WO2013031703A1 - Gas barrier film - Google Patents
Gas barrier film Download PDFInfo
- Publication number
- WO2013031703A1 WO2013031703A1 PCT/JP2012/071500 JP2012071500W WO2013031703A1 WO 2013031703 A1 WO2013031703 A1 WO 2013031703A1 JP 2012071500 W JP2012071500 W JP 2012071500W WO 2013031703 A1 WO2013031703 A1 WO 2013031703A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- thin film
- inorganic compound
- magnesium oxide
- compound thin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/081—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
- C23C14/30—Vacuum evaporation by wave energy or particle radiation by electron bombardment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/562—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
Definitions
- the present invention relates to a gas barrier film used for packaging materials such as foods, pharmaceuticals, and electronic parts, and electronic devices that require water vapor barrier properties such as solar cells, electronic paper, and film liquid crystals.
- Packaging materials used in foods, pharmaceuticals, etc. have the property of blocking gas such as oxygen and water vapor in the atmosphere that promotes alteration such as oxidation in order to enable the contents to be stored for a long period of time, that is, gas barrier It is required to have sex.
- gas barrier materials used for solar cells, electronic devices such as organic EL, electronic components, and the like are required to have higher gas barrier properties than packaging materials such as foods and pharmaceuticals.
- packaging materials such as polyvinyl alcohol (PVA), ethylene vinyl alcohol copolymer (EVOH), polyvinylidene chloride resin (PVDC), or polyacrylonitrile (PAN) is generally said to have a relatively high gas barrier property.
- PVA polyvinyl alcohol
- EVOH ethylene vinyl alcohol copolymer
- PVDC polyvinylidene chloride resin
- PAN polyacrylonitrile
- a plastic film obtained by vapor-depositing a metal such as aluminum on a plastic film has been used as a packaging material that requires higher gas barrier performance.
- a packaging material that requires higher gas barrier performance.
- the metal thin film is opaque, so that the contents cannot be identified, or the contents cannot be inspected by the metal detector and the heat treatment in the microwave oven cannot be performed. It was.
- the above-described conventional gas barrier film exhibits a high barrier property against oxygen, the barrier property against water vapor is not so high, and depending on the contents, a sufficient water vapor barrier property may not be exhibited. The barrier performance has not yet reached the required performance.
- an object of the present invention is to provide a gas barrier film that has excellent barrier properties against oxygen, water vapor, and the like, and has particularly high water vapor barrier properties.
- this invention consists of the following structures.
- a gas barrier film characterized in that an inorganic compound thin film is formed on at least one surface of a plastic film, and the inorganic compound thin film contains aluminum oxide and magnesium oxide as main components.
- a transparent gas barrier film having excellent barrier properties against oxygen, water vapor and the like, and having particularly high water vapor barrier properties.
- Such a gas barrier film can be suitably used for packaging of various foods, pharmaceuticals, and industrial products, and industrial applications such as solar cells, electronic paper, organic EL elements, and semiconductor elements, and the production cost is relatively low. Yes, practicality is high.
- the gas barrier film of the present invention is a film in which an inorganic compound thin film is formed on at least one side of a plastic film.
- the present invention is described in detail below.
- the plastic film used in the present invention is made of an organic polymer resin.
- the organic polymer resin include polyamides represented by nylon 4, 6, nylon 6, nylon 6, 6, nylon 12, and the like, polyesters represented by polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, and the like.
- polystyrene resin represented by polyethylene, polypropylene, polybutene, etc.
- polyvinyl chloride polyvinylidene chloride
- polyvinyl alcohol wholly aromatic polyamide
- polyamideimide polyimide
- polyetherimide polysulfone
- polystyrene polylactic acid
- tetrafluoroethylene polystyrene
- polylactic acid polytetrafluoroethylene
- ethylene trichloride trifluoride trifluoride polyamide and polyester are preferable, and polyester is particularly preferable in terms of heat resistance, dimensional stability, and transparency. Only one organic polymer resin may be used, or two or more organic polymer resins may be used.
- polyamides include polycaproamide (nylon 6), poly- ⁇ -aminoheptanoic acid (nylon 7), poly- ⁇ -aminononanoic acid (nylon 9), polyundecanamide (nylon 11), polylaurin Lactam (nylon 12), polyethylenediamine adipamide (nylon 2.6), polytetramethylene adipamide (nylon 4.6), polyhexamethylene adipamide (nylon 6/6), polyhexamethylene sebacamide (Nylon 6 ⁇ 10), Polyhexamethylene dodecamide (Nylon 6 ⁇ 12), Polyoctamethylene dodecamide (Nylon 8 ⁇ 12), Polyoctamethylene adipamide (Nylon 8.6), Polydecamethylene adipamide (Nylon 10.6), polydecamethylene sebacamide (nylon 10.10) Polydodecamethylene dodecamide (nylon 12 and 12), metaxylenediamine-6 nylon (MXD6) and the like.
- nylon 6 polycaproamide
- the polyamide may be a copolymer containing these as main components.
- examples thereof include caprolactam / laurin lactam copolymer, caprolactam / hexamethylene diammonium adipate copolymer, laurin lactam / hexamethylene.
- plasticizers such as aromatic sulfonamides, p-hydroxybenzoic acid, and esters, low elastic modulus elastomer components, and lactams as polyamide film flexibility modifying components. It is.
- polyesters include polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, and copolymers having these as a main component.
- the dicarboxylic acid component constituting the polyester copolymer is terephthalic acid, isophthalic acid, phthalic acid, aromatic dicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, polyfunctional carboxylic acid such as trimellitic acid and pyromellitic acid, adipine It is preferable that the main component is an acid, an aliphatic dicarboxylic acid such as sebacic acid, or the like.
- glycol components constituting the polyester copolymer include aliphatic glycols such as diethylene glycol, propylene glycol and neopentyl glycol, aromatic glycols such as p-xylylene glycol, 1
- the main component is preferably an alicyclic glycol such as 1,4-cyclohexanedimethanol, polyethylene glycol having an average molecular weight of 150 to 20000, or the like.
- the polyester copolymer may further be copolymerized with other components.
- additives may be added to the organic polymer resin constituting the plastic film as long as the effects of the present invention are not impaired.
- the additive include a lubricant such as silica, an ultraviolet absorber, an antistatic agent, a plasticizer, and a colorant.
- the organic polymer resin constituting the plastic film may be copolymerized or blended with a small amount of other polymerization components other than the organic polymer resin described above.
- the method for producing the plastic film is not particularly limited. For example, after forming into a film by a known method such as a melt extrusion method or a casting method, the film is stretched in the longitudinal direction and / or the width direction, if necessary, and cooled. It can be obtained by heat setting.
- the plastic film in the present invention may be a laminated film in which different or similar organic polymer resins are laminated.
- the type of each layer, the number of layers, the lamination method, and the like are not particularly limited, and can be arbitrarily selected from known methods according to the purpose.
- the plastic film in the present invention has a surface such as corona discharge treatment, glow discharge, flame treatment, surface roughening treatment, etc. prior to laminating the inorganic compound thin film layer described later.
- a treatment may be performed, and a known anchor coat treatment, printing, and decoration may be performed.
- the thickness of the plastic film in the present invention is preferably in the range of 1 ⁇ m to 300 ⁇ m, more preferably in the range of 5 ⁇ m to 100 ⁇ m, and most preferably in the range of 9 ⁇ m to 50 ⁇ m.
- the transparency of the plastic film in the present invention is not particularly limited. However, when the obtained gas barrier film is used for packaging materials requiring transparency, the plastic film has a transmittance of 50% or more. It is desirable to have.
- the inorganic compound thin film in the present invention contains aluminum oxide and magnesium oxide as main components.
- the gas barrier property of the obtained film, especially the barrier property against water vapor can be remarkably improved.
- the total content rate of the aluminum oxide and magnesium oxide contained in an inorganic compound thin film is 95 mass% or more with respect to the mass of all the substances in an inorganic compound thin film.
- the mass ratio of magnesium oxide contained in the inorganic compound thin film is not particularly limited, but the ratio of magnesium oxide is 100% by mass in total of aluminum oxide and magnesium oxide contained in the inorganic compound thin film. Is preferably 5% by mass or more and 90% by mass or less, more preferably 25% by mass or more and 70% by mass or less, and particularly preferably 40% by mass or more and 60% by mass or less. If the ratio of magnesium oxide is less than 5% by mass, the flexibility tends to be poor, so that cracking due to handling is likely to occur, and stable barrier properties may be difficult to obtain. On the other hand, when the ratio of magnesium oxide exceeds 90% by mass, sufficient barrier properties tend to be difficult to obtain.
- the inorganic compound thin film in the present invention is a thin film containing aluminum oxide and magnesium oxide as main components, but may contain other compounds other than aluminum oxide and magnesium oxide as long as the object of the present invention is not impaired.
- examples of other compounds include various oxides, nitrides, or mixed materials thereof. Specifically, silicon oxide, calcium oxide, strontium oxide, scandium oxide, yttrium oxide, lanthanum oxide, and cerium oxide.
- oxides such as titanium dioxide, zirconium oxide, hafnium oxide, vanadium sesquioxide, and tantalum oxide, nitrides such as magnesium nitride, calcium nitride, lanthanum nitride, titanium nitride, and hafnium nitride, and mixed materials thereof.
- the content is desirably 5% by mass or less with respect to the mass of all substances in the inorganic compound thin film.
- the thickness of the inorganic compound thin film is not particularly limited, but is preferably 5 to 500 nm, more preferably 8 nm to 100 nm, and particularly preferably 10 nm to 50 nm. If the thickness of the inorganic compound thin film is less than 5 nm, satisfactory gas barrier properties may be difficult to obtain. On the other hand, even if the thickness exceeds 500 nm excessively, the corresponding effect of improving gas barrier properties is obtained. However, it is disadvantageous in terms of bending resistance and manufacturing cost.
- composition and film thickness of the inorganic compound thin film referred to in the present application refer to values calculated based on the adhesion amount determined by the calibration curve method using fluorescent X-rays.
- the calibration curve of this application can use what was created along the following procedures. First, several types of films having an inorganic compound thin film made of aluminum oxide and magnesium oxide are prepared, and the amounts of adhesion of aluminum oxide and magnesium oxide are determined by an inductively coupled plasma emission method (ICP method). Next, a calibration curve for calculating the adhesion amount from the fluorescent X-ray analysis may be created by analyzing each film for which the adhesion amount has been obtained using a fluorescent X-ray apparatus.
- ICP method inductively coupled plasma emission method
- the composition of the inorganic compound thin film can be calculated as follows using the adhesion amount of each component obtained from fluorescent X-ray analysis. That is, the content ratio wa (%) in the aluminum oxide film and the content wm (%) in the magnesium oxide film are expressed in terms of the adhesion amount per unit area of the aluminum oxide Ma (g / cm 2 ), When the adhesion amount per unit area is Mm (g / cm 2 ), the following formulas (1) and (2) are obtained, respectively.
- wa 100 ⁇ [Ma / (Ma + Mm)]
- wm 100-wa (2)
- the thickness of the inorganic compound thin film is assumed to be 80% of the bulk density of the inorganic oxide thin film, and the volume is maintained even when aluminum oxide and magnesium oxide are mixed.
- the adhesion amount of each component obtained from the above it can be calculated as follows. That is, the adhesion amount per unit area of aluminum oxide is Ma (g / cm 2 ), the bulk density is ⁇ a (3.97 g / cm 3 ), and the adhesion amount per unit area of magnesium oxide is Mm (g / g cm 2 ), and the bulk density is ⁇ m (3.65 g / cm 3 ), the film thickness t (nm) is obtained by the following formula (3).
- t ((Ma / ( ⁇ a ⁇ 0.8) + Mm / ( ⁇ m ⁇ 0.8)) ⁇ 10 7 Formula (3)
- the film thickness value measured by the fluorescent X-ray method was close to the film thickness actually measured by TEM.
- a composition and a film thickness can be calculated
- the method for forming the inorganic compound thin film is preferably a dry process in which the inorganic compound thin film is formed on a plastic film as a substrate in a vacuum chamber.
- a known vapor deposition method such as a physical vapor deposition method (PVD method) such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, or a chemical vapor deposition method (CVD method) can be appropriately employed.
- PVD method physical vapor deposition method
- CVD method chemical vapor deposition method
- the vacuum deposition method is preferable from the viewpoint of productivity.
- methods for heating the vapor deposition material include methods such as resistance heating, high frequency induction heating, and electron beam heating.
- the electron beam heating vapor deposition method is suitable in that high-speed film formation is possible.
- aluminum oxide and magnesium oxide may be used as vapor deposition materials, or aluminum gas and magnesium oxide are introduced by introducing oxygen gas. May be used.
- a method in which aluminum oxide and magnesium oxide are separately arranged, individually heated and evaporated, and mixed in a gas phase to form an inorganic compound thin film is preferable.
- the vapor pressure of aluminum oxide and magnesium oxide is different, and if vaporized for a long time, magnesium oxide with a high vapor pressure will be selectively evaporated.
- the composition of the mixed material may change, and the composition of the inorganic compound thin film formed may change accordingly.
- the material shape of aluminum oxide and magnesium oxide is preferably a granular material of about 3 to 5 mm.
- the material shape of aluminum oxide and magnesium oxide is preferably a granular material of about 3 to 5 mm.
- it is likely to be scattered at the start of heating, and large chunks may be crushed by heat shock and not deposited well.
- As a method of heating aluminum oxide and magnesium oxide individually there is a method of using two beam sources, but using one beam source, the beams are heated individually by scanning individual materials in a time division manner. There is a way.
- the pressure during vapor deposition is preferably 3.0 ⁇ 10 ⁇ 1 Pa or less.
- the pressure is higher than 3.0 ⁇ 10 ⁇ 1 Pa, the energy of the vapor deposition particles tends to be small and a rough film tends to be formed, and the barrier property may be lowered.
- the temperature of the plastic film when forming a film by the vacuum evaporation method is not particularly limited, but is preferably in the range of ⁇ 20 to 40 ° C.
- the gas barrier film of the present invention having excellent barrier properties against oxygen and water vapor, particularly water vapor barrier properties, can be obtained.
- Oxygen permeability According to JIS K7126-2 A method, the oxygen permeability was measured using an oxygen permeability measuring device (“OX-TRAN 2/21” manufactured by MOCON) under the conditions of 23 ° C. and 65% RH. In the measurement, the inorganic compound thin film surface was on the oxygen gas side.
- OX-TRAN 2/21 manufactured by MOCON
- the composition of the inorganic compound thin film was calculated as follows using the adhesion amount of each component obtained from fluorescent X-ray analysis. That is, the content ratio wa (%) in the aluminum oxide film and the content wm (%) in the magnesium oxide film are expressed in terms of the adhesion amount per unit area of the aluminum oxide Ma (g / cm 2 ), The adhesion amount per unit area was set to Mm (g / cm 2 ) and calculated based on the following formulas (1) and (2).
- wa 100 ⁇ [Ma / (Ma + Mm)] (1)
- wm 100-wa (2)
- the thickness of the inorganic compound thin film is assumed to be 80% of the bulk density of the inorganic oxide thin film, and the volume is maintained even when aluminum oxide and magnesium oxide are mixed.
- the film thickness t (nm) is defined as the amount per unit area of magnesium oxide, where the adhesion amount per unit area of aluminum oxide is Ma (g / cm 2 ) and the bulk density is ⁇ a (3.97 g / cm 3 ).
- the adhesion amount was Mm (g / cm 2 ) and the bulk density was ⁇ m (3.65 g / cm 3 ), and calculation was performed based on the following formula (3).
- Example 1 As the plastic film, a polyethylene terephthalate (PET) film having a thickness of 12 ⁇ m (“E5100” manufactured by Toyobo Co., Ltd.) is used, and the film is composed of aluminum oxide (deposition material 1) and magnesium oxide (deposition material 2). An inorganic compound thin film was formed by vapor deposition to obtain a laminated film. Specifically, particulate aluminum oxide of about 3 to 6 mm (purity 99%) is used as the vapor deposition material 1, and granular magnesium oxide (purity of 99.9% or more) of about 2 to 6 mm is used as the vapor deposition material 2. And each vapor deposition material 1 and 2 was put into the vapor deposition source separately, without mixing. For the heating, an electron gun (“JOGG-1000UB” manufactured by JEOL Ltd .; maximum output 100 kW) was used.
- an electron gun (“JOGG-1000UB” manufactured by JEOL Ltd .; maximum output 100 kW
- the aluminum oxide and magnesium oxide were evaporated to deposit an inorganic compound thin film.
- the irradiation time to each material was adjusted by electron beam output and scanning time division, and the thickness and composition of the inorganic compound thin film composed of aluminum oxide and magnesium oxide were adjusted.
- the output of the electron beam was an electron gun emission current of 1.1 A
- the electron beam irradiation time was time-divided at a ratio of magnesium oxide 1 to aluminum oxide 3.
- the pressure at the time of vapor deposition was 2.5 * 10 ⁇ -1 > Pa or less.
- Vapor deposition is performed in a vacuum tank equipped with an unwinding roll part, a coating roll part, and a winding roll part, a plastic film having a film width of 550 mm is set on the unwinding roll, and the film feed rate is 30 m / min.
- the vapor deposition was performed continuously.
- the temperature of the coating roll for cooling the film during vapor deposition was adjusted to ⁇ 10 ° C.
- Example 2 In Example 1, the emission current of the electron gun was set to 1.2 A, and the irradiation time of the electron beam was changed so as to be time-divided at a ratio of magnesium oxide 5 to aluminum oxide 19, and in the same manner as in Example 1, a laminated film Got.
- Example 3 In Example 1, the film feed rate was set to 60 m / min, the emission current of the electron gun was set to 1.2 A, and the irradiation time of the electron beam was changed to be time-divided at a ratio of magnesium oxide 2 to aluminum oxide 13, A laminated film was obtained in the same manner as Example 1.
- Example 4 In Example 1, the film feed rate was 55 m / min, and the electron beam irradiation time was changed so as to be time-divided at a ratio of magnesium oxide 7 to aluminum oxide 23. Obtained.
- Example 5 In Example 1, the film feed rate was set to 15 m / min, and the irradiation time of the electron beam was changed so as to be time-divided at a ratio of magnesium oxide 7 to aluminum oxide 23, and the laminated film was formed in the same manner as in Example 1. Obtained.
- Example 6 In Example 1, a 50 ⁇ m thick PET film (“A4100” manufactured by Toyobo Co., Ltd.) was used as the plastic film, the film feed rate was 10 m / min, the emission current of the electron gun was 1.4 A, The beam irradiation time was changed so as to be time-divided at a ratio of magnesium oxide 1 to aluminum oxide 5, and a laminated film was obtained in the same manner as in Example 1.
- A4100 manufactured by Toyobo Co., Ltd.
- Example 7 In Example 1, the film feed speed was set to 60 m / min, the emission current of the electron gun was set to 0.8 A, and the irradiation time of the electron beam was changed to be time-divided at a ratio of magnesium oxide 53 to aluminum oxide 67, A laminated film was obtained in the same manner as Example 1.
- Example 8 In Example 1, the film feed speed was set to 60 m / min, the emission current of the electron gun was set to 1.2 A, and the irradiation time of the electron beam was changed to be time-divided at a ratio of magnesium oxide 13 to aluminum oxide 107, A laminated film was obtained in the same manner as Example 1.
- Example 9 In Example 1, the film feed rate was set to 60 m / min, the emission current of the electron gun was set to 1.2 A, and the irradiation time of the electron beam was changed to be time-divided at a ratio of magnesium oxide 12 to aluminum oxide 108, A laminated film was obtained in the same manner as Example 1.
- Example 1 a 50 ⁇ m-thick PET film (“A4100” manufactured by Toyobo Co., Ltd.) was used as the plastic film, and granular silicon oxide (purity of 99.9% or more) of about 2 to 6 mm was used as the vapor deposition material 2.
- the film feed rate was set to 40 m / min, and the irradiation time of the electron beam was changed so as to be time-divided at a ratio of silicon oxide 18 to aluminum oxide 102, and a laminated film was obtained in the same manner as in Example 1. .
- Comparative Example 2 In Comparative Example 1, the film feed speed was set to 80 m / min, the emission current of the electron gun was set to 1.0 A, and the irradiation time of the electron beam was changed to be time-divided at a ratio of silicon oxide 11 to aluminum oxide 109, A laminated film was obtained in the same manner as Comparative Example 1.
- Comparative Example 3 In Comparative Example 1, granular cerium oxide (purity 99% or more) of about 2 to 6 mm is used as the vapor deposition material 2, the film feed rate is 55 m / min, the emission current of the electron gun is 1.0 A, and the electron The beam irradiation time was changed so as to be time-divided at a ratio of cerium oxide 34 to aluminum oxide 86, and a laminated film was obtained in the same manner as in Comparative Example 1.
- Comparative Example 4 In Comparative Example 1, granular yttrium oxide having a purity of about 2 to 5 mm (purity 99.9% or more) is used as the vapor deposition material 2, the film feed rate is 60 m / min, and the emission current of the electron gun is 1.0 A. The electron beam irradiation time was changed so as to be time-divided at a ratio of yttrium oxide 55 to aluminum oxide 65, and a laminated film was obtained in the same manner as in Comparative Example 1.
- Comparative Example 5 In Comparative Example 1, granular zirconium oxide (purity of 99.9% or more) of about 2 to 5 mm was used as the vapor deposition material 2, the film feed rate was 25 m / min, and the electron beam irradiation time was changed to aluminum oxide 68. The laminated film was obtained in the same manner as in Comparative Example 1 except that the time division was performed at the ratio of zirconium oxide 53.
- Comparative Example 6 In Comparative Example 5, the film feed rate was set to 25 m / min, the emission current of the electron gun was set to 1.0 A, and the electron beam irradiation time was changed to be time-divided at a ratio of zirconium oxide 49 to aluminum oxide 71, A laminated film was obtained in the same manner as in Comparative Example 5.
- the heating method was an electron beam method using an electron gun (“JOGG-1000UB” manufactured by JEOL Ltd .; maximum output 100 kW). Then, the emission current of the electron gun was set to 0.6 A, and the magnesium oxide was irradiated with an electron beam and heated to evaporate the magnesium oxide, thereby forming a thin film.
- vapor deposition was continuously performed in the vacuum tank provided with the unwinding roll part, the coating roll part, and the winding roll part similarly to Example 1 except having set the film feed rate to 60 m / min.
- Comparative Example 8 In Comparative Example 7, particulate aluminum oxide of about 3 to 6 mm (purity 99%) was used as the vapor deposition material 1, the emission current of the electron gun was set to 1.0 A, and the film feed rate was changed to 40 m / min. A laminated film was obtained in the same manner as in Comparative Example 7.
- Table 1 shows the film thickness of the inorganic compound thin film, the content of the vapor deposition material 2 in the inorganic compound thin film, the oxygen transmission rate, and the water vapor transmission rate for the laminated films obtained in the above Examples and Comparative Examples.
- a gas barrier laminate film having a high gas barrier property against oxygen and water vapor can be provided.
- the gas barrier film of the present invention is widely used not only for packaging various foods, pharmaceuticals, and industrial products, but also for industrial applications such as solar cells, electronic paper, organic EL devices, and semiconductor devices that require high gas barrier properties and durability. Can be expected to contribute greatly to the industry.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Laminated Bodies (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Provided is a gas barrier film having excellent barrier properties against oxygen and water vapor, etc., and particularly having high water vapor barrier properties. The gas barrier film is a film comprising an inorganic compound thin film formed on at least one surface of a plastic film, and is characterized by the inorganic compound thin film containing as the main components thereof aluminum oxide and magnesium oxide. Ideally the magnesium oxide ratio to 100% by mass aluminum oxide and magnesium oxide included in the inorganic compound thin film is 5%-90% by mass, and it is desirable that the film thickness of the inorganic compound thin film is 5-500 nm.
Description
本発明は、食品、医薬品、電子部品等の包装材料や、太陽電池、電子ペーパー、フィルム液晶など水蒸気バリア性を要求される電子機器などに用いられるガスバリア性フィルムに関する。
The present invention relates to a gas barrier film used for packaging materials such as foods, pharmaceuticals, and electronic parts, and electronic devices that require water vapor barrier properties such as solar cells, electronic paper, and film liquid crystals.
食品、医薬品等に用いられる包装材料には、内容物を長期間保存することを可能にするために、酸化などの変質を促進する大気中の酸素、水蒸気などのガスを遮断する性質、すなわちガスバリア性を備えることが求められる。特に、太陽電池や、有機ELなどの電子デバイスや、電子部品などに使用されるガスバリア性材料には、食品や医薬品等の包装材料以上に高いガスバリア性が要求される。
Packaging materials used in foods, pharmaceuticals, etc. have the property of blocking gas such as oxygen and water vapor in the atmosphere that promotes alteration such as oxidation in order to enable the contents to be stored for a long period of time, that is, gas barrier It is required to have sex. In particular, gas barrier materials used for solar cells, electronic devices such as organic EL, electronic components, and the like are required to have higher gas barrier properties than packaging materials such as foods and pharmaceuticals.
従来から、包装材料としては、ポリビニルアルコール(PVA)、エチレンビニルアルコール共重合体(EVOH)、ポリ塩化ビニリデン樹脂(PVDC)、或いはポリアクリロニトリル(PAN)など一般にガスバリア性が比較的高いと言われる高分子樹脂組成物を積層したフィルムが使用されてきた。
Conventionally, as packaging materials, such as polyvinyl alcohol (PVA), ethylene vinyl alcohol copolymer (EVOH), polyvinylidene chloride resin (PVDC), or polyacrylonitrile (PAN) is generally said to have a relatively high gas barrier property. A film laminated with a molecular resin composition has been used.
ところが、上述のPVA系やEVOH系の高分子樹脂組成物を用いてなるガスバリア性積層フィルムは、温度依存性及び湿度依存性が大きいため、高温又は高湿下においてガスバリア性の低下が見られた。またPVDCやPANは、廃棄・焼却の際に有害物質が発生する危険性が高いという問題があった。
However, since the gas barrier laminate film using the above-mentioned PVA-based or EVOH-based polymer resin composition has a large temperature dependency and humidity dependency, a decrease in gas barrier property was observed at high temperature or high humidity. . In addition, PVDC and PAN have a problem that there is a high risk of generating harmful substances during disposal and incineration.
また従来、より高いガスバリア性能が要求される包装材料として、プラスチックフィルムにアルミニウムなどの金属を蒸着したものが用いられてきた。しかし、このような包装材料を用いた場合、金属薄膜が不透明であるため、内容物を識別できなかったり、金属探知機による内容物検査や電子レンジでの加熱処理が行えなかったりという問題があった。
Conventionally, a plastic film obtained by vapor-depositing a metal such as aluminum on a plastic film has been used as a packaging material that requires higher gas barrier performance. However, when such a packaging material is used, there is a problem that the metal thin film is opaque, so that the contents cannot be identified, or the contents cannot be inspected by the metal detector and the heat treatment in the microwave oven cannot be performed. It was.
そこで、かかる問題を解決するため、プラスチックフィルム上に酸化アルミニウム薄膜を設けたフィルムにより高いガスバリア性を発揮させることが提案されている(例えば、特許文献1参照)。また、さらにガスバリア性を高めるために、プラスチックフィルム上に設ける金属薄膜として酸化・窒化アルミニウムおよび/または酸化・窒化珪素を用いたガスバリア性フィルムも報告されている(例えば、特許文献2参照)。
Therefore, in order to solve such a problem, it has been proposed to exhibit a high gas barrier property by a film in which an aluminum oxide thin film is provided on a plastic film (see, for example, Patent Document 1). In addition, a gas barrier film using oxide / aluminum nitride and / or silicon oxide / silicon nitride as a metal thin film provided on a plastic film in order to further improve the gas barrier property has been reported (for example, see Patent Document 2).
しかしながら、上述した従来のガスバリア性フィルムは、酸素に対しては高いバリア性を発揮するものの、水蒸気に対するバリア性はそれほど高くなく、内容物によっては十分な水蒸気バリア性を発揮できないことがあり、水蒸気バリア性については未だ要求性能に達していなかった。
However, although the above-described conventional gas barrier film exhibits a high barrier property against oxygen, the barrier property against water vapor is not so high, and depending on the contents, a sufficient water vapor barrier property may not be exhibited. The barrier performance has not yet reached the required performance.
本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、酸素および水蒸気などに対するバリア性に優れ、特に高い水蒸気バリア性を有するガスバリア性フィルムを提供することにある。
The present invention has been made against the background of the problems of the prior art. That is, an object of the present invention is to provide a gas barrier film that has excellent barrier properties against oxygen, water vapor, and the like, and has particularly high water vapor barrier properties.
本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
すなわち、本発明は、以下の構成からなる。 As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have reached the present invention.
That is, this invention consists of the following structures.
すなわち、本発明は、以下の構成からなる。 As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have reached the present invention.
That is, this invention consists of the following structures.
(1)プラスチックフィルムの少なくとも片面に無機化合物薄膜が形成されてなるフィルムであって、前記無機化合物薄膜が酸化アルミニウムと酸化マグネシウムとを主たる成分として含んでなることを特徴とするガスバリア性フィルム。
(1) A gas barrier film characterized in that an inorganic compound thin film is formed on at least one surface of a plastic film, and the inorganic compound thin film contains aluminum oxide and magnesium oxide as main components.
(2)前記無機化合物薄膜中に含まれる酸化アルミニウムおよび酸化マグネシウムの合計100質量%に対し、酸化マグネシウムの比率が5質量%以上、90質量%以下である、前記(1)に記載のガスバリア性フィルム。
(2) The gas barrier property according to (1), wherein the ratio of magnesium oxide is 5% by mass or more and 90% by mass or less with respect to 100% by mass of the total of aluminum oxide and magnesium oxide contained in the inorganic compound thin film. the film.
(3)前記無機化合物薄膜の膜厚が5~500nmである、前記(1)または(2)に記載のガスバリア性フィルム。
(3) The gas barrier film according to (1) or (2), wherein the inorganic compound thin film has a thickness of 5 to 500 nm.
本発明によれば、酸素および水蒸気などに対するバリア性に優れ、特に高い水蒸気バリア性を有する透明なガスバリア性フィルムを提供することができる。かかるガスバリア性フィルムは、各種食品、医薬品、工業製品の包装用途や、太陽電池、電子ペーパー、有機EL素子、半導体素子等の工業用途に好適に用いることができ、しかも生産コストも比較的安価であり、実用性が高い。
According to the present invention, it is possible to provide a transparent gas barrier film having excellent barrier properties against oxygen, water vapor and the like, and having particularly high water vapor barrier properties. Such a gas barrier film can be suitably used for packaging of various foods, pharmaceuticals, and industrial products, and industrial applications such as solar cells, electronic paper, organic EL elements, and semiconductor elements, and the production cost is relatively low. Yes, practicality is high.
本発明のガスバリア性フィルムは、プラスチックフィルムの少なくとも片面に無機化合物薄膜が形成されてなるフィルムである。以下、本発明を詳述する。
The gas barrier film of the present invention is a film in which an inorganic compound thin film is formed on at least one side of a plastic film. The present invention is described in detail below.
〔基材フィルム〕
本発明で用いるプラスチックフィルムは、有機高分子樹脂からなる。前記有機高分子樹脂としては、ナイロン4・6、ナイロン6、ナイロン6・6、ナイロン12などで代表されるポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートなどで代表されるポリエステル、ポリエチレン、ポリプロピレン、ポリブテンなどで代表されるポリオレフィンの他、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリスルホン、ポリスチレン、ポリ乳酸、テトラフルオロエチレン、一塩化三弗化エチレンなどを挙げることができる。これらの中でも、ポリアミド、ポリエステルが好ましく、特に、耐熱性、寸法安定性、透明性の点ではポリエステルが好ましい。有機高分子樹脂は1種のみであってもよいし2種以上であってもよい。 [Base film]
The plastic film used in the present invention is made of an organic polymer resin. Examples of the organic polymer resin include polyamides represented by nylon 4, 6, nylon 6, nylon 6, 6, nylon 12, and the like, polyesters represented by polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, and the like. In addition to polyolefins represented by polyethylene, polypropylene, polybutene, etc., polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, wholly aromatic polyamide, polyamideimide, polyimide, polyetherimide, polysulfone, polystyrene, polylactic acid, tetrafluoroethylene And ethylene trichloride trifluoride. Among these, polyamide and polyester are preferable, and polyester is particularly preferable in terms of heat resistance, dimensional stability, and transparency. Only one organic polymer resin may be used, or two or more organic polymer resins may be used.
本発明で用いるプラスチックフィルムは、有機高分子樹脂からなる。前記有機高分子樹脂としては、ナイロン4・6、ナイロン6、ナイロン6・6、ナイロン12などで代表されるポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートなどで代表されるポリエステル、ポリエチレン、ポリプロピレン、ポリブテンなどで代表されるポリオレフィンの他、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリスルホン、ポリスチレン、ポリ乳酸、テトラフルオロエチレン、一塩化三弗化エチレンなどを挙げることができる。これらの中でも、ポリアミド、ポリエステルが好ましく、特に、耐熱性、寸法安定性、透明性の点ではポリエステルが好ましい。有機高分子樹脂は1種のみであってもよいし2種以上であってもよい。 [Base film]
The plastic film used in the present invention is made of an organic polymer resin. Examples of the organic polymer resin include polyamides represented by nylon 4, 6, nylon 6, nylon 6, 6, nylon 12, and the like, polyesters represented by polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, and the like. In addition to polyolefins represented by polyethylene, polypropylene, polybutene, etc., polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, wholly aromatic polyamide, polyamideimide, polyimide, polyetherimide, polysulfone, polystyrene, polylactic acid, tetrafluoroethylene And ethylene trichloride trifluoride. Among these, polyamide and polyester are preferable, and polyester is particularly preferable in terms of heat resistance, dimensional stability, and transparency. Only one organic polymer resin may be used, or two or more organic polymer resins may be used.
好ましいポリアミドの具体例としては、ポリカプロアミド(ナイロン6)、ポリ-ε-アミノへプタン酸(ナイロン7)、ポリ-ε-アミノノナン酸(ナイロン9)、ポリウンデカンアミド(ナイロン11)、ポリラウリンラクタム(ナイロン12)、ポリエチレンジアミンアジパミド(ナイロン2・6)、ポリテトラメチレンアジパミド(ナイロン4・6)、ポリヘキサメチレンアジパミド(ナイロン6・6)、ポリヘキサメチレンセバカミド(ナイロン6・10)、ポリヘキサメチレンドデカミド(ナイロン6・12)、ポリオクタメチレンドデカミド(ナイロン8・12)、ポリオクタメチレンアジパミド(ナイロン8・6)、ポリデカメチレンアジパミド(ナイロン10・6)、ポリデカメチレンセバカミド(ナイロン10・10)、ポリドデカメチレンドデカミド(ナイロン12・12)、メタキシレンジアミン-6ナイロン(MXD6)などを挙げることができる。また、前記ポリアミドは、これらを主成分とする共重合体であってもよく、その例としては、カプロラクタム/ラウリンラクタム共重合体、カプロラクタム/ヘキサメチレンジアンモニウムアジペート共重合体、ラウリンラクタム/ヘキサメチレンジアンモニウムアジペート共重合体、ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体、エチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムアジペート共重合体、カプロラクタム/ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体などを挙げることができる。ポリアミドには、フィルムの柔軟性改質成分として、芳香族スルホンアミド類、p-ヒドロキシ安息香酸、エステル類などの可塑剤や、低弾性率のエラストマー成分や、ラクタム類などを配合することも有効である。
Specific examples of preferred polyamides include polycaproamide (nylon 6), poly-ε-aminoheptanoic acid (nylon 7), poly-ε-aminononanoic acid (nylon 9), polyundecanamide (nylon 11), polylaurin Lactam (nylon 12), polyethylenediamine adipamide (nylon 2.6), polytetramethylene adipamide (nylon 4.6), polyhexamethylene adipamide (nylon 6/6), polyhexamethylene sebacamide (Nylon 6 · 10), Polyhexamethylene dodecamide (Nylon 6 · 12), Polyoctamethylene dodecamide (Nylon 8 · 12), Polyoctamethylene adipamide (Nylon 8.6), Polydecamethylene adipamide (Nylon 10.6), polydecamethylene sebacamide (nylon 10.10) Polydodecamethylene dodecamide (nylon 12 and 12), metaxylenediamine-6 nylon (MXD6) and the like. The polyamide may be a copolymer containing these as main components. Examples thereof include caprolactam / laurin lactam copolymer, caprolactam / hexamethylene diammonium adipate copolymer, laurin lactam / hexamethylene. Diammonium adipate copolymer, hexamethylene diammonium adipate / hexamethylene diammonium sebacate copolymer, ethylene diammonium adipate / hexamethylene diammonium adipate copolymer, caprolactam / hexamethylene diammonium adipate / hexamethylene diammonium seba Examples thereof include a Kate copolymer. It is also effective to add plasticizers such as aromatic sulfonamides, p-hydroxybenzoic acid, and esters, low elastic modulus elastomer components, and lactams as polyamide film flexibility modifying components. It is.
好ましいポリエステルの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートなどの他、これらを主成分とする共重合体が挙げられる。ポリエステル共重合体を構成するジカルボン酸成分は、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸などの芳香族ジカルボン酸、トリメリット酸、ピロメリット酸などの多官能カルボン酸、アジピン酸、セバシン酸などの脂肪族ジカルボン酸などを主成分とすることが好ましい。またポリエステル共重合体を構成するグリコール成分は、エチレングリコール、1,4-ブタンジオールの他、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコールなどの脂肪族グリコール、p-キシリレングリコールなどの芳香族グリコール、1,4-シクロヘキサンジメタノールなどの脂環族グリコール、平均分子量が150~20000のポリエチレングリコールなどを主成分とすることが好ましい。ポリエステル共重合体は、さらに他の成分を共重合したものであってもよい。
Specific examples of preferable polyesters include polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, and copolymers having these as a main component. The dicarboxylic acid component constituting the polyester copolymer is terephthalic acid, isophthalic acid, phthalic acid, aromatic dicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, polyfunctional carboxylic acid such as trimellitic acid and pyromellitic acid, adipine It is preferable that the main component is an acid, an aliphatic dicarboxylic acid such as sebacic acid, or the like. In addition to ethylene glycol and 1,4-butanediol, glycol components constituting the polyester copolymer include aliphatic glycols such as diethylene glycol, propylene glycol and neopentyl glycol, aromatic glycols such as p-xylylene glycol, 1 The main component is preferably an alicyclic glycol such as 1,4-cyclohexanedimethanol, polyethylene glycol having an average molecular weight of 150 to 20000, or the like. The polyester copolymer may further be copolymerized with other components.
さらにプラスチックフィルムを構成する有機高分子樹脂には、本発明の効果を損なわない範囲で、公知の添加物を添加してもよい。添加物としては、例えばシリカなどの滑剤の他、紫外線吸収剤、帯電防止剤、可塑剤、着色剤などが挙げられる。また、プラスチックフィルムを構成する有機高分子樹脂には、上述した有機高分子樹脂以外の他の重合成分を少量共重合したり、ブレンドしたりしてもよい。
Furthermore, known additives may be added to the organic polymer resin constituting the plastic film as long as the effects of the present invention are not impaired. Examples of the additive include a lubricant such as silica, an ultraviolet absorber, an antistatic agent, a plasticizer, and a colorant. The organic polymer resin constituting the plastic film may be copolymerized or blended with a small amount of other polymerization components other than the organic polymer resin described above.
プラスチックフィルムの作製方法は、特に限定されるものではなく、例えば、溶融押出し法、キャスト法など既知の方法でフィルム化した後、必要に応じ、長手方向及び/又は幅方向に延伸し、冷却、熱固定を施すことにより得ることができる。
The method for producing the plastic film is not particularly limited. For example, after forming into a film by a known method such as a melt extrusion method or a casting method, the film is stretched in the longitudinal direction and / or the width direction, if necessary, and cooled. It can be obtained by heat setting.
本発明におけるプラスチックフィルムは、異種または同種の有機高分子樹脂を積層した積層型フィルムであってもよい。各層の種類、積層数、積層方法等は特に限定されず、目的に応じて公知の方法から任意に選択することができる。
The plastic film in the present invention may be a laminated film in which different or similar organic polymer resins are laminated. The type of each layer, the number of layers, the lamination method, and the like are not particularly limited, and can be arbitrarily selected from known methods according to the purpose.
本発明におけるプラスチックフィルムは、本発明の目的を損なわないかぎりにおいて、後述する無機化合物薄膜層を積層するのに先行して、コロナ放電処理、グロー放電、火炎処理、表面粗面化処理等の表面処理を施されていてもよく、また、公知のアンカーコート処理、印刷、装飾が施されてもよい。
As long as the object of the present invention is not impaired, the plastic film in the present invention has a surface such as corona discharge treatment, glow discharge, flame treatment, surface roughening treatment, etc. prior to laminating the inorganic compound thin film layer described later. A treatment may be performed, and a known anchor coat treatment, printing, and decoration may be performed.
本発明におけるプラスチックフィルムは、その厚さが1μm以上300μm以下の範囲であることが好ましく、さらに好ましくは5μm以上100μm以下の範囲、最も好ましくは9μm以上50μm以下の範囲である。
The thickness of the plastic film in the present invention is preferably in the range of 1 μm to 300 μm, more preferably in the range of 5 μm to 100 μm, and most preferably in the range of 9 μm to 50 μm.
本発明におけるプラスチックフィルムの透明度は、特に限定されるものではないが、得られたガスバリア性フィルムを透明性が求められる包装材料用途で使用する場合には、プラスチックフィルムは50%以上の透過率をもつことが望ましい。
The transparency of the plastic film in the present invention is not particularly limited. However, when the obtained gas barrier film is used for packaging materials requiring transparency, the plastic film has a transmittance of 50% or more. It is desirable to have.
〔無機化合物薄膜〕
本発明における無機化合物薄膜は、酸化アルミニウムと酸化マグネシウムとを主たる成分として含んでなる。このように酸化アルミニウムと酸化マグネシウムとを含む無機化合物薄膜を設けることにより、得られるフィルムのガスバリア性、特に水蒸気に対するバリア性を格段に向上させることができる。なお、無機化合物薄膜中に含まれる酸化アルミニウムと酸化マグネシウムの合計含有率は、無機化合物薄膜中の全物質の質量に対し、95質量%以上であることが好ましい。 [Inorganic compound thin film]
The inorganic compound thin film in the present invention contains aluminum oxide and magnesium oxide as main components. Thus, by providing the inorganic compound thin film containing aluminum oxide and magnesium oxide, the gas barrier property of the obtained film, especially the barrier property against water vapor, can be remarkably improved. In addition, it is preferable that the total content rate of the aluminum oxide and magnesium oxide contained in an inorganic compound thin film is 95 mass% or more with respect to the mass of all the substances in an inorganic compound thin film.
本発明における無機化合物薄膜は、酸化アルミニウムと酸化マグネシウムとを主たる成分として含んでなる。このように酸化アルミニウムと酸化マグネシウムとを含む無機化合物薄膜を設けることにより、得られるフィルムのガスバリア性、特に水蒸気に対するバリア性を格段に向上させることができる。なお、無機化合物薄膜中に含まれる酸化アルミニウムと酸化マグネシウムの合計含有率は、無機化合物薄膜中の全物質の質量に対し、95質量%以上であることが好ましい。 [Inorganic compound thin film]
The inorganic compound thin film in the present invention contains aluminum oxide and magnesium oxide as main components. Thus, by providing the inorganic compound thin film containing aluminum oxide and magnesium oxide, the gas barrier property of the obtained film, especially the barrier property against water vapor, can be remarkably improved. In addition, it is preferable that the total content rate of the aluminum oxide and magnesium oxide contained in an inorganic compound thin film is 95 mass% or more with respect to the mass of all the substances in an inorganic compound thin film.
本発明のガスバリア性フィルムにおいて、無機化合物薄膜中に含まれる酸化マグネシウムの質量比率は特に限定されないが、無機化合物薄膜中に含まれる酸化アルミニウムおよび酸化マグネシウムの合計100質量%に対し、酸化マグネシウムの比率が5質量%以上、90質量%以下であることが好ましく、さらに好ましくは25質量%以上、70質量%以下であり、特に好ましくは40質量%以上、60質量%以下である。酸化マグネシウムの比率が5質量%未満では、柔軟性が乏しくなる傾向があるためハンドリングによる割れが生じ易く、安定したバリア性が得られ難くなる場合がある。一方、酸化マグネシウムの比率が90質量%を超えると、十分なバリア性が得られ難くなる傾向がある。
In the gas barrier film of the present invention, the mass ratio of magnesium oxide contained in the inorganic compound thin film is not particularly limited, but the ratio of magnesium oxide is 100% by mass in total of aluminum oxide and magnesium oxide contained in the inorganic compound thin film. Is preferably 5% by mass or more and 90% by mass or less, more preferably 25% by mass or more and 70% by mass or less, and particularly preferably 40% by mass or more and 60% by mass or less. If the ratio of magnesium oxide is less than 5% by mass, the flexibility tends to be poor, so that cracking due to handling is likely to occur, and stable barrier properties may be difficult to obtain. On the other hand, when the ratio of magnesium oxide exceeds 90% by mass, sufficient barrier properties tend to be difficult to obtain.
本発明における無機化合物薄膜は、酸化アルミニウムと酸化マグネシウムとを主たる成分として含んでいる薄膜であるが、本発明の目的を害さない範囲で、酸化アルミニウムおよび酸化マグネシウム以外の他の化合物を含んでもよい。他の化合物としては、例えば、各種の酸化物、窒化物、もしくはそれらの混合物質が挙げられ、具体的には、酸化珪素、酸化カルシウム、酸化ストロンチウム、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化セリウム、二酸化チタン、酸化ジルコニウム、酸化ハフニウム、三二酸化バナジウム、酸化タンタル等の酸化物、窒化マグネシウム、窒化カルシウム、窒化ランタン、窒化チタン、窒化ハフニウム等の窒化物、さらにこれらの混合物質が挙げられる。他の化合物を含む場合、その含有率は、無機化合物薄膜中の全物質の質量に対し5質量%以下であることが望ましい。
The inorganic compound thin film in the present invention is a thin film containing aluminum oxide and magnesium oxide as main components, but may contain other compounds other than aluminum oxide and magnesium oxide as long as the object of the present invention is not impaired. . Examples of other compounds include various oxides, nitrides, or mixed materials thereof. Specifically, silicon oxide, calcium oxide, strontium oxide, scandium oxide, yttrium oxide, lanthanum oxide, and cerium oxide. And oxides such as titanium dioxide, zirconium oxide, hafnium oxide, vanadium sesquioxide, and tantalum oxide, nitrides such as magnesium nitride, calcium nitride, lanthanum nitride, titanium nitride, and hafnium nitride, and mixed materials thereof. When other compounds are included, the content is desirably 5% by mass or less with respect to the mass of all substances in the inorganic compound thin film.
前記無機化合物薄膜の膜厚は、特に限定されないが、5~500nmが好ましく、さらに好ましくは8nm以上、100nm以下であり、特に好ましくは10nm以上、50nm以下である。無機化合物薄膜の膜厚が5nm未満では、満足のいくガスバリア性が得られ難くなる場合があり、一方、500nmを超えて過度に厚くしても、それに相当するガスバリア性の向上の効果は得られず、耐屈曲性や製造コストの点でかえって不利となる。
The thickness of the inorganic compound thin film is not particularly limited, but is preferably 5 to 500 nm, more preferably 8 nm to 100 nm, and particularly preferably 10 nm to 50 nm. If the thickness of the inorganic compound thin film is less than 5 nm, satisfactory gas barrier properties may be difficult to obtain. On the other hand, even if the thickness exceeds 500 nm excessively, the corresponding effect of improving gas barrier properties is obtained. However, it is disadvantageous in terms of bending resistance and manufacturing cost.
本願で言う無機化合物薄膜の組成および膜厚は、蛍光X線を用いた検量線法にて求めた付着量に基づき算出した値をいう。
本願の検量線は、以下の手順に沿って作成したものを使用することができる。まず、酸化アルミニウムと酸化マグネシウムとからなる無機化合物薄膜を持つフィルムを数種類作製し、誘導結合プラズマ発光法(ICP法)で酸化アルミニウムと酸化マグネシウムそれぞれの付着量を求める。次いで、付着量を求めた各フィルムを蛍光X線装置で分析することにより、蛍光X線分析から付着量を算出するための検量線を作成すればよい。
無機化合物薄膜の組成は、蛍光X線分析から求めた各成分の付着量を用いて、以下のようにして算出できる。すなわち、酸化アルミニウムの膜中の含有率wa(%)、酸化マグネシウムの膜中の含有量wm(%)は、酸化アルミニウムの単位面積当たりの付着量をMa(g/cm2)、酸化マグネシウムの単位面積当たりの付着量をMm(g/cm2)とすると、各々下記式(1)、(2)で求められる。
wa=100×[Ma/(Ma+Mm)] (1)
wm=100-wa (2)
無機化合物薄膜の膜厚は、無機酸化薄膜の密度がバルク密度の8割であるとし、かつ酸化アルミニウムと酸化マグネシウムとが混合された状態であってもそれぞれ体積を保つものとして、蛍光X線分析から求めた各成分の付着量を用いて、以下のようにして算出できる。すなわち、酸化アルミニウムの単位面積当たりの付着量をMa(g/cm2)、そのバルクの密度をρa(3.97g/cm3)とし、酸化マグネシウムの単位面積当たりの付着量をMm(g/cm2)、そのバルクの密度をρm(3.65g/cm3)とすると、膜厚t(nm)は下記式(3)で求められる。
t=((Ma/(ρa×0.8)+Mm/(ρm×0.8))×107・・・式(3)
蛍光X線法で測定した膜厚の値は、TEMで実際に計測した膜厚と近いものであった。
なお、酸化アルミニウム、酸化マグネシウム以外の他の種類の成分を含む場合にも、上記と同様に、組成および膜厚を求めることができる。 The composition and film thickness of the inorganic compound thin film referred to in the present application refer to values calculated based on the adhesion amount determined by the calibration curve method using fluorescent X-rays.
The calibration curve of this application can use what was created along the following procedures. First, several types of films having an inorganic compound thin film made of aluminum oxide and magnesium oxide are prepared, and the amounts of adhesion of aluminum oxide and magnesium oxide are determined by an inductively coupled plasma emission method (ICP method). Next, a calibration curve for calculating the adhesion amount from the fluorescent X-ray analysis may be created by analyzing each film for which the adhesion amount has been obtained using a fluorescent X-ray apparatus.
The composition of the inorganic compound thin film can be calculated as follows using the adhesion amount of each component obtained from fluorescent X-ray analysis. That is, the content ratio wa (%) in the aluminum oxide film and the content wm (%) in the magnesium oxide film are expressed in terms of the adhesion amount per unit area of the aluminum oxide Ma (g / cm 2 ), When the adhesion amount per unit area is Mm (g / cm 2 ), the following formulas (1) and (2) are obtained, respectively.
wa = 100 × [Ma / (Ma + Mm)] (1)
wm = 100-wa (2)
The thickness of the inorganic compound thin film is assumed to be 80% of the bulk density of the inorganic oxide thin film, and the volume is maintained even when aluminum oxide and magnesium oxide are mixed. Using the adhesion amount of each component obtained from the above, it can be calculated as follows. That is, the adhesion amount per unit area of aluminum oxide is Ma (g / cm 2 ), the bulk density is ρa (3.97 g / cm 3 ), and the adhesion amount per unit area of magnesium oxide is Mm (g / g cm 2 ), and the bulk density is ρm (3.65 g / cm 3 ), the film thickness t (nm) is obtained by the following formula (3).
t = ((Ma / (ρa × 0.8) + Mm / (ρm × 0.8)) × 10 7 Formula (3)
The film thickness value measured by the fluorescent X-ray method was close to the film thickness actually measured by TEM.
In addition, also when it contains other types of components other than an aluminum oxide and magnesium oxide, a composition and a film thickness can be calculated | required similarly to the above.
本願の検量線は、以下の手順に沿って作成したものを使用することができる。まず、酸化アルミニウムと酸化マグネシウムとからなる無機化合物薄膜を持つフィルムを数種類作製し、誘導結合プラズマ発光法(ICP法)で酸化アルミニウムと酸化マグネシウムそれぞれの付着量を求める。次いで、付着量を求めた各フィルムを蛍光X線装置で分析することにより、蛍光X線分析から付着量を算出するための検量線を作成すればよい。
無機化合物薄膜の組成は、蛍光X線分析から求めた各成分の付着量を用いて、以下のようにして算出できる。すなわち、酸化アルミニウムの膜中の含有率wa(%)、酸化マグネシウムの膜中の含有量wm(%)は、酸化アルミニウムの単位面積当たりの付着量をMa(g/cm2)、酸化マグネシウムの単位面積当たりの付着量をMm(g/cm2)とすると、各々下記式(1)、(2)で求められる。
wa=100×[Ma/(Ma+Mm)] (1)
wm=100-wa (2)
無機化合物薄膜の膜厚は、無機酸化薄膜の密度がバルク密度の8割であるとし、かつ酸化アルミニウムと酸化マグネシウムとが混合された状態であってもそれぞれ体積を保つものとして、蛍光X線分析から求めた各成分の付着量を用いて、以下のようにして算出できる。すなわち、酸化アルミニウムの単位面積当たりの付着量をMa(g/cm2)、そのバルクの密度をρa(3.97g/cm3)とし、酸化マグネシウムの単位面積当たりの付着量をMm(g/cm2)、そのバルクの密度をρm(3.65g/cm3)とすると、膜厚t(nm)は下記式(3)で求められる。
t=((Ma/(ρa×0.8)+Mm/(ρm×0.8))×107・・・式(3)
蛍光X線法で測定した膜厚の値は、TEMで実際に計測した膜厚と近いものであった。
なお、酸化アルミニウム、酸化マグネシウム以外の他の種類の成分を含む場合にも、上記と同様に、組成および膜厚を求めることができる。 The composition and film thickness of the inorganic compound thin film referred to in the present application refer to values calculated based on the adhesion amount determined by the calibration curve method using fluorescent X-rays.
The calibration curve of this application can use what was created along the following procedures. First, several types of films having an inorganic compound thin film made of aluminum oxide and magnesium oxide are prepared, and the amounts of adhesion of aluminum oxide and magnesium oxide are determined by an inductively coupled plasma emission method (ICP method). Next, a calibration curve for calculating the adhesion amount from the fluorescent X-ray analysis may be created by analyzing each film for which the adhesion amount has been obtained using a fluorescent X-ray apparatus.
The composition of the inorganic compound thin film can be calculated as follows using the adhesion amount of each component obtained from fluorescent X-ray analysis. That is, the content ratio wa (%) in the aluminum oxide film and the content wm (%) in the magnesium oxide film are expressed in terms of the adhesion amount per unit area of the aluminum oxide Ma (g / cm 2 ), When the adhesion amount per unit area is Mm (g / cm 2 ), the following formulas (1) and (2) are obtained, respectively.
wa = 100 × [Ma / (Ma + Mm)] (1)
wm = 100-wa (2)
The thickness of the inorganic compound thin film is assumed to be 80% of the bulk density of the inorganic oxide thin film, and the volume is maintained even when aluminum oxide and magnesium oxide are mixed. Using the adhesion amount of each component obtained from the above, it can be calculated as follows. That is, the adhesion amount per unit area of aluminum oxide is Ma (g / cm 2 ), the bulk density is ρa (3.97 g / cm 3 ), and the adhesion amount per unit area of magnesium oxide is Mm (g / g cm 2 ), and the bulk density is ρm (3.65 g / cm 3 ), the film thickness t (nm) is obtained by the following formula (3).
t = ((Ma / (ρa × 0.8) + Mm / (ρm × 0.8)) × 10 7 Formula (3)
The film thickness value measured by the fluorescent X-ray method was close to the film thickness actually measured by TEM.
In addition, also when it contains other types of components other than an aluminum oxide and magnesium oxide, a composition and a film thickness can be calculated | required similarly to the above.
以下、プラスチックフィルムの少なくとも片面に無機化合物薄膜を形成する方法について説明する。
無機化合物薄膜を形成する方法は、真空槽内で、基板であるプラスチックフィルム上に、無機化合物薄膜を形成するドライプロセスであることが好ましい。具体的には、真空蒸着法、スパッタリング法、イオンプレーティング法などの物理蒸着法(PVD法)、あるいは化学蒸着法(CVD法)など、公知の蒸着法を適宜採用することができる。特に、包装材料に適用する本発明のガスバリア性フィルムを製造する場合には、生産性の観点から真空蒸着法が好ましい。
真空蒸着法で無機化合物薄膜を形成する場合、蒸着材料を加熱する方式としては、抵抗加熱、高周波誘導加熱、電子ビーム加熱などの方式がある。包装材料に適用する本発明のガスバリア性フィルムを製造する場合などには、高速成膜が可能な点で、電子ビーム加熱蒸着法が適している。 Hereinafter, a method for forming an inorganic compound thin film on at least one surface of a plastic film will be described.
The method for forming the inorganic compound thin film is preferably a dry process in which the inorganic compound thin film is formed on a plastic film as a substrate in a vacuum chamber. Specifically, a known vapor deposition method such as a physical vapor deposition method (PVD method) such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, or a chemical vapor deposition method (CVD method) can be appropriately employed. In particular, when producing the gas barrier film of the present invention applied to a packaging material, the vacuum deposition method is preferable from the viewpoint of productivity.
In the case of forming an inorganic compound thin film by a vacuum vapor deposition method, methods for heating the vapor deposition material include methods such as resistance heating, high frequency induction heating, and electron beam heating. When manufacturing the gas barrier film of the present invention to be applied to a packaging material, the electron beam heating vapor deposition method is suitable in that high-speed film formation is possible.
無機化合物薄膜を形成する方法は、真空槽内で、基板であるプラスチックフィルム上に、無機化合物薄膜を形成するドライプロセスであることが好ましい。具体的には、真空蒸着法、スパッタリング法、イオンプレーティング法などの物理蒸着法(PVD法)、あるいは化学蒸着法(CVD法)など、公知の蒸着法を適宜採用することができる。特に、包装材料に適用する本発明のガスバリア性フィルムを製造する場合には、生産性の観点から真空蒸着法が好ましい。
真空蒸着法で無機化合物薄膜を形成する場合、蒸着材料を加熱する方式としては、抵抗加熱、高周波誘導加熱、電子ビーム加熱などの方式がある。包装材料に適用する本発明のガスバリア性フィルムを製造する場合などには、高速成膜が可能な点で、電子ビーム加熱蒸着法が適している。 Hereinafter, a method for forming an inorganic compound thin film on at least one surface of a plastic film will be described.
The method for forming the inorganic compound thin film is preferably a dry process in which the inorganic compound thin film is formed on a plastic film as a substrate in a vacuum chamber. Specifically, a known vapor deposition method such as a physical vapor deposition method (PVD method) such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, or a chemical vapor deposition method (CVD method) can be appropriately employed. In particular, when producing the gas barrier film of the present invention applied to a packaging material, the vacuum deposition method is preferable from the viewpoint of productivity.
In the case of forming an inorganic compound thin film by a vacuum vapor deposition method, methods for heating the vapor deposition material include methods such as resistance heating, high frequency induction heating, and electron beam heating. When manufacturing the gas barrier film of the present invention to be applied to a packaging material, the electron beam heating vapor deposition method is suitable in that high-speed film formation is possible.
電子ビーム加熱方式を使い酸化アルミニウムと酸化マグネシウムを含んでいる無機化合物薄膜を形成するには、蒸着材料として、酸化アルミニウムおよび酸化マグネシウムを用いてもよいし、酸素ガスを導入してアルミニウムおよび酸化マグネシウムを用いてもよい。
In order to form an inorganic compound thin film containing aluminum oxide and magnesium oxide by using an electron beam heating method, aluminum oxide and magnesium oxide may be used as vapor deposition materials, or aluminum gas and magnesium oxide are introduced by introducing oxygen gas. May be used.
好ましい方法としては、酸化アルミニウムと酸化マグネシウムとを別々に配置し、個々に加熱して蒸発させ気相で混合し無機化合薄膜を形成する方法が好ましい。酸化アルミニウムと酸化マグネシウムとを混合した材料を使用した場合、酸化アルミニウムと酸化マグネシウムとの蒸気圧が異なるために長時間蒸発させていると、蒸気圧の高い酸化マグネシウムが選択的に蒸発してしまい混合材料の組成が変化し、それにより形成される無機化合物薄膜の組成も変化してしまう場合がある。
As a preferable method, a method in which aluminum oxide and magnesium oxide are separately arranged, individually heated and evaporated, and mixed in a gas phase to form an inorganic compound thin film is preferable. When using a mixed material of aluminum oxide and magnesium oxide, the vapor pressure of aluminum oxide and magnesium oxide is different, and if vaporized for a long time, magnesium oxide with a high vapor pressure will be selectively evaporated. The composition of the mixed material may change, and the composition of the inorganic compound thin film formed may change accordingly.
酸化アルミニウムと酸化マグネシウムとの材料形状としては3~5mm程度の粒状材料を使うことが好ましい。粉体では真空引き時、加熱開始時に飛散してしまいやすく、また、大型の固まりではヒートショックで砕けうまく蒸着できない場合がある。
酸化アルミニウムと酸化マグネシウムとを個々に加熱する方法としては2台のビーム源を使う方法もあるが、1台のビーム源を使いビームを時分割で個々の材料を走査することで個別に加熱する方法がある。 The material shape of aluminum oxide and magnesium oxide is preferably a granular material of about 3 to 5 mm. When powder is evacuated, it is likely to be scattered at the start of heating, and large chunks may be crushed by heat shock and not deposited well.
As a method of heating aluminum oxide and magnesium oxide individually, there is a method of using two beam sources, but using one beam source, the beams are heated individually by scanning individual materials in a time division manner. There is a way.
酸化アルミニウムと酸化マグネシウムとを個々に加熱する方法としては2台のビーム源を使う方法もあるが、1台のビーム源を使いビームを時分割で個々の材料を走査することで個別に加熱する方法がある。 The material shape of aluminum oxide and magnesium oxide is preferably a granular material of about 3 to 5 mm. When powder is evacuated, it is likely to be scattered at the start of heating, and large chunks may be crushed by heat shock and not deposited well.
As a method of heating aluminum oxide and magnesium oxide individually, there is a method of using two beam sources, but using one beam source, the beams are heated individually by scanning individual materials in a time division manner. There is a way.
真空蒸着法で成膜する場合、蒸着中の圧力は3.0×10-1Pa以下とすることが好ましい。圧力が3.0×10-1Paよりも大きくなると、蒸着粒子のエネルギーが小さくなり粗い膜になる傾向があり、バリア性が低下するおそれがある。
In the case of forming a film by a vacuum vapor deposition method, the pressure during vapor deposition is preferably 3.0 × 10 −1 Pa or less. When the pressure is higher than 3.0 × 10 −1 Pa, the energy of the vapor deposition particles tends to be small and a rough film tends to be formed, and the barrier property may be lowered.
また、真空蒸着法で成膜する際のプラスチックフィルムの温度は、特に限定されないが、好ましくは-20~40℃の範囲である。
Further, the temperature of the plastic film when forming a film by the vacuum evaporation method is not particularly limited, but is preferably in the range of −20 to 40 ° C.
以上のようにして、酸素や水蒸気に対するバリア性、特に水蒸気バリア性に優れた本発明のガスバリア性フィルムが得られる。
As described above, the gas barrier film of the present invention having excellent barrier properties against oxygen and water vapor, particularly water vapor barrier properties, can be obtained.
本願は、2011年8月26日に出願された日本国特許出願第2011-184812号に基づく優先権の利益を主張するものである。2011年8月26日に出願された日本国特許出願第2011-184812号の明細書の全内容が、本願に参考のため援用される。
This application claims the benefit of priority based on Japanese Patent Application No. 2011-184812 filed on August 26, 2011. The entire contents of Japanese Patent Application No. 2011-184812 filed on August 26, 2011 are incorporated herein by reference.
以下に実施例を示して本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。
なお、各実施例で得られたフィルム特性は以下の方法により測定、評価した。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
The film properties obtained in each example were measured and evaluated by the following methods.
なお、各実施例で得られたフィルム特性は以下の方法により測定、評価した。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
The film properties obtained in each example were measured and evaluated by the following methods.
1)酸素透過率
JIS K7126-2 A法に準じて、酸素透過率測定装置(MOCON社製「OX-TRAN 2/21」)を用い、23℃、65%RHの条件下で測定した。なお測定に際しては、無機化合物薄膜面を酸素ガス側とした。 1) Oxygen permeability According to JIS K7126-2 A method, the oxygen permeability was measured using an oxygen permeability measuring device (“OX-TRAN 2/21” manufactured by MOCON) under the conditions of 23 ° C. and 65% RH. In the measurement, the inorganic compound thin film surface was on the oxygen gas side.
JIS K7126-2 A法に準じて、酸素透過率測定装置(MOCON社製「OX-TRAN 2/21」)を用い、23℃、65%RHの条件下で測定した。なお測定に際しては、無機化合物薄膜面を酸素ガス側とした。 1) Oxygen permeability According to JIS K7126-2 A method, the oxygen permeability was measured using an oxygen permeability measuring device (“OX-TRAN 2/21” manufactured by MOCON) under the conditions of 23 ° C. and 65% RH. In the measurement, the inorganic compound thin film surface was on the oxygen gas side.
2)水蒸気透過率
JIS K7129 B法に準じて、水蒸気透過率測定装置(MOCON社製「PERMATRAN-W 3/31」)を用い、40℃、90%RHの条件下で測定した。なお測定に際しては、無機化合物薄膜面を高湿度側とした。 2) Water vapor transmission rate According to JIS K7129 B method, the water vapor transmission rate was measured under the conditions of 40 ° C. and 90% RH using a water vapor transmission rate measuring device (“PERMATRAN-W 3/31” manufactured by MOCON). In the measurement, the inorganic compound thin film surface was on the high humidity side.
JIS K7129 B法に準じて、水蒸気透過率測定装置(MOCON社製「PERMATRAN-W 3/31」)を用い、40℃、90%RHの条件下で測定した。なお測定に際しては、無機化合物薄膜面を高湿度側とした。 2) Water vapor transmission rate According to JIS K7129 B method, the water vapor transmission rate was measured under the conditions of 40 ° C. and 90% RH using a water vapor transmission rate measuring device (“PERMATRAN-W 3/31” manufactured by MOCON). In the measurement, the inorganic compound thin film surface was on the high humidity side.
3)無機化合物薄膜の組成・膜厚
検量線は、以下の手順に沿って作成したものを使用した。まず、酸化アルミニウムと酸化マグネシウムとからなる無機化合物薄膜を持つフィルムを数種類作製し、誘導結合プラズマ発光法(ICP法)で酸化アルミニウムと酸化マグネシウムそれぞれの付着量を求めた。次いで、付着量を求めた各フィルムを蛍光X線装置で分析することにより、蛍光X線分析から付着量を算出するための検量線を作成した。なお、蛍光X線分析は、蛍光X線分析装置((株)リガク製「ZSX100e」)を用い、励起X線管の条件は50kV、70mAとした。
無機化合物薄膜の組成は、蛍光X線分析から求めた各成分の付着量を用いて、以下のようにして算出した。すなわち、酸化アルミニウムの膜中の含有率wa(%)、酸化マグネシウムの膜中の含有量wm(%)は、酸化アルミニウムの単位面積当たりの付着量をMa(g/cm2)、酸化マグネシウムの単位面積当たりの付着量をMm(g/cm2)とし、各々下記式(1)、(2)に基づき算出した。
wa=100×[Ma/(Ma+Mm)] (1)
wm=100-wa (2)
無機化合物薄膜の膜厚は、無機酸化薄膜の密度がバルク密度の8割であるとし、かつ酸化アルミニウムと酸化マグネシウムとが混合された状態であってもそれぞれ体積を保つものとして、蛍光X線分析から求めた各成分の付着量を用いて、以下のようにして算出した。すなわち、膜厚t(nm)は、酸化アルミニウムの単位面積当たりの付着量をMa(g/cm2)、そのバルクの密度をρa(3.97g/cm3)とし、酸化マグネシウムの単位面積当たりの付着量をMm(g/cm2)、そのバルクの密度をρm(3.65g/cm3)とし、下記式(3)に基づき算出した。
t=((Ma/(ρa×0.8)+Mm/(ρm×0.8))×107・・・式(3)
なお、酸化アルミニウム、酸化マグネシウム以外の他の種類の成分を含む場合にも、上記と同様にして、組成および膜厚を求めた。 3) Composition and film thickness of inorganic compound thin film A calibration curve prepared according to the following procedure was used. First, several types of films having an inorganic compound thin film composed of aluminum oxide and magnesium oxide were prepared, and the amounts of adhesion of aluminum oxide and magnesium oxide were determined by an inductively coupled plasma emission method (ICP method). Next, each film for which the amount of adhesion was determined was analyzed with a fluorescent X-ray apparatus, thereby creating a calibration curve for calculating the amount of adhesion from the fluorescent X-ray analysis. The fluorescent X-ray analysis was performed using a fluorescent X-ray analyzer (“ZSX100e” manufactured by Rigaku Corporation), and the conditions of the excitation X-ray tube were 50 kV and 70 mA.
The composition of the inorganic compound thin film was calculated as follows using the adhesion amount of each component obtained from fluorescent X-ray analysis. That is, the content ratio wa (%) in the aluminum oxide film and the content wm (%) in the magnesium oxide film are expressed in terms of the adhesion amount per unit area of the aluminum oxide Ma (g / cm 2 ), The adhesion amount per unit area was set to Mm (g / cm 2 ) and calculated based on the following formulas (1) and (2).
wa = 100 × [Ma / (Ma + Mm)] (1)
wm = 100-wa (2)
The thickness of the inorganic compound thin film is assumed to be 80% of the bulk density of the inorganic oxide thin film, and the volume is maintained even when aluminum oxide and magnesium oxide are mixed. Using the adhesion amount of each component obtained from the above, the calculation was performed as follows. That is, the film thickness t (nm) is defined as the amount per unit area of magnesium oxide, where the adhesion amount per unit area of aluminum oxide is Ma (g / cm 2 ) and the bulk density is ρa (3.97 g / cm 3 ). The adhesion amount was Mm (g / cm 2 ) and the bulk density was ρm (3.65 g / cm 3 ), and calculation was performed based on the following formula (3).
t = ((Ma / (ρa × 0.8) + Mm / (ρm × 0.8)) × 10 7 Formula (3)
In addition, also when it contained other types of components other than aluminum oxide and magnesium oxide, it carried out similarly to the above, and calculated | required the composition and the film thickness.
検量線は、以下の手順に沿って作成したものを使用した。まず、酸化アルミニウムと酸化マグネシウムとからなる無機化合物薄膜を持つフィルムを数種類作製し、誘導結合プラズマ発光法(ICP法)で酸化アルミニウムと酸化マグネシウムそれぞれの付着量を求めた。次いで、付着量を求めた各フィルムを蛍光X線装置で分析することにより、蛍光X線分析から付着量を算出するための検量線を作成した。なお、蛍光X線分析は、蛍光X線分析装置((株)リガク製「ZSX100e」)を用い、励起X線管の条件は50kV、70mAとした。
無機化合物薄膜の組成は、蛍光X線分析から求めた各成分の付着量を用いて、以下のようにして算出した。すなわち、酸化アルミニウムの膜中の含有率wa(%)、酸化マグネシウムの膜中の含有量wm(%)は、酸化アルミニウムの単位面積当たりの付着量をMa(g/cm2)、酸化マグネシウムの単位面積当たりの付着量をMm(g/cm2)とし、各々下記式(1)、(2)に基づき算出した。
wa=100×[Ma/(Ma+Mm)] (1)
wm=100-wa (2)
無機化合物薄膜の膜厚は、無機酸化薄膜の密度がバルク密度の8割であるとし、かつ酸化アルミニウムと酸化マグネシウムとが混合された状態であってもそれぞれ体積を保つものとして、蛍光X線分析から求めた各成分の付着量を用いて、以下のようにして算出した。すなわち、膜厚t(nm)は、酸化アルミニウムの単位面積当たりの付着量をMa(g/cm2)、そのバルクの密度をρa(3.97g/cm3)とし、酸化マグネシウムの単位面積当たりの付着量をMm(g/cm2)、そのバルクの密度をρm(3.65g/cm3)とし、下記式(3)に基づき算出した。
t=((Ma/(ρa×0.8)+Mm/(ρm×0.8))×107・・・式(3)
なお、酸化アルミニウム、酸化マグネシウム以外の他の種類の成分を含む場合にも、上記と同様にして、組成および膜厚を求めた。 3) Composition and film thickness of inorganic compound thin film A calibration curve prepared according to the following procedure was used. First, several types of films having an inorganic compound thin film composed of aluminum oxide and magnesium oxide were prepared, and the amounts of adhesion of aluminum oxide and magnesium oxide were determined by an inductively coupled plasma emission method (ICP method). Next, each film for which the amount of adhesion was determined was analyzed with a fluorescent X-ray apparatus, thereby creating a calibration curve for calculating the amount of adhesion from the fluorescent X-ray analysis. The fluorescent X-ray analysis was performed using a fluorescent X-ray analyzer (“ZSX100e” manufactured by Rigaku Corporation), and the conditions of the excitation X-ray tube were 50 kV and 70 mA.
The composition of the inorganic compound thin film was calculated as follows using the adhesion amount of each component obtained from fluorescent X-ray analysis. That is, the content ratio wa (%) in the aluminum oxide film and the content wm (%) in the magnesium oxide film are expressed in terms of the adhesion amount per unit area of the aluminum oxide Ma (g / cm 2 ), The adhesion amount per unit area was set to Mm (g / cm 2 ) and calculated based on the following formulas (1) and (2).
wa = 100 × [Ma / (Ma + Mm)] (1)
wm = 100-wa (2)
The thickness of the inorganic compound thin film is assumed to be 80% of the bulk density of the inorganic oxide thin film, and the volume is maintained even when aluminum oxide and magnesium oxide are mixed. Using the adhesion amount of each component obtained from the above, the calculation was performed as follows. That is, the film thickness t (nm) is defined as the amount per unit area of magnesium oxide, where the adhesion amount per unit area of aluminum oxide is Ma (g / cm 2 ) and the bulk density is ρa (3.97 g / cm 3 ). The adhesion amount was Mm (g / cm 2 ) and the bulk density was ρm (3.65 g / cm 3 ), and calculation was performed based on the following formula (3).
t = ((Ma / (ρa × 0.8) + Mm / (ρm × 0.8)) × 10 7 Formula (3)
In addition, also when it contained other types of components other than aluminum oxide and magnesium oxide, it carried out similarly to the above, and calculated | required the composition and the film thickness.
〔実施例1〕
プラスチックフィルムとして12μm厚のポリエチレンテレフタレート(PET)フィルム(東洋紡績(株)製「E5100」)を使用し、該フィルム上に、酸化アルミニウム(蒸着材料1)と酸化マグネシウム(蒸着材料2)とからなる無機化合物薄膜を蒸着により形成し、積層フィルムを得た。
詳しくは、蒸着材料1としては、3~6mm程度の粒子状酸化アルミニウム(純度99%)を、蒸着材料2としては、2~6mm程度の粒状の酸化マグネシウム(純度99.9%以上)を使用し、各蒸着材料1、2は混合せずに別々に蒸着源に入れた。加熱には、電子銃(日本電子社製「JOBG-1000UB」;最大出力100kw)を使用した。 [Example 1]
As the plastic film, a polyethylene terephthalate (PET) film having a thickness of 12 μm (“E5100” manufactured by Toyobo Co., Ltd.) is used, and the film is composed of aluminum oxide (deposition material 1) and magnesium oxide (deposition material 2). An inorganic compound thin film was formed by vapor deposition to obtain a laminated film.
Specifically, particulate aluminum oxide of about 3 to 6 mm (purity 99%) is used as the vapor deposition material 1, and granular magnesium oxide (purity of 99.9% or more) of about 2 to 6 mm is used as the vapor deposition material 2. And each vapor deposition material 1 and 2 was put into the vapor deposition source separately, without mixing. For the heating, an electron gun (“JOGG-1000UB” manufactured by JEOL Ltd .; maximum output 100 kW) was used.
プラスチックフィルムとして12μm厚のポリエチレンテレフタレート(PET)フィルム(東洋紡績(株)製「E5100」)を使用し、該フィルム上に、酸化アルミニウム(蒸着材料1)と酸化マグネシウム(蒸着材料2)とからなる無機化合物薄膜を蒸着により形成し、積層フィルムを得た。
詳しくは、蒸着材料1としては、3~6mm程度の粒子状酸化アルミニウム(純度99%)を、蒸着材料2としては、2~6mm程度の粒状の酸化マグネシウム(純度99.9%以上)を使用し、各蒸着材料1、2は混合せずに別々に蒸着源に入れた。加熱には、電子銃(日本電子社製「JOBG-1000UB」;最大出力100kw)を使用した。 [Example 1]
As the plastic film, a polyethylene terephthalate (PET) film having a thickness of 12 μm (“E5100” manufactured by Toyobo Co., Ltd.) is used, and the film is composed of aluminum oxide (deposition material 1) and magnesium oxide (deposition material 2). An inorganic compound thin film was formed by vapor deposition to obtain a laminated film.
Specifically, particulate aluminum oxide of about 3 to 6 mm (purity 99%) is used as the vapor deposition material 1, and granular magnesium oxide (purity of 99.9% or more) of about 2 to 6 mm is used as the vapor deposition material 2. And each vapor deposition material 1 and 2 was put into the vapor deposition source separately, without mixing. For the heating, an electron gun (“JOGG-1000UB” manufactured by JEOL Ltd .; maximum output 100 kW) was used.
1台の電子銃を用いて酸化アルミニウムと酸化マグネシウムとに電子ビームを時分割で照射して加熱することにより、酸化アルミニウムと酸化マグネシウムとを蒸発させ、無機化合物薄膜の蒸着を行った。電子ビームの出力と走査の時分割により個々の材料への照射時間を調整し、酸化アルミニウムと酸化マグネシウムとからなる無機化合物薄膜の膜厚および組成を調整した。具体的には、電子ビームの出力は、電子銃のエミッション電流を1.1Aとし、電子ビームの照射時間は、酸化アルミニウム3に対し酸化マグネシウム1の比率で時分割した。また蒸着時の圧力は2.5×10-1Pa以下であった。
By using one electron gun to irradiate aluminum oxide and magnesium oxide with an electron beam in a time-sharing manner and heating them, the aluminum oxide and magnesium oxide were evaporated to deposit an inorganic compound thin film. The irradiation time to each material was adjusted by electron beam output and scanning time division, and the thickness and composition of the inorganic compound thin film composed of aluminum oxide and magnesium oxide were adjusted. Specifically, the output of the electron beam was an electron gun emission current of 1.1 A, and the electron beam irradiation time was time-divided at a ratio of magnesium oxide 1 to aluminum oxide 3. Moreover, the pressure at the time of vapor deposition was 2.5 * 10 < -1 > Pa or less.
なお、蒸着は、巻き出しロール部、コーティングロール部および巻取りロール部を備えた真空槽で行い、フィルム幅が550mmであるプラスチックフィルムを巻き出しロールにセットし、フィルムの送り速度30m/minで、連続して蒸着を行った。蒸着時のフィルムを冷却する為のコーティングロールの温度は-10℃に調整した。
Vapor deposition is performed in a vacuum tank equipped with an unwinding roll part, a coating roll part, and a winding roll part, a plastic film having a film width of 550 mm is set on the unwinding roll, and the film feed rate is 30 m / min. The vapor deposition was performed continuously. The temperature of the coating roll for cooling the film during vapor deposition was adjusted to −10 ° C.
〔実施例2〕
実施例1において、電子銃のエミッション電流を1.2Aとし、電子ビームの照射時間を酸化アルミニウム19に対し酸化マグネシウム5の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 [Example 2]
In Example 1, the emission current of the electron gun was set to 1.2 A, and the irradiation time of the electron beam was changed so as to be time-divided at a ratio of magnesium oxide 5 to aluminum oxide 19, and in the same manner as in Example 1, a laminated film Got.
実施例1において、電子銃のエミッション電流を1.2Aとし、電子ビームの照射時間を酸化アルミニウム19に対し酸化マグネシウム5の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 [Example 2]
In Example 1, the emission current of the electron gun was set to 1.2 A, and the irradiation time of the electron beam was changed so as to be time-divided at a ratio of magnesium oxide 5 to aluminum oxide 19, and in the same manner as in Example 1, a laminated film Got.
〔実施例3〕
実施例1において、フィルムの送り速度を60m/minとし、電子銃のエミッション電流を1.2Aとし、電子ビームの照射時間を酸化アルミニウム13に対し酸化マグネシウム2の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 Example 3
In Example 1, the film feed rate was set to 60 m / min, the emission current of the electron gun was set to 1.2 A, and the irradiation time of the electron beam was changed to be time-divided at a ratio of magnesium oxide 2 to aluminum oxide 13, A laminated film was obtained in the same manner as Example 1.
実施例1において、フィルムの送り速度を60m/minとし、電子銃のエミッション電流を1.2Aとし、電子ビームの照射時間を酸化アルミニウム13に対し酸化マグネシウム2の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 Example 3
In Example 1, the film feed rate was set to 60 m / min, the emission current of the electron gun was set to 1.2 A, and the irradiation time of the electron beam was changed to be time-divided at a ratio of magnesium oxide 2 to aluminum oxide 13, A laminated film was obtained in the same manner as Example 1.
〔実施例4〕
実施例1において、フィルムの送り速度を55m/minとし、電子ビームの照射時間を酸化アルミニウム23に対し酸化マグネシウム7の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 Example 4
In Example 1, the film feed rate was 55 m / min, and the electron beam irradiation time was changed so as to be time-divided at a ratio of magnesium oxide 7 to aluminum oxide 23. Obtained.
実施例1において、フィルムの送り速度を55m/minとし、電子ビームの照射時間を酸化アルミニウム23に対し酸化マグネシウム7の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 Example 4
In Example 1, the film feed rate was 55 m / min, and the electron beam irradiation time was changed so as to be time-divided at a ratio of magnesium oxide 7 to aluminum oxide 23. Obtained.
〔実施例5〕
実施例1において、フィルムの送り速度を15m/minとし、電子ビームの照射時間を酸化アルミニウム23に対し酸化マグネシウム7の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 Example 5
In Example 1, the film feed rate was set to 15 m / min, and the irradiation time of the electron beam was changed so as to be time-divided at a ratio of magnesium oxide 7 to aluminum oxide 23, and the laminated film was formed in the same manner as in Example 1. Obtained.
実施例1において、フィルムの送り速度を15m/minとし、電子ビームの照射時間を酸化アルミニウム23に対し酸化マグネシウム7の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 Example 5
In Example 1, the film feed rate was set to 15 m / min, and the irradiation time of the electron beam was changed so as to be time-divided at a ratio of magnesium oxide 7 to aluminum oxide 23, and the laminated film was formed in the same manner as in Example 1. Obtained.
〔実施例6〕
実施例1において、プラスチックフィルムとして50μm厚のPETフィルム(東洋紡績(株)製「A4100」)を使用し、フィルムの送り速度を10m/minとし、電子銃のエミッション電流を1.4Aとし、電子ビームの照射時間を酸化アルミニウム5に対し酸化マグネシウム1の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 Example 6
In Example 1, a 50 μm thick PET film (“A4100” manufactured by Toyobo Co., Ltd.) was used as the plastic film, the film feed rate was 10 m / min, the emission current of the electron gun was 1.4 A, The beam irradiation time was changed so as to be time-divided at a ratio of magnesium oxide 1 to aluminum oxide 5, and a laminated film was obtained in the same manner as in Example 1.
実施例1において、プラスチックフィルムとして50μm厚のPETフィルム(東洋紡績(株)製「A4100」)を使用し、フィルムの送り速度を10m/minとし、電子銃のエミッション電流を1.4Aとし、電子ビームの照射時間を酸化アルミニウム5に対し酸化マグネシウム1の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 Example 6
In Example 1, a 50 μm thick PET film (“A4100” manufactured by Toyobo Co., Ltd.) was used as the plastic film, the film feed rate was 10 m / min, the emission current of the electron gun was 1.4 A, The beam irradiation time was changed so as to be time-divided at a ratio of magnesium oxide 1 to aluminum oxide 5, and a laminated film was obtained in the same manner as in Example 1.
〔実施例7〕
実施例1において、フィルムの送り速度を60m/minとし、電子銃のエミッション電流を0.8Aとし、電子ビームの照射時間を酸化アルミニウム67に対し酸化マグネシウム53の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 Example 7
In Example 1, the film feed speed was set to 60 m / min, the emission current of the electron gun was set to 0.8 A, and the irradiation time of the electron beam was changed to be time-divided at a ratio of magnesium oxide 53 to aluminum oxide 67, A laminated film was obtained in the same manner as Example 1.
実施例1において、フィルムの送り速度を60m/minとし、電子銃のエミッション電流を0.8Aとし、電子ビームの照射時間を酸化アルミニウム67に対し酸化マグネシウム53の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 Example 7
In Example 1, the film feed speed was set to 60 m / min, the emission current of the electron gun was set to 0.8 A, and the irradiation time of the electron beam was changed to be time-divided at a ratio of magnesium oxide 53 to aluminum oxide 67, A laminated film was obtained in the same manner as Example 1.
〔実施例8〕
実施例1において、フィルムの送り速度を60m/minとし、電子銃のエミッション電流を1.2Aとし、電子ビームの照射時間を酸化アルミニウム107に対し酸化マグネシウム13の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 Example 8
In Example 1, the film feed speed was set to 60 m / min, the emission current of the electron gun was set to 1.2 A, and the irradiation time of the electron beam was changed to be time-divided at a ratio of magnesium oxide 13 to aluminum oxide 107, A laminated film was obtained in the same manner as Example 1.
実施例1において、フィルムの送り速度を60m/minとし、電子銃のエミッション電流を1.2Aとし、電子ビームの照射時間を酸化アルミニウム107に対し酸化マグネシウム13の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 Example 8
In Example 1, the film feed speed was set to 60 m / min, the emission current of the electron gun was set to 1.2 A, and the irradiation time of the electron beam was changed to be time-divided at a ratio of magnesium oxide 13 to aluminum oxide 107, A laminated film was obtained in the same manner as Example 1.
〔実施例9〕
実施例1において、フィルムの送り速度を60m/minとし、電子銃のエミッション電流を1.2Aとし、電子ビームの照射時間を酸化アルミニウム108に対し酸化マグネシウム12の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 Example 9
In Example 1, the film feed rate was set to 60 m / min, the emission current of the electron gun was set to 1.2 A, and the irradiation time of the electron beam was changed to be time-divided at a ratio of magnesium oxide 12 to aluminum oxide 108, A laminated film was obtained in the same manner as Example 1.
実施例1において、フィルムの送り速度を60m/minとし、電子銃のエミッション電流を1.2Aとし、電子ビームの照射時間を酸化アルミニウム108に対し酸化マグネシウム12の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 Example 9
In Example 1, the film feed rate was set to 60 m / min, the emission current of the electron gun was set to 1.2 A, and the irradiation time of the electron beam was changed to be time-divided at a ratio of magnesium oxide 12 to aluminum oxide 108, A laminated film was obtained in the same manner as Example 1.
〔比較例1〕
実施例1において、プラスチックフィルムとして50μm厚のPETフィルム(東洋紡績(株)製「A4100」)を使用し、蒸着材料2として2~6mm程度の粒状の酸化ケイ素(純度99.9%以上)を使用し、フィルムの送り速度を40m/minとし、電子ビームの照射時間を酸化アルミニウム102に対し酸化ケイ素18の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 [Comparative Example 1]
In Example 1, a 50 μm-thick PET film (“A4100” manufactured by Toyobo Co., Ltd.) was used as the plastic film, and granular silicon oxide (purity of 99.9% or more) of about 2 to 6 mm was used as the vapor deposition material 2. The film feed rate was set to 40 m / min, and the irradiation time of the electron beam was changed so as to be time-divided at a ratio of silicon oxide 18 to aluminum oxide 102, and a laminated film was obtained in the same manner as in Example 1. .
実施例1において、プラスチックフィルムとして50μm厚のPETフィルム(東洋紡績(株)製「A4100」)を使用し、蒸着材料2として2~6mm程度の粒状の酸化ケイ素(純度99.9%以上)を使用し、フィルムの送り速度を40m/minとし、電子ビームの照射時間を酸化アルミニウム102に対し酸化ケイ素18の比率で時分割するよう変更し、実施例1と同様にして、積層フィルムを得た。 [Comparative Example 1]
In Example 1, a 50 μm-thick PET film (“A4100” manufactured by Toyobo Co., Ltd.) was used as the plastic film, and granular silicon oxide (purity of 99.9% or more) of about 2 to 6 mm was used as the vapor deposition material 2. The film feed rate was set to 40 m / min, and the irradiation time of the electron beam was changed so as to be time-divided at a ratio of silicon oxide 18 to aluminum oxide 102, and a laminated film was obtained in the same manner as in Example 1. .
〔比較例2〕
比較例1において、フィルムの送り速度を80m/minとし、電子銃のエミッション電流を1.0Aとし、電子ビームの照射時間を酸化アルミニウム109に対し酸化ケイ素11の比率で時分割するよう変更し、比較例1と同様にして、積層フィルムを得た。 [Comparative Example 2]
In Comparative Example 1, the film feed speed was set to 80 m / min, the emission current of the electron gun was set to 1.0 A, and the irradiation time of the electron beam was changed to be time-divided at a ratio of silicon oxide 11 to aluminum oxide 109, A laminated film was obtained in the same manner as Comparative Example 1.
比較例1において、フィルムの送り速度を80m/minとし、電子銃のエミッション電流を1.0Aとし、電子ビームの照射時間を酸化アルミニウム109に対し酸化ケイ素11の比率で時分割するよう変更し、比較例1と同様にして、積層フィルムを得た。 [Comparative Example 2]
In Comparative Example 1, the film feed speed was set to 80 m / min, the emission current of the electron gun was set to 1.0 A, and the irradiation time of the electron beam was changed to be time-divided at a ratio of silicon oxide 11 to aluminum oxide 109, A laminated film was obtained in the same manner as Comparative Example 1.
〔比較例3〕
比較例1において、蒸着材料2として2~6mm程度の粒状の酸化セリウム(純度99%以上)を使用し、フィルムの送り速度を55m/minとし、電子銃のエミッション電流を1.0Aとし、電子ビームの照射時間を酸化アルミニウム86に対し酸化セリウム34の比率で時分割するよう変更し、比較例1と同様にして、積層フィルムを得た。 [Comparative Example 3]
In Comparative Example 1, granular cerium oxide (purity 99% or more) of about 2 to 6 mm is used as the vapor deposition material 2, the film feed rate is 55 m / min, the emission current of the electron gun is 1.0 A, and the electron The beam irradiation time was changed so as to be time-divided at a ratio of cerium oxide 34 to aluminum oxide 86, and a laminated film was obtained in the same manner as in Comparative Example 1.
比較例1において、蒸着材料2として2~6mm程度の粒状の酸化セリウム(純度99%以上)を使用し、フィルムの送り速度を55m/minとし、電子銃のエミッション電流を1.0Aとし、電子ビームの照射時間を酸化アルミニウム86に対し酸化セリウム34の比率で時分割するよう変更し、比較例1と同様にして、積層フィルムを得た。 [Comparative Example 3]
In Comparative Example 1, granular cerium oxide (purity 99% or more) of about 2 to 6 mm is used as the vapor deposition material 2, the film feed rate is 55 m / min, the emission current of the electron gun is 1.0 A, and the electron The beam irradiation time was changed so as to be time-divided at a ratio of cerium oxide 34 to aluminum oxide 86, and a laminated film was obtained in the same manner as in Comparative Example 1.
〔比較例4〕
比較例1において、蒸着材料2として2~5mm程度の粒状の酸化イットリウム(純度99.9%以上)を使用し、フィルムの送り速度を60m/minとし、電子銃のエミッション電流を1.0Aとし、電子ビームの照射時間を酸化アルミニウム65に対し酸化イットリウム55の比率で時分割するよう変更し、比較例1と同様にして、積層フィルムを得た。 [Comparative Example 4]
In Comparative Example 1, granular yttrium oxide having a purity of about 2 to 5 mm (purity 99.9% or more) is used as the vapor deposition material 2, the film feed rate is 60 m / min, and the emission current of the electron gun is 1.0 A. The electron beam irradiation time was changed so as to be time-divided at a ratio of yttrium oxide 55 to aluminum oxide 65, and a laminated film was obtained in the same manner as in Comparative Example 1.
比較例1において、蒸着材料2として2~5mm程度の粒状の酸化イットリウム(純度99.9%以上)を使用し、フィルムの送り速度を60m/minとし、電子銃のエミッション電流を1.0Aとし、電子ビームの照射時間を酸化アルミニウム65に対し酸化イットリウム55の比率で時分割するよう変更し、比較例1と同様にして、積層フィルムを得た。 [Comparative Example 4]
In Comparative Example 1, granular yttrium oxide having a purity of about 2 to 5 mm (purity 99.9% or more) is used as the vapor deposition material 2, the film feed rate is 60 m / min, and the emission current of the electron gun is 1.0 A. The electron beam irradiation time was changed so as to be time-divided at a ratio of yttrium oxide 55 to aluminum oxide 65, and a laminated film was obtained in the same manner as in Comparative Example 1.
〔比較例5〕
比較例1において、蒸着材料2として2~5mm程度の粒状の酸化ジルコニウム(純度99.9%以上)を使用し、フィルムの送り速度を25m/minとし、電子ビームの照射時間を酸化アルミニウム68に対し酸化ジルコニウム53の比率で時分割するよう変更し、比較例1と同様にして、積層フィルムを得た。 [Comparative Example 5]
In Comparative Example 1, granular zirconium oxide (purity of 99.9% or more) of about 2 to 5 mm was used as the vapor deposition material 2, the film feed rate was 25 m / min, and the electron beam irradiation time was changed to aluminum oxide 68. The laminated film was obtained in the same manner as in Comparative Example 1 except that the time division was performed at the ratio of zirconium oxide 53.
比較例1において、蒸着材料2として2~5mm程度の粒状の酸化ジルコニウム(純度99.9%以上)を使用し、フィルムの送り速度を25m/minとし、電子ビームの照射時間を酸化アルミニウム68に対し酸化ジルコニウム53の比率で時分割するよう変更し、比較例1と同様にして、積層フィルムを得た。 [Comparative Example 5]
In Comparative Example 1, granular zirconium oxide (purity of 99.9% or more) of about 2 to 5 mm was used as the vapor deposition material 2, the film feed rate was 25 m / min, and the electron beam irradiation time was changed to aluminum oxide 68. The laminated film was obtained in the same manner as in Comparative Example 1 except that the time division was performed at the ratio of zirconium oxide 53.
〔比較例6〕
比較例5において、フィルムの送り速度を25m/minとし、電子銃のエミッション電流を1.0Aとし、電子ビームの照射時間を酸化アルミニウム71に対し酸化ジルコニウム49の比率で時分割するよう変更し、比較例5と同様にして、積層フィルムを得た。 [Comparative Example 6]
In Comparative Example 5, the film feed rate was set to 25 m / min, the emission current of the electron gun was set to 1.0 A, and the electron beam irradiation time was changed to be time-divided at a ratio of zirconium oxide 49 to aluminum oxide 71, A laminated film was obtained in the same manner as in Comparative Example 5.
比較例5において、フィルムの送り速度を25m/minとし、電子銃のエミッション電流を1.0Aとし、電子ビームの照射時間を酸化アルミニウム71に対し酸化ジルコニウム49の比率で時分割するよう変更し、比較例5と同様にして、積層フィルムを得た。 [Comparative Example 6]
In Comparative Example 5, the film feed rate was set to 25 m / min, the emission current of the electron gun was set to 1.0 A, and the electron beam irradiation time was changed to be time-divided at a ratio of zirconium oxide 49 to aluminum oxide 71, A laminated film was obtained in the same manner as in Comparative Example 5.
〔比較例7〕
プラスチックフィルムとして50μm厚のPETフィルム(東洋紡績(株)製「A4100」)を使用し、該フィルム上に、酸化マグネシウム(蒸着材料1)のみからなる無機化合物薄膜を蒸着により形成し、積層フィルムを得た。
詳しくは、蒸着材料1として、2~6mm程度の粒状の酸化マグネシウム(純度99.9%以上)を使用した。加熱方式は、電子銃(日本電子社製「JOBG-1000UB」;最大出力100kw)を使用した電子ビーム方式で行った。
そして、電子銃のエミッション電流を0.6Aとして、酸化マグネシウムに電子ビームを照射して加熱することにより、酸化マグネシウムを蒸発させ、薄膜の形成を行った。 [Comparative Example 7]
A 50 μm-thick PET film (“A4100” manufactured by Toyobo Co., Ltd.) is used as a plastic film, and an inorganic compound thin film made only of magnesium oxide (deposition material 1) is formed on the film by vapor deposition. Obtained.
Specifically, granular magnesium oxide having a purity of about 2 to 6 mm (purity of 99.9% or more) was used as the vapor deposition material 1. The heating method was an electron beam method using an electron gun (“JOGG-1000UB” manufactured by JEOL Ltd .; maximum output 100 kW).
Then, the emission current of the electron gun was set to 0.6 A, and the magnesium oxide was irradiated with an electron beam and heated to evaporate the magnesium oxide, thereby forming a thin film.
プラスチックフィルムとして50μm厚のPETフィルム(東洋紡績(株)製「A4100」)を使用し、該フィルム上に、酸化マグネシウム(蒸着材料1)のみからなる無機化合物薄膜を蒸着により形成し、積層フィルムを得た。
詳しくは、蒸着材料1として、2~6mm程度の粒状の酸化マグネシウム(純度99.9%以上)を使用した。加熱方式は、電子銃(日本電子社製「JOBG-1000UB」;最大出力100kw)を使用した電子ビーム方式で行った。
そして、電子銃のエミッション電流を0.6Aとして、酸化マグネシウムに電子ビームを照射して加熱することにより、酸化マグネシウムを蒸発させ、薄膜の形成を行った。 [Comparative Example 7]
A 50 μm-thick PET film (“A4100” manufactured by Toyobo Co., Ltd.) is used as a plastic film, and an inorganic compound thin film made only of magnesium oxide (deposition material 1) is formed on the film by vapor deposition. Obtained.
Specifically, granular magnesium oxide having a purity of about 2 to 6 mm (purity of 99.9% or more) was used as the vapor deposition material 1. The heating method was an electron beam method using an electron gun (“JOGG-1000UB” manufactured by JEOL Ltd .; maximum output 100 kW).
Then, the emission current of the electron gun was set to 0.6 A, and the magnesium oxide was irradiated with an electron beam and heated to evaporate the magnesium oxide, thereby forming a thin film.
なお、蒸着は、フィルムの送り速度を60m/minとしたこと以外、実施例1と同様、巻き出しロール部、コーティングロール部および巻取りロール部を備えた真空槽で、連続して行った。
In addition, vapor deposition was continuously performed in the vacuum tank provided with the unwinding roll part, the coating roll part, and the winding roll part similarly to Example 1 except having set the film feed rate to 60 m / min.
〔比較例8〕
比較例7において、蒸着材料1として3~6mm程度の粒子状酸化アルミニウム(純度99%)を使用し、電子銃のエミッション電流を1.0Aとし、フィルムの送り速度を40m/minに変更し、比較例7と同様にして、積層フィルムを得た。 [Comparative Example 8]
In Comparative Example 7, particulate aluminum oxide of about 3 to 6 mm (purity 99%) was used as the vapor deposition material 1, the emission current of the electron gun was set to 1.0 A, and the film feed rate was changed to 40 m / min. A laminated film was obtained in the same manner as in Comparative Example 7.
比較例7において、蒸着材料1として3~6mm程度の粒子状酸化アルミニウム(純度99%)を使用し、電子銃のエミッション電流を1.0Aとし、フィルムの送り速度を40m/minに変更し、比較例7と同様にして、積層フィルムを得た。 [Comparative Example 8]
In Comparative Example 7, particulate aluminum oxide of about 3 to 6 mm (purity 99%) was used as the vapor deposition material 1, the emission current of the electron gun was set to 1.0 A, and the film feed rate was changed to 40 m / min. A laminated film was obtained in the same manner as in Comparative Example 7.
以上の実施例および比較例で得られた積層フィルムについて、無機化合物薄膜の膜厚、無機化合物薄膜中の蒸着材料2の含有率、酸素透過率および水蒸気透過率を表1に示す。
Table 1 shows the film thickness of the inorganic compound thin film, the content of the vapor deposition material 2 in the inorganic compound thin film, the oxygen transmission rate, and the water vapor transmission rate for the laminated films obtained in the above Examples and Comparative Examples.
本発明により、酸素および水蒸気などに対する高いガスバリア性を持ったガスバリア性積層フィルムを提供することができる。本発明のガスバリア性フィルムは、各種食品、医薬品、工業製品の包装用途のほか、高いガスバリア性や耐久性が求められる太陽電池、電子ペーパー、有機EL素子、半導体素子等の工業用途にも広く用いることができるので、産業界に大きく寄与することが期待される。
According to the present invention, a gas barrier laminate film having a high gas barrier property against oxygen and water vapor can be provided. The gas barrier film of the present invention is widely used not only for packaging various foods, pharmaceuticals, and industrial products, but also for industrial applications such as solar cells, electronic paper, organic EL devices, and semiconductor devices that require high gas barrier properties and durability. Can be expected to contribute greatly to the industry.
Claims (3)
- プラスチックフィルムの少なくとも片面に無機化合物薄膜が形成されてなるフィルムであって、前記無機化合物薄膜が酸化アルミニウムと酸化マグネシウムとを主たる成分として含んでなることを特徴とするガスバリア性フィルム。 A gas barrier film comprising an inorganic compound thin film formed on at least one side of a plastic film, wherein the inorganic compound thin film contains aluminum oxide and magnesium oxide as main components.
- 前記無機化合物薄膜中に含まれる酸化アルミニウムおよび酸化マグネシウムの合計100質量%に対し、酸化マグネシウムの比率が5質量%以上、90質量%以下である、請求項1に記載のガスバリア性フィルム。 The gas barrier film according to claim 1, wherein a ratio of magnesium oxide is 5% by mass or more and 90% by mass or less with respect to 100% by mass of the total of aluminum oxide and magnesium oxide contained in the inorganic compound thin film.
- 前記無機化合物薄膜の膜厚が5~500nmである、請求項1または2に記載のガスバリア性フィルム。 The gas barrier film according to claim 1 or 2, wherein the inorganic compound thin film has a thickness of 5 to 500 nm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011184812 | 2011-08-26 | ||
JP2011-184812 | 2011-08-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013031703A1 true WO2013031703A1 (en) | 2013-03-07 |
Family
ID=47756193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/071500 WO2013031703A1 (en) | 2011-08-26 | 2012-08-24 | Gas barrier film |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6047997B2 (en) |
TW (1) | TWI539018B (en) |
WO (1) | WO2013031703A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2960052A4 (en) * | 2013-02-20 | 2016-09-21 | Toyo Boseki | Gas barrier film |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220002721A (en) * | 2013-11-21 | 2022-01-06 | 엔테그리스, 아이엔씨. | Surface coating for chamber components used in plasma systems |
JP7393961B2 (en) * | 2020-01-28 | 2023-12-07 | 川研ファインケミカル株式会社 | Heat resistant member and its manufacturing method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61193841A (en) * | 1985-02-22 | 1986-08-28 | 積水化学工業株式会社 | Manufacture of damp-proof transparent synthetic resin body |
JPH07126835A (en) * | 1993-08-30 | 1995-05-16 | Tousero Kk | Transparent barrier film |
JPH08300589A (en) * | 1995-05-12 | 1996-11-19 | Toppan Printing Co Ltd | Coated layer forming film and coated film |
JP2011202268A (en) * | 2010-03-04 | 2011-10-13 | Mitsubishi Materials Corp | Vapor deposition material for forming thin film, thin film sheet having the thin film and laminated sheet |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5939506B2 (en) * | 1976-09-01 | 1984-09-25 | 凸版印刷株式会社 | Method for manufacturing transparent conductive film |
JPS60112403A (en) * | 1983-11-25 | 1985-06-18 | 株式会社大日製作所 | Wood barker |
JP3068107B2 (en) * | 1991-09-19 | 2000-07-24 | 東洋紡績株式会社 | Transparent gas barrier film |
-
2012
- 2012-08-24 TW TW101130784A patent/TWI539018B/en active
- 2012-08-24 WO PCT/JP2012/071500 patent/WO2013031703A1/en active Application Filing
- 2012-08-24 JP JP2012185826A patent/JP6047997B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61193841A (en) * | 1985-02-22 | 1986-08-28 | 積水化学工業株式会社 | Manufacture of damp-proof transparent synthetic resin body |
JPH07126835A (en) * | 1993-08-30 | 1995-05-16 | Tousero Kk | Transparent barrier film |
JPH08300589A (en) * | 1995-05-12 | 1996-11-19 | Toppan Printing Co Ltd | Coated layer forming film and coated film |
JP2011202268A (en) * | 2010-03-04 | 2011-10-13 | Mitsubishi Materials Corp | Vapor deposition material for forming thin film, thin film sheet having the thin film and laminated sheet |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2960052A4 (en) * | 2013-02-20 | 2016-09-21 | Toyo Boseki | Gas barrier film |
Also Published As
Publication number | Publication date |
---|---|
TW201315822A (en) | 2013-04-16 |
JP2013063644A (en) | 2013-04-11 |
TWI539018B (en) | 2016-06-21 |
JP6047997B2 (en) | 2016-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019181960A (en) | Gas barrier laminate film | |
JP2005212146A (en) | Gas barrier film and gas barrier laminate | |
JP6047997B2 (en) | Gas barrier film | |
CA3072406C (en) | Gas barrier laminated body | |
JP7298154B6 (en) | Manufacturing method of gas barrier film | |
JP6225573B2 (en) | Laminated film | |
EP2955022B1 (en) | Gas barrier film | |
JP6365528B2 (en) | Gas barrier film | |
JP2016188438A (en) | Method of manufacturing gas barrier laminate film | |
JP4164738B2 (en) | Gas barrier film | |
JP6572895B2 (en) | Laminated film | |
JP3228363B2 (en) | Paper carton and packaging material for paper carton | |
JP3244149B2 (en) | Paper carton and packaging material for paper carton | |
JP2016112743A (en) | Laminate film | |
JPH06106670A (en) | Transparent gas barrier film | |
JPH06345121A (en) | Paper carton and packing material for paper carton | |
JP2003145670A (en) | Gas barrier film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12827103 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12827103 Country of ref document: EP Kind code of ref document: A1 |