JP5893858B2 - Airflow type powder processing apparatus and method - Google Patents

Airflow type powder processing apparatus and method Download PDF

Info

Publication number
JP5893858B2
JP5893858B2 JP2011143907A JP2011143907A JP5893858B2 JP 5893858 B2 JP5893858 B2 JP 5893858B2 JP 2011143907 A JP2011143907 A JP 2011143907A JP 2011143907 A JP2011143907 A JP 2011143907A JP 5893858 B2 JP5893858 B2 JP 5893858B2
Authority
JP
Japan
Prior art keywords
powder
nozzle
processing apparatus
airflow
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011143907A
Other languages
Japanese (ja)
Other versions
JP2012091159A (en
Inventor
杉山 浩之
浩之 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pneumatic Manufacturing Co Ltd
Original Assignee
Nippon Pneumatic Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pneumatic Manufacturing Co Ltd filed Critical Nippon Pneumatic Manufacturing Co Ltd
Priority to JP2011143907A priority Critical patent/JP5893858B2/en
Publication of JP2012091159A publication Critical patent/JP2012091159A/en
Application granted granted Critical
Publication of JP5893858B2 publication Critical patent/JP5893858B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/04Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with non-movable mixing or kneading devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Glanulating (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Description

この発明は、電気機器や電子部品、自動車部品、医薬品、化粧品等に用いられる粉体の製造に際し、原料の混合や乾燥、コーティング、造粒、微粉体の表面改質、例えば球形化等の処理に使用される気流式粉体処理装置及び方法に関するものである。   This invention is a process for mixing raw materials, drying, coating, granulation, surface modification of fine powder, for example, spheronization, etc., in the production of powders used in electrical equipment, electronic parts, automobile parts, pharmaceuticals, cosmetics, etc. The present invention relates to an airflow type powder processing apparatus and method used in the above.

従来より、医薬品や粉末冶金、電子材料等の原料である粉体等を混合する混合装置として、V字状の容器や二つの円錐体を底面側で接合した形状の容器に原料を供給して、容器を回転させる容器回転式のものが知られている。ところが、この型式のものでは、凝集性の強い微粉体を十分に分散することが困難である。   Conventionally, as a mixing device that mixes powder, which is a raw material for pharmaceuticals, powder metallurgy, electronic materials, etc., the raw material is supplied to a V-shaped container or a container with two cones joined on the bottom side. A container rotating type for rotating a container is known. However, in this type, it is difficult to sufficiently disperse fine powder having strong cohesiveness.

また、原料を供給する混合槽内に高速で回転する羽根を設け、羽根の回転により原料を攪拌して混合する羽根回転式のものも知られている。ところが、この型式のものでは、羽根の回転による混合槽内の温度上昇や羽根への粉体の固着の問題のほか、羽根の磨耗による製品の汚れ(コンタミネーション)の問題がある。また、羽根の回転軸のシール技術や高速で回転する部材のバランス調整等の高度な技術も必要となる。   There is also known a blade rotating type in which a blade rotating at high speed is provided in a mixing tank for supplying a raw material, and the raw material is stirred and mixed by the rotation of the blade. However, this type has the problem of temperature rise in the mixing tank due to the rotation of the blades and the adhesion of powder to the blades, as well as the contamination of the product due to the wear of the blades. In addition, advanced techniques such as a sealing technique for the rotating shaft of the blade and a balance adjustment of a member that rotates at high speed are also required.

また、混合槽内に貯留された比較的大きなサイズの樹脂ペレット等の原料を、槽下部から瞬間的に上方へ気流を吹き込むことにより流動させて混合する気流式のものも知られている。しかしながら、この型式のものでは、流動が瞬間的であるため、原料の分散が困難であり、精密な混合ができないという問題がある。   Also known is an air flow type in which raw materials such as resin pellets of a relatively large size stored in a mixing tank are fluidized and mixed by instantaneously blowing upward air from the bottom of the tank. However, this type has a problem that since the flow is instantaneous, it is difficult to disperse the raw materials and precise mixing cannot be performed.

その他、気流式のものとして、下記特許文献1には、円筒形容器の外周部に複数本のノズルを設け、ノズルから空気と原料とを容器の接線方向に噴出させ、容器内に旋回渦流を生じさせて原料を混合するものが記載されている。しかしながら、この型式のものでは、十分な旋回力を発生させるため、大量の圧縮空気を噴出する必要があり、上方へ舞い上がった微粉体を繰り返して混合することができないという問題がある。   In addition, as an airflow type, in Patent Document 1 below, a plurality of nozzles are provided on the outer peripheral portion of a cylindrical container, air and raw material are ejected from the nozzles in the tangential direction of the container, and a swirling vortex is generated in the container. What is produced and mixed with the raw materials is described. However, this type has a problem that a large amount of compressed air needs to be ejected in order to generate a sufficient turning force, and the fine powder that has risen upward cannot be repeatedly mixed.

また、電子写真方式のプリンターに使用されるトナーは、ジェット粉砕機等による粉砕法により製造した場合、円形度が0.90〜0.93程度で、その粒子形状が不規則となっている。なお、化学的な重合法で製造した場合には、円形度が0.96以上で比較的均一な球状の粒子を得ることができるが、依然として粉砕法で製造される場合も多い。   In addition, when the toner used in the electrophotographic printer is manufactured by a pulverization method using a jet pulverizer or the like, the circularity is about 0.90 to 0.93 and the particle shape thereof is irregular. In addition, when manufactured by a chemical polymerization method, relatively uniform spherical particles having a circularity of 0.96 or more can be obtained, but they are still often manufactured by a pulverization method.

このため、粉砕法で得られたトナーを球形化する要請があり、そのための機械式装置として、高速で回転する羽根に粒子を衝突させることで丸くするものや、高速で回転する羽根と外壁との僅少なクリアランスで粒子を摩砕するものが使用されているが、これらの装置では、円形度が0.01〜0.02向上する程度である。   For this reason, there is a request to spheroidize the toner obtained by the pulverization method, and as a mechanical device for that purpose, a device that rounds particles by colliding particles with high-speed rotating blades, or a high-speed rotating blade and outer wall However, in these devices, the degree of circularity is improved by 0.01 to 0.02.

また、不規則な形状のトナーの粒子を熱風と接触させることで丸くする熱気流式球形化装置が実用化されており、これによると円形度を0.96以上とすることもできるが、この方式の装置では、トナーに含まれるワックスが染み出して粒子同士が結着したり、ワックス成分が剥落したりすることがあり、これが感光ドラムに貼り付いて画像汚れが発生しやすくなる等の問題がある。   In addition, a hot air spheronizing device that rounds irregularly shaped toner particles by bringing them into contact with hot air has been put into practical use. According to this, the circularity can be 0.96 or more. In this type of device, the wax contained in the toner may ooze out and the particles may bind to each other or the wax component may come off. This may stick to the photosensitive drum and cause image contamination. There is.

特公平1−24532号公報Japanese Patent Publication No. 1-24532

このように、従来の装置では、いずれの方式のものであっても、原料を十分に分散・解砕して混合等の処理を行なったり、微粒子を分散状態で球形化することが難しく、また、容器回転式や羽根回転式の場合、回転部分のメンテナンスに手間がかかることもあった。   As described above, in any of the conventional apparatuses, it is difficult to sufficiently disperse and disintegrate the raw material to perform mixing and the like, or to make the fine particles into a spherical state in a dispersed state. In the case of the container rotation type or blade rotation type, it may take time to maintain the rotating part.

そこで、この発明は、機械的な回転部分のない気流式の粉体処理装置において、高品質の粉体製品を効率よく製造できるようにすることを課題とする。   Therefore, an object of the present invention is to enable efficient production of high-quality powder products in an airflow type powder processing apparatus having no mechanical rotating portion.

上記課題を解決するため、この発明は、原料の粉体が供給される本体に設けられた処理槽の下方中央部にノズルを備え、このノズルから噴出する高速の気流により、処理槽内の粉体を流動させて混合等の処理を行なう気流式粉体処理装置において、前記ノズルの流路に、流れ方向である下方から上方へかけて断面積が漸次縮径するコンバージェント部と、最も小さく絞られたスロート部と、急激に拡径するフレア部とを順次配設し、コンバージェント部の上流側の流路へ気流を流入させる渦巻状の給気路を設け、フレア部から処理槽へ噴出した気流が旋回渦流となるようにしたのである。 In order to solve the above problems, the present invention provides a nozzle in a lower central portion of a processing tank provided in a main body to which raw material powder is supplied, and the powder in the processing tank is generated by a high-speed air flow ejected from the nozzle. In an airflow type powder processing apparatus for performing processing such as mixing by flowing a body, a convergent portion having a cross-sectional area that gradually decreases in diameter from the lower side to the upper side, which is the flow direction, is the smallest in the flow path of the nozzle. and squeezed throat, sequentially arranged and flare portion whose diameter increases sharply, the air supply passage spiral for flowing air stream provided to the upstream side of the flow path of the co-members stringent unit, the processing from the flared portion The air flow erupted into the tank became a swirling vortex.

また、前記ノズルの流路に、副原料を供給する副ノズルを、前記ノズルと軸線が一致するように設け、溶液等の副原料が加速された旋回渦流によりマイクロミストとなってフレア部から処理槽内へ噴霧されるようにしたのである。   In addition, a sub nozzle for supplying a sub raw material is provided in the nozzle flow path so that the axis coincides with the nozzle, and the sub raw material such as a solution is converted into micro mist by the swirling vortex accelerated and processed from the flare portion. It was sprayed into the tank.

また、前記ノズルの下方に、互いに逆巻きとなった給気路を有する給気体を設け、その給気路からコンバージェント部の上流側の流路へ気流を流入させ、必要に応じて、旋回渦流を交互に逆巻きに発生させるようにしたのである。In addition, a supply gas having supply paths that are reversely wound with each other is provided below the nozzle, and an air flow is supplied from the supply path to a flow path upstream of the convergent portion, and if necessary, swirl vortex Is generated alternately in reverse winding.

また、前記処理槽内に、その周壁から内側へ間隔をあけて、逆円錐状で上端及び下端が開口したホッパーを設け、ホッパーの下端をノズルの噴出口の上方に位置させ、これにより、発生した旋回渦流を整流すると共に、微粉体が処理槽の周壁内面とホッパーとの間に形成された空間を舞い上がり、ホッパー内部で処理槽の下部へ下降して循環するようにしたのである。Further, a hopper having an inverted conical shape with an upper end and a lower end opened is provided in the processing tank with an interval inward from the peripheral wall, and the lower end of the hopper is positioned above the nozzle outlet, thereby generating In addition to rectifying the swirling vortex, the fine powder soars in the space formed between the inner surface of the peripheral wall of the processing tank and the hopper, and descends and circulates inside the hopper to the lower part of the processing tank.

そして、上記気流式粉体処理装置を使用し、そのノズルの流路に流入させた気流がコンバージェント部からスロート部へかけて断面積の減少に伴い圧縮された後、フレア部で膨張しながら加速され、旋回渦流となって処理槽へ吹き出し、処理槽内の粉体が旋回渦流により分散作用を受け、粉体に対し混合や球形化等の処理が行われるようにしたのである。   Then, using the airflow type powder processing apparatus, the airflow flowing into the flow path of the nozzle is compressed as the cross-sectional area decreases from the convergent part to the throat part, and then expands in the flare part. It was accelerated and turned into a swirling vortex, and was blown out into the processing tank. The powder in the processing tank was subjected to a dispersing action by the swirling vortex, and the powder was mixed and spheroidized.

この発明に係る気流式粉体処理装置では、特殊な形状のノズルを使用することにより、微小な圧力・流量で処理槽の下部に旋回気流を形成することができ、ナノ・サブミクロン径の微粒子の凝集体を十分に分散して混合することができるほか、微粒子の球形化等の表面改質処理を効率よく行うことができる。   In the airflow type powder processing apparatus according to the present invention, by using a nozzle having a special shape, a swirling airflow can be formed in the lower part of the processing tank with a minute pressure / flow rate, and nano / submicron diameter fine particles The agglomerates can be sufficiently dispersed and mixed, and surface modification treatment such as spheroidization of fine particles can be performed efficiently.

また、副ノズルから供給される副原料を、原料の粉体と共にノズルで加速して噴出し、処理槽内の旋回渦流で繰り返し混合・分散作用を受けさせることにより、精密な混合やコーティング等の処理が可能となる。   In addition, the auxiliary material supplied from the auxiliary nozzle is accelerated and ejected by the nozzle together with the raw material powder, and subjected to repeated mixing / dispersing action by the swirling vortex in the treatment tank. Processing is possible.

また、機械的な回転部分がなく、気流を使用しているため、コンタミネーションや温度上昇の発生が問題とならず、製造コストが安価であり、メンテナンスの手間がかかることもなく、粉塵爆発を起こしやすい微粒子や水分を嫌う微粒子のほか、酸化、窒化、炭化を嫌う微粒子、弱熱性の微粒子の処理も可能となる。   In addition, since there is no mechanical rotating part and airflow is used, contamination and temperature rise do not become a problem, manufacturing costs are low, maintenance work is not required, and dust explosions are avoided. In addition to fine particles that tend to occur, fine particles that dislike moisture, fine particles that dislike oxidation, nitriding and carbonization, and low heat fine particles can be processed.

この発明の実施形態に係る気流式粉体処理装置の全体断面図Overall sectional view of an airflow type powder processing apparatus according to an embodiment of the present invention 同上の変形例を示す全体断面図Overall sectional view showing a modification of the above 同上の本体下部の拡大断面図Expanded sectional view of the lower part of the main unit 図3の(a)S部拡大断面図、(b)S部の変形例を示す拡大断面図FIG. 3A is an enlarged sectional view of the S portion, and FIG. 3B is an enlarged sectional view showing a modification of the S portion. 図3の(a)A−A断面図、(b)B−B断面図、(c)C−C断面図(A) AA sectional view, (b) BB sectional view, (c) CC sectional view of FIG. 同上の気流式粉体処理装置の配管系統図Piping system diagram of airflow type powder processing equipment 大容量化した気流式粉体処理装置の下部構造の一態様を示す(a)平面図、(b)B−B断面図(A) Plan view and (b) BB cross-sectional view showing one embodiment of the lower structure of the airflow type powder processing apparatus with increased capacity 大容量化した気流式粉体処理装置の下部構造の他態様を示す(a)平面図、(b)B−B断面図(A) Plan view, (b) BB cross-sectional view showing another aspect of the lower structure of the airflow type powder processing apparatus with increased capacity 粉砕法により得られたトナー粒子の(a)処理前の状態を示す図、(b)処理後の状態を示す図(A) The figure which shows the state before a process of the toner particle obtained by the grinding | pulverization method, (b) The figure which shows the state after a process 熱球形化したトナー粒子の(a)処理前の状態を示す図、(b)処理後の状態を示す図(A) The figure which shows the state before a process of the heat-spheroidized toner particle, (b) The figure which shows the state after a process 同上のトナー粒子の(a)処理前の表面状態を示す図、(b)処理後の表面状態を示す図(A) The figure which shows the surface state before a process of a toner particle same as the above, (b) The figure which shows the surface state after a process

以下、この発明の実施形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

この気流式粉体処理装置では、図1に示すように、本体1の構成部材として、ノズルユニット2、処理槽3、集塵部4及び排気部5が下方から上方へ順次設けられている。集塵部4には原料供給口6が、処理槽3には処理品排出口7がそれぞれ設けられ、排気部5には、排気口8及びフィルター逆洗パイプ9が設けられている。処理品排出口7は、ハンドル操作により処理槽3との連通・遮断が切り替えられる。   In this airflow type powder processing apparatus, as shown in FIG. 1, a nozzle unit 2, a processing tank 3, a dust collection unit 4, and an exhaust unit 5 are sequentially provided as constituent members of the main body 1 from below to above. The dust collection unit 4 is provided with a raw material supply port 6, the processing tank 3 is provided with a processed product discharge port 7, and the exhaust unit 5 is provided with an exhaust port 8 and a filter backwash pipe 9. The processing product discharge port 7 is switched between communication and blocking with the processing tank 3 by a handle operation.

また、処理槽3内には、後述のように発生した旋回渦流を整流させると共に、舞い上がる微粉体を積極的に処理槽3の下部へ下降させて循環させるため、逆円錐状のホッパー3aを設けることもある。 In addition, in the processing tank 3, an inverted conical hopper 3 a is provided to rectify the swirling vortex generated as described below and to circulate the fine powder soaring actively to the lower part of the processing tank 3. Sometimes.

なお、図2に示すように、集塵部4のケースを省略し、後述するフィルター21を処理槽3の蓋に配列する装置構成としてもよい。   In addition, as shown in FIG. 2, it is good also as an apparatus structure which abbreviate | omits the case of the dust collection part 4 and arranges the filter 21 mentioned later on the lid | cover of the processing tank 3. FIG.

ノズルユニット2は、図3に示すように、処理槽3の下部に位置するノズル10の下方に、偏平な円柱状の給気体11,12を設けた構成とされている。ノズル10及び給気体11,12には、下方から上方へかけて流路13が形成され、流路13には、添加剤等の副原料を供給する副ノズル14がノズル10と軸線を一致させて設けられている。   As shown in FIG. 3, the nozzle unit 2 has a configuration in which flat columnar supply gases 11 and 12 are provided below a nozzle 10 located in the lower part of the processing tank 3. A flow path 13 is formed in the nozzle 10 and the supply gases 11 and 12 from the lower side to the upper side. In the flow path 13, a sub nozzle 14 for supplying a secondary raw material such as an additive is aligned with the axis of the nozzle 10. Is provided.

流路13の上部には、図4に示すように、下方から上方へかけて断面積が漸次縮径して円錐状周面をなすコンバージェント部15と、最も小さく絞られたスロート部16と、急激に拡径するフレア部17とが順次配設され、副ノズル14の先端穴14aは、スロート部16に臨むコンバージェント部15に位置している。副ノズル14の先端穴14aの直径Dは、スロート部16の直径Dよりもかなり小さくなっている。 As shown in FIG. 4, the upper portion of the flow path 13 has a convergent portion 15 having a conical circumferential surface whose cross-sectional area is gradually reduced in diameter from the bottom to the top, and a throat portion 16 that is narrowed down the smallest. a flared portion 17 whose diameter increases sharply are sequentially arranged, the tip holes 14a of the auxiliary nozzle 14 is located in the convergent section 15 facing the throat section 16. The diameter D 1 of the front end hole 14a of the sub-nozzles 14, that have been considerably smaller than the diameter D 0 of the throat section 16.

図4(a)に示すように、ノズル10の突出部18の先端が噴出口となるように形成されたフレア部17の周面は、流れ方向へ滑らかに連続する曲面となっており、その曲率半径Rは、スロート部16側から噴出口側まで略一定となっている(図中の曲面を指す矢線は、当該曲率部分の位置のみを示す)。 As shown in FIG. 4 (a), the peripheral surface of the flare portion 17 formed so that the tip of the protruding portion 18 of the nozzle 10 becomes a spout is a curved surface that continues smoothly in the flow direction. the radius of curvature R 1 has a substantially constant from throat portion 16 side to the ejection port side (arrow pointing to the curved surface in the figure shows only the position of the curvature portion).

なお、図4(b)に示すように、フレア部17の周面の曲率半径Rよりも、その外側に連続する膨出部18aの曲率半径Rが大きくなるようにしてもよい。一般的には、スロート部16の直径Dとフレア部17の曲率半径R,Rとの関係がD≦R<Rとなるようにすると、後述する旋回渦流が強力に形成される。また、曲率半径が連続的に順次大きくなるようにしても同様の効果が得られる。 Incidentally, as shown in FIG. 4 (b), than the radius of curvature R 1 of the peripheral surface of the flared portion 17, it may be the radius of curvature R 2 of the bulging portion 18a continuous to the outside increases. In general, when the relationship between the diameter D 0 of the throat portion 16 and the radii of curvature R 1 and R 2 of the flare portion 17 is D 0 ≦ R 1 <R 2 , a swirl vortex flow described later is strongly formed. Is done. Further, the same effect can be obtained even when the curvature radius is continuously increased sequentially.

また、図4(a)に示すノズル10において、フレア部17を形成する突出部18の外周は、曲率半径がRの凹入した曲面とされ、フレア部17の噴出口の周縁で突出部18が外側に反るように尖っており、後述するミストが液滴となることを防止している。 Further, in the nozzle 10 shown in FIG. 4 (a), the outer periphery of the projecting portion 18 forming the flared portion 17 is a curved surface of curvature radius of the concave of R 3, the protruding portion at the periphery of the spout of the flared portion 17 18 is pointed so as to warp outward, and mist described later is prevented from becoming droplets.

そして、図5に示すように、給気体11,12には、コンバージェント部15の上流側の流路13へ気流を流入させる渦巻状の給気路19,20がそれぞれ設けられている。これらの給気路19,20は、少なくともいずれか一方を使用し、必要に応じて、後述する旋回渦流を交互に逆向きに発生させるため、互いに逆巻きとなっている。   Then, as shown in FIG. 5, spiral supply passages 19 and 20 are provided in the supply gases 11 and 12, respectively, for allowing airflow to flow into the flow path 13 on the upstream side of the convergent portion 15. These air supply passages 19 and 20 use at least one of them and are reversely wound with each other in order to generate a swirl vortex, which will be described later, alternately in opposite directions as necessary.

また、図1及び図2に示すように、集塵部4にはフィルター21が設けられ、図1に示す装置では、排気部5のフィルター逆洗パイプ9から間欠的に送り込まれる高圧気流によりフィルター21が清掃される。   As shown in FIGS. 1 and 2, the dust collecting unit 4 is provided with a filter 21. In the apparatus shown in FIG. 1, the high-pressure airflow intermittently fed from the filter backwash pipe 9 of the exhaust unit 5 filters the filter 21. 21 is cleaned.

これらのフィルター21としては、プラスチック製のものを使用するのが好ましい。繊維質のものを使用すると、製品にコンタミネーションとして繊維が混入するおそれがあるからである。   These filters 21 are preferably made of plastic. This is because if fibers are used, fibers may be mixed as contamination in the product.

このような気流式粉体処理装置には、図6に示すような系統で配管が接続される。この配管系統において、圧縮空気の空気源から気流式粉体処理装置に向かう配管22には、必要に応じて空気を加熱できるようにヒーターが設けられ、配管22から分岐した各配管23,24がそれぞれノズルユニット2の給気路19,20に接続されている。また、ヒーターより上流側で配管22から分岐した配管25が排気部5のフィルター逆洗パイプ9に接続されている。   Pipes are connected to such an airflow type powder processing apparatus in a system as shown in FIG. In this piping system, the piping 22 from the compressed air source to the airflow type powder processing apparatus is provided with a heater so that air can be heated if necessary, and the pipings 23 and 24 branched from the piping 22 are provided. The air supply passages 19 and 20 of the nozzle unit 2 are respectively connected. A pipe 25 branched from the pipe 22 on the upstream side of the heater is connected to the filter backwash pipe 9 of the exhaust section 5.

また、原料の粉体を処理槽3に供給するための配管26が原料供給口6に接続され、スラリー貯留槽から副原料のスラリー溶液を吸い出すポンプを介設した配管27が副ノズル14に接続されている。   A pipe 26 for supplying the raw material powder to the processing tank 3 is connected to the raw material supply port 6, and a pipe 27 provided with a pump for sucking out the auxiliary raw material slurry solution from the slurry storage tank is connected to the sub nozzle 14. Has been.

上記のような気流式粉体処理装置では、原料となる2種類以上の粉体の混合や乾燥、微粉体への溶液添加や溶液中の微粒子による粉体の表面改質等の処理を行なう。   In the airflow type powder processing apparatus as described above, processing such as mixing and drying of two or more kinds of powders as raw materials, addition of a solution to the fine powder, and surface modification of the powder with fine particles in the solution are performed.

この気流式粉体処理装置を運転する際には、処理槽3に原料となる粉体を供給し、一定の圧力に設定された圧縮空気を、図5に示すように、給気路19又は20を介してノズルユニット2の流路13に接線方向から導入する。これに伴い、流路13には、副ノズル14の周りに旋回渦流が発生する。   When operating this air flow type powder processing apparatus, powder as raw material is supplied to the processing tank 3 and compressed air set at a constant pressure is supplied to an air supply path 19 or as shown in FIG. 20 is introduced into the flow path 13 of the nozzle unit 2 through the tangential direction. Accordingly, a swirling vortex is generated around the sub nozzle 14 in the flow path 13.

ここで、圧縮空気の圧力は、一般的に、大気圧より大きく、最大でも0.6MPaまでとする。なお、好ましい圧力は、少ない流量で旋回渦流を形成できる0.2〜0.4MPaである。   Here, the pressure of the compressed air is generally greater than atmospheric pressure and up to 0.6 MPa at the maximum. In addition, a preferable pressure is 0.2-0.4 MPa which can form a swirl | vortex flow with a small flow volume.

そして、図1乃至図3に示すように、流路13を流れる高圧空気は、ノズル10のコンバージェント部15からスロート部16へかけて断面積の減少に伴い圧縮された後、フレア部17で曲率が変化する周面沿いに膨張しながら加速され、高速で旋回する渦流を形成し、勢いよく処理槽3へ吹き出す。   As shown in FIGS. 1 to 3, the high-pressure air flowing through the flow path 13 is compressed as the cross-sectional area decreases from the convergent portion 15 to the throat portion 16 of the nozzle 10, and then in the flare portion 17. It is accelerated while expanding along the peripheral surface where the curvature changes, and forms a vortex that swirls at a high speed and blows out vigorously to the treatment tank 3.

また、この旋回渦流の中心部は、処理槽3の内部の空気を巻き込んで高速に回転するため圧力が減少し、固体粒子が懸濁したスラリー溶液等の溶液を、副ノズル14から吸引作用により噴出させて、処理槽3内に容易に供給することができる。   Further, the central portion of the swirling vortex winds up the air inside the processing tank 3 and rotates at a high speed, so that the pressure is reduced, and a solution such as a slurry solution in which solid particles are suspended is sucked from the sub nozzle 14 by a suction action. It can be ejected and easily supplied into the treatment tank 3.

このとき、供給される溶液は、スロート部16からフレア部17へかけて加速された旋回渦流によりアトマイズ(霧化)されて、微小なマイクロミストとなり、このマイクロミストがフレア部17からノズル10の上面に沿って処理槽3内へ噴霧され、処理槽3の下部で旋回する粉体の表面に付着し、粉体がコーティングされる。   At this time, the supplied solution is atomized by the swirling vortex accelerated from the throat portion 16 to the flare portion 17 to become a minute micromist, and this micromist is fed from the flare portion 17 to the nozzle 10. It sprays in the processing tank 3 along the upper surface, adheres to the surface of the powder swirling in the lower part of the processing tank 3, and is coated with the powder.

なお、一般的に、粒径がある程度の大きさを有する粉体と極めて小径の微粒子とを処理槽3で混合する場合、微粒子は気流により浮遊して旋回流から遊離してしまうという問題があるが、このようにスラリーとして添加する場合には、ミストに含まれて粉体に付着するため、上記のような問題が生じない。   In general, when a powder having a certain particle size and extremely small particles are mixed in the treatment tank 3, there is a problem that the particles are floated by the air current and are released from the swirling flow. However, when it is added as a slurry in this way, it is contained in the mist and adheres to the powder, so that the above problems do not occur.

その後、処理槽3内の粉体は、旋回渦流で周壁内面に沿って巻き上がり、処理槽3の上部で旋回渦流の中心部に流れ込み、沈降して、再度旋回気流により分散作用を受け、上述の処理が施される。   Thereafter, the powder in the processing tank 3 is rolled up along the inner surface of the peripheral wall by a swirling vortex, flows into the center of the swirling vortex at the upper part of the processing tank 3, settles, and again receives a dispersing action by the swirling airflow. Is processed.

また、処理槽3から集塵部4へ吹き上がった一部の気流は、フィルター21により濾過されて、舞い上がった微粉体が除去され、図1に示す装置では、排気部5の排気口8から排出され、図2に示す装置では、フィルター21から直接外部へ排出される。   In addition, a part of the airflow blown up from the treatment tank 3 to the dust collecting unit 4 is filtered by the filter 21 to remove the soaring fine powder. In the apparatus shown in FIG. 2 is discharged directly from the filter 21 to the outside.

上記のような処理において、流路13への圧縮空気の導入に際しては、通常、給気路19,20のいずれか一方が使用されるが、粉体の流動性が悪い場合には、給気路19,20を交互に切り替えることにより、流路13から処理槽3へ至る旋回渦流の旋回方向を交互に反転させて処理を繰り返し、粉体に剪断及び旋回作用を受けさせ、また、処理槽3から粉体を排出する際にも、給気路19,20を交互に切り替える。   In the processing as described above, when the compressed air is introduced into the flow path 13, one of the air supply paths 19 and 20 is normally used. By alternately switching the paths 19 and 20, the swirl direction of the swirling vortex flow from the flow path 13 to the treatment tank 3 is alternately reversed, the treatment is repeated, and the powder is subjected to a shearing and swirling action. Also when the powder is discharged from 3, the air supply passages 19 and 20 are switched alternately.

このような処理により、ナノ・サブミクロン径の微粒子が添加剤の場合でも、分散状態で粉体の表面に均一に添加剤を付着させて、コーティングすることができる。   By such treatment, even when fine particles having nano / submicron diameters are additives, the additives can be uniformly adhered to the surface of the powder in a dispersed state to perform coating.

また、圧縮空気の導入路である配管22に設けたヒーター(図6参照)を使用して、給気路19,20へ送り込む空気を一定温度に加熱することにより、粉体にコーティングされたミストを乾燥させることもできる。なお、混合処理等の操作のように、ヒーターを使用しない場合もある。   In addition, by using a heater (see FIG. 6) provided in the piping 22 which is a compressed air introduction path, the air supplied to the air supply paths 19 and 20 is heated to a constant temperature, whereby the mist coated with the powder is used. Can also be dried. In some cases, a heater is not used as in the case of an operation such as a mixing process.

ところで、上記のような気流式粉体処理装置は、例示したように、粉体にコーティング処理を施す場合のほか、処理槽3内に形成される高速の旋回渦流を利用して、2種類以上の粉体を分散させて精密に効率よく混合することができ、また、副ノズル14から吐出される溶液の噴霧、給気路19,20へ送り込まれる圧縮空気のヒーターによる加熱機能を利用して、造粒処理や乾燥処理を行なうことができる。   By the way, in the airflow type powder processing apparatus as described above, in addition to the case where the powder is subjected to a coating process, two or more types are utilized by utilizing a high-speed swirling vortex formed in the processing tank 3. Can be dispersed and precisely mixed, and the spraying of the solution discharged from the sub nozzle 14 and the heating function by the heater of the compressed air sent to the air supply passages 19 and 20 are utilized. Granulation treatment and drying treatment can be performed.

さらに、特殊な形状をしたノズル10により、微小な圧力及び流量で処理槽3の下部を中心とした強力な旋回渦流を形成するので、微粒子を飛散させることなく球形化等の表面改質処理を短時間に効率よく行うことができ、処理時間を適宜設定することで、球形化の度合いを任意にコントロールすることができるほか、凝集して粗大化した粒子を本来の大きさの一次粒子まで分散することができる。   Furthermore, the nozzle 10 having a special shape forms a powerful swirling vortex centered on the lower part of the treatment tank 3 with a minute pressure and flow rate, so that surface modification treatment such as spheroidization can be performed without scattering fine particles. It can be performed efficiently in a short time, and by appropriately setting the processing time, the degree of spheroidization can be controlled arbitrarily, and the aggregated and coarsened particles are dispersed to primary particles of the original size can do.

また、圧縮空気のヒーターにより供給される空気を一定温度に加温して、例えば樹脂微粉体の球形化に際し、その表面の滑らかさを変化させることができる。但し、この場合、ノズル部10で溶着が発生しない温度以下に調整する必要がある。   In addition, the air supplied by a heater of compressed air can be heated to a constant temperature, and the smoothness of the surface can be changed, for example, when the resin fine powder is spheroidized. However, in this case, it is necessary to adjust the temperature to a temperature at which the nozzle portion 10 does not cause welding.

なお、溶液を添加する場合、上記のような副ノズル14に代えて、シリンジを使用して供給してもよく、粘度が高い溶液やスラリーを添加する場合、ロータリー式ポンプで定量供給することもできる。   In addition, when adding a solution, it may replace with the above sub nozzles 14 and may be supplied using a syringe, and when adding a solution or slurry with high viscosity, it may be supplied quantitatively with a rotary pump. it can.

また、給気路19,20へ送り込む気体は、空気だけでなく、種々の不活性ガス、除湿ガス、混合ガス等を任意に選択することができる。   Further, as the gas fed into the air supply passages 19 and 20, not only air but also various inert gases, dehumidified gases, mixed gases and the like can be arbitrarily selected.

また、ヘリウムガス等の不活性ガスを利用すると、粉体が酸化しやすい物質や静電気を帯びやすい(粉塵爆発を起こしやすい)ものであっても、特に高度な技術を要することなく、安全に混合や乾燥等の処理を行なうことができ、ガスのほぼ全量を回収して再利用することもできる。   In addition, if inert gas such as helium gas is used, even if the powder tends to oxidize or is easily charged with static electricity (prone to dust explosion), it can be mixed safely without requiring any advanced technology. It is possible to perform processing such as drying and drying, and it is possible to collect and reuse almost the entire amount of gas.

なお、この気流式粉体処理装置は、各処理操作を回分式に行なうものであるが、原料投入から混合・造粒・乾燥等の各処理及び処理品排出の連続操作が終了した後、次工程へ処理品を供給するための貯留タンクとして、処理槽3を利用することもできる。   This airflow type powder processing apparatus performs each processing operation batchwise, but after the continuous operation of each processing such as mixing, granulation, drying, etc. and discharge of the processed product is completed after the raw material input, The processing tank 3 can also be used as a storage tank for supplying processed products to the process.

また、多量の粉体を処理する量産型の装置においては、図7及び図8に示すように、処理槽3を、例えば容量150l程度まで大型化して、その下部のノズルユニット2に複数のノズル10を設けるようにすればよい。   Further, in a mass production type apparatus for processing a large amount of powder, as shown in FIGS. 7 and 8, the processing tank 3 is enlarged to a capacity of, for example, about 150 l, and a plurality of nozzles are provided in the nozzle unit 2 below the processing tank 3. 10 may be provided.

この場合、図7に示すように、ノズル10を処理槽3の底面中央部に配置すると共に、その周囲に均等に間隔をあけて配置する形式が考えられる。この形式では、旋回渦流の干渉を防止するため、中央部のノズル10を周囲のノズル10よりも高い位置に設け、副原料のスラリー溶液等を均一に散布するため、副原料を供給する副ノズル14を中央部のノズル10に設けるとよい。   In this case, as shown in FIG. 7, while arrange | positioning the nozzle 10 in the center part of the bottom face of the processing tank 3, the form arrange | positioned at equal intervals around the periphery can be considered. In this form, in order to prevent the swirling vortex from interfering, the central nozzle 10 is provided at a position higher than the surrounding nozzles 10, and the secondary raw material slurry solution or the like is uniformly sprayed, so that the secondary nozzle is supplied with the secondary raw material. 14 may be provided in the central nozzle 10.

また、図8に示すように、ノズル10を処理槽3の底面に周方向に均等に間隔をあけて同心円状に配置し、ノズル10へ気流を流入させる給気路19,20をノズル10の中心側へかけて上方へ傾斜させ、ノズル10から気流が接線方向に近い大きな径の渦流となって噴出し、全体のノズル10により、処理槽3の周壁内面に沿った旋回渦流が形成されるようにしてもよい。   Further, as shown in FIG. 8, the nozzles 10 are arranged concentrically at regular intervals in the circumferential direction on the bottom surface of the treatment tank 3, and supply passages 19 and 20 for flowing an airflow into the nozzle 10 are provided in the nozzle 10. The nozzle 10 is inclined upward toward the center, and the air flow is ejected as a large-diameter vortex near the tangential direction, and the entire nozzle 10 forms a swirling vortex along the inner surface of the peripheral wall of the treatment tank 3. You may do it.

上記構成の気流式粉体処理装置を使用して、下記のような処理を行なった。
◎原料の粉体:炭酸カルシウム(10メッシュ)
◎添加する溶液:ポリエチレングリコール(PEG200)をエタノールで10%に希釈したものを10ml/minで処理槽へ供給
◎圧縮空気量:200l/min(0.2MPa)を電熱ヒーター(6kw)を用いて100℃の一定温度に加熱して処理槽へ供給
そして、溶液を10ml供給した後、10分間混合・乾燥させたところ、表面がポリエチレングリコールでコーティングされた無機粉体を得ることができた。
Using the airflow type powder processing apparatus having the above-described configuration, the following processing was performed.
◎ Raw material powder: Calcium carbonate (10 mesh)
◎ Solution to be added: Polyethylene glycol (PEG200) diluted to 10% with ethanol is supplied to the treatment tank at 10 ml / min ◎ Amount of compressed air: 200 l / min (0.2 MPa) using an electric heater (6 kw) After heating to a constant temperature of 100 ° C. and supplying it to the treatment tank, 10 ml of the solution was supplied and then mixed and dried for 10 minutes. As a result, an inorganic powder whose surface was coated with polyethylene glycol could be obtained.

同様に、上記構成の気流式粉体処理装置を使用して、下記のような処理を行なった。
◎原料の粉体:トナー(平均粒子径8μm、粉砕法により得られた不規則な粒子形状のもの)
◎添加する溶液:エタノール溶媒中にシリカ微粉末(日本アエロジル製R972)をトナー重量の1wt%分散させたスラリー
◎圧縮空気量:200l/min(0.2MPa)を電熱ヒーター(6kw)を用いて50℃の一定温度に加熱して処理槽へ供給
その後、10分間混合・乾燥させたところ、表面が微小シリカで覆われたトナーを得ることができた。
Similarly, the following process was performed using the airflow type powder processing apparatus having the above configuration.
◎ Raw material powder: Toner (average particle size 8 μm, irregular particle shape obtained by pulverization method)
◎ Solution to be added: Slurry in which silica fine powder (R972 manufactured by Nippon Aerosil Co., Ltd.) is dispersed in ethanol solvent at 1 wt% of the toner weight ◎ Compressed air amount: 200 l / min (0.2 MPa) using an electric heater (6 kw) Heated to a constant temperature of 50 ° C. and supplied to the treatment tank. After mixing and drying for 10 minutes, a toner whose surface was covered with fine silica could be obtained.

同様に、上記構成の気流式粉体処理装置を使用して、下記のような処理を行なった。
◎原料の粉体:ポリエチレン樹脂ペレット(粒子径2〜3mm)
◎添加する溶液:赤色顔料ブリリアントカーミンの8%のイソプロピルアルコール溶液
◎圧縮空気量:200l/min(0.2MPa)を電熱ヒーター(6kw)を用いて50℃の一定温度に加熱して処理槽へ供給
そして、溶液を先端穴14aの直径Dが0.3mmの副ノズル14から適時吸引させることでミスト化させて処理槽3へ噴霧したところ、時間の経過に伴い、顔料に着色されたポリエチレン樹脂を得ることができた。また、その粉体は、アルコールが揮発された乾燥粉であった。
Similarly, the following process was performed using the airflow type powder processing apparatus having the above configuration.
◎ Raw material powder: Polyethylene resin pellets (particle diameter 2-3mm)
◎ Solution to be added: 8% isopropyl alcohol solution of red pigment brilliant carmine ◎ Compressed air amount: 200 l / min (0.2 MPa) is heated to a constant temperature of 50 ° C. using an electric heater (6 kw) to the treatment tank feed the solution where the diameter D 1 of the front end hole 14a is sprayed from the sub nozzle 14 of 0.3mm to the treatment tank 3 by mist by causing timely aspirated, over time, are colored pigments polyethylene A resin could be obtained. The powder was a dry powder from which alcohol was volatilized.

また、上記構成の気流式粉体処理装置を使用して、下記のような球形化処理を行った。
◎原料の粉体:トナー(平均粒子径7.683μm[コールターカウンター]、平均円形度0.926[マルバーン社FPIA−3000]、粉砕法により得られた不規則な粒子形状のもの)
◎圧縮空気量:280l/min(0.14MPa)を電熱ヒーター(6kw)を用いて50℃の一定温度に加熱して処理槽へ供給
◎運転パターン:間欠工程で5秒運転/0.1秒停止、連続工程で60秒運転のパターンを繰り返し
◎運転時間:30分
◎フィルター逆洗間隔:3秒
◎フィルター逆洗圧力:0.4MPa
その後、微粉を除去すると、図9(a)に示すように、不規則な形状であったトナーの粒子が、図9(b)に示すように、円形度が向上して、平均円形度0.948となり、その表面が滑らかになった。また、凝集した状態の粗大粒子が分散され、シャープな粒度分布が得られた。
Moreover, the following spheroidization process was performed using the airflow type powder processing apparatus of the said structure.
Raw material powder: Toner (average particle size 7.683 μm [Coulter Counter], average circularity 0.926 [Malburn FPIA-3000], irregular particle shape obtained by pulverization method)
◎ Compressed air amount: 280 l / min (0.14 MPa) is heated to a constant temperature of 50 ° C. using an electric heater (6 kW) and supplied to the treatment tank ◎ Operation pattern: 5 seconds in intermittent process / 0.1 seconds Stop and repeat 60 second operation pattern in continuous process ◎ Operation time: 30 minutes ◎ Filter backwash interval: 3 seconds ◎ Filter backwash pressure: 0.4 MPa
Thereafter, when the fine powder is removed, as shown in FIG. 9A, the irregularly shaped toner particles are improved in circularity as shown in FIG. 9B, and the average circularity is 0. .948 and the surface became smooth. Moreover, the coarse particles in an agglomerated state were dispersed, and a sharp particle size distribution was obtained.

また、熱気流式球形化装置で球形化処理を行ったトナー粒子に対し、上記構成の気流式粉体処理装置を使用して、下記のように、さらに処理を行い、表面のワックスの変化を観察した。
◎原料の粉体:トナー(平均粒子径8.295μm[コールターカウンター]、平均円形度0.976[マルバーン社FPIA−3000]、熱気流により球形化処理を行ったもの)
◎圧縮空気量:280l/min(0.14MPa)を電熱ヒーター(6kw)を用いて50℃の一定温度に加熱して処理槽へ供給
◎運転パターン:間欠工程で5秒運転/0.1秒停止、連続工程で60秒運転のパターンを繰り返し
◎運転時間:30分
◎フィルター逆洗間隔:3秒
◎フィルター逆洗圧力:0.4MPa
その後、微粉を除去すると、図10(a)に示すように、粒子同士の結着等で粗大化した粒子が散見される状態から、図10(b)に示すように、異常な粒子がほとんど見られず、球形化が進んで均斉度の高い粒子が揃った状態となった。
また、図11(a)に示すように、粒子の表面に染み出したワックスが塊状となって点在する状態から、図11(b)に示すように、塊状のワックスが分離され、殆ど見られない状態となった。
Further, the toner particles that have been spheroidized by the hot air flow spheronizing device are further processed as follows using the air flow type powder processing device configured as described above to change the wax on the surface. Observed.
Raw material powder: Toner (average particle size: 8.295 μm [Coulter Counter], average circularity of 0.976 [Malvern FPIA-3000], spheroidized by hot air)
◎ Compressed air amount: 280 l / min (0.14 MPa) is heated to a constant temperature of 50 ° C. using an electric heater (6 kW) and supplied to the treatment tank ◎ Operation pattern: 5 seconds in intermittent process / 0.1 seconds Stop and repeat 60 second operation pattern in continuous process ◎ Operation time: 30 minutes ◎ Filter backwash interval: 3 seconds ◎ Filter backwash pressure: 0.4 MPa
Thereafter, when the fine powder is removed, as shown in FIG. 10 (a), from the state where particles coarsened due to the binding of the particles are scattered, as shown in FIG. 10 (b), there are almost no abnormal particles. It was not seen, and spheroidization progressed and particles with a high degree of uniformity were aligned.
Also, as shown in FIG. 11 (a), from the state where the wax exuded on the surface of the particles is scattered as a lump, the lump wax is separated as shown in FIG. I was unable to do so.

1 本体
2 ノズルユニット
3 処理槽
3a ホッパー
4 集塵部
5 排気部
6 原料供給口
7 処理品排出口
8 排気口
9 フィルター逆洗パイプ
10 ノズル
11,12 給気体
13 流路
14 副ノズル
14a 先端穴
15 コンバージェント部
16 スロート部
17 フレア部
18 突出部
18a 膨出部
19,20 給気路
21 フィルター
22〜27 配管
DESCRIPTION OF SYMBOLS 1 Main body 2 Nozzle unit 3 Processing tank 3a Hopper 4 Dust collection part 5 Exhaust part 6 Raw material supply port 7 Processed product discharge port 8 Exhaust port 9 Filter backwash pipe 10 Nozzle 11, 12 Supply gas 13 Flow path 14 Sub nozzle 14a Tip hole DESCRIPTION OF SYMBOLS 15 Convergent part 16 Throat part 17 Flare part 18 Protrusion part 18a Expansion part 19,20 Air supply path 21 Filter 22-27 Piping

Claims (4)

原料の粉体が供給される本体(1)に設けられた処理槽(3)の下方中央部にノズル(10)を備え、このノズル(10)から噴出する高速の気流により、処理槽(3)内の粉体を流動させて粉体に対する処理を行なう気流式粉体処理装置において、
前記ノズル(10)の流路に、流れ方向である下方から上方へかけて断面積が漸次縮径するコンバージェント部(15)と、最も小さく絞られたスロート部(16)と、スロート部(16)の直上で急激に拡径するフレア部(17)とを順次配設し、コンバージェント部(15)の上流側の流路(13)へ気流を流入させる渦巻状の給気路(19,20)を設け、フレア部(17)から処理槽(3)へ噴出した気流が旋回渦流となるようにし
前記給気路(19,20)は、前記ノズル(10)の下方に設けられた給気体(11,12)に互いに逆巻きに形成され、その給気路(19,20)からコンバージェント部(15)の上流側の流路(13)へ気流を流入させることを特徴とする気流式粉体処理装置。
A nozzle (10) is provided in the lower central part of the processing tank (3) provided in the main body (1) to which the raw material powder is supplied, and the processing tank (3 ) powder in by flow in airflow powder processing apparatus for performing processing to the powder,
In the flow path of the nozzle (10), the convergent part (15) whose diameter is gradually reduced from the lower side to the upper side, which is the flow direction, the throat part (16) that is narrowed down the smallest, and the throat part ( flared portion for rapidly expanded just above the 16) and (17) are successively disposed, co members stringent portion of the upstream side of the flow path (13) to the spiral flowing a stream (15) supply passageway ( 19, 20) is provided so that the air flow jetted from the flare part (17) to the treatment tank (3) becomes a swirl vortex ,
The air supply path (19, 20) is formed in a reverse winding with respect to the gas supply (11, 12) provided below the nozzle (10), from the air supply path (19, 20) to the convergent portion ( An airflow type powder processing apparatus, wherein an airflow is caused to flow into a flow path (13) on the upstream side of 15) .
原料の粉体が供給される本体(1)に設けられた処理槽(3)の下方中央部にノズル(10)を備え、このノズル(10)から噴出する高速の気流により、処理槽(3)内の粉体を流動させて粉体に対する処理を行なう気流式粉体処理装置において、
前記ノズル(10)の流路に、流れ方向である下方から上方へかけて断面積が漸次縮径するコンバージェント部(15)と、最も小さく絞られたスロート部(16)と、スロート部(16)の直上で急激に拡径するフレア部(17)とを順次配設し、コンバージェント部(15)の上流側の流路(13)へ気流を流入させる渦巻状の給気路(19,20)を設け、フレア部(17)から処理槽(3)へ噴出した気流が旋回渦流となるようにし
前記処理槽(3)内に、その周壁から内側へ間隔をあけて、逆円錐状で上端及び下端が開口したホッパー(3a)を設け、ホッパー(3a)の下端をノズル(10)の噴出口の上方に位置させたことを特徴とする気流式粉体処理装置。
A nozzle (10) is provided in the lower central part of the processing tank (3) provided in the main body (1) to which the raw material powder is supplied, and the processing tank (3 ) powder in by flow in airflow powder processing apparatus for performing processing to the powder,
In the flow path of the nozzle (10), the convergent part (15) whose diameter is gradually reduced from the lower side to the upper side, which is the flow direction, the throat part (16) that is narrowed down the smallest, and the throat part ( flared portion for rapidly expanded just above the 16) and (17) are successively disposed, co members stringent portion of the upstream side of the flow path (13) to the spiral flowing a stream (15) supply passageway ( 19, 20) is provided so that the air flow jetted from the flare part (17) to the treatment tank (3) becomes a swirl vortex ,
In the treatment tank (3), a hopper (3a) having an inverted conical shape with an upper end and a lower end opened is provided at an interval from the peripheral wall to the inside, and the lower end of the hopper (3a) is provided as a nozzle outlet of the nozzle (10). An airflow type powder processing apparatus, which is located above
請求項1又は2に記載の気流式粉体処理装置において、前記ノズル(10)の流路(13)に、副原料を供給する副ノズル(14)を、前記ノズル(10)と軸線が一致するように設けたことを特徴とする気流式粉体処理装置。 3. The air flow type powder processing apparatus according to claim 1, wherein the sub nozzle (14) for supplying a sub raw material to the flow path (13) of the nozzle (10) is coincident with the nozzle (10) in axis. An airflow type powder processing apparatus characterized in that it is provided. 請求項1乃至3のいずれかに記載の気流式粉体処理装置を使用し、そのノズル(10)の流路(13)に流入させた気流がコンバージェント部(15)からスロート部(16)へかけて断面積の減少に伴い圧縮された後、フレア部(17)で膨張しながら加速され、旋回渦流となって処理槽(3)へ吹き出し、処理槽(3)内の粉体が旋回渦流により分散作用を受け、粉体に対する処理が行われるようにしたことを特徴とする気流式粉体処理方法。 The airflow type powder processing apparatus according to any one of claims 1 to 3 , wherein the airflow that has flowed into the flow path (13) of the nozzle (10) is converted from the convergent part (15) to the throat part (16). After being compressed as the cross-sectional area decreases, it is accelerated while expanding in the flare section (17), blown into the processing tank (3) as a swirling vortex, and the powder in the processing tank (3) swirls subjected to dispersion exerted by vortex, air flow type powder processing method is characterized in that as the process of pairs in the powder is performed.
JP2011143907A 2010-10-01 2011-06-29 Airflow type powder processing apparatus and method Expired - Fee Related JP5893858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011143907A JP5893858B2 (en) 2010-10-01 2011-06-29 Airflow type powder processing apparatus and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010223660 2010-10-01
JP2010223660 2010-10-01
JP2011143907A JP5893858B2 (en) 2010-10-01 2011-06-29 Airflow type powder processing apparatus and method

Publications (2)

Publication Number Publication Date
JP2012091159A JP2012091159A (en) 2012-05-17
JP5893858B2 true JP5893858B2 (en) 2016-03-23

Family

ID=46385131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011143907A Expired - Fee Related JP5893858B2 (en) 2010-10-01 2011-06-29 Airflow type powder processing apparatus and method

Country Status (1)

Country Link
JP (1) JP5893858B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102962000A (en) * 2012-11-29 2013-03-13 南通奥普机械工程有限公司 Horizontal type material mixing machine
CN105035767B (en) * 2015-06-24 2018-01-19 安徽东风机电科技股份有限公司 A kind of gas powder blending, release device
CN105921039A (en) * 2016-07-06 2016-09-07 太原理工大学 Ultrasonic vibrating wire tiny dust adding device
CN110013439B (en) * 2019-03-19 2022-01-07 周静 Paediatrics nursing is with garrulous medicine device
US20230211297A1 (en) * 2020-05-25 2023-07-06 Nte Holding S.R.L. Apparatus and process for the conditioning of granules, powders and/or liquids
CN111992361B (en) * 2020-08-27 2022-09-06 广东兴牧科技有限公司 Novel spraying machine
JP7316006B1 (en) 2022-12-19 2023-07-27 アクアソリューションズ株式会社 Fluid mixing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57502092A (en) * 1980-11-10 1982-11-25
JPH06190261A (en) * 1992-12-25 1994-07-12 Fuji Paudaru Kk Granulation and coating device
JP3345656B2 (en) * 1996-10-14 2002-11-18 チッソ株式会社 Granule coating apparatus and granule coating method
JP2002058982A (en) * 2000-08-15 2002-02-26 Isao Sekiguchi Conical fluidized bed granulating method with air dispersing device of vortex type orifice and apparatus
JP2006247619A (en) * 2005-03-14 2006-09-21 Sony Corp Two fluid nozzle and cleaning apparatus

Also Published As

Publication number Publication date
JP2012091159A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
JP5893858B2 (en) Airflow type powder processing apparatus and method
JP5850544B2 (en) Spray dryer
US10569187B2 (en) External mixing pressurized two-fluid nozzle and a spray drying method
US5716751A (en) Toner particle comminution and surface treatment processes
US4789105A (en) Particulate material treating apparatus
WO2019075603A1 (en) Electrospray device for fluidized-bed apparatus, and fluidized-bed apparatus and method
JP5652779B2 (en) Fine particle production equipment
JP2752378B2 (en) Spray dryer
JPH01123012A (en) Nozzle for manufacturing fine powder
JP4053379B2 (en) Fluidized bed equipment
JPS59127662A (en) Method and apparatus for treating powder or particles
US20030098360A1 (en) Twin fluid centrifugal nozzle for spray dryers
JP7137378B2 (en) Air classifier
JPH0330860B2 (en)
JP2007209924A (en) Crushing equipment and conglobation treatment method of powder
JPH0566173B2 (en)
JP6089782B2 (en) Spraying equipment
JP2007021329A (en) Viscous liquid spraying nozzle, powder manufacturing device, viscous liquid spraying method, and powder manufacturing method
JP3280574B2 (en) Powder surface coating method
JPH0352858B2 (en)
JPH0554376B2 (en)
JP2000350959A (en) Method, apparatus and facility for powder atomization electrostatic coating
US20190329149A1 (en) Particle production apparatus and particle production method
JP3031677B2 (en) Powder coating equipment
JPH0256667B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140218

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160225

R150 Certificate of patent or registration of utility model

Ref document number: 5893858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees