WO2013032232A2 - 기판 처리 장치, 이를 이용한 비정질 탄소막 형성 방법 및 반도체 소자의 갭필 방법 - Google Patents

기판 처리 장치, 이를 이용한 비정질 탄소막 형성 방법 및 반도체 소자의 갭필 방법 Download PDF

Info

Publication number
WO2013032232A2
WO2013032232A2 PCT/KR2012/006911 KR2012006911W WO2013032232A2 WO 2013032232 A2 WO2013032232 A2 WO 2013032232A2 KR 2012006911 W KR2012006911 W KR 2012006911W WO 2013032232 A2 WO2013032232 A2 WO 2013032232A2
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
chamber
power
substrate support
shower head
Prior art date
Application number
PCT/KR2012/006911
Other languages
English (en)
French (fr)
Other versions
WO2013032232A9 (ko
WO2013032232A3 (ko
Inventor
박근오
권준혁
서경천
반원진
Original Assignee
주식회사 테스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110087654A external-priority patent/KR101304215B1/ko
Priority claimed from KR1020110103934A external-priority patent/KR101254485B1/ko
Priority claimed from KR1020110133558A external-priority patent/KR101325557B1/ko
Priority claimed from KR1020120044225A external-priority patent/KR101353258B1/ko
Application filed by 주식회사 테스 filed Critical 주식회사 테스
Publication of WO2013032232A2 publication Critical patent/WO2013032232A2/ko
Publication of WO2013032232A9 publication Critical patent/WO2013032232A9/ko
Publication of WO2013032232A3 publication Critical patent/WO2013032232A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32577Electrical connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a substrate processing apparatus, an amorphous carbon film forming method using the same, and a gap fill method of a semiconductor device, and more particularly, to a substrate processing apparatus using plasma, an amorphous carbon film forming method using the same, and a gap fill method of a semiconductor device.
  • Typical substrate processing apparatuses for performing deposition by discharging plasma include a chamber, a substrate support disposed in the chamber to support the substrate, a shower head disposed opposite the substrate support to inject raw materials toward the substrate, and a chamber inner wall. And a ceramic liner disposed between and the showerhead to electrically insulate the chamber and the showerhead.
  • a conventional substrate processing apparatus 10 includes a chamber 100 having an inner space, a substrate support 210 supporting a substrate S introduced into the chamber 100, and a chamber 100.
  • the substrate support portion 210 includes a shower head 300 for spraying the raw material toward the substrate (S), the shower head 300 is applied to the raw material supply unit 110 for supplying the raw material and RF power Is connected to the RF power supply 600 is.
  • the substrate support 210 is grounded.
  • the amorphous carbon film is formed by the conventional substrate processing apparatus as described above, ions are not accelerated when they are incident on the substrate surface, and ions of low energy collide with the substrate surface. Therefore, the amorphous carbon film excellent in etching resistance cannot be manufactured, and it becomes a factor which reduces the precision of a fine pattern.
  • the gap fill process is performed with the conventional substrate processing apparatus as described above, as shown in FIG. Will accumulate. As a result, an overhang occurs on the gap pattern during the formation of the amorphous carbon layer to block the inlet of the gap pattern formed on the substrate, so that the inside of the gap is not completely filled and voids are likely to occur.
  • An object of the present invention is to provide a substrate processing apparatus having an extended ground region.
  • Another object of the present invention is to provide an amorphous carbon film forming method that can improve the etching resistance.
  • Another problem to be solved by the present invention is to provide a method that can proceed the gap fill process that can suppress the generation of voids.
  • the substrate processing apparatus of the present invention includes a chamber having an internal space, a substrate support disposed in the chamber, disposed on the substrate support, disposed to face the substrate support, injecting raw materials toward the substrate, and grounded to one end of the chamber. It may be connected to the inner wall, and the other end is connected to the shower head, it may include a connecting member for electrically connecting the chamber inner wall and the shower head, to extend the ground area inside the chamber.
  • connection member may have a ring shape having upper and lower sides open and having an inner space.
  • One surface of the shower head facing the substrate support and one surface of the connection member may be positioned on the same horizontal surface.
  • a liner may be installed between the showerhead and the connection member, and the connection member may be installed to surround an outer circumferential surface of at least one of the showerhead and the liner.
  • the substrate support may be connected to a power supply for supplying RF power.
  • a DC power source having a voltage of -100 V to -800 V may be applied to the substrate support.
  • the DC power supply may be pulsed and applied.
  • Plasma treating the surface of the amorphous carbon film may be further included.
  • the power of the RF power source applied in the plasma treatment of the surface of the amorphous carbon film may be treated at a lower power than the RF power of the step of forming the amorphous carbon film.
  • Purge may be performed in the step of plasma treating the surface of the amorphous carbon film.
  • the gap fill method of the present invention includes loading a substrate having a gap pattern into the substrate support of a substrate processing apparatus having a shower head and a substrate support facing each other in a chamber, wherein the gap is formed through the shower head. Spraying a process gas toward a substrate, grounding the chamber and the showerhead, and applying a DC power source for applying a negative potential to the substrate support and an RF power source for generating plasma, using an amorphous carbon film on the substrate.
  • the method may include filling the gap pattern.
  • the DC power may be applied by pulsed.
  • the power of the RF power may be applied to the RF power in the range of 200W to 1500W.
  • the process gas may include acetylene (C 2 H 2), helium (He), and argon (Ar).
  • the process gas may include at least one of acetylene (C 2 H 2) and propene (C 3 H 6) and oxygen (O 2).
  • a filter for protecting the supply unit to which the DC power is supplied from the RF power source may be further connected to the substrate support.
  • the film density and etching resistance of the thin film formed on the substrate are improved.
  • the uniformity of the substrate processing process is improved.
  • the grounding area can be easily expanded by a simple method of additionally installing the connection member according to the embodiments of the present invention in the apparatus in which the liner is installed as in the related art.
  • the amorphous carbon film forming method of the present invention improves the energy of ions moving toward the substrate. In addition, it is possible to produce an amorphous carbon film with improved etching resistance compared to the prior art. When such an amorphous carbon film is used as a hard mask, a fine pattern can be easily manufactured, and the precision of the fine pattern can be improved.
  • the gapfill method of the present invention can reduce the generation of voids in the gap pattern by the overhang phenomenon.
  • the inclusion of oxygen in the process gas can further reduce the generation of voids in the gap pattern.
  • FIG. 1 is a schematic cross-sectional view showing a conventional substrate processing apparatus.
  • FIG. 2 is a conceptual cross-sectional view schematically illustrating a result of a gapfill process using the substrate processing apparatus shown in FIG. 1.
  • FIG 3 is a cross-sectional view showing a substrate processing apparatus provided with a connection member according to a first embodiment of the present invention.
  • connection member 4 is a cross-sectional view for explaining a connection member having one end connected to the chamber inner wall and the other end connected to the shower head according to the first embodiment of the present invention.
  • connection member 5 is a cross-sectional view illustrating a connection member having one end connected to the chamber inner wall and the other end connected to the shower head according to the second embodiment of the present invention.
  • connection member 6 is a cross-sectional view for explaining a connection member having one end connected to the chamber inner wall and the other end connected to the shower head according to the third embodiment of the present invention.
  • FIG. 7 is a cross-sectional view illustrating a substrate processing apparatus according to a fourth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view illustrating a substrate processing apparatus according to a fifth embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a method of forming an amorphous carbon film on a substrate using a substrate processing apparatus according to a fifth embodiment of the present invention.
  • FIG. 10 is a graph showing film loss according to whether DC power is applied together with RF power when forming an amorphous carbon film.
  • 11 is a graph showing the change in film loss according to the size of the DC power supply.
  • FIG. 13 is a graph showing film loss characteristics according to changes in DC voltage and pressure.
  • FIG. 14 is a graph schematically showing film loss characteristics according to voltage, RF power, and pressure change.
  • 15 and 16 are diagrams for explaining the difference between the substrate processing apparatuses shown in FIGS. 1 and 8, and are conceptual views showing electric charges applied by the substrate processing apparatus of FIGS. 1 and 8, respectively.
  • 17 is a flowchart illustrating a method of forming an amorphous carbon film according to a sixth embodiment of the present invention.
  • FIG. 18 is a graph illustrating a change in etching resistance according to a pulsed DC voltage application time in the plasma processing process.
  • 19 is a graph illustrating a change in etching resistance according to a voltage size when a pulsed DC voltage is applied in a plasma processing process.
  • FIG. 21 is a conceptual cross-sectional view schematically illustrating a result of performing a gapfill process using the substrate processing apparatus shown in FIG. 8.
  • FIG. 22 is a flowchart illustrating a gapfill method according to a seventh embodiment of the present invention.
  • FIG. 23 is a TEM photograph showing a result of applying a DC voltage of ⁇ 450 V to a substrate support of the substrate processing apparatus of FIG. 8 and supplying 10 sccm of acetylene (C2H2).
  • FIG. 24 is a partially enlarged photograph of FIG. 23.
  • FIG. 25 is a TEM photograph showing a result of applying a DC voltage of ⁇ 850 V to a substrate support of the substrate processing apparatus of FIG. 8 and supplying 10 sccm of acetylene (C 2 H 2).
  • FIG. 26 is a partially enlarged photograph of FIG. 25.
  • FIG. 27 is a TEM photograph showing a result of applying a DC voltage of ⁇ 850 V to a substrate support of the substrate processing apparatus of FIG. 8 and supplying 20 sccm of acetylene (C 2 H 2).
  • FIG. 28 is a partially enlarged photograph of FIG. 27.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • 3 is a cross-sectional view showing a substrate processing apparatus provided with a connection member according to a first embodiment of the present invention.
  • 4 is a cross-sectional view for explaining a connection member having one end connected to the chamber inner wall and the other end connected to the shower head according to the first embodiment of the present invention.
  • 5 is a cross-sectional view illustrating a connection member having one end connected to the chamber inner wall and the other end connected to the shower head according to the second embodiment of the present invention.
  • 6 is a cross-sectional view for explaining a connection member having one end connected to the chamber inner wall and the other end connected to the shower head according to the third embodiment of the present invention.
  • a substrate processing apparatus may include a chamber 2100 having an internal space, a substrate support unit 2200 supporting a substrate S introduced into the chamber 2100, and a substrate support unit.
  • the shower head which is disposed in the chamber 2100 of the power supply unit 2420 that applies the RF power to the 2200 and is opposed to one side of the substrate support unit 2200 to inject the raw material toward the substrate S and is grounded. 2300 and the outside of the shower head 2300, one end is connected to the inner wall of the chamber 2100 and the other end is connected to the shower head 2300, thereby electrically connecting the inner wall and the shower head 2300 to the chamber 2100.
  • a connecting member 2800 to be connected.
  • a liner disposed between the raw material supply line 2110 for supplying raw materials to the shower head 2300 and the shower head 2300 and the connection member 2800 to surround the outer circumferential surface of the shower head 2300. (2500).
  • the chamber 2100 is manufactured to have a cylindrical shape with an empty inside, and a predetermined reaction space for processing the substrate S is provided therein.
  • the shape of the chamber 2100 is not limited to a cylindrical shape, and may be manufactured in various shapes in which an internal space capable of processing the substrate S is provided.
  • the chamber 2100 according to the embodiment has an interior space, and includes a chamber body 2101 having an open top and a chamber lid 2102 covering an upper portion of the chamber body 2101.
  • the inner wall of the chamber 2100 is electrically connected to the showerhead 2300 grounded by the connection member 2800, which will be described later, and serves as a ground region.
  • the chamber 2100 may be integrally formed with the chamber body 2101 and the chamber lid 2102, or may be separately formed into an upper chamber and a lower chamber.
  • the chamber 2100 is provided with an exhaust part for exhausting the inside of the chamber 2100, a substrate entrance for entering and exiting the substrate S, and a pressure adjusting part for adjusting the pressure inside the chamber.
  • the substrate supporting unit 2200 is installed in the chamber 2100, and the substrate S introduced into the chamber 2100, for example, a substrate supporting part 2210 on which a wafer is placed, and a shaft supporting the substrate supporting part 2210. 2222 and a power unit 2222 that raises or lowers the shaft 2221.
  • the substrate support 2210 according to the embodiment may be made of, for example, a circular plate and coated with a dielectric material on the surface thereof, and a heater may be embedded in the substrate support 2210.
  • the shape of the substrate support part 2210 is not limited to a circle, and may be manufactured in various shapes corresponding to the substrate S. FIG.
  • the shaft 2221 supports the substrate support part 2210, one end of which is connected to a lower part of the substrate support part 2210 disposed in the chamber 2100, and the other end protrudes into the chamber 2100 to be connected to the power unit 2222.
  • a power supply line 2410 is inserted into and installed in the substrate support part 2210 and the shaft 2221, and one end of the power supply line 2410 is connected to the substrate support part 2210 and the other end of the power supply part providing RF power ( 2420).
  • stainless steel (SUS) is used as the power line 2410.
  • the shower head 2300 is disposed on the upper side of the substrate support part 2210, and the inner space receiving the raw material from the raw material supply line 2110 and the plurality of injection holes 2211 for spraying the raw material toward the substrate S.
  • the shower head 2300 according to the embodiment is made of a metal, for example, using a stainless steel (SUS) in the shape of a circular cross section, it is grounded (ground).
  • the material for manufacturing the shower head 2300 is not limited to stainless steel (SUS), and may be made of various materials of electrical conductivity, and may be manufactured in various shapes corresponding to the shape of the substrate (S).
  • a portion of the upper portion protrudes out of the chamber 2100, but the present invention is not limited thereto, and the entire shower head 2300 is disposed in the chamber 2100. May be
  • the liner 2500 insulates the showerhead 2300 from the inner wall of the chamber 2100 around the showerhead 2300. As shown in FIGS. 3 to 4, the liner 2500 surrounds the outer portion of the showerhead 2300. It is installed to be cheap. That is, the liner 2500 is manufactured in a ring or hollow shape in which the upper and lower sides are open and the inside is empty, and is installed to surround the lateral outer surface of the shower head 2300.
  • the liner 2500 according to the embodiment is manufactured in a circular ring shape using a ceramic material. However, the liner 2500 is not limited thereto, and may be changed to various shapes corresponding to the shape of the shower head 2300 using an insulating material.
  • the length of the liner 2500 according to the embodiment is made to correspond to the length of the up and down direction of the shower head 2300, so that any one of the liner 2500 and the shower head 2300 does not protrude downward. Do not.
  • connection member 2800 electrically connects the inner wall of the chamber 2100 and the shower head 2300 so that the inner wall of the chamber 2100 is grounded.
  • the connection member 2800 is disposed outside at least one of the liner 2500 and the shower head 2300, one end of which is connected to the inner wall of the chamber 2100, and the other end of which is connected to the showerhead 2300.
  • the connection member 2800 is manufactured in a ring or hollow shape in which the upper and lower sides are opened and the inside is empty, so that at least one of the liner 2500 and the shower head 2300 is disposed in an inner direction thereof. It is desirable to be arranged.
  • the connection member 2800 may be made of an electrically conductive material, for example, stainless steel (SUS) or aluminum (Al) alloy.
  • SUS stainless steel
  • Al aluminum
  • the present invention is not limited thereto and may be manufactured using various conductive materials capable of electrically connecting the chamber 2100 and the shower head 2300.
  • the length in the vertical direction of the liner 2500 corresponds to the length in the vertical direction of the shower head 2300, so that the liner 2500 and the shower head 2300 may be formed.
  • the bottom surface may be located on the same horizontal surface. Accordingly, the shower head 2300 is exposed in the chamber 2100, that is, the area where the injection hole 2211 is located.
  • the connection member 2800 surrounds the outer circumferential surface of the liner 2500, and one end thereof is connected to the inner wall of the chamber 2100, and the other end thereof is connected to the bottom surface of the shower head 2300. It is installed to be connected.
  • the shape viewed from the top is a circular ring, and the shape of the cross-sectional view cut in the up-down direction is the ' ⁇ ' and the ' ⁇ ' of the Korean consonant.
  • the inverted ' ⁇ ' can be made to face each other.
  • the upper and lower extension members 2810, the liner 2500, or the shower heads extending in the vertical direction of the liner 2500 to be in contact with the outer surface of the liner 2500 may be installed.
  • the horizontal extension member 2820 may extend in the width direction of the 2300 to be in contact with a portion of the lower surface of the liner 2500 and the shower head 2300.
  • the vertical extension member 2810 is connected to an upper wall in the chamber 2100, and is spaced apart from the inner wall of the chamber 2100, and a portion of the inner side surface of the horizontal extension member 2820 is liner 2500 and the showerhead ( It is preferable to be connected to the lower surface of 2300.
  • the connection member 2800 is connected to the showerhead 2300 and the upper wall in the chamber 2100 so that the inner wall of the chamber 2100 is specifically grounded. Therefore, there is an effect that the ground area is expanded as compared with the prior art.
  • the horizontal extension member 2820 connected to the lower surface of the liner 2500 and the shower head 2300 is made of a thin plate, so that the area protruding downward of the shower head 2300 is virtually eliminated. Referring to FIG.
  • one end is connected to the inner wall of the chamber 2100 and the other end of the liner 2800 surrounds the outer circumferential surface of the liner 2500. It has been described to be installed to be connected to the 2500 and the lower surface of the shower head (2300). However, the present invention is not limited thereto, and the shape and the installation position of the connection member 2800 may be variously changed according to the shape, the installation position, and the presence or absence of the liner 2500.
  • the connection member 2800 is preferably installed so that the connection member 2800 surrounds the outer circumferential surface of the liner 2500 and the exposed outer surface of the shower head 2300. That is, the vertical extension member 2810 of the connection member 2800 may be connected to the upper wall in the chamber 2100, and the horizontal extension member 2820 may be installed to be connected to the outer surface of the shower head 2300.
  • the lower surface of the connection member 2800 that is, the lower surface of the horizontal extension member 2820 and the lower surface of the shower head 2300 may be disposed on the same horizontal surface. Accordingly, the separation distance h1 between the substrate support part 2210 and the shower head 2300 and the separation distance h2 between the substrate support part 2210 and the lower surface of the connection member 2800 are equal to each other. The density of the generated plasma does not differ from region to region and is uniform.
  • connection member 2800 is additionally installed to electrically connect the showerhead 2300 and the inner wall of the chamber 2100. To extend the ground area. Therefore, in the apparatus in which the liner 2500 is installed as in the related art, the connection member 2800 according to the embodiments of the present invention may be additionally installed, thereby easily expanding the ground area.
  • the difference in the separation distance h1 between the substrate support 2210 and the showerhead 2300 and the separation distance h2 between the substrate support 2210 and the lower surface of the connection member 2800 can be eliminated, thereby making the first implementation possible.
  • the difference between the plasma density generated between the substrate support 2210 and the showerhead 2300 and the plasma density generated between the substrate support 2210 and the inner wall (upper wall) of the chamber 2100 are compared. Can be reduced
  • the liner 2500 may not be installed.
  • the connection member 2800 extends in the vertical direction of the shower head 2300, and the inner surface surrounds the outer surface of the shower head 2300, and the upper portion is installed to be connected to the inner upper wall of the chamber 2100.
  • the shower head 2300 is in direct contact with the inner upper wall of the chamber 2100 and electrically connected to the shower head 2300 to electrically connect the shower head 2300 and the chamber 2100 to the connection member 2800.
  • the connection member 2800 eliminates the distance h1 between the substrate support 2210 and the showerhead 2300 and the separation distance h2 between the substrate support 2210 and the lower surface of the connection member 2800.
  • the plasma density generated between the substrate support 2210 and the showerhead 2300 and the plasma density generated between the substrate support 2210 and the inner wall (upper wall) of the chamber 2100 may be further reduced. have.
  • connection member 2800 may be connected to the shower head 2300.
  • the shower head 2300 may be grounded by electrically connecting the chamber 2100.
  • connection member 2800 according to the first to third embodiments is installed to be connected to the upper wall in the chamber 2100 and spaced apart from the inner sidewall.
  • the present invention is not limited thereto, and the connection member 2800 may be installed to be connected to the sidewall of the chamber 2100.
  • the grounded area is expanded as compared with the related art. That is, not only the shower head 2300 but also the inner wall of the chamber 2100 serves as a ground region, so that the ground region extends in the chamber 2100. Therefore, due to the same effect as the above formula (DC self-bias ⁇ (shower head area / substrate support area) 2), the DC self bias applied to the substrate support 2210 increases. Accordingly, the acceleration of the ions moving toward the substrate S is increased, and the ion energy colliding with the substrate S is increased. For this reason, the thin film formed on the board
  • a uniform plasma may be formed as compared to when only the liner 2500 is installed as in the related art. That is, as in the related art, the flow of electrons may be changed by the insulating liner 2500 to prevent the occurrence of non-uniform plasma. Therefore, there is an effect of improving the uniformity of the amorphous carbon film deposited on the substrate S, for example, the substrate S.
  • FIG. 7 is a cross-sectional view illustrating a substrate processing apparatus according to a fourth embodiment of the present invention.
  • the lower portion of the showerhead 2300 is protruded to the lower side of the upper wall in the chamber 2100.
  • the present invention is not limited thereto, and as shown in FIG. 7, the lower portion of the shower head 2300 does not protrude below the upper wall of the chamber 2100, and the upper wall of the chamber 2100 does not protrude. It may be installed to be positioned on the horizontal.
  • the upper wall of the chamber 2100 and the shower head 2300 are electrically connected to each other.
  • the thickness of the connecting member 2800 can be made thin in the second to third embodiments of the present invention.
  • the connection member 2800 according to the fourth embodiment of the present invention may be a thin thin plate extending in a horizontal direction.
  • FIG. 8 is a cross-sectional view illustrating a substrate processing apparatus according to a fifth embodiment of the present invention.
  • a substrate processing apparatus is a thin film for a hard mask, for example, an apparatus for forming an amorphous carbon layer.
  • the substrate processing apparatus includes a chamber 1100 having an internal space, a substrate support unit 1200 supporting a substrate s drawn into the chamber 1100, and an RF power supply unit applying RF power to the substrate support unit 1200. (1600), the DC power supply unit 1400 for applying DC power to the substrate support unit 1200 and the substrate support unit 1200 is disposed facing the substrate (s) to inject a process gas, the ground (ground) showerhead 1300.
  • the filter 1500 is provided between the RF power supply unit 1600 and the DC power supply unit 1400 and the raw material supply unit 1110, 1120 for supplying a process gas to the shower head (1300).
  • the RF power supply 1600 and the DC power supply 1400 are disposed in parallel with each other, the filter 1500 serves to filter the RF power to protect the DC power supply 1400 from the RF power.
  • FIG. 9 is a flowchart illustrating a method of forming an amorphous carbon film on a substrate using the substrate processing apparatus according to the fifth embodiment shown in FIG. 8.
  • a substrate s for example, a wafer is prepared, and the wafer is introduced into the chamber 1100 to be seated on the substrate support 1210.
  • the substrate support 1210 is preferably such that the distance to the shower head 1300 is less than 2 cm.
  • the plasma discharge may be unstable or an arc may be generated at a high pressure.
  • the RF power supply unit 1100 and the DC power supply unit 1400 are used to supply the RF power and the DC power to the substrate support unit 1210 (S100).
  • the RF power is 800 W to 1500 W
  • the DC voltage is -100 V to -800 V
  • the frequency of the DC power supply is adjusted to be 20 kHz to 200 kHz.
  • the duty ratio of the DC power off (duty ratio) in the duty cycle of the DC power supply (duty ratio) is 10% to 50%
  • the pressure is adjusted to be 1 torr to 7 torr.
  • a process gas such as C 2 H 2, Ar, and He is injected (S200).
  • a plasma is generated between the shower head 1300 and the substrate support 1210, and an amorphous carbon film is formed on the substrate s (S300).
  • the amorphous carbon film according to the embodiment has better etching resistance than the amorphous carbon film formed by a conventional substrate processing apparatus (CVD) and a method.
  • CVD substrate processing apparatus
  • RF power is applied to an upper showerhead, and the showerhead and the substrate support are substantially the same area.
  • the area of the showerhead and the substrate support being substantially the same means that almost no DC self-bias is applied to the substrate placed in the substrate support. Therefore, the moving speed and energy of ions incident toward the substrate are low.
  • the film density and strength of the conventional amorphous carbon film are lower than those of the amorphous carbon film according to the embodiment of the present invention, and the etching resistance of the amorphous carbon film according to the embodiment of the present invention is superior to that of the conventional amorphous carbon film. Do.
  • the change in the etching resistance of the amorphous carbon film according to the change of the process conditions will be described.
  • the same process conditions are the same, and the amorphous carbon film is deposited, and then, the etching process is performed under the same conditions to calculate the removed film thickness. That is, from the initial thickness THK of the amorphous carbon film formed from the respective process conditions, the film thickness remaining after the etching process is measured to calculate the removed film thickness.
  • the removed film thickness is referred to as 'film loss', and the smaller the film loss value, the better the etching resistance.
  • FIG. 10 is a graph showing film loss and film density according to whether DC power is applied together with RF power when forming an amorphous carbon film.
  • two substrates are prepared, and an amorphous carbon film is formed on the two substrates.
  • the remaining process conditions are the same, and DC power is applied only to the substrate support portion on which one of the two substrates is supported.
  • 800 W of RF power was applied to each of the two substrates, and -200 V of DC power was applied to only one of the two substrates to form an amorphous carbon film, and then etching was performed under the same conditions.
  • the film density when DC power (-200 V) is applied when forming the amorphous carbon film is higher than the film density when it is not.
  • the film loss value when the DC power supply (-200 V) is applied together with the RF power supply when forming the amorphous carbon film is smaller than the film loss value when the DC power supply is not applied (DC O V).
  • the etching resistance is better. Therefore, when the DC power is applied, the etching resistance is superior to the case where the DC power is not applied. This is because as the DC power is applied to the substrate support and the acceleration of the ions toward the substrate is increased, the energy at which the ions collide with the substrate surface is increased.
  • the ions do not accelerate toward the substrate or the energy thereof is low, and the energy that collides with the ions and the substrate is small.
  • 11 is a graph showing the change in film loss according to the size of the DC power supply.
  • each of the five boards supplies RF power and DC power, with RF power equal to 800W, DC voltage 0V (no DC power applied), -100 V, -200 V, -300 V,- The difference is 400 V and -800 V to form an amorphous carbon film of 2000 kV.
  • the film loss tends to decrease. This is because as the DC voltage increases from -200 V to -800 V, the acceleration of ions moving toward the substrate increases, so that the energy of collision between the substrate and the ions increases proportionally. In addition, the film loss decreases as the DC voltage increases from 0 V to -100 V, and then the film loss increases again in a section where the DC voltage increases from -100 V to -200 V. On the other hand, the film loss increases in the range of -100 V to -200 V to which the DC voltage is applied, but decreases in the range of -200 V to -800 V.
  • the film loss decreases to 100 in the range of -100 V to -800 V. Low film losses below are produced.
  • the film loss is high at 100 kV or more, and greater than 10 kV compared to the film loss when a DC voltage of -100 V is applied.
  • the difference between the film loss when applying a DC voltage of -200 V and the film loss when applying a DC voltage of -100 V is as small as 3.8 kW. From this, it can be inferred that a large film loss of about 100 kHz will occur in the range of DC voltage above 0 V and below -100 V.
  • the off time ratio of the DC power supplied to the substrate support portion for each of the six substrates is different.
  • 800 W RF power and -750 V, 20 kHz DC power are pulsed and supplied to six substrates to form an amorphous carbon film of 2000 mW.
  • the off time is adjusted to be 0%, 14%, 20%, 30%, 40%, and 50% in the DC power duty cycle supplied to each of the substrate branches.
  • the film loss tends to decrease, and as the off time ratio increases from 40% to 50%, the film loss slightly increases again. From this tendency, it can be inferred that the film loss increases when the off time ratio exceeds 50%. Therefore, according to the experimental results of FIG. 12, even when the DC power is applied, the DC power is alternately ON-OF to be pulsed and supplied, while the DC power is not OFF and continuously applied during the deposition time. Corrosion resistance is relatively good. Further, even when the DC power supply is pulsed and supplied, the etching resistance varies according to the period.
  • the off time ratio of the duty cycle of the DC power supply is less than 10%
  • the time when the DC power is not applied (hereinafter, the off time) is too short, so that the charging state does not disappear even in the off time. Problems may arise.
  • the off time ratio of the duty cycle of the DC power supply is adjusted to be 10% to 50%, thereby forming an amorphous carbon film having improved etching resistance as compared with the related art.
  • FIG. 13 is a graph showing film loss characteristics according to changes in DC voltage and pressure.
  • the film loss of the amorphous carbon film formed under the 4 tor pressure condition is smaller than when 7.5 torr.
  • the film loss of the amorphous carbon film formed under the 4 torr pressure condition is smaller than that when 7.5 torr.
  • the film loss decreases. That is, as the DC voltage increases under the same pressure of 4torr, the etching resistance increases proportionally. As the DC voltage increases from 0 V to -800 V even under the same pressure of 7.5 Torr, the film loss decreases, and the etch resistance increases proportionally as the DC voltage increases under the same pressure. This is because, as described above, when the DC voltage drawn to the substrate under the same pressure is relatively high, the acceleration of ions moving toward the substrate increases.
  • FIG. 14 is a graph schematically showing film loss characteristics according to voltage, RF power, and pressure change. In the following, contents overlapping with the above description will be briefly described or omitted.
  • the corrosion resistance does not increase proportionally with the increase of the DC voltage as in the pressure of 4 torr or more.
  • the pressure is 4 torr and the RF power is equal to 800 W
  • the etching resistance increases proportionally.
  • the pressure is 7.5 torr and the RF power is equal to 800 W
  • the etch resistance is proportionally increased even in the result of FIG. 14 as described above in FIG. Show a tendency.
  • the DC voltage exceeds -800 V, the ion energy directed to the substrate is too large to damage the film, thereby lowering the film density and strength.
  • the etching resistance is improved in the section where the DC voltage is relatively higher than when the pressure is within 1 torr. That is, when the pressure is 4 torr to 7.5 torr, the etching resistance is improved in the DC voltage range of -400 V to -800V. This is because, as the pressure increases, the collision frequency between the electrons and the ions increases greatly, so that acceleration in one direction is relatively difficult.
  • the pressure is 1 torr to 7.5 torr when the amorphous carbon film is formed.
  • the DC voltage is set to -100 V to -800 V, so that the duty ratio of the DC power is turned off in a duty cycle of the DC power supply so that the duty ratio is 10% to 50%.
  • 15 and 16 are diagrams for explaining the difference between the substrate processing apparatuses shown in FIGS. 1 and 8, and are conceptual views showing electric charges applied by the substrate processing apparatus of FIGS. 1 and 8, respectively.
  • the substrate support 210 is grounded and RF power is applied through the shower head 300, while in FIG. 8, the showerhead 1300 is grounded, and negative potential and RF power are applied to the substrate support 1210. do.
  • a capacitor is configured by a shower head 300 corresponding to an anode, a substrate support 210 and a chamber 100 corresponding to a cathode (see FIG. 15). Therefore, when a potential difference occurs between the positive electrode and the negative electrode, the same amount of opposite charges are induced to the positive electrode and the negative electrode (for example, 8), and the negative electrode divides the charges, so that the substrate support 210 has less charge than the positive electrode. Positive (eg four) charges will be induced.
  • a capacitor which acts as an anode having the same potential as the chamber 1100 and the showerhead 1300, and a substrate supporting part 1210 having a lower potential acts as a cathode is constructed (FIG. 16). Reference). Therefore, when the same potential difference occurs in the positive electrode and the negative electrode as shown in FIG. 1, the same amount of opposite charges are induced in the positive electrode and the negative electrode (for example, eight), where the positive electrode divides the charge while the negative electrode is induced. You have all the charges (eg eight).
  • 17 is a flowchart illustrating a method of forming an amorphous carbon film according to a sixth embodiment of the present invention.
  • a substrate processing including a shower head 1300 and a substrate support part 1210 facing each other in a chamber 1100.
  • the substrate S is loaded into the substrate support 1210 of the apparatus 1000 (step S110).
  • the distance between the substrate support 1210 and the shower head 1300 is preferably adjusted to about 2 cm or less.
  • plasma discharge may become unstable or an arc may be generated at a high pressure.
  • the driver 1220 raises the substrate support part 1210 to adjust the distance between the shower head 1300 and the substrate support part 1210.
  • a process gas is injected toward the substrate S through the shower head 1300 (step S120).
  • the process gas is supplied from the raw material supply unit 1110, for example, acetylene (C2H2) or propene (C3H6) gas may be used, and alternatively, trimethylbenzene solution may be heated to about 340 to 380 degrees. It may be.
  • the carrier gas any one or a plurality of gases selected from the group consisting of carbon dioxide gas, helium, argon gas, and hydrogen gas may be used in combination. These gases may be separately supplied to the shower head 1110 and may be mixed and supplied.
  • step S130 A carbon film is formed (step S130).
  • the DC power may be performed through the DC power supply 1400, and the RF power may be performed through the RF power supply 1600.
  • the RF power may supply about 800W to about 1500W
  • the DC voltage may supply -800V to -100V.
  • the DC power may be applied by pulsed.
  • the frequency of the pulsed DC power supply can be adjusted to be 20kHz to 200kHz
  • the duty ratio of the pulsed DC power supply (duty ratio) may have a range of 10% to 50%.
  • a DC voltage of -800 V to -100 V is applied to the substrate support, and the pressure in the chamber is 4 torr to 7.5.
  • a DC voltage of -800 V to -400 V may be applied to the substrate support.
  • the separation distance of the showerhead and the substrate support is 0.5cm
  • the frequency is applied to the pulsed DC power in the range of 20kHz to 200kHz
  • the separation distance of the showerhead and the substrate support is more than 0.5cm and less than 1cm
  • a pulsed DC power supply having a frequency in the range of 20 kHz to 100 kHz may be applied.
  • the process gas is injected (step S120), and the chamber 1100 and the showerhead 1110 are grounded (step S130), but the chamber 1100 and the shower are described. It will be apparent to those skilled in the art that the ground of the head 1110 may be grounded prior to injecting the process gas.
  • the amorphous carbon film surface is plasma treated immediately without a purge step (step S130).
  • a separate purge step is performed, but the purge step is naturally performed through a plasma treatment of the amorphous carbon film, thereby saving time by performing a separate purge step, thereby improving productivity.
  • the amorphous carbon film surface is first injected with a plasma processing gas into the chamber.
  • a plasma processing gas such as argon (Ar), nitrogen (N 2) gas, or the like may be injected into the plasma processing gas.
  • argon gas is injected at, for example, 2000 sccm.
  • an RF power source or a pulsed DC power source for generating plasma is applied to the substrate support unit.
  • the power of the RF power supply is lower than that of the deposition. If you use too much power, you can damage the surface of the substrate (wafer). For example, the power of the RF power supply uses 200W.
  • the DC power is applied to the pulsed DC power in the range of 650V or more and 850V or less. If the potential is too low, the plasma treatment process is ineffective, and if it is too high, the substrate (wafer) surface may be damaged. In this case, the DC power is applied for 15 seconds or less to perform plasma treatment on the surface of the amorphous carbon film (S140).
  • Plasma treatment on the surface of the amorphous carbon film may easily polymerize the raw material to the amorphous carbon film to reduce the contaminated region of the amorphous carbon film.
  • FIG. 18 is a graph illustrating a change in etching resistance according to a pulsed DC voltage application time in the plasma processing process.
  • a voltage of 0 V was applied to one substrate, and a pulsed DC voltage was instantaneously applied to each of the other four substrates (0 seconds). The remainder was applied for 5 seconds, 10 seconds, and 15 seconds, respectively, to plasma process the surface of the amorphous carbon film, and then the etching process was performed to observe the etching resistance of the amorphous carbon film.
  • the extinction coefficient k and the refractive index do not have a large difference before and after plasma treatment, so that the plasma treatment process can be performed without any problem even when manufacturing the optical device.
  • performing the plasma treatment by applying a DC pulse has a small difference ⁇ before and after etching (that is, a small amount of etching) has improved the etching resistance. If the time for applying the DC pulse is too long, not only it affects the productivity but also damages the surface of the substrate, so it is preferable to proceed to 15 seconds or less.
  • 19 is a graph illustrating a change in etching resistance according to a voltage size when a pulsed DC voltage is applied in a plasma processing process.
  • pulsed DC voltages of 600V, 650V, 700V, 750V, 800V, and 850V were sequentially applied to plasma the surface of the amorphous carbon film, followed by etching. The etching resistance of the amorphous carbon film was observed.
  • the extinction coefficient k and the refractive index do not have a large difference before and after plasma treatment, so that the plasma treatment process can be performed without any problem even when the optical device is manufactured.
  • the plasma treatment effect is insignificant, and if a power of 850V or more is used, damage to the surface of the substrate (wafer) may occur, so in this embodiment, the range of 650V to 850V or less Pulsed DC power supply of is applied.
  • the stress of the amorphous carbon film can be reduced to further improve the etching resistance.
  • acetylene (C2H2) or propene (C3H6) gas may be used.
  • the trimethylbenzene solution is heated to about 340 to 380 degrees. Can also be used.
  • it may further include oxygen (O2). In the case of containing oxygen, a better gap fill process may be performed by alleviating the stress of the resulting amorphous carbon film and lowering the deposition rate.
  • the stress is 427 (-Mpa), when the amount of oxygen is 10 sccm, the stress is 367 (-Mpa), and when the amount of oxygen is 20 sccm, the stress is 354 (-Mpa).
  • the stress is 281 (-Mpa)
  • the stress is 270 (-Mpa)
  • the stress is measured as 173 (-Mpa).
  • any one or a plurality of gases selected from the group consisting of carbon dioxide gas, helium, argon gas, and hydrogen gas may be used in combination.
  • the directionality of the ions can be controlled as shown in FIG. 21. It is easy to fill the amorphous carbon layer (ACL).
  • ACL amorphous carbon layer
  • applying a pulsed DC power supply has a great effect on the direction of the ions. If the RF power controls the density of the plasma, the DC pulse serves to pull down the ions in the plasma. At this time, the electrode of the DC pulse acts as a negative (-), and has the effect of selectively pulling ions. Thus, less overhangs formed on top of the gap pattern occur, resulting in better gap fills.
  • FIG. 22 is a flowchart illustrating a gapfill method according to a seventh embodiment of the present invention.
  • a substrate processing including a shower head 1300 and a substrate support part 1210 facing each other in the chamber 1100.
  • the substrate S is loaded into the substrate support 1210 of the apparatus 1000 (step S210).
  • the distance between the substrate support 1210 and the shower head 1300 is preferably adjusted to about 2 cm or less.
  • plasma discharge may become unstable or an arc may be generated at a high pressure.
  • the driver 1220 raises the substrate support part 1210 to adjust the distance between the shower head 1300 and the substrate support part 1210.
  • a process gas is injected toward the substrate S through the shower head 1300 (step S220).
  • the process gas is supplied from the raw material supply unit 1110, for example, acetylene (C2H2) or propene (C3H6) gas may be used, and alternatively, trimethylbenzene solution may be heated to about 340 to 380 degrees. It may be.
  • the carrier gas any one or a plurality of gases selected from the group consisting of carbon dioxide gas, helium, argon gas, and hydrogen gas may be used in combination. These gases may be separately supplied to the showerhead 1300, or may be mixed and supplied.
  • the chamber 1100 and the shower head 1300 are grounded, and a DC power source for applying negative potential to the substrate support unit 1210 and an RF power source for generating plasma are applied to the substrate using an amorphous carbon film ( Filling the gap pattern formed on S) (step S230).
  • the DC power may be performed through the DC power supply 1400, and the RF power may be performed through the RF power supply 1600.
  • the RF power may supply about 200W to about 1500W, and the DC voltage may supply -1000V to -100V.
  • the DC power may be applied by pulsed.
  • the frequency of the pulsed DC power supply can be adjusted to be 20kHz to 200kHz, the duty ratio of the pulsed DC power supply (duty ratio) may have a range of 10% to 50%.
  • a DC voltage of -1000 V to -100 V is applied to the substrate support, and the pressure in the chamber is 4 torr to 7.5.
  • a DC voltage of -1000 V to -400 V may be applied to the substrate support.
  • the separation distance of the showerhead and the substrate support is 0.5cm
  • the frequency is applied to the pulsed DC power in the range of 20kHz to 200kHz
  • the separation distance of the showerhead and the substrate support is more than 0.5cm and less than 1cm
  • a pulsed DC power supply having a frequency in the range of 20 kHz to 100 kHz may be applied.
  • the chamber 1100 and the showerhead 1300 are grounded, and a DC power supply and plasma for applying a negative potential to the substrate support 1210 are generated.
  • a DC power supply and plasma for applying a negative potential to the substrate support 1210 are generated.
  • FIG. 23 is a TEM photograph showing a result of applying a DC voltage of ⁇ 450 V to a substrate support of the substrate processing apparatus of FIG. 8 and supplying 10 sccm of acetylene (C2H2)
  • FIG. 24 is a partially enlarged view of FIG. 23. It is a photograph.
  • FIG. 25 is a TEM photograph showing a result of applying a DC voltage of ⁇ 850 V to a substrate support of the substrate processing apparatus of FIG. 8 and supplying 10 sccm of acetylene (C2H2)
  • FIG. 26 is a partially enlarged view of FIG. 25. It is a photograph.
  • FIG. 25 is a TEM photograph showing a result of applying a DC voltage of ⁇ 850 V to a substrate support of the substrate processing apparatus of FIG. 8 and supplying 10 sccm of acetylene (C2H2)
  • FIG. 26 is a partially enlarged view of FIG. 25. It is a photograph.
  • FIG. 27 is a TEM photograph showing a result of applying a DC voltage of ⁇ 850 V to a substrate support of the substrate processing apparatus of FIG. 8 and supplying 20 sccm of acetylene (C2H2)
  • FIG. 28 is a partially enlarged view of FIG. 27. It is a photograph.
  • oxygen (O 2) was fixed at 120 sccm, helium (He) at 85 sccm, argon (Ar) at 357 sccm, pressure inside the chamber was fixed at 1torr, and temperature at 300 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명에 따른 기판 처리 장치는 내부 공간을 가지는 챔버, 챔버 내에 배치되며, 기판이 안치되는 기판 지지부, 기판 지지부와 대향 배치되어 기판을 향해 원료를 분사하며, 접지되는 샤워헤드, 일단이 샤워헤드에 연결되고, 타단이 챔버 내벽과 연결되어, 상기 챔버 내벽과 샤워헤드를 전기적으로 접속시켜, 상기 챔버 내부의 접지 영역을 확장시키는 접속 부재를 포함한다. 따라서, 본 발명의 실시형태들에 의하면 일단이 챔버 내벽과 연결되고 타단이 샤워헤드와 연결되어 상기 챔버 내벽과 샤워헤드를 전기적으로 접속시키는 접속부재를 설치함으로써, 접지되는 영역이 종래에 비해 확장시킬 수 있다. 따라서, 기판 지지부에 가해지는 직류 자기 바이어스(DC self bias)가 증가함에 따라, 기판을 향해 이동하는 이온의 에너지가 증가한다. 이에, 기판을 향해 이동하는 이온의 가속도 및 기판과 충돌하는 이온 에너지가 증가하여, 기판 상에 형성되는 박막의 막밀도 및 내식각성이 향상된다.

Description

기판 처리 장치, 이를 이용한 비정질 탄소막 형성 방법 및 반도체 소자의 갭필 방법
본 발명은 기판 처리 장치, 이를 이용한 비정질 탄소막 형성 방법 및 반도체 소자의 갭필 방법에 관한 것으로, 보다 상세하게는 플라즈마를 이용하는 기판 처리 장치, 이를 이용한 비정질 탄소막 형성 방법 및 반도체 소자의 갭필 방법에 관한 것이다.
플라즈마를 방전시켜 증착을 수행하는 일반적인 기판 처리 장치는 챔버, 챔버 내에 배치되어 기판을 지지하는 기판 지지부, 기판 지지부의 상측에 대향 배치되어 기판을 향해 원료를 분사하는 샤워헤드(shower head) 및 챔버 내벽과 샤워헤드 사이에 배치되어 상기 챔버와 샤워헤드를 전기적으로 절연시키는 세라믹 라이너(liner)를 포함한다. 도 1을 참조하면, 종래의 기판 처리 장치(10)는 내부 공간을 가지는 챔버(100), 챔버(100) 내로 인입된 기판(S)을 지지하는 기판 지지부(210), 챔버 (100)내에서 기판 지지부(210)의 일측에 대향 배치되어 기판(S)을 향해 원료를 분사하는 샤워헤드(300)를 포함하며, 샤워헤드(300)는 원료를 공급하는 원료 공급부(110)와 RF 파워가 인가되는 RF 전원 공급부(600)와 연결된다. 또한, 기판 지지부(210)은 접지된다.
한편, 반도체 장치가 점차 소형화 및 고집적화 됨에 따라, 미세 패턴을 형성하기 위해 하드 마스크(Hard mask)용 비정질 탄소막(Amorphous carbon layer)의 고 내식각성이 요구된다.
하지만, 상기에서 설명한 바와 같은 종래의 기판 처리 장치로 비정질 탄소막을 형성할 경우, 이온이 기판 표면에 입사될 때 가속을 받지 못하여, 낮은 에너지의 이온이 기판 표면과 충돌한다. 따라서, 내식각성이 우수한 비정질 탄소막을 제조할 수 없어, 미세 패턴의 정밀도를 저하시키는 요인이 된다. 또한, 상기에서 설명한 바와 같은 종래의 기판 처리 장치로 갭필 공정을 진행하는 경우, 도 2에서 도시된 바와 같이, 플라즈마 내의 이온들이 방향성이 없어 미세 패턴에 증착을 할 때, 이온들이 방향성이 없이 눈처럼 쌓이게 된다. 이로 인해서 비정질 탄소층의 형성과정에서 갭 패턴 상부에 오버행이 발생되어 기판상에 형성된 갭 패턴의 입구를 블로킹함으로써, 갭 내부가 완전하게 필링되지 못하고, 보이드가 발생되기가 쉽다.
본 발명의 해결하고자 하는 과제는 접지 영역이 확장된 기판 처리 장치를 제공하는데 있다.
또한, 본 발명이 해결하고자 하는 다른 과제는 내식각성을 향상시킬 수 있는 비정질 탄소막 형성 방법을 제공하는 데 있다.
또한, 본 발명이 해결하고자 하는 또 다른 과제는 보이드 생성을 억제할 수 있는 갭필 공정을 진행할 수 있는 방법을 제공하는 데 있다.
본 발명의 기판 처리 장치는 내부 공간을 가지는 챔버, 상기 챔버 내에 배치되며, 기판이 안치되는 기판 지지부, 상기 기판 지지부와 대향 배치되어 기판을 향해 원료를 분사하며, 접지되는 샤워헤드, 일단이 상기 챔버 내벽과 연결되고, 타단이 상기 샤워헤드와 연결되어, 상기 챔버 내벽과 샤워헤드를 전기적으로 접속시켜, 상기 챔버 내부의 접지 영역을 확장시키는 접속 부재를 포함할 수 있다.
상기 접속 부재는 상측 및 하측이 개방되고, 내부 공간을 가지는 링(ring)형상일 수 있다.
상기 기판 지지부와 마주보는 샤워헤드의 일면과 상기 접속 부재의 일면이 동일 수평면 상에 위치할 수 있다.
상기 샤워헤드와 접속 부재 사이에 라이너가 설치될 수 있고, 상기 접속 부재는 상기 샤워헤드 및 라이너 중 적어도 하나의 외주면을 둘러싸도록 설치될 수 있다.
상기 기판 지지부는 RF 전원을 공급하는 전원 공급부와 접속될 수 있다.
본 발명의 비정질 탄소막 형성 방법은, 기판이 안착되는 기판 지지부에 RF 전원 및 DC 전원을 인가하는 과정, 상기 기판을 향해 공정 가스를 분사하는 샤워헤드를 접지시키는 과정 및 상기 샤워헤드를 이용하여 기판을 향해 공정 가스를 분사하는 과정을 포함하며, 상기 기판 상에 비정질 탄소막을 형성할 수 있다.
상기 기판 지지부에 -100 V 내지 -800 V 전압의 DC 전원이 인가될 수 있다.
상기 DC 전원을 펄스화시켜 인가할 수 있다.
상기 비정질 탄소막 표면을 플라즈마 처리하는 단계를 더 포함할 수 있다.
상기 비정질 탄소막 표면을 플라즈마 처리하는 단계에서 인가되는 RF 전원의 파워는, 상기 비정질 탄소막을 형성하는 단계의 RF 파워에 비해 낮은 파워로 처리할 수 있다.
상기 비정질 탄소막 표면을 플라즈마 처리하는 단계에서 퍼지(purge)가 수행될 수 있다.
본 발명의 갭필 방법은, 챔버 내에서 서로 대향하는 샤워헤드 및 기판 지지부를 구비하는 기판 처리 장치의 상기 기판 지지부로, 갭 패턴(gap pattern)이 형성된 기판을 로딩하는 단계, 상기 샤워헤드를 통해서 상기 기판을 향해 공정 가스를 분사하는 단계 및 상기 챔버 및 상기 샤워헤드를 접지하고, 상기 기판 지지부에 음전위를 인가하는 DC전원 및 플라즈마를 생성하기 위한 RF 전원을 인가하여 상기 기판상에 비정질 탄소막을 이용하여 상기 갭 패턴을 필링(filling)하는 단계를 포함할 수 있다.
상기 기판상에 비정질 탄소막을 형성하는 단계에서, 상기 DC 전원을 펄스화하여 인가할 수 있다.
상기 RF전원의 파워는 200W 내지 1500W의 범위 내의 RF 전원을 인가 할 수 있다.
상기 공정 가스는 아세틸렌(C2H2), 헬륨(He) 및 아르곤(Ar)을 포함할 수 있다.
상기 공정 가스는 아세틸렌(C2H2) 및 프로핀(C3H6) 중 적어도 어느 하나 및 산소(O2)를 포함할 수 있다.
상기 기판 지지부에 상기 RF 전원으로부터 상기 DC 전원이 공급되는 공급부를 보호하기 위한 필터를 더 연결할 수 있다.
본 발명의 기판 처리 장치는, 기판 상에 형성되는 박막의 막밀도 및 내식각성이 향상된다. 또한, 종래에 비해 넓은 영역에 균일한 플라즈마를 형성할 수 있다. 이에, 기판 처리 공정의 균일도가 향상되는 장점이 있다. 그리고, 종래와 같이 라이너가 설치된 장치에서 본 발명의 실시예들에 따른 접속 부재를 추가적으로 설치하는 간단한 방법으로 접지 영역을 용이하게 확장시킬 수 있다.
본 발명의 비정질 탄소막 형성 방법은, 기판을 향해 이동하는 이온의 에너지를 향상시킨다. 또한, 종래에 비해 내식각성이 향상된 비정질 탄소막을 제조할 수 있다. 이러한 비정질 탄소막을 하드 마스크로 사용하면, 미세 패턴을 용이하게 제조할 수 있으며, 상기 미세 패턴의 정밀도를 향상시킬 수 있다.
본 발명의 갭필 방법은, 오버행 현상에 의해 갭 패턴에 보이드(void)가 생성되는 것을 감소시킬 수 있다. 또한, 공정 가스에 산소를 포함시키는 경우 갭 패턴에 보이드 (void)가 생성되는 것을 보다 감소시킬 수 있다.
도 1은 종래의 기판 처리 장치를 도시한 개략적인 단면도이다.
도 2은 도 1에서 도시된 기판 처리 장치를 이용하여 갭필 공정을 진행한 결과를 개략적으로 도시한 개념적인 단면도이다.
도 3은 본 발명의 제 1 실시예에 따른 접속 부재가 설치된 기판 처리 장치를 도시한 단면도이다.
도 4는 본 발명의 제 1 실시예에 따른 일단이 챔버 내벽과 접속되고 타단이 샤워헤드와 접속된 접속 부재를 설명하기 위한 단면도이다.
도 5는 본 발명의 제 2 실시예에 따른 일단이 챔버 내벽과 접속되고 타단이 샤워헤드와 접속된 접속 부재를 설명하기 위한 단면도이다.
도 6은 본 발명의 제 3 실시예에 따른 일단이 챔버 내벽과 접속되고 타단이 샤워헤드와 접속된 접속 부재를 설명하기 위한 단면도이다.
도 7은 본 발명의 제 4 실시예에 따른 기판 처리 장치를 도시한 단면도이다.
도 8은 본 발명의 제 5 실시예에 따른 기판 처리 장치를 도시한 단면도이다.
도 9는 본 발명의 제 5 실시예에 따른 기판 처리 장치를 이용하여 기판 상에 비정질 탄소막을 형성하는 방법을 도시한 순서도이다.
도 10은 비정질 탄소막 형성시 RF 전원과 함께 DC 전원의 인가 여부에 따른 막손실을 나타낸 그래프이다.
도 11는 DC 전원의 크기에 따른 막손실 변화를 나타낸 그래프이다.
도 12는 DC 전원의 듀티 사이클의 Off 시간 비(Duty ratio)에 따른 막손실 특성을 나타낸 그래프이다.
도 13은 DC 전압 및 압력 변화에 따른 막손실 특성을 나타낸 그래프이다.
도 14은 전압, RF 파워, 압력 변화에 따른 막손실 특성을 종합적으로 나타낸 그래프이다.
도 15 및 도 16는, 도 1 및 도 8에서 도시된 기판 처리 장치의 차이를 설명하기 위한 도면으로서, 각각 도 1 및 도 8에 의한 기판 처리 장치에 의해 인가되는 전하를 도시하는 개념도이다.
도 17는 본 발명의 제 6 실시예에 따른 비정질 탄소막 형성 방법을 도시한 순서도이다.
도 18는 플라즈마 처리공정에서 펄스화된 DC전압 인가시간에 따른 내식각성의 변화를 도시한 그래프이다.
도 19은 플라즈마 처리공정에서 펄스화된 DC전압 인가시 전압크기에 따른 내식각성의 변화를 도시한 그래프이다.
도 20은 주입되는 공정 가스에 포함된 산소(O2)량과 스트레스와의 관계를 도시하는 그래프이다.
도 21은 도 8에서 도시된 기판 처리 장치를 이용하여 갭필 공정을 진행한 결과를 개략적으로 도시한 개념적인 단면도이다.
도 22은 본 발명의 제 7 실시예에 따른 갭필 방법을 도시한 순서도이다.
도 23는 도 8에 의한 기판 처리 장치의 기판 지지부에 -450V의 DC 전압을 인가하고, 10sccm의 아세틸렌(C2H2)을 공급하여 진행한 결과를 도시한 TEM 사진이다.
도 24은 도 23의 부분 확대 사진이다.
도 25은 도 8에 의한 기판 처리 장치의 기판 지지부에 -850V의 DC 전압을 인가하고, 10sccm의 아세틸렌(C2H2)을 공급하여 진행한 결과를 도시한 TEM 사진이다.
도 26는 도 25의 부분 확대 사진이다.
도 27은 도 8에 의한 기판 처리 장치의 기판 지지부에 -850V의 DC 전압을 인가하고, 20sccm의 아세틸렌(C2H2)을 공급하여 진행한 결과를 도시한 TEM 사진이다.
도 28는 도 27의 부분 확대 사진이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 아니 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예들을 보다 상세하게 설명한다.
기판 처리 장치
<제 1 실시예>
도 3은 본 발명의 제 1 실시예에 따른 접속 부재가 설치된 기판 처리 장치를 도시한 단면도이다. 도 4는 본 발명의 제 1 실시예에 따른 일단이 챔버 내벽과 접속되고 타단이 샤워헤드와 접속된 접속 부재를 설명하기 위한 단면도이다. 도 5는 본 발명의 제 2 실시예에 따른 일단이 챔버 내벽과 접속되고 타단이 샤워헤드와 접속된 접속 부재를 설명하기 위한 단면도이다. 도 6은 본 발명의 제 3 실시예에 따른 일단이 챔버 내벽과 접속되고 타단이 샤워헤드와 접속된 접속 부재를 설명하기 위한 단면도이다.
도 3을 참조하면, 본 발명의 실시예에 따른 기판 처리 장치는 내부 공간을 가지는 챔버(2100), 챔버(2100) 내로 인입된 기판(S)을 지지하는 기판 지지유닛(2200), 기판 지지유닛(2200)에 RF 전원을 인가하는 전원 공급부(2420) 챔버(2100)내에서 기판 지지유닛(2200)의 일측에 대향 배치되어 기판(S)을 향해 원료를 분사하며, 접지(ground)되는 샤워헤드(2300) 및 샤워헤드(2300)의 외측에 배치되어 일단이 챔버(2100) 내벽과 연결되고 타단이 샤워헤드(2300)와 연결되어, 상기 챔버(2100)내벽과 샤워헤드(2300)를 전기적으로 접속시키는 접속 부재(2800)를 포함한다. 또한, 샤워헤드(2300)에 원료를 공급하는 원료 공급라인(2110) 및 샤워헤드(2300)와 접속 부재(2800) 사이에 배치되어 상기 샤워헤드(2300)의 외주면을 둘러싸도록 설치되는 라이너(liner)(2500)를 포함한다.
챔버(2100)는 내부가 비어있는 원통 형상으로 제작되며, 내부에는 기판(S)을 처리할 수 있는 소정의 반응 공간이 마련된다. 물론 챔버(2100)의 형상은 원통 형상에 한정되지 않고, 기판(S)을 처리할 수 있는 내부 공간이 마련된 다양한 형상으로 제작될 수 있다. 실시예에 따른 챔버(2100)는 내부 공간을 가지며, 상부가 개방되어 있는 챔버 몸체(2101) 및 챔버 몸체(2101)의 상부를 덮는 챔버 리드(2102)로 이루어진다. 여기서 챔버(2100) 내벽은 후술되는 접속 부재(2800)에 의해 접지된 샤워헤드(2300)와 전기적으로 연결되어, 접지 영역으로 작용한다.
물론 챔버(2100)는 챔버 몸체(2101)와 챔버 리드(2102)가 일체형으로 구성될 수도 있고, 상부 챔버와 하부 챔버로 분리되어 형성될 수도 있다. 이러한 챔버(2100)에는 도시되지는 않았지만, 상기 챔버(2100) 내부를 배기하는 배기부, 기판(S)을 출입시키기 위한 기판 출입구 및 챔버 내부의 압력을 조절하는 압력 조절부가 마련된다.
기판 지지유닛(2200)은 챔버(2100) 내에 설치되어, 챔버(2100) 내로 인입된 기판(S) 예컨데, 웨이퍼(wafer)가 안치되는 기판 지지부(2210), 기판 지지부(2210)를 지지하는 샤프트(2221) 및 샤프트(2221)를 승하강 또는 회전시키는 동력부(2222)를 포함한다. 실시예에 따른 기판 지지부(2210)는 예컨데, 원형의 플레이트로 제작되고 그 표면에 유전체(dielectric) 재료가 코팅될 수 있으며, 이러한 기판 지지부(2210)내에는 히터(heater)가 내설될 수 있다. 기판 지지부(2210)의 형상은 원형에 한정되지 않고, 기판(S)과 대응되는 다양한 형상으로 제작될 수 있다. 샤프트(2221)는 기판 지지부(2210)를 지지하는 것으로, 일단은 챔버(2100) 내에 배치된 기판 지지부(2210)의 하부와 연결되고, 타단은 챔버(2100) 내로 돌출되어 동력부(2222)와 연결된다. 이러한 기판 지지부(2210) 및 샤프트(2221) 내에는 전원선(2410)이 삽입 설치되며, 상기 전원선(2410)의 일단은 기판 지지부(2210)와 접속되고 타단은 RF 전원을 제공하는 전원 공급부(2420)와 연결된다. 실시예에서는 전원선(2410)로 스테인레스 스틸(SUS)를 이용한다.
샤워헤드(2300)는 기판 지지부(2210)의 상측에 대향 배치되며, 원료 공급라인(2110)으로부터 원료를 공급받는 내부 공간 및 상기 원료를 기판(S)을 향해 분사하는 복수의 분사홀(2211)을 가진다. 실시예에 따른 샤워헤드(2300)는 금속 예컨데, 스테인레스 스틸(SUS)을 이용하여 그 단면이 원형인 형상으로 제작되며, 접지(ground)된다. 샤워헤드(2300)를 제작하는 재료는 스테인레스 스틸(SUS)에 한정되지 않고, 전기 전도성의 다양한 재료로 제작될 수 있으며, 기판(S)의 형상과 대응되는 다양한 형상으로 제작될 수 있다. 또한 실시예에 따른 샤워헤드(2300)는 도 3에 도시된 바와 같이 상부의 일부가 챔버(2100) 외부로 돌출되나, 이에 한정되지 않고, 샤워헤드(2300) 전체가 챔버(2100) 내부에 배치될 수도 있다.
라이너(2500)는 샤워헤드(2300)와 상기 샤워헤드(2300) 주변의 챔버(2100) 내벽간을 절연시키는 것으로, 도 3 내지 도 4에 도시된 바와 같이, 샤워헤드(2300)의 외측부를 둘러 싸도록 설치된다. 즉, 라이너(2500)는 상측 및 하측이 개방되고 내부가 비어있는 링(ring) 또는 중공형의 형상으로 제작되어, 샤워헤드(2300)의 측방향의 외주면을 둘러 싸도록 설치된다. 실시예에 따른 라이너(2500)는 세라믹 재료를 이용하여 원형의 링 형상으로 제작된다. 하지만, 라이너(2500)는 이에 한정되지 않고, 절연성의 재료를 이용하여 샤워헤드(2300)의 형상과 대응되는 다양한 형상으로 변경이 가능하다. 또한, 실시예에 따른 라이너(2500)의 상하 방향의 길이가 샤워헤드(2300)의 상하 방향 길이와 대응되도록 제작되어, 상기 라이너(2500) 및 샤워헤드(2300) 중 어느 하나가 하측으로 돌출되지 않는다.
접속 부재(2800)는 챔버(2100) 내벽과 샤워헤드(2300) 간을 전기적으로 접속시켜, 챔버(2100) 내벽이 접지되도록 한다. 이러한 접속 부재(2800)는 라이너(2500) 및 샤워헤드(2300) 중 적어도 어느 하나의 외측에 배치되어, 일단이 챔버(2100) 내벽과 연결되고, 타단이 샤워헤드(2300)와 연결된다. 이에, 접속 부재(2800)는 상측 및 하측이 개방되고 내부가 비어있는 링(ring) 또는 중공형의 형상으로 제작되어, 그 내측 방향에 라이너(2500) 및 샤워헤드(2300) 중 적어도 어느 하나가 배치되도록 하는것이 바람직하다. 이러한 접속 부재(2800)는 전기 도전성의 재료 예컨데, 스테인레스 스틸(SUS) 또는 알루미늄(Al) 합금 등으로 이루어질 수 있다. 물론 이에 한정되지 않고 챔버(2100)와 샤워헤드(2300)를 전기적으로 접속시킬 수 있는 다양한 도전성의 재료를 이용하여 제작할 수 있다.
예컨데, 도 3 및 도 4에 도시된 바와 같이 라이너(2500)의 상하 방향의 길이가 샤워헤드(2300)의 상하 방향의 길이와 대응되도록 제작되어, 상기 라이너(2500)와 샤워헤드(2300)의 하부면이 동일 수평면 상에 위치할 수 있다. 이에, 챔버(2100) 내부에서 샤워헤드(2300)는 하부면 즉, 분사홀(2211)이 위치한 영역이 노출된다. 이때, 접속 부재(2800)는 도 3 및 도 4 에 도시된 바와 같이, 라이너(2500)의 외주면을 둘러 싸면서 일단이 챔버(2100) 내벽과 연결되고 타단이 샤워헤드(2300)의 하부면과 연결되도록 설치된다. 즉, 본 발명의 제 1 실시예에 따른 접속 부재(2800)는 상부에서 바라본 형상이 원형의 링이고, 상하 방향으로 절단한 단면도의 형상이 한글 자음의 '┖'과 상기 '┖'의 좌우를 뒤집은 '┛'이 상호 마주보는 형상이 되도록 제작될 수 있다. 이러한 접속 부재(2800)의 형상을 다르게 설명하면, 라이너(2500)의 상하 방향으로 연장되어 상기 라이너(2500)의 외측면과 접촉되도록 설치되는 상하 연장 부재(2810), 라이너(2500) 또는 샤워헤드(2300)의 폭 방향으로 연장되어 상기 라이너(2500) 및 샤워헤드(2300)의 하부면의 일부와 접촉되도록 설치되는 수평 연장 부재(2820)로 이루어진다. 상하 연장 부재(2810)는 챔버(2100) 내 상부벽과 연결되고, 챔버(2100)의 내측벽과는 이격되며, 수평 연장 부재(2820)의 내측면의 일부가 라이너(2500) 및 샤워헤드(2300)의 하부면과 접속되는 것이 바람직하다. 이러한 접속 부재(2800)에 의해 샤워헤드(2300)와 챔버(2100) 내 상부벽이 접속되어, 상기 챔버(2100) 내벽 구체적으로는 상부벽이 접지된다. 따라서, 종래에 비해 접지 영역이 확장되는 효과가 있다. 이때, 라이너(2500) 및 샤워헤드(2300)의 하부면과 접속되는 수평 연장 부재(2820)는 박판으로 제작되어, 상기 샤워헤드(2300)의 하측 방향으로 돌출되는 면적이 거의 없도록 한다. 도 4를 참조하면, 기판 지지부(2210)와 샤워헤드(2300) 간의 이격 거리(h1)와 상기 기판 지지부(2210)와 접속 부재(2800) 하부면 간의 이격 거리(h2) 차이가 거의 없도록 하여, 기판 지지부(2210)와 샤워헤드(2300) 사이의 포텐샬(Potential)과 상기 기판 지지부(2210)와 챔버(2100) 내벽(상부벽) 사이의 포텐샬(Potential)의 차이가 거의 없도록 하기 위함이다. 이에, 기판 지지부(2210)와 샤워헤드(2300) 사이에서 발생되는 플라즈마 밀도와 상기 기판 지지부(2210)와 챔버(2100) 내벽(상부벽) 사이에서 발생되는 플라즈마 밀도의 차이가 거의 없게 된다.
상기에서는 도 3 및 도 4에 도시된 본 발명의 제 1 실시예에서와 같이, 접속 부재(2800)가 라이너(2500)의 외주면을 둘러 싸면서 일단이 챔버(2100) 내벽과 연결되고 타단이 라이너(2500) 및 샤워헤드(2300)의 하부면과 연결되도록 설치되는 것을 설명하였다. 하지만, 이에 한정되지 않고, 접속 부재(2800)의 형상 및 설치 위치는 라이너(2500)의 형상, 설치 위치 및 설치 유무에 따라 다양하게 변경될 수 있다.
<제 2 실시예>
예컨데, 도 5에 도시된 본 발명의 제 2 실시예에서와 같이 라이너(2500)의 하부면에 비해 샤워헤드(2300)의 하부면이 하측으로 돌출되어, 상기 샤워헤드(2300)의 하부면 뿐만 아니라 외측면의 일부가 라이너(2500)로부터 노출될 수 있다. 이때, 접속 부재(2800)는 접속 부재(2800)는 라이너(2500)의 외주면 및 노출된 샤워헤드(2300)의 외측면을 둘러싸도록 설치되는 것이 바람직하다. 즉, 접속 부재(2800)의 상하 연장부재(2810)는 챔버(2100) 내 상부벽과 연결되고, 수평 연장 부재(2820)는 샤워헤드(2300)의 외측면과 연결되도록 설치될 수 있다. 여기서, 접속 부재(2800)의 하부면 즉, 수평 연장 부재(2820)의 하부면과 샤워헤드(2300)의 하부면이 동일 수평면 상에 놓이도록 설치하는 것이 바람직하다. 이에, 기판 지지부(2210)와 샤워헤드(2300) 간의 이격 거리(h1)와 상기 기판 지지부(2210)와 접속 부재(2800) 하부면 간의 이격 거리(h2)가 동일하여, 챔버(2100) 내부에서 발생되는 플라즈마의 밀도가 영역별로 다르지 않고, 균일하다.
이와 같이, 본 발명의 제 1 및 제 2 실시예에서는 라이너(2500)가 설치되어 있는 장치에서, 접속 부재(2800)를 추가적으로 설치함으로써, 샤워헤드(2300)와 챔버(2100) 내벽을 전기적으로 접속시켜, 접지 영역을 확장시킬 수 있다. 따라서, 종래와 같이 라이너(2500)가 설치된 장치에서 본 발명의 실시예들에 따른 접속 부재(2800)를 추가적으로 설치하여, 접지 영역을 용이하게 확장시킬 수 있다.
더욱이, 기판 지지부(2210)와 샤워헤드(2300) 간의 이격 거리(h1)와 상기 기판 지지부(2210)와 접속 부재(2800) 하부면 간의 이격 거리(h2) 차이를 없엘 수 있어, 앞선 제1 실시예의 도 4에 비해서 보다 기판 지지부(2210)와 샤워헤드(2300) 사이에서 발생되는 플라즈마 밀도와 상기 기판 지지부(2210)와 챔버(2100) 내벽(상부벽) 사이에서 발생되는 플라즈마 밀도의 차이를 보다 감소시킬 수 있다
<제 3 실시예>
다른 예로, 도 6에 도시된 본 발명의 제 3 실시예에서와 같이, 라이너(2500)가 설치되지 않을 수 있다. 이때, 접속 부재(2800)는 샤워헤드(2300)의 상하 방향으로 연장되어, 내측면이 상기 샤워헤드(2300)의 외측면을 둘러 싸고, 상부는 챔버(2100) 내상부벽과 연결되도록 설치된다.
상기 샤워헤드(2300)는, 챔버(2100) 내상부벽과 직접 접촉되어, 전기적으로 연결됨으로써, 상기 접속 부재(2800)를 추가적으로 상기 샤워헤드(2300)와 상기 챔버(2100)를 전기적으로 연결한다. 또한, 상기 접속 부재(2800)는 기판 지지부(2210)와 샤워헤드(2300) 간의 이격 거리(h1)와 상기 기판 지지부(2210)와 접속 부재(2800) 하부면 간의 이격 거리(h2) 차이를 없엘 수 있어, 기판 지지부(2210)와 샤워헤드(2300) 사이에서 발생되는 플라즈마 밀도와 상기 기판 지지부(2210)와 챔버(2100) 내벽(상부벽) 사이에서 발생되는 플라즈마 밀도의 차이를 보다 감소시킬 수 있다.
한편, 상기 샤워헤드(2300)와 상기 챔버(2100) 사이에는 오-링(o-ring) 등의 구조체가 삽입될 수도 있으며, 이때, 상기 접속 부재(2800)는 상기 상기 샤워헤드(2300)와 상기 챔버(2100)를 전기적으로 연결하여 상기 샤워헤드(2300)를 접지할 수 있다.
또한, 제 1 내지 제 3 실시예에 따른 접속 부재(2800)가 챔버(2100) 내 상부벽과 연결되고 내 측벽과 이격되도록 설치된다. 하지만 이에 한정되지 않고, 접속부재(2800)가 챔버(2100) 내 측벽과 연결되도록 설치될 수도 있다.
한편, 기판(S)이 안치되는 기판 지지부(2210)에 RF 전원이 인가되고, 샤워헤드(2300)가 접지되는 경우, 상기 접지되는 면적이 증가할 수록 기판 지지부에 가해지는 직류 자기 바이어스(DC self-bias)가 증가한다. 이를 식으로 표현하면 [직류자기 바이어스(DC self-bias) ∝ (샤워헤드 면적 / 기판 지지부 면적)2]이다. 접지되는 면적이 증가하면, 상기 샤워헤드(2300)와 기판 지지부(2210) 사이의 쉬스 포텐샬(sheath potential)이 커지기 때문에, 기판 지지부(2210)에 가해지는 직류 자기 바이어스(DC self-bias)가 증가한다.
본 발명의 실시예들에서는 접속 부재(2800)를 통해 챔버(2100) 내벽과 샤워헤드(2300)를 전기적으로 접속시킴으로써, 접지되는 영역이 종래에 비해 확장된다. 즉, 샤워헤드(2300)뿐만 아니라 챔버(2100) 내벽이 접지 영역으로써 작용하여, 챔버(2100) 내에 접지 영역이 확장된다. 따라서, 상기 수식 [직류 자기 바이어스(DC self-bias) ∝ (샤워헤드 면적 / 기판 지지부 면적)2]과 같은 효과로 인해, 기판 지지부(2210)에 가해지는 직류 자기 바이어스가 증가한다. 이에, 기판(S)을 향해 이동하는 이온의 가속도가 증가하여, 상기 기판(S)과 충돌하는 이온 에너지가 증가된다. 이로 인해, 기판(S) 상에 형성된 박막 예컨데, 비정질 탄소막의 막밀도가 향상되는 효과가 있다.
또한, 접속 부재(2800)를 통해, 챔버(2100) 내벽과 샤워헤드(2300)를 전기적으로 연결함으로써, 종래와 같이 라이너(2500)만 설치될 때에 비해, 균일한 플라즈마를 형성할 수 있다. 즉, 종래에서와 같이 절연성의 라이너(2500)에 의해 전자의 흐름이 바뀌어 불균일한 플라즈마가 발생되는 것을 방지할 수 있다. 따라서, 기판(S)처리 공정 예컨데, 기판(S) 상에 증착된 비정질 탄소막의 균일도가 향상되는 효과가 있다.
<제 4 실시예>
도 7은 본 발명의 제 4 실시예에 따른 기판 처리 장치를 도시한 단면도이다.
상기에서는 도 3 내지 도 6에 도시된 본 발명의 제 1 내지 제 3 실시예에서와 같이, 샤워헤드(2300)의 하부가 챔버(2100) 내 상부벽의 하측으로 돌출되는 것을 설명하였다. 하지만, 이에 한정되지 않고 도 7에 도시된 본 발명의 제 4 실시예에서와 같이 샤워헤드(2300)의 하부가 챔버(2100) 내 상부벽 하측으로 돌출되지 않고, 상기 챔버(2100) 내 상부벽과 일 수평 상에 위치하도록 설치될 수 있다. 이와 같은 본 발명의 제 4실시예의 경우, 전술한 바와 같이 샤워헤드(2300)가 챔버(2100) 내측으로 돌출되지 않기 때문에, 상기 챔버(2100) 상부벽과 상기 샤워헤드(2300)를 전기적으로 접속하기 위한 접속 부재(2800)의 두께를 본 발명의 제 2 내지 제 3 실시예에 얇게 제작할 수 있다. 이 때, 본 발명의 제 4 실시예에 따른 접속 부재(2800)는 수평 방향으로 연장된 형상의 얇은 박판일 수 있다.
<제 5 실시예>
도 8은 본 발명의 제 5 실시예에 따른 기판 처리 장치를 도시한 단면도이다.
본 발명의 제 5 실시예에 따른 기판 처리 장치는 하드 마스크(Hard mask) 용 박막 예컨데, 비정질 탄소막(Amorphous carbon layer)을 형성하는 장치이다. 이러한 기판 처리 장치는 내부 공간을 가지는 챔버(1100), 챔버(1100) 내로 인입된 기판(s)을 지지하는 기판 지지유닛(1200), 기판 지지유닛(1200)에 RF 전원을 인가하는 RF 전원 공급부(1600), 기판 지지유닛(1200)에 DC 전원을 인가하는 DC 전원 공급부(1400) 및 기판 지지유닛(1200)과 대향 배치되어 기판(s)을 향해 공정 가스를 분사하며, 접지(ground)되는 샤워헤드(1300)를 포함한다. 또한, RF 전원 공급부(1600)와 DC 전원 공급부(1400) 사이에 설치된 필터(1500) 및 샤워헤드(1300)로 공정 가스를 공급하는 원료 공급부(1110, 1120)를 포함한다. 여기서, RF 전원 공급부(1600)와 DC 전원 공급부(1400)는 상호 병렬로 배치되며, 상기 필터(1500)는 RF 전원으로부터 DC 전원 공급부(1400)를 보호하기 위해 RF 전원을 필터링하는 역할을 한다.
기판 지지부(1210)는 전술한 바와 같이, RF 전원 공급부(1600) 및 DC 전원 공급부(1400)와 연결되어, 기판(s) 처리 공정 시에 RF 전원뿐만 아니라, DC 전원을 함께 인가한다. 따라서, RF 전원 공급부(1600) 및 DC 전원 공급부(1400) 각각으로부터 기판 지지부(1210)에 RF 전원 및 DC 전원이 인가되면, RF 전원과 접지된 샤워헤드(1300)와 기판 지지부(1210) 사이에서 플라즈마가 방전된다. 이때, 기판 지지부(1210)로 인가된 DC 전원은 발생된 플라즈마와 기판 사이의 쉬스(sheath) 포텐샬차이를 증가시키고, 이로 인해 기판(s)으로 향하는 이온의 이동 속도 및 이온 에너지가 증가된다. 기판(s)을 향해 가속되는 이온은 비정질 탄소막의 분자 결합의 변화를 가져온다. 즉, 비정질 탄소막의 C-H 결합이 분해되면서, C=C 결합으로 변환되고, 이로 인해 비정질 탄소막의 막밀도 또는 강도가 증가하여, 내식각성이 향상한다.
비정질 탄소막 형성 방법
<제6 실시예>
도 9는 본 발명의 도 8에서 도시된 제 5 실시예에 따른 기판 처리 장치를 이용하여 기판 상에 비정질 탄소막을 형성하는 방법을 도시한 순서도이다.
도 8 및 도 9를 참조하면, 먼저, 기판(s) 예컨데 웨이퍼를 마련하고, 상기 웨이퍼를 챔버(1100) 내부로 인입시켜, 기판 지지부(1210) 상에 안착시킨다. 이때, 기판 지지부(1210)는 샤워헤드(1300)와의 이격 거리가 2 cm 이내가 되도록 하는 것이 바람직하다. 예컨데, 기판 지지부(1210)와 샤워헤드(1300) 사이의 이격 거리가 2 cm를 초과하면 높은 압력에서 플라즈마 방전이 불안정하거나, 아크가 발생되는 문제가 발생될 수 있다.
이후, RF 전원 공급부(1600) 및 DC 전원 공급부(1400)를 이용하여 기판 지지부(1210)에 RF 전원 및 DC 전원을 공급한다(S100). 이때, RF 파워는 800 W 내지 1500 W이고, DC 전압은 -100 V 내지 -800 V이며, DC 전원의 주파수는 20 kHz 내지 200 kHz이 되도록 조절한다. 또한, DC 전원의 듀티 사이클(duty cycle)에서 DC 전원이 Off되는 시간(duty ratio)이 10 % 내지 50 %이며, 압력은 1 torr 내지 7 torr가 되도록 조절한다. 그리고 원료 공급부(1110, 1120) 및 샤워헤드(1300)를 이용하여 기판(s)을 향해 예컨데, C2H2, Ar, He 등의 공정 가스를 분사한다(S200). 이에, 샤워헤드(1300)와 기판 지지부(1210) 사이에서 플라즈마가 생성되며, 기판(s) 상에 비정질 탄소막이 형성된다(S300). 실시예에 따른 비정질 탄소막은 종래의 기판 처리 장치(CVD) 및 방법으로 형성된 비정질 탄소막에 비해 내식각성이 우수하다. 도 1을 참조하면, 종래의 기판 처리 장치(CVD)의 경우, 상측에 위치하는 샤워헤드에 RF 전원이 인가되며, 상기 샤워헤드와 기판 지지부의 면적이 거의 동일하다. 종래에서와 같이 샤워헤드와 기판 지지부의 면적이 거의 동일하다는 것은 상기 기판 지지부에 안치되는 기판에 직류 자기 바이어스(DC Self-bias)가 거의 인가되지 않음을 의미한다. 따라서, 기판을 향해 입사되는 이온의 이동 속도 및 에너지가 낮다. 이로 인해, 종래의 비정질 탄소막의 막밀도 및 강도가 본 발명의 실시예에 따른 비정질 탄소막에 비해 낮아, 상기 종래의 비정질 탄소막의 내식각성에 비해 본 발명의 실시예에 따른 비정질 탄소막의 내식각성이 우수하다.
하기에서는 도 10 내지 도 14을 참조하여, 공정 조건의 변화에 따른 비정질 탄소막의 내식각성의 변화를 설명한다. 이를 위해 비교 공정 조건(비교 인자)을 제외한 나머지 공정 조건은 동일하게 하여 비정질 탄소막을 증착한 후, 동일한 조건에서 에칭 공정을 실시하여, 제거된 막 두께를 산출한다. 즉, 각각의 공정 조건으로부터 형성된 비정질 탄소막의 최초 두께(THK)로부터, 에칭 공정 후 남아있는 막두께를 측정하여, 제거된 막 두께를 산출한다. 하기에서는 제거된 막 두께를 '막손실'로 명명하며, 막손실 값이 작을수록 내식각성이 좋다는 의미이다.
도 10은 비정질 탄소막 형성시 RF 전원과 함께 DC 전원의 인가 여부에 따른 막손실 및 막밀도를 나타낸 그래프이다.
실험을 위해, 2개의 기판을 마련하고, 상기 2개의 기판에 비정질 탄소막을 형성한다. 이때, 나머지 공정 조건은 동일하게 하게 하고, 2개의 기판 중 어느 하나의 기판이 지지된 기판 지지부에만 DC 전원을 인가한다. 예컨데, 2개의 기판 각각에 800 W의 RF 파워를 인가하고, 2개의 기판 중 어느 하나에만 -200 V의 DC 전원을 인가하여 비정질 탄소막을 형성한 후, 동일 조건에서 에칭 공정을 실시하였다.
도 10을 참조하면, 비정질 탄소막 형성시 DC 전원(-200 V)을 인가한 경우의 막밀도가 그렇지 않은 경우 막밀도에 비해 높다. 또한, 비정질 탄소막 형성시 RF 전원과 함께 DC 전원(-200 V)을 인가한 경우 막손실 값이 DC 전원을 인가하지 않은 경우(DC O V)의 막손실 값에 비해 작다. 여기서, 막밀도가 높고, 막손실 값이 작을수록 내식각성이 우수함을 나타내므로, 도 10의 결과로부터 DC 전원을 인가하는 경우 상기 DC 전원을 인가하지 않은 경우에 비해 내식각성이 우수한 것으로 나타났다. 이는, 기판 지지부에 DC 전원이 인가되어 기판으로 향하는 이온의 가속도가 증가됨에 따라, 상기 이온이 기판 표면과 충돌하는 에너지가 증가되기 때문이다. 그리고 기판을 향해 가속되는 이온과 기판 표면 간의 충돌에 의해, 비정질 탄소막의 C-H 결합이 분해되면서, C=C 결합으로 변환된다. 반면, DC 전압이 인가되지 않는 경우, 이온이 기판을 향해 가속되지 않거나 그 에너지가 낮아, 상기 이온과 기판이 충돌하는 에너지가 작기 때문에, 본 발명에서와 같이 DC 전압을 인가 할 때에 비해 비정질 탄소막의 C-H 결합을 C=C 결합으로 변환키는 비율이 상대적으로 작다. 따라서, 상기에서 설명한 바와 같이, 기판을 지지하는 기판 지지부에 DC 전원을 인가하여 형성한 비정질 탄소막이 그렇지 않은 비정질 탄소막에 비해 내식각성이 우수하다.
도 11는 DC 전원의 크기에 따른 막손실 변화를 나타낸 그래프이다.
실험을 위해, 5개의 기판을 마련하고, 상기 5개의 기판에 비정질 탄소막을 형성한다. 이때, 나머지 공정 조건은 동일하게 하게 하고, 5개의 기판 각각이 지지되는 기판 지지부에 공급되는 DC 전압을 다르게 한다. 예컨데, 5개의 기판 각각에 RF 전원 및 DC 전원을 공급하는데, RF 파워는 800W로 동일하게 하고, DC 전압은 0V(DC 전원 인가 하지 않음), -100 V, -200 V, -300 V, -400 V 및 -800 V로 서로 다르게 하여 2000 Å의 비정질 탄소막을 형성한다.
도 11를 참조하면, DC 전압이 -200 V에서 -800V로 증가할 수록 막손실이 감소하는 경향을 보인다. 이는 DC 전압이 -200 V에서 -800 V로 증가하면서 기판을 향해 이동하는 이온의 가속도가 증가하여, 상기 기판과 이온이 충돌하는 에너지가 비례적으로 증가하기 때문이다. 또한, DC 전압이 0 V에서 -100 V로 증가함에 따라 막손실이 감소하다가, DC 전압이 -100 V에서 -200V로 증가하는 구간에서는 막손실이 다시 증가한다. 한편, DC 전압이 인가되는 -100 V 내지 -200V의 구간에서는 막손실이 증가하다가, -200 V 내지 -800V 구간에서 막손실이 감소하는 다른 경향성을 보이나, -100 V 내지 -800V 구간에서 모두 100 Å 이하의 낮은 막손실이 발생된다. 그리고 DC 전압이 인가되지 않은 경우(DC= O V) 막손실이 100 Å 이상으로 높으며, -100 V의 DC 전압을 인가할 때의 막손실에 비해 10Å 이상으로 크다. 한편, -200 V의 DC 전압을 인가할 때의 막손실과 -100 V의 DC 전압을 인가할 때의 막손실의 차이값은 3.8Å로 작다. 이로부터 DC 전압이 0 V 초과, -100 V 미만 사이의 범위에서는 100 Å 내외의 큰 막손실이 발생할 것으로 유추할 수 있다. 이는, DC 전압이 100 V 미만일 경우, DC 전압 인가에 대한 효과가 발현되지 못하여, DC 전원을 인가하지 않을 때와 유사한 이온의 가속도 및 에너지를 가지기 때문이다. 반대로, DC 전압이 -800 V 를 초과하는 경우, 기판으로 향하는 이온 에너지가 너무 커서, 막을 손상시켜 막밀도, 강도를 저하시킬 수 있으며, 내설된 히터 등의 장치를 손상시킬 수 있다. 따라서, 본 발명의 실시예들에서는 -100 V 내지 -800 V의 DC 전압을 인가하여, 종래에 비해 내식각성이 향상된 비정질 탄소막을 형성한다.
도 12는 DC 전원의 듀티 사이클의 Off 시간 비(Duty ratio)에 따른 막손실 특성을 나타낸 그래프이다.
실험을 위해, 6개의 기판을 마련하고, 상기 6개의 기판에 비정질 탄소막을 형성한다. 이때, 나머지 공정 조건은 동일하게 하게 하고, 6개의 기판 각각이 지지되는 기판 지지부에 공급되는 DC 전원의 off 시간 비를 다르게 한다. 예컨데, 6개의 기판에 동일하게 800 W의 RF 파워 및 -750 V, 20 kHz의 DC 전원을 펄스(pulse)화하여 공급하여 2000 Å의 비정질 탄소막을 형성한다. 그리고 6개의 기판 각각에 비정질 탄소막 형성 시에, 기판 지부 각각에 공급되는 DC 전원 듀티 사이클에서 off 시간이 0 %, 14 %, 20 %, 30 %, 40 %, 50 %가 되도록 조절 한다.
도 12를 참조하면, off 시간 비가 0 %에서 40 % 까지 증가할수록 막손실이 감소하는 경향을 보이다가, 상기 off 시간 비가 40 % 에서 50 %로 증가함에 따라 막손실이 소폭으로 다시 증가한다. 이러한 경향으로부터 off 시간 비가 50 %를 초과하면 막손실이 증가함을 유추할 수 있다. 따라서, 도 12의 실험결과에 의하면, DC 전원을 인가하더라도, DC 전원이 Off 되지 않고 증착 시간 동안 연속하여 인가되는 것에 비해, DC 전원을 교대로 ON-OF 시켜 펄스(Pulse)화하여 공급하는 것이 내식각성이 상대적으로 우수하다. 그리고, DC 전원을 펄스화하여 공급하더라도, 그 주기에 따라 내식각성이 가변된다.
한편, DC 전원의 듀티 사이클의 Off 시간 비가 10 % 미만인 경우, DC 전원이 인가되지 않는 시간(이하, off 시간)이 너무 짧아, 상기 off 시간에도 차징(charging)이 사라지지 않고 남아있는 상태가 계속되는 문제가 발생될 수 있다.
즉, DC 전원을 펄스화하여 공급하는 효과가 거의 없어, 상기 DC 전원을 펄스화하지 않을 때와 유사한 막손실이 발생된다. 또한, off 시간에도 차징(charging)이 사라지지 않고 남아있는 상태가 지속되면, 향후 이온이 증착될 때 기존 차징된 면과 전기적 반발을 일으켜 이온의 가속이 줄어들게 되는 문제가 발생될 수 있다. 반대로 DC 전원의 듀티 사이클의 Off 시간 비가 50 %를 초과하는 경우, DC 전원이 인가되는 시간(이하, on 시간)이 너무 짧아 DC 전원을 인가하는 효과가 발현되지 못하는 문제가 있다. 이에, DC 전원을 인가하지 않을 때와 유사한 막손실이 발생활 수 있다. 따라서, 본 발명의 실시예들에서는 DC 전원의 듀티 사이클의 Off 시간 비가 10 % 내지 50 %가 되도록 조절하여, 종래에 비해 내식각성이 향상된 비정질 탄소막을 형성한다.
도 13은 DC 전압 및 압력 변화에 따른 막손실 특성을 나타낸 그래프이다.
실험을 위하여, 6개의 기판을 마련하고, 상기 6개의 기판에 비정질 탄소막을 형성한다. 이때, 나머지 공정 조건은 동일하게 하게 하고, DC 전압을 -0V, -400 V, -800 V로 가변시키고, 압력을 4torr 또는 7.5torr로 가변시켜 비정질 탄소막을 형성한다.
도 13을 참조하면, DC 전압이 -400 V 로 동일할 때, 4torr 압력 조건에서 형성된 비정질 탄소막의 막손실이 7.5 torr일 때에 비해 작다. 마찬가지로, DC 전압이 -800 V 로 동일할 때, 4 torr 압력 조건에서 형성된 비정질 탄소막의 막손실이 7.5torr일 때에 비해 작다. 이를 통해, 동일한 DC 전압 조건에서 상대적으로 낮은 압력에서 내식각성이 우수함을 알 수 있다. 이는, 상대적으로 높은 압력에서 이온들 간의 충돌 증가로 인해, 기판을 향하는 이온의 가속도가 감소하기 때문이다.
그리고, 도 13에 도시된 바와 같이, 4 torr의 동일한 압력에서 DC 전압이 0 V에서 -800 V로 증가함에 따라, 막손실이 감소한다. 즉, 4torr 동일한 압력하에서 DC 전압이 증가함에 따라, 비례적으로 내식각성이 증가한다. 7.5Torr의 동일한 압력하에서도 DC 전압이 0 V에서 -800 V로 증가함에 따라, 막손실이 감소하며, 동일한 압력하에서 DC 전압이 증가함에 따라, 비례적으로 내식각성이 증가함을 의미한다. 이는 전술한 바와 같이, 동일한 압력하에서 기판에 인각되는 DC 전압이 상대적으로 높은 경우, 상기 기판을 향해 이동하는 이온의 가속도가 증가하기 때문이다.
도 14은 전압, RF 파워, 압력 변화에 따른 막손실 특성을 종합적으로 나타낸 그래프이다. 하기에서는 상기에서 설명한 내용과 중복되는 내용은 간략히 설명하거나, 생략한다.
도 14을 참조하면, 압력이 1 torr로 저압일 경우, 4 torr 이상의 압력에서와 같이 DC 전압의 증가에 따라 내식각성이 비례적으로 증가하지 않는다. 다른 예로, 압력이 4 torr, RF 전원이 800 W로 동일할 경우, DC 전압이 O V에서 -800 V로 증가함에 따라, 내식각성이 비례적으로 증가한다. 마찬가지로, 압력이 7.5 torr, RF 전원이 800 W로 동일할 경우, DC 전압이 O V에서 -800 V로 증가함에 따라, 도 13에서 전술한 바와 같이 도 14의 결과에서도 내식각성이 비례적으로 증가하는 경향을 보인다. 이때, DC 전압이 -800 V 를 초과하는 경우 기판으로 향하는 이온 에너지가 너무 커서, 막을 손상시켜 막밀도, 강도를 저하시킬 수 있다.
즉, 도 13 및 도 14의 나타난 압력 및 DC 전압에 따른 내식각성 변화를 종합해 보면, 압력이 1 torr 이내인 경우, DC 전압이 -100 V 내지 -800V 인 구간에서 내식각성이 개선되는 효과가 있다. 그리고, 압력이 4 torr 내지 7.5 torr 인 경우, 압력이 1 torr 이내인 경우에 비해 DC 전압이 상대적으로 높은 구간에서 내식각성이 개선되는 효과가 있다. 즉, 압력이 4 torr 내지 7.5 torr 인 경우, DC 전압이 -400 V 내지 -800V 인 구간에서 내식각성이 개선되는 효과가 있다. 이는, 압력이 높아질 수록 전자 및 이온간의 충돌 빈도가 크게 증가하여, 한 방향으로의 가속이 상대적으로 어렵다. 이에, 높은 압력에서는 낮은 압력에 비해 상대적으로 더 큰 포텐셜 차이를 주어야, 기판을 향해 이동하는 이온의 가속도가 증가한다. 실험 결과 압력이 4 torr 내지 7.5 torr 인 경우 -400 V 내지 -800V 인 구간에서 내식각성이 개선되는 효과가 나타났다. 그리고, 압력이 7.5 torr를 초과하게 되면, 이온들 간의 충돌 증가로 인해, 기판을 향하는 이온의 가속도가 감소하여, 내식각성이 저하될 수 있다. 이때, 이온의 가속도를 증가시키기 위해 DC 전압을 과도하게 증가시키는 경우, 기판으로 향하는 이온 에너지가 너무 커서, 막을 손상시켜 막밀도, 강도를 저하시킬 수 있으며, 내설된 히터 등의 장치를 손상시킬 수 있다. 따라서, 본 발명의 실시예들에서는 비정질 탄소막 형성시 압력이 1 torr 내지 7.5 torr가 되도록 한다.
이와 같이 상기 도 10 내지 도 14을 참조하여 설명한 실험 데이타로부터, 하드 마스크로 사용되는 비정질 탄소막 형성 시에 기판이 지지되는 기판 지지부에 RF 전원과 함께 DC 전원이 인가될 때, 그렇지 않은 경우에 비해 내식각성이 우수함을 알 수 있다. 이때, 본 발명의 실시예들에서는 DC 전압을 -100 V 내지 -800 V로 하고, DC 전원의 듀티 사이클(duty cycle)에서 DC 전원이 Off되는 시간(duty ratio)이 10 % 내지 50 %이 되도록 조절하여, 종래에 비해 내식각성이 향상된 비정질 탄소막을 형성할 수 있다.
도 15 및 도 16는, 도 1 및 도 8에서 도시된 기판 처리 장치의 차이를 설명하기 위한 도면으로서, 각각 도 1 및 도 8에 의한 기판 처리 장치에 의해 인가되는 전하를 도시하는 개념도이다.
도 1에서는 기판 지지부(210)가 접지되고, 샤워헤드(300)를 통해서 RF 파워가 인가되는 반면, 도 8에서는 샤워헤드(1300)를 접지하고, 기판 지지부(1210)에 음전위 및 RF 파워가 인가된다.
이때, 샤워헤드(1300)와 기판 지지부(1210) 사이에 동일 전위차가 인가되면, 샤워헤드(1300) 및 기판 지지부(1210)의 전위의 절대값에는 무관하게, 샤워헤드(1300)와 기판 지지부(1210)로 이루어지는 캐패시터에 동일한 전하가 유도되므로(Q=CV), 비정질 탄소막 형성에 차이가 없을 것으로 생각될 수도 있으나, 챔버(1100)로 인해서 그 차이가 발생하게 된다. 즉 챔버(1100) 자체가 접지되어 있는 상태이기 때문에 차이가 발생하게 되는 것이다.
도 1의 경우, 양극에 대응하는 샤워헤드(300)과 음극에 대응하는 기판 지지부(210) 및 챔버(100)에 의해 캐패시터가 구성된다(도 15 참조). 따라서, 양극과 음극에 전위차가 발생하게 되면, 양극과 음극에 동일한 양(예컨대 8개)의 서로 반대되는 전하가 유도되고, 이때 음극은 전하를 나누어 갖게 되어 기판 지지부(210)에는 상기 양극보다 적은 양(예컨대 4개)의 전하가 유도되게 된다.
이에 반하여, 도 8의 경우, 챔버(1100)와 샤워헤드(1300)와 동일한 전위를 갖는 양극으로 작용하게 되고, 이보다 낮은 전위의 기판 지지부(1210)가 음극으로 작용하는 캐패시터가 구성된다(도 16 참조). 따라서, 양극과 음극에 도 1과 동일한 전위차가 발생하게 되면, 양극과 음극에 동일한 양(예컨대 8개)의 서로 반대되는 전하가 유도되고, 이때, 양극은 전하를 나누어 갖게 되는 반면 음극은 유도되는 전하를 모두 갖게 된다(예컨대 8개). 따라서, 기판 지지부(1210)에는 상기 샤워헤드(1300)에 비해 많은 양의 전하가 유도되게 되므로, 상기 샤워헤드(1300)와 상기 기판 지지부(1210) 사이의 반응공간의 양이온들이 상기 기판 지지부(1210)로 보다 강하게 유도된다.
도 17은 본 발명의 제 6 실시예에 의한 비정질 탄소막 형성 방법을 도시한 순서도이다.
도 8 및 도 17을 참조하면, 본 발명의 제 6 실시예에 의한 플라즈마 처리방법에 의하면, 먼저 챔버(1100) 내에서 서로 대향하는 샤워헤드(1300) 및 기판 지지부(1210)를 구비하는 기판 처리 장치(1000)의 상기 기판 지지부(1210)로 기판(S)을 로딩한다(단계 S110). 이때, 상기 기판 지지부(1210)와 상기 샤워헤드(1300)의 간격은 약 2cm 이하로 조절하는 것이 바람직하다. 상기 기판 지지부(1210)와 상기 샤워헤드(1300)의 간격이 2cm를 넘는 경우 높은 압력에서 플라즈마 방전이 불안정해지거나, 아크가 발생되는 문제점을 야기할 수 있다.
이를 위하여 상기 구동부(1220)가 상기 기판 지지부(1210)를 상승시켜 상기 샤워헤드(1300)와 상기 기판 지지부(1210)의 간격을 조절하게 된다.
이후, 상기 샤워헤드(1300)를 통해서 상기 기판(S)을 향해 공정 가스를 분사한다(단계 S120). 상기 공정 가스는 원료 공급부(1110)로부터 공급되며, 예컨대, 아세틸렌(C2H2), 또는 프로핀(C3H6) 가스를 이용할 수 있고, 이와 다르게 트리메틸벤젠(trimethylbenzene) 용액을 340도 내지 380도 정도로 가열하여 사용할 수도 있다. 이때, 캐리어 가스로는 이산화탄소 가스, 헬륨, 아르곤 가스 및 수소 가스로 이루어진 군 중에서 선택된 어느 하나 또는 다수의 가스를 복합적으로 사용할 수 있다. 이들의 가스는 별도로 샤워헤드(1110)에 공급될 수 있고, 혼합되어 공급될 수도 있다.
이후, 상기 챔버(1100) 및 상기 샤워헤드(1110)를 접지하고, 상기 기판 지지부(1210)에 음전위를 인가하는 DC전원 및 플라즈마를 생성하기 위한 RF 전원을 인가하여 상기 기판(S) 상에 비정질 탄소막을 형성한다(단계 S130).
이때, 상기 DC 전원은 DC 전원 공급부(1400)를 통해서 수행될 수 있으며, 상기 RF 전원은 RF 전원 공급부(1600)를 통해서 수행될 수 있다.
이때, RF 파워는 약 800W 내지 약 1500W를 공급할 수 있으며, DC 전압은 -800V 내지 -100V를 공급할 수 있다. 한편, 상기 기판상에 비정질 탄소막을 형성하는 단계에서, 상기 DC 전원을 펄스화하여 인가할 수 있다. 이때, 상기 펄스화된 DC 전원의 주파수는 20kHz 내지 200kHz가 되도록 조절할 수 있으며, 상기 펄스화된 DC전원의 듀티비(duty ratio)는 10% 내지 50%의 범위를 가질 수 있다.
바람직하게, 상기 기판상에 비정질 탄소막을 형성하는 과정에서, 상기 챔버 내의 압력이 4 torr 미만일 경우, 상기 기판 지지부에 -800V 내지 -100V의 DC전압을 인가하고, 상기 챔버 내의 압력이 4 torr 내지 7.5 torr일 경우, 상기 기판 지지부에 -800V 내지 -400V의 DC전압을 인가할 수 있다.
또한, 상기 샤워헤드와 상기 기판 지지부의 이격 거리가 0.5cm인 경우, 주파수가 20kHz 내지 200kHz 범위의 펄스화된 DC 전원을 인가하고, 상기 샤워헤드와 상기 기판 지지부의 이격 거리가 0.5cm 초과 1cm이하인 경우, 주파수가 20kHz 내지 100kHz 범위의 펄스화된 DC 전원을 인가할 수 있다.
한편, 본 실시예에서는 공정 가스를 분사한 후(단계 S120), 상기 챔버(1100) 및 상기 샤워헤드(1110)를 접지하는 것(단계 S130)으로 기재되고 있으나, 상기 챔버(1100) 및 상기 샤워헤드(1110)의 접지는 공정 가스를 분사하기 이전에 접지될 수도 있음은 당업자에 자명하다.
이후, 퍼지(purge)단계 없이 곧바로, 상기 비정질 탄소막 표면을 플라즈마 처리한다(단계 S130). 종래에서는 별도의 퍼지단계를 수행하였으나, 비정질 탄소막을 플라즈마 처리하는 공정을 통해서 퍼지단계가 자연스럽게 진행되어 별도의 퍼지 단계수행에 의한 시간을 절약함으로써, 생산성을 향상시킬 수 있다.
이때, 상기 비정질 탄소막 표면을 플라즈마 처리 단계에서는 먼저 챔버 내에 플라즈마 처리가스를 주입한다. 이때, 상기 플라즈마 처리가스로는 아르곤(Ar) 등의 불활성 기체, 질소(N2) 가스등을 주입할 수 있다. 하지만 증착된 비정질 탄소막과 화학반응이 없는 불활성 기체를 사용하는 것이 바람직하다. 본 실시예에서는 예컨대, 2000sccm으로 아르곤 가스를 주입한다.
이후, 기판 지지부에 플라즈마를 생성하기 위한 RF전원 또는 펄스화된 DC전원을 인가한다.
이때, RF전원의 파워는 증착시에 비해서 낮은 파워를 사용하는 것이 바람직하다. 만약 너무 높은 파워를 사용하게 되면 기판(웨이퍼) 표면에 손상을 가할 수 있기 때문이다. 예컨대, RF 전원의 파워는 200W를 사용한다.
한편, 기판 지지부에 펄스화된 DC전원을 인가하는 경우, DC전원은 650V이상 850V이하의 범위의 펄스화된 DC전원을 인가한다. 너무 낮은 전위인 경우에는 플라즈마 처리공정이 효과가 없으며, 너무 높은 범위인 경우, 기판(웨이퍼)표면에 손상을 가할 수 있기 때문이다. 또한, 이때, DC전원은 15초 이하의 시간동안 인가하여 비정질 탄소막 표면을 플라즈마 처리한다(S140).
비정질 탄소막 표면에 플라즈마 처리를 수행하게 되면 원료 물질이 비정질 탄소막에 용이하게 중합되어 비정질 탄소막의 오염된 영역을 감소시킬 수도 있다.
이러한 효과는 도 18 및 도 19를 참조로 보다 상세히 설명한다.
도 18도는 플라즈마 처리공정에서 펄스화된 DC전압 인가시간에 따른 내식각성의 변화를 도시한 그래프이다.
5개의 기판에 비정질 탄소막을 동일한 조건으로 형성한 후, 하나의 기판에는 0V의 전압을 인가하고, 나머지 4개의 기판에는 펄스화된 DC 전압을 각각 750V의 전압을 순간적으로 인가하고(0초), 나머지는 각각 5초, 10초, 15초간 인가하여 비정질 탄소막 표면을 플라즈마 처리한 후, 식각 공정을 수행하여 비정질 탄소막의 내식각성을 관찰하였다.
도 18을 참조하면, 흡광계수(k) 및 굴절율은 플라즈마 처리 전후의 큰 차이가 없어, 광학소자의 제조시에도 문제없이 플라즈마 처리공정을 수행할 수 있음을 볼 수 있다.
한편, 0V의 전압을 인가한 것에 비해서, DC 펄스를 인가하여 플라즈마 처리를 수행한 것이 식각 전후의 차이(Δ)가 적어서(즉, 식각양이 적어서) 내식각성이 향상되었음을 확인할 수 있다. DC 펄스를 인가한 시간이 너무 길어지면, 생산성에 영향을 미칠 뿐만 아니라, 기판 표면에 손상을 가할 수 있으므로, 15초 이하로 진행하는 것이 바람직하다.
도 19는 플라즈마 처리공정에서 펄스화된 DC전압 인가시 전압크기에 따른 내식각성의 변화를 도시한 그래프이다.
6개의 기판에 비정질 탄소막을 동일한 조건으로 형성한 후, 순차적으로 600V, 650V, 700V, 750V, 800V, 850V의 펄스화된 DC 전압을 인가하여, 비정질탄소막 표면을 플라즈마 처리한 후, 식각 공정을 수행하여 비정질 탄소막의 내식각성을 관찰하였다.
도 19를 참조하면, 흡광계수(k) 및 굴절율은 플라즈마 처리 전후의 큰 차이가 없어, 광학소자의 제조시에도 문제없이 플라즈마 처리공정을 수행할 수 있음을 볼 수 있다.
한편, 700V와 850V 인가 시에 효과가 가장 우수한 것으로 나타났다.
이러한 두 값에서 음의 부호로 표시되었으나, 이는 측정상 오차인 것에 기인한다.
한편, 600V 이하의 전압을 인가하는 경우, 플라즈마 처리효과가 미미하며, 또한 850V 이상의 너무 높은 파워를 사용하게 되면 기판(웨이퍼) 표면에 손상을 가할 수 있기 때문에 본 실시예에서는 650V에서 850V이하의 범위의 펄스화된 DC전원을 적용한다.
이상의 결과에서, 본 발명의 실시예들에 의하면, 챔버가 접지되어 있으므로, 샤워헤드를 접지하고, 기판 지지부에 음전위를 인가함으로써, 기판 지지부에 올려진 기판에 형성되는 비정질 탄소막의 내식각성을 향상시킬 수 있다.
또한 플라즈마 처리공정을 진행하여, 비정질 탄소막의 스트레스를 감소시켜 내식각성을 보다 향상시킬 수 있다.
갭필 방법
예컨대, 기판(S) 상부에 비정질 실리콘막을 형성하기 위해서, 예컨대 아세틸렌(C2H2), 또는 프로핀(C3H6) 가스를 이용할 수 있고, 이와 다르게 트리메틸벤젠(trimethylbenzene) 용액을 340도 내지 380도 정도로 가열하여 사용할 수도 있다. 한편, 추가적으로 산소(O2)를 더 포함할 수 있다. 산소를 포함하는 경우, 생성되는 비정질 탄소막의 스트레스를 완화시키고 데포율(deposition rate)을 낮추어 보다 양호한 갭필 공정을 진행할 수 있다.
도 20은 주입되는 공정 가스에 포함된 산소(O2)량과 스트레스와의 관계를 도시하는 그래프이다.
도 20에서 도시된 바와 같이, 산소량이 0sccm인 경우 스트레스는 427(-Mpa)이며, 산소량이 10sccm인 경우 스트레스는 367(-Mpa)이며, 산소량이 20sccm인 경우 스트레스는 354(-Mpa)이며, 산소량이 30sccm인 경우 스트레스는 281(-Mpa)이며, 산소량이 60sccm인 경우 스트레스는 270(-Mpa)이며, 산소량이 120sccm인 경우 스트레스는 173(-Mpa)으로 측정되었다.
이러한 실험결과로부터 공정 가스가스에 주입되는 산소량이 증가할수록 스트레스가 감소됨을 확인할 수 있다.
한편, 캐리어 가스로는 예컨대 이산화탄소 가스, 헬륨, 아르곤 가스 및 수소 가스로 이루어진 군 중에서 선택된 어느 하나 또는 다수의 가스를 복합적으로 사용할 수 있다.
도 1에서 도시된 기판 처리 장치는 플라즈마 내의 이온들이 방향성이 없어 미세 패턴(pattern)에 증착을 할 때, 도 2에서 도시된 바와 같이, 이온들이 방향성이 없이 눈처럼 쌓이게 된다. 이로 인해서 비정질 탄소층(ACL)의 형성과정에서 갭 패턴 상부에 오버행(overhang, OV)이 발생되어 기판상에 형성된 갭 패턴의 입구를 블로킹(blocking)함으로써, 갭 내부가 완전하게 필링(filling)되지 못하고, 보이드(void, V)가 발생되기가 쉽다.
그러나, 도 8에 도시된 기판 처리 장치에서와 같이, 기판 지지부 (1210)에 RF 파워 및 DC 전원을 인가하게 되면, 도 21에서 도시된 바와 같이, 이온들의 방향성을 컨트롤할 수 있기 때문에 갭 패턴에 비정질 탄소층(ACL)을 채우기 용이하다. 특히 DC전원을 펄스화 하여 인가하면 이온들의 방향성을 주는데 효과가 크다. RF 파워가 플라즈마의 밀도를 컨트롤한다면, DC 펄스는 플라즈마 내의 이온들을 아래로 끌어당기는 역할을 한다. 이때 DC 펄스의 전극은 (-)로 작용하며, 이온들을 선택적으로 당기는 효과를 준다. 따라서, 갭 패턴 상부에 형성되는 오버행이 상대적으로 덜 발생하게 되어, 보다 양호한 갭 필(gap fill)을 달성할 수 있다.
그러나, 이 경우에도 비정질 탄소막이 지나치게 급격히 형성되는 경우에는 오버행이 발생되어 갭 패턴 내부에 보이드가 형성될 수 있다. 따라서 공정 조건을 조절하는 것이 중요하며, 이러한 실험결과에 대해서는 이후 설명한다.
도 22은 본 발명의 제 7 실시예에 의한 갭필 방법을 도시한 순서도이다.
도 8 및 도 22을 참조하면, 본 발명의 제 7 실시예에 의한 플라즈마 처리방법에 의하면, 먼저 챔버(1100) 내에서 서로 대향하는 샤워헤드(1300) 및 기판 지지부(1210)를 구비하는 기판 처리 장치(1000)의 상기 기판 지지부(1210)로 기판(S)을 로딩한다(단계 S210). 이때, 상기 기판 지지부(1210)와 상기 샤워헤드(1300)의 간격은 약 2cm 이하로 조절하는 것이 바람직하다. 상기 기판 지지부(1210)와 상기 샤워헤드(1300)의 간격이 2cm를 넘는 경우 높은 압력에서 플라즈마 방전이 불안정해지거나, 아크가 발생되는 문제점을 야기할 수 있다.
이를 위하여 상기 구동부(1220)가 상기 기판 지지부(1210)를 상승시켜 상기 샤워헤드(1300)와 상기 기판 지지부(1210)의 간격을 조절하게 된다.
이후, 상기 샤워헤드(1300)를 통해서 상기 기판(S)을 향해 공정 가스를 분사한다(단계 S220). 상기 공정 가스는 원료 공급부(1110)로부터 공급되며, 예컨대, 아세틸렌(C2H2), 또는 프로핀(C3H6) 가스를 이용할 수 있고, 이와 다르게 트리메틸벤젠(trimethylbenzene) 용액을 340도 내지 380도 정도로 가열하여 사용할 수도 있다. 이때, 캐리어 가스로는 이산화탄소 가스, 헬륨, 아르곤 가스 및 수소 가스로 이루어진 군 중에서 선택된 어느 하나 또는 다수의 가스를 복합적으로 사용할 수 있다. 이들의 가스는 별도로 샤워헤드(1300)에 공급될 수 있고, 혼합되어 공급될 수도 있다.
이후, 상기 챔버(1100) 및 상기 샤워헤드(1300)를 접지하고, 상기 기판 지지부(1210)에 음전위를 인가하는 DC전원 및 플라즈마를 생성하기 위한 RF 전원을 인가하여 비정질 탄소막을 이용하여 상기 기판(S) 상에 형성된 상기 갭패턴을 필링(filling)한다(단계 S230). 이때, 상기 DC 전원은 DC 전원 공급부(1400)를 통해서 수행될 수 있으며, 상기 RF 전원은 RF 전원 공급부(1600)를 통해서 수행될 수 있다.
이때, RF 파워는 약 200W 내지 약 1500W를 공급할 수 있으며, DC 전압은 -1000V 내지 -100V를 공급할 수 있다. 한편, 상기 기판상에 비정질 탄소막을 형성하는 단계에서, 상기 DC 전원을 펄스화하여 인가할 수 있다. 이때, 상기 펄스화된 DC 전원의 주파수는 20kHz 내지 200kHz가 되도록 조절할 수 있으며, 상기 펄스화된 DC전원의 듀티비(duty ratio)는 10% 내지 50%의 범위를 가질 수 있다.
바람직하게, 상기 기판상에 비정질 탄소막을 형성하는 과정에서, 상기 챔버 내의 압력이 4 torr 미만일 경우, 상기 기판 지지부에 -1000V 내지 -100V의 DC전압을 인가하고, 상기 챔버 내의 압력이 4 torr 내지 7.5 torr일 경우, 상기 기판 지지부에 -1000V 내지 -400V의 DC전압을 인가할 수 있다.
또한, 상기 샤워헤드와 상기 기판 지지부의 이격 거리가 0.5cm인 경우, 주파수가 20kHz 내지 200kHz 범위의 펄스화된 DC 전원을 인가하고, 상기 샤워헤드와 상기 기판 지지부의 이격 거리가 0.5cm 초과 1cm이하인 경우, 주파수가 20kHz 내지 100kHz 범위의 펄스화된 DC 전원을 인가할 수 있다.
한편, 본 실시예에서는 공정 가스를 분사한 후(단계 S120), 상기 챔버(1100) 및 상기 샤워헤드(1300)를 접지하고, 상기 기판 지지부(1210)에 음전위를 인가하는 DC전원 및 플라즈마를 생성하기 위한 RF 전원을 인가하여 비정질 탄소막을 이용하여 상기 기판(S) 상에 형성된 상기 갭 패턴을 필링하는 것(단계 S130)으로 기재되고 있으나, 상기 챔버(1100) 및 상기 샤워헤드(1300)의 접지는 공정 가스를 분사하기 이전에 접지될 수도 있음은 당업자에 자명하다.
한편, 도 8에서 도시된 기판 처리 장치를 이용하여 갭필 공정을 진행하는 경우에도 데포율(deposition rate)이 너무 큰 경우, 즉 비정질 탄소막이 너무 급격하게 형성되는 경우에는 도 16의 보이드(V)가 생성될 수 있다.
이하, 도 23 내지 도 28를 참조로 실험결과를 상세히 설명한다.
도 23는 도 8에 의한 기판 처리 장치의 기판 지지부에 -450V의 DC 전압을 인가하고, 10sccm의 아세틸렌(C2H2)을 공급하여 진행한 결과를 도시한 TEM 사진이고, 도 24은 도 23의 부분 확대 사진이다. 도 25은 도 8에 의한 기판 처리 장치의 기판 지지부에 -850V의 DC 전압을 인가하고, 10sccm의 아세틸렌(C2H2)을 공급하여 진행한 결과를 도시한 TEM 사진이고, 도 26은 도 25의 부분 확대 사진이다. 도 27은 도 8에 의한 기판 처리 장치의 기판 지지부에 -850V의 DC 전압을 인가하고, 20sccm의 아세틸렌(C2H2)을 공급하여 진행한 결과를 도시한 TEM사진이고, 도 28는 도 27의 부분 확대 사진이다.
도 23 내지 도 28에서, 산소(O2)는 120sccm, 헬륨(He)은 85sccm, 아르곤(Ar)은 357sccm으로 고정하였고, 챔버 내부의 압력은 1torr, 온도는 300℃로 고정하였다.
도 23 내지 도 26에서 도시된 바와 같이, 10sccm의 아세틸렌(C2H2)을 공급할 때에는 DC전압을 -450V에서 -850V까지 변화시켜도 보이드가 발생되지 않았으나, -850V로 고정한 후 아세틸렌(C2H2)의 공급량을 20sccm까지 증가시키는 경우, 보이드가 발생되는 현상을 관측할 수 있었다. 도 23 및 도 24에 대응하는 제1 공정조건에서의 데포율(deposition rate)은 대략 2.5Å/s이고, 도 25 및 도 26에 대응하는 제2 공정조건에서의 데포율은 대략 5Å/s이고, 데포율이 5Å/s까지는 보이드가 발생되지 않았으나, 도 27 및 도 28에 대응하는 제3 공정조건에서의 데포율은 10Å/s인데, 이 경우, 보이드가 발생되었으므로, 데포율을 10Å/s이하로 하는 경우, 보이드의 생성을 억제할 수 있다.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (20)

  1. 내부 공간을 가지는 챔버;
    상기 챔버 내에 배치되며, 기판이 안치되는 기판 지지부;
    상기 기판 지지부와 대향 배치되어 기판을 향해 원료를 분사하며, 접지되는 샤워헤드; 및
    일단이 상기 챔버 내벽과 연결되고, 타단이 상기 샤워헤드와 연결되어, 상기 챔버 내벽과 샤워헤드를 전기적으로 접속시켜, 상기 챔버 내부의 접지 영역을 확장시키는 접속 부재를 포함하는 기판 처리 장치.
  2. 제 1항에 있어서,
    상기 접속 부재는 상측 및 하측이 개방되고, 내부 공간을 가지는 링(ring)형상인 기판 처리 장치.
  3. 제 1항에 있어서,
    상기 기판 지지부와 마주보는 샤워헤드의 일면과 상기 접속 부재의 일면이 동일 수평면 상에 위치하는 기판 처리 장치.
  4. 제 1항에 있어서,
    상기 샤워헤드와 접속 부재 사이에 라이너가 설치되고,
    상기 접속 부재는 상기 샤워헤드 및 라이너 중 적어도 하나의 외주면을 둘러싸도록 설치되는 기판 처리 장치.
  5. 제 1항에 있어서,
    상기 기판 지지부는 RF 전원을 공급하는 전원 공급부와 접속되는 기판 처리 장치.
  6. 접지되고, 내부 공간을 가지는 챔버;
    상기 챔버 내에 배치되며, 기판이 안치되는 기판 지지부;
    상기 기판 지지부와 대향 배치되어 기판을 향해 원료를 분사하며, 접지되는 샤워헤드;
    상기 기판 지지부에 RF 전원을 인가하는 RF 전원 공급부; 및
    상기 기판 지지부에 DC 전원을 인가하는 DC 전원 공급부를 포함하는 기판 처리 장치.
  7. 제6항에 있어서,
    상기 DC 전원 공급부는 펄스화된 DC 전원을 인가하는 것을 특징으로 하는 기판 처리 장치.
  8. 제6항에 있어서,
    상기 RF 전원 공급부의 RF 전원으로부터 상기 DC 전원 공급부를 보호하기 위한 필터를 더 포함하는 것을 특징으로 하는 기판 처리 장치.
  9. 기판이 안착되는 기판 지지부에 RF 전원 및 DC 전원을 인가하는 과정;
    상기 기판을 향해 공정 가스를 분사하는 샤워헤드를 접지시키는 과정; 및
    상기 샤워헤드를 이용하여 기판을 향해 공정 가스를 분사하는 과정을 포함하며, 상기 기판 상에 비정질 탄소막을 형성하는 비정질 탄소막 형성 방법.
  10. 제 9항에 있어서,
    상기 기판 지지부에 -100 V 내지 -800 V 전압의 DC 전원이 인가되는 비정질 탄소막 형성 방법.
  11. 제 9항에 있어서,
    상기 DC 전원을 펄스화시켜 인가하는 비정질 탄소막 형성 방법.
  12. 제 9항에 있어서,
    상기 비정질 탄소막 표면을 플라즈마 처리하는 단계를 더 포함하는 비정질 탄소막 형성 방법.
  13. 제 12항에 있어서,
    상기 비정질 탄소막 표면을 플라즈마 처리하는 단계에서 인가되는 RF 전원의 파워는, 상기 비정질 탄소막을 형성하는 단계의 RF 파워에 비해 낮은 파워로 처리하는 것을 특정으로 하는 비정질 탄소막 형성 방법.
  14. 제 12항에 있어서,
    상기 비정질 탄소막 표면을 플라즈마 처리하는 단계에서 퍼지(purge)가 수행되는 것을 특징으로 하는 비정질 탄소막 형성 방법.
  15. 챔버 내에서 서로 대향하는 샤워헤드 및 기판 지지부를 구비하는 기판 처리 장치의 상기 기판 지지부로, 갭 패턴(gap pattern)이 형성된 기판을 로딩하는 단계;
    상기 샤워헤드를 통해서 상기 기판을 향해 공정 가스를 분사하는 단계; 및
    상기 챔버 및 상기 샤워헤드를 접지하고, 상기 기판 지지부에 음전위를 인가하는 DC전원 및 플라즈마를 생성하기 위한 RF 전원을 인가하여 상기 기판상에 비정질 탄소막을 이용하여 상기 갭 패턴을 필링(filling)하는 단계를 포함하는 갭필 방법.
  16. 제 15항에 있어서,
    상기 기판상에 비정질 탄소막을 형성하는 단계에서,
    상기 DC 전원을 펄스화하여 인가하는 것을 특징으로 하는 갭필 방법.
  17. 제 15항에 있어서,
    상기 RF전원의 파워는 200W 내지 1500W의 범위내인 것을 특징으로 하는 갭필 방법.
  18. 제 15항에 있어서,
    상기 공정 가스는 아세틸렌(C2H2), 헬륨(He) 및 아르곤(Ar)을 포함하는 것을 특징으로 하는 갭필 방법.
  19. 제 15항에 있어서,
    상기 공정 가스는 아세틸렌(C2H2) 및 프로핀(C3H6) 중 적어도 어느 하나 및 산소(O2)를 포함하는 것을 특징으로 하는 갭필 방법.
  20. 제 15항에 있어서,
    상기 기판 지지부에 상기 RF 전원으로부터 상기 DC 전원이 공급되는 공급부를 보호하기 위한 필터를 더 연결하는 것을 특징으로 하는 갭필 방법.
PCT/KR2012/006911 2011-08-31 2012-08-30 기판 처리 장치, 이를 이용한 비정질 탄소막 형성 방법 및 반도체 소자의 갭필 방법 WO2013032232A2 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2011-0087654 2011-08-31
KR1020110087654A KR101304215B1 (ko) 2011-08-31 2011-08-31 비정질 탄소막 형성 방법
KR1020110103934A KR101254485B1 (ko) 2011-10-12 2011-10-12 플라즈마 건 및 이를 포함하는 플라즈마 처리장치
KR10-2011-0103934 2011-10-12
KR10-2011-0133558 2011-12-13
KR1020110133558A KR101325557B1 (ko) 2011-12-13 2011-12-13 비정질 탄소막 형성 방법
KR1020120044225A KR101353258B1 (ko) 2012-04-27 2012-04-27 반도체 소자의 갭필 방법
KR10-2012-0044225 2012-04-27

Publications (3)

Publication Number Publication Date
WO2013032232A2 true WO2013032232A2 (ko) 2013-03-07
WO2013032232A9 WO2013032232A9 (ko) 2013-05-23
WO2013032232A3 WO2013032232A3 (ko) 2013-07-11

Family

ID=47757055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006911 WO2013032232A2 (ko) 2011-08-31 2012-08-30 기판 처리 장치, 이를 이용한 비정질 탄소막 형성 방법 및 반도체 소자의 갭필 방법

Country Status (2)

Country Link
TW (1) TWI598937B (ko)
WO (1) WO2013032232A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244790A1 (ja) * 2018-06-20 2019-12-26 株式会社アルバック 真空処理装置、支持シャフト
CN110965040B (zh) * 2019-12-04 2021-04-16 江苏菲沃泰纳米科技股份有限公司 用于制备dlc的镀膜设备及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980071012A (ko) * 1997-01-24 1998-10-26 조셉 제이. 스위니 고온 및 고 증착율의 티타늄 막을 증착하기 위한 방법 및 장치
KR20030066770A (ko) * 2000-12-29 2003-08-09 램 리서치 코포레이션 플라즈마 공정을 위한 전극 및 이의 제조 방법과 사용 방법
KR20070025543A (ko) * 2005-09-02 2007-03-08 삼성전자주식회사 분리된 상부링을 갖는 플라즈마를 이용한 반도체 제조 장치
KR20100122901A (ko) * 2008-02-08 2010-11-23 램 리써치 코포레이션 플라즈마 프로세싱 챔버 파트용 보호 코팅 및 그 이용 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980071012A (ko) * 1997-01-24 1998-10-26 조셉 제이. 스위니 고온 및 고 증착율의 티타늄 막을 증착하기 위한 방법 및 장치
KR20030066770A (ko) * 2000-12-29 2003-08-09 램 리서치 코포레이션 플라즈마 공정을 위한 전극 및 이의 제조 방법과 사용 방법
KR20070025543A (ko) * 2005-09-02 2007-03-08 삼성전자주식회사 분리된 상부링을 갖는 플라즈마를 이용한 반도체 제조 장치
KR20100122901A (ko) * 2008-02-08 2010-11-23 램 리써치 코포레이션 플라즈마 프로세싱 챔버 파트용 보호 코팅 및 그 이용 방법

Also Published As

Publication number Publication date
TWI598937B (zh) 2017-09-11
WO2013032232A9 (ko) 2013-05-23
TW201318037A (zh) 2013-05-01
WO2013032232A3 (ko) 2013-07-11

Similar Documents

Publication Publication Date Title
US7749914B2 (en) Plasma etching method
US7625494B2 (en) Plasma etching method and plasma etching unit
WO2013022306A2 (ko) 플라즈마 발생장치, 플라즈마 발생장치용 회전 전극의 제조방법, 기판의 플라즈마 처리방법, 및 플라즈마를 이용한 혼합 구조의 박막 형성방법
WO2012047035A2 (ko) 대칭형 유입구 및 유출구를 통해 반응가스를 공급하는 기판 처리 장치
KR20200040331A (ko) 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치
KR20080054419A (ko) 웨이퍼의 베벨 에지 및 이면상의 필름들을 제거하는 장치및 방법들
WO2016010267A1 (ko) 고종횡비를 가지는 오목부 상에 절연막을 증착하는 방법
WO2013032232A9 (ko) 기판 처리 장치, 이를 이용한 비정질 탄소막 형성 방법 및 반도체 소자의 갭필 방법
JP3946640B2 (ja) プラズマ処理装置およびプラズマ処理方法
WO2019088722A1 (ko) 루테늄함유 박막의 제조방법 및 이로부터 제조된 루테늄함유 박막
WO2017131404A1 (ko) 기판처리장치
WO2017183872A1 (ko) 건식 에칭장치
WO2021215578A1 (ko) 롤투롤 대면적 그래핀 합성 장치, 대면적 그래핀의 제조방법 및 산화그래핀 직물의 환원방법
WO2019054617A1 (ko) 내플라즈마 특성이 향상된 플라즈마 에칭 장치용 부재 및 그 제조 방법
US11488804B2 (en) Shower head assembly and plasma processing apparatus having the same
WO2019124736A1 (ko) 반도체 기판의 건식 세정을 위한 플라즈마 장치
WO2017164508A1 (ko) 높은 공간 선택성을 가지는 선형 플라즈마 발생 장치
WO2017135571A1 (en) Linear plasma generator for selective surface treatment
WO2018074780A1 (ko) 건식 에칭장치 및 그 제어방법
WO2016017918A1 (ko) 이온 소스
WO2020235823A1 (ko) 플라즈마와 증기를 이용한 건식 세정 방법
WO2023068696A1 (ko) Dc 펄스 플라즈마 기판 처리 장치
WO2023249164A1 (ko) 스월 모션 사이드 가스 피드가 구비된 플라즈마 챔버
WO2023068698A1 (ko) 축전 결합 플라즈마 기판 처리 장치
WO2024112078A1 (ko) 활성화된 프로톤 어시스트 플라즈마 식각을 포함하는 박막공정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826839

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12826839

Country of ref document: EP

Kind code of ref document: A2