element using same
US9634263B2 (en) 2013-03-26 2017-04-25 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, display device, electronic device, and lighting device
EP3104427A4 (en) * 2013-12-31 2017-04-26 Kunshan New Flat Panel Display Technology Center Co., Ltd. Organic light-emitting display device and top emitting oled device for improving viewing angle characteristics
US9871203B2 (en) 2012-02-10 2018-01-16 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, organic electroluminescent element and electronic device
US9972787B2 (en) 2014-09-25 2018-05-15 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
CN108929261A (en) * 2017-05-26 2018-12-04 东进世美肯株式会社 Coating formation compound and organic luminescent device comprising it
CN109206324A (en) * 2017-07-07 2019-01-15 东进世美肯株式会社 Compounds and organic luminescent device comprising it
EP3343660A4 (en) * 2015-08-28 2019-05-15 Boe Technology Group Co. Ltd. Organic electroluminescence component and manufacturing method thereof, and display device
CN111384279A (en) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 Quantum dot light-emitting diode
CN111808013A (en) * 2020-08-19 2020-10-23 吉林奥来德光电材料股份有限公司 Light-emitting auxiliary material, preparation method thereof and organic electroluminescent device
CN111875592A (en) * 2020-08-04 2020-11-03 吉林奥来德光电材料股份有限公司 Compound, preparation method thereof and organic light-emitting device
CN112624990A (en) * 2019-10-08 2021-04-09 广州华睿光电材料有限公司 Nitrogen-containing heterocycle substituted cyclopropane compound and application thereof
CN114105786A (en) * 2020-09-01 2022-03-01 广州华睿光电材料有限公司 Arylamine compound and application thereof in organic electroluminescent device
CN114149358A (en) * 2021-12-22 2022-03-08 安徽秀朗新材料科技有限公司 Pyrene and carbazole based aromatic amine compound, preparation method thereof and application of pyrene and carbazole based aromatic amine compound as organic electroluminescent material

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102066437B1 (en) * 2013-07-02 2020-01-15 덕산네오룩스 주식회사 An organic electronic element comprising a layer for improving light efficiency, and an electronic device comprising the same
KR102072756B1 (en) * 2013-09-17 2020-02-03 덕산네오룩스 주식회사 Organic electronic element using a compound for organic electronic element, and an electronic device thereof
KR102207563B1 (en) * 2013-10-29 2021-01-27 삼성디스플레이 주식회사 Organic light emitting display devices and methods of manufacturing organic light emitting display devices
KR102175791B1 (en) * 2013-12-03 2020-11-09 엘지디스플레이 주식회사 Organic compounds and organic light emitting diode device comprising the same
KR102273045B1 (en) * 2014-02-14 2021-07-06 삼성디스플레이 주식회사 An organic light emitting device
KR102336687B1 (en) * 2014-02-14 2021-12-08 삼성디스플레이 주식회사 An organic light emitting device
JP6506534B2 (en) * 2014-11-07 2019-04-24 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
CN107109213B (en) * 2014-12-30 2020-05-22 陶氏环球技术有限责任公司 Fluorene derivatives as light-emitting elements for electroluminescent devices
KR102617840B1 (en) * 2015-11-26 2023-12-26 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
CN106316926A (en) * 2016-07-22 2017-01-11 吉林奥来德光电材料股份有限公司 Compound containing pyrene and carbazole groups and preparation method and application thereof
KR102386707B1 (en) * 2017-09-20 2022-04-14 삼성디스플레이 주식회사 Organic light emitting diode and display device including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040051507A (en) * 2002-12-11 2004-06-18 주식회사 엘지화학 Electroluminescent devices with low work funciotn anode
KR20070093881A (en) * 2006-03-14 2007-09-19 주식회사 엘지화학 Organic light emitting diode having high efficiency and method for fabricating the same
KR20090013388A (en) * 2007-08-01 2009-02-05 삼성모바일디스플레이주식회사 Organic light emitting device
KR20090035729A (en) * 2006-11-24 2009-04-10 이데미쓰 고산 가부시키가이샤 Aromatic amine derivative and organic electroluminescent element using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040051507A (en) * 2002-12-11 2004-06-18 주식회사 엘지화학 Electroluminescent devices with low work funciotn anode
KR20070093881A (en) * 2006-03-14 2007-09-19 주식회사 엘지화학 Organic light emitting diode having high efficiency and method for fabricating the same
KR20090035729A (en) * 2006-11-24 2009-04-10 이데미쓰 고산 가부시키가이샤 Aromatic amine derivative and organic electroluminescent element using the same
KR20090013388A (en) * 2007-08-01 2009-02-05 삼성모바일디스플레이주식회사 Organic light emitting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KWON, J. W. ET AL.: 'Light-emitting characteristics of organic light-emitting diodes with the MoOx-doped NPB and C60/LiF layer.' THIN SOLID FILMS vol. 518, no. ISSUE, 2010, pages 6339 - 6342 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502338A (en) * 2011-10-27 2015-01-22 メルク パテント ゲーエムベーハー Materials for electronic devices
US9812643B2 (en) 2011-10-27 2017-11-07 Merck Patent Gmbh Materials for electronic devices
US9871203B2 (en) 2012-02-10 2018-01-16 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, organic electroluminescent element and electronic device
US10014477B2 (en) 2012-08-31 2018-07-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
US11444246B2 (en) 2012-08-31 2022-09-13 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
US11362279B2 (en) 2012-08-31 2022-06-14 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
WO2014034795A1 (en) * 2012-08-31 2014-03-06 出光興産株式会社 Aromatic amine derivative, and organic electroluminescent element using same
US10446766B2 (en) 2013-03-26 2019-10-15 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, display device, electronic device, and lighting device
US9634263B2 (en) 2013-03-26 2017-04-25 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, display device, electronic device, and lighting device
US10347847B2 (en) 2013-03-26 2019-07-09 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, display device, electronic device, and lighting device
US20150228915A1 (en) * 2013-06-14 2015-08-13 Samsung Display Co., Ltd. Organic light-emitting devices
US10840454B2 (en) * 2013-06-14 2020-11-17 Samsung Display Co., Ltd. Organic light-emitting devices
EP3104427A4 (en) * 2013-12-31 2017-04-26 Kunshan New Flat Panel Display Technology Center Co., Ltd. Organic light-emitting display device and top emitting oled device for improving viewing angle characteristics
EP2978040A1 (en) * 2014-07-22 2016-01-27 Samsung Display Co., Ltd. Organic light-emitting device
US10333076B2 (en) 2014-09-25 2019-06-25 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
US10333075B2 (en) 2014-09-25 2019-06-25 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
US9972787B2 (en) 2014-09-25 2018-05-15 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
CN104362254A (en) * 2014-09-30 2015-02-18 中山大学 Organic light emitting device with composite hole-injection layer
JP2016084333A (en) * 2014-10-29 2016-05-19 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Amine derivative, material for organic electroluminescence element and organic electroluminescence element using same
CN104681730A (en) * 2015-02-09 2015-06-03 桂林电子科技大学 Ultraviolet organic electroluminescence device based on gradient structure hole injection transmission and preparation method thereof
EP3343660A4 (en) * 2015-08-28 2019-05-15 Boe Technology Group Co. Ltd. Organic electroluminescence component and manufacturing method thereof, and display device
US10566565B2 (en) 2015-08-28 2020-02-18 Boe Technology Group Co., Ltd. Organic light emitting device and method of fabricating the same, and display device
CN108929261A (en) * 2017-05-26 2018-12-04 东进世美肯株式会社 Coating formation compound and organic luminescent device comprising it
CN109206324A (en) * 2017-07-07 2019-01-15 东进世美肯株式会社 Compounds and organic luminescent device comprising it
CN111384279A (en) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 Quantum dot light-emitting diode
CN111384279B (en) * 2018-12-29 2021-06-22 Tcl科技集团股份有限公司 Quantum dot light-emitting diode
CN112624990A (en) * 2019-10-08 2021-04-09 广州华睿光电材料有限公司 Nitrogen-containing heterocycle substituted cyclopropane compound and application thereof
CN111875592A (en) * 2020-08-04 2020-11-03 吉林奥来德光电材料股份有限公司 Compound, preparation method thereof and organic light-emitting device
CN111808013A (en) * 2020-08-19 2020-10-23 吉林奥来德光电材料股份有限公司 Light-emitting auxiliary material, preparation method thereof and organic electroluminescent device
CN114105786A (en) * 2020-09-01 2022-03-01 广州华睿光电材料有限公司 Arylamine compound and application thereof in organic electroluminescent device
CN114105786B (en) * 2020-09-01 2023-11-28 广州华睿光电材料有限公司 Aromatic amine compound and application thereof in organic electroluminescent device
CN114149358A (en) * 2021-12-22 2022-03-08 安徽秀朗新材料科技有限公司 Pyrene and carbazole based aromatic amine compound, preparation method thereof and application of pyrene and carbazole based aromatic amine compound as organic electroluminescent material

Also Published As

Publication number Publication date
KR101320449B1 (en) 2013-10-23
KR20130025799A (en) 2013-03-12
WO2013032304A3 (en) 2013-05-02
KR101290185B1 (en) 2013-07-30
KR20130025854A (en) 2013-03-12

Similar Documents

Publication Publication Date Title
WO2013032304A2 (en) Organic electronic device and method for manufacturing same
WO2020105990A1 (en) Novel boron compound and organic light-emitting device comprising same
WO2017090918A1 (en) Compound for organic electronic element, organic electronic element using same, and electronic device comprising same
WO2017122978A1 (en) Compound for organic electronic element, organic electronic element using same, and electronic device manufactured therewith
WO2016117848A1 (en) Compound for organic light-emitting device and organic light-emitting device comprising same
WO2020106032A1 (en) Novel boron compound and organic light-emitting device comprising same
WO2017057976A1 (en) Spiro compound and organic light emitting element comprising same
WO2013122364A2 (en) Compound for organic electrical element, organic electrical element comprising same, and electronic device therewith
WO2015108377A1 (en) Compound for organic electronic element, organic electronic element using same, and electronic device thereof
WO2013108997A1 (en) Compound for organic electronic device, and organic electronic device and electronic apparatus comprising same
WO2019240464A1 (en) Organic light-emitting device
WO2013191428A1 (en) Nitrogen-containing heterocyclic compound and organic electronic element comprising same
WO2016129861A1 (en) Novel compound for organic electric element, organic electric element using same, and electronic device comprising same
WO2016105161A2 (en) Organic compound and organic electroluminescent element comprising same
WO2016129867A1 (en) Novel compound for organic electric element, organic electric element using same, and electronic device comprising same
WO2017131483A1 (en) Spiro-structured compound and organic electronic device comprising same
WO2017086724A1 (en) Spiro compound and organic light-emitting element comprising same
WO2020159279A1 (en) Polycyclic compound and organic light-emitting element comprising same
WO2021230651A1 (en) Organic electronic element comprising compound for organic electronic element, and electronic device thereof
WO2020242165A1 (en) Organic compound and organic electric field light-emitting device comprising same
WO2021162347A1 (en) Novel boron compound, and organic light-emitting element comprising same
WO2020050563A1 (en) Organic light emitting diode
WO2014084619A1 (en) Novel compound, and light-emitting element and electronic device comprising same
WO2016105123A2 (en) Organic compound and organic electroluminescent device comprising same
WO2016089165A2 (en) Novel compound and organic light emitting element comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827878

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827878

Country of ref document: EP

Kind code of ref document: A2