JP5238934B2 - Aqueous zirconium anticorrosive, metal corrosion prevention method using the same, and aqueous zirconium anticorrosive - Google Patents

Aqueous zirconium anticorrosive, metal corrosion prevention method using the same, and aqueous zirconium anticorrosive Download PDF

Info

Publication number
JP5238934B2
JP5238934B2 JP2008002857A JP2008002857A JP5238934B2 JP 5238934 B2 JP5238934 B2 JP 5238934B2 JP 2008002857 A JP2008002857 A JP 2008002857A JP 2008002857 A JP2008002857 A JP 2008002857A JP 5238934 B2 JP5238934 B2 JP 5238934B2
Authority
JP
Japan
Prior art keywords
zirconium
anticorrosive
acetic acid
solution
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008002857A
Other languages
Japanese (ja)
Other versions
JP2009161840A (en
Inventor
さとみ 小野
弘安 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CITY OF NAGOYA
Original Assignee
CITY OF NAGOYA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CITY OF NAGOYA filed Critical CITY OF NAGOYA
Priority to JP2008002857A priority Critical patent/JP5238934B2/en
Publication of JP2009161840A publication Critical patent/JP2009161840A/en
Application granted granted Critical
Publication of JP5238934B2 publication Critical patent/JP5238934B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は亜鉛めっきの防食等に好適に用いることができる水系ジルコニウム防食剤、それを用いた金属の防食方法及び水系ジルコニウム防食剤の製造方法に関する。   The present invention relates to an aqueous zirconium anticorrosive that can be suitably used for anticorrosion of zinc plating, a metal anticorrosion method using the same, and a method for producing an aqueous zirconium anticorrosive.

6価のクロム酸塩溶液を用いて金属表面上に皮膜を作製するクロメート処理は優れた耐食性を安価で容易に付与できることより、亜鉛めっき鋼板をはじめとする各種金属製品の防錆処理として幅広く用いられて来た。しかし、近年、廃棄されたクロメート処理製品中に含まれる6価クロムが酸性雨により溶出して土壌河川を汚染するという問題やクロメート処理過程における処理液に含まれる6価クロムの有害性が問題となっている。さらに、2007年、欧州において自動車における6価クロムの環境規制が施行されたことで、クロムフリー処理法の開発が緊急課題となっており、亜鉛めっき用クロメートの代替となりうる、安価で毒性が低く、しかも高い耐食性を有する皮膜を作製できる、ノンクロムの水系処理剤の開発が急務となっている。   The chromate treatment that forms a film on the metal surface using a hexavalent chromate solution is widely used as an anticorrosion treatment for various metal products including galvanized steel sheets because it can easily provide excellent corrosion resistance at low cost. I have been. However, in recent years, the problem that hexavalent chromium contained in discarded chromate-treated products elutes by acid rain and contaminates soil rivers, and the harmfulness of hexavalent chromium contained in the treatment liquid in the chromate treatment process are problems. It has become. Furthermore, in 2007, environmental regulations on hexavalent chromium in automobiles were enforced in Europe, so the development of a chromium-free treatment method has become an urgent issue, and it can be an alternative to chromate for galvanization and is inexpensive and has low toxicity. Moreover, there is an urgent need to develop a non-chromium aqueous treatment agent that can produce a film having high corrosion resistance.

6価クロムフリーの化成処理技術へのアプローチとしては、形成される皮膜の組成により、無機系皮膜、有機系皮膜、有機・無機複合皮膜の3つに大別される。無機系皮膜ではモリブデン系やリン酸皮膜系化成処理が開発されているが、クロメート処理に匹敵する耐食性は得られていない。また、有機系皮膜では、樹脂皮膜やシランカップリング剤を用いたものが、また、有機・無機複合皮膜では、官能基を有する有機系樹脂とリン酸塩、シリカ、金属塩化合物等の無機物を混合したものなどが開発されているが、十分な耐食性を得られるものはない。   Approaches to chemical treatment technology free of hexavalent chromium are roughly classified into three types, inorganic coatings, organic coatings, and organic / inorganic composite coatings, depending on the composition of the coatings to be formed. For inorganic coatings, molybdenum-based and phosphate coating-based chemical conversion treatments have been developed, but corrosion resistance comparable to chromate treatment has not been obtained. In addition, organic coatings use resin coatings and silane coupling agents, and organic / inorganic composite coatings use organic resins having functional groups and inorganic substances such as phosphates, silica, and metal salt compounds. Mixed ones have been developed, but none have sufficient corrosion resistance.

樹脂系のコート剤を用いた場合、樹脂が膨潤するために、高い耐食性を得るためには、数μmあるいはそれ以上の膜厚が必要となり、薄塗りが困難である。また、コート剤自身が懸濁状態の場合もあり、溶液の安定性に加えて、平滑性や均一性に優れた皮膜の作製が難しいことも多い。   When a resin-based coating agent is used, since the resin swells, in order to obtain high corrosion resistance, a film thickness of several μm or more is required, and thin coating is difficult. In addition, the coating agent itself may be in a suspended state, and it is often difficult to produce a film having excellent smoothness and uniformity in addition to the stability of the solution.

各種有機シランを有機溶媒に溶解した溶液を用いて有機・無機複合皮膜とする研究は多くなされており、耐食性皮膜の形成法として有望な手段であるが、最近の産業界においては、引火性を有する有機溶媒を用いない水系のコーティング溶液が求められている。最も安価なケイ素の金属アルコキシドであるテトラアルコキシシランの加水分解により生成するシラノール基はpH2〜5において安定に存在し、容易に水溶液が調製できる。発明者らは既に、水を溶媒とし、テトラアルコキシシラン、メチルトリアルコキシシランと酢酸を用いて調製した溶液の組成や濃度等を変化させて、亜鉛めっきを始めとする金属上における高耐食性皮膜の形成が可能な水系コーティング剤を開発している(特許文献1)。   Many studies have been made on organic / inorganic composite coatings using solutions in which various organic silanes are dissolved in organic solvents, and this is a promising method for forming corrosion-resistant coatings. There is a need for an aqueous coating solution that does not use an organic solvent. Silanol groups formed by hydrolysis of tetraalkoxysilane, which is the least expensive silicon metal alkoxide, exist stably at pH 2 to 5, and an aqueous solution can be easily prepared. The inventors have already changed the composition and concentration of a solution prepared using tetraalkoxysilane, methyltrialkoxysilane and acetic acid using water as a solvent, and developed a high corrosion resistance coating on metals such as galvanizing. An aqueous coating agent that can be formed has been developed (Patent Document 1).

特開2007−284745JP2007-284745A

しかし、上記特許文献1の水系コーティング剤では、その溶液は2〜3週間程度で白濁するため、その安定性を向上させることが課題となっていた。
本発明は、上記従来の問題点に鑑みなされたものであり、クロム等の重金属化合物や、有機溶媒を含まず、作業環境を悪化させることがなく、密着性および耐食性に優れた防食皮膜を形成することが可能で、製造コストの低廉な安定性に優れた防食剤及びその製造方法を提供することを課題とする。
However, in the aqueous coating agent of Patent Document 1, the solution becomes cloudy in about 2 to 3 weeks, and thus it has been a problem to improve its stability.
The present invention has been made in view of the above-described conventional problems, and does not contain heavy metal compounds such as chromium and organic solvents, does not deteriorate the working environment, and forms an anticorrosive film excellent in adhesion and corrosion resistance. It is an object of the present invention to provide an anticorrosive agent that can be manufactured at low cost and excellent in stability and a method for producing the same.

発明者らは、水を溶媒とし、ケイ素以外で比較的安価であり、作製皮膜の耐食性の向上が期待されるジルコニウムアルコキシドと酢酸を用いて、亜鉛めっき上でのコーティングにおいて適度なpHを有した安定性の高い水溶液を調製し、金属上での作製皮膜の耐食性を評価した。これまでに、ジルコニウム塩を用いた防錆を目的とした処理液は多く報告されているが、ジルコニウムアルコキシドは水との反応性が高く均一な水溶液とすることは困難であるため、出発原料として選ばれることはなかった。   The inventors have an appropriate pH in coating on galvanizing using zirconium alkoxide and acetic acid, which use water as a solvent, is relatively inexpensive except for silicon, and is expected to improve the corrosion resistance of the produced film. A highly stable aqueous solution was prepared, and the corrosion resistance of the produced film on the metal was evaluated. So far, many treatment solutions for the purpose of rust prevention using zirconium salts have been reported, but zirconium alkoxide is highly reactive with water and difficult to form a uniform aqueous solution. It was never chosen.

一般的に金属アルコキシドを出発原料にして金属水溶液を調製するためには、1)加水分解速度が非常に遅い金属アルコキシドを用いる、2)加水分解後の重合を適度に抑えるために水酸基をキレート化して保護する、3)生成する金属水酸化物が溶解するように調製溶液のpHを調整する、などの条件を最適化しなければならない。また、金属アルコキシドの加水分解により生じるアルコール分を加熱により除去するためには、メタノール(64.7℃)、エタノール(78.3℃)、1−プロパノール(97.2℃)、2−プロパノール(82.3℃)、2−メチル−2−プロパノール(82.5℃)等の水よりも低い沸点のアルコールを発生させるアルコキシドを使用することが望ましい。これらの有機成分を完全に除去することはできないにしても、溶液が引火性を有しないレベルに引き下げることは可能である。   In general, in order to prepare a metal aqueous solution using a metal alkoxide as a starting material, 1) a metal alkoxide having a very low hydrolysis rate is used. 2) a hydroxyl group is chelated to moderately suppress polymerization after hydrolysis. 3) Conditions such as adjusting the pH of the prepared solution so that the resulting metal hydroxide is dissolved must be optimized. Moreover, in order to remove the alcohol produced by hydrolysis of the metal alkoxide by heating, methanol (64.7 ° C.), ethanol (78.3 ° C.), 1-propanol (97.2 ° C.), 2-propanol ( It is desirable to use an alkoxide that generates alcohol having a boiling point lower than that of water, such as 82.3 ° C.) and 2-methyl-2-propanol (82.5 ° C.). Even if these organic components cannot be completely removed, it is possible to reduce the solution to a level that is not flammable.

ジルコニウムアルコキシドを単に酢酸水に添加しても、ジルコニウムアルコキシドの加水分解および重合反応速度が速いために、均一な水溶液を調製することはできないし、硫酸や硝酸等の強酸を用いれば、pHが1以下の強酸の水溶液となってしまう。そこで、ジルコニウムアルコキシドからの水溶液の調製法について鋭意研究をおこなったところ、あらかじめ、ジルコニウムアルコキシドに酢酸を混合し、その後に水を添加して加水分解および重合速度を適度に制御することにより、pHが3〜4で、ディップコーティングにより基板上に製膜性を有したほぼ透明な水溶液が調製できることを見出した。この水溶液は長期にわたってゲル化することなく安定であるが、水溶性の酢酸ジルコニルを水に溶解して調製した溶液とは明らかに異なる。酢酸ジルコニルの同濃度の水溶液はディップコーティングによる基板上への製膜性は全く有していないし、pHが1程度の強酸性を示す。前記ジルコニウムアルコキシドと前記酢酸とを所定の割合で混合して調製した液が、亜鉛めっきの水系ジルコニウム防食剤として好適に用いることができることを発見し、本発明をなすに至った。   Even if zirconium alkoxide is simply added to aqueous acetic acid, the hydrolysis and polymerization reaction rate of zirconium alkoxide is fast, so a uniform aqueous solution cannot be prepared. If strong acid such as sulfuric acid or nitric acid is used, the pH is 1 It becomes the following aqueous solution of strong acid. Therefore, when diligent research was conducted on a method for preparing an aqueous solution from zirconium alkoxide, the pH was adjusted by mixing acetic acid with zirconium alkoxide in advance and then adding water to moderately control the hydrolysis and polymerization rate. 3-4, it discovered that the substantially transparent aqueous solution which had film forming property on the board | substrate by dip coating can be prepared. This aqueous solution is stable without gelation for a long time, but is clearly different from a solution prepared by dissolving water-soluble zirconyl acetate in water. An aqueous solution of the same concentration of zirconyl acetate has no film-forming property on the substrate by dip coating, and exhibits strong acidity with a pH of about 1. It has been discovered that a solution prepared by mixing the zirconium alkoxide and the acetic acid at a predetermined ratio can be suitably used as an aqueous zirconium anticorrosive for galvanization, and has led to the present invention.

すなわち、本発明の水系ジルコニウム防食剤は、溶媒としての水にジルコニウムアルコキシドと酢酸とを含有しており、(前記ジルコニウムアルコキシドのモル数):(前記酢酸のモル数)の割合が、1:1.6〜1:4であることを特徴とする。   That is, the aqueous zirconium anticorrosive agent of the present invention contains zirconium alkoxide and acetic acid in water as a solvent, and the ratio of (number of moles of the zirconium alkoxide) :( number of moles of the acetic acid) is 1: 1. .6 to 1: 4.

発明者らの試験結果によれば、溶媒としての水にジルコニウムアルコキシドと酢酸とを含有しており、(前記ジルコニウムアルコキシドのモル数):(前記酢酸のモル数)の割合が、1:1.6〜1:4である本発明の水系ジルコニウム防食剤は、これを用いて金属の表面処理を行なった場合、均一で緻密な防食皮膜を形成させることができる。特に好ましいのは(前記ジルコニウムアルコキシドのモル数):(前記酢酸のモル数)の割合が、1:1.8〜1:3の範囲であり、さらに好ましいのは1:2.0〜1:2.4の範囲である。   According to the test results of the inventors, zirconium alkoxide and acetic acid are contained in water as a solvent, and the ratio of (number of moles of the zirconium alkoxide) :( number of moles of the acetic acid) is 1: 1. The aqueous zirconium anticorrosive agent of the present invention of 6 to 1: 4 can form a uniform and dense anticorrosive film when the surface treatment of the metal is performed using this. The ratio of (number of moles of the zirconium alkoxide) :( number of moles of the acetic acid) is particularly preferably in the range of 1: 1.8 to 1: 3, and more preferably 1: 2.0 to 1: The range is 2.4.

これは、次のような理由によると推測される。適度に加水分解および重合したpH3〜4のほぼ透明な水酸化ジルコニウムゾル溶液を用いると、亜鉛めっき上に密着性及び耐食性に優れた防食皮膜を形成することが可能となる。水系ジルコニウム防食剤の組成において、ジルコニウムアルコキシドに対してあらかじめ添加する酢酸量は、多過ぎると作製皮膜の耐食性が低下し、少な過ぎると不溶物が多量に生成して透明性を有したゾル溶液は調製できない。酢酸はジルコニウムアルコキシドに対して2モル量程度加えることが望ましく、これにより溶液のpHは3〜4で、室温下において長期にわたり安定な水系ジルコニウム防食剤を調製することができる。   This is presumed to be due to the following reason. When a substantially transparent zirconium hydroxide sol solution having a pH of 3 to 4 which is moderately hydrolyzed and polymerized is used, it is possible to form an anticorrosive film having excellent adhesion and corrosion resistance on the galvanizing. In the composition of the water-based zirconium anticorrosive agent, if the amount of acetic acid added to the zirconium alkoxide is too large, the corrosion resistance of the produced film is lowered, and if it is too small, a large amount of insoluble matter is generated and the sol solution has transparency. Cannot be prepared. Acetic acid is preferably added in an amount of about 2 moles relative to zirconium alkoxide, whereby an aqueous zirconium anticorrosive agent having a pH of 3 to 4 and stable at room temperature for a long time can be prepared.

ジルコニウムアルコキシドの種類としては、特に限定は無く、ジルコニウムテトラエトキシド、ジルコニウムテトラプロポキシド、ジルコニウムテトラブトキシド等が挙げられる。ジルコニウムテトラプロポキシドは安価で入手が容易であり、金属へのコーティングを施したとき、緻密で均一な皮膜が形成されることを発明者らは確認しており、特に好適に用いることができる。   The kind of zirconium alkoxide is not particularly limited, and examples thereof include zirconium tetraethoxide, zirconium tetrapropoxide, zirconium tetrabutoxide and the like. Zirconium tetrapropoxide is inexpensive and easily available, and the inventors have confirmed that a dense and uniform film is formed when a coating is applied to a metal, and can be used particularly suitably.

本発明の水系ジルコニウム防食剤は、クロム等の重金属や有機溶媒を含まないため、毒性が少なく、作業環境を悪化させることもない。また、密着性及び耐食性に優れた防食皮膜を形成することが可能である。さらに、原料としてのジルコニウムアルコキシドは、安価であるため、製造コストも低廉となる。   Since the aqueous zirconium anticorrosive agent of the present invention does not contain heavy metals such as chromium and organic solvents, it has little toxicity and does not deteriorate the working environment. Moreover, it is possible to form the anticorrosion film excellent in adhesiveness and corrosion resistance. Furthermore, since the zirconium alkoxide as a raw material is inexpensive, the manufacturing cost is also low.

溶液中に含まれるジルコニウムアルコキシドの濃度は、ジルコニウム換算で1.8〜5.5質量%含まれていることが好ましい。こうであれば、亜鉛めっき等の金属からなる基材に付着させる付着工程において、均一で緻密な皮膜の形成に好適である。   The concentration of zirconium alkoxide contained in the solution is preferably 1.8 to 5.5% by mass in terms of zirconium. If it is like this, it is suitable for formation of a uniform and precise | minute film | membrane in the adhesion process made to adhere to the base materials which consist of metals, such as galvanization.

本発明の金属の防食方法は、請求項1又は2の水系ジルコニウム防食剤を金属からなる基材に付着させる付着工程と、水系ジルコニウム防食剤を付着させた前記基材を乾燥させる乾燥工程とを備えることを特徴とする。   The metal anticorrosion method of the present invention comprises an attaching step of attaching the aqueous zirconium anticorrosive agent according to claim 1 or 2 to a metal substrate, and a drying step of drying the substrate to which the aqueous zirconium anticorrosive agent is attached. It is characterized by providing.

発明者らによれば、上記の水系ジルコニウム防食剤を金属からなる基材に付着させ、乾燥させれば、防食性の優れた皮膜を形成させることができる。付着方法については特に限定はないが、浸漬法や、スプレーによる噴霧、ロールコーティング法等の方法を用いることができる。塗布後は常温〜80℃程度で乾燥することが望ましい。コーティングは1回で十分であるが、複数回コーティングすることも可能である。   According to the inventors, if the above-mentioned aqueous zirconium anticorrosive agent is adhered to a substrate made of metal and dried, a film having excellent anticorrosion properties can be formed. Although there is no limitation in particular about the adhesion method, methods, such as an immersion method, spraying by spray, and a roll coating method, can be used. After coating, it is desirable to dry at room temperature to about 80 ° C. A single coating is sufficient, but multiple coatings are possible.

本発明の防食方法は様々な金属の耐食性を向上させることが可能であるが、特に亜鉛めっきや亜鉛合金めっき、亜鉛ダイキャスト等、亜鉛や亜鉛合金の耐食性を向上させるために好適に用いることができる。   Although the anticorrosion method of the present invention can improve the corrosion resistance of various metals, it can be suitably used for improving the corrosion resistance of zinc and zinc alloys, such as zinc plating, zinc alloy plating, and zinc die casting. it can.

また、本発明の水系ジルコニウム防食剤の製造方法は、ジルコニウムアルコキシドと酢酸とを、(前記ジルコニウムアルコキシドのモル数):(前記酢酸のモル数)の割合が、1:1.6〜1:4の割合となるように混合する混合工程と、前記混合工程で得られた混合液に水を添加する水添加工程と、水を添加した前記混合液を加熱してアルコールを留去させるアルコール除去工程とを備えることを特徴とする。   In the method for producing an aqueous zirconium anticorrosive agent of the present invention, the ratio of (number of moles of the zirconium alkoxide) :( number of moles of the acetic acid) of zirconium alkoxide and acetic acid is 1: 1.6 to 1: 4. A mixing step of mixing so as to have a ratio of, a water addition step of adding water to the mixed solution obtained in the mixing step, and an alcohol removing step of distilling off the alcohol by heating the mixed solution to which water has been added It is characterized by providing.

本発明の水系ジルコニウム防食剤の製造方法では、あらかじめ、混合工程においてジルコニウムアルコキシドと酢酸とを混合した後、水添加工程で、水を添加することが重要である。その後得られた溶液をアルコール除去工程において所定温度で加熱することにより溶解させて反応させることが肝要である。あらかじめ、酢酸を添加することにより、ジルコニウムアルコキシドのアルコキシド基が酢酸のアセテート基に置き換わることによりその後の水の添加による加水分解反応と重合反応が抑制されるために、適度に重合した安定なZrOx/2(OAc)(OH)4−x−y(x+y=4)ゾルの水溶液が調製できるのである。添加する酢酸の量により、その反応性を制御することができるので、亜鉛めっき上において緻密で均一な光沢皮膜の作製できる酢酸の添加量を見出した。 In the method for producing an aqueous zirconium anticorrosive of the present invention, it is important to add water in the water addition step after previously mixing the zirconium alkoxide and acetic acid in the mixing step. It is important that the solution obtained thereafter is dissolved and reacted by heating at a predetermined temperature in the alcohol removing step. By adding acetic acid in advance, the alkoxide group of zirconium alkoxide is replaced with the acetate group of acetic acid, so that the hydrolysis reaction and the polymerization reaction due to the subsequent addition of water are suppressed. Therefore, a moderately polymerized stable ZrO x / 2 (OAc) y (OH) 4-xy (x + y = 4) An aqueous solution of sol can be prepared. Since the reactivity can be controlled by the amount of acetic acid to be added, the amount of acetic acid that can be used to produce a dense and uniform gloss film on galvanizing was found.

上記で述べたように、有害なクロム等の重金属化合物を含まず、また、アルコール除去工程においてアルコールを除去するため、有機溶媒を含有せず、作業環境を悪化させることもなく、溶液の保存性も良い。   As mentioned above, it does not contain harmful heavy metal compounds such as chromium, and because it removes alcohol in the alcohol removal process, it does not contain organic solvents, and does not deteriorate the working environment, so that the storage stability of the solution Also good.

混合工程では、水を添加した前記混合液を60〜90℃に加熱してアルコールを留去させることが好ましい。加熱温度が90℃以上であれば溶液中のジルコニウムアルコキシドの加水分解反応および重合反応を促進し過ぎるため、溶液中に沈殿が生じて白濁化が起きる。また、加熱温度が60℃以下であれば溶液中のジルコニウムアルコキシドの加水分解反応および重合反応が不十分となり、作製皮膜の耐食性が低下する。また、溶液中のアルコールの留去に十分な温度でないために、アルコール除去が困難となる。   In the mixing step, it is preferable to heat the mixed liquid to which water has been added to 60 to 90 ° C. to distill off the alcohol. If the heating temperature is 90 ° C. or higher, the hydrolysis reaction and polymerization reaction of zirconium alkoxide in the solution are excessively promoted, so that precipitation occurs in the solution and white turbidity occurs. Moreover, if heating temperature is 60 degrees C or less, the hydrolysis reaction and polymerization reaction of zirconium alkoxide in a solution will become inadequate, and the corrosion resistance of the produced film | membrane will fall. Further, since the temperature is not sufficient for distilling off the alcohol in the solution, it is difficult to remove the alcohol.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

ジルコニウムアルコキシドとしては、高純度化学研究所、和光純薬工業、アヅマックス等から販売されているジルコニウムテトラエトキシド、ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトライソブトキシド等を挙げることができる。   Examples of the zirconium alkoxide include zirconium tetraethoxide, zirconium tetranormal propoxide, zirconium tetraisopropoxide, zirconium tetraisobutoxide and the like sold by High Purity Chemical Research Laboratories, Wako Pure Chemical Industries, Amax, etc. .

以下、実施例により本発明をさらに詳しく述べる。実施例において述べるジルコニウムテトラノルマルプロポキシド(和光純薬工業)および酢酸の配合量は、溶液全体におけるmol/Lで示した。また、ジルコニウムテトラノルマルプロポキシド及び酢酸の表記として、Zr(OnPr)、AcOHの略号を用いた。 Hereinafter, the present invention will be described in more detail with reference to examples. The blending amounts of zirconium tetranormal propoxide (Wako Pure Chemical Industries) and acetic acid described in the examples are indicated by mol / L in the whole solution. Moreover, the abbreviations of Zr (OnPr) 4 and AcOH were used as notation for zirconium tetranormal propoxide and acetic acid.

(溶液濃度) 作製溶液の濃度をICP発光分析装置で測定した。   (Solution concentration) The concentration of the preparation solution was measured with an ICP emission spectrometer.

(密着性評価)JIS H8504規格の中の引きはがし試験法の1つであるテープ試験方法に準じて、基板上に作製した皮膜表面にテープを接着し、その後勢い良くテープを剥離して、皮膜の表面状態を目視で評価した。   (Adhesion evaluation) According to the tape test method, which is one of the peeling test methods in JIS H8504 standard, the tape is adhered to the surface of the film produced on the substrate, and then the tape is peeled off vigorously. The surface condition of was visually evaluated.

(皮膜の表面状態および膜厚測定)得られた皮膜の表面状態を走査型電子顕微鏡(SEM)で観察した。膜厚に関しては、得られる皮膜が薄膜のため、膜厚測定のための試料の破断面を亜鉛めっき基板において作製することが困難であった。そこで、参考値として、金属基板をコーティングする場合と同条件でシリコン基板をコーティングし、80℃で30分加熱処理後に得られた試料を切断して破断面を作製した。これをSEMにより観察し、皮膜の断面像から膜厚を見積もった。   (Measurement of surface state and film thickness of film) The surface state of the obtained film was observed with a scanning electron microscope (SEM). Regarding the film thickness, since the obtained film was a thin film, it was difficult to produce a fracture surface of a sample for film thickness measurement on a galvanized substrate. Therefore, as a reference value, a silicon substrate was coated under the same conditions as those for coating a metal substrate, and a sample obtained after heat treatment at 80 ° C. for 30 minutes was cut to prepare a fracture surface. This was observed by SEM, and the film thickness was estimated from the cross-sectional image of the film.

(耐食性評価)亜鉛めっき上に作製した皮膜の耐食性についてはJIS Z 2371規格の塩水噴霧試験機を用いた。35℃で5質量%NaCl水溶液の噴霧を行い、72時間後における白錆び発生の面積率は試料写真に対して、画像処理ソフト(Win ROOF, Mitani Corporation)を用いた色抽出による2値化により計測した。   (Evaluation of Corrosion Resistance) A JIS Z 2371 standard salt spray tester was used for the corrosion resistance of the film produced on the galvanizing. Spraying of 5 mass% NaCl aqueous solution at 35 ° C, the area ratio of white rust generation after 72 hours is binarized by color extraction using image processing software (Win ROOF, Mitani Corporation) for sample photographs. Measured.

(溶液調製)図1に水系ジルコニウム溶液の調製方法を示した。Zr(OnPr)(約70%)にジルコニウムに対してモル比で1.6〜4モル量のAcOHを添加して均一に攪拌後に0.1〜0.3mol/L程度の濃度になるように水を添加した。60〜90℃で混合溶解後、プロパノールを蒸発除去するために所定濃度まで加熱攪拌により濃縮してほぼ透明ゾル水溶液を作製した。加熱濃縮により少量生じた不溶物は吸引濾過により除去した。 (Solution Preparation) FIG. 1 shows a method for preparing an aqueous zirconium solution. Zr (OnPr) 4 (about 70%) is added with 1.6 to 4 moles of AcOH in a molar ratio with respect to zirconium, and after stirring uniformly, the concentration is about 0.1 to 0.3 mol / L. Water was added to the. After mixing and dissolving at 60 to 90 ° C., in order to evaporate and remove propanol, the solution was concentrated to a predetermined concentration by heating and stirring to prepare a substantially transparent sol aqueous solution. A small amount of insoluble matter produced by concentration by heating was removed by suction filtration.

(コーティング)上記溶液を用いて、8μmの厚さで亜鉛めっきを施した鋼板を、室温において溶液へ1分間浸漬した後、引き上げ速度6mm/sでディップコーティングした。コーティング後、大気中室温下で約72時間乾燥した。   (Coating) Using the above solution, a steel plate that had been galvanized with a thickness of 8 μm was immersed in the solution for 1 minute at room temperature, and then dip-coated at a lifting speed of 6 mm / s. After coating, it was dried in air at room temperature for about 72 hours.

(結果)Zr(OnPr)が加水分解されて生じる水酸化ジルコニウムはpH2〜3で沈殿が生成しはじめるが、酢酸と共存させることにより、安定で透明なゾル溶液が調製できることがわかった。酢酸の代わりにギ酸やプロピオン酸を用いて、同様に溶液調製を行ったが、透明なゾル溶液は調製できず、酢酸を用いたときに安定な透明ゾル溶液が調製できることがわかった。表1にZr(OnPr)にモル比で1.6〜5モル量の酢酸を添加して調製した溶液の性質について調べた結果をまとめた。Zr(OnPr)に対して1.6モル量の酢酸を添加した場合には0.1mol/L程度の濃度においても完全な均一ゾル溶液を調製することはできなかった。Zr(OnPr)に対して1.8モル量の酢酸を添加した場合には濃縮途中でゲル化が起きるため、均一なゾル溶液は0.2mol/L(ジルコニウム換算で1.8質量%)程度の濃度までしか得られなかった。2モル量の酢酸を添加して調製した場合には、0.5mol/L程度の均一でほぼ透明なゾル溶液が作製できた。3モル量の酢酸を添加した場合には0.6mol/L(ジルコニウム換算で5.5質量%)程度の均一でほぼ透明なゾル溶液が作製でき、4モル量の添加では0.6mol/L程度の透明溶液が作製できた。均一に調製できた溶液のpHは全て3〜4を示し、長期にわたって沈殿生成のない安定性を示した。Zr(OnPr)はアセテート基と置き換わることのできるプロポキシ基を4つ有しているので、4モル量以上の過剰な酢酸の添加はその後の水の添加による加水分解反応と重合反応を必要以上に抑制するため好ましくない。よって、水系ジルコニウム溶液の調製において、適した酢酸の添加量はジルコニウムに対してモル比で1.6〜4モル量である。 (Results) Zir (OnPr) 4 hydrolyzed zirconium hydroxide began to form a precipitate at pH 2-3, but it was found that a stable and transparent sol solution can be prepared by coexisting with acetic acid. Although solution preparation was similarly performed using formic acid or propionic acid instead of acetic acid, it was found that a transparent sol solution could not be prepared, and a stable transparent sol solution could be prepared when acetic acid was used. Table 1 summarizes the results of investigations on the properties of solutions prepared by adding 1.6 to 5 molar amounts of acetic acid to Zr (OnPr) 4 in a molar ratio. When 1.6 mol of acetic acid was added to Zr (OnPr) 4 , a complete homogeneous sol solution could not be prepared even at a concentration of about 0.1 mol / L. When 1.8 mol of acetic acid is added to Zr (OnPr) 4 , gelation occurs during concentration, so a uniform sol solution is 0.2 mol / L (1.8% by mass in terms of zirconium). Only to a certain level was obtained. When prepared by adding 2 mol of acetic acid, a uniform and almost transparent sol solution of about 0.5 mol / L could be produced. When 3 mol amount of acetic acid is added, a uniform and almost transparent sol solution of about 0.6 mol / L (5.5% by mass in terms of zirconium) can be prepared, and when 4 mol amount is added, 0.6 mol / L A clear solution of a degree could be produced. The pH values of the solutions that could be prepared uniformly were all 3 to 4, indicating stability without precipitation over a long period of time. Since Zr (OnPr) 4 has four propoxy groups that can replace acetate groups, addition of an excess of 4 molar amounts of acetic acid requires more hydrolysis and polymerization reactions due to the subsequent addition of water. It is not preferable because it is suppressed. Therefore, in the preparation of the aqueous zirconium solution, a suitable addition amount of acetic acid is 1.6 to 4 mol by mole with respect to zirconium.

これらの水系ジルコニウム溶液はガラス基板上での製膜が可能であり、テープ試験法により剥離のない、水に不溶性の透明皮膜が得られた。亜鉛めっき上に作製した皮膜では、溶液作製時に添加した酢酸濃度が0.36mol/L以上1.8mol/L未満、すなわち、(前記ジルコニウムアルコキシドのモル数):(前記酢酸のモル数)の割合が、1:1.8〜1:3の範囲であれば、その溶液から作製した皮膜を室温下で乾燥することにより光沢膜が得られた。亜鉛めっき上に光沢性を有した皮膜が得られる場合、それは均一で緻密な皮膜が形成したことをあらわしている。高耐食性皮膜を形成するためには、できるだけ少ない酢酸含有量で高濃度のジルコニウムを含有する水系ジルコニウム溶液が望ましいと考えられる。よって、光沢皮膜を形成し、かつ、ジルコニウム濃度の高い溶液の調製可能であるZr(OnPr)に対してモル比で2.0〜2.4モル量の酢酸を添加して調製した溶液が耐食皮膜の作製には特に好適であると考えられる。 These aqueous zirconium solutions can be formed on a glass substrate, and a water-insoluble transparent film without peeling was obtained by a tape test method. In the film formed on the galvanized film, the concentration of acetic acid added at the time of preparing the solution is 0.36 mol / L or more and less than 1.8 mol / L, that is, the ratio of (number of moles of the zirconium alkoxide) :( number of moles of the acetic acid). However, when it was in the range of 1: 1.8 to 1: 3, a glossy film was obtained by drying a film prepared from the solution at room temperature. When a glossy film is obtained on galvanized plating, it indicates that a uniform and dense film has been formed. In order to form a highly corrosion-resistant film, an aqueous zirconium solution containing a high concentration of zirconium with as little acetic acid content as possible is desirable. Therefore, a solution prepared by adding 2.0 to 2.4 mol of acetic acid in a molar ratio with respect to Zr (OnPr) 4 that forms a glossy film and is capable of preparing a solution having a high zirconium concentration. It is considered particularly suitable for the production of a corrosion-resistant film.

Zr(OnPr)に対してモル比で2モル量の酢酸を添加して調製した0.5mol/Lの溶液を用いてシリコン基板上に作製した皮膜の表面及び断面をSEM観察したところ、表面に亀裂の見られない緻密な皮膜であり、1回のコーティングにより260nmの膜厚を有する皮膜が得られた。 SEM observation of the surface and cross section of the film formed on the silicon substrate using a 0.5 mol / L solution prepared by adding 2 mol of acetic acid at a molar ratio to Zr (OnPr) 4 Thus, a film having a film thickness of 260 nm was obtained by one coating.

図2にこの溶液を用いて亜鉛めっき上に作製した皮膜の耐食性を塩水噴霧試験(72時間)により調べた結果を示す。腐食率を示す白錆発生率は面積率で3.5%を示し、5%以下の耐食性を示した。その他の組成を有した水系ジルコニウム溶液を用いて作製した皮膜において、これ以上の高耐食性を示すものはみられなかった。また、ジルコニウムの含有濃度が低い溶液を用いて作製した皮膜や光沢性を示さない皮膜は耐食性を示さず、皮膜の光沢性が強いほど高い耐食性を示すことがわかった。よって、Zr(OnPr)に対して添加する最適な酢酸のモル比は2モル程度であることがわかった。 FIG. 2 shows the results of examining the corrosion resistance of a film produced on galvanizing using this solution by a salt spray test (72 hours). The white rust occurrence rate indicating the corrosion rate was 3.5% in terms of area ratio, and the corrosion resistance was 5% or less. In the film prepared using an aqueous zirconium solution having other composition, no film showing higher corrosion resistance was found. In addition, it was found that a film prepared using a solution having a low zirconium concentration or a film that does not exhibit gloss does not exhibit corrosion resistance, and that the higher the film gloss, the higher the corrosion resistance. Therefore, it was found that the optimal molar ratio of acetic acid added to Zr (OnPr) 4 is about 2 mol.

以上の結果より、亜鉛めっき上に均一で緻密な耐食性皮膜を作製するのに最も好ましいのはジルコニウムアルコキシドのモル数:酢酸のモル数の割合が、1:2.0〜1:2.4の範囲であると考えられる。   From the above results, it is most preferable to produce a uniform and dense corrosion-resistant film on the galvanizing, in which the ratio of moles of zirconium alkoxide to moles of acetic acid is 1: 2.0 to 1: 2.4. It is considered a range.

このようにして、金属アルコキシドを出発原料として、酢酸を用いて高い安定性を有した水系ジルコニウム溶液を調製できることがわかった。その溶液を用いて亜鉛めっき上に作製したコーティング皮膜は、72時間の塩水噴霧試験により白錆発生の面積率が5%以下の耐食性を示した。   In this way, it was found that an aqueous zirconium solution having high stability can be prepared using acetic acid using a metal alkoxide as a starting material. The coating film produced on the galvanizing using the solution exhibited corrosion resistance with an area ratio of white rust generation of 5% or less by a salt spray test for 72 hours.

この発明は上記発明の実施の態様及び実施例の説明に何ら限定されるものではない。特許請求の範囲を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.

本発明の水系ジルコニウム防食剤は、クロム等の重金属化合物を含まず、密着性および耐食性に優れた皮膜を亜鉛めっき上に作製することができるため、亜鉛めっき用クロメートの代替として広く利用することができる。クロメート処理をした亜鉛めっき製品を使用する自動車産業、電子産業等、様々な産業分野において利用可能である。

The aqueous zirconium anticorrosive agent of the present invention does not contain a heavy metal compound such as chromium, and can produce a film having excellent adhesion and corrosion resistance on galvanizing. Therefore, it can be widely used as an alternative to chromating chromate. it can. It can be used in various industrial fields such as the automobile industry and the electronics industry that use chromate-treated galvanized products.

水系ジルコニウム溶液の調製法Preparation of aqueous zirconium solution 水系ジルコニウム溶液を用いて亜鉛めっき上に皮膜を作製した試料の塩水噴霧試験後(72時間)の写真Photograph after a salt spray test (72 hours) of a sample in which a film was formed on a galvanizing with an aqueous zirconium solution

Claims (3)

溶媒としての水にジルコニウムアルコキシドと酢酸とを含有しており、
(前記ジルコニウムアルコキシドのモル数):(前記酢酸のモル数)の割合が、1:1.6〜1:4で、ジルコニウムアルコキシドをジルコニウム換算で1.8〜5.5質量%含有しており、アルコキシシランは含有していない亜鉛めっき用の水系ジルコニウム防食剤であって、
前記水系ジルコニウム防食剤は、
ジルコニウムアルコキシドと酢酸とを、(前記ジルコニウムアルコキシドのモル数):(前記酢酸のモル数)の割合が1:1.6〜1:4の割合となるように混合する混合工程と、
前記混合工程で得られた混合液に水を添加する水添加工程と、
水を添加した前記混合液を加熱してアルコールを留去させるアルコール除去工程と、
を行うことによって製造されたことを特徴とする水系ジルコニウム防食剤。
It contains zirconium alkoxide and acetic acid in water as a solvent,
The ratio of (number of moles of the zirconium alkoxide) :( number of moles of the acetic acid) is 1: 1.6 to 1: 4, and zirconium alkoxide is contained in an amount of 1.8 to 5.5% by mass in terms of zirconium. , An aqueous zirconium anticorrosive agent for zinc plating containing no alkoxysilane ,
The aqueous zirconium anticorrosive is
A mixing step of mixing zirconium alkoxide and acetic acid so that a ratio of (number of moles of the zirconium alkoxide) :( number of moles of the acetic acid) is 1: 1.6 to 1: 4;
A water addition step of adding water to the mixture obtained in the mixing step;
An alcohol removing step of heating the mixed solution to which water has been added to distill off the alcohol;
An aqueous zirconium anticorrosive agent produced by performing
前記アルコール除去工程では、混合液を60〜90℃に加熱してアルコールを留去させることを特徴とする請求項記載の水系ジルコニウム防食剤。 Wherein in the alcohol removal step, an aqueous zirconium anticorrosive as claimed in claim 1, wherein heating the mixture to 60 to 90 ° C. distilling off the alcohol. 請求項1又は2記載の水系ジルコニウム防食剤を亜鉛めっき表面に付着させた後、該亜鉛めっき表面のジルコニウム防食剤を乾燥させることを特徴とする防食被膜付亜鉛めっき部材の製造方法A method for producing a galvanized member with an anticorrosive coating , comprising: depositing the aqueous zirconium anticorrosive agent according to claim 1 or 2 on a galvanized surface; and drying the zirconium anticorrosive agent on the galvanized surface .
JP2008002857A 2008-01-10 2008-01-10 Aqueous zirconium anticorrosive, metal corrosion prevention method using the same, and aqueous zirconium anticorrosive Expired - Fee Related JP5238934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008002857A JP5238934B2 (en) 2008-01-10 2008-01-10 Aqueous zirconium anticorrosive, metal corrosion prevention method using the same, and aqueous zirconium anticorrosive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008002857A JP5238934B2 (en) 2008-01-10 2008-01-10 Aqueous zirconium anticorrosive, metal corrosion prevention method using the same, and aqueous zirconium anticorrosive

Publications (2)

Publication Number Publication Date
JP2009161840A JP2009161840A (en) 2009-07-23
JP5238934B2 true JP5238934B2 (en) 2013-07-17

Family

ID=40964777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008002857A Expired - Fee Related JP5238934B2 (en) 2008-01-10 2008-01-10 Aqueous zirconium anticorrosive, metal corrosion prevention method using the same, and aqueous zirconium anticorrosive

Country Status (1)

Country Link
JP (1) JP5238934B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870983B2 (en) * 2016-12-27 2021-05-12 日本ペイント・サーフケミカルズ株式会社 Surface treatment agent for galvanized steel sheets
JP6375043B1 (en) * 2017-10-31 2018-08-15 日本パーカライジング株式会社 Pretreatment agent, pretreatment method, metal material having chemical conversion film and method for producing the same, and painted metal material and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2509586B2 (en) * 1986-11-10 1996-06-19 株式会社東芝 Permalloy ribbon and its manufacturing method
JPH06101067A (en) * 1992-09-24 1994-04-12 Tsuchiya:Kk Ceramic coating liquid for preventing high temperature oxidation of stainless steel
JP3598163B2 (en) * 1996-02-20 2004-12-08 ソニー株式会社 Metal surface treatment method
JP2005325440A (en) * 2004-04-16 2005-11-24 Nippon Steel Corp Surface-treated metal and method for producing the same
JP2007023353A (en) * 2005-07-19 2007-02-01 Yuken Industry Co Ltd Non-chromium reactive chemical conversion treatment of galvanized member
JP4524352B2 (en) * 2006-04-17 2010-08-18 名古屋市 Anticorrosive and method for producing anticorrosive

Also Published As

Publication number Publication date
JP2009161840A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
CN101426871B (en) Non-chromate rust-preventive surface treating agent for metallic member having zinc surface, and metallic member having zinc surface coated with the rust-preventive coating film
KR101020526B1 (en) Corrosion protection on metals
JP5149166B2 (en) Sol for surface sol-gel process coating and coating method by sol-gel process using the same
TWI447264B (en) Surface-treating agent for metallic material
Barranco et al. Electrochemical study of tailored sol–gel thin films as pre-treatment prior to organic coating for AZ91 magnesium alloy
CN100582302C (en) Composition for coating metals to protect against corrosion
TWI444504B (en) Surface-treating agent for galvanized steel plate
Rodič et al. A hybrid organic–inorganic sol–gel coating for protecting aluminium alloy 7075-T6 against corrosion in Harrison’s solution
EP2010612B1 (en) Use of a nanostructured material, as protective coating of metal surfaces
JP5280254B2 (en) Self-lubricating galvanized metal material using a composition containing silica sol
TWI534216B (en) Water - based metal surface treatment agent
JP2012514669A (en) Coating composition and passivated galvanized material
WO2006082951A1 (en) Aqueous surface treating agent for metal material, surface treating method and surface-treated metal material
CN105316668B (en) Aqueous metal surface treatment compositions
TWI668327B (en) Aqueous metal surface treatment agent and metal surface treatment method
JP2011067737A (en) Method for coating metal material
Zhu et al. Water-based sol–gel coatings for military coating applications
Li et al. Facile fabrication of novel superhydrophobic Al2O3/polysiloxane hybrids coatings for aluminum alloy corrosion protection
JP2014514448A (en) Film-forming composition for preventing blackening of steel sheet and steel sheet on which film is formed by the above composition
Wang et al. Endowing magnesium with the corrosion-resistance property through cross-linking polymerized inorganic sol–gel coating
Li Sol-gel coatings to improve the corrosion resistance of magnesium (Mg) alloys
JP5238934B2 (en) Aqueous zirconium anticorrosive, metal corrosion prevention method using the same, and aqueous zirconium anticorrosive
Kobayashi et al. Chemical deposition of cerium oxide thin films on nickel substrate from aqueous solution
JP4524352B2 (en) Anticorrosive and method for producing anticorrosive
EP3526279B1 (en) A hybrid sol-gel corrosion-resistant coating composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5238934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees