JP7393961B2 - Heat resistant member and its manufacturing method - Google Patents

Heat resistant member and its manufacturing method Download PDF

Info

Publication number
JP7393961B2
JP7393961B2 JP2020011752A JP2020011752A JP7393961B2 JP 7393961 B2 JP7393961 B2 JP 7393961B2 JP 2020011752 A JP2020011752 A JP 2020011752A JP 2020011752 A JP2020011752 A JP 2020011752A JP 7393961 B2 JP7393961 B2 JP 7393961B2
Authority
JP
Japan
Prior art keywords
heat
aluminum
coating
mol
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020011752A
Other languages
Japanese (ja)
Other versions
JP2021116466A (en
Inventor
直文 永井
和昭 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaken Fine Chemicals Co Ltd
Original Assignee
Kawaken Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaken Fine Chemicals Co Ltd filed Critical Kawaken Fine Chemicals Co Ltd
Priority to JP2020011752A priority Critical patent/JP7393961B2/en
Publication of JP2021116466A publication Critical patent/JP2021116466A/en
Application granted granted Critical
Publication of JP7393961B2 publication Critical patent/JP7393961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、内部が高温酸化雰囲気下であっても長時間にわたって用いることが出来る耐久性の高い耐熱性部材に関するものである。 The present invention relates to a highly durable heat-resistant member that can be used for a long time even if the inside is in a high-temperature oxidizing atmosphere.

一般にグラファイト、グラフェン、カーボンナノチューブに代表されるカーボン部材やステンレス鋼に代表される金属部材は成形加工性や高い耐熱性を有していることから、ガスケットパッキン、電極、ヒーター、回路配線など工業的に幅広く使用されているおり、近年ではさらに高温での耐久性を求められている。 In general, carbon materials such as graphite, graphene, and carbon nanotubes, and metal materials such as stainless steel, have moldability and high heat resistance, so they are used in industrial applications such as gasket packing, electrodes, heaters, and circuit wiring. It is widely used in the industry, and in recent years there has been a demand for even greater durability at high temperatures.

しかし、高温・酸化雰囲気下では、カーボン部材は部材表面が酸化されることにより消失し劣化する。また、ステンレス部材は、800℃以上の高温下では部材表面の酸化と合金中の金属イオンが、酸化物と酸素界面へ外部拡散することにより部材全体が酸化物になり、表面剥離や、機械的強度、導電性が低下してしまう。 However, at high temperatures and in an oxidizing atmosphere, the surface of the carbon member is oxidized, causing it to disappear and deteriorate. In addition, when stainless steel parts are exposed to high temperatures of 800°C or higher, the surface of the part is oxidized and the metal ions in the alloy diffuse outward to the oxide and oxygen interface, causing the entire part to become an oxide, causing surface peeling and mechanical damage. Strength and conductivity will decrease.

このため耐環境性の向上を目的とする研究開発が行われている。具体的には、部材表面に酸化被膜を形成し、外部からの酸素の遮断(酸素内向拡散)および部材側からの金属イオンの拡散(金属イオンの外向拡散)の抑制、さらには、部材中に金属元素をドープし、合金内部での金属拡散を抑制する取り組みが行われている。 For this reason, research and development is being conducted with the aim of improving environmental resistance. Specifically, an oxide film is formed on the surface of the component to block oxygen from the outside (oxygen inward diffusion) and suppress metal ion diffusion from the component side (metal ion outward diffusion). Efforts are being made to dope metal elements to suppress metal diffusion within the alloy.

例えば、金属アルコキシドを加水分解し重縮合反応を経て金属酸化物ゾル溶液を作製し、ステンレス基板にコーティングして保護被膜を形成することにより耐酸化性や耐腐食性を改善する試みが報告されている。
しかし、上記手法で作製された膜は微細な細孔を有しており、表面の酸化を抑制する効果が十分でない場合が有る。また、アルミナやシリカもしくはアルミナ―シリカ複合膜は、800℃程度までは、比較的部材表面の酸化を抑制することができるが、それ以上の高温では、基板中に存在しているクロム、鉄などの金属イオンが合金中から酸化物膜中に拡散し、さらには、表面に到達して酸化物となり析出することを十分抑制するには難が有る。そのため、機械的強度および導電性が低下する問題があった。(非特許文献1)
For example, attempts have been reported to improve oxidation and corrosion resistance by hydrolyzing metal alkoxides and producing a metal oxide sol solution through a polycondensation reaction and coating it on a stainless steel substrate to form a protective film. There is.
However, the membrane produced by the above method has fine pores, and the effect of suppressing surface oxidation may not be sufficient. In addition, alumina, silica, or alumina-silica composite films can relatively suppress oxidation on the surface of parts up to about 800°C, but at higher temperatures, chromium, iron, etc. It is difficult to sufficiently suppress metal ions from diffusing from the alloy into the oxide film, and furthermore, from reaching the surface and precipitating as oxides. Therefore, there was a problem that mechanical strength and electrical conductivity decreased. (Non-patent document 1)

また、特定のステンレスを熱処理して金属酸化物を表面に析出させ被膜を形成する方法が報告されている。しかしながら、この方法では、熱処理温度によって被膜組成や膜厚が変化し、900℃以上の高温下では部材との熱膨張差により密着性が低下し剥離することや、鋼材中に元素を添加しておく必要があるためにコスト的な面で課題を有していた。(特許文献1) Furthermore, a method has been reported in which a specific stainless steel is heat treated to deposit metal oxides on the surface to form a coating. However, with this method, the film composition and film thickness change depending on the heat treatment temperature, and at high temperatures of 900°C or higher, the adhesion with the component decreases due to the difference in thermal expansion and peeling occurs. This poses a problem in terms of cost because it requires storage. (Patent Document 1)

また、エアロゾル化させた高耐食性を有する固体の微粒子を鋼材表面に吹き付けることを特徴とする防食被覆鋼材が報告されている。さらには、基板上にキャリアガスと微粒子を同時に搬送して、微粒子膜を形成するガスデポジョン法が報告されている。しかしながら、上記方法では被膜を複雑な形状や微細な細孔内へ均一に形成は困難であった。(特許文献2および特許文献3) Furthermore, anti-corrosion coated steel materials have been reported in which aerosolized solid fine particles having high corrosion resistance are sprayed onto the surface of the steel materials. Furthermore, a gas deposition method has been reported in which a carrier gas and fine particles are simultaneously conveyed onto a substrate to form a fine particle film. However, with the above method, it is difficult to uniformly form a film in a complex shape or in fine pores. (Patent Document 2 and Patent Document 3)

また、カーボン基材上にランタノイド元素とAl、B、Gaなどの3B属元素が含有した複合酸化物被膜を形成させることにより、耐熱性に優れ、高密着性の被膜に関する報告がされている。しかしながら、ランタノイド酸化物の含有量が高いことからコスト面で課題があり、さらにはタングステンの中間層を必要とすることから製膜工程面でも課題を有していた。(特許文献4) Furthermore, there have been reports of a coating having excellent heat resistance and high adhesion by forming a composite oxide coating containing lanthanide elements and 3B group elements such as Al, B, and Ga on a carbon base material. However, since the content of lanthanide oxide is high, there are problems in terms of cost, and furthermore, since an intermediate layer of tungsten is required, there are problems in terms of the film forming process. (Patent Document 4)

特開平11-156194JP 11-156194 特開2007-146266JP2007-146266 特開平6-116743JP 6-116743 特開2009-1485JP2009-1485

日本金属学会誌55巻第12号(1991)1345-1352Journal of the Japan Institute of Metals, Vol. 55, No. 12 (1991) 1345-1352

安価で工業的に利用可能な、800℃~1,500℃の酸化雰囲気下で使用可能な耐熱性部材を提供する。 To provide a heat-resistant member that is inexpensive, industrially usable, and usable in an oxidizing atmosphere of 800°C to 1,500°C.

本発明者らは前項記載の耐熱性部材の提供についての安価な製法を開発することを目標として鋭意検討を重ねた結果、Al、Si、Ce、Zrの酸化物からなる酸化被膜をゾル-ゲル法で部材表面をコートし、熱処理を行うことにより、複雑な形状や微細な構造にも極めて高い耐熱性を付与できることを見出した。 The present inventors have conducted extensive studies with the aim of developing an inexpensive manufacturing method for providing the heat-resistant member described in the preceding section, and as a result, we have developed an oxide film consisting of oxides of Al, Si, Ce, and Zr using a sol-gel method. We have discovered that extremely high heat resistance can be imparted to complex shapes and fine structures by coating the surface of the component with a heat treatment method.

具体的には、カーボン部材表面を請求項1および3の酸化物で被覆することで、酸素イオンの酸化物/カーボン界面への内部拡散によるカーボン部材の消失を軽減することができ、さらには、請求項1および3の酸化物で金属部材表面について被覆することにより、酸化被膜中を金属イオンが部材側より酸化物/酸素界面への外向拡散および酸素イオンが酸素側より部材/酸化物界面への内交拡散を抑制することにより、高温雰囲気下での耐久性を大幅に向上させることができ、結果的に耐熱性が向上することを見出した。 Specifically, by coating the surface of the carbon member with the oxide of claims 1 and 3, it is possible to reduce the loss of the carbon member due to internal diffusion of oxygen ions to the oxide/carbon interface, and further, By coating the surface of the metal member with the oxide of Claims 1 and 3, metal ions in the oxide film diffuse outward from the member side to the oxide/oxygen interface, and oxygen ions from the oxygen side to the member/oxide interface. It has been found that by suppressing internal cross-diffusion, durability in high-temperature atmospheres can be significantly improved, resulting in improved heat resistance.

本発明の要旨は以下の通りである。 The gist of the invention is as follows.

(1)表面に次の(a)~(c)すべてを満たす被膜を有する耐熱性部材
(a)アルミニウム、ジルコニウム、セリウム、ケイ素の酸化物からなり
(b)アルミニウムに対するジルコニウム、セリウム、ケイ素の各原子比率が次の(ア)~(エ)すべてを満たし
(原子比率)
Zr/Al=0.001以上 -(ア)
Ce/Al=0.001以上 -(イ)
Si/Al=0.001以上 -(ウ)
であり 且つ
(Si+Ce+Zr)/Al=0.01~0.5 -(エ)
(c)被膜の平均膜厚が0.01~30.0μm
(1) A heat-resistant member having a coating on its surface that satisfies all of the following (a) to (c) (a) Made of oxides of aluminum, zirconium, cerium, and silicon (b) Each of zirconium, cerium, and silicon for aluminum The atomic ratio satisfies all of the following (a) to (d) (atomic ratio)
Zr/Al=0.001 or more -(A)
Ce/Al=0.001 or more -(A)
Si/Al=0.001 or more -(C)
And (Si+Ce+Zr)/Al=0.01~0.5 -(D)
(c) Average film thickness of the coating is 0.01 to 30.0 μm

(2)前記被膜が、カーボンまたは融点が1,500℃以上のステンレス鋼のいずれか一つ以上の表面を、被覆したものであることを特徴とする(1)記載の耐熱性部材 (2) The heat-resistant member according to (1), wherein the coating coats the surface of one or more of carbon or stainless steel with a melting point of 1,500° C. or higher.

(3)前記被膜のアルミニウム酸化物がアモルファス、擬ベーマイト、ベーマイト、γ‐アルミナ、θ‐アルミナ、δ‐アルミナおよびα‐アルミナの内少なくとも一種以上の結晶形を有することを特徴とする(1)記載の耐熱性部材。 (3) The aluminum oxide of the coating has at least one crystal form among amorphous, pseudoboehmite, boehmite, γ-alumina, θ-alumina, δ-alumina, and α-alumina (1) The heat-resistant member described.

(4)前記(1)および(3)を満たすアルミニウム化合物とジルコニア化合物、セリウム化合物、ケイ素化合物からなる混合液を、(2)記載の部材表面に塗布し、乾燥後、100~1,500℃の熱処理工程からなる(1)~(3)記載の耐熱性部材の製造方法 (4) A liquid mixture consisting of an aluminum compound, a zirconia compound, a cerium compound, and a silicon compound that satisfies (1) and (3) above is applied to the surface of the member described in (2), and after drying, the mixture is heated to 100 to 1,500°C. The method for producing a heat-resistant member according to (1) to (3), comprising the heat treatment step of

800℃~1,500℃の酸化雰囲気下で使用可能な耐熱性部材を提供することが出来る。 It is possible to provide a heat-resistant member that can be used in an oxidizing atmosphere of 800°C to 1,500°C.

さらに、部材の耐熱性が向上したことにより、高温での使用時の耐久性時間も大幅に向上し、より広く産業界の発展に寄与することができる。また、被覆した酸化物被膜が導電性のため、本発明の耐熱性部材は電極等にも利用可能である。そのため導電性部材としても、高い耐熱性および耐久性を付与できたと考える。 Furthermore, since the heat resistance of the member has been improved, the durability time when used at high temperatures has also been significantly improved, making it possible to contribute to the development of a wider range of industries. Further, since the coated oxide film is electrically conductive, the heat-resistant member of the present invention can also be used for electrodes and the like. Therefore, we believe that we were able to provide high heat resistance and durability as a conductive member.

図1は実施例1で得られた被覆物表面のSEM写真である。FIG. 1 is a SEM photograph of the surface of the coating obtained in Example 1. 図2は比較例1で得られた被覆物表面のSEM写真である。FIG. 2 is a SEM photograph of the surface of the coating obtained in Comparative Example 1.

以下、本発明の実施形態について説明する。 Embodiments of the present invention will be described below.

酸化物被膜の組成
本発明を構成する酸化物被膜は、次の(a)~(b)すべてを満たす。
(a)アルミニウム、ジルコニウム、セリウム、ケイ素の酸化物からなり
(b)アルミニウムに対するジルコニウム、セリウム、ケイ素の各原子比率が次の(ア)~(エ)すべてを満たし
(原子比率)
Zr/Al=0.001以上 -(ア)
Ce/Al=0.001以上 -(イ)
Si/Al=0.001以上 -(ウ)
であり 且つ
(Si+Ce+Zr)/Al=0.01~0.5 -(エ)
Composition of Oxide Film The oxide film constituting the present invention satisfies all of the following (a) to (b).
(a) Consists of oxides of aluminum, zirconium, cerium, and silicon (b) The atomic ratio of zirconium, cerium, and silicon to aluminum satisfies all of the following (a) to (d) (atomic ratio)
Zr/Al=0.001 or more -(A)
Ce/Al=0.001 or more -(A)
Si/Al=0.001 or more -(C)
And (Si+Ce+Zr)/Al=0.01~0.5 -(D)

酸化物被膜中のアルミニウムに対するジルコニウム、セリウム、ケイ素の各原子比率が0.001未満および/または、酸化物被膜中のアルミニウムに対するジルコニウム、セリウム、ケイ素の合計の原子比率が0.01未満では高温雰囲気下で酸化被膜中の酸素の内部拡散速度および部材中の金属イオンの外部拡散速度が大きくなり、部材の劣化(酸化)が著しく進行する場合がある。 If the atomic ratio of each of zirconium, cerium, and silicon to aluminum in the oxide film is less than 0.001 and/or the total atomic ratio of zirconium, cerium, and silicon to aluminum in the oxide film is less than 0.01, a high temperature atmosphere Under these conditions, the internal diffusion rate of oxygen in the oxide film and the external diffusion rate of metal ions in the member increase, and deterioration (oxidation) of the member may progress significantly.

酸化物被膜中のアルミニウムに対するジルコニウム、セリウム、ケイ素の合計の原子比率が0.5を超えると部材の劣化および酸化被膜の基板との密着性が低下する場合がある。 If the total atomic ratio of zirconium, cerium, and silicon to aluminum in the oxide film exceeds 0.5, the member may deteriorate and the adhesion of the oxide film to the substrate may decrease.

酸化物被膜の膜厚
本発明の酸化物被膜の膜の厚さは、分散媒中アルミナの濃度により容易に調節が可能である。アルミナの濃度が低い場合には、薄膜が形成され、高い場合には厚膜が形成され、濃度を調整することで所望の膜厚とすることができる。また、必要に応じて被覆操作を繰り返し所望の厚さの被膜とすることもできる。
Thickness of oxide film The thickness of the oxide film of the present invention can be easily adjusted by adjusting the concentration of alumina in the dispersion medium. When the alumina concentration is low, a thin film is formed, and when it is high, a thick film is formed, and by adjusting the concentration, a desired film thickness can be obtained. Further, the coating operation can be repeated as necessary to obtain a coating having a desired thickness.

本発明を構成する被覆膜の膜厚は、0.01μm以上30.0μm以下が十分な耐熱性をもつ被膜を形成することができ好ましい。0.01μm未満では、耐熱性の向上に十分な効果が得られず、また、30μmを超えると部材との密着性が低下して剥離する場合がある。膜厚については、SUS基板の中央付近に厚さ50μmマスキングテープ(ニチバンセロテープ(登録商標) CT1535-5Pまたは同等品)を貼付け、塗布液をコート後、乾燥、150℃熱処理後マスキングテープを剥がし、断面を走査型電子顕微鏡(FE-SEM: 日立ハイテクノロジーズ製 S-4800)で観察した。同条件にて3サンプル作製し、同条件にて断面測定し、平均値を膜厚とした。 The thickness of the coating film constituting the present invention is preferably 0.01 μm or more and 30.0 μm or less since a film with sufficient heat resistance can be formed. If it is less than 0.01 μm, a sufficient effect of improving heat resistance cannot be obtained, and if it exceeds 30 μm, the adhesiveness with the member may decrease and peeling may occur. Regarding the film thickness, apply a 50 μm thick masking tape (Nichiban Cellotape (registered trademark) CT1535-5P or equivalent) near the center of the SUS substrate, coat it with the coating solution, dry it, heat it at 150°C, and then peel off the masking tape. The cross section was observed with a scanning electron microscope (FE-SEM: S-4800 manufactured by Hitachi High Technologies). Three samples were prepared under the same conditions, cross sections were measured under the same conditions, and the average value was taken as the film thickness.

結晶構造
本発明の耐熱導電部材を構成する酸化物被膜中のアルミニウム酸化物の結晶構造は、適宜選択することにより、ベーマイト、γ‐アルミナ、θ‐アルミナ、δ‐アルミナ、α‐アルミナから選ばれる少なくとも一種であり、好ましくはベーマイト、γ‐アルミナ、θ‐アルミナ、δ‐アルミナであって、加熱処理することにより、最終的に結晶系がα-アルミナに遷移するものである。結晶構造は、例えばX線回折装置(Rigaku製 SmartLab)にて測定することで確認することができる。
Crystal structure The crystal structure of the aluminum oxide in the oxide film constituting the heat-resistant conductive member of the present invention is selected from boehmite, γ-alumina, θ-alumina, δ-alumina, and α-alumina by appropriately selecting it. It is at least one type, preferably boehmite, γ-alumina, θ-alumina, or δ-alumina, and the crystal system ultimately changes to α-alumina by heat treatment. The crystal structure can be confirmed, for example, by measuring with an X-ray diffraction device (SmartLab manufactured by Rigaku).

粒子形状
塗布液中におけるアルミナの粒子形状およびサイズは特に問わないが、板状、柱状、繊維状、球状など使用することができ、サイズについては、1次結晶粒子の最短径が500nmを超えると基板との密着性が低下し、さらには微細な細孔、形状への塗布が困難になる場合がある。粒子が上記形状と大きさを持つことは、例えば走査型電子顕微鏡(FE-SEM: 日立ハイテクノロジーズ製 S-4800)を用いて30,000倍程度に拡大して観察することで確認することができる。
Particle shape The shape and size of alumina particles in the coating solution are not particularly limited, but plate-like, columnar, fibrous, spherical, etc. can be used. Regarding the size, if the shortest diameter of the primary crystal particles exceeds 500 nm, Adhesion to the substrate may deteriorate, and furthermore, it may become difficult to coat fine pores or shapes. It can be confirmed that the particles have the above shape and size, for example, by observing them using a scanning electron microscope (FE-SEM: Hitachi High-Technologies S-4800) at a magnification of about 30,000 times. can.

アルミニウム源
アルミニウム源としては加水分解性の無機、有機アルミニウムがあり、無機アルミニウムとして塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウムなどが挙げられる。アルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウムn-ブトキシド、アルミニウムsec-ブトキシドなどのアルミニウムアルコキシド、環状アルミニウムオリゴマー、ジイソプロポキシ(エチルアセトアセタト)アルミニウム、トリス(エチルアセトアセタト)アルミニウムなどのアルミニウムキレート、アルキルアルミニウム、炭酸アルミニウムアンモニウム塩、酢酸アルミニウムなどのカルボン酸塩などの有機アルミニウム化合物などが例示される。
また、無機または、有機アルミニウムの加水分解物および酸化物を使用してもよい。具体的には水酸化アルミニウム、バイヤライト、ギブサイト、擬ベーマイト、ベーマイト、γ‐アルミナ、θ‐アルミナ、δ‐アルミナ、α‐アルミナなど例示することができる。好ましくは、部材との密着性から水酸化アルミニウム、ギブサイト、擬ベーマイト、ベーマイトが好ましい。
Aluminum Source Aluminum sources include hydrolyzable inorganic and organic aluminum, and examples of inorganic aluminum include aluminum chloride, aluminum nitrate, and aluminum sulfate. Aluminum alkoxides such as aluminum ethoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum sec-butoxide, cyclic aluminum oligomers, aluminum chelates such as diisopropoxy(ethylacetoacetato)aluminum, tris(ethylacetoacetate)aluminum Examples include organoaluminum compounds such as aluminum alkyl, ammonium aluminum carbonate, and carboxylic acid salts such as aluminum acetate.
Furthermore, inorganic or organic aluminum hydrolysates and oxides may be used. Specific examples include aluminum hydroxide, bayerite, gibbsite, pseudoboehmite, boehmite, γ-alumina, θ-alumina, δ-alumina, and α-alumina. Preferably, aluminum hydroxide, gibbsite, pseudo-boehmite, and boehmite are preferred from the viewpoint of adhesion to the member.

ジルコニア化合物
ジルコニア化合物としては塩化ジルコニウム(III)、塩化ジルコニウム(IV)、硝酸ジルコニウム、酢酸ジルコニウム、炭酸ジルコニウムアンモニウムなどの塩の他、ジルコニウムイソプロポキシド、ジルコニウムブトキサイド、ジルコニウムテトラ(アセチルアセトネート)などが例示できる。
Zirconia compounds Zirconia compounds include salts such as zirconium (III) chloride, zirconium (IV) chloride, zirconium nitrate, zirconium acetate, and zirconium ammonium carbonate, as well as zirconium isopropoxide, zirconium butoxide, and zirconium tetra(acetylacetonate). For example,

セリウム化合物
セリウム化合物としては硝酸セリウム、炭酸セリウム、塩化セイルム、水酸化セリウムなどが例示される。
Cerium Compound Examples of cerium compounds include cerium nitrate, cerium carbonate, salem chloride, and cerium hydroxide.

ケイ素化合物
ケイ素化合物としてはテトラメトキシシラン、テトラエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等などが例示される。
Silicon compounds Examples of silicon compounds include tetramethoxysilane, tetraethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, - Glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane Examples include roxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, and the like.

基材
本発明を構成する耐熱性部材の基材としては、炭素繊維および/または、その焼結体、グラファイト、グラフェン、カーボンナノチューブなどからなるカーボン部材や、マルテンサイト系ステンレス鋼、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、オーステナイト・フェライト系ステンレス鋼などに代表されるステンレス鋼などが挙げられる。
Base material The base material of the heat-resistant member constituting the present invention may include carbon members made of carbon fiber and/or its sintered body, graphite, graphene, carbon nanotubes, martensitic stainless steel, ferritic stainless steel, etc. , austenitic stainless steel, austenitic ferritic stainless steel, and other stainless steels.

耐熱
800℃以下でも十分な効果を発現するが、酸化物被膜中の金属イオン拡散速度が高くないために、本発明部材の優位性は低い。また1,500℃以上では、部材よっては被膜の剥離が発生し十分な耐熱性を保持することが難しい場合がある。基材をステンレス鋼とした場合の耐熱性については、酸化被膜の密着性及びCr由来の結晶の有無で判断した。室温から1,000℃または1,500℃まで10℃/minで昇温し、1,000℃または1,500℃で24時間保持後、自然放冷した後に、目視観察にて酸化被膜に剥離がない被覆物であり、かつ走査型電子顕微鏡(FE-SEM: 日立ハイテクノロジーズ製 S-4800)によって30,000倍に拡大して、Crイオンの外部拡散した際に観察されるCr由来の結晶が観察されない被覆物を耐熱性があると判断した。
基材をカーボン部材とした場合の耐熱性については、重量減少率により判断した。TG‐DTA(2000SA ブルカーエイエックス社製)を用いて、室温から800℃まで10℃/分で昇温した。この時の重量減少率を測定し、重量減少率が30%以下の場合、耐熱性があると判断した。
Heat resistance Although sufficient effects are exhibited even at temperatures below 800°C, the superiority of the member of the present invention is low because the metal ion diffusion rate in the oxide film is not high. Furthermore, at temperatures above 1,500° C., the coating may peel off depending on the member, making it difficult to maintain sufficient heat resistance. Heat resistance when the base material was stainless steel was judged based on the adhesion of the oxide film and the presence or absence of crystals derived from Cr 2 O 3 . Raise the temperature from room temperature to 1,000°C or 1,500°C at a rate of 10°C/min, hold at 1,000°C or 1,500°C for 24 hours, let it cool naturally, and then visually observe that the oxide film has peeled off. Cr 2 O 3 observed when Cr ions diffuse outward under 30,000x magnification using a scanning electron microscope (FE-SEM: Hitachi High-Technologies S-4800). A coating in which no native crystals were observed was judged to be heat resistant.
The heat resistance when the base material was a carbon member was judged based on the weight reduction rate. Using TG-DTA (2000SA, manufactured by Bruker AX), the temperature was raised from room temperature to 800°C at a rate of 10°C/min. The weight loss rate at this time was measured, and if the weight loss rate was 30% or less, it was determined that the product had heat resistance.

製造方法
本発明を構成する耐熱性部材はアルミニウム化合物、ジルコニア化合物、セリウム化合物、ケイ素化合物からなる塗布液を部材表面に塗布し、乾燥後、100~1,500℃の熱処理することにより製造することができる。
Manufacturing method The heat-resistant member constituting the present invention can be manufactured by applying a coating liquid consisting of an aluminum compound, a zirconia compound, a cerium compound, and a silicon compound to the surface of the member, and after drying, heat-treating at 100 to 1,500°C. I can do it.

処理温度は、100℃未満で熱処理すると部材との密着性が低下する場合があり、1,500℃を超えると、密着性が低下し、亀裂等が発生する場合があり、部材からの金属イオンの外向拡散および酸素側からの酸御イオンの内向拡散を抑制することが難しくなる場合がある。使用エネルギーの低減や所要時間等のコストの点から、より好ましくは100℃~800℃である。 If the treatment temperature is less than 100°C, the adhesion with the component may decrease, and if it exceeds 1,500℃, the adhesion will decrease and cracks may occur, and metal ions from the component may decrease. It may become difficult to suppress the outward diffusion of acid ions and the inward diffusion of acid ions from the oxygen side. The temperature is more preferably 100° C. to 800° C. from the viewpoint of cost such as reduction of energy consumption and required time.

塗布液
塗布液は、組成の制御が分子レベルでできるため、ゾルゲル法により作製した塗布液を好適に用いることが出来る。PVD、CVDや溶射法などと比べると、大面積で複雑形状の基板に均一に塗布できることや、組成の製御が分子レベルでできることの他、初期に投資する設備投資が低く安価で製膜することができるなどの利点がある。
Coating Liquid Since the composition of the coating liquid can be controlled at the molecular level, a coating liquid prepared by a sol-gel method can be suitably used. Compared to PVD, CVD, thermal spraying, etc., it can be applied uniformly to large-area and complex-shaped substrates, the composition can be controlled at the molecular level, and the initial capital investment is low, making it possible to form films at low cost. There are advantages such as being able to

塗布法
塗布方法としては、所望する膜の形状、膜厚により各種一般的な部材への塗布方法を採用することができる。例えば、塗布液をスプレーで部材に均一に塗布させる方法、ロールコート等で表面に塗布する方法、部材を塗布液中に一定時間浸漬後、一定速度で引き揚げ、余分な液を除去し乾燥させるディップ法が例示できる。
Coating Method As the coating method, various general methods for coating various members can be adopted depending on the desired shape and thickness of the film. For example, methods include methods in which the coating liquid is uniformly applied to the component by spraying, methods in which the coating liquid is applied to the surface by roll coating, etc., methods in which the component is immersed in the coating solution for a certain period of time, then withdrawn at a constant speed, excess liquid is removed, and then dried. Law can be exemplified.

次に、実施例を示して本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。 Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following Examples.

実施例1 (Zr+Ce+Si)/Al=0.05
500mlの四つ口フラスコに、イオン交換水300g、62%硝酸水溶液0.86g、アルミニウムイソポロポキシド34g(0.17mol)を仕込み、撹拌しながら上昇し、発生するイソプロピルアルコールを留出させながら、液温を、95℃まで上昇させた。さらに反応液を攪拌式オートクレーブに移し、150℃で1時間反応を行った。反応液を40℃以下に冷却しアルミナゾルを合成した。このアルミナゾルにオキシ硝酸ジルコニウム二水和物0.53g(0.002mol)、硝酸セリウム六水和物酢酸1.1g(0.0025mol)、テトラエトキシシラン 0.8g(0.002mol)を添加して30分撹拌し塗布液を得た。反応液中の固形分濃度は、3.0質量%であった。
次に、アセトンで脱脂処理したステンレス鋼(SUS304)基板50mm×50mmを塗布液に5分間浸漬した。その後、基板をゆっくり引き上げ30℃で2時間乾燥後、さらに120℃で2時間焼結処理し、厚さ0.8μmの無色透明な被膜をステンレス鋼に被覆した耐熱性部材を作製した。
なお、膜厚については、SUS基板の中央付近に厚さ50μmマスキングテープを貼付け、塗布液をコート後、乾燥、150℃熱処理後マスキングテープを剥がし、断面を走査型電子顕微鏡(FE-SEM: 日立ハイテクノロジーズ製 S-4800)で観察し膜厚とした。同条件にて3サンプル作製し、同条件にて断面測定し、平均値を膜厚とした。膜厚測定については、以下同様の操作を行った。
耐熱性部材をX線回折装置(Rigaku製 SmartLab)にて測定した結果、ベーマイト構造を有していた。この耐熱性部材を、室温から1,000℃まで10℃/minで昇温し、1,000℃で24時間保持後、自然放冷した後に、目視にて観察したところ、酸化被膜の剥離はなくステンレス鋼に密着していた。また、前述1,000℃処理後の部材表面を走査型電子顕微鏡(FE-SEM: 日立ハイテクノロジーズ製 S-4800)によって30,000倍に拡大して、Crイオンの外部拡散した際に観察されるCr由来の結晶に注目し観察した結果(図1)、Cr由来の結晶は確認できなかった。
これより、耐熱性ありと評価した。
Example 1 (Zr+Ce+Si)/Al=0.05
Into a 500 ml four-necked flask, 300 g of ion-exchanged water, 0.86 g of 62% nitric acid aqueous solution, and 34 g (0.17 mol) of aluminum isoporopoxide were charged, and the mixture was raised while stirring, and the isopropyl alcohol generated was distilled out. , the liquid temperature was raised to 95°C. Furthermore, the reaction solution was transferred to a stirring autoclave, and the reaction was carried out at 150° C. for 1 hour. The reaction solution was cooled to 40°C or lower to synthesize an alumina sol. To this alumina sol were added 0.53 g (0.002 mol) of zirconium oxynitrate dihydrate, 1.1 g (0.0025 mol) of cerium nitrate hexahydrate and acetic acid, and 0.8 g (0.002 mol) of tetraethoxysilane. The mixture was stirred for 30 minutes to obtain a coating solution. The solid content concentration in the reaction solution was 3.0% by mass.
Next, a 50 mm x 50 mm stainless steel (SUS304) substrate that had been degreased with acetone was immersed in the coating solution for 5 minutes. Thereafter, the substrate was slowly pulled up and dried at 30° C. for 2 hours, and then sintered at 120° C. for 2 hours to produce a heat-resistant member in which stainless steel was coated with a colorless and transparent film having a thickness of 0.8 μm.
Regarding the film thickness, a masking tape with a thickness of 50 μm was pasted near the center of the SUS substrate, and after coating with the coating solution, it was dried and heat-treated at 150°C, the masking tape was peeled off, and the cross section was examined using a scanning electron microscope (FE-SEM: Hitachi The film thickness was determined by observing with a Hi-Technologies S-4800). Three samples were prepared under the same conditions, cross sections were measured under the same conditions, and the average value was taken as the film thickness. Regarding the film thickness measurement, the same operation was performed below.
As a result of measuring the heat-resistant member with an X-ray diffraction device (SmartLab manufactured by Rigaku), it was found to have a boehmite structure. This heat-resistant member was heated from room temperature to 1,000°C at a rate of 10°C/min, held at 1,000°C for 24 hours, and then allowed to cool naturally. Visual observation revealed that the oxide film did not peel off. It was stuck tightly to the stainless steel. In addition, the surface of the member treated at 1,000°C was magnified 30,000 times using a scanning electron microscope (FE-SEM: Hitachi High-Technologies S-4800), and the external diffusion of Cr ions was observed. As a result of observing the crystals derived from Cr 2 O 3 (FIG. 1), no crystals derived from Cr 2 O 3 could be confirmed.
From this, it was evaluated as having heat resistance.

実施例2(Zr+Ce+Si)/Al=0.05
500mlの四つ口フラスコに、イオン交換水300g、62%硝酸水溶液0.86gアルミニウムイソポロポキシド34g(0.17mol)、オキシ硝酸ジルコニウム二水和物0.53g(0.002mol)、硝酸セリウム六水和物酢酸1.1g(0.0025mol)、テトラエトキシシラン 0.8g(0.002mol)を仕込み、撹拌しながら上昇し、発生するイソプロピルアルコールを留出させながら、液温を、95℃まで上昇させた。反応液を、40℃以下に冷却し、反応を終了し塗布液を得た。反応液中の固形分濃度は、3.0質量%であった。
次に、アセトンで脱脂処理したステンレス鋼(SUS304)基板50mm×50mmを塗布液に5分間浸漬した。その後、基板をゆっくり引き上げ30℃で2時間乾燥後、さらに150℃で2時間焼結処理し、厚さ0.8μmの無色透明な被膜をステンレス鋼に被覆した耐熱性部材を作製した。
酸化被膜をX線回折装置にて測定した結果、ベーマイト構造を有していた。この耐熱性部材を、実施例1と同様1,000℃処理後に、目視にて観察したところ、酸化被膜の剥離はなくステンレス鋼に密着していた。また、前述1,000℃処理後の部材表面をSEM観察した結果、Cr由来の結晶は確認できなかった。
これより、耐熱性ありと評価した。
Example 2 (Zr+Ce+Si)/Al=0.05
In a 500 ml four-necked flask, add 300 g of ion exchange water, 0.86 g of 62% nitric acid aqueous solution, 34 g (0.17 mol) of aluminum isoporopoxide, 0.53 g (0.002 mol) of zirconium oxynitrate dihydrate, and cerium nitrate. 1.1 g (0.0025 mol) of hexahydrate acetic acid and 0.8 g (0.002 mol) of tetraethoxysilane were charged, and the temperature was raised to 95° C. while stirring to distill off the generated isopropyl alcohol. raised to. The reaction solution was cooled to 40° C. or lower to complete the reaction and obtain a coating solution. The solid content concentration in the reaction solution was 3.0% by mass.
Next, a 50 mm x 50 mm stainless steel (SUS304) substrate that had been degreased with acetone was immersed in the coating solution for 5 minutes. Thereafter, the substrate was slowly pulled up and dried at 30° C. for 2 hours, and then sintered at 150° C. for 2 hours to produce a heat-resistant member in which stainless steel was coated with a colorless and transparent film having a thickness of 0.8 μm.
As a result of measuring the oxide film using an X-ray diffraction device, it was found to have a boehmite structure. When this heat-resistant member was visually observed after being treated at 1,000° C. in the same manner as in Example 1, it was found that the oxide film did not peel off and was in close contact with the stainless steel. Furthermore, as a result of SEM observation of the surface of the member after the aforementioned 1,000° C. treatment, no crystals derived from Cr 2 O 3 could be confirmed.
From this, it was evaluated as having heat resistance.

実施例3(Zr+Ce+Si)/Al=0.3
オキシ硝酸ジルコニウム二水和物2.7g(0.01mol)、硝酸セリウム六水和物4.3g(0.01mol)、テトラエトキシシラン 6.5g(0.03mol)に変更した以外は実施例1と同様に操作した。
酸化被膜をX線回折装置にて測定した結果、ベーマイト構造を有していた。この耐熱性部材を、実施例1と同様1,000℃処理後に、目視にて観察したところ、酸化被膜の剥離はなくステンレス鋼に密着していた。また、前述1,000℃処理後の部材表面をSEM観察した結果、Cr由来の結晶は確認できなかった。
これより、耐熱性ありと評価した。
Example 3 (Zr+Ce+Si)/Al=0.3
Example 1 except that 2.7 g (0.01 mol) of zirconium oxynitrate dihydrate, 4.3 g (0.01 mol) of cerium nitrate hexahydrate, and 6.5 g (0.03 mol) of tetraethoxysilane were used. operated in the same way.
As a result of measuring the oxide film using an X-ray diffraction device, it was found to have a boehmite structure. When this heat-resistant member was visually observed after being treated at 1,000° C. in the same manner as in Example 1, it was found that the oxide film did not peel off and was in close contact with the stainless steel. Furthermore, as a result of SEM observation of the surface of the member after the aforementioned 1,000° C. treatment, no crystals derived from Cr 2 O 3 could be confirmed.
From this, it was evaluated as having heat resistance.

実施例4 (Zr+Ce+Si)/Al=0.45
オキシ硝酸ジルコニウム二水和物6.6g(0.025mol)、硝酸セリウム六水和物6.4g(0.015mol)、テトラエトキシシラン 7.7g(0.037mol)に変更した以外は実施例1と同様に操作した。
酸化被膜をX線回折装置にて測定した結果、ベーマイト構造を有していた。この耐熱性部材を、実施例1と同様1,000℃処理後に、目視にて観察したところ、酸化被膜の剥離はなくステンレス鋼に密着していた。また、前述1,000℃処理後の部材表面をSEM観察した結果、Cr由来の結晶は確認できなかった。
これより、耐熱性ありと評価した。
Example 4 (Zr+Ce+Si)/Al=0.45
Example 1 except that 6.6 g (0.025 mol) of zirconium oxynitrate dihydrate, 6.4 g (0.015 mol) of cerium nitrate hexahydrate, and 7.7 g (0.037 mol) of tetraethoxysilane were used. operated in the same way.
As a result of measuring the oxide film using an X-ray diffraction device, it was found to have a boehmite structure. When this heat-resistant member was visually observed after being treated at 1,000° C. in the same manner as in Example 1, it was found that the oxide film did not peel off and was in close contact with the stainless steel. Furthermore, as a result of SEM observation of the surface of the member after the aforementioned 1,000° C. treatment, no crystals derived from Cr 2 O 3 could be confirmed.
From this, it was evaluated as having heat resistance.

実施例5 (Zr+Ce+Si)/Al=0.3 Zr=0.007
オキシ硝酸ジルコニウム二水和物0.32g(0.001mol)、硝酸セリウム六水和物7.3g(0.017mol)、テトラエトキシシラン 7.0g(0.034mol)に変更した以外は実施例1と同様に操作した。
酸化被膜をX線回折装置にて測定した結果、ベーマイト構造を有していた。この耐熱性部材を、実施例1と同様1,000℃処理後に、目視にて観察したところ、酸化被膜の剥離はなくステンレス鋼に密着していた。また、前述1,000℃処理後の部材表面をSEM観察した結果、Cr由来の結晶は確認できなかった。
これより、耐熱性ありと評価した。
Example 5 (Zr+Ce+Si)/Al=0.3 Zr=0.007
Example 1 except that 0.32 g (0.001 mol) of zirconium oxynitrate dihydrate, 7.3 g (0.017 mol) of cerium nitrate hexahydrate, and 7.0 g (0.034 mol) of tetraethoxysilane were used. operated in the same way.
As a result of measuring the oxide film using an X-ray diffraction device, it was found to have a boehmite structure. When this heat-resistant member was visually observed after being treated at 1,000° C. in the same manner as in Example 1, it was found that the oxide film did not peel off and was in close contact with the stainless steel. Furthermore, as a result of SEM observation of the surface of the member after the aforementioned 1,000° C. treatment, no crystals derived from Cr 2 O 3 could be confirmed.
From this, it was evaluated as having heat resistance.

実施例6 (Zr+Ce+Si)/Al=0.15 Ce=0.005
オキシ硝酸ジルコニウム二水和物5.3g(0.02mol)、硝酸セリウム六水和物0.37g(0.00085mol)、テトラエトキシシラン 1.2g(0.0058mol)に変更した以外は実施例1と同様に操作した。
酸化被膜をX線回折装置にて測定した結果、ベーマイト構造を有していた。この耐熱性部材を、実施例1と同様1,000℃処理後に、目視にて観察したところ、酸化被膜の剥離はなくステンレス鋼に密着していた。また、前述1,000℃処理後の部材表面をSEM観察した結果、Cr由来の結晶は確認できなかった。
これより、耐熱性ありと評価した。
Example 6 (Zr+Ce+Si)/Al=0.15 Ce=0.005
Example 1 except that 5.3 g (0.02 mol) of zirconium oxynitrate dihydrate, 0.37 g (0.00085 mol) of cerium nitrate hexahydrate, and 1.2 g (0.0058 mol) of tetraethoxysilane were used. operated in the same way.
As a result of measuring the oxide film using an X-ray diffraction device, it was found to have a boehmite structure. When this heat-resistant member was visually observed after being treated at 1,000° C. in the same manner as in Example 1, it was found that the oxide film did not peel off and was in close contact with the stainless steel. Furthermore, as a result of SEM observation of the surface of the member after the aforementioned 1,000° C. treatment, no crystals derived from Cr 2 O 3 could be confirmed.
From this, it was evaluated as having heat resistance.

実施例7 (Zr+Ce+Si)/Al=0.31 Si=0.005
オキシ硝酸ジルコニウム二水和物5.5g(0.02mol)、硝酸セリウム六水和物13.0g(0.03mol)、テトラエトキシシラン 0.18g(0.00086mol)に変更した以外は実施例1と同様に操作した。
酸化被膜をX線回折装置にて測定した結果、ベーマイト構造を有していた。この耐熱性部材を、実施例1と同様1,000℃処理後に、目視にて観察したところ、酸化被膜の剥離はなくステンレス鋼に密着していた。また、前述1,000℃処理後の部材表面をSEM観察した結果、Cr由来の結晶は確認できなかった。
これより、耐熱性ありと評価した。
Example 7 (Zr+Ce+Si)/Al=0.31 Si=0.005
Example 1 except that 5.5 g (0.02 mol) of zirconium oxynitrate dihydrate, 13.0 g (0.03 mol) of cerium nitrate hexahydrate, and 0.18 g (0.00086 mol) of tetraethoxysilane were used. operated in the same way.
As a result of measuring the oxide film using an X-ray diffraction device, it was found to have a boehmite structure. When this heat-resistant member was visually observed after being treated at 1,000° C. in the same manner as in Example 1, it was found that the oxide film did not peel off and was in close contact with the stainless steel. Furthermore, as a result of SEM observation of the surface of the member after the aforementioned 1,000° C. treatment, no crystals derived from Cr 2 O 3 could be confirmed.
From this, it was evaluated as having heat resistance.

実施例8 グラファイト
実施例1で作製した塗布液を実施例1と同様な操作で、アセトンにより脱脂処理したグラファイト基板100mm×50mmに塗布し、150℃で2時間焼結させ、厚さ0.8μmの無色透明な被膜をグラファイトに被覆した耐熱性部材を作製した。
この耐熱性部材を室温から800℃まで10℃/分で昇温したときの重量減少を測定した結果、加熱前に比べて重量が20%減少していた。
これより、耐熱性ありと評価した。
Example 8 Graphite The coating solution prepared in Example 1 was applied to a 100 mm x 50 mm graphite substrate degreased with acetone in the same manner as in Example 1, and sintered at 150° C. for 2 hours to form a 0.8 μm thick graphite substrate. A heat-resistant member was prepared by coating graphite with a colorless and transparent film.
As a result of measuring the weight loss when this heat-resistant member was heated from room temperature to 800° C. at a rate of 10° C./min, the weight was reduced by 20% compared to before heating.
From this, it was evaluated as having heat resistance.

実施例9 (膜厚5μm)
実施例1で作製した塗布液を実施例1と同様な操作で、アセトンで脱脂処理したステンレス鋼(SUS304)基板50mm×50mmを塗布液に5分間浸漬した。その後、基板をゆっくり引き上げ30℃で2時間乾燥後、さらに150℃で2時間焼結処理した。この操作を5回繰り返し行い、厚さ4.5μmの無色透明な被膜をステンレス鋼に被覆した耐熱性部材を作製した。
酸化被膜をX線回折装置にて測定した結果、ベーマイト構造を有していた。この耐熱性部材を、実施例1と同様1,000℃処理後に、目視にて観察したところ、酸化被膜の剥離はなくステンレス鋼に密着していた。また、前述1,000℃処理後の部材表面をSEM観察した結果、Cr由来の結晶は確認できなかった。
これより、耐熱性ありと評価した。
Example 9 (film thickness 5 μm)
A 50 mm x 50 mm stainless steel (SUS304) substrate degreased with acetone was immersed in the coating solution prepared in Example 1 for 5 minutes in the same manner as in Example 1. Thereafter, the substrate was slowly pulled up, dried at 30°C for 2 hours, and then sintered at 150°C for 2 hours. This operation was repeated five times to produce a heat-resistant member in which stainless steel was coated with a colorless and transparent film having a thickness of 4.5 μm.
As a result of measuring the oxide film using an X-ray diffraction device, it was found to have a boehmite structure. When this heat-resistant member was visually observed after being treated at 1,000° C. in the same manner as in Example 1, it was found that the oxide film did not peel off and was in close contact with the stainless steel. Furthermore, as a result of SEM observation of the surface of the member after the aforementioned 1,000° C. treatment, no crystals derived from Cr 2 O 3 could be confirmed.
From this, it was evaluated as having heat resistance.

実施例10 (膜厚25μm)
実施例1で作製した塗布液を減圧にて5倍に濃縮し、実施例1と同様な操作で、アセトンで脱脂処理したステンレス鋼(SUS304)基板50mm×50mmを塗布液に5分間浸漬した。その後、基板をゆっくり引き上げ30℃で2時間乾燥後、さらに150℃で2時間焼結処理した。この操作を5回繰り返し行い、厚さ25μmの無色透明な被膜をステンレス鋼に被覆した耐熱性部材を作製した。
酸化被膜をX線回折装置にて測定した結果、ベーマイト構造を有していた。この耐熱性部材を、実施例1と同様1,000℃処理後に、目視にて観察したところ、酸化被膜の剥離はなくステンレス鋼に密着していた。また、前述1,000℃処理後の部材表面をSEM観察した結果、Cr由来の結晶は確認できなかった。
これより、耐熱性ありと評価した。
Example 10 (film thickness 25 μm)
The coating solution prepared in Example 1 was concentrated five times under reduced pressure, and in the same manner as in Example 1, a stainless steel (SUS304) substrate 50 mm x 50 mm degreased with acetone was immersed in the coating solution for 5 minutes. Thereafter, the substrate was slowly pulled up, dried at 30°C for 2 hours, and then sintered at 150°C for 2 hours. This operation was repeated five times to produce a heat-resistant member in which stainless steel was coated with a colorless and transparent film having a thickness of 25 μm.
As a result of measuring the oxide film using an X-ray diffraction device, it was found to have a boehmite structure. When this heat-resistant member was visually observed after being treated at 1,000° C. in the same manner as in Example 1, it was found that the oxide film did not peel off and was in close contact with the stainless steel. Furthermore, as a result of SEM observation of the surface of the member after the aforementioned 1,000° C. treatment, no crystals derived from Cr 2 O 3 could be confirmed.
From this, it was evaluated as having heat resistance.

実施例11 (1,500℃処理)
実施例1で作製した塗布液を2倍に希釈し、実施例1と同様な操作で、アセトンで脱脂処理したステンレス鋼(SUS304)基板50mm×50mmを塗布液に5分間浸漬した。その後、基板をゆっくり引き上げ30℃で2時間乾燥後、さらに150℃で2時間焼結処理した。この操作を回繰り返し行い、厚さ1.2μmの無色透明な被膜をステンレス鋼に被覆した耐熱性部材を作製した。
酸化被膜をX線回折装置にて測定した結果、ベーマイト構造を有していた。この耐熱性部材を、室温から1,500℃まで10℃/minで昇温し、1,500℃で24時間保持後、自然放冷した後に、目視にて観察したところ、酸化被膜の剥離はなくステンレス鋼に密着していた。また、前述1,500℃処理後の部材表面を走査型電子顕微鏡(FE-SEM: 日立ハイテクノロジーズ製 S-4800)によって30,000倍に拡大して、Crイオンの外部拡散した際に観察されるCr由来の結晶に注目し観察した結果、Cr由来の結晶は確認できなかった。
これより、耐熱性ありと評価した。
Example 11 (1,500°C treatment)
The coating solution prepared in Example 1 was diluted twice, and in the same manner as in Example 1, a 50 mm x 50 mm stainless steel (SUS304) substrate degreased with acetone was immersed in the coating solution for 5 minutes. Thereafter, the substrate was slowly pulled up, dried at 30°C for 2 hours, and then sintered at 150°C for 2 hours. This operation was repeated several times to produce a heat-resistant member in which stainless steel was coated with a colorless and transparent film having a thickness of 1.2 μm.
As a result of measuring the oxide film using an X-ray diffraction device, it was found to have a boehmite structure. This heat-resistant member was heated from room temperature to 1,500°C at a rate of 10°C/min, held at 1,500°C for 24 hours, allowed to cool naturally, and then visually observed. No peeling of the oxide film was observed. It was stuck tightly to the stainless steel. In addition, the surface of the member treated at 1,500°C was magnified 30,000 times using a scanning electron microscope (FE-SEM: Hitachi High-Technologies S-4800), and the external diffusion of Cr ions was observed. As a result of observing the crystals derived from Cr 2 O 3 , no crystals derived from Cr 2 O 3 could be confirmed.
From this, it was evaluated as having heat resistance.

比較例1 (Zr+Ce+Si)/Al=0.0076
オキシ硝酸ジルコニウム二水和物0.081g(0.0003mol)、硝酸セリウム六水和物0.16g(0.0004mol)、テトラエトキシシラン 0.13g(0.0006mol)に変更した以外は実施例1と同様に操作した。
酸化被膜をX線回折装置にて測定した結果、ベーマイト構造を有していた。この耐熱性部材を、実施例1と同様1,000℃処理後に、目視にて観察したところ、酸化被膜の一部の酸化被膜に剥離が確認された。また、前述1,000℃処理後の部材表面をSEM観察した結果(図2)、Cr由来の結晶が確認された。
これより、耐熱性なしと評価した。
Comparative example 1 (Zr+Ce+Si)/Al=0.0076
Example 1 except that 0.081 g (0.0003 mol) of zirconium oxynitrate dihydrate, 0.16 g (0.0004 mol) of cerium nitrate hexahydrate, and 0.13 g (0.0006 mol) of tetraethoxysilane were used. operated in the same way.
As a result of measuring the oxide film using an X-ray diffraction device, it was found to have a boehmite structure. When this heat-resistant member was visually observed after being treated at 1,000° C. in the same manner as in Example 1, it was confirmed that some of the oxide films had peeled off. Furthermore, as a result of SEM observation of the surface of the member after the aforementioned 1,000° C. treatment (FIG. 2), crystals derived from Cr 2 O 3 were confirmed.
From this, it was evaluated as having no heat resistance.

比較例2 (Zr+Ce+Si)/Al=0.6
オキシ硝酸ジルコニウム二水和物6.4g(0.024mol)、硝酸セリウム六水和物13.0g(0.03mol)、テトラエトキシシラン 10.0g(0.05mol)に変更した以外は実施例1と同様に操作した。
酸化被膜をX線回折装置にて測定した結果、ベーマイト構造を有していた。この耐熱性部材を、実施例1と同様1,000℃処理後に、目視にて観察したところ、酸化被膜の一部の酸化被膜に剥離が確認された。また、前述1,000℃処理後の部材表面をSEM観察した結果、Cr由来の結晶が確認された。
これより、耐熱性なしと評価した。
Comparative example 2 (Zr+Ce+Si)/Al=0.6
Example 1 except that 6.4 g (0.024 mol) of zirconium oxynitrate dihydrate, 13.0 g (0.03 mol) of cerium nitrate hexahydrate, and 10.0 g (0.05 mol) of tetraethoxysilane were used. operated in the same way.
As a result of measuring the oxide film using an X-ray diffraction device, it was found to have a boehmite structure. When this heat-resistant member was visually observed after being treated at 1,000° C. in the same manner as in Example 1, it was confirmed that some of the oxide films had peeled off. Furthermore, as a result of SEM observation of the surface of the member after the aforementioned 1,000° C. treatment, crystals derived from Cr 2 O 3 were confirmed.
From this, it was evaluated as having no heat resistance.

比較例3 (Zr+Ce+Si)/Al=0.3 Ce=0.0005
オキシ硝酸ジルコニウム二水和物5.6g(0.02mol)、硝酸セリウム六水和物0.37g(0.00085mol)、テトラエトキシシラン 6.2g(0.03mol)に変更した以外は実施例1と同様に操作した。
酸化被膜をX線回折装置にて測定した結果、ベーマイト構造を有していた。この耐熱性部材を、実施例1と同様1,000℃処理後に、目視にて観察したところ、酸化被膜の一部の酸化被膜に剥離が確認された。また、前述1,000℃処理後の部材表面をSEM観察した結果、Cr由来の結晶が確認された。
これより、耐熱性なしと評価した。
Comparative example 3 (Zr+Ce+Si)/Al=0.3 Ce=0.0005
Example 1 except that 5.6 g (0.02 mol) of zirconium oxynitrate dihydrate, 0.37 g (0.00085 mol) of cerium nitrate hexahydrate, and 6.2 g (0.03 mol) of tetraethoxysilane were used. operated in the same way.
As a result of measuring the oxide film using an X-ray diffraction device, it was found to have a boehmite structure. When this heat-resistant member was visually observed after being treated at 1,000° C. in the same manner as in Example 1, it was confirmed that some of the oxide films had peeled off. Furthermore, as a result of SEM observation of the surface of the member after the aforementioned 1,000° C. treatment, crystals derived from Cr 2 O 3 were confirmed.
From this, it was evaluated as having no heat resistance.

比較例4 (Zr+Ce+Si)/Al=0.3 Si=0.0005
オキシ硝酸ジルコニウム二水和物5.6g(0.02mol)、硝酸セリウム六水和物13.2g(0.03mol)、テトラエトキシシラン 0.018g(0.00085mol)に変更した以外は実施例1と同様に操作した。
酸化被膜をX線回折装置にて測定した結果、ベーマイト構造を有していた。この耐熱性部材を、実施例1と同様1,000℃処理後に、目視にて観察したところ、酸化被膜の一部の酸化被膜に剥離が確認された。また、前述1,000℃処理後の部材表面をSEM観察した結果、Cr由来の結晶が確認された。
これより、耐熱性なしと評価した。
Comparative example 4 (Zr+Ce+Si)/Al=0.3 Si=0.0005
Example 1 except that 5.6 g (0.02 mol) of zirconium oxynitrate dihydrate, 13.2 g (0.03 mol) of cerium nitrate hexahydrate, and 0.018 g (0.00085 mol) of tetraethoxysilane were used. operated in the same way.
As a result of measuring the oxide film using an X-ray diffraction device, it was found to have a boehmite structure. When this heat-resistant member was visually observed after being treated at 1,000° C. in the same manner as in Example 1, it was confirmed that some of the oxide films had peeled off. Furthermore, as a result of SEM observation of the surface of the member after the aforementioned 1,000° C. treatment, crystals derived from Cr 2 O 3 were confirmed.
From this, it was evaluated as having no heat resistance.

比較例5 (Zr+Ce+Si)/Al=0.3 Zr=0.0005
オキシ硝酸ジルコニウム二水和物0.23g(0.00085mol)、硝酸セリウム六水和物9.1g(0.02mol)、テトラエトキシシラン 6.2g(0.03mol)に変更した以外は実施例1と同様に操作した。
酸化被膜をX線回折装置にて測定した結果、ベーマイト構造を有していた。この耐熱性部材を、実施例1と同様1,000℃処理後に、目視にて観察したところ、酸化被膜の一部の酸化被膜に剥離が確認された。また、前述1,000℃処理後の部材表面をSEM観察した結果、Cr由来の結晶が確認された。
これより、耐熱性なしと評価した。
Comparative example 5 (Zr+Ce+Si)/Al=0.3 Zr=0.0005
Example 1 except that 0.23 g (0.00085 mol) of zirconium oxynitrate dihydrate, 9.1 g (0.02 mol) of cerium nitrate hexahydrate, and 6.2 g (0.03 mol) of tetraethoxysilane were used. operated in the same way.
As a result of measuring the oxide film using an X-ray diffraction device, it was found to have a boehmite structure. When this heat-resistant member was visually observed after being treated at 1,000° C. in the same manner as in Example 1, it was confirmed that some of the oxide films had peeled off. Furthermore, as a result of SEM observation of the surface of the member after the aforementioned 1,000° C. treatment, crystals derived from Cr 2 O 3 were confirmed.
From this, it was evaluated as having no heat resistance.

比較例6 (膜厚50μm)
実施例1で作製した塗布液を減圧にて5倍に濃縮し、実施例1と同様な操作で、アセトンで脱脂処理したステンレス鋼(SUS304)基板50mm×50mmを塗布液に5分間浸漬した。その後、基板をゆっくり引き上げ30℃で2時間乾燥後、さらに150℃で2時間焼結処理した。この操作を10回繰り返し行い、厚さ50μmの無色透明な被膜をステンレス鋼に被覆した耐熱性部材を作製した。
酸化被膜をX線回折装置にて測定した結果、ベーマイト構造を有していた。この耐熱性部材を、実施例1と同様1,000℃処理後に、目視にて観察したところ、酸化被膜の一部の酸化被膜に剥離が確認された。また、前述1,000℃処理後の部材表面をSEM観察した結果、Cr由来の結晶が確認された。
これより、耐熱性なしと評価した。
Comparative example 6 (film thickness 50 μm)
The coating solution prepared in Example 1 was concentrated five times under reduced pressure, and in the same manner as in Example 1, a stainless steel (SUS304) substrate 50 mm x 50 mm degreased with acetone was immersed in the coating solution for 5 minutes. Thereafter, the substrate was slowly pulled up, dried at 30°C for 2 hours, and then sintered at 150°C for 2 hours. This operation was repeated 10 times to produce a heat-resistant member in which stainless steel was coated with a colorless and transparent film having a thickness of 50 μm.
As a result of measuring the oxide film using an X-ray diffraction device, it was found to have a boehmite structure. When this heat-resistant member was visually observed after being treated at 1,000° C. in the same manner as in Example 1, it was confirmed that some of the oxide films had peeled off. Furthermore, as a result of SEM observation of the surface of the member after the aforementioned 1,000° C. treatment, crystals derived from Cr 2 O 3 were confirmed.
From this, it was evaluated as having no heat resistance.

比較例7 グラファイト (Zr+Ce+Si)/Al=0.3 Zr=0.0005
オキシ硝酸ジルコニウム二水和物0.23g(0.00085mol)、硝酸セリウム六水和物9.1g(0.02mol)、テトラエトキシシラン 6.2g(0.03mol)に変更した以外は実施例8と同様に操作した。
この部材を室温から800℃まで10℃/分で昇温したときの重量減少を測定した結果、加熱前に比べて重量が60%減少していた。
これより、耐熱性なしと評価した。
Comparative Example 7 Graphite (Zr+Ce+Si)/Al=0.3 Zr=0.0005
Example 8 except that 0.23 g (0.00085 mol) of zirconium oxynitrate dihydrate, 9.1 g (0.02 mol) of cerium nitrate hexahydrate, and 6.2 g (0.03 mol) of tetraethoxysilane were used. operated in the same way.
As a result of measuring the weight loss when this member was heated from room temperature to 800° C. at a rate of 10° C./min, the weight was reduced by 60% compared to before heating.
From this, it was evaluated as having no heat resistance.

実施例1~11および比較例1~7にて作製した被覆物の、1,000℃~1,500℃処理後の酸化被膜の密着性、Cr由来の結晶の有無及び重量変化により耐熱性を評価した結果、比較例1~7の被覆物は、酸化被膜の剥離やCr由来の結晶の発生、または60%の重量減少が確認されたのに対して、本願にて提供を行う被覆物である実施例1~11の耐熱性部材においては、密着性が良好であり、Cr由来の結晶も確認されることなく、重量減少も20%であることから耐熱性が大きく向上したことを示した。 The adhesion of the oxide film of the coatings prepared in Examples 1 to 11 and Comparative Examples 1 to 7 after treatment at 1,000°C to 1,500°C, the presence or absence of crystals derived from Cr 2 O 3 and weight changes As a result of evaluating the heat resistance, it was confirmed that the coatings of Comparative Examples 1 to 7 exhibited peeling of the oxide film, generation of crystals derived from Cr 2 O 3 , or a 60% weight reduction, whereas in the present application The heat-resistant members of Examples 1 to 11, which are the coatings provided, had good adhesion, no crystals derived from Cr 2 O 3 were observed, and the weight reduction was 20%, so they were heat-resistant. showed that the performance was greatly improved.

この発明の技術を用いることにより、簡便で安価であり、外観に与える影響も最小限で様々な形状の部材に耐熱性を付与できる。さらに、部材の耐熱性が向上したことにより、高温での使用時の耐久性時間も大幅に向上し、高温酸化雰囲気下で使用されるガスケットパッキンや回路、電極部材等に利用可能であるため、より広く産業界の発展に寄与することができる。
また、酸化物被膜により導電性は失われることはないので電極部材等にも使用できる。そのため導電性部材としても、高い耐熱性および耐久性を付与できる。
By using the technology of the present invention, heat resistance can be imparted to members of various shapes, which is simple and inexpensive, and has a minimal effect on the appearance. Furthermore, due to the improved heat resistance of the parts, the durability time when used at high temperatures has also been significantly improved, and it can be used for gasket packing, circuits, electrode parts, etc. used in high-temperature oxidizing atmospheres. It is possible to contribute to the development of industry more broadly.
Furthermore, since the oxide film does not cause loss of conductivity, it can be used for electrode members, etc. Therefore, high heat resistance and durability can be provided as a conductive member.

Claims (4)

表面に、次の(a)~(c)すべてを満たす被膜を有する耐熱性部材
(a)アルミニウム、ジルコニウム、セリウム、ケイ素の酸化物からなり
(b)アルミニウムに対するジルコニウム、セリウム、ケイ素の各原子比率が次の(ア)~(エ)すべてを満たし
(原子比率)
Zr/Al=0.001以上 -(ア)
Ce/Al=0.001以上 -(イ)
Si/Al=0.001以上 -(ウ)
であり 且つ
(Si+Ce+Zr)/Al=0.01~0.5 -(エ)
(c)被膜の平均膜厚が0.01~30.0μm
A heat-resistant member having a coating on its surface that satisfies all of the following (a) to (c): (a) made of oxides of aluminum, zirconium, cerium, and silicon; (b) atomic ratios of zirconium, cerium, and silicon to aluminum; satisfies all of the following (a) to (d) (atomic ratio)
Zr/Al=0.001 or more -(A)
Ce/Al=0.001 or more -(A)
Si/Al=0.001 or more -(C)
And (Si+Ce+Zr)/Al=0.01~0.5 -(D)
(c) Average film thickness of the coating is 0.01 to 30.0 μm
前記被膜が、カーボンまたは融点が1,500℃以上のステンレス鋼のいずれか一つ以上の表面を、被覆したものであることを特徴とする請求項1記載の耐熱性部材 The heat-resistant member according to claim 1, wherein the coating coats the surface of one or more of carbon or stainless steel having a melting point of 1,500° C. or higher. 前記被膜のアルミニウム酸化物がアモルファス、擬ベーマイト、ベーマイト、γ‐アルミナ、θ‐アルミナ、δ‐アルミナおよびα‐アルミナの内少なくとも一種以上の結晶形を有することを特徴とする請求項1記載の耐熱性部材 The heat-resistant heat-resistant material according to claim 1, wherein the aluminum oxide of the coating has at least one crystal form among amorphous, pseudoboehmite, boehmite, γ-alumina, θ-alumina, δ-alumina, and α-alumina. sex member ルミニウム化合物ジルコニア化合物、セリウム化合物、及びケイ素化合物からなる混合液を、カーボンまたは融点が1,500℃以上のステンレス鋼の表面に塗布し、乾燥後、100~1,500℃の熱処理を行うことからなる、請求項1、2、又は記載の耐熱性部材の製造方法
A mixed solution consisting of an aluminum compound , a zirconia compound, a cerium compound, and a silicon compound is applied to the surface of carbon or stainless steel with a melting point of 1,500°C or higher , and after drying, heat treatment is performed at 100 to 1,500°C. The method for manufacturing a heat-resistant member according to claim 1 , 2, or 3, comprising:
JP2020011752A 2020-01-28 2020-01-28 Heat resistant member and its manufacturing method Active JP7393961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020011752A JP7393961B2 (en) 2020-01-28 2020-01-28 Heat resistant member and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020011752A JP7393961B2 (en) 2020-01-28 2020-01-28 Heat resistant member and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021116466A JP2021116466A (en) 2021-08-10
JP7393961B2 true JP7393961B2 (en) 2023-12-07

Family

ID=77174102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020011752A Active JP7393961B2 (en) 2020-01-28 2020-01-28 Heat resistant member and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7393961B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281636A (en) 2005-03-31 2006-10-19 Dainippon Printing Co Ltd Layered product
JP2007046496A (en) 2005-08-08 2007-02-22 Isuzu Motors Ltd Sliding member for combustion chamber of internal combustion engine and manufacturing method
US20100015429A1 (en) 2008-07-16 2010-01-21 Wisconsin Alumni Research Foundation Metal substrates including metal oxide nanoporous thin films and methods of making the same
JP2010105846A (en) 2008-10-29 2010-05-13 Kawaken Fine Chem Co Ltd Alumina porous self-supported film and method for manufacturing the same
US20110206919A1 (en) 2008-10-29 2011-08-25 Kawaken Fine Chemicals Co., Ltd. Porous alumina free-standing film, alumina sol and methods for producing same
JP2013063644A (en) 2011-08-26 2013-04-11 Toyobo Co Ltd Gas barrier film
JP2015110313A (en) 2013-10-31 2015-06-18 セントラル硝子株式会社 Hydrophilic coating-formed article, hydrophilic coating-forming coat liquid and method for producing hydrophilic coating-formed article
JP2017185633A (en) 2016-04-01 2017-10-12 川研ファインケミカル株式会社 Heat-resistant gas barrier coating
JP2019527175A (en) 2016-06-15 2019-09-26 ブリスベン マテリアルズ テクノロジー プロプライエタリー リミテッドBrisbane Materials Technology Pty Ltd Self-curing mixed metal oxide
JP2019199515A (en) 2018-05-15 2019-11-21 トヨタ自動車株式会社 Coat material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243259A (en) * 1984-05-16 1985-12-03 Toshiba Corp Heat resisting structural body
JPS61117260A (en) * 1984-11-13 1986-06-04 Nippon Steel Corp Immersion member for molten metallic bath for hot dipping
US5336560A (en) * 1991-12-20 1994-08-09 United Technologies Corporation Gas turbine elements bearing alumina-silica coating to inhibit coking
JPH07144971A (en) * 1993-11-18 1995-06-06 Chichibu Onoda Cement Corp Thermal spraying material
JP2957397B2 (en) * 1993-11-22 1999-10-04 新日本製鐵株式会社 Hearth roll with high thermal expansion hard oxide spray material and spray coating
JP3601572B2 (en) * 1996-07-17 2004-12-15 株式会社神戸製鋼所 Mold for continuous casting excellent in durability and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281636A (en) 2005-03-31 2006-10-19 Dainippon Printing Co Ltd Layered product
JP2007046496A (en) 2005-08-08 2007-02-22 Isuzu Motors Ltd Sliding member for combustion chamber of internal combustion engine and manufacturing method
US20100015429A1 (en) 2008-07-16 2010-01-21 Wisconsin Alumni Research Foundation Metal substrates including metal oxide nanoporous thin films and methods of making the same
JP2010105846A (en) 2008-10-29 2010-05-13 Kawaken Fine Chem Co Ltd Alumina porous self-supported film and method for manufacturing the same
US20110206919A1 (en) 2008-10-29 2011-08-25 Kawaken Fine Chemicals Co., Ltd. Porous alumina free-standing film, alumina sol and methods for producing same
JP2013063644A (en) 2011-08-26 2013-04-11 Toyobo Co Ltd Gas barrier film
JP2015110313A (en) 2013-10-31 2015-06-18 セントラル硝子株式会社 Hydrophilic coating-formed article, hydrophilic coating-forming coat liquid and method for producing hydrophilic coating-formed article
JP2017185633A (en) 2016-04-01 2017-10-12 川研ファインケミカル株式会社 Heat-resistant gas barrier coating
JP2019527175A (en) 2016-06-15 2019-09-26 ブリスベン マテリアルズ テクノロジー プロプライエタリー リミテッドBrisbane Materials Technology Pty Ltd Self-curing mixed metal oxide
JP2019199515A (en) 2018-05-15 2019-11-21 トヨタ自動車株式会社 Coat material

Also Published As

Publication number Publication date
JP2021116466A (en) 2021-08-10

Similar Documents

Publication Publication Date Title
Hu et al. A corrosion-resistance superhydrophobic TiO2 film
EP3406760A1 (en) Aluminum-chromium oxide coating and method therefor
JP6699027B2 (en) Heat resistant gas barrier coating
Jothi et al. Facile fabrication of core–shell Pr6O11-ZnO modified silane coatings for anti-corrosion applications
Zhan-Fang et al. Super-hydrophobic coating used in corrosion protection of metal material: review, discussion and prospects
Lkhagvaa et al. Post-anodization methods for improved anticorrosion properties: a review
Tadanaga et al. Preparation of super-water-repellent alumina coating film with high transparency on poly (ethylene terephthalate) by the sol–gel method
CN1900362A (en) Method for preparing magnesium oxide anti-corrosion protective film by sol-gel technology
JP7393961B2 (en) Heat resistant member and its manufacturing method
CN103212528B (en) Preparation method for metallic titanium surface super-hydrophobic thin film
US5013588A (en) Corrosion resistant silicon inorganic polymeric coatings
Ono et al. Chromium‐free corrosion resistance of metals by ceramic coating
Zhang et al. Mechanical durable ceria superhydrophobic coating fabricated by simple hot-press sintering
Feng et al. Crack‐free sol‐gel coatings for protection of AA1050 aluminium alloy
Zakaria et al. Nanostructured TiO2 coated stainless steel for corrosion protection
Parola et al. Sol-gel coatings on non-oxide planar substrates and fibers: a protection barrier against oxidation and corrosion
Zhang et al. Effect of heat treating gel films on the formation of superhydrophobic boehmite flaky structures on austenitic stainless steel
Tadanaga Preparation and application of alumina-and titania-nanocrystals-dispersed thin films via sol-gel process with hot water treatment
JP2010264376A (en) Pollution preventing catalyst film of suction and exhaustion system part
Subramanian et al. Fabrication of Superhydrophobic Surface on Anodized Aluminum Through a Wet-Chemical Route
CN111701831A (en) Preparation method of hydrophobic silica nanoparticle modified epoxy resin anticorrosive film coated on carbon steel
JP5238934B2 (en) Aqueous zirconium anticorrosive, metal corrosion prevention method using the same, and aqueous zirconium anticorrosive
Yordanov et al. Effect of CeO2 Dopant on the Structure and Protection Properties of TiO2 Sprayed Coatings Deposited on Carbon Steel
Jeeva Jothi et al. Anti-corrosion coatings on SS 304 by incorporation of Pr 6 O 11–TiO 2 in siloxane network
CN109355648A (en) In the method that copper alloy surface prepares based superhydrophobic thin films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R150 Certificate of patent or registration of utility model

Ref document number: 7393961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150