WO2013032002A1 - Surface modification device for solid particles and surface modification method for solid particles - Google Patents

Surface modification device for solid particles and surface modification method for solid particles Download PDF

Info

Publication number
WO2013032002A1
WO2013032002A1 PCT/JP2012/072289 JP2012072289W WO2013032002A1 WO 2013032002 A1 WO2013032002 A1 WO 2013032002A1 JP 2012072289 W JP2012072289 W JP 2012072289W WO 2013032002 A1 WO2013032002 A1 WO 2013032002A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulation circuit
solid particles
circuit tube
surface modification
particles
Prior art date
Application number
PCT/JP2012/072289
Other languages
French (fr)
Japanese (ja)
Inventor
自起 奈良
Original Assignee
株式会社 奈良機械製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 奈良機械製作所 filed Critical 株式会社 奈良機械製作所
Priority to JP2013511457A priority Critical patent/JP5648124B2/en
Publication of WO2013032002A1 publication Critical patent/WO2013032002A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/02Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft
    • B02C13/06Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft with beaters rigidly connected to the rotor
    • B02C13/08Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft with beaters rigidly connected to the rotor and acting as a fan
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/10Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in stationary drums or troughs, provided with kneading or mixing appliances

Definitions

  • the present invention relates to a surface modification device for solid particles and a surface modification method for solid particles. More specifically, on the surface of the solid particles, a dispersion in which other fine solid particles are dispersed in a liquid, a solution in which a solute of a solid component is dissolved in a liquid, a melt of a solid component, etc.
  • the liquid material is applied to the solid particles, impact force is applied to the solid particles, and the liquid material is dried or cooled to embed or fix the fine solid particles on the surface of the solid particles, or to the surface of the solid particles.
  • the present invention relates to an apparatus and a method for immobilizing a solid component in a film shape and modifying the surface of solid particles.
  • an immobilization method a method of obtaining a functional composite powder material whose surface of the solid particles has been modified (hereinafter sometimes referred to as “an immobilization method”), a child particle is immobilized on the surface of the mother particle in the form of a solid
  • the film-forming treatment method a method of obtaining a functional composite powder material having a modified particle surface
  • a method of spheroidizing amorphous solid particles such as metals, resins, and inorganic substances asame as above
  • Spheronization processing method As a method for carrying out these, for example, Japanese Patent Publication No. 3-2009, Japanese Patent Publication No. 3-76177, Japanese Patent Publication No. 4-3250, Japanese Patent Publication No.
  • the impact method in high-speed air current disclosed in Japanese Patent Publication No. 5-10971 discloses that the liquid material is attached to the surface of the mother particle, giving impact force to the mother particle, and drying or cooling the liquid material. Then, the child particles are embedded or fixed on the surface of the mother particles, or the solid component is fixed in the form of a film to modify the surface of the solid particles.
  • any of the above high-speed air-flow impact methods is a complete batch processing method.
  • the method disclosed in Japanese Patent Publication No. 5-10971 which performs surface modification of solid particles by embedding or fixing child particles on the surface of mother particles or fixing solid components in a film shape
  • the present invention has been made in view of the above-described problems of the background art, and the object thereof is to efficiently dry or cool the liquid according to the type of the liquid, and the solid particles have good productivity and good quality. It is an object of the present invention to provide an apparatus and method capable of performing surface modification treatment.
  • the present invention provides the solid particle surface modifying apparatus and solid particle surface modifying method described in [1] to [9] below. [1] In the impact chamber, a turntable with impact pins is disposed, and a collision ring is disposed along the outermost raceway surface of the impact pins and with a certain space with respect to the impact pin.
  • a circulation circuit tube for guiding and circulating the processing powder together with the air flow generated by the rotation of the pin, one opening of the circulation circuit tube is opened in a part of the collision ring, and the other opening is formed in the rotating disk.
  • a spray nozzle is provided to be opened in the front cover near the center, and a liquid nozzle is provided to supply the liquid material to any one of the front cover, the collision ring, or the circulation circuit tube.
  • a solid particle surface reforming apparatus comprising a supply port for supplying a medium and an exhaust port for discharging excess circulating gas.
  • the solid particles to be surface-modified are dispersed in the liquid and the apparatus is disposed through the spray nozzle.
  • the method for surface modification of solid particles is characterized in that the surface modification of solid particles is carried out.
  • the heating medium, the cooling medium, or the drying medium is directly supplied and brought into contact with the airflow that circulates with the processing powder.
  • a liquid containing child particles and the like can be efficiently dried or cooled.
  • the operation of modifying the surface of the solid particles with good productivity and goodness by embedding or fixing the fine solid particles on the surface of the solid particles or fixing the solid component on the surface of the solid particles in the form of a film An apparatus or method that can be performed. Further, according to the surface reforming apparatus or the surface reforming method of the solid particles according to the present invention, the exhaust gas exhaust port for exhausting excess circulating gas is provided, so that the circulating gas inside the apparatus is supplied even if a heating medium or the like is supplied. The amount can be maintained at an appropriate value. Therefore, the apparatus or method can supply an appropriate amount of heating medium or the like without adding to the apparatus.
  • the circulation circuit tube is the main drying or cooling unit. For this reason, drying or cooling is performed well in this portion, and the heating temperature is easily controlled.
  • the flow rate of the circulating gas is reduced in the enlarged part, and heat exchange with the supplied heating medium is good. It becomes the device performed in.
  • the flow rate is not increased particularly by supplying a heating medium or the like.
  • the powder recovery device is connected to the exhaust port for discharging excess circulating gas, the powder in the exhaust fluid can be separated and recovered, and the exhaust can be made clean.
  • a spray nozzle for supplying a liquid material containing small particles or the like is provided at the upstream end of the circulation circuit tube, and a supply port for supplying a heating medium or the like is provided at a portion of the circulation circuit tube located immediately downstream of the spray nozzle.
  • the apparatus When the apparatus is provided with an exhaust port for discharging excess circulating gas at a portion of the circulation circuit tube located downstream of the supply port and relatively close to the upstream end side, the supplied heating medium
  • the heat exchange between the medium such as the liquid and the liquid containing the small particles is particularly efficient, resulting in a device having higher drying or cooling processing efficiency.
  • it when it is set as such an apparatus, it becomes an apparatus with few particles discharged
  • the apparatus when the apparatus is provided with a spray nozzle for supplying a liquid material to the downstream end of the circulation circuit tube, the liquid material containing the child particles can be sprayed on the surface of the solid particles immediately before the impact or impact is applied. It becomes a device.
  • FIG. 1 is a front view showing an embodiment of a surface reforming apparatus for solid particles according to the present invention together with incidental equipment.
  • FIG. 2 is a side view of the apparatus shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view of a portion along line AA in FIG.
  • FIG. 4 is a diagram showing an example of a circulation circuit tube, where (a) is a front view, (b) is a plan view, and (c) is a partial side view.
  • reference numeral 1 denotes a casing of the surface reforming apparatus
  • 2 denotes a front cover of the casing 1 as shown in FIG. 3
  • 3 denotes a rear cover of the casing 1.
  • Reference numeral 4 denotes a rotating disk provided in the casing 1 which rotates at a high speed
  • 5 denotes a plurality of impact pins radially provided around the outer periphery of the rotating disk 4 with a predetermined interval.
  • the impact pin 5 is generally of a hammer type or a blade type.
  • Reference numeral 6 denotes a rotating shaft that rotatably supports the rotating disk 4.
  • Reference numeral 7 denotes a collision ring which is provided along the outermost raceway surface of the impact pin 5 and is provided with a certain space with respect to it.
  • the collision ring 7 is of an uneven type or a circumferential plane type having various shapes.
  • the fixed space varies depending on the size of the apparatus, but is generally preferably 0.5 to 20 mm.
  • Reference numeral 8 denotes an impact chamber surrounded by the front cover 2, the rear cover 3 and the collision ring 7.
  • Reference numeral 9 denotes a processing powder discharge port provided by cutting out a part of the front cover 2.
  • the discharge port 9 may be provided by notching a part of the collision ring 7 or a circulation circuit tube described later.
  • Reference numeral 10 denotes a charging port for the solid particles opening near the center of the front cover 2 (also a charging port for the liquid material into the shock chamber 8).
  • the discharge port 9 is provided with an opening / closing valve 11, and the opening / closing valve 11 is opened / closed by an actuator 12.
  • 13 is a discharge pipe connected to the discharge port 9 via the on-off valve 11
  • 14 is a product tank (bag filter) connected to the discharge pipe 13.
  • a raw material hopper 16 is connected to the charging port 10 via a charging pipe 15.
  • Reference numeral 17 denotes an open / close valve (ball valve) provided in the middle of the charging pipe 15.
  • reference numeral 20 denotes a circulation circuit tube having one end connected to a circulation port 21 opening in a part of the inner wall of the collision ring 7 and the other end connected to the solid particle inlet 10. .
  • the circulation circuit tube 20 is formed in a substantially U shape. A part of the circulation circuit tube 20 (from the upstream straight portion to the entire curved portion) is enlarged in diameter and formed in the enlarged portion 20a.
  • the volume of the circulation circuit tube 20 is designed to be about 0.2 to 5 times the volume of the impact chamber 8. If the volume of the circulation circuit tube 20 is smaller than this, the liquid cannot be efficiently dried or cooled.
  • the volume of the circulation circuit tube 20 is more preferably designed to be 0.5 to 3.5 times the volume of the impact chamber 8.
  • the circulation port 21 is provided in a normal direction to the collision ring 7 in the apparatus according to the illustrated embodiment.
  • the circulation port 21 may be provided tangential to the collision ring 7.
  • the ratio of the diameter expansion in a part of the circulation circuit tube 20 is preferably 1: 1.05 to 1: 2 in terms of the inner diameter ratio.
  • the circulation circuit tube 20 has a volume from the connecting portion of the charging tube 15 connected to the other end to the charging port 10 in addition to the internal volume of the circulating circuit tube 20.
  • the internal volume of the tube 15 is also included. Note that the ratio of the diameter expansion is determined based on the flow velocity of the gas circulating in the circulation circuit tube 20. That is, the velocity of the airflow in the circulation circuit tube 20 directly above the circulation port 21 through which only the airflow generated by the rotation of the impact pin 5 flows and the heating medium supplied from the supply port described later flow together. The velocity of the airflow in the circulation circuit tube 20 after the supply port is made substantially the same.
  • a liquid is a dispersion in which other fine solid particles used for surface modification of solid particles are dispersed in a liquid as defined above, a solution in which a solute of a solid component is dissolved in a liquid, a solid component
  • the solid particles for surface modification may be contained in a dispersed state.
  • the spray nozzles 22a and 22b are provided at two locations, the upstream end and the downstream end of the circulation circuit tube 20, respectively. Either of these spray nozzles 22a and 22b may be used during operation, or both may be used.
  • the spray nozzles 22a and 22b are connected to a liquid supply device (not shown).
  • the spray nozzles 22a and 22b are also supplied with compressed air for finely spraying the liquid material.
  • Reference numeral 23 denotes a heating medium, a cooling medium or a drying medium (collectively referred to in this specification) provided in a portion of the circulation circuit tube 20 located immediately downstream of the spray nozzle 22a provided on the upstream end side. This is a supply port for supplying “circulation circuit tube 20” in some cases. Examples of the heating medium supplied from the supply port 23 include compressed air heated to a constant temperature by a heating device.
  • cooling medium examples include compressed air cooled to a constant temperature by a cooling device, and low-temperature gas obtained by vaporizing a refrigerant such as liquid nitrogen or dry ice.
  • compressed air dehumidified by a dehumidifying device is used as a drying medium.
  • the supply port 23 is connected to a supply device that supplies any one of these media.
  • the supply port 23 is provided in the circulation circuit tube 20 with respect to the flow direction of the airflow in order to quickly disperse the liquid material supplied from the spray nozzle 22a by the ejector effect in the flow of airflow in the circulation circuit tube 20. And are preferably connected at an acute angle.
  • the spray nozzles 22a and 22b are also preferably connected to the circulation circuit tube 20 at an acute angle with respect to the flow direction of the airflow for the same reason.
  • Reference numeral 24 denotes an exhaust port for discharging excess circulating gas.
  • the exhaust port 24 is provided on the downstream side of the supply port 23 for supplying the heating medium and the like and in a portion of the circulation circuit tube 20 at a position relatively close to the upstream end side. This is because the processing powder such as solid particles circulates in the circulation circuit tube 20 along with the air flow generated by the rotation of the impact pin 5 and the heating medium supplied from the supply port 23, etc. The speed difference will be slowed down. And when the speed of solid particles etc.
  • the exhaust port 24 is connected to the circulation circuit tube 20 at an acute angle with respect to the flow direction of the airflow, as shown in FIG. 4 (a), on the inner peripheral side of the U-shaped portion. This is preferable because solid particles and the like are not easily removed.
  • the exhaust port 24 is connected to an ejector pump using compressed air through an exhaust pipe (not shown).
  • a powder recovery device (not shown) is connected in the middle of the discharge pipe.
  • this powder recovery device an external filtration type bag filter is preferable.
  • the filter may be fixed or rotating.
  • the filter is a fixed type, it has an outer cylinder surrounding the filter and has a backwashing mechanism, and the material of the filter is preferably, for example, polyester felt Teflon laminate (Teflon is a registered trademark).
  • the outer cylinder surrounds the filter, and the material of the filter is preferably a sintered metal (for example, SUS316).
  • the spray nozzles 22 a and 22 b for supplying the liquid material are provided in the circulation circuit tube 20.
  • the spray nozzles 22 a and 22 b may be provided in any part of the front cover 2 and the collision ring 7 that define the impact chamber 8.
  • the exhaust port 24 is rather the rear end of the circulation circuit tube 20 contrary to the above-described embodiment. That is, it is preferably provided in the vicinity of the connection portion with the input pipe 15.
  • a part of the circulation circuit tube 20 is piped with a filter.
  • a plurality of holes are formed in a part of the circulation circuit tube 20, the hole part is covered with a cylindrical filter, and the filter part is surrounded by a cylinder closed at both ends.
  • the cylinder is provided with an exhaust port 24 and connected to an ejector pump by compressed air through an exhaust pipe in the same manner as described above.
  • the inner surface of the filter may be clogged with solid particles or fine solid particles.
  • reference numeral 40 denotes a control device for controlling the operation of the surface reforming apparatus and incidental facilities according to the present invention. The operation condition of the apparatus is set by the control apparatus 40, the operation is performed in a controlled state, and the current value, the rotation speed, the temperature, and the like during the operation are monitored.
  • the operation method of the apparatus is not limited to this operation method.
  • the on-off valve 11 for discharging the treated powder provided in the casing 1 is closed.
  • the rotating shaft 6 is driven by a driving means (not shown), and the rotating disk 4 is moved at an appropriate peripheral speed between 5 m / sec and 160 m / sec, for example, a peripheral speed of 100 m / sec, depending on the properties of the mother particles to be processed. Rotate.
  • the supply amount of hot air can be arbitrarily set according to the temperature of the hot air, the supply amount of the liquid, the processing time, and the like.
  • Hot air is supplied from the supply port 23, and excess circulating gas in the same amount as the hot air is discharged from the exhaust port 24 by an ejector pump (not shown).
  • a certain amount of solid particles, that is, mother particles is put into the impact chamber 8 by opening the opening / closing valve 17 from the raw material hover 16.
  • the mother particles are repeatedly circulated between the circulation circuit tube 20 and the impact chamber 8 along with the self-circulating flow of the airflow.
  • the on-off valve 17 is closed.
  • the dispersion liquid in which the child particles are dispersed is supplied to the spray nozzle 22a at a constant flow rate using a tube pump or the like from a container in which the child particles are placed, and compressed air is supplied to the spray nozzle 22a. Then, the dispersion liquid is sprayed into the circulation circuit tube 20.
  • the dispersion liquid supplied from the spray nozzle 22a into the circulation circuit tube 20 adheres to the surface of the mother particles moving in the circulation circuit tube 20 along with the air flow. Hot air is continuously supplied into the circulation circuit tube 20 from the supply port 23.
  • the dispersion liquid is heated and dried before the mother particles to which the dispersion has adhered return to the impact chamber 8, and only the child particles in the dispersion remain on the surface of the mother particles.
  • the mother particles with the child particles adhering to the surface are subjected to momentary impact action by the large number of impact pins 5 of the rotating disk 4 rotating at a high speed in the impact chamber 8 and collide with the surrounding collision ring 7. Receives strong compressive action. Therefore, the child particles are firmly fixed on the surface of the mother particle.
  • the supply time of the dispersion liquid is usually several tens of seconds to several minutes.
  • the circulating gas that has become excessive due to the supply of the heating medium or the like from the supply port 23 is discharged from the exhaust port 24 provided in the circulation circuit tube 20.
  • the exhaust port 24 is provided on the downstream side of the supply port 23 for supplying a heating medium or the like and relatively close to the upstream end side.
  • the flow velocity of the mother particles flowing along with the circulating gas is still high at this position. Therefore, it is possible to reduce the number of particles that come out of the system from the exhaust port 24 along with the discharged gas.
  • a powder recovery device is connected to the exhaust port 24. Therefore, the powder particles are captured by the powder recovery device, and clean exhaust is discharged to the atmosphere.
  • the child particles that are not particularly attached to the surface of the mother particles are selectively discharged from the system together with the air flow from the exhaust port 24. Therefore, surplus child particles do not remain in the product, which can contribute to the stability of product quality.
  • the operation of the apparatus is continued for several tens of seconds to several minutes as necessary to fix the child particles, homogenize the film, make the mother particles spherical, etc. There are things to do. Further, the supply of the dispersion and the subsequent immobilization treatment can be repeated in several times.
  • the on-off valve 11 for discharging the processed powder is opened by the actuator 12, and the fixed powder is discharged.
  • the fixed powder is discharged from the impact chamber 8 and the circulation circuit tube 20 through the discharge port 9 in a short time (several seconds) by the centrifugal force acting on itself by the rotation of the impact pin 5.
  • the discharged powder is captured by the product tank (bag filter) 14 through the discharge pipe 13.
  • the on-off valve 11 is closed, and the next base particle is weighed and put into the raw material popper 16.
  • the dispersion liquid containing the mother particles and the small particles is again supplied into the apparatus, and the fixed powder is produced through the same process as described above.
  • the series of batch immobilization processing operations are controlled by the control device 40 set in advance in a time-related manner and are continuously operated in relation to the operation time of the related equipment.
  • the solid particle surface modification apparatus or surface modification method of the present invention directly supplies and contacts the heating medium or the like in the air stream circulating with the treated powder, so that the treated powder, in particular, The liquid containing the child particles can be efficiently dried or cooled.
  • the operation of modifying the surface of the solid particles with good productivity and goodness by embedding or fixing the fine solid particles on the surface of the solid particles or fixing the solid component on the surface of the solid particles in the form of a film An apparatus or method that can be performed. Further, according to the surface reforming apparatus or the surface reforming method of the solid particles according to the present invention, the exhaust gas exhaust port for exhausting excess circulating gas is provided, so that the circulating gas inside the apparatus is supplied even if a heating medium or the like is supplied. The amount can be maintained at an appropriate value. Therefore, the apparatus or method can supply an appropriate amount of heating medium or the like without imposing a load on the apparatus.
  • Representative mother particles that can be optimally surface-modified using the apparatus or method of the present invention include various inorganic substances, metals and metal compounds, natural and synthetic organic substances having an average particle diameter of about 0.1 to 100 ⁇ m.
  • the average particle size of the child particles used by being dispersed in a liquid such as water is about 0.001 to 10 ⁇ m, but a solution in which a solid component solute is dissolved in a liquid or a solid component melt is used.
  • the particle size of the solid component is not limited.
  • various combinations of various materials used in various chemical industries, electricity, magnetic material industries, pharmaceuticals, cosmetics, paints, foods, rubber, plastics, ceramics, etc. Can be applied to the ingredients.
  • the apparatus or method of the present invention is particularly suitable for the treatment of pharmaceuticals and toners.
  • solid particles (base particles) for surface modification are introduced into the impact chamber 8 by opening the on-off valve 17 from the raw material hobber 16 and fine solid particles ( A configuration is adopted in which the dispersion liquid in which the child particles are dispersed is sprayed into the circulation circuit tube 20 through the spray nozzle 22a.
  • solid particles (mother particles) for surface modification are dispersed in the liquid material referred to in the present invention, such as a dispersion in which the fine solid particles (child particles) are dispersed, and spray nozzles are used. It is good also as a structure supplied in the apparatus via 22a, 22b.
  • Turntable diameter 125mm -Volume of impact chamber: 0.53 liters-Volume of circulation circuit tube: 1.83 liters-Inner diameter of circulation circuit tube: 22 mm (enlarged part: 33.7 mm)
  • -Mother particles polystyrene spherical particles (average particle size: 10 ⁇ m)
  • Child particles titanium dioxide (average particle size: 0.2 ⁇ m)
  • the rotating speed of the turntable 4 was set to 15000 min ⁇ 1 (98.2 m / sec), and hot air having various temperatures and air volumes shown in Table 1 was supplied into the circulation circuit tube 20 from the supply port 23.
  • an excess amount of circulating gas equivalent to the hot air was discharged from the exhaust port 24 by an ejector pump (not shown).
  • 30 g of the above mother particles were put into the impact chamber 8 from the raw material hover 16.
  • 3 g of dispersion (10% with respect to the mother particles) in which 15% by weight of the above child particles were dispersed in water was sprayed into the circulation circuit tube 20 from the spray nozzle 22a in 3 minutes.
  • the flow rate of the compressed air supplied to the spray nozzle 22a was 37 liters / min. After spraying the dispersion, the operation was continued for another 2 minutes, and the recovered product was observed with a scanning electron microscope.
  • Turntable diameter 125 mm ⁇ Volume of impact chamber: 0.53 liter ⁇ Volume of circulation circuit tube: 0.13 liter ⁇ Inner diameter of circulation circuit tube: 22 mm [Processed powder] -Mother particles: polystyrene spherical particles (average particle size: 10 ⁇ m) Child particles: titanium dioxide (average particle size: 0.2 ⁇ m) [Processing operations and processing results]
  • the rotation speed of the turntable was set to 15000 min-1 (98.2 m / sec) as in the above example. In the comparative example, only the shaft seal seal air of 5 liters / min is supplied. Therefore, even if hot air of 40 ° C. is used for this shaft seal, the time required for the calculation is about 7.6.
  • a dispersion containing the same child particles as in the above example was supplied from the opening of the circulation circuit tube using a syringe. That is, 3 g of the dispersion was slowly supplied from the opening of the circulation circuit tube using a syringe over 10 minutes. Thereafter, the operation was continued for another 10 minutes. After that, the on-off valve for discharging the treated powder was opened, but there was almost no product in the product tank. Therefore, the rotation of the rotating disk was stopped, the front cover was opened, and the circulation circuit tube was also disassembled.
  • Example T-4- [Device used]
  • the apparatus of the present invention shown in FIGS. 1 to 4 was used.
  • the dimensions and the like of each part are the same as those in Examples T-1 to T-3.
  • ibuprofen was pulverized to about 100 nm and a dispersion liquid uniformly dispersed in the aqueous phospholipid polymer solution was prepared.
  • the rotational speed of the turntable 4 was set to 16200 min ⁇ 1 (106 m / sec), and the gas (air) having the temperature and air volume shown in Table 2 was supplied into the circulation circuit tube 20 from the supply port 23. Further, an excessive amount of circulating gas equivalent to this gas was discharged from the exhaust port 24 by an ejector pump (not shown). Subsequently, the adjusted dispersion was sprayed into the circulation circuit tube 20 from the spray nozzle 22a over 3 hours and 34 minutes.
  • the flow rate of the compressed air supplied to the spray nozzle 22a was 30 liters / min. After spraying the dispersion, the operation was continued for another 5 minutes, and the recovered product was observed with a scanning electron microscope. As a result, it was found that if ibuprofen is coated with a phospholipid polymer, it is a granulated composite particle having an average particle diameter of 10 ⁇ m or less.
  • the medium particles were completely coated with the dispersion, and the product (ibuprofen coated with the phospholipid polymer) could not be recovered.
  • the same dispersion liquid as the above was subjected to a drying treatment using a spray dryer (L-8i) manufactured by Okawara Chemical Co., Ltd. and a freeze-drying apparatus (FDU-2100) manufactured by Tokyo Rika Kikai Co., Ltd.
  • the particle size of the obtained product was large (30 ⁇ m or more even by the spray drying method), and fine composite particles equivalent to Example T-4 could not be obtained.
  • the solid particles can be efficiently dried or cooled according to the type of the liquid, and the solid particles are excellent in productivity and good.
  • Surface modification treatment of various solid particles used in various chemical industries, electricity, magnetic materials industry, pharmaceuticals, cosmetics, paints, foods, rubber, plastics, ceramics, etc. Can be widely used for quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Glanulating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The purpose of the present invention is to provide a device capable of efficiently drying or cooling in accordance with the type of liquid, and capable of satisfactorily and with good productivity surface-modifying solid particles. In order to achieve this purpose, this surface modification device for solid particles has: a rotating disc having shock pins arranged around the periphery thereof, arranged inside an impact chamber; a collision ring arranged along the outermost peripheral race surface of the shock pins, separated a set space from same; a circulation circuit pipe (20) for guiding and circulating, together with the processing powder, airflow that is generated by the rotation of the shock pins, said circulation circuit pipe disposed such that one opening of same opens to part the collision ring and the other opening opens to the front cover in the vicinity of the center of the rotating disc; a spray nozzle (22a) that supplies liquid to either the front cover, the collision ring, or the circulation circuit pipe; a supply port (23) that supplies a heating medium, a cooling medium, or a drying medium to an appropriate location in the circulation circuit pipe; and a discharge port (24) that discharges excessive circulation air.

Description

固体粒子の表面改質装置および固体粒子の表面改質方法Solid particle surface modification apparatus and solid particle surface modification method
 本発明は、固体粒子の表面改質装置および固体粒子の表面改質方法に関するものである。更に詳しくは、固体粒子の表面に、他の微小固体粒子を液体に分散させた分散液、固体成分の溶質が液体に溶けた溶液、固体成分の溶融液等(本発明では、これらを総称して「液状体」という)を付着させ、固体粒子に衝撃力を与えると共に、液状体を乾燥または冷却して、固体粒子の表面に微小固体粒子を埋設若しくは固着して、または固体粒子の表面に固体成分を膜状に固定化して、固体粒子を表面改質する装置および方法に関するものである。 The present invention relates to a surface modification device for solid particles and a surface modification method for solid particles. More specifically, on the surface of the solid particles, a dispersion in which other fine solid particles are dispersed in a liquid, a solution in which a solute of a solid component is dissolved in a liquid, a melt of a solid component, etc. The liquid material) is applied to the solid particles, impact force is applied to the solid particles, and the liquid material is dried or cooled to embed or fix the fine solid particles on the surface of the solid particles, or to the surface of the solid particles. The present invention relates to an apparatus and a method for immobilizing a solid component in a film shape and modifying the surface of solid particles.
 従来、固着防止、変色・変質防止、分散性の向上、流動性の改善、触媒効果の向上、消化・吸収の制御、磁性特性の向上、耐候性の向上等を目的として、粉体の各種表面改質が行われてきた。
 この中で、核となる固体粒子(以下、「母粒子」という場合もある)の表面にこの固体粒子よりも小さな他の固体粒子(以下、「子粒子」という場合もある)を埋設または固着して、固体粒子の表面を改質した機能性複合粉体材料を得る方法(以下、「固定化処理方法」という場合もある)、母粒子の表面に子粒子を膜状に固定化して固体粒子の表面を改質した機能性複合粉体材料を得る方法(同、「成膜化処理方法」)、更には金属や樹脂、無機物等の不定形の固体粒子を球形化処理する方法(同、「球形化処理方法」)がある。そして、これらを実施する方法として、例えば、日本国特公平3−2009号公報、日本国特公平3−76177号公報、日本国特公平4−3250号公報、日本国特公平5−10971号公報に開示された高速気流中衝撃法が存在する。
 これらの特許公報に開示された高速気流中衝撃法は、ケーシング内にハンマー形またはブレード形の衝撃ピンを周設した回転盤を配置すると共に、該衝撃ピンの最外周軌道面に沿い、且つそれに対して一定の空間を置いて衝突リングを配置し、上記衝撃ピンの回転によって発生した気流を、上記衝突リングの内壁の一部に開口する循環口から循環回路を介してケーシングを構成する前カバーの中心部の開口部から衝撃室に誘導・循環させ(自己循環流れ)、該気流と共に処理粉体を繰り返し上記衝撃室と循環回路とを通過させ、衝撃ピンによる機械的打撃および衝突リングへの衝突による衝撃式打撃作用により、短時間(数十秒~数分間)で均一な粉体処理を行なうものである。
 特に日本国特公平5−10971号公報に開示された高速気流中衝撃法は、母粒子の表面に、上記液状体を付着させ、その母粒子に衝撃力を与えると共に、液状体を乾燥または冷却して、母粒子の表面に子粒子を埋設若しくは固着して、または固体成分を膜状に固定化して、固体粒子の表面改質を行うものである。
 ここで、上記高速気流中衝撃法は、いずれも完全回分式処理方法である。特に母粒子の表面に子粒子を埋設若しくは固着して、または固体成分を膜状に固定化して、固体粒子の表面改質を行う日本国特公平5−10971号公報に開示の方法においては、積極的に液状体を乾燥させる媒体を装置内に供給する手段がない。そのため、液状体の種類によっては、該液状体の乾燥に長時間を要し、生産性が低く、また表面改質処理されて得られた製品の品質も悪い場合があった。
 そこで従来は、衝突リング、循環回路、更には必要に応じて回転盤の内部等をもジャケット構造とし、該ジャケットに加熱媒体を通して加熱する方法が採られていた。また、衝撃室と循環回路に導入する空気や不活性ガスを予め公知の手段で加熱する方法が採られていた。
 しかしながら、前者のジャケット構造を用いた加熱方式では、熱交換は間接的な熱伝導を利用したものであることから、加熱効果には限界があった。また後者の場合は、完全回分式の装置であるため、衝撃室と循環回路の中に存在するわずかな量の空気を予め加熱された空気や不活性ガスと置換するだけなので、エネルギー的には不充分なものであった。
Conventionally, various surfaces of powder for the purpose of preventing sticking, preventing discoloration / discoloration, improving dispersibility, improving fluidity, improving catalytic effect, controlling digestion / absorption, improving magnetic properties, improving weather resistance, etc. Modifications have been made.
In this, other solid particles smaller than this solid particle (hereinafter also referred to as “child particle”) are embedded or fixed on the surface of the core solid particle (hereinafter also referred to as “mother particle”). Then, a method of obtaining a functional composite powder material whose surface of the solid particles has been modified (hereinafter sometimes referred to as “an immobilization method”), a child particle is immobilized on the surface of the mother particle in the form of a solid A method of obtaining a functional composite powder material having a modified particle surface (the “film-forming treatment method”) and a method of spheroidizing amorphous solid particles such as metals, resins, and inorganic substances (same as above) , “Spheronization processing method”). As a method for carrying out these, for example, Japanese Patent Publication No. 3-2009, Japanese Patent Publication No. 3-76177, Japanese Patent Publication No. 4-3250, Japanese Patent Publication No. 5-10971 There is a high-speed impact-in-air impact method disclosed in.
According to the high-speed air-flow impact method disclosed in these patent publications, a rotating disk having hammer-type or blade-type impact pins arranged around a casing is disposed in the casing, and along the outermost raceway surface of the impact pins. A front cover that constitutes a casing through a circulation circuit from a circulation port that opens a part of the inner wall of the collision ring for the air flow generated by the rotation of the impact pin by arranging the collision ring with a certain space. It is guided and circulated from the opening of the central part to the impact chamber (self-circulating flow), and the treated powder is repeatedly passed through the impact chamber and the circulation circuit together with the air flow, and mechanical impact by the impact pin and the impact ring Uniform powder processing is performed in a short time (several tens of seconds to several minutes) by impact-type impact action by collision.
In particular, the impact method in high-speed air current disclosed in Japanese Patent Publication No. 5-10971 discloses that the liquid material is attached to the surface of the mother particle, giving impact force to the mother particle, and drying or cooling the liquid material. Then, the child particles are embedded or fixed on the surface of the mother particles, or the solid component is fixed in the form of a film to modify the surface of the solid particles.
Here, any of the above high-speed air-flow impact methods is a complete batch processing method. In particular, in the method disclosed in Japanese Patent Publication No. 5-10971 which performs surface modification of solid particles by embedding or fixing child particles on the surface of mother particles or fixing solid components in a film shape, There is no means for supplying a medium for actively drying the liquid into the apparatus. Therefore, depending on the type of the liquid material, it takes a long time to dry the liquid material, the productivity is low, and the quality of the product obtained by the surface modification treatment may be poor.
Therefore, conventionally, there has been adopted a method in which a collision structure, a circulation circuit, and further, if necessary, the inside of a rotating disk have a jacket structure, and a heating medium is heated through the jacket. In addition, a method of heating air or an inert gas introduced into the impact chamber and the circulation circuit in advance by a known means has been adopted.
However, in the heating method using the former jacket structure, since heat exchange uses indirect heat conduction, the heating effect is limited. In the latter case, since it is a complete batch type device, only a small amount of air present in the impact chamber and the circulation circuit is replaced with preheated air or inert gas. It was insufficient.
 本発明は、上述した背景技術が有する課題に鑑みなされたものであって、その目的は、液状体の種類に応じて効率よく乾燥または冷却することができ、固体粒子を生産性良く、且つ良好に表面改質処理することができる装置および方法を提供することにある。
 上記した目的を達成するため、本発明は、次の〔1〕~〔9〕に記載の固体粒子の表面改質装置および固体粒子の表面改質方法とした。
 〔1〕衝撃室内に、衝撃ピンを周設した回転盤を配設すると共に、該衝撃ピンの最外周軌道面に沿い、且つそれに対して一定の空間を置いて衝突リングを配置し、前記衝撃ピンの回転によって発生した気流と共に処理粉体を誘導・循環させるための循環回路管を、該循環回路管の一方の開口を前記衝突リングの一部に開口され、他方の開口を前記回転盤の中心付近の前カバーに開口させて設け、上記前カバー、衝突リングまたは循環回路管のいずれかに液状体を供給するスプレーノズルを設けると共に、上記循環回路管の適所に加熱媒体、冷却媒体または乾燥媒体を供給する供給口と過剰の循環気体を排出する排気口とを設けたことを特徴とする、固体粒子の表面改質装置。
 〔2〕上記供給口が上記循環回路管に設けられ、上記排気口が前記供給口の下流側に位置する上記循環回路管に設けられていることを特徴とする、上記〔1〕に記載の固体粒子の表面改質装置。
 〔3〕上記循環回路管の一部が拡径されて拡大部が形成されていることを特徴とする、上記〔1〕または〔2〕に記載の固体粒子の表面改質装置。
 〔4〕上記循環回路管の拡大部は、上記供給口の下流側と上記排気口の上流側の間に形成されていることを特徴とする、上記〔3〕に記載の固体粒子の表面改質装置。
 〔5〕上記排気口に粉体回収装置が接続されていることを特徴とする、上記〔1〕~〔4〕のいずれかに記載の固体粒子の表面改質装置。
 〔6〕上記循環回路管の上流端に液状体を供給する上記スプレーノズルが設けられ、該スプレーノズルの直ぐ下流側に位置する循環回路管の部分に上記供給口が設けられ、該供給口の下流側であって、且つ比較的上流端側に近い位置の循環回路管の部分に上記排気口が設けられていることを特徴とする、上記〔1〕~〔5〕のいずれかに記載の固体粒子の表面改質装置。
 〔7〕上記循環回路管の下流端に液状体を供給するスプレーノズルが設けられていることを特徴とする、上記〔1〕~〔5〕のいずれかに記載の固体粒子の表面改質装置。
 〔8〕上記〔1〕~〔7〕のいずれかに記載の固体粒子の表面改質装置を用い、表面改質を行う固体粒子を上記液状体とは別に装置内に投入し、固体粒子の表面改質を行うことを特徴とする、固体粒子の表面改質方法。
 〔9〕上記〔1〕~〔7〕のいずれかに記載の固体粒子の表面改質装置を用い、表面改質を行う固体粒子を上記液状体に分散させて上記スプレーノズルを介して装置内に投入し、固体粒子の表面改質を行うことを特徴とする、固体粒子の表面改質方法。
 上記した本発明に係る固体粒子の表面改質装置または表面改質方法によれば、加熱媒体、冷却媒体または乾燥媒体を処理粉体を伴って循環する気流中に直接供給して接触させるため、特に子粒子等を含む液状体を効率よく乾燥または冷却することができる。そのため、固体粒子の表面に微小固体粒子を埋設若しくは固着して、または固体粒子の表面に固体成分を膜状に固定化して、固体粒子を表面改質処理する操作を生産性良く、且つ良好に行うことができる装置または方法となる。
 また、本発明に係る固体粒子の表面改質装置または表面改質方法によれば、過剰の循環気体を排出する排気口を設けているため、加熱媒体等を供給しても装置内部の循環気体量を適正値に維持することができる。そのため、装置に付加をかけることなく、加熱媒体等を適正量供給することができる装置または方法となる。
 更に、加熱媒体等を供給する供給口を循環回路管に設け、過剰の循環気体を排出する排気口を前記供給口の下流側に位置する循環回路管に設けた装置とした場合には、該循環回路管が主の乾燥または冷却部となる。そのため、乾燥または冷却がこの部分で良好に行われると共に加熱温度等を制御し易い装置となる。また、循環回路管の一部を拡径して拡大部を形成した装置とした場合には、該拡大部において循環気体の流速がおち、供給された加熱媒体等との間で熱交換が良好に行われる装置となる。さらに、拡大部を上記供給口の下流側と上記排気口の上流側の間に形成した装置とした場合には、特に加熱媒体等の供給による流速の上昇が生じない装置となる。また、過剰の循環気体を排出する排気口に粉体回収装置を接続した装置とした場合には、排出流体中の粉体を分離回収することができ、排気を清浄なものとすることができる。更に、循環回路管の上流端に小粒子等を含む液状体を供給するスプレーノズルを設け、該スプレーノズルの直ぐ下流側に位置する循環回路管の部分に加熱媒体等を供給する供給口を設け、該供給口の下流側であって、且つ比較的上流端側に近い位置の循環回路管の部分に過剰の循環気体を排出する排気口を設けた装置とした場合には、供給した加熱媒体等の媒体と小粒子等を含んだ液状体との間の熱交換は特に効率的になされ、乾燥または冷却処理効率のより高い装置となる。また、このような装置とした場合には、排気口より過剰の循環気体に伴って排出される粒子が少ない装置となる。また、循環回路管の下流端に液状体を供給するスプレーノズルを設けた装置とした場合には、打撃・衝撃を与える直前に固体粒子の表面に子粒子を含む液状体を噴霧することができる装置となる。
The present invention has been made in view of the above-described problems of the background art, and the object thereof is to efficiently dry or cool the liquid according to the type of the liquid, and the solid particles have good productivity and good quality. It is an object of the present invention to provide an apparatus and method capable of performing surface modification treatment.
In order to achieve the above-mentioned object, the present invention provides the solid particle surface modifying apparatus and solid particle surface modifying method described in [1] to [9] below.
[1] In the impact chamber, a turntable with impact pins is disposed, and a collision ring is disposed along the outermost raceway surface of the impact pins and with a certain space with respect to the impact pin. A circulation circuit tube for guiding and circulating the processing powder together with the air flow generated by the rotation of the pin, one opening of the circulation circuit tube is opened in a part of the collision ring, and the other opening is formed in the rotating disk. A spray nozzle is provided to be opened in the front cover near the center, and a liquid nozzle is provided to supply the liquid material to any one of the front cover, the collision ring, or the circulation circuit tube. A solid particle surface reforming apparatus comprising a supply port for supplying a medium and an exhaust port for discharging excess circulating gas.
[2] The above-mentioned [1], wherein the supply port is provided in the circulation circuit tube, and the exhaust port is provided in the circulation circuit tube located on the downstream side of the supply port. Solid particle surface modification equipment.
[3] The surface modification device for solid particles according to [1] or [2], wherein a part of the circulation circuit tube is expanded to form an enlarged portion.
[4] The solid particle surface modification according to [3], wherein the enlarged portion of the circulation circuit tube is formed between the downstream side of the supply port and the upstream side of the exhaust port. Quality equipment.
[5] The solid particle surface reforming apparatus according to any one of [1] to [4], wherein a powder recovery apparatus is connected to the exhaust port.
[6] The spray nozzle that supplies the liquid material to the upstream end of the circulation circuit pipe is provided, and the supply port is provided in a part of the circulation circuit pipe that is located immediately downstream of the spray nozzle. Any one of [1] to [5] above, wherein the exhaust port is provided in a portion of the circulation circuit tube that is downstream and relatively close to the upstream end side. Solid particle surface modification equipment.
[7] The surface modification apparatus for solid particles according to any one of [1] to [5], wherein a spray nozzle for supplying a liquid material is provided at a downstream end of the circulation circuit tube. .
[8] Using the solid particle surface modifying apparatus according to any one of [1] to [7] above, the solid particles for surface modification are charged into the apparatus separately from the liquid, and A surface modification method for solid particles, characterized by performing surface modification.
[9] Using the solid particle surface modifying apparatus according to any one of [1] to [7], the solid particles to be surface-modified are dispersed in the liquid and the apparatus is disposed through the spray nozzle. The method for surface modification of solid particles is characterized in that the surface modification of solid particles is carried out.
According to the above-described surface modification device or surface modification method for solid particles according to the present invention, the heating medium, the cooling medium, or the drying medium is directly supplied and brought into contact with the airflow that circulates with the processing powder. In particular, a liquid containing child particles and the like can be efficiently dried or cooled. For this reason, the operation of modifying the surface of the solid particles with good productivity and goodness by embedding or fixing the fine solid particles on the surface of the solid particles or fixing the solid component on the surface of the solid particles in the form of a film. An apparatus or method that can be performed.
Further, according to the surface reforming apparatus or the surface reforming method of the solid particles according to the present invention, the exhaust gas exhaust port for exhausting excess circulating gas is provided, so that the circulating gas inside the apparatus is supplied even if a heating medium or the like is supplied. The amount can be maintained at an appropriate value. Therefore, the apparatus or method can supply an appropriate amount of heating medium or the like without adding to the apparatus.
Furthermore, when a supply port for supplying a heating medium or the like is provided in the circulation circuit tube and an exhaust port for discharging excess circulation gas is provided in the circulation circuit tube located on the downstream side of the supply port, The circulation circuit tube is the main drying or cooling unit. For this reason, drying or cooling is performed well in this portion, and the heating temperature is easily controlled. In addition, in the case of an apparatus in which a part of the circulation circuit tube is enlarged to form an enlarged part, the flow rate of the circulating gas is reduced in the enlarged part, and heat exchange with the supplied heating medium is good. It becomes the device performed in. Further, when the enlarged portion is an apparatus formed between the downstream side of the supply port and the upstream side of the exhaust port, the flow rate is not increased particularly by supplying a heating medium or the like. In addition, when the powder recovery device is connected to the exhaust port for discharging excess circulating gas, the powder in the exhaust fluid can be separated and recovered, and the exhaust can be made clean. . Furthermore, a spray nozzle for supplying a liquid material containing small particles or the like is provided at the upstream end of the circulation circuit tube, and a supply port for supplying a heating medium or the like is provided at a portion of the circulation circuit tube located immediately downstream of the spray nozzle. When the apparatus is provided with an exhaust port for discharging excess circulating gas at a portion of the circulation circuit tube located downstream of the supply port and relatively close to the upstream end side, the supplied heating medium The heat exchange between the medium such as the liquid and the liquid containing the small particles is particularly efficient, resulting in a device having higher drying or cooling processing efficiency. Moreover, when it is set as such an apparatus, it becomes an apparatus with few particles discharged | emitted with an excess circulating gas from an exhaust port. In addition, when the apparatus is provided with a spray nozzle for supplying a liquid material to the downstream end of the circulation circuit tube, the liquid material containing the child particles can be sprayed on the surface of the solid particles immediately before the impact or impact is applied. It becomes a device.
 第1図は、本発明に係る固体粒子の表面改質装置の一実施の形態を付帯設備と共に示した正面図である。
 第2図は、第1図に示した装置の側面図である。
 第3図は、第1図のA−A線に沿う部分の拡大断面図である。
 第4図は、循環回路管の一例を示した図であって、(a)は正面図、(b)は平面図、(c)は部分側面図である。
FIG. 1 is a front view showing an embodiment of a surface reforming apparatus for solid particles according to the present invention together with incidental equipment.
FIG. 2 is a side view of the apparatus shown in FIG.
FIG. 3 is an enlarged cross-sectional view of a portion along line AA in FIG.
FIG. 4 is a diagram showing an example of a circulation circuit tube, where (a) is a front view, (b) is a plan view, and (c) is a partial side view.
 以下、本発明に係る固体粒子の表面改質装置および固体粒子の表面改質方法の実施の形態を、添付した図面に基づいて詳細に説明する。
 第1図~第4図において、1は表面改質装置のケーシング、2は第3図に示したようにケーシング1の前カバー、3はケーシング1の後カバーである。4はケーシング1内に設けられた高速回転する回転盤、5は回転盤4の外周に所定の間隔を置いて放射状に周設された複数の衝撃ピンである。該衝撃ピン5は、一般にハンマー型またはブレード型のものである。6は回転盤4を回転可能に軸支持する回転軸である。7は衝撃ピン5の最外周軌道面に沿い、且つそれに対して一定の空間を置いて周設された衝突リングである。該衝突リング7は、各種形状の凹凸型または円周平面型のものを用いる。ここで、上記一定の空間は、装置の大きさによっても異なるが、一般的に0.5~20mmであることが望ましい。
 8は上記前カバー2、後カバー3および衝突リング7によって囲まれた衝撃室である。9は前カバー2の一部を切欠いて設けた処理粉体の排出口である。該排出口9は、場合によっては衝突リング7や後記する循環回路管の一部を切欠いて設けてもよい。10は前カバー2の中心部付近に開口する固体粒子の衝撃室8への投入口(液状体の衝撃室8への投入口でもある。)である。前記排出口9には開閉弁11が設けられ、該開閉弁11はアクチュエーター12によって開閉される。13は第1図に示したように前記開閉弁11を介して排出口9に接続された排出管、14は排出管13に接続された製品タンク(バグフィルター)である。また前記投入口10には投入管15を介して原料ホッパー16が連設されている。17は前記投入管15の途中に設けられた開閉弁(ボールバルブ)である。
 20は、第4図に示したように一端が衝突リング7の内壁の一部に開口する循環口21に接続され、他端が上記固体粒子の投入口10に接続された循環回路管である。該循環回路管20は略U字形状に形成されている。そして、該循環回路管20の一部(上流側の直線部から曲線部の全域にかけて)は拡径されて拡大部20aに形成されている。また、循環回路管20の容積は上記衝撃室8の容積の0.2~5倍程度に設計されている。循環回路管20の容積がこれよりも小さいと液状体を効率よく乾燥または冷却することができない。また、逆にこれよりも大きいと固体粒子等の処理粉体の循環回数が大幅に減るので、表面改質処理に長時間を要することになる。かかる観点から、循環回路管20の容積は衝撃室8の容積の0.5~3.5倍に設計されていることがより好ましい。ここで、上記循環口21は図示した実施の形態に係る装置においては衝突リング7に対して法線方向に設けられている。しかし、該循環口21は衝突リング7に対して接線方向に設けられていてもよい。また、循環回路管20の一部における拡径の割合は、内径比で1:1.05~1:2が望ましい。また、循環回路管20の容積は、図示した実施の形態に係る装置においては循環回路管20の内容積の他、他端が接続された投入管15の該接続部から投入口10までの投入管15の内容積も含まれる。なお、上記拡径の割合は、循環回路管20内を循環する気体の流速に基づいて決められる。すなわち、衝撃ピン5の回転によって発生する気流のみが流れる循環口21の直上の循環回路管20内の気流の速度と、該気流と後記する供給口から供給される加熱媒体等とが合わさって流れる上記供給口以降の循環回路管20内の気流の速度を、ほぼ同じにしている。
 22a,22bは固体粒子である母粒子の表面を改質するために本装置に供給される液状体のスプレーノズルである。本発明において液状体とは、先に定義したように固体粒子の表面改質に用いられる他の微小固体粒子を液体に分散させた分散液、固体成分の溶質が液体に溶けた溶液、固体成分の溶融液等を言うが、表面改質を行う固体粒子自体も分散した状態で含むものであってもよい。上記スプレーノズル22a,22bは循環回路管20の上流端と下流端の二箇所にそれぞれ設けられている。これらのスプレーノズル22a,22bは、操作時においてどちらを使用してもよく、また両方を使用してもよい。上記スプレーノズル22a,22bは図示しない液状体の供給装置に接続されている。またこのスプレーノズル22a,22bには液状体を微噴霧するために圧縮空気も供給されている。23は前記上流端側に設けられたスプレーノズル22aの直ぐ下流側に位置する循環回路管20の部分に設けられた、加熱媒体、冷却媒体または乾燥媒体(本明細書では、これらを総称して「加熱媒体等」という場合もある)を該循環回路管20内に供給する供給口である。該供給口23により供給される加熱媒体としては、加熱装置により一定温度に加熱された圧縮空気が挙げられる。冷却媒体としては、冷却装置により一定温度に冷却された圧縮空気、液体窒素・ドライアイス等の冷媒を気化させた低温ガスが挙げられる。また加熱または冷却媒体を必要としない場合には、除湿装置により除湿された圧縮空気を乾燥媒体として使用する。これらのいずれかの媒体を供給する供給装置に、供給口23は接続されている。なお、この供給口23は、エジェクター効果によりスプレーノズル22aから供給された液状体を速やかに循環回路管20内の気流の流れに分散させるために、該循環回路管20に気流の流れ方向に対して鋭角で接続されていることが好ましい。また、スプレーノズル22a,22bも、同様の理由で循環回路管20に気流の流れ方向に対して鋭角で接続されていることが好ましい。
 24は過剰の循環気体を排出する排気口である。該排気口24は上記加熱媒体等を供給する供給口23の下流側であって、且つ比較的上流端側に近い位置の循環回路管20の部分に設けられている。これは、固体粒子等の処理粉体は衝撃ピン5の回転によって発生した気流および供給口23から供給された加熱媒体等に同伴して循環回路管20内を循環しているが、次第に気流との速度差が出て遅くなる。そして、固体粒子等の速度が遅くなると、排気口24から排気される過剰の循環気体と共に排出され易くなる。そこで、なるべく固体粒子等の速度が速いうちに過剰の循環気体を排出するためである。また、循環回路管20のU字形状の部分では、その外周側の管内面に沿って固体粒子等が循環している。そこで、排気口24は、第4図(a)に示すように該U字形状の部分の内周側であって、しかも気流の流れ方向に対して鋭角に循環回路管20に接続されていることが固体粒子等が抜けにくいことから好ましい。上記排気口24は、共に図示しない排気管を介して圧縮空気によるエジェクターポンプに接続されている。
 上記のような排気口24の接続方法でも、分散液中の微小固体粒子や噴霧乾燥されて生成した溶液中の固体成分の微小粒子等が、過剰の循環気体と共に排出される可能性がある。そのため、排出管の途中には図示しない粉体回収装置が接続される。この粉体回収装置としては、外面濾過タイプのバグフィルターがよい。この場合、フィルターが固定のものでも回転するものでもよい。フィルターが固定タイプの場合は、フィルターの周囲を囲む外筒付きで逆洗機構を有し、フィルターの材質としては、例えばポリエステルフェルトテフロンラミネート(テフロンは登録商標)が好ましい。フィルターが回転タイプの場合も、フィルターの周囲を外筒が囲む構造で、フィルターの材質としては、焼結金属(例えばSUS316)が好ましい。
 ここで、上記実施の形態においては、液状体を供給するスプレーノズル22a,22bを循環回路管20に設けている。しかし、スプレーノズル22a,22bを、衝撃室8を画する前カバー2および衝突リング7のいずれかの部分に設けてもよい。また、供給口23から供給された加熱媒体等を有効に利用して液状体を乾燥等する場合は、排気口24は、むしろ上記した実施の形態とは逆に循環回路管20の後流端、すなわち投入管15との接続部付近に設けることが好ましい。また、過剰の循環気体を循環回路管20から排気する他の方法としては、該循環回路管20の一部をフィルター付き配管とする方法がある。具体的には、循環回路管20の一部に複数の孔を穿ち、その孔の部分を円筒状のフィルターで覆い、フィルターの部分を両端が閉じた円筒で囲むという構造である。上記円筒には排気口24を設け、上記の場合と同様に排気管を介して圧縮空気によるエジェクターポンプに接続する。この場合、フィルターの内面が固体粒子や微小固体粒子によって目詰まりする可能性がある。そこで、上記円筒の側面に複数の逆洗用の孔を設けて、この孔から定期的に圧縮空気を供給して払い落とす構造とすることが好ましい。この場合、フィルターの材質としては、テフロン織布が好ましい(テフロンは登録商標)。
 その他、図において40は本発明に係る表面改質装置および付帯設備の運転を制御する制御装置である。該制御装置40によって装置の運転条件を設定し、運転を制御状態で行うと共に、運転中の電流値、回転数、温度等を監視する。
 次に、固体粒子(母粒子)の表面を他の微小固体粒子(子粒子)が分散した分散液を用いて表面改質処理する例を用いて、上記装置の操作方法を説明する。但し、上記装置の操作方法は、この操作方法のみに限定されるものではない。
 まず、ケーシング1に設けられた処理粉体排出用の開閉弁11を閉鎖した状態とする。続いて、図示しない駆動手段によって回転軸6を駆動し、処理すべき母粒子の性質により5m/sec~160m/secの間の適宜な周速度、例えば100m/secの周速度で回転盤4を回転させる。この際、回転盤4の外周に設けられた衝撃ピン5の回転に伴って急激な空気の気流が生じる。そして、この気流の遠心力に基づくファン効果によって衝撃室8に開口する循環口21から循環回路管20を巡って回転盤4の中心部に戻る気流の循環流れ、即ち自己循環の流れが装置内に形成される。
 次に、加熱媒体等の供給口23から母粒子に適した媒体、例えば図示しない加熱装置により例えば60℃に加熱された熱風を循環回路管20内に供給する。そして、この熱風により表面改質装置全体を昇温する。熱風の供給量は、熱風の温度、液状体の供給量、処理時間等によって任意に設定することができる。供給口23から熱風を供給すると共に、この熱風と同量の過剰の循環気体を、図示しないエジェクターポンプにより排気口24から排出させる。
 次に、一定量の固体粒子、即ち母粒子を原料ホッバー16から開閉弁17を開放することにより衝撃室8内に投入する。すると、上記気流の自己循環流れに同伴されて該母粒子は繰り返し循環回路管20と衝撃室8とを循環する。そして、原料ホッパー16内に母粒子が残っていないことを確認した後、開閉弁17を閉じる。
 続いて、子粒子が分散した分散液を、それを入れた容器からチューブポンプ等を用いて一定の流量でスプレーノズル22aに供給すると共に、該スプレーノズル22aに圧縮空気を供給する。すると、上記分散液は循環回路管20内に噴霧される。スプレーノズル22aから循環回路管20内に供給された分散液は、気流に同伴して循環回路管20内を移動している母粒子の表面に付着する。
 循環回路管20内には供給口23から連続的に熱風が供給されている。そのため、分散液が付着した母粒子が再び衝撃室8に戻ってくるまでに分散液の液体は加熱・乾燥作用を受け、概ね分散液中の子粒子のみが母粒子の表面に残る。そして、その表面に子粒子が付着した母粒子は、衝撃室8内において高速回転する回転盤4の多数の衝撃ピン5による瞬間的な打撃作用を受け、また周辺の衝突リング7に衝突して強度の圧縮作用を受ける。そのため、子粒子は母粒子の表面に強固に固定化される。なお、運転条件によっても異なるが、分散液の供給時間は通常数十秒から数分である。
 一方、加熱媒体等が供給口23から供給されることにより過剰となった循環気体は、循環回路管20に設けられた排気口24から排出される。この際、図示した実施の形態に係る装置の如く加熱媒体等を供給する供給口23の下流側であって、且つ比較的上流端側に近い位置の循環回路管20の部分に排気口24を設けた場合には、まだこの位置においては循環気体に伴って流れる母粒子の流速は速い。そのため、排出される気体に伴って該排気口24より系外に出てしまう粒子を少ないものとすることができる。また、排気口24には粉体回収装置が接続されている。そのため、該粉体回収装置によって粉体粒子は捕捉され、清浄な排気が大気に排出される。また、上記排気口24からは特に母粒子の表面に付着しなかった子粒子が選択的に気流と共に系外に排出される。そのため、余った子粒子が製品中に残らず、製品の品質の安定性に寄与することができる。
 分散液の供給終了後、処理の目的によっても異なるが、必要に応じて数十秒から数分間装置の運転を継続し、子粒子の固定化や膜の均一化、母粒子の球形化等を行うことがある。また、分散液の供給とその後の固定化処理を数回に分けて繰り返し行うこともできる。さらに、母粒子の表面に固定化された子粒子の層の上に、さらに別の子粒子を固定化したり、子粒子を膜状に固定化したりして、多層化された固体粒子を調製することもできる。
 以上の固定化作業が終了した後は、処理粉体排出用の開閉弁11をアクチュエーター12によって開き、固定化処理された粉体を排出する。この固定化処理された粉体は、衝撃ピン5の回転によってそれ自身に作用している遠心力により短時間(数秒間)で衝撃室8および循環回路管20から排出口9を介して排出される。そして、排出された粉体は、排出管13を通って製品タンク(バグフィルター)14に捕捉される。固定化処理された粉体を排出後、開閉弁11を閉じ、次の母粒子を計量して原料ポッパー16に投入する。そして、再び母粒子と小粒子を含む分散液等を装置内に供給し、上記と同様の工程を経て固定化処理された粉体を生産する。なお、これら一連の回分固定化処理操作は、関連機器の動作時間に関連して、予め時限設定された制御装置40によって制御され、継続運転される。
 上述したように、本発明の固体粒子の表面改質装置または表面改質方法は、加熱媒体等を処理粉体を伴って循環する気流中に直接供給して接触させるため、処理粉体、特に子粒子を含む液状体を効率よく乾燥または冷却することができる。そのため、固体粒子の表面に微小固体粒子を埋設若しくは固着して、または固体粒子の表面に固体成分を膜状に固定化して、固体粒子を表面改質処理する操作を生産性良く、且つ良好に行うことができる装置または方法となる。
 また、本発明に係る固体粒子の表面改質装置または表面改質方法によれば、過剰の循環気体を排出する排気口を設けているため、加熱媒体等を供給しても装置内部の循環気体量を適正値に維持することができる。そのため、装置に負荷をかけることなく加熱媒体等を適正量供給することができる装置または方法となる。
 本発明の装置または方法を用いて最適に表面改質処理できる代表的な母粒子としては、平均粒子径が0.1~100μm程度の各種無機物、金属および金属化合物、天然および合成有機物である。また、水等の液体に分散させて使用する子粒子の平均粒子径としては、0.001~10μm程度であるが、固体成分の溶質が液体に溶けた溶液や固体成分の溶融液を使用する場合は、固体成分の粒径は問わない。しかし、これらの材料に限定されることなく、各種化学工業、電気、磁気材料工業、医薬品、化粧品、塗料、食品、ゴム、プラスチックス、窯業等の工業界で使用されている各種材料の各組合せ成分に適用することができる。但し、本発明の装置または方法は、特に医薬品やトナー等の処理に適している。
 なお、上記した処理方法は、表面改質を行う固体粒子(母粒子)を原料ホッバー16から開閉弁17を開放することにより衝撃室8内に投入し、表面改質に用いられる微小固体粒子(子粒子)が分散した分散液をスプレーノズル22aを介して循環回路管20内に噴霧する構成を採用している。しかしながら、かかる処理方法のみならず、表面改質を行う固体粒子(母粒子)をも、上記微小固体粒子(子粒子)が分散した分散液等の本発明において言う液状体に分散させ、スプレーノズル22a,22bを介して装置内に供給する構成としてもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a solid particle surface modifying apparatus and a solid particle surface modifying method according to the present invention will be described below in detail with reference to the accompanying drawings.
1 to 4, reference numeral 1 denotes a casing of the surface reforming apparatus, 2 denotes a front cover of the casing 1 as shown in FIG. 3, and 3 denotes a rear cover of the casing 1. Reference numeral 4 denotes a rotating disk provided in the casing 1 which rotates at a high speed, and 5 denotes a plurality of impact pins radially provided around the outer periphery of the rotating disk 4 with a predetermined interval. The impact pin 5 is generally of a hammer type or a blade type. Reference numeral 6 denotes a rotating shaft that rotatably supports the rotating disk 4. Reference numeral 7 denotes a collision ring which is provided along the outermost raceway surface of the impact pin 5 and is provided with a certain space with respect to it. The collision ring 7 is of an uneven type or a circumferential plane type having various shapes. Here, the fixed space varies depending on the size of the apparatus, but is generally preferably 0.5 to 20 mm.
Reference numeral 8 denotes an impact chamber surrounded by the front cover 2, the rear cover 3 and the collision ring 7. Reference numeral 9 denotes a processing powder discharge port provided by cutting out a part of the front cover 2. In some cases, the discharge port 9 may be provided by notching a part of the collision ring 7 or a circulation circuit tube described later. Reference numeral 10 denotes a charging port for the solid particles opening near the center of the front cover 2 (also a charging port for the liquid material into the shock chamber 8). The discharge port 9 is provided with an opening / closing valve 11, and the opening / closing valve 11 is opened / closed by an actuator 12. As shown in FIG. 1, 13 is a discharge pipe connected to the discharge port 9 via the on-off valve 11, and 14 is a product tank (bag filter) connected to the discharge pipe 13. A raw material hopper 16 is connected to the charging port 10 via a charging pipe 15. Reference numeral 17 denotes an open / close valve (ball valve) provided in the middle of the charging pipe 15.
As shown in FIG. 4, reference numeral 20 denotes a circulation circuit tube having one end connected to a circulation port 21 opening in a part of the inner wall of the collision ring 7 and the other end connected to the solid particle inlet 10. . The circulation circuit tube 20 is formed in a substantially U shape. A part of the circulation circuit tube 20 (from the upstream straight portion to the entire curved portion) is enlarged in diameter and formed in the enlarged portion 20a. The volume of the circulation circuit tube 20 is designed to be about 0.2 to 5 times the volume of the impact chamber 8. If the volume of the circulation circuit tube 20 is smaller than this, the liquid cannot be efficiently dried or cooled. On the other hand, if it is larger than this, the number of times of circulation of the processing powder such as solid particles is greatly reduced, so that the surface modification treatment takes a long time. From this point of view, the volume of the circulation circuit tube 20 is more preferably designed to be 0.5 to 3.5 times the volume of the impact chamber 8. Here, the circulation port 21 is provided in a normal direction to the collision ring 7 in the apparatus according to the illustrated embodiment. However, the circulation port 21 may be provided tangential to the collision ring 7. The ratio of the diameter expansion in a part of the circulation circuit tube 20 is preferably 1: 1.05 to 1: 2 in terms of the inner diameter ratio. In addition, in the apparatus according to the illustrated embodiment, the circulation circuit tube 20 has a volume from the connecting portion of the charging tube 15 connected to the other end to the charging port 10 in addition to the internal volume of the circulating circuit tube 20. The internal volume of the tube 15 is also included. Note that the ratio of the diameter expansion is determined based on the flow velocity of the gas circulating in the circulation circuit tube 20. That is, the velocity of the airflow in the circulation circuit tube 20 directly above the circulation port 21 through which only the airflow generated by the rotation of the impact pin 5 flows and the heating medium supplied from the supply port described later flow together. The velocity of the airflow in the circulation circuit tube 20 after the supply port is made substantially the same.
22a and 22b are liquid spray nozzles supplied to the apparatus for modifying the surface of the mother particles, which are solid particles. In the present invention, a liquid is a dispersion in which other fine solid particles used for surface modification of solid particles are dispersed in a liquid as defined above, a solution in which a solute of a solid component is dissolved in a liquid, a solid component However, the solid particles for surface modification may be contained in a dispersed state. The spray nozzles 22a and 22b are provided at two locations, the upstream end and the downstream end of the circulation circuit tube 20, respectively. Either of these spray nozzles 22a and 22b may be used during operation, or both may be used. The spray nozzles 22a and 22b are connected to a liquid supply device (not shown). The spray nozzles 22a and 22b are also supplied with compressed air for finely spraying the liquid material. Reference numeral 23 denotes a heating medium, a cooling medium or a drying medium (collectively referred to in this specification) provided in a portion of the circulation circuit tube 20 located immediately downstream of the spray nozzle 22a provided on the upstream end side. This is a supply port for supplying “circulation circuit tube 20” in some cases. Examples of the heating medium supplied from the supply port 23 include compressed air heated to a constant temperature by a heating device. Examples of the cooling medium include compressed air cooled to a constant temperature by a cooling device, and low-temperature gas obtained by vaporizing a refrigerant such as liquid nitrogen or dry ice. In addition, when no heating or cooling medium is required, compressed air dehumidified by a dehumidifying device is used as a drying medium. The supply port 23 is connected to a supply device that supplies any one of these media. The supply port 23 is provided in the circulation circuit tube 20 with respect to the flow direction of the airflow in order to quickly disperse the liquid material supplied from the spray nozzle 22a by the ejector effect in the flow of airflow in the circulation circuit tube 20. And are preferably connected at an acute angle. The spray nozzles 22a and 22b are also preferably connected to the circulation circuit tube 20 at an acute angle with respect to the flow direction of the airflow for the same reason.
Reference numeral 24 denotes an exhaust port for discharging excess circulating gas. The exhaust port 24 is provided on the downstream side of the supply port 23 for supplying the heating medium and the like and in a portion of the circulation circuit tube 20 at a position relatively close to the upstream end side. This is because the processing powder such as solid particles circulates in the circulation circuit tube 20 along with the air flow generated by the rotation of the impact pin 5 and the heating medium supplied from the supply port 23, etc. The speed difference will be slowed down. And when the speed of solid particles etc. becomes slow, it will become easy to discharge | emit with the excess circulation gas exhausted from the exhaust port 24. FIG. Therefore, excessive circulating gas is discharged while the speed of solid particles or the like is as fast as possible. Further, in the U-shaped portion of the circulation circuit tube 20, solid particles and the like circulate along the inner surface of the tube on the outer peripheral side. Therefore, the exhaust port 24 is connected to the circulation circuit tube 20 at an acute angle with respect to the flow direction of the airflow, as shown in FIG. 4 (a), on the inner peripheral side of the U-shaped portion. This is preferable because solid particles and the like are not easily removed. The exhaust port 24 is connected to an ejector pump using compressed air through an exhaust pipe (not shown).
Even with the connection method of the exhaust port 24 as described above, the fine solid particles in the dispersion or the fine solid particles in the solution produced by spray drying may be discharged together with the excess circulating gas. Therefore, a powder recovery device (not shown) is connected in the middle of the discharge pipe. As this powder recovery device, an external filtration type bag filter is preferable. In this case, the filter may be fixed or rotating. When the filter is a fixed type, it has an outer cylinder surrounding the filter and has a backwashing mechanism, and the material of the filter is preferably, for example, polyester felt Teflon laminate (Teflon is a registered trademark). Even when the filter is a rotary type, the outer cylinder surrounds the filter, and the material of the filter is preferably a sintered metal (for example, SUS316).
Here, in the embodiment described above, the spray nozzles 22 a and 22 b for supplying the liquid material are provided in the circulation circuit tube 20. However, the spray nozzles 22 a and 22 b may be provided in any part of the front cover 2 and the collision ring 7 that define the impact chamber 8. Further, when the liquid material is dried by effectively using the heating medium or the like supplied from the supply port 23, the exhaust port 24 is rather the rear end of the circulation circuit tube 20 contrary to the above-described embodiment. That is, it is preferably provided in the vicinity of the connection portion with the input pipe 15. In addition, as another method for exhausting excess circulating gas from the circulation circuit tube 20, there is a method in which a part of the circulation circuit tube 20 is piped with a filter. Specifically, a plurality of holes are formed in a part of the circulation circuit tube 20, the hole part is covered with a cylindrical filter, and the filter part is surrounded by a cylinder closed at both ends. The cylinder is provided with an exhaust port 24 and connected to an ejector pump by compressed air through an exhaust pipe in the same manner as described above. In this case, the inner surface of the filter may be clogged with solid particles or fine solid particles. Therefore, it is preferable to provide a structure in which a plurality of holes for backwashing are provided on the side surface of the cylinder, and compressed air is periodically supplied from the holes to be removed. In this case, the filter material is preferably a Teflon woven fabric (Teflon is a registered trademark).
In addition, in the figure, reference numeral 40 denotes a control device for controlling the operation of the surface reforming apparatus and incidental facilities according to the present invention. The operation condition of the apparatus is set by the control apparatus 40, the operation is performed in a controlled state, and the current value, the rotation speed, the temperature, and the like during the operation are monitored.
Next, an operation method of the above apparatus will be described using an example in which the surface of the solid particles (mother particles) is subjected to surface modification treatment using a dispersion liquid in which other fine solid particles (child particles) are dispersed. However, the operation method of the apparatus is not limited to this operation method.
First, the on-off valve 11 for discharging the treated powder provided in the casing 1 is closed. Subsequently, the rotating shaft 6 is driven by a driving means (not shown), and the rotating disk 4 is moved at an appropriate peripheral speed between 5 m / sec and 160 m / sec, for example, a peripheral speed of 100 m / sec, depending on the properties of the mother particles to be processed. Rotate. At this time, an abrupt air flow is generated with the rotation of the impact pin 5 provided on the outer periphery of the rotating disk 4. Then, the circulation flow of the airflow returning to the central portion of the rotating disk 4 from the circulation port 21 opening to the impact chamber 8 through the circulation port 21 by the fan effect based on the centrifugal force of the airflow, that is, the self-circulation flow is generated in the apparatus. Formed.
Next, a medium suitable for the mother particles, for example, hot air heated to, for example, 60 ° C. by a heating device (not shown) is supplied into the circulation circuit tube 20 from the supply port 23 such as a heating medium. Then, the temperature of the entire surface reformer is increased by this hot air. The supply amount of hot air can be arbitrarily set according to the temperature of the hot air, the supply amount of the liquid, the processing time, and the like. Hot air is supplied from the supply port 23, and excess circulating gas in the same amount as the hot air is discharged from the exhaust port 24 by an ejector pump (not shown).
Next, a certain amount of solid particles, that is, mother particles, is put into the impact chamber 8 by opening the opening / closing valve 17 from the raw material hover 16. Then, the mother particles are repeatedly circulated between the circulation circuit tube 20 and the impact chamber 8 along with the self-circulating flow of the airflow. Then, after confirming that no mother particles remain in the raw material hopper 16, the on-off valve 17 is closed.
Subsequently, the dispersion liquid in which the child particles are dispersed is supplied to the spray nozzle 22a at a constant flow rate using a tube pump or the like from a container in which the child particles are placed, and compressed air is supplied to the spray nozzle 22a. Then, the dispersion liquid is sprayed into the circulation circuit tube 20. The dispersion liquid supplied from the spray nozzle 22a into the circulation circuit tube 20 adheres to the surface of the mother particles moving in the circulation circuit tube 20 along with the air flow.
Hot air is continuously supplied into the circulation circuit tube 20 from the supply port 23. For this reason, the dispersion liquid is heated and dried before the mother particles to which the dispersion has adhered return to the impact chamber 8, and only the child particles in the dispersion remain on the surface of the mother particles. The mother particles with the child particles adhering to the surface are subjected to momentary impact action by the large number of impact pins 5 of the rotating disk 4 rotating at a high speed in the impact chamber 8 and collide with the surrounding collision ring 7. Receives strong compressive action. Therefore, the child particles are firmly fixed on the surface of the mother particle. In addition, although it changes with operating conditions, the supply time of the dispersion liquid is usually several tens of seconds to several minutes.
On the other hand, the circulating gas that has become excessive due to the supply of the heating medium or the like from the supply port 23 is discharged from the exhaust port 24 provided in the circulation circuit tube 20. At this time, as in the apparatus according to the illustrated embodiment, the exhaust port 24 is provided on the downstream side of the supply port 23 for supplying a heating medium or the like and relatively close to the upstream end side. When provided, the flow velocity of the mother particles flowing along with the circulating gas is still high at this position. Therefore, it is possible to reduce the number of particles that come out of the system from the exhaust port 24 along with the discharged gas. Further, a powder recovery device is connected to the exhaust port 24. Therefore, the powder particles are captured by the powder recovery device, and clean exhaust is discharged to the atmosphere. In addition, the child particles that are not particularly attached to the surface of the mother particles are selectively discharged from the system together with the air flow from the exhaust port 24. Therefore, surplus child particles do not remain in the product, which can contribute to the stability of product quality.
Depending on the purpose of processing after the supply of the dispersion liquid is completed, the operation of the apparatus is continued for several tens of seconds to several minutes as necessary to fix the child particles, homogenize the film, make the mother particles spherical, etc. There are things to do. Further, the supply of the dispersion and the subsequent immobilization treatment can be repeated in several times. Furthermore, on the layer of the child particle fixed on the surface of the mother particle, another child particle is further fixed, or the child particle is fixed in a film shape to prepare a multilayered solid particle. You can also
After the above fixing operation is completed, the on-off valve 11 for discharging the processed powder is opened by the actuator 12, and the fixed powder is discharged. The fixed powder is discharged from the impact chamber 8 and the circulation circuit tube 20 through the discharge port 9 in a short time (several seconds) by the centrifugal force acting on itself by the rotation of the impact pin 5. The The discharged powder is captured by the product tank (bag filter) 14 through the discharge pipe 13. After discharging the fixed powder, the on-off valve 11 is closed, and the next base particle is weighed and put into the raw material popper 16. Then, the dispersion liquid containing the mother particles and the small particles is again supplied into the apparatus, and the fixed powder is produced through the same process as described above. The series of batch immobilization processing operations are controlled by the control device 40 set in advance in a time-related manner and are continuously operated in relation to the operation time of the related equipment.
As described above, the solid particle surface modification apparatus or surface modification method of the present invention directly supplies and contacts the heating medium or the like in the air stream circulating with the treated powder, so that the treated powder, in particular, The liquid containing the child particles can be efficiently dried or cooled. For this reason, the operation of modifying the surface of the solid particles with good productivity and goodness by embedding or fixing the fine solid particles on the surface of the solid particles or fixing the solid component on the surface of the solid particles in the form of a film. An apparatus or method that can be performed.
Further, according to the surface reforming apparatus or the surface reforming method of the solid particles according to the present invention, the exhaust gas exhaust port for exhausting excess circulating gas is provided, so that the circulating gas inside the apparatus is supplied even if a heating medium or the like is supplied. The amount can be maintained at an appropriate value. Therefore, the apparatus or method can supply an appropriate amount of heating medium or the like without imposing a load on the apparatus.
Representative mother particles that can be optimally surface-modified using the apparatus or method of the present invention include various inorganic substances, metals and metal compounds, natural and synthetic organic substances having an average particle diameter of about 0.1 to 100 μm. The average particle size of the child particles used by being dispersed in a liquid such as water is about 0.001 to 10 μm, but a solution in which a solid component solute is dissolved in a liquid or a solid component melt is used. In this case, the particle size of the solid component is not limited. However, without being limited to these materials, various combinations of various materials used in various chemical industries, electricity, magnetic material industries, pharmaceuticals, cosmetics, paints, foods, rubber, plastics, ceramics, etc. Can be applied to the ingredients. However, the apparatus or method of the present invention is particularly suitable for the treatment of pharmaceuticals and toners.
In the treatment method described above, solid particles (base particles) for surface modification are introduced into the impact chamber 8 by opening the on-off valve 17 from the raw material hobber 16 and fine solid particles ( A configuration is adopted in which the dispersion liquid in which the child particles are dispersed is sprayed into the circulation circuit tube 20 through the spray nozzle 22a. However, not only such a treatment method, but also solid particles (mother particles) for surface modification are dispersed in the liquid material referred to in the present invention, such as a dispersion in which the fine solid particles (child particles) are dispersed, and spray nozzles are used. It is good also as a structure supplied in the apparatus via 22a, 22b.
 次に、本発明の装置を用いた固体粒子の表面改質処理について、従来の装置と比較して具体的に説明する。
−実施例T−1~T−3−
 〔使用装置〕
 第1図~第4図に示した本発明の装置を使用した。なお、各部の寸法等は以下のとおりであった。
 ・回転盤の直径  :125mm
 ・衝撃室の容積  :0.53リットル
 ・循環回路管の容積:1.83リットル
 ・循環回路管の内径:22mm(拡大部:33.7mm)
 〔処理粉体〕
 ・母粒子:ポリスチレン球形粒子(平均粒子径:10μm)
 ・子粒子:二酸化チタン(平均粒子径:0.2μm)
 〔処理操作および処理結果〕
 回転盤4の回転速度を15000min−1(98.2m/sec)とし、表1に示した種々の温度および風量の熱風を供給口23より循環回路管20内に供給した。また、この熱風と同量の過剰の循環気体を図示しないエジェクターポンプにより排気口24から排出させた。
 原料ホッバー16から上記母粒子30gを衝撃室8内に投入した。また、水に上記子粒子を15重量%分散させた分散液3g(母粒子に対して10%)をスプレーノズル22aより3分間で循環回路管20内に噴霧した。この際、スプレーノズル22aに供給した圧縮空気の流量は37リットル/minであった。
 分散液を噴霧した後、さらに2分間運転を続け、回収した製品を走査形電子顕微鏡で観察した。その結果、何れの実施例においても、子粒子が母粒子の表面に均一に固定化された粒子であることが分かった。
Figure JPOXMLDOC01-appb-T000001
−比較例1−
 〔使用装置〕
 株式会社奈良機械製作所製のハイブリダイゼーションシステム(NHS−0型)を使用した。なお、各部の寸法等は以下のとおりであった。
 ・回転盤の直径  :125mm
 ・衝撃室の容積  :0.53リットル
 ・循環回路管の容積:0.13リットル
 ・循環回路管の内径:22mm
 〔処理粉体〕
 ・母粒子:ポリスチレン球形粒子(平均粒子径:10μm)
 ・子粒子:二酸化チタン(平均粒子径:0.2μm)
 〔処理操作および処理結果〕
 回転盤の回転速度は上記実施例と同様に15000min−1(98.2m/sec)とした。比較例においては、5リットル/minの軸封シールエアーのみしか供給していないので、この軸封シールに40℃の温風を使用したとしても、計算上乾燥に必要な時間は約7.6時間である。
 比較例においては、上記実施例と同様の子粒子を含んだ分散液を注射器を用いて循環回路管の開孔から供給することとした。すなわち、上記分散液3gを10分間かけてゆっくり注射器を用いて循環回路管の開孔から供給した。そして、その後更に10分間運転を続けた。
 その後、処理粉体排出用の開閉弁を開いたが、製品タンクにはほとんど製品が入っていなかった。そこで、回転盤の回転を止め、前カバーを開くと共に循環回路管も分解した。その結果、回転盤(衝撃ピン)や衝突リングの表面と、循環回路管の内面に母粒子と子粒子がビッシリ付着していることが分かった。
−実施例T−4−
 〔使用装置〕
 第1図~第4図に示した本発明の装置を使用した。各部の寸法等は上記実施例T−1~T−3の場合と同じである。
 〔処理粉体〕
 ・核粒子:イブプロフェン粉末(平均粒子径:70μm)
 ・被覆材:リン脂質ポリマー(精製水に溶解)
 〔処理操作および処理結果〕
 先ず、上記核粒子であるイブプロフェン粉末45gを、上記被覆材であるリン脂質ポリマー2重量%を精製水に溶かしたリン脂質ポリマー水溶液255g中に投入し、その液(300g)を株式会社奈良機械製作所製の湿式粉砕機であるマイクロス(MIC−0型;「マイクロス」は登録商標)で湿式粉砕処理した。これにより、イブプロフェンが100nm程度まで粉砕されると共に、リン脂質ポリマー水溶液中に均一分散された分散液を調製した。
 次に、回転盤4の回転速度を16200min−1(106m/sec)とし、表2に示した温度および風量の気体(空気)を供給口23より循環回路管20内に供給した。また、この気体と同量の過剰の循環気体を図示しないエジェクターポンプにより排気口24から排出させた。
 続いて、上記調整した分散液をスプレーノズル22aより3時間34分間かけて循環回路管20内に噴霧した。この際、スプレーノズル22aに供給した圧縮空気の流量は30リットル/minであった。
 分散液を噴霧した後、さらに5分間運転を続け、回収した製品を走査形電子顕微鏡で観察した。その結果、イブプロフェンがリン脂質ポリマーでコーティングされならが造粒された平均粒子径10μm以下の複合粒子であることが分かった。
Figure JPOXMLDOC01-appb-T000002
−比較例2−
 上記と同じ分散液を、連続的にスラリーを乾燥し、スラリー中に分散された固形分を一次粒子の大きさで取り出すことができる株式会社奈良機械製作所製の媒体流動乾燥機(MSD−100)に供給し、処理を行った。
 この場合、分散液にポリマーを含んでいるため、媒体粒子が完全に分散液でコーティングされてしまい、製品(リン脂質ポリマーでコーティングされたイブプロフェン)を回収することができなかった。
 また、上記と同じ分散液を、大川原化工機株式会社製のスプレードライヤー(L−8i)、また東京理化器械株式会社製の凍結乾燥装置(FDU−2100)を用い、乾燥処理を実施した。
 この場合、得られた製品の粒子径は大きく(スプレードライ法でも30μm以上)、上記実施例T−4と同等の微細な複合粒子を得ることができなかった。
Next, the surface modification treatment of solid particles using the apparatus of the present invention will be specifically described in comparison with a conventional apparatus.
-Examples T-1 to T-3-
[Device used]
The apparatus of the present invention shown in FIGS. 1 to 4 was used. In addition, the dimension of each part was as follows.
・ Turntable diameter: 125mm
-Volume of impact chamber: 0.53 liters-Volume of circulation circuit tube: 1.83 liters-Inner diameter of circulation circuit tube: 22 mm (enlarged part: 33.7 mm)
[Processed powder]
-Mother particles: polystyrene spherical particles (average particle size: 10 μm)
Child particles: titanium dioxide (average particle size: 0.2 μm)
[Processing operations and processing results]
The rotating speed of the turntable 4 was set to 15000 min −1 (98.2 m / sec), and hot air having various temperatures and air volumes shown in Table 1 was supplied into the circulation circuit tube 20 from the supply port 23. Further, an excess amount of circulating gas equivalent to the hot air was discharged from the exhaust port 24 by an ejector pump (not shown).
30 g of the above mother particles were put into the impact chamber 8 from the raw material hover 16. In addition, 3 g of dispersion (10% with respect to the mother particles) in which 15% by weight of the above child particles were dispersed in water was sprayed into the circulation circuit tube 20 from the spray nozzle 22a in 3 minutes. At this time, the flow rate of the compressed air supplied to the spray nozzle 22a was 37 liters / min.
After spraying the dispersion, the operation was continued for another 2 minutes, and the recovered product was observed with a scanning electron microscope. As a result, in any of the examples, it was found that the child particles were particles fixed uniformly on the surface of the mother particles.
Figure JPOXMLDOC01-appb-T000001
-Comparative Example 1-
[Device used]
A hybridization system (NHS-0 type) manufactured by Nara Machinery Co., Ltd. was used. In addition, the dimension of each part was as follows.
・ Turntable diameter: 125 mm
・ Volume of impact chamber: 0.53 liter ・ Volume of circulation circuit tube: 0.13 liter ・ Inner diameter of circulation circuit tube: 22 mm
[Processed powder]
-Mother particles: polystyrene spherical particles (average particle size: 10 μm)
Child particles: titanium dioxide (average particle size: 0.2 μm)
[Processing operations and processing results]
The rotation speed of the turntable was set to 15000 min-1 (98.2 m / sec) as in the above example. In the comparative example, only the shaft seal seal air of 5 liters / min is supplied. Therefore, even if hot air of 40 ° C. is used for this shaft seal, the time required for the calculation is about 7.6. It's time.
In the comparative example, a dispersion containing the same child particles as in the above example was supplied from the opening of the circulation circuit tube using a syringe. That is, 3 g of the dispersion was slowly supplied from the opening of the circulation circuit tube using a syringe over 10 minutes. Thereafter, the operation was continued for another 10 minutes.
After that, the on-off valve for discharging the treated powder was opened, but there was almost no product in the product tank. Therefore, the rotation of the rotating disk was stopped, the front cover was opened, and the circulation circuit tube was also disassembled. As a result, it was found that the mother particles and the child particles adhered to the surface of the rotating disk (impact pin) and the collision ring and the inner surface of the circulation circuit tube.
-Example T-4-
[Device used]
The apparatus of the present invention shown in FIGS. 1 to 4 was used. The dimensions and the like of each part are the same as those in Examples T-1 to T-3.
[Processed powder]
-Core particles: ibuprofen powder (average particle size: 70 μm)
・ Coating material: Phospholipid polymer (dissolved in purified water)
[Processing operations and processing results]
First, 45 g of the ibuprofen powder as the core particle was charged into 255 g of a phospholipid polymer aqueous solution in which 2% by weight of the phospholipid polymer as the coating material was dissolved in purified water, and the liquid (300 g) was supplied to Nara Machinery Co., Ltd. Wet pulverization treatment was performed with Micros (MIC-0 type; “Micros” is a registered trademark), which is a wet pulverizer manufactured by the manufacturer. Thus, ibuprofen was pulverized to about 100 nm and a dispersion liquid uniformly dispersed in the aqueous phospholipid polymer solution was prepared.
Next, the rotational speed of the turntable 4 was set to 16200 min −1 (106 m / sec), and the gas (air) having the temperature and air volume shown in Table 2 was supplied into the circulation circuit tube 20 from the supply port 23. Further, an excessive amount of circulating gas equivalent to this gas was discharged from the exhaust port 24 by an ejector pump (not shown).
Subsequently, the adjusted dispersion was sprayed into the circulation circuit tube 20 from the spray nozzle 22a over 3 hours and 34 minutes. At this time, the flow rate of the compressed air supplied to the spray nozzle 22a was 30 liters / min.
After spraying the dispersion, the operation was continued for another 5 minutes, and the recovered product was observed with a scanning electron microscope. As a result, it was found that if ibuprofen is coated with a phospholipid polymer, it is a granulated composite particle having an average particle diameter of 10 μm or less.
Figure JPOXMLDOC01-appb-T000002
-Comparative Example 2-
Medium fluidized dryer (MSD-100) manufactured by Nara Machinery Co., Ltd., which can continuously dry the slurry of the same dispersion as above and take out the solid content dispersed in the slurry in the size of primary particles. To be processed.
In this case, since the polymer was contained in the dispersion, the medium particles were completely coated with the dispersion, and the product (ibuprofen coated with the phospholipid polymer) could not be recovered.
Moreover, the same dispersion liquid as the above was subjected to a drying treatment using a spray dryer (L-8i) manufactured by Okawara Chemical Co., Ltd. and a freeze-drying apparatus (FDU-2100) manufactured by Tokyo Rika Kikai Co., Ltd.
In this case, the particle size of the obtained product was large (30 μm or more even by the spray drying method), and fine composite particles equivalent to Example T-4 could not be obtained.
 以上に説明した本発明に係る固体粒子の表面改質装置または表面改質方法によれば、液状体の種類に応じて効率よく乾燥または冷却することができ、固体粒子を生産性良く、且つ良好に表面改質処理することができるため、各種化学工業、電気、磁気材料工業、医薬品、化粧品、塗料、食品、ゴム、プラスチックス、窯業等の工業界で使用されている各種固体粒子の表面改質に広く利用することができる。 According to the solid particle surface modifying apparatus or surface modifying method according to the present invention described above, the solid particles can be efficiently dried or cooled according to the type of the liquid, and the solid particles are excellent in productivity and good. Surface modification treatment of various solid particles used in various chemical industries, electricity, magnetic materials industry, pharmaceuticals, cosmetics, paints, foods, rubber, plastics, ceramics, etc. Can be widely used for quality.

Claims (9)

  1. 衝撃室内に、衝撃ピンを周設した回転盤を配設すると共に、該衝撃ピンの最外周軌道面に沿い、且つそれに対して一定の空間を置いて衝突リングを配置し、前記衝撃ピンの回転によって発生した気流と共に処理粉体を誘導・循環させるための循環回路管を、該循環回路管の一方の開口を前記衝突リングの一部に開口させ、他方の開口を前記回転盤の中心付近の前カバーに開口させて設け、上記前カバー、衝突リングまたは循環回路管のいずれかに液状体を供給するスプレーノズルを設けると共に、上記循環回路管の適所に加熱媒体、冷却媒体または乾燥媒体を供給する供給口と過剰の循環気体を排出する排気口とを設けたことを特徴とする、固体粒子の表面改質装置。 In the impact chamber, a rotating disk with impact pins is arranged, and a collision ring is arranged along the outermost raceway surface of the impact pins with a certain space therebetween, and the impact pins rotate. A circulating circuit tube for guiding and circulating the treated powder together with the air flow generated by the above-mentioned circuit. One opening of the circulating circuit tube is opened in a part of the collision ring, and the other opening is located near the center of the rotating disk. A spray nozzle is provided to be opened in the front cover, supplying a liquid material to any one of the front cover, the collision ring, or the circulation circuit tube, and a heating medium, a cooling medium, or a drying medium is supplied to an appropriate position of the circulation circuit tube. A solid particle surface reforming apparatus comprising a supply port for exhausting and an exhaust port for discharging excess circulating gas.
  2. 上記供給口が上記循環回路管に設けられ、上記排気口が前記供給口の下流側に位置する上記循環回路管に設けられていることを特徴とする、請求の範囲1に記載の固体粒子の表面改質装置。 2. The solid particle according to claim 1, wherein the supply port is provided in the circulation circuit tube, and the exhaust port is provided in the circulation circuit tube located on the downstream side of the supply port. Surface modification equipment.
  3. 上記循環回路管の一部が拡径されて拡大部が形成されていることを特徴とする、請求の範囲1または2に記載の固体粒子の表面改質装置。 The surface modification apparatus for solid particles according to claim 1 or 2, wherein a part of the circulation circuit tube is enlarged to form an enlarged portion.
  4. 上記循環回路管の拡大部は、上記供給口の下流側と上記排気口の上流側の間に形成されていることを特徴とする、請求の範囲3に記載の固体粒子の表面改質装置。 4. The solid particle surface reforming apparatus according to claim 3, wherein the enlarged portion of the circulation circuit tube is formed between the downstream side of the supply port and the upstream side of the exhaust port.
  5. 上記排気口に粉体回収装置が接続されていることを特徴とする、請求の範囲1~4のいずれかに記載の固体粒子の表面改質装置。 5. The surface modification device for solid particles according to claim 1, wherein a powder recovery device is connected to the exhaust port.
  6. 上記循環回路管の上流端に液状体を供給する上記スプレーノズルが設けられ、該スプレーノズルの直ぐ下流側に位置する循環回路管の部分に上記供給口が設けられ、該供給口の下流側であって、且つ比較的上流端側に近い位置の循環回路管の部分に上記排気口が設けられていることを特徴とする、請求の範囲1~5のいずれかに記載の固体粒子の表面改質装置。 The spray nozzle for supplying the liquid material is provided at the upstream end of the circulation circuit tube, the supply port is provided at a portion of the circulation circuit tube located immediately downstream of the spray nozzle, and the downstream side of the supply port. The surface modification of the solid particles according to any one of claims 1 to 5, wherein the exhaust port is provided in a portion of the circulation circuit tube at a position relatively close to the upstream end side. Quality equipment.
  7. 上記循環回路管の下流端に液状体を供給するスプレーノズルが設けられていることを特徴とする、請求の範囲1~5のいずれかに記載の固体粒子の表面改質装置。 6. The surface modification apparatus for solid particles according to claim 1, wherein a spray nozzle for supplying a liquid material is provided at a downstream end of the circulation circuit tube.
  8. 上記請求の範囲1~7のいずれかに記載の固体粒子の表面改質装置を用い、表面改質を行う固体粒子を上記液状体とは別に装置内に投入し、固体粒子の表面改質を行うことを特徴とする、固体粒子の表面改質方法。 Using the solid particle surface modifying apparatus according to any one of claims 1 to 7, the solid particles to be subjected to surface modification are put into the apparatus separately from the liquid material, and the surface modification of the solid particles is performed. A method for modifying the surface of solid particles, characterized by comprising:
  9. 上記請求の範囲1~7のいずれかに記載の固体粒子の表面改質装置を用い、表面改質を行う固体粒子を上記液状体に分散させて上記スプレーノズルを介して装置内に投入し、固体粒子の表面改質を行うことを特徴とする、固体粒子の表面改質方法。 Using the solid particle surface modification device according to any one of claims 1 to 7, the solid particles to be surface-modified are dispersed in the liquid and charged into the device through the spray nozzle. A method for modifying the surface of a solid particle, comprising performing surface modification of the solid particle.
PCT/JP2012/072289 2011-08-31 2012-08-28 Surface modification device for solid particles and surface modification method for solid particles WO2013032002A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013511457A JP5648124B2 (en) 2011-08-31 2012-08-28 Solid particle surface modification apparatus and solid particle surface modification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-188172 2011-08-31
JP2011188172 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013032002A1 true WO2013032002A1 (en) 2013-03-07

Family

ID=47756474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072289 WO2013032002A1 (en) 2011-08-31 2012-08-28 Surface modification device for solid particles and surface modification method for solid particles

Country Status (2)

Country Link
JP (1) JP5648124B2 (en)
WO (1) WO2013032002A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370206B2 (en) 2019-09-30 2023-10-27 日本コークス工業株式会社 solid processing machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262737A (en) * 1986-05-07 1987-11-14 Nara Kikai Seisakusho:Kk Method for reforming surface of solid particle and its apparatus
JPH1062066A (en) * 1996-08-20 1998-03-06 Japan Tobacco Inc Air current drier
JP2003126680A (en) * 2001-10-29 2003-05-07 Nara Kikai Seisakusho:Kk Fluidizing apparatus for powder and granular material
JP2006207849A (en) * 2005-01-25 2006-08-10 Sumitomo Chemical Co Ltd Flash drier and drying method using the same
JP2008519062A (en) * 2004-11-05 2008-06-05 キング・ファーマシューティカルズ・リサーチ・アンド・デベロプメント・インコーポレイティッド Individually coated stabilized ramipril particles, compositions and methods
JP2010096448A (en) * 2008-10-17 2010-04-30 Fuji Xerox Co Ltd Drying device and toner for developing electrostatic charge image

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262737A (en) * 1986-05-07 1987-11-14 Nara Kikai Seisakusho:Kk Method for reforming surface of solid particle and its apparatus
JPH1062066A (en) * 1996-08-20 1998-03-06 Japan Tobacco Inc Air current drier
JP2003126680A (en) * 2001-10-29 2003-05-07 Nara Kikai Seisakusho:Kk Fluidizing apparatus for powder and granular material
JP2008519062A (en) * 2004-11-05 2008-06-05 キング・ファーマシューティカルズ・リサーチ・アンド・デベロプメント・インコーポレイティッド Individually coated stabilized ramipril particles, compositions and methods
JP2006207849A (en) * 2005-01-25 2006-08-10 Sumitomo Chemical Co Ltd Flash drier and drying method using the same
JP2010096448A (en) * 2008-10-17 2010-04-30 Fuji Xerox Co Ltd Drying device and toner for developing electrostatic charge image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370206B2 (en) 2019-09-30 2023-10-27 日本コークス工業株式会社 solid processing machine

Also Published As

Publication number Publication date
JP5648124B2 (en) 2015-01-07
JPWO2013032002A1 (en) 2015-03-23

Similar Documents

Publication Publication Date Title
US4915987A (en) Method of improving quality of surface of solid particles and apparatus thereof
US4789105A (en) Particulate material treating apparatus
WO2000074834A1 (en) Centrifugally rolling granulating device and method of treating powder and granular material using the device
JP2005270955A (en) Treatment apparatus and powder treatment method
JPH032009B2 (en)
JP5648124B2 (en) Solid particle surface modification apparatus and solid particle surface modification method
JP2012091159A (en) Pneumatic powder treatment device and method
US20160001253A1 (en) Apparatus for manufacturing particles and method for manufacturing particles using the same
JP2012143725A (en) Fluidized bed apparatus
JPS62262737A (en) Method for reforming surface of solid particle and its apparatus
JPS62140636A (en) Method and device for reforming surface of solid grain
JP2004122057A (en) Fluidized bed apparatus
JP2002059037A (en) Spray gun, powder treatment apparatus and powder treatment method using the same
JPH0461687B2 (en)
JP2001327850A (en) Centrifugal rolling granulator and powder and granular material treating method using the same
JPH0478341B2 (en)
JP2006240921A (en) Method for granulating carbon-based substance
JPS62221434A (en) Treatment of making micro-solid particle globular and device therefor
JP3890171B2 (en) Centrifugal rolling granulator and powder processing method using the same
KR101661387B1 (en) Apparatus for Improving Dispersibility of Carbon nanotubes
JP6017204B2 (en) Nanoparticle manufacturing method, manufacturing apparatus, and automatic manufacturing apparatus
WO2023203974A1 (en) Particulate matter drying method, and method for manufacturing drying device
JP4538780B2 (en) Method for hydrophilicizing carbon nanotubes
JPH05168895A (en) Method for modifying surface of solid grain
JPH01284329A (en) Method and device for granulating, coating, and drying fine grain

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013511457

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828633

Country of ref document: EP

Kind code of ref document: A1