WO2013032083A1 - 병렬구조식 일체형 리니어엔진 제너레이터 - Google Patents

병렬구조식 일체형 리니어엔진 제너레이터 Download PDF

Info

Publication number
WO2013032083A1
WO2013032083A1 PCT/KR2012/001727 KR2012001727W WO2013032083A1 WO 2013032083 A1 WO2013032083 A1 WO 2013032083A1 KR 2012001727 W KR2012001727 W KR 2012001727W WO 2013032083 A1 WO2013032083 A1 WO 2013032083A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
engine
pumping
unit
fuel
Prior art date
Application number
PCT/KR2012/001727
Other languages
English (en)
French (fr)
Inventor
김강출
표영덕
조종표
권오석
길범수
손병훈
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110087138A external-priority patent/KR101215404B1/ko
Priority claimed from KR1020110101107A external-priority patent/KR101224577B1/ko
Priority claimed from KR1020110101106A external-priority patent/KR101281119B1/ko
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2013032083A1 publication Critical patent/WO2013032083A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • F02B63/041Linear electric generators

Definitions

  • the present invention relates to a parallel-type integrated linear engine generator, and more particularly, the pumping chamber is formed on both sides of the engine unit by splitting, thereby minimizing the high heat generated during combustion of the combustion chamber to conduct to the power generating unit output Raised, the power generation unit is located on both sides instead of the center part to reduce the size of the longitudinal direction, increase the durability by reducing the eccentricity caused by the buckling and vibration of the existing linear engine, the air inlet is installed on both sides of the engine compartment And the fuel flows into the engine compartment to the side, and the engine efficiency is increased by minimizing the scavenging losses during the scavenging stroke, and the piston sleeve of the combustion chamber is divided into two sides, thereby improving the workability and reducing the cost, and the engine piston Piston shaft is formed of a mutually separated type, so that one side is coupled to the inside of the other side In addition, by increasing the dynamic freedom of the engine piston, the lateral load is minimized to reduce frictional loss while improving the durability of the piston and the s
  • a 2-stroke cycle is adopted which is relatively simpler than a 4-stroke engine, and the 2-stroke engine adopts a cross sweep and loop scavenging method. Doing.
  • the linear engine of this type has a cylinder block head which is formed corresponding to both ends so that a mixer mixed with fuel and air transferred from the fuel tank is introduced therein to operate by receiving fuel from the fuel tank, and
  • the cylinder head which is stacked on one side and the mixer introduced into the inside heats and ignites the heater coil formed therein, and the cylinder sleeve which guides the piston formed therein to slide left and right by exploding the mixer ignited by the cylinder head. It is composed.
  • the linear engine has improved the response of the fuel supply and the accuracy of the fuel amount control much compared with the conventional carburetor method.
  • the generator is designed to be centered on the linear engine, so that the connecting rod of the linear engine is lengthened, so that the lateral load due to eccentricity due to buckling and vibration is increased, and the friction is increased so that efficiency and durability deteriorate. do.
  • the pumping chamber is divided on both sides of the engine unit, so that the high heat generated during combustion of the combustion chamber is minimized to be conducted to the power generating unit, so that the output of the power generating unit is increased, and the power generating unit is disposed on both sides instead of the middle part of the engine in the longitudinal direction. Its purpose is to reduce the size and reduce the eccentricity caused by the buckling and vibration of the existing linear engine to provide an integrated linear engine generator with increased durability.
  • inlet ports are provided at both sides of the engine compartment so that air and fuel are introduced into the engine compartment to the side, thereby minimizing scavenging losses during scavenging stroke, thereby providing an integrated linear engine generator having a parallel structure. There is this.
  • the piston sleeve of the combustion chamber is formed by dividing the two sides, it is another object to provide a parallel structure-type linear engine generator that improves the workability and the cost is reduced.
  • Another object is to provide a parallel integrated linear engine generator with improved output.
  • the position of the engine piston is measured by the photosensor and transmitted to the controller, and the controller calculates the speed of the engine piston based on the position of the engine piston.
  • the controller calculates the speed of the engine piston based on the position of the engine piston.
  • the present invention includes an engine unit for receiving and operating the fuel and air therein;
  • a pumping part spaced apart from both sides of the engine part and provided in parallel, and configured to transfer air and fuel introduced through the supply to the engine part;
  • a supply unit provided on an outer surface of the engine unit to supply fuel and external air transferred from a fuel tank to a pumping unit;
  • a power generation unit provided at one end of the pumping unit, connected to an engine unit, and generating electricity by operation of the engine unit;
  • a photo sensor unit provided at the side of the pumping unit and the power generating unit to measure driving of an engine unit;
  • a controller configured to control the engine unit and the supply unit by receiving the data signal measured by the photosensor unit.
  • the parallel structured integrated linear engine generator of the present invention is formed by splitting the pumping chambers on both sides of the engine unit, thereby minimizing conduction of high heat generated during combustion of the combustion chamber to reduce the output of the power generating unit.
  • the power generation unit is disposed on both sides instead of the center part, thereby reducing the size of the longitudinal direction, and reducing the eccentricity caused by buckling and vibration of the existing linear engine, thereby increasing durability.
  • inlet ports are installed at both sides of the engine compartment, so that air and fuel flow into the engine compartment to the side, thereby minimizing scavenging losses, thereby increasing engine efficiency.
  • piston shaft of the engine piston is formed to be separated from each other, one side is coupled to the inside of the other side, to increase the dynamic freedom of the engine piston to minimize the lateral load during driving, while reducing the frictional loss and durability of the piston and sleeve There is an effect to be improved.
  • the position of the engine piston is measured by the photosensor and transmitted to the controller, and the controller calculates the speed of the engine piston based on the position of the engine piston.
  • the linear engine is driven by driving the engine unit and the supply unit. Accordingly, the linear engine is controlled through the injection timing, injection amount, and ignition timing of the fuel, thereby improving linear engine efficiency and output power.
  • FIG. 1 is a perspective view showing an integrated linear engine device according to an embodiment of the present invention
  • FIG. 2 is a plan view showing an integrated linear engine device according to an embodiment of the present invention
  • Figure 3 is a front view showing an integrated linear engine device according to an embodiment of the present invention.
  • Figure 4 is a side view showing the integrated linear engine device according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional perspective view showing an integrated linear engine device according to an embodiment of the present invention.
  • Figure 6 is a planar cross-sectional view showing an integrated linear engine device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing an engine piston according to an embodiment of the present invention.
  • spark plug 122 pressure sensor
  • connection portion 140 piston sleeve
  • piston piston 151 piston head
  • injector 420 air inlet hole
  • control unit 600 control unit
  • the present invention has the following features to achieve the above object.
  • the present invention is an engine unit for receiving and operating the fuel and air therein;
  • a pumping part spaced apart from both sides of the engine part and provided in parallel, and configured to transfer air and fuel introduced through the supply to the engine part;
  • a supply unit provided on an outer surface of the engine unit to supply fuel and external air transferred from a fuel tank to a pumping unit;
  • a power generation unit provided at one end of the pumping unit, connected to an engine unit, and generating electricity by operation of the engine unit;
  • a photo sensor unit provided at the side of the pumping unit and the power generating unit to measure driving of an engine unit;
  • a controller configured to control the engine unit and the supply unit by receiving the data signal measured by the photosensor unit.
  • FIG. 1 is a perspective view showing an integrated linear engine device according to an embodiment of the present invention
  • Figure 2 is a plan view showing an integrated linear engine device according to an embodiment of the present invention
  • Figure 3 is an embodiment of the present invention 4 is a side view showing an integrated linear engine device according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional perspective view showing an integrated linear engine device according to an embodiment of the present invention
  • 6 is a sectional plan view showing an integrated linear engine device according to an embodiment of the present invention
  • FIG. 7 is a schematic view showing an engine piston according to an embodiment of the present invention.
  • the parallel integrated linear engine generator of the present invention is a system consisting of a linear engine, a linear generator, and an air pump.
  • the engine unit 100, the pumping unit 200, the power generation unit 300, the supply unit 400, the photosensor unit 500, and the control unit 600 are operated by receiving fuel and air therein. It is composed.
  • the engine unit 100 is a device that operates by receiving fuel and air therein, and includes the combustion chamber 110, the connection unit 130, and the combustion chamber head 120. It is composed.
  • the combustion chamber 110 communicates with the through-holes 113 so that a plurality of exhaust ports are discharged to the outside so that the exhaust gas generated by the explosion of fuel is discharged to the outside.
  • 111 is formed, and a plurality of inlets 112 are formed at both sides of the combustion chamber 110 to communicate with the through-holes 113 to allow air and fuel to flow therein.
  • the inlet 112 is formed on the side of the combustion chamber head 120 near the portion of the combustion chamber 110 formed at both ends, respectively, and the air and fuel introduced are ignited by the ignition plug 121 of the combustion chamber head 120. Will be.
  • a through hole 113 is formed in the combustion chamber 110 in the longitudinal direction such that fuel and air are introduced and exploded as shown in FIG. 5, and a piston sleeve 140 is formed in the through hole 113. 5 and 6, the piston sleeve 140 is separately formed on both sides of the combustion chamber 110 to form a piston hole 141 in the longitudinal direction thereof.
  • the piston sleeve 140 is made of a ceramic material, a plurality of connection holes 142 are formed in accordance with the position of the exhaust port 111 and the inlet port 112 of the combustion chamber 110, the connection hole 142 Is formed on the upper surface and both sides of the piston sleeve 140, respectively.
  • the piston piston 141 of a ceramic material is inserted into the piston hole 141 of the piston sleeve 140 separated by both sides, and slides left and right by explosion of the combustion chamber 110. .
  • the engine piston 150 is connected between the piston head 151 and the piston head 151 which are respectively inserted into the piston hole 141 of the piston sleeve 140 separated to both sides, as shown in FIG. It is formed so as to be separated from each other, one side is coupled to the inside of the other side to increase the dynamic freedom of the engine piston 150, when driving, it is made of a piston shaft 152 to reduce the friction loss by minimizing the side load.
  • the piston shaft 152 a link hole 153 is formed so that the link 340 for interconnecting the magnet 330 is connected, the link hole 153 is mutually It is formed on the two piston shaft 152 to be coupled, is formed in the same position, the link hole 153 is formed larger than the link 340 to increase the dynamic freedom of the engine piston 150.
  • the inlet 112 is connected by a transfer port 222 of the pumping chamber head 220 and a connecting member (not shown), and a plurality of the inlet 112 is formed to be transferred through the upper end of the linear engine.
  • the connection member overlaps or interferes with each other, so that the intake port 112 is formed in the downward direction, that is, the lower end of the linear engine as shown in FIG. 222 is also formed in the lower or side direction.
  • connection part 130 is integrally protruded from both sides of the combustion chamber 110, and an end part is integrally formed on the outer surface of the pumping chamber 210 of the pumping part 200. It is connected to the structure. That is, the planar shape of the engine part 100 and the pumping part 200 by the connection part 130 is formed in a "wang" shape, as shown in Figure 2 to minimize the contact with the engine part 100.
  • combustion chamber head 120 is provided at both ends of the combustion chamber 110, as shown in FIGS. 1, 2, and 5 to block the through-hole 113 of the combustion chamber 110, and the combustion chamber Spark plug 121 is installed through the center portion to explode fuel in 110.
  • the operation of the spark plug 121 (also called an ignition unit) is operated by the signal of the control unit 600.
  • the pressure sensor 122 for measuring the pressure in the combustion chamber 110 is further formed at the upper end of the combustion chamber head 120.
  • the pumping unit 200 is spaced apart from both sides of the engine unit 100 and provided in parallel, and the engine unit 100 receives air and fuel introduced through the supply unit 400.
  • a device for transferring to the it is composed of a pumping chamber 210, the pumping chamber head 220.
  • the pumping chamber 210 as shown in Figures 1 to 4, the outer surface is integrally connected with the connecting portion 130, the pumping chamber 210 is separated into two based on the portion connected to the connecting portion 130. And spaced apart from each other, the power generation unit 300 is provided in the separated portion.
  • the pumping chamber 210 is formed of a ceramic material which is formed in both sides so as to be inserted into and installed in the air hole 151, and the pumping piston hole 231 is formed in the longitudinal direction therein.
  • the pumping piston sleeve 230 and the pumping piston sleeve 230 of the pumping piston hole 231 is inserted into the pumping piston head 241 and the pumping piston shaft so as to slide left and right in accordance with the explosion of the combustion chamber 110 ( 242 is made of a ceramic pumping piston 240 and the end of the pumping piston head 241, respectively, when the left and right sliding of the pumping piston 240, while relieving the impact by elastic force and at the same time recoil It is configured to include a; spring (250) for pushing to one side.
  • the pumping piston 240 is connected to the engine piston 150 by the power generation unit 300 is driven in the same direction in accordance with the driving of the engine piston 150, the connection structure with the power generation unit 300 is It demonstrates when describing the power generation part 300 below.
  • the pumping chamber head 220 is provided at both ends of the pumping chamber 210, and is connected to the supply unit 400 so that the inlet hole 221 into which air and fuel are introduced. It is formed on the surface, the feed hole 222 is formed at one end so that the air and fuel introduced through the inlet hole 221 is transferred into the combustion chamber 110 by the driving of the pumping piston 240.
  • a reed valve REED VALVE 223 is further formed in the pumping chamber head 220 so as to be opened and closed by a pressure difference between air and fuel flowing through the inlet hole 221.
  • the reed valve 223 is a valve for allowing air and fuel to flow into one side but blocking the transfer to the other side.
  • the conveying port 222 of the pumping chamber head 220 is interconnected by the intake port 112 and the connection member of the combustion chamber 110, so that air and fuel are transported in the combustion chamber 110.
  • the supply unit 400 is fixed to an outer surface (upper surface) of the engine unit 100 by a fixing member (not shown) such as a bolt and is delivered from a fuel tank. It is a device that supplies external air to the pumping unit 200. At this time, the supply unit 400 is operated by the signal of the control unit 600, as shown in FIG.
  • the supply unit 400 is connected to the fuel tank (not shown), as shown in Figures 1 to 3, the injector 410 is formed through the upper side so as to inject the delivered fuel therein, the supply of the 400 An air inlet hole 221 is formed at one end of the upper portion to allow external air to flow therein.
  • a plurality of air and fuel introduced into the inside of the supply unit 400 through the injector 410 and the air inlet hole 221 are mixed at the side of the supply unit 400 to be delivered to the pumping unit 200.
  • Connector 430 is formed.
  • the connector 430 is interconnected by an inlet hole 221 of the pumping chamber head 220 and a connecting member so that air and fuel are transferred to the pumping chamber 210.
  • the power generation unit 300 is provided at one end of the pumping unit 200 and connected to the engine unit 100, and electricity is supplied by the operation of the engine unit 100.
  • the core 310 which is spaced apart from each other horizontally and horizontally installed on the separated portion of the pumping chamber 210, the coil 320 wound around the core 310 and attached, the upper, It is provided between the core 310 spaced apart, the pumping piston 240 is fixed to both sides is composed of a magnet 330 which is a permanent magnet sliding in the same manner as the pumping piston 240.
  • two magnets 330 are formed in accordance with the pumping unit 200.
  • the two magnets 330 are interconnected by the link 340, as shown in Figures 1 to 3, the link 340 Is connected to the engine piston 150, the magnet 330 is also driven in accordance with the driving of the engine piston 150.
  • the link 340 is formed through the link hole 153 of the engine piston 150 so that the magnet 330 is also driven in the same direction in accordance with the driving of the engine piston 150.
  • the photosensor unit 500 is provided at the side portions of the pumping unit 200 and the power generation unit 300 to measure the driving of the engine unit 100, thereby detecting the photosensor. 510 and the position sensing device 520. At this time, the data signal measured by the photosensor unit 500 is transmitted to the controller 600.
  • the photosensor 510 is fixed to the vertical portion of the side of the pumping chamber 210, the core 310 is fixed, as shown in Figures 1 and 3, the photosensor 510 is one or more (in the present invention) Two) formed at a predetermined interval from each other, and the data signals measured by the photosensor 510 are transmitted to the controller 600.
  • the position detecting device 520 is horizontally fixed to the side of the magnet 330 is a permanent magnet to be detected by the photo sensor 510, at least one photo sensor 510 in accordance with the sliding of the magnet 330. Alternately between the photosensors 510 are sensed. At this time, the position detecting device 520 is a material that can be detected by the photosensor 510, made of any one or more of a variety of materials. At this time, since the position of the position detecting device 520 is the same as the position of the engine piston, it is the same as detecting the position of the engine piston.
  • control unit 600 controls the engine unit 100 and the supply unit 400 by receiving the data signal measured by the photosensor unit 500.
  • the position data of 520 is received from the photosensor 510, and the engine piston speed is measured by calculating the position data of the position sensing device 520 and the position data according to the time set therein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

본 발명은 병렬구조식 일체형 리니어엔진 제너레이터에 관한 것으로서, 더욱 상세하게는 엔진부의 양측에 펌핑실이 분할되어 형성됨으로써, 연소실의 연소시, 발생되는 고열이 발전부에 전도되는 것을 최소화하여 발전부의 출력이 상승되고, 발전부를 가운데 부분이 아닌 양쪽 측면으로 배치하여 길이 방향의 크기를 줄였으며, 기존 리니어 엔진의 좌굴 및 진동에 의한 편심을 줄여 내구성을 증대하고, 상기 엔진실의 양측면에 흡기구가 설치되어 공기와 연료가 엔진실 내에 측면으로 유입됨으로써, 소기행정시, 소기손실을 최소화하여 엔진효율이 증대되며, 상기 연소실의 피스톤 슬리브가 양측으로 분할되어 형성됨으로써, 가공성 향상 및 원가가 절감되고, 상기 엔진피스톤의 피스톤축이 상호 분리형으로 형성되어 일측이 타측의 내부에 결합됨으로써, 엔진피스톤의 동적 자유도를 크게 하여 구동시, 측면하중을 최소화하여 마찰손실을 줄이는 동시에 피스톤 및 슬리브의 내구성이 향상되는 특징이 있다.

Description

병렬구조식 일체형 리니어엔진 제너레이터
본 발명은 병렬구조식 일체형 리니어엔진 제너레이터에 관한 것으로서, 더욱 상세하게는 엔진부의 양측에 펌핑실이 분할되어 형성됨으로써, 연소실의 연소시, 발생되는 고열이 발전부에 전도되는 것을 최소화하여 발전부의 출력이 상승되고, 발전부를 가운데 부분이 아닌 양쪽 측면으로 배치하여 길이 방향의 크기를 줄였으며, 기존 리니어 엔진의 좌굴 및 진동에 의한 편심을 줄여 내구성을 증대하고, 상기 엔진실의 양측면에 흡기구가 설치되어 공기와 연료가 엔진실 내에 측면으로 유입됨으로써, 소기행정시, 소기손실을 최소화하여 엔진효율이 증대되며, 상기 연소실의 피스톤 슬리브가 양측으로 분할되어 형성됨으로써, 가공성 향상 및 원가가 절감되고, 상기 엔진피스톤의 피스톤축이 상호 분리형으로 형성되어 일측이 타측의 내부에 결합됨으로써, 엔진피스톤의 동적 자유도를 크게 하여 구동시, 측면하중을 최소화하여 마찰손실을 줄이는 동시에 피스톤 및 슬리브의 내구성이 향상되며, 상기 발전부의 코어가 상호 대응되는 면에 챔퍼링을 함으로써, 공극에서의 자기 저항의 변화를 줄이고, 상기 발전부의 코깅력(디텐트력)이 저감되며, 이를 통해 피스톤 주파수 상승의 효과가 있어 출력이 향상되고, 선형 왕복 운동을 하는 리니어 엔진을 구동, 제어하기 위한 것으로 엔진피스톤의 위치를 포토센서부에서 측정하여 제어부에 전송하고, 상기 제어부는 엔진피스톤의 위치를 바탕으로 엔진피스톤의 속도를 계산한 뒤, 엔진부와 공급부를 구동하여 리니어 엔진을 구동하게 되고, 이에 따라 연료의 분사 시점, 분사량, 점화 시점을 통해 리니어 엔진을 제어하여 리니어 엔진 효율 및 출력이 향상되는 병렬구조식 일체형 리니어엔진 제너레이터에 관한 것이다.
일반적으로, 기존 소형 엔진의 경우에는 자동차 엔진(피스톤 및 크랭크 작동기구에 의한 4행정 또는 2행정 회전 왕복기관)을 축소시켜 만든다.
또한, 상기 엔진을 작게 제작해야 하기 때문에 압축비를 높이는 데 한계가 있고, 소기방식에 있어서 효율이 매우 우수한 유니플로우 소기 방식을 사용할 수 있으나 밸브 등의 주요 부품 증가로 인하여, 제작비용 및 구조적인 어려움이 있기 때문에 소형화가 어렵다.
그리하여, 일반적으로 아주 소형으로 제작하는 경우에는 4 행정 엔진보다는 비교적 구조가 간단한 2 행정 사이클(2 Stroke Cycle)을 채택하고 있으며, 2 행정 엔진의 경우에는 횡단 소기 및 루프 소기(Loop Scavenging) 방식을 적용하고 있다.
이런 방식의 리니어 엔진은 연료탱크에서 연료를 전달받아 작동하도록 상기 연료탱크에서 이송된 연료와 공기로 혼합된 혼합기가 내부에 유입되도록 양끝단에 대응되어 형성되는 실린더 블록 헤드와, 상기 실린더 블록 헤드의 일측에 적층되어 내부에 유입된 혼합기를 내부에 형성된 히터코일을 적열시켜 점화하는 실린더 헤드와, 상기 실린더 헤드에 의해 점화된 혼합기가 폭발하여 내부에 형성된 피스톤이 좌,우로 슬라이딩 되도록 안내하는 실린더 슬리브로 구성된다.
여기서, 상기 리니어 엔진은 종래의 기화기 방식에 비하여 연료공급의 응답성과 연료량 제어의 정확도가 많이 향상됐다.
그런데, 상기 리니어 엔진의 구조는 자동차 엔진(피스톤 및 크랭크 작동기구에 의한 4행정 또는 2행정 회전 왕복기관)을 축소시켜 만들기 때문에 소형으로 제작하는 데 어려움이 많고, 또한 내구성 및 효율이 매우 좋지 않은 문제점이 있다.
또한, 상기 엔진을 작게 제작해야 하기 때문에 압축비를 높이는 데 한계가 있어 대부분 글로우 플로그(glow plug)를 사용하여 저압축비에 연소를 시키고 있기 때문에 열손실 등이 증가하여 엔진의 효율 및 성능이 매우 낮아지는 문제점이 발생한다.
그리고, 상기 리니어 엔진에 제너레이터가 중앙에 오도록 설계하여 리니어 엔진의 커넥팅로드가 길어져서 좌굴 및 진동에 의한 편심 등으로 인한 측면 하중이 증가하고, 그로 인한 마찰이 커져 효율 및 내구성이 악화되는 문제가 발생한다.
따라서, 본 발명은 상기 종래의 문제점을 해소하기 위해 안출된 것으로서,
엔진부의 양측에 펌핑실이 분할되어 형성됨으로써, 연소실의 연소시, 발생되는 고열이 발전부에 전도되는 것을 최소화하여 발전부의 출력이 상승되고, 발전부를 가운데 부분이 아닌 양쪽 측면으로 배치하여 길이 방향의 크기를 줄였으며, 기존 리니어 엔진의 좌굴 및 진동에 의한 편심을 줄여 내구성이 증대되는 병렬구조식 일체형 리니어엔진 제너레이터를 제공하는데 목적이 있다.
또한, 상기 엔진실의 양측면에 흡기구가 설치되어 공기와 연료가 엔진실 내에 측면으로 유입됨으로써, 소기행정시, 소기손실을 최소화하여 엔진효율이 증대되는 병렬구조식 일체형 리니어엔진 제너레이터를 제공하는데 또 다른 목적이 있다.
또한, 상기 연소실의 피스톤 슬리브가 양측으로 분할되어 형성됨으로써, 가공성 향상 및 원가가 절감되는 병렬구조식 일체형 리니어엔진 제너레이터를 제공하는데 또 다른 목적이 있다.
또한, 상기 엔진피스톤의 피스톤축이 상호 분리형으로 형성되어 일측이 타측의 내부에 결합됨으로써, 엔진피스톤의 동적 자유도를 크게 하여 구동시, 측면하중을 최소화하여 마찰손실을 줄이는 동시에 피스톤 및 슬리브의 내구성이 향상되는 병렬구조식 일체형 리니어엔진 제너레이터를 제공하는데 또 다른 목적이 있다.
또한, 상기 발전부의 코어가 상호 대응되는 면에 챔퍼링을 함으로써, 공극에서의 자기 저항의 변화를 줄이고, 상기 발전부의 코깅력(디텐트력)이 저감되며, 이를 통해 피스톤 주파수 상승의 효과가 있어 출력이 향상되는 병렬구조식 일체형 리니어엔진 제너레이터를 제공하는데 또 다른 목적이 있다.
또한, 선형 왕복 운동을 하는 리니어 엔진을 구동, 제어하기 위한 것으로 엔진피스톤의 위치를 포토센서부에서 측정하여 제어부에 전송하고, 상기 제어부는 엔진피스톤의 위치를 바탕으로 엔진피스톤의 속도를 계산한 뒤, 엔진부와 공급부를 구동하여 리니어 엔진을 구동하게 되고, 이에 따라 연료의 분사 시점, 분사량, 점화 시점을 통해 리니어 엔진을 제어하여 리니어 엔진 효율 및 출력이 향상되는 병렬구조식 일체형 리니어엔진 제너레이터를 제공하는데 또 다른 목적이 있다.
상기 목적을 달성하고자, 본 발명은 연료와 공기를 내부에 전달받아 작동하는 엔진부와;
상기 엔진부의 양측에 이격되어 병렬로 구비되고, 공급(를 통해 유입된 공기와 연료를 엔진부에 이송하는 펌핑부와;
상기 엔진부의 외부면에 구비되어 연료탱크에서 전달되는 연료와 외부의 공기를 펌핑부에 공급하는 공급부와;
상기 펌핑부의 일단부에 구비되어 엔진부와 연결되고, 상기 엔진부의 작동에 의해 전기가 발생되는 발전부와;
상기 펌핑부와 발전부의 측면부에 구비되어 엔진부의 구동을 측정하는 포토센서부와;
상기 포토센서부에서 측정된 데이터신호를 전달받아 엔진부 및 공급부를 제어하는 제어부;를 포함하여 구성되는 것을 특징으로 하는 병렬구조식 일체형 리니어엔진 제너레이터에 관한 것이다.
이상에서 살펴 본 바와 같이, 본 발명의 병렬구조식 일체형 리니어엔진 제너레이터는 엔진부의 양측에 펌핑실이 분할되어 형성됨으로써, 연소실의 연소시, 발생되는 고열이 발전부에 전도되는 것을 최소화하여 발전부의 출력이 상승되고, 발전부를 가운데 부분이 아닌 양쪽 측면으로 배치하여 길이 방향의 크기를 줄였으며, 기존 리니어 엔진의 좌굴 및 진동에 의한 편심을 줄여 내구성이 증대되는 효과가 있다.
또한, 상기 엔진실의 양측면에 흡기구가 설치되어 공기와 연료가 엔진실 내에 측면으로 유입됨으로써, 소기행정시, 소기손실을 최소화하여 엔진효율이 증대되는 효과가 있다.
또한, 상기 연소실의 피스톤 슬리브가 양측으로 분할되어 형성됨으로써, 가공성 향상 및 원가가 절감되는 효과가 있다.
또한, 상기 엔진피스톤의 피스톤축이 상호 분리형으로 형성되어 일측이 타측의 내부에 결합됨으로써, 엔진피스톤의 동적 자유도를 크게 하여 구동시, 측면하중을 최소화하여 마찰손실을 줄이는 동시에 피스톤 및 슬리브의 내구성이 향상되는 효과가 있다.
또한, 상기 발전부의 코어가 상호 대응되는 면에 챔퍼링을 함으로써, 공극에서의 자기 저항의 변화를 줄이고, 상기 발전부의 코깅력(디텐트력)이 저감되며, 이를 통해 피스톤 주파수 상승의 효과가 있어 출력이 향상되는 효과가 있다.
또한, 선형 왕복 운동을 하는 리니어 엔진을 구동, 제어하기 위한 것으로 엔진피스톤의 위치를 포토센서부에서 측정하여 제어부에 전송하고, 상기 제어부는 엔진피스톤의 위치를 바탕으로 엔진피스톤의 속도를 계산한 뒤, 엔진부와 공급부를 구동하여 리니어 엔진을 구동하게 되고, 이에 따라 연료의 분사 시점, 분사량, 점화 시점을 통해 리니어 엔진을 제어하여 리니어 엔진 효율 및 출력이 향상되는 효과가 있다.
도 1은 본 발명의 일실시예에 따른 일체형 리니어엔진장치를 나타낸 사시도이고,
도 2는 본 발명의 일실시예에 따른 일체형 리니어엔진장치를 나타낸 평면도이고,
도 3은 본 발명의 일실시예에 따른 일체형 리니어엔진장치를 나타낸 정면도이고,
도 4는 본 발명의 일실시예에 따른 일체형 리니어엔진장치를 나타낸 측면도이고,
도 5는 본 발명의 일실시예에 따른 일체형 리니어엔진장치를 나타낸 단면 사시도이고,
도 6은 본 발명의 일실시예에 따른 일체형 리니어엔진장치를 나타낸 평면 단면도이고,
도 7은 본 발명의 일실시예에 따른 엔진피스톤을 나타낸 개략도이다.
<도면의 주요부분에 대한 부호의 표시>
100 : 엔진부 110 : 연소실
111 : 배기포트 112 : 흡기구
113 : 관통홀 120 : 연소실 헤드
121 : 점화플러그 122 : 압력센서
130 : 연결부 140 : 피스톤 슬리브
141 : 피스톤홀 142 : 연결홀
150 : 엔진피스톤 151 : 피스톤 헤드
152 : 피스톤 축 153 : 링크홀
200 : 펌핑부 210 : 펌핑실
220 : 펌핑실 헤드 221 : 유입홀
222 : 이송구 223 : 리드밸브
230 : 펌핑 피스톤 슬리브 231 : 펌핑 피스톤홀
240 : 펌핑 피스톤 241 : 펌핑 피스톤 헤드
242 : 펌핑 피스톤 축 250 : 스프링
300 : 발전부 310 : 코어
320 : 코일 330 : 마그네트
340 : 링크 400 : 공급부
410 : 인젝터 420 : 공기유입홀
430 : 연결구 500 : 포토센서부
510 : 포토센서 520 : 위치감지장치
600 : 제어부
본 발명은 상기의 목적을 달성하기 위해 아래와 같은 특징을 갖는다.
본 발명은 연료와 공기를 내부에 전달받아 작동하는 엔진부와;
상기 엔진부의 양측에 이격되어 병렬로 구비되고, 공급(를 통해 유입된 공기와 연료를 엔진부에 이송하는 펌핑부와;
상기 엔진부의 외부면에 구비되어 연료탱크에서 전달되는 연료와 외부의 공기를 펌핑부에 공급하는 공급부와;
상기 펌핑부의 일단부에 구비되어 엔진부와 연결되고, 상기 엔진부의 작동에 의해 전기가 발생되는 발전부와;
상기 펌핑부와 발전부의 측면부에 구비되어 엔진부의 구동을 측정하는 포토센서부와;
상기 포토센서부에서 측정된 데이터신호를 전달받아 엔진부 및 공급부를 제어하는 제어부;를 포함하여 구성되는 것을 특징으로 한다.
이와 같은 특징을 갖는 본 발명은 그에 따른 바람직한 실시예를 통해 더욱 명확히 설명될 수 있을 것이다.
이하 첨부된 도면을 참조로 본 발명의 여러 실시예들을 상세히 설명하기 전에, 다음의 상세한 설명에 기재되거나 도면에 도시된 구성요소들의 구성 및 배열들의 상세로 그 응용이 제한되는 것이 아니라는 것을 알 수 있을 것이다. 본 발명은 다른 실시예들로 구현되고 실시될 수 있고 다양한 방법으로 수행될 수 있다. 또, 장치 또는 요소 방향(예를 들어 "전(front)", "후(back)", "위(up)", "아래(down)", "상(top)", "하(bottom)", "좌(left)", "우(right)", "횡(lateral)")등과 같은 용어들에 관하여 본원에 사용된 표현 및 술어는 단지 본 발명의 설명을 단순화하기 위해 사용되고, 관련된 장치 또는 요소가 단순히 특정 방향을 가져야 함을 나타내거나 의미하지 않는다는 것을 알 수 있을 것이다. 또한, "제 1(first)", "제 2(second)"와 같은 용어는 설명을 위해 본원 및 첨부 청구항들에 사용되고 상대적인 중요성 또는 취지를 나타내거나 의미하는 것으로 의도되지 않는다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 일실시예에 따른 일체형 리니어엔진장치를 나타낸 사시도이고, 도 2는 본 발명의 일실시예에 따른 일체형 리니어엔진장치를 나타낸 평면도이고, 도 3은 본 발명의 일실시예에 따른 일체형 리니어엔진장치를 나타낸 정면도이고, 도 4는 본 발명의 일실시예에 따른 일체형 리니어엔진장치를 나타낸 측면도이고, 도 5는 본 발명의 일실시예에 따른 일체형 리니어엔진장치를 나타낸 단면 사시도이고, 도 6은 본 발명의 일실시예에 따른 일체형 리니어엔진장치를 나타낸 평면 단면도이고, 도 7은 본 발명의 일실시예에 따른 엔진피스톤을 나타낸 개략도이다.
도 1 내지 도 7에 도시한 바와 같이, 본 발명의 병렬구조식 일체형 리니어엔진 제너레이터는 리니어 엔진과, 리니어 제너레이터와, 에어펌프로 이루어진 시스템인데, 본 발명에서는 기술작성의 명확성을 위해 연료탱크에서 전달되는 연료와 공기를 내부에 전달받아 작동하는 엔진부(100)와, 펌핑부(200)와, 발전부(300)와, 공급부(400)와, 포토센서부(500)와, 제어부(600)로 구성된다.
상기 엔진부(100)는 도 1 내지 도 7에 도시한 바와 같이, 연료와 공기를 내부에 전달받아 작동하는 장치로써, 상기 연소실(110)과, 연결부(130)와, 연소실 헤드(120)로 구성된다.
여기서, 상기 연소실(110)의 상부면에는 도 1과 도 5에 도시한 바와 같이, 상기 관통홀(113)과 연통되어 연료의 폭발에 의해 발생하는 배기가스가 외부로 배출되도록 다수개의 배기포트(111)가 형성되고, 상기 연소실(110)의 양측면에는 관통홀(113)과 연통되어 공기 및 연료가 내부에 유입되도록 다수개의 흡기구(112)가 형성된다. 이때, 상기 흡기구(112)는 연소실(110)의 양끝단부에 형성되는 연소실 헤드(120) 부위 근처 측면에 각각 형성되어 유입된 공기와 연료가 연소실 헤드(120)의 점화플러그(121)에 의해 점화되는 것이다.
그리고, 상기 연소실(110)의 내부에는 도 5에서처럼, 연료와 공기가 유입되어 폭발이 이루어지도록 길이방향으로 관통홀(113)이 형성되고, 상기 관통홀(113) 내에는 피스톤 슬리브(140)가 설치되며, 상기 피스톤 슬리브(140)는 도 5 내지 도 6에서처럼, 연소실(110)의 양측에 분리되어 형성되어 내부의 길이방향으로 피스톤홀(141)이 형성된다.
또한, 상기 피스톤 슬리브(140)는 세라믹 재질로써, 상기 연소실(110)의 배기포트(111)와 흡기구(112)의 위치에 맞춰 다수개의 연결홀(142)이 형성되고, 상기 연결홀(142)은 피스톤 슬리브(140)의 상부면과 양측면에 각각 형성된다.
한편, 상기 양측으로 분리된 피스톤 슬리브(140)의 피스톤홀(141)에는 도 5와 도 6에서처럼, 세라믹 재질의 엔진피스톤(150)이 삽입되어 연소실(110)의 폭발에 의해 좌,우로 슬라이딩된다.
여기서, 상기 엔진피스톤(150)은 도 7에서처럼, 상기 양측으로 분리된 피스톤 슬리브(140)의 피스톤홀(141)에 각각 삽입되는 피스톤헤드(151)와, 상기 피스톤헤드(151)의 사이를 연결하도록 형성되되, 상호 분리형으로 형성되어 일측이 타측의 내부에 결합되어 엔진피스톤(150)의 동적 자유도를 크게 하여 구동시, 측면하중을 최소화하여 마찰손실을 줄이는 피스톤축(152)으로 이루어진다.
이때, 상기 피스톤축(152)에는 도 5와 도 6에서처럼, 마그네트(330)를 상호 연결해주는 링크(340)가 관통되어 연결되도록 링크홀(153)이 형성되고, 상기 링크홀(153)은 상호 결합되는 두 개의 피스톤축(152)에 형성되되, 동일한 위치에 형성되며, 상기 링크홀(153)은 링크(340)보다 크게 형성되어 엔진피스톤(150)의 동적 자유도를 크게 해준다.
그리고, 상기 흡기구(112)는 펌핑실 헤드(220)의 이송구(222)와 연결부재(미도시)에 의해 연결되는데, 상기 흡기구(112)가 다수개 형성되어 있어 리니어엔진의 상단부를 통해 이송구(222)와 연결되면 연결부재가 상호 겹쳐지거나 간섭하기에 일부 흡기구(112)는 도 1에서처럼 아래 방향 즉, 리니어엔진의 하단부로 형성되고, 그와 동일하게 펌핑실 헤드(220)의 이송구(222)도 하단부 또는 측면부 방향으로 형성된다.
한편, 상기 연결부(130)는 도 1와 도 2에 도시한 바와 같이, 연소실(110)의 양측부에 일체형으로 돌출 형성되고, 끝단부가 펌핑부(200)의 펌핑실(210) 외부면에 일체형으로 연결되는 구조이다. 즉, 상기 연결부(130)에 의해 엔진부(100)와 펌핑부(200)의 평면 형태는 도 2에서처럼, "王" 형태로 형성되어 엔진부(100)와의 접촉을 최소화하였다.
또한, 상기 연소실 헤드(120)는 도 1과 도 2 및 도 5에 도시한 바와 같이, 연소실(110)의 양측 끝단부에 구비되어 연소실(110)의 관통홀(113)을 차단하고, 상기 연소실(110) 내의 연료를 폭발시키도록 점화플러그(121)가 중앙부에 관통 설치된다. 이때, 상기 점화플러그(121, 점화부라고도 칭함.)의 작동은 제어부(600)의 신호에 의해 작동한다.
여기서, 상기 연소실 헤드(120)의 상단부에는 연소실(110) 내의 압력을 측정하는 압력센서(122)가 더 형성된다.
상기 펌핑부(200)는 도 1 내지 도 6에 도시한 바와 같이, 엔진부(100)의 양측에 이격되어 병렬로 구비되고, 상기 공급부(400)를 통해 유입된 공기와 연료를 엔진부(100)에 이송하는 장치로써, 펌핑실(210)과, 펌핑실 헤드(220)로 구성된다.
여기서, 상기 펌핑실(210)은 도 1 내지 도 4에서처럼, 외부면이 연결부(130)와 일체형으로 연결되는데, 상기 펌핑실(210)은 연결부(130)와 연결되는 부위를 기준으로 두 개로 분리되어 상호 이격되고, 상기 분리된 부위에 발전부(300)가 구비된다.
그리고, 상기 펌핑실(210)의 내부에는 도 5 내지 도 6에서처럼, 공기홀(151)에 삽입 설치되도록 양측으로 분리되어 형성되되, 내부에 길이방향으로 펌핑피스톤홀(231)이 형성되는 세라믹 재질의 펌핑피스톤 슬리브(230)와, 상기 펌핑피스톤 슬리브(230)의 펌핑피스톤홀(231)에 삽입되어 연소실(110)의 폭발에 맞춰 좌,우로 슬라이딩되도록 펌핑피스톤헤드(241)와 펌핑피스톤축(242)으로 이루어지는 세라믹 재질의 펌핑피스톤(240)과, 상기 펌핑피스톤헤드(241)의 끝단부에 각각 설치되어 펌핑피스톤(240)의 좌, 우 슬라이딩 시, 탄성력으로 충격을 완화시켜주는 동시에 반동을 주어 일측으로 밀어주는 스프링(250);을 포함하여 구성된다.
또한, 상기 펌핑피스톤(240)은 발전부(300)에 의해 엔진피스톤(150)과 연결되어 상기 엔진피스톤(150)의 구동에 맞춰 동일한 방향으로 구동되는데, 상기 발전부(300)와의 연결구조는 이하의 발전부(300)를 기술할 때 설명한다.
그리고, 상기 펌핑실 헤드(220)는 도 1 내지 도 5에서처럼, 펌핑실(210)의 양끝단부에 구비되고, 상기 공급부(400)와 연결되어 공기와 연료가 유입되는 유입홀(221)이 일단면에 형성되며, 상기 유입홀(221)을 통해 유입된 공기와 연료가 펌핑피스톤(240)의 구동에 의해 연소실(110) 내에 이송되도록 이송구(222)가 일단부에 형성된다.
또한, 상기 펌핑실 헤드(220)의 내부에는 도 5와 도 6에서처럼, 유입홀(221)을 통해 유입되는 공기와 연료의 압력차에 의해 개폐하도록 리드밸브(REED VALVE,223)가 더 형성되고, 상기 리드밸브(223)는 일측으로 공기와 연료가 유입되는 것은 허용되지만, 반대측으로 이송되는 것을 차단하는 밸브이다.
이때, 상기 펌핑실 헤드(220)의 이송구(222)는 연소실(110)의 흡기구(112)와 연결부재에 의해 상호 연결되어 공기와 연료가 연소실(110) 내에 이송되는 것이다.
상기 공급부(400)는 도 1 내지 도 4에 도시한 바와 같이, 엔진부(100)의 외부면(상부면)에 볼트 등의 고정부재(미도시)에 의해 고정되어 연료탱크에서 전달되는 연료와 외부의 공기를 펌핑부(200)에 공급하는 장치이다. 이때, 상기 공급부(400)는 도 4에서처럼, 제어부(600)의 신호에 의해 작동한다.
여기서, 상기 공급부(400)는 도 1 내지 도 3에서처럼, 연료탱크(미도시)와 연결되어 전달된 연료를 내부에 분사하도록 인젝터(410)가 상부측에 관통 형성되고, 상기 공급부(400)의 상측 일단부에는 외부의 공기가 내부에 유입되도록 공기유입홀(221)이 형성된다.
또한, 상기 공급부(400)의 측면부에는 상기 인젝터(410)와 공기유입홀(221)을 통해 내부에 유입된 공기와 연료가 공급부(400)의 내부에서 혼합되어 펌핑부(200)에 전달되도록 다수개의 연결구(430)가 형성된다.
그리고, 상기 연결구(430)는 펌핑실 헤드(220)의 유입홀(221)과 연결부재에 의해 상호 연결되어 공기와 연료가 펌핑실(210)에 이송된다.
상기 발전부(300)는 도 1 내지 도 4에 도시한 바와 같이, 펌핑부(200)의 일단부에 구비되어 엔진부(100)와 연결되고, 상기 엔진부(100)의 작동에 의해 전기가 발생되는 장치로써, 펌핑실(210)이 분리된 부위에 수평상 상,하로 상호 이격되어 고정설치되는 코어(310)와, 상기 코어(310)에 감겨 부착되는 코일(320)과, 상기 상,하로 이격된 코어(310) 사이에 구비되고, 상기 펌핑피스톤(240)이 양측에 고정 설치되어 펌핑피스톤(240)과 동일하게 슬라이딩되는 영구자석인 마그네트(330)으로 구성된다.
여기서, 상기 마그네트(330)는 펌핑부(200)에 맞춰 두 개가 형성되는데, 상기 두 개의 마그네트(330)는 도 1 내지 도 3에서처럼, 링크(340)에 의해 상호 연결되고, 상기 링크(340)는 엔진피스톤(150)과 연결되어 상기 엔진피스톤(150)의 구동에 맞춰 마그네트(330)도 동일하게 구동된다. 이때, 상기 링크(340)는 엔진피스톤(150)의 링크홀(153)에 관통 형성되어 엔진피스톤(150)의 구동에 맞춰 마그네트(330)도 동일한 방향으로 구동되는 것이다.
또한, 상기 마그네트(330)의 구동에 의해 양측에 고정된 펌핑피스톤(240)도 동일하게 구동됨으로써, 상기 엔진피스톤(150)의 구동방향과 펌핑피스톤(240)의 구동방향이 동일한 것이다.
그리고, 상기 코어(310)가 상호 대응되는 면에는 챔퍼링(모따기)을 함으로써, 공극에서의 자기 저항의 변화를 줄이고, 상기 발전부(300)의 코깅력(디텐트력)이 저감되며, 이를 통해 피스톤 주파수 상승의 효과가 있다.
상기 포토센서부(500)는 도 1 내지 도 4에 도시한 바와 같이, 펌핑부(200)와 발전부(300)의 측면부에 구비되어 엔진부(100)의 구동을 측정하는 것으로써, 포토센서(510)와, 위치감지장치(520)로 구성된다. 이때, 상기 포토센서부(500)에서 측정된 데이터신호는 제어부(600)에 전달된다.
여기서, 상기 포토센서(510)는 도 1과 도 3에서처럼, 코어(310)가 고정 설치된 펌핑실(210)의 측면부에 수직으로 고정 설치되고, 상기 포토센서(510)는 하나 이상(본 발명에서는 두 개) 형성되는데, 상호 소정간격 이격되어 형성되며, 상기 포토센서(510)에서 측정된 데이터신호는 제어부(600)에 전달되도록 구성된다.
또한, 상기 위치감지장치(520)는 포토센서(510)에 감지되도록 영구자석인 마그네트(330)의 측면부에 수평으로 고정 설치되고, 상기 마그네트(330)의 슬라이딩에 맞춰 하나 이상의 포토센서(510) 사이에서 번갈아가며 포토센서(510)에 감지된다. 이때, 상기 위치감지장치(520)는 포토센서(510)에 감지될 수 있는 재질로써, 다양한 재질 중 어느 하나 이상으로 이루어진다. 이때, 상기 위치감지장치(520)의 위치는 엔진피스톤의 위치와 동일하기에 엔진피스톤의 위치를 감지하는 것과 같다.
상기 제어부(600)는 도 1 내지 도 4에 도시한 바와 같이, 포토센서부(500)에서 측정된 데이터신호를 전달받아 엔진부(100) 및 공급부(400)를 제어하는 것으로, 상기 위치감지장치(520)의 위치데이터를 포토센서(510)에서 전달받고, 상기 위치감지장치(520)의 위치데이터와 내부에 설정된 시간에 따른 위치데이터를 계산하여 엔진피스톤 속도를 측정한다.

Claims (12)

  1. 연료와 공기를 내부에 전달받아 작동하는 엔진부(100)와;
    상기 엔진부(100)의 양측에 이격되어 병렬로 구비되고, 공급부(400)를 통해 유입된 공기와 연료를 엔진부(100)에 이송하는 펌핑부(200)와;
    상기 엔진부(100)의 외부면에 구비되어 연료탱크에서 전달되는 연료와 외부의 공기를 펌핑부(200)에 공급하는 공급부(400)와;
    상기 펌핑부(200)의 일단부에 구비되어 엔진부(100)와 연결되고, 상기 엔진부(100)의 작동에 의해 전기가 발생되는 발전부(300)와;
    상기 펌핑부(200)와 발전부(300)의 측면부에 구비되어 엔진부(100)의 구동을 측정하는 포토센서부(500)와;
    상기 포토센서부(500)에서 측정된 데이터신호를 전달받아 엔진부(100) 및 공급부(400)를 제어하는 제어부(600);
    를 포함하여 구성되는 것을 특징으로 하는 병렬구조식 일체형 리니어엔진 제너레이터.
  2. 제 1항에 있어서, 상기 엔진부(100)는,
    내부에 연료와 공기가 유입되어 폭발이 이루어지도록 길이방향으로 관통홀(113)이 형성되고, 상기 관통홀(113)과 연통되어 연료의 폭발에 의해 발생하는 배기가스가 외부로 배출되도록 상부면에 다수개의 배기포트(111)가 형성되고, 상기 관통홀(113)과 연통되어 공기 및 연료가 내부에 유입되도록 양측면부에 다수개의 흡기구(112)가 형성되는 연소실(110)과;
    상기 연소실(110)의 양측부에 일체형으로 돌출 형성되어 펌핑부(200)와 일체형으로 연결되는 연결부(130)와;
    상기 연소실(110)의 양측 끝단부에 구비되어 연소실(110)의 관통홀(113)을 차단하고, 상기 연소실(110) 내의 연료를 폭발시키도록 점화플러그(121)가 중앙부에 관통 설치되는 연소실 헤드(120);
    를 포함하여 구성되는 것을 특징으로 하는 병렬구조식 일체형 리니어엔진 제너레이터.
  3. 제 2항에 있어서, 상기 연소실(110)에는,
    관통홀(113)에 삽입 설치되되, 상기 연소실(110)의 양측에 분리되어 형성되고, 내부의 길이방향으로 피스톤홀(141)이 형성되며, 상기 연소실(110)의 배기포트(111)와 흡기구(112)의 위치에 맞춰 다수개의 연결홀(142)이 형성되는 세라믹 재질의 피스톤 슬리브(140)와;
    상기 양측으로 분리된 피스톤 슬리브(140)의 피스톤홀(141)에 삽입되어 연소실(110)의 폭발에 의해 좌,우로 슬라이딩되는 세라믹 재질의 엔진피스톤(150);
    을 포함하여 구성되는 것을 특징으로 하는 병렬구조식 일체형 리니어엔진 제너레이터.
  4. 제 3항에 있어서, 상기 엔진피스톤(150)은,
    상기 양측으로 분리된 피스톤 슬리브(140)의 피스톤홀(141)에 각각 삽입되는 피스톤헤드(151)와;
    상기 피스톤헤드(151)의 사이를 연결하도록 형성되되, 상호 분리형으로 형성되어 일측이 타측의 내부에 결합되어 엔진피스톤(150)의 동적 자유도를 크게 하여 구동시, 측면하중을 최소화하여 마찰손실을 줄이는 피스톤축(152);
    을 포함하여 구성되는 것을 특징으로 하는 병렬구조식 일체형 리니어엔진 제너레이터.
  5. 제 2항에 있어서, 상기 펌핑부(200)는,
    외부면이 연결부(130)와 일체형으로 연결되고, 내부에 길이방향으로 공기홀(211)이 형성되어 상기 공급부(400)의 연료와 공기를 내부에 유입시키며, 중앙부에 발전부(300)가 구비되도록 형성되는 펌핑실(210)과;
    상기 펌핑실(210)의 양끝단부에 구비되고, 상기 공급부(400)와 연결되어 공기와 연료가 유입되는 유입홀(221)이 일단면에 형성되며, 상기 유입홀(221)을 통해 유입된 공기와 연료가 펌핑피스톤(240)에 의해 연소실(110) 내에 이송되도록 이송구(222)가 일단부에 형성되는 펌핑실 헤드(220);
    를 포함하여 구성되는 것을 특징으로 하는 병렬구조식 일체형 리니어엔진 제너레이터.
  6. 제 5항에 있어서, 상기 펌핑실(210)에는,
    공기홀(151)에 삽입 설치되도록 양측으로 분리되어 형성되고, 내부에 길이방향으로 펌핑피스톤홀(231)이 형성되는 세라믹 재질의 펌핑피스톤 슬리브(230)와;
    상기 펌핑피스톤 슬리브(230)의 펌핑피스톤홀(231)에 삽입되어 연소실(110)의 폭발에 맞춰 좌,우로 슬라이딩되도록 펌핑피스톤헤드(241)와 펌핑피스톤축(242)으로 이루어지며, 상기 펌핑피스톤축(242)은 발전부(300) 사이에서 슬라이딩되는 세라믹 재질의 펌핑피스톤(240)과;
    상기 펌핑피스톤헤드(241)의 끝단부에 각각 설치되어 펌핑피스톤(240)의 좌, 우 슬라이딩 시, 탄성력으로 충격을 완화시켜주는 동시에 반동을 주어 일측으로 밀어주는 스프링(250);
    을 포함하여 구성되는 것을 특징으로 하는 병렬구조식 일체형 리니어엔진 제너레이터.
  7. 제 5항에 있어서,
    상기 펌핑실 헤드(220)의 내부에는 유입홀(221)을 통해 유입되는 공기와 연료의 압력차에 의해 개폐하도록 리드밸브(REED VALVE,223)가 더 형성되는 것을 특징으로 하는 병렬구조식 일체형 리니어엔진 제너레이터.
  8. 제 5항에 있어서,
    상기 펌핑실 헤드(220)의 이송구(222)는 연소실(110)의 흡기구(112)와 연결부재에 의해 상호 연결되어 공기와 연료가 연소실(110) 내에 이송되는 것을 특징으로 하는 병렬구조식 일체형 리니어엔진 제너레이터.
  9. 제 5항에 있어서,
    상기 공급부(400)는 연료탱크와 연결되어 전달된 연료를 내부에 분사하도록 인젝터(410)가 형성되고, 상측 일단부에 외부의 공기가 내부에 유입되도록 공기유입홀(221)이 형성되며, 상기 인젝터(410)와 공기유입홀(221)을 통해 내부에 유입된 공기와 연료가 혼합되어 펌핑부(200)에 전달되도록 다수개의 연결구(430)가 측면부에 형성되는 것을 특징으로 하는 병렬구조식 일체형 리니어엔진 제너레이터.
  10. 제 9항에 있어서,
    상기 연결구(430)는 펌핑실 헤드(220)의 유입홀(221)과 연결부재에 의해 상호 연결되어 공기와 연료가 펌핑실(210)에 이송되는 것을 특징으로 하는 병렬구조식 일체형 리니어엔진 제너레이터.
  11. 제 5항에 있어서, 상기 발전부(300)는,
    펌핑실(210)에 수평상 상,하로 상호 이격되어 고정설치되는 코어(310)와;
    상기 코어(310)에 감겨 부착되는 코일(320)과;
    상기 상,하로 이격된 코어(310) 사이에 구비되고, 펌핑피스톤(240)이 양측에 고정 설치되어 펌핑피스톤(240)과 동일하게 슬라이딩되는 영구자석인 마그네트(330);
    를 포함하여 구성되는 것을 특징으로 하는 병렬구조식 일체형 리니어엔진 제너레이터.
  12. 제 11항에 있어서, 상기 포토센서부(500)는,
    상기 코어(310)가 고정 설치된 펌핑실(210)의 측면부에 수직으로 고정 설치되고, 하나 이상 상호 이격되어 형성되는 포토센서(510)와;
    상기 포토센서(510)에 감지되도록 영구자석인 마그네트(330)의 측면부에 수평으로 고정 설치되고, 상기 마그네트(330)의 슬라이딩에 맞춰 하나 이상의 포토센서(510) 사이에서 번갈아가며 포토센서(510)에 감지되는 위치감지장치(520);
    를 포함하여 구성되는 것을 특징으로 하는 병렬구조식 일체형 리니어엔진 제너레이터.
PCT/KR2012/001727 2011-08-30 2012-03-09 병렬구조식 일체형 리니어엔진 제너레이터 WO2013032083A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2011-0087138 2011-08-30
KR1020110087138A KR101215404B1 (ko) 2011-08-30 2011-08-30 병렬분할구조식 일체형 리니어엔진장치
KR1020110101107A KR101224577B1 (ko) 2011-10-05 2011-10-05 포토센서를 이용한 일체형 리니어 엔진장치 및 이에 따른 구동제어방법
KR1020110101106A KR101281119B1 (ko) 2011-10-05 2011-10-05 병렬분할구조식으로 스프링이 설치된 일체형 리니어엔진장치
KR10-2011-0101107 2011-10-05
KR10-2011-0101106 2011-10-05

Publications (1)

Publication Number Publication Date
WO2013032083A1 true WO2013032083A1 (ko) 2013-03-07

Family

ID=47756528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001727 WO2013032083A1 (ko) 2011-08-30 2012-03-09 병렬구조식 일체형 리니어엔진 제너레이터

Country Status (1)

Country Link
WO (1) WO2013032083A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109667663A (zh) * 2019-01-22 2019-04-23 宁波吉利罗佑发动机零部件有限公司 对置活塞自由式发动机及其工作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505177A (en) * 1993-01-28 1996-04-09 Jenbacher Energiesysteme Aktiengesellschaft Apparatus for sensing the engine parameters of an internal combustion engine
WO2002040843A1 (en) * 2000-11-20 2002-05-23 Jaakko Larjola Two-stroke engine
JP2006271178A (ja) * 2005-03-20 2006-10-05 Mutsuo Hirano 往復リニアエンジン
KR20100136827A (ko) * 2009-06-19 2010-12-29 한국에너지기술연구원 병렬구조식 리니어 엔진 시스템 및 제어방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505177A (en) * 1993-01-28 1996-04-09 Jenbacher Energiesysteme Aktiengesellschaft Apparatus for sensing the engine parameters of an internal combustion engine
WO2002040843A1 (en) * 2000-11-20 2002-05-23 Jaakko Larjola Two-stroke engine
JP2006271178A (ja) * 2005-03-20 2006-10-05 Mutsuo Hirano 往復リニアエンジン
KR20100136827A (ko) * 2009-06-19 2010-12-29 한국에너지기술연구원 병렬구조식 리니어 엔진 시스템 및 제어방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109667663A (zh) * 2019-01-22 2019-04-23 宁波吉利罗佑发动机零部件有限公司 对置活塞自由式发动机及其工作方法
CN109667663B (zh) * 2019-01-22 2024-04-19 宁波吉利罗佑发动机零部件有限公司 对置活塞自由式发动机及其工作方法

Similar Documents

Publication Publication Date Title
US4702202A (en) Low profile internally packaged fuel injection system for two cycle engine
US8794198B2 (en) Free piston engine
US7055497B2 (en) Multi-cylinder internal combustion engine
RU2695174C2 (ru) Двигатель внутреннего сгорания (варианты)
CA1144078A (en) Induction system for a v-type two-cycle engine
WO2017171159A1 (ko) 내연기관용 유체가속장치
WO2010117127A2 (en) Solenoid permanent magnet engine
KR101013802B1 (ko) 병렬구조식 리니어 엔진 시스템 및 제어방법
WO2013032083A1 (ko) 병렬구조식 일체형 리니어엔진 제너레이터
KR101097877B1 (ko) 리니어 엔진의 배열 및 기화열을 이용한 열전발전 시스템
CN109779747B (zh) 自由活塞式内燃发电装置
WO2004046521A3 (de) Zweitakt-freiflug-gegenkolben-brennkraftmaschine
WO2009139539A1 (ko) 4행정 내연기관의 흡배기 장치
EP0984716A2 (en) Dynamic-functional imaging of biological objects using a non-rigid object holder
KR101215404B1 (ko) 병렬분할구조식 일체형 리니어엔진장치
WO2015137545A1 (ko) 다중발전시스템
WO2014010792A1 (ko) 회전형 내연기관구조
KR101281119B1 (ko) 병렬분할구조식으로 스프링이 설치된 일체형 리니어엔진장치
EP0508188A3 (en) Suction system for an internal combustion engine with compression ignition
KR20120061457A (ko) 피스톤 밸브 형태의 리니어 엔진 과급장치
KR101088136B1 (ko) 리니어 엔진의 병렬구조식 리니어 제너레이터
KR101306898B1 (ko) 폐열을 이용한 연료기화 및 단열장치가 형성된 리니어 엔진
JPH05280359A (ja) 2サイクルエンジンの給気装置
MX9201242A (es) Motor mejorado de combustion interna, de ciclo de los tiempos, de multiples cilindros.
ATE289003T1 (de) Verbesserte zweitakt-brennkraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828002

Country of ref document: EP

Kind code of ref document: A1