WO2013031674A1 - Illumination device, display device, and television reception device - Google Patents

Illumination device, display device, and television reception device Download PDF

Info

Publication number
WO2013031674A1
WO2013031674A1 PCT/JP2012/071407 JP2012071407W WO2013031674A1 WO 2013031674 A1 WO2013031674 A1 WO 2013031674A1 JP 2012071407 W JP2012071407 W JP 2012071407W WO 2013031674 A1 WO2013031674 A1 WO 2013031674A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
solder resist
led
resist layer
chassis
Prior art date
Application number
PCT/JP2012/071407
Other languages
French (fr)
Japanese (ja)
Inventor
真之助 野澤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013031674A1 publication Critical patent/WO2013031674A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors

Definitions

  • the present invention relates to a lighting device, a display device, and a television receiver.
  • image display devices such as television receivers are shifting from conventional cathode ray tubes to thin display devices to which thin display elements such as liquid crystal panels and plasma display panels are applied.
  • liquid crystal panel When a liquid crystal panel is used as the display element, the liquid crystal panel does not emit light, and thus a backlight device is separately required as a lighting device.
  • Patent Document 1 discloses a backlight device that includes an LED mounted on a surface of a mounting substrate as a light source, and the surface of the mounting substrate is covered with a light reflecting member.
  • the light reflecting member is made of a material (so-called white solder resist) obtained by further adding a high light reflecting material having high light reflectivity to a solder resist, and the material is printed and applied on the mounting surface of the mounting substrate. Is obtained. According to such a backlight device, it is possible to suppress the absorption of light on the surface of the mounting substrate, and to improve the luminance and reduce the occurrence of luminance unevenness.
  • the current value for driving the LED is changed, and the luminance of the LED arranged on the end side of the backlight device is changed to the luminance of the LED arranged on the central side. It is possible to make it relatively higher. However, since this method requires special electrical control, a simpler method is required.
  • the present invention has been completed based on the above circumstances, and an object thereof is to provide a technique for suppressing luminance unevenness of a lighting device with a simple configuration.
  • An illumination device includes one or more light sources, a light source substrate on which the light sources are mounted, a plate-shaped member, and a chassis in which the light source substrate is disposed on the plate surface, A reflective layer disposed on the light source substrate, and when viewed from the entire plate surface of the chassis, a portion located on the end side of the chassis is more central than a portion located on the end side. And a reflective layer having a relatively high degree of yellowing in a portion located on the side.
  • the reflective layer may be composed of a solder resist layer that increases in yellowing degree when irradiated with ultraviolet rays.
  • the illumination device includes a lens member that diffuses light, the lens member being disposed on the plate surface of the light source substrate and covering a light emission side of the light source, and the reflective layer includes at least the lens member It can be formed in the overlapping part.
  • the reflection sheet reflects light, and has an opening that is larger than the outer shape of the lens member.
  • the lens member is inserted through the opening, and the plate surface of the light source substrate.
  • a reflection sheet is provided on the top, and the reflection layer may be formed at least in a portion exposed from the opening.
  • the degree of yellowing in the reflective layer based on the luminance distribution of planar light emitted from the light source
  • the distribution of can be defined.
  • a difference between a light reflectance of a portion located on the end side of the reflective layer and a light reflectance of a portion located on the center side of the reflective layer is 5% or more It can be.
  • the yellowing degree of the portion located on the central portion side in the reflective layer is set relatively higher than the yellowing degree of the portion located on the end side in the reflective layer.
  • the light reflectance of the portion located on the end side in the reflective layer can be set to be 5% or more higher than the light reflectance of the portion located on the center side in the reflective layer.
  • the chassis further includes a light emitting unit that emits light from the light source, and further includes an optical member arranged to cover the light emitting unit, and the optical member includes the light source.
  • the light source may include a light emitting diode.
  • the display device includes the illumination device and a display panel that performs display using light from the illumination device.
  • the display panel may be a liquid crystal panel in which liquid crystal is sealed between a pair of substrates.
  • a television receiver according to the present invention includes the display device.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention.
  • Exploded perspective view showing schematic configuration of liquid crystal display device Sectional drawing of the liquid crystal display device along the A-A 'line
  • the top view of the LED board distribute
  • FIG. 6 is an exploded perspective view showing a schematic configuration of a liquid crystal display device according to Embodiment 4. Sectional view showing the liquid crystal display device cut in the short side direction Plan view of LED board
  • Embodiment 1 of the present invention will be described with reference to FIGS.
  • the liquid crystal display device 10 is illustrated.
  • X-axis, Y-axis, and Z-axis are shown in a part of each drawing, and each axial direction is drawn so that it may become a common direction in each drawing.
  • the upper side of FIGS. 2 and 3 is the front side, and the lower side is the back side.
  • the television receiver TV includes a liquid crystal display device 10, front and back cabinets Ca and Cb that are accommodated so as to sandwich the liquid crystal display device 10, a power source P, and a tuner T. And a stand S.
  • the liquid crystal display device (display device) 10 has a horizontally long rectangular shape (rectangular shape) as a whole and is accommodated in a vertically placed state.
  • the liquid crystal display device 10 includes a liquid crystal panel 11 that is a display panel and a backlight device (illumination device) 12 that is an external light source, and these are integrated by a frame-like bezel 13 or the like. It is designed to be retained.
  • the liquid crystal panel 11 and the backlight device 12 constituting the liquid crystal display device 10 will be described.
  • the liquid crystal panel (display panel) 11 has a rectangular shape when viewed in a plane, and a pair of glass substrates are bonded together with a predetermined gap therebetween, and a liquid crystal is formed between the glass substrates. It is set as the enclosed structure.
  • One glass substrate is provided with a switching element (for example, TFT) connected to a source wiring and a gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, and the like.
  • a switching element for example, TFT
  • the substrate is provided with a color filter and counter electrodes in which colored portions such as R (red), G (green), and B (blue) are arranged in a predetermined arrangement, and an alignment film.
  • a polarizing plate is disposed on the outside of both substrates.
  • the backlight device 12 is a substantially box-shaped chassis having an opening 14b (light emitting portion) for emitting light from a light source on the light emitting portion 12a side (liquid crystal panel 11 side). 14, an optical member 15 disposed so as to cover the opening 14 b of the chassis 14 (a diffusion plate 15 a and a plurality of optical sheets 15 b disposed between the diffusion plate 15 a and the liquid crystal panel 11), and the chassis 14.
  • the frame 16 is disposed along the outer edge of the optical member 15 and holds the outer edge of the optical member 15 between the frame 14 and the chassis 14. Further, in the chassis 14, as shown in FIG.
  • an LED 17 Light Emitting Diode
  • an LED board 18 light source board
  • a diffusing lens 19 lens member attached at a position corresponding to.
  • the chassis 14 is provided with a reflection sheet 21 that reflects the light in the chassis 14 toward the optical member 15.
  • the optical member 15 side is closer to the light emitting portion 12 a side than the LED 17.
  • the chassis 14 is made of metal, and as shown in FIG. 3 and the like, a bottom plate 14a having a rectangular shape like the liquid crystal panel 11, a side plate 14c rising from an outer end of each side of the bottom plate 14a, and a side plate 14c. It consists of a receiving plate 14d projecting outward from the rising edge, and as a whole, has a shallow substantially box shape (substantially shallow dish shape) opened toward the front side.
  • the long side direction of the chassis 14 matches the X-axis direction, and the short side direction matches the Y-axis direction.
  • a frame 16 and an optical member 15 to be described below can be placed on each receiving plate 14d in the chassis 14 from the front side. The frame 16 is screwed to the receiving plate 14d.
  • the optical member 15 has a horizontally long rectangular shape (rectangular shape) in a plan view, like the liquid crystal panel 11 and the chassis 14. As shown in FIG. 3, the optical member 15 is placed between the liquid crystal panel 11 and the LED 17 while covering the opening 14 b of the chassis 14 by placing the outer edge portion on the receiving plate 14 d.
  • the optical member 15 includes a diffusion plate 15a disposed on the back side (the side opposite to the LED 17 side and the light emitting unit 12a side), and an optical sheet 15b disposed on the front side (the liquid crystal panel 11 side and the light emitting unit 12a side).
  • Consists of The diffusion plate 15a has a structure in which a large number of diffusion particles are dispersed in a substantially transparent resin base material having a predetermined thickness, and has a function of diffusing transmitted light.
  • the optical sheet 15b has a sheet shape that is thinner than the diffusion plate 15a, and two optical sheets 15b are laminated. Specific types of the optical sheet 15b include, for example, a diffusion sheet, a lens sheet, a reflective polarizing sheet, and the like, which can be appropriately selected and used.
  • the frame 16 has a frame shape along the outer peripheral edge of the liquid crystal panel 11 and the optical member 15. An outer edge portion of the optical member 15 can be sandwiched between the frame 16 and each receiving plate 14d (see FIG. 3).
  • the frame 16 can receive the outer edge portion of the liquid crystal panel 11 from the back side, and can sandwich the outer edge portion of the liquid crystal panel 11 with the bezel 13 disposed on the front side (see FIG. 3).
  • the LED 17 has a configuration in which an LED chip is sealed with a resin material on a substrate portion fixed to the LED substrate 18.
  • the LED chip mounted on the substrate unit has one main emission wavelength, and specifically, one that emits blue light in a single color is used.
  • a phosphor that converts blue light emitted from the LED chip into white light is dispersed and blended in the resin material for sealing the LED chip.
  • the LED 17 can emit white light.
  • the LED 17 is a so-called top type in which a surface opposite to the mounting surface with respect to the LED substrate 18 is a light emitting surface 17a.
  • the optical axis LA of the LED 17 is set to substantially coincide with the Z-axis direction (direction orthogonal to the main plate surfaces of the liquid crystal panel 11 and the optical member 15). Note that the light emitted from the LED 17 spreads radially to some extent within a predetermined angle range around the optical axis LA, but its directivity is higher than that of a cold cathode tube or the like. That is, the emission intensity of the LED 17 shows an angular distribution that tends to decrease as the direction along the optical axis LA is high and the tilt angle with respect to the optical axis LA increases.
  • the LED substrate 18 includes a base material 30 that has a rectangular shape (rectangular shape) in a plan view, and the long side direction is the Y-axis direction (the short side of the bottom plate 14 a of the chassis 14). And extending along the bottom plate 14a in the chassis 14 in a state where the short side direction matches the X-axis direction (long side direction of the bottom plate of the chassis 14a).
  • the substrate 30 of the LED substrate 18 is made of a metal such as the same aluminum material as the chassis 14, and a pattern wiring (not shown) made of a metal film such as a copper foil is formed on the surface of the substrate 30 via an insulating layer (not shown).
  • the configuration is The pattern wiring is arranged on the side of the plate surface 18b (the plate surface on which the light source is mounted) on which the LED 17 is mounted, and is electrically connected to the LED 17. Further, a white solder resist layer 32 (reflection layer) for protecting the wiring is laminated on the surface of the pattern wiring.
  • the solder resist layer 32 will be described in detail later.
  • the LED 17 having the above-described configuration is surface-mounted as shown in FIG. 6 on the surface facing the front side (the surface facing the optical member 15 side). Has been.
  • a plurality of LEDs 17 are arranged on the LED substrate 18 in a straight line at equal intervals along the long side direction (Y-axis direction) of the LED substrate 18.
  • the LED substrate 18 on the LED substrate 18, three rows of a plurality (9) of LEDs 17 are formed in parallel with each other.
  • the LEDs 17 are connected in series with each other by pattern wiring.
  • the pitch between the LEDs 17 on the LED substrate 18 is substantially constant.
  • a connector 18a is provided at one end of the LED substrate 18 on the long side.
  • each LED substrate 18 having the same size is accommodated in the chassis 14 in a line along the X-axis direction (long side direction of the bottom plate of the chassis 14a).
  • the LEDs 17 mounted on the LED substrates 18 are arranged in a matrix (matrix).
  • the interval (pitch) between the LEDs 17 arranged in a matrix is set to be substantially constant.
  • each connector 18a provided on each LED board 18 is aligned with one long side of the chassis 14, and an external control circuit (not shown). Are electrically connected to each other. Then, lighting and extinguishing of each LED 17 on each LED board 18 are collectively controlled by the control circuit.
  • the LED substrate 18 is fixed to the bottom plate 14a of the chassis 14 using a rivet-shaped fixing member (not shown).
  • the diffusing lens 19 is made of a synthetic resin material (for example, polycarbonate, acrylic, etc.) that is substantially transparent (having high translucency) and has a higher refractive index than air. As shown in FIG. 5, the diffusing lens 19 is formed in a substantially circular shape when seen in a plan view, and covers each LED 17 individually from the front side with respect to the LED substrate 18, that is, when viewed from the plan view with each LED 17. Each is attached to overlap.
  • the diffusing lens 19 can emit light having a high directivity (high) emitted from the LED 17 while diffusing. By covering the LED 7 with the diffusion lens 19, the number of LEDs 17 installed in the chassis 14 can be reduced.
  • the diffusing lens 19 is disposed at a position that is substantially concentric with the LED 17 in a plan view.
  • the diffuser lens 19 is sufficiently larger in both the X-axis direction and the Y-axis direction than the LED 17.
  • the diffusing lens 19 has dimensions smaller than the LED substrate 18 in the X-axis direction and the Y-axis direction. Therefore, the LED substrate 18 is disposed in a region overlapping with the diffusing lens 19 in the Z-axis direction.
  • a surface facing the LED substrate 18 is a light incident surface 19a on which light from the LED 17 is incident, whereas a surface facing the optical member 15 is a light emitting surface 19b that emits light. It is said.
  • the light incident surface 19a is generally parallel to the plate surface 18b of the LED substrate 18 as shown in FIG.
  • the side recess 19c is formed to have an inclined surface.
  • the light incident side concave portion 19c has a substantially conical shape and is disposed at a substantially concentric position in the diffusing lens 19 and opens toward the back side, that is, the LED 17 side.
  • the light incident side concave portion 19c has a substantially inverted V-shaped cross section, and its peripheral surface is an inclined surface inclined with respect to the Z-axis direction. Therefore, the light emitted from the LED 17 and entering the light incident side concave portion 19c enters the diffusion lens 19 through the inclined surface, but at that time, the amount of the inclination angle of the inclined surface with respect to the optical axis LA is as follows. The light is refracted in a direction away from the center, that is, a wide angle, and enters the diffusing lens 19.
  • the diffusing lens 19 is provided with mounting legs 19 d that project toward the LED substrate 18 and that serve as a structure for attaching the diffusing lens 19 to the LED substrate 18.
  • Three attachment legs 19d are arranged in the diffuser lens 19 at positions closer to the outer peripheral end than the light incident side recess 19c, and the lines connecting the attachments form a substantially equilateral triangle when viewed in a plane. Arranged in position.
  • Each mounting leg 19d has its tip fixed to the LED substrate 18 with an adhesive or the like.
  • the diffusing lens 19 is fixed to the LED substrate 18 via the mounting leg portion 19d, so that a predetermined gap is formed between the light incident surface 19a and the LED substrate 18. In this gap, incidence of light from a space outside the diffusion lens 19 in a plan view is allowed.
  • the light exit surface 19b of the diffusion lens 19 is formed in a flat and substantially spherical shape.
  • the light emitted from the diffusing lens 19 can be emitted while being refracted in a direction away from the center at the interface with the external air layer, that is, a wide angle.
  • a light emitting side recess 19e is formed in a region of the light emitting surface 19b that overlaps the LED 17 when seen in a plan view.
  • the light emitting side concave portion 19e has a substantially bowl shape, and is formed in a flat and substantially spherical shape with a peripheral surface having a downward slope toward the center.
  • the angle formed by the tangent of the peripheral surface of the light exit side recess 19e with respect to the optical axis LA of the LED 17 is relatively larger than the angle formed by the inclined surface of the light incident side recess 19c with respect to the optical axis LA. It is said.
  • a light emitting side recess 19e in a region of the light emitting surface 19b that overlaps the LED 17 when viewed in plan, most of the light from the LED 17 is emitted while being refracted at a wide angle, or part of the light from the LED 17 Can be reflected to the LED substrate 18 side.
  • the reflection sheet 21 is made of a synthetic resin, and the surface of the reflection sheet 21 is white with excellent light reflectivity. As shown in FIG. 4, the reflection sheet 21 has a size that is laid over almost the entire inner surface of the chassis 14, so that all the LED boards 18 arranged in parallel in the chassis 14 are arranged from the front side. It is possible to cover all at once. The reflection sheet 21 can efficiently raise the light in the chassis 14 toward the optical member 15 side.
  • the reflection sheet 21 extends along the bottom plate 14a of the chassis 14 and covers a large portion of the bottom plate 14a.
  • the reflection sheet 21 rises from each outer end of the bottom portion 21a to the front side and is inclined with respect to the bottom portion 21a.
  • the four rising portions 21b and the extending portions 21c that extend outward from the outer ends of the respective rising portions 21b and are placed on the receiving plate 14d of the chassis 14 are configured.
  • the bottom 21a of the reflection sheet 21 is disposed so as to overlap the front side with respect to the plate surface 18b on which the LEDs 17 of each LED board 18 are mounted.
  • a lens insertion hole 21d (opening) through which each diffusion lens 19 is inserted is provided in the bottom portion 21a of the reflection sheet 21 at a position overlapping with each diffusion lens 19 (each LED 17) in plan view.
  • the lens insertion holes 21 d are individually inserted through the respective diffusion lenses 19, and are arranged in a matrix on the bottom 21 a of the reflection sheet 21 in the same manner as the LEDs 17.
  • the lens insertion hole 21 d has a circular shape when seen in a plan view, and has a diameter larger than that of the diffusing lens 19.
  • the diameter dimension of the lens insertion hole 21 d is set to be smaller than the short side dimension of the LED substrate 18.
  • the solder resist layer 32 provided on the LED substrate 18 is exposed in the lens insertion hole 21d, and the chassis 14 is not exposed.
  • the reflection sheet 21 is fixed to the LED board 18 using the above-described rivet-like fixing member (not shown) for fixing the LED board 18 to the bottom plate 14a.
  • the support member 20 has a shape protruding from the bottom plate 14a of the chassis 14 toward the front side.
  • the base side of the support member 20 has a rivet shape and has a function of fixing the LED substrate 18 to the bottom plate 14a.
  • the front end side of the support member 20 is rod-shaped, and has a function of supporting the optical member 15 from the back side.
  • the solder resist layer 32 of the present embodiment is formed on the front surface (mounting surface) of the LED substrate 18, and a white solder resist (hereinafter, white solder resist) is appropriately used as necessary. Consists of yellowing.
  • the white solder resist is made, for example, by dispersing a predetermined amount of a white pigment such as titanium oxide (rutile titanium oxide, etc.) or barium titanate in an ultraviolet curable base resin. This type of white solder resist has a property of being excellent in light reflectivity as compared with a general-purpose green solder resist.
  • the solder resist layer 32 of the present embodiment is formed using such a property of the white solder resist.
  • the solder resist layer 32 is formed so as to sandwich a pattern wiring (not shown) with an insulating layer (not shown) formed on the base material 30 of the LED substrate 18.
  • the solder resist layer 32 is provided on substantially the entire surface of the front surface of the LED substrate 18 except for the portion where the LEDs 17 are mounted.
  • an uncured white solder resist having fluidity is printed and applied on the LED substrate 18 with a predetermined thickness.
  • an exposure process and a development process are performed on the coating film of the white solder resist applied on the LED substrate 18. Thereafter, the coating film of the white solder resist is irradiated with infrared rays to dry the coating film, and if necessary, the coating film is irradiated with ultraviolet rays to yellow the coating film.
  • two LED substrates 18 include a white (unyellowed) solder resist layer 32 (32A).
  • the remaining four LED substrates 18 include a solder resist layer 32 (32B) that has been yellowed by the yellowing treatment.
  • a white (non-yellowing) solder resist layer 32 (32A) is formed on two LED substrates 18 at both ends of the six LED substrates 18 arranged in a line. ing.
  • a yellowed solder resist layer 32 (32B) is formed on the four LED substrates 18 between them.
  • the LED substrates 18 arranged on the bottom plate 14a in FIG. 7 and the like are arranged in order from the left end to the right end, the first LED substrate 18, the second LED substrate 18, the third LED substrate 18, and the fourth LED substrate. 18, the fifth LED board 18, and the sixth LED board 18.
  • FIG. 8 is a graph showing the total reflectance of the solder resist layer 32 (32B) after yellowing.
  • the horizontal axis in FIG. 8 corresponds to the wavelength (nm) of light irradiated to the solder resist film 32, and the vertical axis corresponds to the total reflectance (%).
  • the graph indicated by the solid line corresponds to the yellowed solder resist layer 32 (32 ⁇ / b> B), and the graph indicated by the alternate long and short dash line is the white (unyellowed) solder resist layer. 32 (32A).
  • the total reflectance of the yellowed solder resist layer 32 (32B) is lower than the total reflectance of the white (unyellowed) solder resist layer 32 (32A).
  • x X / (X + Y + Z)
  • y Y (X + Y + Z) exists between the coordinate value (x, y) of the CIEXYxy system and the coordinate value (X, Y, Z) of the CIEXYZ system. It is made up.
  • the color name is specified as # fffff5.
  • the solder resist layer 32 is formed on the entire portion overlapping with the lens insertion hole 21 d of the reflection sheet 21 except for a portion where the LED 17 is mounted when seen in a plan view. As a result, the solder resist layer 32 is exposed from the lens insertion hole 21d. In addition, it sets so that things other than the soldering resist layer 32 may hardly be exposed from the lens penetration hole 21d of the reflective sheet 21 of this embodiment.
  • the solder resist layers 32A located on the LED substrates 18 (the first LED substrate 18 and the sixth LED substrate 18) at both ends are more than
  • Each solder resist layer 32 ⁇ / b> B located on each LED board 18 (second LED board 18, third LED board 18, fourth LED board 18, and fifth LED board 18) on the center side side has a relatively higher degree of yellowing.
  • the reflection sheet 21 is attached to the chassis 14, it is located on each LED board 18 (first LED board 18 and sixth LED board 18) at both ends and exposed from the lens insertion hole 21 d.
  • Each LED substrate 18 located on the center side of each solder resist layer 32A to be exposed and exposed from the lens insertion hole 21d.
  • the solder resist layer 32B has a relatively high degree of yellowing.
  • FIG. 9 is a cross-sectional view taken along line B-B ′ of FIG.
  • the LED 17 on the first LED board 18 is shown on the left side of FIG. 9, and the LED 17 on the second LED board 18 is shown on the right side of FIG.
  • the white (non-yellowing) solder resist layer 32 (32A) is formed on the base material 30 of the first LED substrate 18, and the yellowing is performed on the base material of the second LED substrate 18.
  • the solder resist layer 32 (32B) thus formed is formed.
  • the portions of the solder resist layers 32A and 32B formed around the LED 17 and the diffusing lens 19 are exposed from the lens insertion holes 21d of the reflection sheet 21, respectively.
  • Some of the light emitted from the LED 17 passes directly toward the front optical member 15 through the diffusing lens 19 and once travels toward the reflection sheet 21 in the periphery. .
  • the light traveling toward the reflection sheet 21 or the like is reflected by the reflection sheet 21 or the like and proceeds toward the solder resist layer 32 (32A, 32B) exposed from the lens insertion hole 21d. There is something.
  • light L1 traveling toward the solder resist layer 32A and light L3 traveling toward the solder resist layer 32B are schematically shown by arrows, respectively.
  • each 17 provided in the backlight device 12 is turned on and an image signal is supplied to the liquid crystal panel 11. Thereby, a predetermined image is displayed on the display surface of the liquid crystal panel 11.
  • the light emitted from each LED 17 that is lit first enters the light incident surface 19 a of the diffusion lens 19. At this time, most of the light enters the inclined surface of the light incident recess 19c in the light incident surface 19a, and enters the diffusing lens 19 while being refracted at a wide angle according to the inclination angle.
  • the light that has entered the diffusing lens 19 propagates through the diffusing lens 19 and then exits from the light exit surface 19b.
  • the light emitting surface 19b is substantially spherical in shape, and light is emitted while being refracted at a wider angle at the interface with the external air layer.
  • the light exit side recess 19e having a substantially bowl shape is formed, and the peripheral surface has a flat and substantially spherical shape. Light can be emitted while being refracted at a wide angle on the peripheral surface of the light emitting side recess 19e, or reflected to the LED substrate 18 side.
  • the main part of the light emitted from the diffusion lens 19 is emitted to the light emitting part 12 a side (liquid crystal panel 11) side of the backlight device 12 through the optical member 15. Further, the remaining part of the light emitted from the diffusing lens 19 is directed to the reflective sheet 21 or the solder resist layer 32 side, and after being reflected by the reflective sheet 21 or the solder resist layer 32, the light emitting part 12a side. It goes to (liquid crystal panel 11).
  • the light emitting part 12 a included in the backlight device 12 includes a rectangular part surrounded by the inner edge part of the frame 16.
  • the LED 17 is not disposed in the portion corresponding to the periphery of the light emitting portion 12a, although the rising portion 21b of the reflecting sheet 21 is disposed.
  • a plurality of LEDs 17 are arranged in a matrix in a portion corresponding to the inner side (center side) of the peripheral edge of the light emitting portion 12a. Therefore, the backlight device 12 inevitably has a configuration in which the amount of light on the peripheral side of the light emitting portion 12a is smaller than the amount of light on the center side, considering only the arrangement relationship of the LEDs 17.
  • the backlight device 12 of the present embodiment in the planar light emitted from the light emitting portion 12a, the occurrence of uneven brightness between the peripheral portion and the central portion is suppressed.
  • the principle will be described below.
  • both end portions on the short side are the places where the amount of light is most likely to be insufficient. This is because, among the peripheral portions of the light emitting portion 12a, both ends on the short side have a smaller number of LEDs 17 disposed than both ends on the long side of the light emitting portion 12a. .
  • the luminance unevenness between the end portions on the short side of the light emitting portion 12a and the central portion of the light emitting portion 12a is at least suppressed, in the case of human vision, the light emission The planar light emitted from the portion 12a is recognized as being substantially uniform as a whole.
  • the solder resist layer 32 is formed at least in a portion overlapping the diffusing lens 19. Therefore, the light reflected by the solder resist layer 32 enters the diffusing lens 19, and part of the light is diffused toward both end portions along the Y-axis direction of the light emitting portion 12 a of the backlight device 12. Further, the luminance at the end of the light emitting part 12a can be further improved.
  • the solder resist layer 32 is formed at least in a portion overlapping with the lens insertion hole 21d of the reflection sheet 21. Therefore, the light that has entered the lens insertion hole 21d can be reflected by the solder resist layer 32, and the luminance at the end of the light emitting portion 12a can be further improved.
  • the diffusion plate 15a and the optical sheet 15b are provided, the light emitted from the opening 14b of the chassis 14 is transmitted through the diffusion plate 15a and the optical sheet 15b, and further.
  • the luminance of the light emitting part 12a of the backlight device 12 can be made uniform.
  • FIG. 10 is a plan view of the LED substrate 18 disposed on the bottom plate 14a of the chassis 14 included in the illumination device (backlight device) 12A according to the second embodiment.
  • the backlight device 12A of this embodiment is different from that of Embodiment 1 in the solder resist layer 32 (32C) formed on the third LED substrate 18 and the fourth LED substrate 18, respectively.
  • the first LED substrate 18 disposed at the left end and the sixth LED substrate 18 disposed at the right end are the solder as in the first embodiment.
  • a resist layer 32 (32A) is provided.
  • the 2nd LED board 18 and the 5th LED board 18 are provided with the soldering resist layer 32 (32B) similarly to Embodiment 1.
  • the third LED substrate 18 and the fourth LED substrate 18 include a solder resist layer 32C having a higher degree of yellowing than the solder resist layer 32B.
  • the chromaticity (yellowing degree) of the solder resist layer 32C is set higher than the chromaticity (yellowing degree) of the solder resist layer 32B.
  • the light reflectance in such a solder resist layer 32C is further lower than the light reflectance of the solder resist layer 32B.
  • the backlight device 12A of the present embodiment is used in a liquid crystal display device 10 as shown in FIGS.
  • the backlight device 12A according to the present embodiment is provided with the LED substrate 18 including the solder resist layer 32C at the center portion of the bottom plate 14a. Is further suppressed. This is because, in the backlight device 10 according to the first embodiment, the outer side and the inner side among the central portion (the portion surrounded by the peripheral portion of the light emitting portion 12a) of the light emitting portion 12a (see FIG. 2 of the first embodiment). And there is a difference in luminance. This brightness difference is less in comparison with the brightness difference between the peripheral part of the light emitting part 12a and the central part of the light emitting part 12a, which has been a problem in the first embodiment, but it is on the inside rather than the outside. The brightness is higher.
  • the solder resist layer 32C having a low light reflectance at the center portion of the bottom plate 14a, the solder resist layer 32C (the solder resist layer 32C exposed from the lens insertion hole 21d) is reflected. Suppressed light. Therefore, the backlight device 12A according to the present embodiment further suppresses uneven brightness as compared with the first embodiment.
  • FIG. 11 is a plan view of the LED substrate 18 disposed on the bottom plate 14a of the chassis 14 included in the illumination device (backlight device) 12B of the third embodiment.
  • the solder resist layer 32 formed on each LED substrate 18 has a different configuration from that of the first embodiment.
  • Each solder resist layer 32 on each LED substrate 18 is manufactured from a white solder resist as in the first embodiment. However, the white solder resist coating formed on each LED substrate 18 is partially subjected to yellowing treatment by ultraviolet irradiation. As shown in FIG. 11, when the bottom plate 14a of the chassis 14 is viewed in a plane, a solder resist layer 32B having a substantially elliptical shape (substantially oval shape) is formed in the center portion. This solder resist layer 32 ⁇ / b> B is formed across (strands) each solder resist layer 32 formed on the six LED substrates 18. A frame-shaped solder resist layer 32A is formed around the substantially elliptical solder resist layer 32B. The frame-shaped solder resist layer 32 ⁇ / b> A is also formed across (strands) the solder resist layers 32 formed on the six LED substrates 18.
  • the yellowing process of the solder resist layer 32 (white solder resist coating film) of each LED substrate 18 is performed using a mask having a predetermined shape that shields ultraviolet rays.
  • the mask corresponds to the shape of the solder resist layer 32 ⁇ / b> A that is to be formed on the LED substrate 18.
  • the range in which the solder resist layers 32A and 32B are formed is determined based on predetermined luminance distribution data.
  • the brightness distribution data includes a backlight device in which all of the six LED boards 18 arranged on the bottom plate 14a of the chassis 14 are replaced with ones having a white solder resist layer 32 (32A). It is obtained by measuring the luminance distribution in the planar light emitted from the light emitting portion of the backlight device using a known luminance distribution measuring device. Based on the acquired luminance distribution data (for example, a two-dimensional image), a high luminance range and a low luminance range in the light emitting portion are determined, and based on the result, the solder resist layer 32 (white solder resist). The range to be yellowed can be determined. That is, the distribution of yellowing degree in the solder resist layer 32 can be determined.
  • the luminance distribution data it is possible to accurately distinguish a portion where the reflected light from the solder resist layer 32 is desired to be increased and a location where the reflected light is desired to be decreased. As a result, the luminance unevenness of the backlight device 12B can be reliably suppressed.
  • Embodiment 4 of the present invention will be described with reference to FIGS.
  • the backlight device 12 of the first embodiment described above is replaced with an edge light type backlight device 12C.
  • FIG. 12 is an exploded perspective view showing a schematic configuration of the liquid crystal display device 10C according to the fourth embodiment.
  • the liquid crystal display device 10 ⁇ / b> C according to the present embodiment has a configuration in which a liquid crystal panel 11 and an edge light type backlight device 12 ⁇ / b> C are integrated by a bezel 13 or the like.
  • the configuration of the liquid crystal panel 11 is the same as that of the first embodiment.
  • the configuration of the edge light type backlight device 12C will be described.
  • the backlight device 12C includes a chassis 14 having a substantially box shape having an opening 14b (light emitting portion) that opens on the front side, that is, the light emitting portion 12a side (the liquid crystal panel 11 side).
  • the optical member 15 is disposed so as to cover the opening 14b of the chassis 14, and the frame 16 holds the light guide member 22 described below from the front side.
  • an LED substrate 18C light source substrate
  • the optical member 15 the liquid crystal panel 11
  • this backlight apparatus 12C is equipped with LED board 18C which has LED17 in the both ends of the long side, respectively, and is light guide member 20 in the center side pinched
  • the chassis 14 is made of a metal plate. As shown in FIG. 12, the chassis 14 has a horizontally long bottom plate 14a similar to the liquid crystal panel 11, and each side of the bottom plate 14a (a pair of long sides and a pair of short sides). Each side plate 14c rises from the outer end toward the front side. Further, the frame 16 and the bezel 13 can be screwed to the side plate 14c.
  • the optical member 15 has a horizontally long rectangular shape when viewed in a plane, like the liquid crystal panel 11 and the chassis 14.
  • the optical member 15 is placed on the front side (light emitting side) of the light guide member 22 and is interposed between the liquid crystal panel 11 and the light guide member 22.
  • the optical member 15 includes a diffusion plate 15a disposed on the back side (the side opposite to the light guide member 22 side and the light emitting unit 12a side) and an optical disposed on the front side (the liquid crystal panel 11 side and the light emitting unit 12a side). And a sheet 15b.
  • the diffusing plate 15a has a structure in which a large number of diffusing particles are dispersed in a translucent base material made of a substantially transparent synthetic resin having a predetermined thickness, and has a function of diffusing transmitted light.
  • the optical sheet 15b has a sheet shape that is thinner than the diffusion plate 15a, and three optical sheets are laminated.
  • the specific optical sheet 15b for example, a diffusion sheet, a prism sheet, or a reflective polarizing sheet is used.
  • the LED 17 has a configuration in which an LED chip is sealed with a resin material on a substrate portion fixed to the LED substrate 18C.
  • the LED substrate 18 ⁇ / b> C has a long plate shape extending along the long side direction of the chassis 14, and is a plate of the liquid crystal panel 11 and the light guide member 22 (optical member 15). It is accommodated in the chassis 14 in a posture orthogonal to the surface. That is, the LED substrate 18C has a posture in which the long side direction on the plate surface coincides with the X-axis direction, the short side direction coincides with the Z-axis direction, and the plate thickness direction orthogonal to the plate surface coincides with the Y-axis direction. It is said.
  • the light guide member 22 is made of a synthetic resin material (for example, acrylic or the like) having a refractive index sufficiently higher than air and substantially transparent (excellent translucency). As shown in FIG. 12, the light guide member 22 is formed in a plate shape that has a horizontally long rectangular shape in a plan view, like the liquid crystal panel 11 and the chassis 14, and the long side direction on the plate surface is the X axis. The direction and the short side direction coincide with the Y-axis direction, respectively, and the plate thickness direction orthogonal to the plate surface coincides with the Z-axis direction. As shown in FIG.
  • the light guide member 22 is disposed in the chassis 14 at a position immediately below the liquid crystal panel 11 and the optical member 15, and forms a pair disposed at both ends of the long side of the chassis 14.
  • the LED boards 18C are arranged so as to be sandwiched between the Y-axis directions. Then, the light guide member 22 introduces light emitted from the LED 17 in the Y-axis direction, and rises toward the optical member 15 side (front side, light emission side) while propagating the light inside. It has a function to emit light.
  • the surface 22c opposite to the light exit surface 22b can reflect the light in the light guide member 22 and rise to the front side as shown in FIG.
  • a reflective optical member 25 is provided so as to cover the entire area.
  • a scattering portion (not shown) that scatters light in the light guide member 22 is formed on at least one of the light exit surface 22b and the opposite surface 22c of the light guide member 22 or on the surface of the reflective optical member 25.
  • And the like are patterned so as to have a predetermined in-plane distribution, and thereby, the emitted light from the light emitting surface 22b is controlled to have a uniform distribution in the surface.
  • the solder resist layer 32 provided on the LED substrate 18C will be described.
  • the same solder resist layer 32 as in the first embodiment is used.
  • the solder resist layer 32 is provided over substantially the entire plate surface (mounting surface) of the LED substrate 18 ⁇ / b> C except for the portion where the LED 17 is mounted.
  • the solder resist layer 32 faces the light incident surface 22a of the light guide member 22, and is located between the light incident surface 22a of the light guide member 22 and the base material of the LED substrate 18C. Therefore, among the light emitted from the LED 17 toward the light guide member 22, the solder resist layer 32 is directed again toward the light guide member 22 for the light returned from the light guide member 22 side to the LED substrate 18 ⁇ / b> C side. Can be reflected.
  • the example including the diffusing lens 19 is illustrated, but in another embodiment, the diffusing lens 19 may not be provided.
  • the white solder resist layer 32A is used as the solder resist layer 32 disposed on the end side of the chassis 14.
  • the solder resist layer 32A in the first embodiment may be replaced with the solder resist layer 32B
  • the solder resist layer 32B in the first embodiment may be replaced with the solder resist layer 32C (see the second embodiment).
  • the yellowing degree of the solder resist layer 32 provided at the location where the reflected light is desired to be promoted in the chassis 14 is more than the yellowing degree of the solder resist layer 32 provided at the location where the reflected light is desired to be suppressed. May be set relatively low.
  • an insulating material such as ceramic as an example of the base material 30 of the LED substrate 18 that is made of a metal such as the same aluminum material as the chassis 14.
  • Embodiment 1 the one provided with the reflective sheet 21 is shown, but in other embodiments, a configuration without the reflective sheet may be used.
  • Embodiment 1 an example using the LED 17 as the light source is illustrated, but in other embodiments, a light source other than the LED may be used.
  • a liquid crystal display device using a liquid crystal panel as a display panel has been exemplified, but in other embodiments, a display device using another type of display panel may be used.
  • SYMBOLS 10 Liquid crystal display device (display device), 11 ... Liquid crystal panel, 12 ... Backlight device (illumination device), 13 ... Bezel, 14 ... Chassis, 15 ... Optical member, 16 ... Frame, 17 ... LED (light source), 18 DESCRIPTION OF SYMBOLS ... LED board (light source board), 19 ... Diffusing lens, 20 ... Support member, 21 ... Reflective sheet, 22 ... Light guide member, 32 ... Solder resist layer, 32A ... White solder resist layer, 32B ... Yellowed solder Resist layer

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

This illumination device comprises: one or a plurality of light sources (17); a light source substrate (18) on which the light sources (17) are mounted; a chassis (14) which is a plate-shaped member, the light source substrate (18) being disposed on the panel surface thereof; and a reflecting layer (32) disposed on the light source substrate (18), the reflecting layer (32) being formed such that portions (32B) located closer to the center than portions located at the edges of the chassis have a higher yellowness index relative to portions (32A) located at the edges when the reflecting layer is viewed over the entire panel surface of the chassis (14).

Description

照明装置、表示装置及びテレビ受信装置Lighting device, display device, and television receiver
 本発明は、照明装置、表示装置及びテレビ受信装置に関する。 The present invention relates to a lighting device, a display device, and a television receiver.
 近年、テレビ受信装置をはじめとする画像表示装置は、従来のブラウン管から液晶パネルやプラズマディスプレイパネルなどの薄型表示素子を適用した薄型表示装置に移行しつつある。表示素子として液晶パネルを用いた場合、液晶パネルは自発光しないため、別途に照明装置としてバックライト装置が必要となる。 In recent years, image display devices such as television receivers are shifting from conventional cathode ray tubes to thin display devices to which thin display elements such as liquid crystal panels and plasma display panels are applied. When a liquid crystal panel is used as the display element, the liquid crystal panel does not emit light, and thus a backlight device is separately required as a lighting device.
 特許文献1には、光源として実装基板の表面上に実装されたLEDを備え、実装基板の表面が光反射部材で覆われているバックライト装置が開示されている。当該光反射部材としては、高い光反射率を有する高光反射材料をソルダーレジストにさらに加えた材料(所謂、白色ソルダーレジスト)からなっており、その材料を実装基板の実装面上に印刷塗布することによって得られるものが例示されている。このようなバックライト装置によれば、実装基板の表面で光が吸収されることを抑制し、輝度の向上および輝度ムラの発生の低減を図ることができるとのことである。 Patent Document 1 discloses a backlight device that includes an LED mounted on a surface of a mounting substrate as a light source, and the surface of the mounting substrate is covered with a light reflecting member. The light reflecting member is made of a material (so-called white solder resist) obtained by further adding a high light reflecting material having high light reflectivity to a solder resist, and the material is printed and applied on the mounting surface of the mounting substrate. Is obtained. According to such a backlight device, it is possible to suppress the absorption of light on the surface of the mounting substrate, and to improve the luminance and reduce the occurrence of luminance unevenness.
特開2011-90977号公報JP 2011-90977 A
(発明が解決しようとする課題)
 ところで、バックライト装置の光出射部を正面側から見た場合に、光出射部の端部で、光量不足により暗く示される部分があり、問題となっている。これは、バックライト装置の端部においては、中央部に比べて光を供給する光源の数が少ないことに起因する。
(Problems to be solved by the invention)
By the way, when the light emitting portion of the backlight device is viewed from the front side, there is a portion that is darkly shown at the end of the light emitting portion due to insufficient light quantity, which is a problem. This is because the number of light sources that supply light is smaller at the end of the backlight device than at the center.
 光出射部の輝度を均一にするために、例えば、LEDを駆動する電流値を変更して、バックライト装置の端部側に配されるLEDの輝度を中央部側に配されるLEDの輝度よりも相対的に高くすることが考えられる。しかしながら、このような方法では、特別な電気的な制御が必要となってしまうため、より簡便な方法が求められている。 In order to make the luminance of the light emitting unit uniform, for example, the current value for driving the LED is changed, and the luminance of the LED arranged on the end side of the backlight device is changed to the luminance of the LED arranged on the central side. It is possible to make it relatively higher. However, since this method requires special electrical control, a simpler method is required.
 本発明は上記のような事情に基づいて完成されたものであって、簡便な構成で照明装置の輝度ムラを抑制する技術を提供することを目的とする。 The present invention has been completed based on the above circumstances, and an object thereof is to provide a technique for suppressing luminance unevenness of a lighting device with a simple configuration.
(課題を解決するための手段)
 本発明に係る照明装置は、1ないし複数の光源と、前記光源が実装されてなる光源基板と、板状部材であって、その板面上に前記光源基板が配されてなるシャーシと、前記光源基板上に配される反射層であって、前記シャーシの板面全体で見た場合に、前記シャーシのうち端部側に位置する部分よりも、前記端部側に位置する部分より中央部側に位置する部分において、相対的に黄変度が高く形成されている反射層と、を備える。
(Means for solving the problem)
An illumination device according to the present invention includes one or more light sources, a light source substrate on which the light sources are mounted, a plate-shaped member, and a chassis in which the light source substrate is disposed on the plate surface, A reflective layer disposed on the light source substrate, and when viewed from the entire plate surface of the chassis, a portion located on the end side of the chassis is more central than a portion located on the end side. And a reflective layer having a relatively high degree of yellowing in a portion located on the side.
 前記照明装置において、前記反射層は、紫外線が照射されると、黄変度が高くなるソルダーレジスト層からなるものとすることができる。 In the illumination device, the reflective layer may be composed of a solder resist layer that increases in yellowing degree when irradiated with ultraviolet rays.
 前記照明装置において、光を拡散するレンズ部材であって、前記光源基板の前記板面上に配され、前記光源の光出射側を覆うレンズ部材を備え、前記反射層は、少なくとも前記レンズ部材と重畳する部分に形成されているものとすることができる。 The illumination device includes a lens member that diffuses light, the lens member being disposed on the plate surface of the light source substrate and covering a light emission side of the light source, and the reflective layer includes at least the lens member It can be formed in the overlapping part.
 前記照明装置において、光を反射させる反射シートであって、前記レンズ部材の外形よりも大きく開口した開口部を有し、前記レンズ部材を前記開口部に挿通させると共に、前記光源基板の前記板面上に配される反射シートを備え、前記反射層は、少なくとも前記開口部から露出する部分に形成されているものとすることができる。 In the illumination device, the reflection sheet reflects light, and has an opening that is larger than the outer shape of the lens member. The lens member is inserted through the opening, and the plate surface of the light source substrate. A reflection sheet is provided on the top, and the reflection layer may be formed at least in a portion exposed from the opening.
 前記照明装置において、前記反射層を全て黄変されていない白色のソルダーレジスト層に置き換えた場合に、前記光源から出射される面状の光の輝度分布に基づいて、前記反射層における黄変度の分布が定められるものとすることができる。 In the illuminating device, when the reflective layer is entirely replaced with a white solder resist layer that is not yellowed, the degree of yellowing in the reflective layer based on the luminance distribution of planar light emitted from the light source The distribution of can be defined.
 前記照明装置において、前記反射層における前記端部側に位置する部分の光反射率と、前記反射層における前記中央部側に位置する部分の光反射率との差が、5%以上であるものとすることができる。例えば、前記反射層における前記端部側に位置する部分の黄変度よりも、前記反射層における前記中央部側に位置する部分の黄変度の方が、相対的に高く設定されていると、前記反射層における前記端部側に位置する部分の光反射率の方が、前記反射層における前記中央部側に位置する部分の光反射率よりも、5%以上高く設定することができる。 In the lighting device, a difference between a light reflectance of a portion located on the end side of the reflective layer and a light reflectance of a portion located on the center side of the reflective layer is 5% or more It can be. For example, when the yellowing degree of the portion located on the central portion side in the reflective layer is set relatively higher than the yellowing degree of the portion located on the end side in the reflective layer. The light reflectance of the portion located on the end side in the reflective layer can be set to be 5% or more higher than the light reflectance of the portion located on the center side in the reflective layer.
 前記照明装置において、前記シャーシは、前記光源からの光を出射させる光出射部を有しており、前記光出射部を覆う形で配される光学部材を更に備え、前記光学部材は、前記光源からの光を拡散する機能を有する拡散板と、前記拡散板を透過した光を集光する機能と、前記拡散板を透過した光を拡散する機能との少なくとも一方の機能を有する光学シートと、を備えるものとすることができる。 In the illuminating device, the chassis further includes a light emitting unit that emits light from the light source, and further includes an optical member arranged to cover the light emitting unit, and the optical member includes the light source. A diffusion plate having a function of diffusing light from, an optical sheet having at least one of a function of condensing the light transmitted through the diffusion plate, and a function of diffusing the light transmitted through the diffusion plate; Can be provided.
 前記照明装置において、前記光源は、発光ダイオードを含むものからなるものとすることができる。 In the illumination device, the light source may include a light emitting diode.
 本発明に係る表示装置は、前記照明装置と、前記照明装置からの光を利用して表示を行う表示パネルとを備える。 The display device according to the present invention includes the illumination device and a display panel that performs display using light from the illumination device.
 前記表示装置において、前記表示パネルは、一対の基板間に液晶を封入してなる液晶パネルからなるものとすることができる。 In the display device, the display panel may be a liquid crystal panel in which liquid crystal is sealed between a pair of substrates.
 本発明に係るテレビ受信装置は、前記表示装置を備える。 A television receiver according to the present invention includes the display device.
(発明の効果)
 本発明によれば、簡便な構成で照明装置の輝度ムラを抑制できる。
(The invention's effect)
According to the present invention, it is possible to suppress luminance unevenness of the lighting device with a simple configuration.
本発明の実施形態1に係るテレビ受信装置の概略構成を示す分解斜視図1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention. 液晶表示装置の概略構成を示す分解斜視図Exploded perspective view showing schematic configuration of liquid crystal display device 図2に示されるA-A’線に沿った液晶表示装置の断面図Sectional drawing of the liquid crystal display device along the A-A 'line | wire shown by FIG. 光学部材及びフレームが取り除かれた状態の照明装置の平面図Plan view of lighting device with optical member and frame removed 反射シートのレンズ挿通孔から露出するソルダーレジスト層を示す拡大平面図An enlarged plan view showing the solder resist layer exposed from the lens insertion hole of the reflection sheet 図5のC-C’線断面図C-C 'line sectional view of FIG. シャーシの底板上に配されているLED基板の平面図Top view of the LED board placed on the bottom plate of the chassis 黄変後のソルダーレジスト層の全反射率を示すグラフGraph showing total reflectance of solder resist layer after yellowing 図4のB-B’線断面図B-B 'line sectional view of FIG. 実施形態2の照明装置が備えるシャーシの底板上に配されているLED基板の平面図The top view of the LED board distribute | arranged on the baseplate of the chassis with which the illuminating device of Embodiment 2 is provided. 実施形態3の照明装置が備えるシャーシの底板上に配されているLED基板の平面図The top view of the LED board distribute | arranged on the baseplate of the chassis with which the illuminating device of Embodiment 3 is provided. 実施形態4に係る液晶表示装置の概略構成を示す分解斜視図FIG. 6 is an exploded perspective view showing a schematic configuration of a liquid crystal display device according to Embodiment 4. 液晶表示装置を短辺方向に切断して示す断面図Sectional view showing the liquid crystal display device cut in the short side direction LED基板の平面図Plan view of LED board
 <実施形態1>
 本発明の実施形態1を、図1ないし図9を参照しつつ説明する。本実施形態では、液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸が示されており、各軸方向が各図面において共通の方向となるように描かれている。また、図2及び図3の上側を表側とし、同図下側を裏側とする。
<Embodiment 1>
Embodiment 1 of the present invention will be described with reference to FIGS. In this embodiment, the liquid crystal display device 10 is illustrated. In addition, X-axis, Y-axis, and Z-axis are shown in a part of each drawing, and each axial direction is drawn so that it may become a common direction in each drawing. Also, the upper side of FIGS. 2 and 3 is the front side, and the lower side is the back side.
 本実施形態に係るテレビ受信装置TVは、図1に示されるように、液晶表示装置10と、当該液晶表示装置10を挟むようにして収容する表裏両キャビネットCa,Cbと、電源Pと、チューナーTと、スタンドSとを備えて構成される。液晶表示装置(表示装置)10は、全体として横長の方形(矩形状)を成し、縦置き状態で収容されている。この液晶表示装置10は、図2に示されるように、表示パネルである液晶パネル11と、外部光源であるバックライト装置(照明装置)12とを備え、これらが枠状のベゼル13などにより一体的に保持されるようになっている。 As shown in FIG. 1, the television receiver TV according to the present embodiment includes a liquid crystal display device 10, front and back cabinets Ca and Cb that are accommodated so as to sandwich the liquid crystal display device 10, a power source P, and a tuner T. And a stand S. The liquid crystal display device (display device) 10 has a horizontally long rectangular shape (rectangular shape) as a whole and is accommodated in a vertically placed state. As shown in FIG. 2, the liquid crystal display device 10 includes a liquid crystal panel 11 that is a display panel and a backlight device (illumination device) 12 that is an external light source, and these are integrated by a frame-like bezel 13 or the like. It is designed to be retained.
 次に、液晶表示装置10を構成する液晶パネル11及びバックライト装置12について説明する。このうち、液晶パネル(表示パネル)11は、平面に見た際、矩形状をなしており、一対のガラス基板が所定のギャップを隔てた状態で貼り合わせられるとともに、両ガラス基板間に液晶が封入された構成とされる。一方のガラス基板には、互いに直交するソース配線とゲート配線とに接続されたスイッチング素子(例えばTFT)と、そのスイッチング素子に接続された画素電極、更には配向膜等が設けられ、他方のガラス基板には、R(赤色)、G(緑色)、B(青色)等の各着色部が所定配列で配置されたカラーフィルタや対向電極、更には配向膜等が設けられている。なお、両基板の外側には偏光板が配されている。 Next, the liquid crystal panel 11 and the backlight device 12 constituting the liquid crystal display device 10 will be described. Among these, the liquid crystal panel (display panel) 11 has a rectangular shape when viewed in a plane, and a pair of glass substrates are bonded together with a predetermined gap therebetween, and a liquid crystal is formed between the glass substrates. It is set as the enclosed structure. One glass substrate is provided with a switching element (for example, TFT) connected to a source wiring and a gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, and the like. The substrate is provided with a color filter and counter electrodes in which colored portions such as R (red), G (green), and B (blue) are arranged in a predetermined arrangement, and an alignment film. A polarizing plate is disposed on the outside of both substrates.
 続いて、バックライト装置12について説明する。バックライト装置12は、図2に示されるように、光出射部12a側(液晶パネル11側)に光源からの光を出射させる開口部14b(光出射部)を有した略箱型をなすシャーシ14と、シャーシ14の開口部14bを覆うようにして配される光学部材15(拡散板15aと、拡散板15aと液晶パネル11との間に配される複数の光学シート15b)と、シャーシ14の外縁部に沿って配され光学部材15の外縁部をシャーシ14との間で挟んで保持するフレーム16とを備える。更に、シャーシ14内には、図3等に示されるように、光源であるLED17(Light Emitting Diode:発光ダイオード)と、LED17が実装されたLED基板18(光源基板)と、LED基板18においてLED17に対応した位置に取り付けられる拡散レンズ19(レンズ部材)とが備えられる。また、シャーシ14内には、シャーシ14内の光を光学部材15側に反射させる反射シート21とが備えられている。なお、当該バックライト装置12においては、LED17よりも光学部材15側が光出射部12a側となっている。以下では、バックライト装置12の各構成部品について説明する。 Subsequently, the backlight device 12 will be described. As shown in FIG. 2, the backlight device 12 is a substantially box-shaped chassis having an opening 14b (light emitting portion) for emitting light from a light source on the light emitting portion 12a side (liquid crystal panel 11 side). 14, an optical member 15 disposed so as to cover the opening 14 b of the chassis 14 (a diffusion plate 15 a and a plurality of optical sheets 15 b disposed between the diffusion plate 15 a and the liquid crystal panel 11), and the chassis 14. The frame 16 is disposed along the outer edge of the optical member 15 and holds the outer edge of the optical member 15 between the frame 14 and the chassis 14. Further, in the chassis 14, as shown in FIG. 3 and the like, an LED 17 (Light Emitting Diode) as a light source, an LED board 18 (light source board) on which the LED 17 is mounted, and an LED 17 on the LED board 18. And a diffusing lens 19 (lens member) attached at a position corresponding to. The chassis 14 is provided with a reflection sheet 21 that reflects the light in the chassis 14 toward the optical member 15. In the backlight device 12, the optical member 15 side is closer to the light emitting portion 12 a side than the LED 17. Below, each component of the backlight apparatus 12 is demonstrated.
 シャーシ14は、金属製とされ、図3等に示されるように、液晶パネル11と同様に矩形状をなす底板14aと、底板14aの各辺の外端から立ち上がる側板14cと、各側板14cの立ち上がり端から外向きに張り出す受け板14dとからなり、全体としては表側に向けて開口した浅い略箱型(略浅皿状)をなしている。シャーシ14は、その長辺方向がX軸方向と一致し、短辺方向がY軸方向と一致している。シャーシ14における各受け板14dには、表側からフレーム16及び次述する光学部材15が載置可能とされる。なお、フレーム16は受け板14dに対してねじ止めされている。 The chassis 14 is made of metal, and as shown in FIG. 3 and the like, a bottom plate 14a having a rectangular shape like the liquid crystal panel 11, a side plate 14c rising from an outer end of each side of the bottom plate 14a, and a side plate 14c. It consists of a receiving plate 14d projecting outward from the rising edge, and as a whole, has a shallow substantially box shape (substantially shallow dish shape) opened toward the front side. The long side direction of the chassis 14 matches the X-axis direction, and the short side direction matches the Y-axis direction. A frame 16 and an optical member 15 to be described below can be placed on each receiving plate 14d in the chassis 14 from the front side. The frame 16 is screwed to the receiving plate 14d.
 光学部材15は、図2に示されるように、液晶パネル11及びシャーシ14と同様に平面に視て横長の方形(矩形状)をなしている。光学部材15は、図3に示されるように、その外縁部が受け板14dに載せられることで、シャーシ14の開口部14bを覆うとともに、液晶パネル11とLED17との間に介在して配される。光学部材15は、裏側(LED17側、光出射部12a側とは反対側)に配される拡散板15aと、表側(液晶パネル11側、光出射部12a側)に配される光学シート15bとから構成される。拡散板15aは、所定の厚みを持つ略透明な樹脂製の基材内に拡散粒子を多数分散して設けた構成とされ、透過する光を拡散させる機能を有する。光学シート15bは、拡散板15aと比べると板厚が薄いシート状をなしており、2枚が積層して配されている。具体的な光学シート15bの種類としては、例えば拡散シート、レンズシート、反射型偏光シートなどがあり、これらの中から適宜に選択して使用することが可能である。 As shown in FIG. 2, the optical member 15 has a horizontally long rectangular shape (rectangular shape) in a plan view, like the liquid crystal panel 11 and the chassis 14. As shown in FIG. 3, the optical member 15 is placed between the liquid crystal panel 11 and the LED 17 while covering the opening 14 b of the chassis 14 by placing the outer edge portion on the receiving plate 14 d. The The optical member 15 includes a diffusion plate 15a disposed on the back side (the side opposite to the LED 17 side and the light emitting unit 12a side), and an optical sheet 15b disposed on the front side (the liquid crystal panel 11 side and the light emitting unit 12a side). Consists of The diffusion plate 15a has a structure in which a large number of diffusion particles are dispersed in a substantially transparent resin base material having a predetermined thickness, and has a function of diffusing transmitted light. The optical sheet 15b has a sheet shape that is thinner than the diffusion plate 15a, and two optical sheets 15b are laminated. Specific types of the optical sheet 15b include, for example, a diffusion sheet, a lens sheet, a reflective polarizing sheet, and the like, which can be appropriately selected and used.
 フレーム16は、図2に示されるように、液晶パネル11及び光学部材15の外周縁部に沿う枠状をなしている。このフレーム16と各受け板14dとの間で光学部材15における外縁部を挟持可能とされている(図3参照)。また、このフレーム16は、液晶パネル11における外縁部を裏側から受けることができ、表側に配されるベゼル13との間で液晶パネル11の外縁部を挟持可能とされる(図3参照)。 As shown in FIG. 2, the frame 16 has a frame shape along the outer peripheral edge of the liquid crystal panel 11 and the optical member 15. An outer edge portion of the optical member 15 can be sandwiched between the frame 16 and each receiving plate 14d (see FIG. 3). The frame 16 can receive the outer edge portion of the liquid crystal panel 11 from the back side, and can sandwich the outer edge portion of the liquid crystal panel 11 with the bezel 13 disposed on the front side (see FIG. 3).
 次に、LED17及びLED17が実装されるLED基板18について説明する。LED17は、図6に示されるように、LED基板18に固着される基板部上にLEDチップを樹脂材により封止した構成とされる。基板部に実装されるLEDチップは、主発光波長が1種類とされ、具体的には、青色を単色発光するものが用いられている。その一方、LEDチップを封止する樹脂材には、LEDチップから発せられた青色の光を、白色の光に変換する蛍光体が分散配合されている。これにより、このLED17は、白色発光が可能とされる。このLED17は、LED基板18に対する実装面とは反対側の面が発光面17aとなる、いわゆるトップ型とされている。LED17における光軸LAは、Z軸方向(液晶パネル11及び光学部材15の主板面と直交する方向)とほぼ一致する設定とされている。なお、LED17から発せられる光は、光軸LAを中心にして所定の角度範囲内で三次元的にある程度放射状に広がるのであるが、その指向性は冷陰極管などと比べると高くなっている。つまり、LED17の発光強度は、光軸LAに沿った方向が高く、光軸LAに対する傾き角度が大きくなるに連れて低下するような傾向の角度分布を示す。 Next, the LED 17 and the LED board 18 on which the LED 17 is mounted will be described. As shown in FIG. 6, the LED 17 has a configuration in which an LED chip is sealed with a resin material on a substrate portion fixed to the LED substrate 18. The LED chip mounted on the substrate unit has one main emission wavelength, and specifically, one that emits blue light in a single color is used. On the other hand, a phosphor that converts blue light emitted from the LED chip into white light is dispersed and blended in the resin material for sealing the LED chip. As a result, the LED 17 can emit white light. The LED 17 is a so-called top type in which a surface opposite to the mounting surface with respect to the LED substrate 18 is a light emitting surface 17a. The optical axis LA of the LED 17 is set to substantially coincide with the Z-axis direction (direction orthogonal to the main plate surfaces of the liquid crystal panel 11 and the optical member 15). Note that the light emitted from the LED 17 spreads radially to some extent within a predetermined angle range around the optical axis LA, but its directivity is higher than that of a cold cathode tube or the like. That is, the emission intensity of the LED 17 shows an angular distribution that tends to decrease as the direction along the optical axis LA is high and the tilt angle with respect to the optical axis LA increases.
 LED基板18は、図7に示されるように、平面に見て矩形状(長方形状)をなす基材30を有しており、長辺方向がY軸方向(シャーシ14の底板14aの短辺方向)と一致し、短辺方向がX軸方向(シャーシ14aの底板の長辺方向)と一致する状態でシャーシ14内において底板14aに沿って延在しつつ収容されている。 As shown in FIG. 7, the LED substrate 18 includes a base material 30 that has a rectangular shape (rectangular shape) in a plan view, and the long side direction is the Y-axis direction (the short side of the bottom plate 14 a of the chassis 14). And extending along the bottom plate 14a in the chassis 14 in a state where the short side direction matches the X-axis direction (long side direction of the bottom plate of the chassis 14a).
 LED基板18の基材30は、シャーシ14と同じアルミ系材料などの金属製とされ、その表面に図示しない絶縁層を介して銅箔などの金属膜からなるパターン配線(不図示)が形成された構成とされる。パターン配線は、LED17が実装される板面18b(光源が実装された板面)側に配され、LED17と電気的に接続される。さらに、パターン配線の表面には、配線を保護する白色のソルダーレジスト層32(反射層)が積層されている。ソルダーレジスト層32については、後に詳述することとする。そして、このLED基板18の基材30の板面のうち、表側を向いた面(光学部材15側を向いた面)には、図6に示されるように、上記した構成のLED17が表面実装されている。 The substrate 30 of the LED substrate 18 is made of a metal such as the same aluminum material as the chassis 14, and a pattern wiring (not shown) made of a metal film such as a copper foil is formed on the surface of the substrate 30 via an insulating layer (not shown). The configuration is The pattern wiring is arranged on the side of the plate surface 18b (the plate surface on which the light source is mounted) on which the LED 17 is mounted, and is electrically connected to the LED 17. Further, a white solder resist layer 32 (reflection layer) for protecting the wiring is laminated on the surface of the pattern wiring. The solder resist layer 32 will be described in detail later. And among the plate surfaces of the base material 30 of the LED substrate 18, the LED 17 having the above-described configuration is surface-mounted as shown in FIG. 6 on the surface facing the front side (the surface facing the optical member 15 side). Has been.
 図7に示されるように、LED基板18上には、複数個のLED17が、LED基板18の長辺方向(Y軸方向)に沿って、等間隔で直線状に並べられている。本実施形態の場合、LED基板18上には、複数個(9個)のLED17からなる列が、互いに平行に並んだ状態で3つ形成されている。各LED17は、パターン配線により互いに直列接続されている。LED基板18上におけるLED17同士のピッチは、略一定となっている。また、LED基板18の長辺側の一端には、コネクタ18aが設けられている。 As shown in FIG. 7, a plurality of LEDs 17 are arranged on the LED substrate 18 in a straight line at equal intervals along the long side direction (Y-axis direction) of the LED substrate 18. In the case of the present embodiment, on the LED substrate 18, three rows of a plurality (9) of LEDs 17 are formed in parallel with each other. The LEDs 17 are connected in series with each other by pattern wiring. The pitch between the LEDs 17 on the LED substrate 18 is substantially constant. A connector 18a is provided at one end of the LED substrate 18 on the long side.
 本実施形態の場合、6つの同じ大きさのLED基板18が、X軸方向(シャーシ14aの底板の長辺方向)に沿って一列に並んだ状態でシャーシ14内に収容されている。そして、シャーシ14の底板14a上において、各LED基板18上に実装されている各LED17が、マトリクス状(行列状)に並んでいる。マトリクス状に並んだLED17同士の間隔(ピッチ)は、略一定に設定されている。なお、図4及び図7に示されるように、各LED基板18に設けられている各コネクタ18aは、シャーシ14の一方の長辺側に揃えられていると共に、外部の制御回路(不図示)に対してそれぞれ電気的に接続されている。そして、前記制御回路によって、各LED基板18における各LED17の点灯・消灯が一括して制御される。なお、LED基板18は、シャーシ14の底板14aに対して、リベット状の固定部材(不図示)を利用して固定されている。 In the case of the present embodiment, six LED substrates 18 having the same size are accommodated in the chassis 14 in a line along the X-axis direction (long side direction of the bottom plate of the chassis 14a). On the bottom plate 14a of the chassis 14, the LEDs 17 mounted on the LED substrates 18 are arranged in a matrix (matrix). The interval (pitch) between the LEDs 17 arranged in a matrix is set to be substantially constant. 4 and 7, each connector 18a provided on each LED board 18 is aligned with one long side of the chassis 14, and an external control circuit (not shown). Are electrically connected to each other. Then, lighting and extinguishing of each LED 17 on each LED board 18 are collectively controlled by the control circuit. The LED substrate 18 is fixed to the bottom plate 14a of the chassis 14 using a rivet-shaped fixing member (not shown).
 拡散レンズ19は、略透明で(高い透光性を有し)且つ屈折率が空気よりも高い合成樹脂材料(例えばポリカーボネートやアクリルなど)からなる。拡散レンズ19は、図5に示されるように、平面に視て略円形状に形成されており、LED基板18に対して各LED17を表側から個別に覆うよう、つまり平面に視て各LED17と重畳するようそれぞれ取り付けられている。そして、この拡散レンズ19は、LED17から発せられた指向性の強い(高い)光を拡散させつつ出射させることができる。LED7に拡散レンズ19を被せることによって、シャーシ14内におけるLED17の設置個数を少なくすることができる。この拡散レンズ19は、平面に視てLED17とほぼ同心となる位置に配されている。拡散レンズ19は、X軸方向及びY軸方向の寸法が共にLED17よりも十分に大きいものとされる。一方、拡散レンズ19は、X軸方向およびY軸方向の寸法がLED基板18より小さいものとされる。従って、Z軸方向において、拡散レンズ19と重なる領域には、LED基板18が配されることになる。 The diffusing lens 19 is made of a synthetic resin material (for example, polycarbonate, acrylic, etc.) that is substantially transparent (having high translucency) and has a higher refractive index than air. As shown in FIG. 5, the diffusing lens 19 is formed in a substantially circular shape when seen in a plan view, and covers each LED 17 individually from the front side with respect to the LED substrate 18, that is, when viewed from the plan view with each LED 17. Each is attached to overlap. The diffusing lens 19 can emit light having a high directivity (high) emitted from the LED 17 while diffusing. By covering the LED 7 with the diffusion lens 19, the number of LEDs 17 installed in the chassis 14 can be reduced. The diffusing lens 19 is disposed at a position that is substantially concentric with the LED 17 in a plan view. The diffuser lens 19 is sufficiently larger in both the X-axis direction and the Y-axis direction than the LED 17. On the other hand, the diffusing lens 19 has dimensions smaller than the LED substrate 18 in the X-axis direction and the Y-axis direction. Therefore, the LED substrate 18 is disposed in a region overlapping with the diffusing lens 19 in the Z-axis direction.
 この拡散レンズ19のうち、LED基板18と対向する面がLED17からの光が入射される光入射面19aとされるのに対し、光学部材15と対向する面が光を出射する光出射面19bとされる。このうち、光入射面19aは、図6に示されるように、全体としてはLED基板18の板面18bに沿って並行する形態とされるものの、平面に視てLED17と重畳する領域に光入射側凹部19cが形成されることで傾斜面を有している。光入射側凹部19cは、略円錐状をなすとともに拡散レンズ19において略同心位置に配されており、裏側、つまりLED17側に向けて開口する形態とされる。光入射側凹部19cは、断面が略逆V字型をなしており、その周面がZ軸方向に対して傾いた傾斜面とされる。従って、LED17から発せられて光入射側凹部19c内に入った光は、傾斜面を介して拡散レンズ19内に入射するのであるが、そのとき光軸LAに対する傾斜面の傾斜角度の分だけ、中心から遠ざかる方向、つまり広角に屈折されて拡散レンズ19に入射する。 Of the diffusing lens 19, a surface facing the LED substrate 18 is a light incident surface 19a on which light from the LED 17 is incident, whereas a surface facing the optical member 15 is a light emitting surface 19b that emits light. It is said. Among these, as shown in FIG. 6, the light incident surface 19a is generally parallel to the plate surface 18b of the LED substrate 18 as shown in FIG. The side recess 19c is formed to have an inclined surface. The light incident side concave portion 19c has a substantially conical shape and is disposed at a substantially concentric position in the diffusing lens 19 and opens toward the back side, that is, the LED 17 side. The light incident side concave portion 19c has a substantially inverted V-shaped cross section, and its peripheral surface is an inclined surface inclined with respect to the Z-axis direction. Therefore, the light emitted from the LED 17 and entering the light incident side concave portion 19c enters the diffusion lens 19 through the inclined surface, but at that time, the amount of the inclination angle of the inclined surface with respect to the optical axis LA is as follows. The light is refracted in a direction away from the center, that is, a wide angle, and enters the diffusing lens 19.
 拡散レンズ19には、LED基板18側に向けて突出するとともに、LED基板18に対する拡散レンズ19の取付構造となる取付脚部19dが設けられている。取付脚部19dは、拡散レンズ19のうち、光入射側凹部19cよりも外周端部に近い位置に3つ配されており、各取付部を結んだ線が平面に視てほぼ正三角形をなす位置に配されている。各取付脚部19dは、その先端部が接着剤などによりLED基板18に固着される。拡散レンズ19は、取付脚部19dを介してLED基板18に固定されることで、その光入射面19aとLED基板18との間に所定の隙間が空けられるようになっている。この隙間には、平面に視て当該拡散レンズ19よりも外側の空間からの光の入射が許容されている。 The diffusing lens 19 is provided with mounting legs 19 d that project toward the LED substrate 18 and that serve as a structure for attaching the diffusing lens 19 to the LED substrate 18. Three attachment legs 19d are arranged in the diffuser lens 19 at positions closer to the outer peripheral end than the light incident side recess 19c, and the lines connecting the attachments form a substantially equilateral triangle when viewed in a plane. Arranged in position. Each mounting leg 19d has its tip fixed to the LED substrate 18 with an adhesive or the like. The diffusing lens 19 is fixed to the LED substrate 18 via the mounting leg portion 19d, so that a predetermined gap is formed between the light incident surface 19a and the LED substrate 18. In this gap, incidence of light from a space outside the diffusion lens 19 in a plan view is allowed.
 拡散レンズ19における光出射面19bは、扁平な略球面状に形成されている。これにより、拡散レンズ19から出射する光を、外部の空気層との界面にて中心から遠ざかる方向、つまり広角に屈折させつつ出射させることが可能となる。この光出射面19bのうち平面に視てLED17と重畳する領域には、光出射側凹部19eが形成されている。光出射側凹部19eは、略擂鉢状をなすとともに、その周面が中心に向かって下り勾配となる扁平な略球面状に形成されている。また、光出射側凹部19eにおける周面の接線がLED17の光軸LAに対してなす角度は、光入射側凹部19cの傾斜面が光軸LAに対してなす角度よりも相対的に大きくなるものとされる。光出射面19bのうち平面に視てLED17と重畳する領域に光出射側凹部19eを形成することにより、LED17からの光の多くを広角に屈折させつつ出射させ、或いはLED17からの光の一部をLED基板18側に反射させることができる。 The light exit surface 19b of the diffusion lens 19 is formed in a flat and substantially spherical shape. As a result, the light emitted from the diffusing lens 19 can be emitted while being refracted in a direction away from the center at the interface with the external air layer, that is, a wide angle. A light emitting side recess 19e is formed in a region of the light emitting surface 19b that overlaps the LED 17 when seen in a plan view. The light emitting side concave portion 19e has a substantially bowl shape, and is formed in a flat and substantially spherical shape with a peripheral surface having a downward slope toward the center. Further, the angle formed by the tangent of the peripheral surface of the light exit side recess 19e with respect to the optical axis LA of the LED 17 is relatively larger than the angle formed by the inclined surface of the light incident side recess 19c with respect to the optical axis LA. It is said. By forming a light emitting side recess 19e in a region of the light emitting surface 19b that overlaps the LED 17 when viewed in plan, most of the light from the LED 17 is emitted while being refracted at a wide angle, or part of the light from the LED 17 Can be reflected to the LED substrate 18 side.
 反射シート21は、合成樹脂製とされ、表面が光の反射性に優れた白色を呈するものとされる。反射シート21は、図4に示されるように、シャーシ14の内面のほぼ全域にわたって敷設される大きさを有しているので、シャーシ14内に並列して配された全LED基板18を表側から一括して覆うことが可能とされる。この反射シート21によりシャーシ14内の光を光学部材15側に向けて効率的に立ち上げることができる。反射シート21は、シャーシ14の底板14aに沿って延在するとともに底板14aの大部分を覆う大きさの底部21aと、底部21aの各外端から表側に立ち上がるとともに底部21aに対して傾斜状をなす4つの立ち上がり部21bと、各立ち上がり部21bの外端から外向きに延出するとともにシャーシ14の受け板14dに載せられる延出部21cとから構成されている。この反射シート21の底部21aが各LED基板18におけるLED17が実装された板面18bに対して表側に重なるよう配される。また、反射シート21の底部21aには、各拡散レンズ19(各LED17)と平面視重畳する位置に各拡散レンズ19を挿通するレンズ挿通孔21d(開口部)が開口して設けられている。 The reflection sheet 21 is made of a synthetic resin, and the surface of the reflection sheet 21 is white with excellent light reflectivity. As shown in FIG. 4, the reflection sheet 21 has a size that is laid over almost the entire inner surface of the chassis 14, so that all the LED boards 18 arranged in parallel in the chassis 14 are arranged from the front side. It is possible to cover all at once. The reflection sheet 21 can efficiently raise the light in the chassis 14 toward the optical member 15 side. The reflection sheet 21 extends along the bottom plate 14a of the chassis 14 and covers a large portion of the bottom plate 14a. The reflection sheet 21 rises from each outer end of the bottom portion 21a to the front side and is inclined with respect to the bottom portion 21a. The four rising portions 21b and the extending portions 21c that extend outward from the outer ends of the respective rising portions 21b and are placed on the receiving plate 14d of the chassis 14 are configured. The bottom 21a of the reflection sheet 21 is disposed so as to overlap the front side with respect to the plate surface 18b on which the LEDs 17 of each LED board 18 are mounted. In addition, a lens insertion hole 21d (opening) through which each diffusion lens 19 is inserted is provided in the bottom portion 21a of the reflection sheet 21 at a position overlapping with each diffusion lens 19 (each LED 17) in plan view.
 レンズ挿通孔21dは、各拡散レンズ19を個別にそれぞれ挿通するものとされており、反射シート21の底部21aに、LED17と同様にマトリクス状に配置されている。レンズ挿通孔21dは、図5に示されるように、平面に視て円形状をなしており、その径寸法は拡散レンズ19よりも大きくなる設定とされる。これにより、反射シート21をシャーシ14内に敷設する際、寸法誤差の有無に拘わらず各拡散レンズ19を各レンズ挿通孔21dに対して確実に通すことができる。また、レンズ挿通孔21dの径寸法は、LED基板18の短辺寸法よりも小さくなる設定とされる。これにより、レンズ挿通孔21dには、LED基板18に設けられたソルダーレジスト層32が露出することになり、シャーシ14が露出しないものとすることができる。なお、反射シート21は、LED基板18を底板14aに固定するための上述したリベット状の固定部材(不図示)を利用して、LED基板18に対して固定される。 The lens insertion holes 21 d are individually inserted through the respective diffusion lenses 19, and are arranged in a matrix on the bottom 21 a of the reflection sheet 21 in the same manner as the LEDs 17. As shown in FIG. 5, the lens insertion hole 21 d has a circular shape when seen in a plan view, and has a diameter larger than that of the diffusing lens 19. Thereby, when the reflection sheet 21 is laid in the chassis 14, each diffusing lens 19 can be surely passed through each lens insertion hole 21 d regardless of the presence or absence of a dimensional error. Further, the diameter dimension of the lens insertion hole 21 d is set to be smaller than the short side dimension of the LED substrate 18. Thus, the solder resist layer 32 provided on the LED substrate 18 is exposed in the lens insertion hole 21d, and the chassis 14 is not exposed. The reflection sheet 21 is fixed to the LED board 18 using the above-described rivet-like fixing member (not shown) for fixing the LED board 18 to the bottom plate 14a.
 支持部材20は、図2及び図3に示されるように、シャーシ14の底板14aから表側に向かって突出した形をなしている。支持部材20の根元側は、リベット状であり、LED基板18を底板14aに対して固定する機能を備える。また、支持部材20の先端側は、棒状であり、光学部材15をその裏側から支える機能を備える。この支持部材20によって、LED17と光学部材15とのZ軸方向における位置関係を一定に維持することができると共に、光学部材15の変形(撓み)を規制できる。 2 and 3, the support member 20 has a shape protruding from the bottom plate 14a of the chassis 14 toward the front side. The base side of the support member 20 has a rivet shape and has a function of fixing the LED substrate 18 to the bottom plate 14a. Moreover, the front end side of the support member 20 is rod-shaped, and has a function of supporting the optical member 15 from the back side. With this support member 20, the positional relationship in the Z-axis direction between the LED 17 and the optical member 15 can be maintained constant, and deformation (deflection) of the optical member 15 can be restricted.
 次いで、ソルダーレジスト層32について、詳細に説明する。本実施形態のソルダーレジスト層32は、LED基板18の表側の板面(実装面)上に、形成されており、白色のソルダーレジスト(以下、白色ソルダーレジスト)を、必要に応じて、適宜、黄変させたものからなる。白色ソルダーレジストは、例えば、紫外線硬化型のベース樹脂に、酸化チタン(ルチル型酸化チタン等)、チタン酸バリウム等の白色顔料等を所定量分散させたものからなる。この種の白色ソルダーレジストは、汎用の緑色のソルダーレジストと比べて光反射性に優れるという性質を有する。また、白色ソルダーレジストは、紫外線を照射し続けると、その色彩が白色から黄色に変色(黄変)すると共に、その光反射率が低下する性質を有する。本実施形態のソルダーレジスト層32は、このような白色ソルダーレジストの性質を利用して形成されたものである。 Next, the solder resist layer 32 will be described in detail. The solder resist layer 32 of the present embodiment is formed on the front surface (mounting surface) of the LED substrate 18, and a white solder resist (hereinafter, white solder resist) is appropriately used as necessary. Consists of yellowing. The white solder resist is made, for example, by dispersing a predetermined amount of a white pigment such as titanium oxide (rutile titanium oxide, etc.) or barium titanate in an ultraviolet curable base resin. This type of white solder resist has a property of being excellent in light reflectivity as compared with a general-purpose green solder resist. Further, when the white solder resist is continuously irradiated with ultraviolet rays, the color of the white solder resist is changed from white to yellow (yellowing) and the light reflectance is lowered. The solder resist layer 32 of the present embodiment is formed using such a property of the white solder resist.
 ソルダーレジスト層32は、LED基板18の基材30上に形成されている絶縁層(不図示)との間で、パターン配線(不図示)を挟むように形成されている。ソルダーレジスト層32は、LED基板18の表側の板面上に、LED17が実装されている個所を除いて、略全面に亘って設けられている。ソルダーレジスト層32をLED基板18上に形成する際、先ず、流動性を備えた未硬化状態の白色ソルダーレジストを、LED基板18上に所定の厚みで印刷塗布する。次いで、そのLED基板18上に塗布された白色ソルダーレジストの塗膜に対して、露光処理及び現像処理を施す。その後、白色ソルダーレジストの塗膜に対して、赤外線を照射して前記塗膜の乾燥を行うと共に、必要に応じて、前記塗膜に紫外線を照射して前記塗膜を黄変処理する。 The solder resist layer 32 is formed so as to sandwich a pattern wiring (not shown) with an insulating layer (not shown) formed on the base material 30 of the LED substrate 18. The solder resist layer 32 is provided on substantially the entire surface of the front surface of the LED substrate 18 except for the portion where the LEDs 17 are mounted. When the solder resist layer 32 is formed on the LED substrate 18, first, an uncured white solder resist having fluidity is printed and applied on the LED substrate 18 with a predetermined thickness. Next, an exposure process and a development process are performed on the coating film of the white solder resist applied on the LED substrate 18. Thereafter, the coating film of the white solder resist is irradiated with infrared rays to dry the coating film, and if necessary, the coating film is irradiated with ultraviolet rays to yellow the coating film.
 本実施形態の場合、6つのLED基板18のうち、2つのLED基板18は、白色(未黄変)のソルダーレジスト層32(32A)を備える。残りの4つのLED基板18は、前記黄変処理によって、黄変されたソルダーレジスト層32(32B)を備える。図7に示されるように、一列に並べられている6つのLED基板18のうち、両端にある2つのLED基板18上に、白色(未黄変)のソルダーレジスト層32(32A)が形成されている。そして、これらの間にある4つのLED基板18上に、黄変されたソルダーレジスト層32(32B)が形成されている。ソルダーレジスト層32Aには、露光処理を行う目的で、黄変させない許容範囲内で紫外線が照射されているものの、黄変処理を行う目的では、紫外線は照射されていない。これに対して、ソルダーレジスト層32Bには、露光処理後に、黄変処理を行う目的で、所定量の紫外線が照射されている。 In the case of the present embodiment, of the six LED substrates 18, two LED substrates 18 include a white (unyellowed) solder resist layer 32 (32A). The remaining four LED substrates 18 include a solder resist layer 32 (32B) that has been yellowed by the yellowing treatment. As shown in FIG. 7, a white (non-yellowing) solder resist layer 32 (32A) is formed on two LED substrates 18 at both ends of the six LED substrates 18 arranged in a line. ing. A yellowed solder resist layer 32 (32B) is formed on the four LED substrates 18 between them. The solder resist layer 32A is irradiated with ultraviolet rays within an allowable range that does not cause yellowing for the purpose of performing an exposure process, but is not irradiated for the purpose of performing the yellowing process. On the other hand, the solder resist layer 32B is irradiated with a predetermined amount of ultraviolet rays for the purpose of performing a yellowing process after the exposure process.
 なお、説明の便宜上、図7等において底板14a上に配されている各LED基板18を、左端から右端に向かって順に、第1LED基板18、第2LED基板18、第3LED基板18、第4LED基板18、第5LED基板18、及び第6LED基板18とそれぞれ称する場合がある。 For convenience of explanation, the LED substrates 18 arranged on the bottom plate 14a in FIG. 7 and the like are arranged in order from the left end to the right end, the first LED substrate 18, the second LED substrate 18, the third LED substrate 18, and the fourth LED substrate. 18, the fifth LED board 18, and the sixth LED board 18.
 図8は、黄変後のソルダーレジスト層32(32B)の全反射率を示すグラフである。図8の横軸は、ソルダーレジスト膜32に照射される光の波長(nm)に対応し、縦軸は、全反射率(%)に対応する。また、図8において、実線で示されているグラフが、黄変されたソルダーレジスト層32(32B)に対応し、一点鎖線で示されているグラフが、白色(未黄変)のソルダーレジスト層32(32A)に対応する。図8に示されるように、黄変されたソルダーレジスト層32(32B)の全反射率は、白色(未黄変)のソルダーレジスト層32(32A)の全反射率と比べて、低くなっている。例えば、波長540nmの光における全反射率は、白色(未黄変)のソルダーレジスト層32(32A)の場合が86.3%であるのに対して、黄変されたソルダーレジスト層32(32B)の場合が80.5%となっている。なお、各光反射率は、コニカミノルタ社製の測定装置(CM-700d)にて測定された測定径内の平均光反射率に基づくものである。 FIG. 8 is a graph showing the total reflectance of the solder resist layer 32 (32B) after yellowing. The horizontal axis in FIG. 8 corresponds to the wavelength (nm) of light irradiated to the solder resist film 32, and the vertical axis corresponds to the total reflectance (%). Further, in FIG. 8, the graph indicated by the solid line corresponds to the yellowed solder resist layer 32 (32 </ b> B), and the graph indicated by the alternate long and short dash line is the white (unyellowed) solder resist layer. 32 (32A). As shown in FIG. 8, the total reflectance of the yellowed solder resist layer 32 (32B) is lower than the total reflectance of the white (unyellowed) solder resist layer 32 (32A). Yes. For example, the total reflectance in light having a wavelength of 540 nm is 86.3% in the case of the white (unyellowed) solder resist layer 32 (32A), whereas the yellowed solder resist layer 32 (32B). ) Is 80.5%. Each light reflectance is based on an average light reflectance within a measurement diameter measured by a measuring apparatus (CM-700d) manufactured by Konica Minolta.
 また、白色(未黄変)のソルダーレジスト層32(32A)の色度(黄変度)は、CIE(Commission Internationale d’Eclairage:国際照明委員会)1931色度図の色度座表示値(所謂、CIEYxy系座標)で表現すると、(x,y)=(0.31,0.33)となる。また、黄変されたソルダーレジスト層32(32B)の色度(黄変度)は、(x,y)=(0.32,0.34)となる。したがって、ソルダーレジスト層32(32B)の色度(黄変度)の方が、ソルダーレジスト層32(32A)の色度(黄変度)よりも、高く設定されていることが分かる。本明細書において、ソルダーレジスト層(反射層)32の色度(黄変度)は、CIEYxy系の座標値(x,y)で表現されるものとする。 Further, the chromaticity (yellowing degree) of the white (non-yellowing) solder resist layer 32 (32A) is the CIE (Commission Internationale d'Eclairage: International Illumination Commission) 1931 chromaticity coordinates display value ( When expressed in so-called CIEYxy system coordinates), (x, y) = (0.31, 0.33). Further, the chromaticity (yellowing degree) of the yellowed solder resist layer 32 (32B) is (x, y) = (0.32, 0.34). Therefore, it can be seen that the chromaticity (yellowing degree) of the solder resist layer 32 (32B) is set higher than the chromaticity (yellowing degree) of the solder resist layer 32 (32A). In this specification, the chromaticity (yellowing degree) of the solder resist layer (reflective layer) 32 is expressed by a coordinate value (x, y) of the CIEYxy system.
 なお、ソルダーレジスト層32の色度(黄変度)は、先ず、各物体色の色名(JIS Z 8102:2001)を、色見本を基に目視で特定することから行われる。そして、その特定された色名から、CIEYzy系(CIEXYZ系)の座標値が特定される。具体的には、ソルダーレジスト層32Aの場合、その色名は、#fffffcと特定される。そして、その特定された色名から、CIEXYZ系の座標値が、(X,Y,Z)=(0.95,1.00,1.07)と特定される。更に、CIEXYZ系の座標値を、CIEYxy系の座標に変換すると、ソルダーレジスト層32Aの色度(黄変度)が、(x,y)=(0.31,0.33)と特定される。なお、CIEYxy系の座標値(x,y)と、CIEXYZ系の座標値(X,Y,Z)との間には、x=X/(X+Y+Z),y=Y(X+Y+Z)という関係式が成り立っている。 The chromaticity (yellowing degree) of the solder resist layer 32 is first determined by visually identifying the color name of each object color (JIS Z 8102: 2001) based on the color sample. Then, from the specified color name, the coordinate value of the CIEXY system (CIEXYZ system) is specified. Specifically, in the case of the solder resist layer 32A, the color name is specified as #fffffc. Then, from the specified color name, the CIEXYZ coordinate value is specified as (X, Y, Z) = (0.95, 1.00, 1.07). Further, when the CIEXYZ coordinate values are converted into the CIEXYxy coordinate values, the chromaticity (yellowing degree) of the solder resist layer 32A is specified as (x, y) = (0.31, 0.33). . It should be noted that a relational expression of x = X / (X + Y + Z) and y = Y (X + Y + Z) exists between the coordinate value (x, y) of the CIEXYxy system and the coordinate value (X, Y, Z) of the CIEXYZ system. It is made up.
 これに対して、ソルダーレジスト32Bの場合、その色名は、#fffff5と特定される。そして、その特定された色名から、CIEXYZ系の座標値が、(X,Y,Z)=(0.94,0.99,1.01)と特定される。更に、CIEXYZ系の座標値を、CIEYxy系の座標に変換すると、ソルダーレジスト層32Bの色度(黄変度)が、(x,y)=(0.32,0.34)と特定される。 On the other hand, in the case of the solder resist 32B, the color name is specified as # fffff5. Then, from the specified color name, the CIEXYZ coordinate value is specified as (X, Y, Z) = (0.94, 0.99, 1.01). Further, when the CIEXYZ coordinate value is converted into the CIEXYxy coordinate value, the chromaticity (yellowing degree) of the solder resist layer 32B is specified as (x, y) = (0.32, 0.34). .
 本実施形態の場合、各LED基板18上に形成されている各ソルダーレジスト層32(32A,32B)の厚みは、略一定に設定されている。ソルダーレジスト層32の厚みは、例えば、5μm~30μmの範囲で設定される。 In the case of this embodiment, the thickness of each solder resist layer 32 (32A, 32B) formed on each LED substrate 18 is set to be substantially constant. The thickness of the solder resist layer 32 is set in the range of 5 μm to 30 μm, for example.
 図6に示されるように、ソルダーレジスト層32は、拡散レンズ19と重畳する部分に形成されている。ソルダーレジスト層32は、Z軸方向においては、拡散レンズ19の光入射面19aと対向し、拡散レンズ19とLED基板18の基材との間に位置している。したがって、拡散レンズ19側からLED基板18側に戻された光や、平面に見て拡散レンズ19よりも外側の空間から拡散レンズ19とLED基板18との間の空間に入った光について、ソルダーレジスト層32によって再び拡散レンズ19側に反射させることができる。 As shown in FIG. 6, the solder resist layer 32 is formed in a portion overlapping the diffusing lens 19. The solder resist layer 32 faces the light incident surface 19a of the diffusion lens 19 in the Z-axis direction and is located between the diffusion lens 19 and the base material of the LED substrate 18. Therefore, the solder with respect to the light returned from the diffusion lens 19 side to the LED substrate 18 side or the light entering the space between the diffusion lens 19 and the LED substrate 18 from a space outside the diffusion lens 19 when seen in a plane. The resist layer 32 can again reflect the light toward the diffusion lens 19 side.
 また、図5に示されるように、ソルダーレジスト層32は、平面に見て、LED17が実装される部分を除いて、反射シート21のレンズ挿通孔21dと重畳する部分全体に形成されている。これにより、レンズ挿通孔21dからは、ソルダーレジスト層32が露出することになる。なお、本実施形態の反射シート21のレンズ挿通孔21dからは、ソルダーレジスト層32以外のものが殆ど露出しないように設定されている。 Further, as shown in FIG. 5, the solder resist layer 32 is formed on the entire portion overlapping with the lens insertion hole 21 d of the reflection sheet 21 except for a portion where the LED 17 is mounted when seen in a plan view. As a result, the solder resist layer 32 is exposed from the lens insertion hole 21d. In addition, it sets so that things other than the soldering resist layer 32 may hardly be exposed from the lens penetration hole 21d of the reflective sheet 21 of this embodiment.
 図7に示されるように、底板14aの長手方向(X軸方向)において、両端部の各LED基板18(第1LED基板18及び第6LED基板18)上に位置する各ソルダーレジスト層32Aよりも、中央部側の各LED基板18(第2LED基板18,第3LED基板18,第4LED基板18及び第5LED基板18)に位置する各ソルダーレジスト層32Bの方が、相対的に黄変度が高くなっている。そして、図4に示されるように、シャーシ14に反射シート21を取り付けた場合、両端部の各LED基板18(第1LED基板18及び第6LED基板18)上に位置すると共にレンズ挿通孔21dから露出する各ソルダーレジスト層32Aよりも、中央部側の各LED基板18(第2LED基板18,第3LED基板18,第4LED基板18及び第5LED基板18)に位置すると共にレンズ挿通孔21dから露出する各ソルダーレジスト層32Bの方が、相対的に黄変度が高くなっている。 As shown in FIG. 7, in the longitudinal direction (X-axis direction) of the bottom plate 14a, the solder resist layers 32A located on the LED substrates 18 (the first LED substrate 18 and the sixth LED substrate 18) at both ends are more than Each solder resist layer 32 </ b> B located on each LED board 18 (second LED board 18, third LED board 18, fourth LED board 18, and fifth LED board 18) on the center side side has a relatively higher degree of yellowing. ing. As shown in FIG. 4, when the reflection sheet 21 is attached to the chassis 14, it is located on each LED board 18 (first LED board 18 and sixth LED board 18) at both ends and exposed from the lens insertion hole 21 d. Each LED substrate 18 (the second LED substrate 18, the third LED substrate 18, the fourth LED substrate 18, and the fifth LED substrate 18) located on the center side of each solder resist layer 32A to be exposed and exposed from the lens insertion hole 21d. The solder resist layer 32B has a relatively high degree of yellowing.
 図9は、図4のB-B’線断面図である。図9の左側には、第1LED基板18上のLED17が示され、その右側には、第2LED基板18上のLED17が示されている。上述したように、第1LED基板18の基材30上には、白色(未黄変)のソルダーレジスト層32(32A)が形成されており、第2LED基板18の基材上には、黄変されたソルダーレジスト層32(32B)が形成されている。そして、LED17及び拡散レンズ19の周りに形成されている部分の各ソルダーレジスト層32A,32Bが、反射シート21の各レンズ挿通孔21dからそれぞれ露出している。 FIG. 9 is a cross-sectional view taken along line B-B ′ of FIG. The LED 17 on the first LED board 18 is shown on the left side of FIG. 9, and the LED 17 on the second LED board 18 is shown on the right side of FIG. As described above, the white (non-yellowing) solder resist layer 32 (32A) is formed on the base material 30 of the first LED substrate 18, and the yellowing is performed on the base material of the second LED substrate 18. The solder resist layer 32 (32B) thus formed is formed. The portions of the solder resist layers 32A and 32B formed around the LED 17 and the diffusing lens 19 are exposed from the lens insertion holes 21d of the reflection sheet 21, respectively.
 LED17から出射された光の中には、拡散レンズ19を通過して直接、表側の光学部材15に向かって進むものもあれば、一旦、周辺にある反射シート21等に向かって進むものものある。このような、反射シート21等に向かって進んだ光の中には、反射シート21等によって反射されて、レンズ挿通孔21dから露出されているソルダーレジスト層32(32A,32B)に向かって進むものがある。図9には、ソルダーレジスト層32Aに向かって進む光L1と、ソルダーレジスト層32Bに向かって進む光L3とが、それぞれ矢印によって模式的に示されている。 Some of the light emitted from the LED 17 passes directly toward the front optical member 15 through the diffusing lens 19 and once travels toward the reflection sheet 21 in the periphery. . The light traveling toward the reflection sheet 21 or the like is reflected by the reflection sheet 21 or the like and proceeds toward the solder resist layer 32 (32A, 32B) exposed from the lens insertion hole 21d. There is something. In FIG. 9, light L1 traveling toward the solder resist layer 32A and light L3 traveling toward the solder resist layer 32B are schematically shown by arrows, respectively.
 光L1は、ソルダーレジスト層32Aによって、高効率で反射される。そして、その光L1の反射光L2は、ソルダーレジスト層32Aを覆う拡散レンズ19の光入射面19aからその拡散レンズ19内に進入すると共に、その光出射面19eから拡散光として出射される。これに対して、光L3は、ソルダーレジスト層32Bによって、比較的、低効率で反射される。そして、その光L3の反射光L4は、ソルダーレジスト層32Bを覆う拡散レンズ19の光入射面19aからその拡散レンズ19内に進入すると共に、その光出射面19eから拡散光として出射される。そのため、例えば、光L1及び光L3が、互いに同じ条件(光量)の場合、光L1の反射光L2の方が、光L3の反射光L4よりも、光量が大きくなることになる。 The light L1 is reflected with high efficiency by the solder resist layer 32A. The reflected light L2 of the light L1 enters the diffusing lens 19 from the light incident surface 19a of the diffusing lens 19 covering the solder resist layer 32A, and is emitted as diffused light from the light emitting surface 19e. On the other hand, the light L3 is reflected with relatively low efficiency by the solder resist layer 32B. The reflected light L4 of the light L3 enters the diffusing lens 19 from the light incident surface 19a of the diffusing lens 19 covering the solder resist layer 32B, and is emitted as diffused light from the light emitting surface 19e. Therefore, for example, when the light L1 and the light L3 have the same condition (light quantity), the reflected light L2 of the light L1 has a larger light quantity than the reflected light L4 of the light L3.
 液晶表示装置10を使用する際には、バックライト装置12に供えられた各17を点灯させると共に、液晶パネル11に画像信号が供給される。それにより液晶パネル11の表示面に所定の画像が表示される。点灯した各LED17から発せられる光は、先ず拡散レンズ19の光入射面19aに入射する。このとき、光の大半は、光入射面19aのうち光入射凹部19cにおける傾斜面に入射することで、その傾斜角度に応じて広角に屈折されつつ拡散レンズ19内に進入する。そして、拡散レンズ19内に進入した光は、拡散レンズ19内を伝播した後、光出射面19bから出射される。この光出射面19bは、扁平は略球面状をなしており、外部の空気層との界面にて光がさらに広角に屈折されつつ出射される。しかも、光出射面19bのうちLED17からの光量が最も多くなる領域には、略擂鉢状をなす光出射側凹部19eが形成され、かつその周面が扁平な略球面状をなしているので、光出射側凹部19eの周面にて光を広角に屈折させつつ出射させ、或いはLED基板18側に反射させることができる。 When the liquid crystal display device 10 is used, each 17 provided in the backlight device 12 is turned on and an image signal is supplied to the liquid crystal panel 11. Thereby, a predetermined image is displayed on the display surface of the liquid crystal panel 11. The light emitted from each LED 17 that is lit first enters the light incident surface 19 a of the diffusion lens 19. At this time, most of the light enters the inclined surface of the light incident recess 19c in the light incident surface 19a, and enters the diffusing lens 19 while being refracted at a wide angle according to the inclination angle. The light that has entered the diffusing lens 19 propagates through the diffusing lens 19 and then exits from the light exit surface 19b. The light emitting surface 19b is substantially spherical in shape, and light is emitted while being refracted at a wider angle at the interface with the external air layer. In addition, in the region where the amount of light from the LED 17 is the largest in the light exit surface 19b, the light exit side recess 19e having a substantially bowl shape is formed, and the peripheral surface has a flat and substantially spherical shape. Light can be emitted while being refracted at a wide angle on the peripheral surface of the light emitting side recess 19e, or reflected to the LED substrate 18 side.
 拡散レンズ19から出射された光のうち、主たる部分は、光学部材15を介してバックライト装置12の光出射部12a側(液晶パネル11)側に出射される。また、拡散レンズ19から出射された光のうち、残りの部分は、反射シート21又はソルダーレジスト層32側に向かうと共に、反射シート21又はソルダーレジスト層32で反射された後に、光出射部12a側(液晶パネル11)に向かうことになる。 The main part of the light emitted from the diffusion lens 19 is emitted to the light emitting part 12 a side (liquid crystal panel 11) side of the backlight device 12 through the optical member 15. Further, the remaining part of the light emitted from the diffusing lens 19 is directed to the reflective sheet 21 or the solder resist layer 32 side, and after being reflected by the reflective sheet 21 or the solder resist layer 32, the light emitting part 12a side. It goes to (liquid crystal panel 11).
 ところで、バックライト装置12が備える光出射部12aは、フレーム16の内縁部分で囲まれた矩形状の部分からなる。この光出射部12aからシャーシ14の底板14a側を見た際、光出射部12aの周縁に相当する部分には、反射シート21の立ち上がり部21bが配されているものの、LED17は配されていない。これに対して、光出射部12aの前記周縁よりも内側(中央側)に相当する部分には、複数個のLED17がマトリクス状に配されている。そのため、バックライト装置12は、LED17の配置関係のみを考慮すると、必然的に、光出射部12aの周縁側の光量が、中央側の光量よりも少なくなる構成となっている。 By the way, the light emitting part 12 a included in the backlight device 12 includes a rectangular part surrounded by the inner edge part of the frame 16. When the bottom plate 14a side of the chassis 14 is viewed from the light emitting portion 12a, the LED 17 is not disposed in the portion corresponding to the periphery of the light emitting portion 12a, although the rising portion 21b of the reflecting sheet 21 is disposed. . On the other hand, a plurality of LEDs 17 are arranged in a matrix in a portion corresponding to the inner side (center side) of the peripheral edge of the light emitting portion 12a. Therefore, the backlight device 12 inevitably has a configuration in which the amount of light on the peripheral side of the light emitting portion 12a is smaller than the amount of light on the center side, considering only the arrangement relationship of the LEDs 17.
 しかしながら、本実施形態のバックライト装置12では、光出射部12aから出射される面状の光において、その周縁部分と、その中央部分との間で輝度ムラが発生することが抑制されている。以下、その原理を説明する。 However, in the backlight device 12 of the present embodiment, in the planar light emitted from the light emitting portion 12a, the occurrence of uneven brightness between the peripheral portion and the central portion is suppressed. The principle will be described below.
 本実施形態のバックライト装置12は、上述したように、シャーシ14の底板14aの長手方向(X軸方向)において、両端部の各LED基板18上に位置する各ソルダーレジスト層32Aよりも、中央部側の各LED基板18に位置する各ソルダーレジスト層32Bの方が、相対的に黄変度が高く設定されている。そしてこれらのソルダーレジスト層32Aが反射シート21のレンズ挿通孔21dからそれぞれ露出されている。図9に示されるように、ソルダーレジスト層32Aで反射される光(反射光L2)の光量は、ソルダーレジスト層32Bで反射される光(反射光L4)の光量よりも、多くなる。そのため、光出射部12aの周縁部分のうち、少なくとも短辺側の両端部分は、中央部分と比べて、ソルダーレジスト層32で反射された光によって光量が多く補われることになる。その結果、光出射部12aの周縁部分と、中央部分との間の輝度ムラが抑制される。 As described above, the backlight device 12 of the present embodiment is more central in the longitudinal direction (X-axis direction) of the bottom plate 14a of the chassis 14 than the solder resist layers 32A located on the LED substrates 18 at both ends. Each solder resist layer 32 </ b> B located on each LED substrate 18 on the part side is set to have a relatively high degree of yellowing. These solder resist layers 32A are exposed from the lens insertion holes 21d of the reflection sheet 21, respectively. As shown in FIG. 9, the amount of light reflected by the solder resist layer 32A (reflected light L2) is larger than the amount of light reflected by the solder resist layer 32B (reflected light L4). Therefore, at least both end portions on the short side of the peripheral portion of the light emitting portion 12a are supplemented with a larger amount of light by the light reflected by the solder resist layer 32 than in the central portion. As a result, luminance unevenness between the peripheral portion of the light emitting portion 12a and the central portion is suppressed.
 なお、光出射部12aの周縁部分のうち、短辺側の両端部分は、最も光量が不足し易い個所となっている。何故ならば、光出射部12aの周縁部分のうち、短辺側の両端部分は、光出射部12aの長辺側の両端部分と比べて、配設されているLED17の数が少ないからである。本実施形態のように、光出射部12aの前記短辺側の両端部分と、光出射部12aの中央部分との間の輝度ムラが少なくとも抑制されていると、人の視覚の場合、光出射部12aから出射される面状の光は、全体として略均一なものとして認識される。 It should be noted that, among the peripheral portions of the light emitting portion 12a, both end portions on the short side are the places where the amount of light is most likely to be insufficient. This is because, among the peripheral portions of the light emitting portion 12a, both ends on the short side have a smaller number of LEDs 17 disposed than both ends on the long side of the light emitting portion 12a. . As in the present embodiment, when the luminance unevenness between the end portions on the short side of the light emitting portion 12a and the central portion of the light emitting portion 12a is at least suppressed, in the case of human vision, the light emission The planar light emitted from the portion 12a is recognized as being substantially uniform as a whole.
 本実施形態では、LED基板18上に設けられているソルダーレジスト層32を、反射層として利用している。このソルダーレジスト層32は、白色ソルダーレジストが必要に応じて紫外線照射により、黄変処理されたものからなる。そのため、本実施形態のバックライト装置12は、簡便な構成で輝度ムラを抑制することができる。更に、実施形態のバックライト装置12は、製造コストも抑制することができる。 In this embodiment, the solder resist layer 32 provided on the LED substrate 18 is used as a reflective layer. The solder resist layer 32 is formed by subjecting a white solder resist to yellowing treatment by ultraviolet irradiation as necessary. Therefore, the backlight device 12 of the present embodiment can suppress luminance unevenness with a simple configuration. Furthermore, the backlight device 12 of the embodiment can also reduce the manufacturing cost.
 また、本実施形態では、ソルダーレジスト層32は、少なくとも拡散レンズ19と重畳する部分に形成されている。そのため、ソルダーレジスト層32で反射した光が拡散レンズ19に入光し、その一部がバックライト装置12の光出射部12aのY軸方向に沿った両端部に向かって拡散されることになり、より一層光出射部12aの端部の輝度を向上させることができる。 In the present embodiment, the solder resist layer 32 is formed at least in a portion overlapping the diffusing lens 19. Therefore, the light reflected by the solder resist layer 32 enters the diffusing lens 19, and part of the light is diffused toward both end portions along the Y-axis direction of the light emitting portion 12 a of the backlight device 12. Further, the luminance at the end of the light emitting part 12a can be further improved.
 また、本実施形態では、ソルダーレジスト層32は、少なくとも反射シート21のレンズ挿通孔21dと重畳する部分に形成されている。そのため、レンズ挿通孔21d内に進入した光をソルダーレジスト層32により反射することができ、より一層光出射部12aの端部の輝度を向上させることができる。 In the present embodiment, the solder resist layer 32 is formed at least in a portion overlapping with the lens insertion hole 21d of the reflection sheet 21. Therefore, the light that has entered the lens insertion hole 21d can be reflected by the solder resist layer 32, and the luminance at the end of the light emitting portion 12a can be further improved.
 また、本実施形態では、拡散板15aと、光学シート15bとを備えているから、シャーシ14の開口部14bから出射された光が、拡散板15a及び光学シート15bを透過することとなり、より一層バックライト装置12の光出射部12aの輝度を均一にすることができる。 Further, in the present embodiment, since the diffusion plate 15a and the optical sheet 15b are provided, the light emitted from the opening 14b of the chassis 14 is transmitted through the diffusion plate 15a and the optical sheet 15b, and further. The luminance of the light emitting part 12a of the backlight device 12 can be made uniform.
 また、本実施形態では、光源は、LED17とされ、発光ダイオードを含むものであるから、高輝度化等を図ることができる。 Further, in the present embodiment, the light source is the LED 17 and includes a light emitting diode, so that it is possible to increase the luminance.
 <実施形態2>
 次いで、本発明の実施形態2を、図10を参照しつつ説明する。なお、以降の各実施形態では、実施形態1と同じ部分については、実施形態1のものと同じ符号を付して、その詳細な説明は省略する。本実施形態では、バックライト装置12Aを例示する。図10は、実施形態2の照明装置(バックライト装置)12Aが備えるシャーシ14の底板14a上に配されているLED基板18の平面図である。本実施形態のバックライト装置12Aは、第3LED基板18及び第4LED基板18にそれぞれ形成されているソルダーレジスト層32(32C)が、実施形態1のものと異なっている。
<Embodiment 2>
Next, Embodiment 2 of the present invention will be described with reference to FIG. In the following embodiments, the same parts as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted. In this embodiment, the backlight device 12A is illustrated. FIG. 10 is a plan view of the LED substrate 18 disposed on the bottom plate 14a of the chassis 14 included in the illumination device (backlight device) 12A according to the second embodiment. The backlight device 12A of this embodiment is different from that of Embodiment 1 in the solder resist layer 32 (32C) formed on the third LED substrate 18 and the fourth LED substrate 18, respectively.
 図10に示されるように、6つのLED基板18のうち、左端に配されている第1LED基板18と、右端に配されている第6LED基板18とは、実施形態1と同じように、ソルダーレジスト層32(32A)を備えている。また、第2LED基板18及び第5LED基板18は、実施形態1と同じように、ソルダーレジスト層32(32B)を備えている。ただし、第3LED基板18及び第4LED基板18は、実施形態1とは異なり、ソルダーレジスト層32Bよりも黄変度が高いソルダーレジスト層32Cを備えている。 As shown in FIG. 10, among the six LED substrates 18, the first LED substrate 18 disposed at the left end and the sixth LED substrate 18 disposed at the right end are the solder as in the first embodiment. A resist layer 32 (32A) is provided. Moreover, the 2nd LED board 18 and the 5th LED board 18 are provided with the soldering resist layer 32 (32B) similarly to Embodiment 1. FIG. However, unlike the first embodiment, the third LED substrate 18 and the fourth LED substrate 18 include a solder resist layer 32C having a higher degree of yellowing than the solder resist layer 32B.
 ソルダーレジスト層32Cは、紫外線照射によってソルダーレジスト層32Bよりも更に、黄変されたものからなる。ソルダーレジスト層32Cは、ソルダーレジスト層32Bと比べて、黄変処理における紫外線照射時間が長く設定されている。例えば、ソルダーレジスト層32Cにおける紫外線照射時間は、ソルダーレジスト層32Bの場合の2倍に設定されている。ソルダーレジスト層32Cの色度(黄変度)は、CIEYxy系の座標値で表現すると、(x,y)=(0.33,0.35)となっている。つまり、ソルダーレジスト層32Cの色度(黄変度)は、ソルダーレジスト層32Bの色度(黄変度)よりも高く設定されている。このようなソルダーレジスト層32Cにおける光反射率は、ソルダーレジスト層32Bの光反射率と比べて、更に低くなっている。なお、本実施形態のバックライト装置12Aは、実施形態1と同様、図1及び図2等に示されるような液晶表示装置10で利用されるものである。 The solder resist layer 32C is made of a material further yellowed than the solder resist layer 32B by ultraviolet irradiation. The solder resist layer 32C is set to have a longer ultraviolet irradiation time in the yellowing process than the solder resist layer 32B. For example, the ultraviolet irradiation time in the solder resist layer 32C is set to twice that in the solder resist layer 32B. The chromaticity (yellowing degree) of the solder resist layer 32C is (x, y) = (0.33, 0.35) when expressed in terms of CIEYxy coordinate values. That is, the chromaticity (yellowing degree) of the solder resist layer 32C is set higher than the chromaticity (yellowing degree) of the solder resist layer 32B. The light reflectance in such a solder resist layer 32C is further lower than the light reflectance of the solder resist layer 32B. Note that the backlight device 12A of the present embodiment is used in a liquid crystal display device 10 as shown in FIGS.
 本実施形態のバックライト装置12Aは、上記のように、底板14aの中央部分に、ソルダーレジスト層32Cを備えたLED基板18が配されているため、実施形態1のものと比べて、輝度ムラが更に、抑制される。何故ならば、実施形態1におけるバックライト装置10では、光出射部12a(実施形態1の図2参照)の中央部分(光出射部12aの周縁部分で囲まれた部分)の中でも、外側と内側とでは、輝度に差が生じている。この輝度差は、実施形態1で問題とされていた、光出射部12aの周縁部分と光出射部12aの中央部分との間の輝度差と比べれば、程度は低いものの、外側よりも内側の方が輝度が高くなっている。 As described above, the backlight device 12A according to the present embodiment is provided with the LED substrate 18 including the solder resist layer 32C at the center portion of the bottom plate 14a. Is further suppressed. This is because, in the backlight device 10 according to the first embodiment, the outer side and the inner side among the central portion (the portion surrounded by the peripheral portion of the light emitting portion 12a) of the light emitting portion 12a (see FIG. 2 of the first embodiment). And there is a difference in luminance. This brightness difference is less in comparison with the brightness difference between the peripheral part of the light emitting part 12a and the central part of the light emitting part 12a, which has been a problem in the first embodiment, but it is on the inside rather than the outside. The brightness is higher.
 そこで、本実施形態では、底板14aの中央部分に光反射率の低いソルダーレジスト層32Cを配置することによって、そのソルダーレジスト層32C(レンズ挿通孔21dから露出した部分のソルダーレジスト層32C)によって反射される光を抑制している。したがって、本実施形態のバックライト装置12Aは、実施形態1と比べて、更に輝度ムラが抑制されるものとなっている。 Therefore, in the present embodiment, by disposing the solder resist layer 32C having a low light reflectance at the center portion of the bottom plate 14a, the solder resist layer 32C (the solder resist layer 32C exposed from the lens insertion hole 21d) is reflected. Suppressed light. Therefore, the backlight device 12A according to the present embodiment further suppresses uneven brightness as compared with the first embodiment.
 <実施形態3>
 次いで、本発明の実施形態3を、図11を参照しつつ説明する。本実施形態では、バックライト装置12Bを例示する。図11は、実施形態3の照明装置(バックライト装置)12Bが備えるシャーシ14の底板14a上に配されているLED基板18の平面図である。本実施形態のバックライト装置12Bは、各LED基板18上に形成されているソルダーレジスト層32が、実施形態1のものと比べて、異なった構成となっている。
<Embodiment 3>
Next, Embodiment 3 of the present invention will be described with reference to FIG. In this embodiment, the backlight device 12B is illustrated. FIG. 11 is a plan view of the LED substrate 18 disposed on the bottom plate 14a of the chassis 14 included in the illumination device (backlight device) 12B of the third embodiment. In the backlight device 12B of the present embodiment, the solder resist layer 32 formed on each LED substrate 18 has a different configuration from that of the first embodiment.
 図11には、実施形態1と同様、シャーシ14の底板14a上に、6つのLED基板18が一列に並べられている。ただし、各LED基板18上に形成されているソルダーレジスト層32は、実施形態1とは異なり、1つのLED基板18上に形成されている1つのソルダーレジスト層32の中に、黄変度が異なる2種類のソルダーレジスト層32A,32Bが形成されている。 In FIG. 11, similar to the first embodiment, six LED boards 18 are arranged in a row on the bottom plate 14 a of the chassis 14. However, unlike the first embodiment, the solder resist layer 32 formed on each LED substrate 18 has a yellowing degree in one solder resist layer 32 formed on one LED substrate 18. Two different types of solder resist layers 32A and 32B are formed.
 各LED基板18上の各ソルダーレジスト層32は、実施形態1と同様、白色ソルダーレジストから製造される。ただし、各LED基板18上に形成された白色ソルダーレジストの塗膜に対しては、それぞれ部分的に、紫外線照射による黄変処理が施される。図11に示されるように、シャーシ14の底板14aを平面に見た場合に、中央部分に略楕円状(略長円状)をなすソルダーレジスト層32Bが形成されている。このソルダーレジスト層32Bは、6つのLED基板18上に形成されている各ソルダーレジスト層32に亘って(跨って)形成されている。そして、この略楕円状のソルダーレジスト層32Bの周囲に、枠状のソルダーレジスト層32Aが形成されている。この枠状のソルダーレジスト層32Aも、6つのLED基板18上に形成されている各ソルダーレジスト層32に亘って(跨って)形成されている。 Each solder resist layer 32 on each LED substrate 18 is manufactured from a white solder resist as in the first embodiment. However, the white solder resist coating formed on each LED substrate 18 is partially subjected to yellowing treatment by ultraviolet irradiation. As shown in FIG. 11, when the bottom plate 14a of the chassis 14 is viewed in a plane, a solder resist layer 32B having a substantially elliptical shape (substantially oval shape) is formed in the center portion. This solder resist layer 32 </ b> B is formed across (strands) each solder resist layer 32 formed on the six LED substrates 18. A frame-shaped solder resist layer 32A is formed around the substantially elliptical solder resist layer 32B. The frame-shaped solder resist layer 32 </ b> A is also formed across (strands) the solder resist layers 32 formed on the six LED substrates 18.
 なお、各LED基板18のソルダーレジスト層32(白色ソルダーレジストの塗膜)の黄変処理は、紫外線を遮光する所定形状のマスクを利用して、行われる。前記マスクは、LED基板18上に形成する予定のソルダーレジスト層32Aの形状に対応している。このマスク越しに、LED基板18上のソルダーレジスト層32(白色ソルダーレジストの塗膜)に紫外線が照射されると、LED基板18上に、黄変された所定形状のソルダーレジスト層32が形成される。 In addition, the yellowing process of the solder resist layer 32 (white solder resist coating film) of each LED substrate 18 is performed using a mask having a predetermined shape that shields ultraviolet rays. The mask corresponds to the shape of the solder resist layer 32 </ b> A that is to be formed on the LED substrate 18. When the solder resist layer 32 (white solder resist coating film) on the LED substrate 18 is irradiated with ultraviolet rays through the mask, a yellow-shaped solder resist layer 32 having a predetermined shape is formed on the LED substrate 18. The
 なお、ソルダーレジスト層32A,32Bがそれぞれ形成される範囲は、所定の輝度分布データに基づいて、決定される。この輝度分布データは、例えば、シャーシ14の底板14a上に並べられている6つのLED基板18を、すべて、白色のソルダーレジスト層32(32A)を備えるものに置き換えたバックライト装置を用意し、このバックライト装置の光出射部から出射される面状の光における輝度分布を、公知の輝度分布測定装置を利用して、測定することによって得られる。取得された輝度分布データ(例えば、二次元画像)に基づいて、光出射部における輝度が高い範囲と輝度が低い範囲とが割り出され、その結果に基づいて、ソルダーレジスト層32(白色ソルダーレジスト)における黄変処理すべき範囲を決定することができる。つまり、ソルダーレジスト層32における黄変度の分布を定めることができる。 In addition, the range in which the solder resist layers 32A and 32B are formed is determined based on predetermined luminance distribution data. For example, the brightness distribution data includes a backlight device in which all of the six LED boards 18 arranged on the bottom plate 14a of the chassis 14 are replaced with ones having a white solder resist layer 32 (32A). It is obtained by measuring the luminance distribution in the planar light emitted from the light emitting portion of the backlight device using a known luminance distribution measuring device. Based on the acquired luminance distribution data (for example, a two-dimensional image), a high luminance range and a low luminance range in the light emitting portion are determined, and based on the result, the solder resist layer 32 (white solder resist). The range to be yellowed can be determined. That is, the distribution of yellowing degree in the solder resist layer 32 can be determined.
 このように、輝度分布データを利用することによって、ソルダーレジスト層32による反射光を多くしたい個所と、少なくしたい個所とを正確に区分けすることが可能となる。その結果、バックライト装置12Bの輝度ムラも、確実に抑制することが可能となる。 As described above, by using the luminance distribution data, it is possible to accurately distinguish a portion where the reflected light from the solder resist layer 32 is desired to be increased and a location where the reflected light is desired to be decreased. As a result, the luminance unevenness of the backlight device 12B can be reliably suppressed.
 本実施形態のように、複数のLED基板18上のソルダーレジスト層32を跨ぐように、光反射率の高い白色のソルダーレジスト層32Aの部分と、光反射率の低い黄変されたソルダーレジスト層32Bの部分とを、シャーシ14内に形成してもよい。 As in this embodiment, a portion of the white solder resist layer 32 </ b> A having a high light reflectance and a yellowed solder resist layer having a low light reflectance so as to straddle the solder resist layers 32 on the plurality of LED substrates 18. The portion 32B may be formed in the chassis 14.
 <実施形態4>
 次いで、本発明の実施形態4を、図12ないし図14を参照しつつ説明する。この実施形態4では、上記した実施形態1のバックライト装置12を、エッジライト型のバックライト装置12Cに置き換えたものである。
<Embodiment 4>
Next, Embodiment 4 of the present invention will be described with reference to FIGS. In the fourth embodiment, the backlight device 12 of the first embodiment described above is replaced with an edge light type backlight device 12C.
 図12は、実施形態4に係る液晶表示装置10Cの概略構成を示す分解斜視図である。本実施形態に係る液晶表示装置10Cは、図12に示されるように、液晶パネル11と、エッジライト型のバックライト装置12Cとをベゼル13などにより一体化した構成とされる。なお、液晶パネル11の構成は、上記した実施形態1と同様である。以下、エッジライト型のバックライト装置12Cの構成について説明する。 FIG. 12 is an exploded perspective view showing a schematic configuration of the liquid crystal display device 10C according to the fourth embodiment. As shown in FIG. 12, the liquid crystal display device 10 </ b> C according to the present embodiment has a configuration in which a liquid crystal panel 11 and an edge light type backlight device 12 </ b> C are integrated by a bezel 13 or the like. The configuration of the liquid crystal panel 11 is the same as that of the first embodiment. Hereinafter, the configuration of the edge light type backlight device 12C will be described.
 バックライト装置12Cは、図12に示されるように、表側、つまり光出射部12a側(液晶パネル11側)に開口する開口部14b(光出射部)を有した略箱型をなすシャーシ14と、シャーシ14の開口部14bを覆う形で配される光学部材15と、次述する導光部材22を表側から押さえるフレーム16とを備えている。さらに、シャーシ14内には、光源であるLED(Light Emitting Diode:発光ダイオード)17が実装されたLED基板18C(光源基板)と、LED17からの光を導光して光学部材15(液晶パネル11、光出射部12a側)へと導く導光部材22とが収容されている。そして、このバックライト装置12Cは、その長辺側の両端部に、LED17を有するLED基板18Cをそれぞれ備えるとともに、両端側に配されたLED基板18C間に挟まれた中央側に導光部材20を配置してなる、いわゆるエッジライト型(サイドライト型)とされている。 As shown in FIG. 12, the backlight device 12C includes a chassis 14 having a substantially box shape having an opening 14b (light emitting portion) that opens on the front side, that is, the light emitting portion 12a side (the liquid crystal panel 11 side). The optical member 15 is disposed so as to cover the opening 14b of the chassis 14, and the frame 16 holds the light guide member 22 described below from the front side. Further, in the chassis 14, an LED substrate 18C (light source substrate) on which an LED (Light Emitting Diode) 17 as a light source is mounted, and the optical member 15 (the liquid crystal panel 11) is guided by the light from the LED 17. The light guide member 22 that leads to the light emitting part 12a side) is accommodated. And this backlight apparatus 12C is equipped with LED board 18C which has LED17 in the both ends of the long side, respectively, and is light guide member 20 in the center side pinched | interposed between LED board 18C distribute | arranged at both ends. Is a so-called edge light type (side light type).
 シャーシ14は、金属板からなり、図12に示されるように、液晶パネル11と同様に横長の方形状をなす底板14aと、底板14aにおける各辺(一対の長辺及び一対の短辺)の外端からそれぞれ表側に向けて立ち上がる側板14cとからなる。また、側板14cには、フレーム16及びベゼル13がねじ止め可能とされる。 The chassis 14 is made of a metal plate. As shown in FIG. 12, the chassis 14 has a horizontally long bottom plate 14a similar to the liquid crystal panel 11, and each side of the bottom plate 14a (a pair of long sides and a pair of short sides). Each side plate 14c rises from the outer end toward the front side. Further, the frame 16 and the bezel 13 can be screwed to the side plate 14c.
 光学部材15は、図12に示されるように、液晶パネル11及びシャーシ14と同様に平面に視て横長の方形状をなしている。光学部材15は、導光部材22の表側(光出射側)に載せられていて液晶パネル11と導光部材22との間に介在して配される。光学部材15は、裏側(導光部材22側、光出射部12a側とは反対側)に配される拡散板15aと、表側(液晶パネル11側、光出射部12a側)に配される光学シート15bとから構成される。拡散板15aは、所定の厚みを持つほぼ透明な合成樹脂製で板状をなす透光性基材内に拡散粒子を多数分散して設けた構成とされ、透過する光を拡散させる機能を有する。光学シート15bは、拡散板15aと比べると板厚が薄いシート状をなしており、3枚が積層して配されている。具体的な光学シート15bとしては、例えば拡散シート、プリズムシート、反射型偏光シートが用いられる。 As shown in FIG. 12, the optical member 15 has a horizontally long rectangular shape when viewed in a plane, like the liquid crystal panel 11 and the chassis 14. The optical member 15 is placed on the front side (light emitting side) of the light guide member 22 and is interposed between the liquid crystal panel 11 and the light guide member 22. The optical member 15 includes a diffusion plate 15a disposed on the back side (the side opposite to the light guide member 22 side and the light emitting unit 12a side) and an optical disposed on the front side (the liquid crystal panel 11 side and the light emitting unit 12a side). And a sheet 15b. The diffusing plate 15a has a structure in which a large number of diffusing particles are dispersed in a translucent base material made of a substantially transparent synthetic resin having a predetermined thickness, and has a function of diffusing transmitted light. . The optical sheet 15b has a sheet shape that is thinner than the diffusion plate 15a, and three optical sheets are laminated. As the specific optical sheet 15b, for example, a diffusion sheet, a prism sheet, or a reflective polarizing sheet is used.
 フレーム16は、図12に示されるように、導光部材22の外周端部に沿って延在する枠状(額縁状)に形成されており、導光部材22の外周端部をほぼ全周にわたって表側から押さえることが可能とされる。また、フレーム16は、液晶パネル11における外周端部を裏側から受けることができる。 As shown in FIG. 12, the frame 16 is formed in a frame shape (frame shape) extending along the outer peripheral end portion of the light guide member 22, and the outer peripheral end portion of the light guide member 22 is almost entirely surrounded. It is possible to hold down from the front side. Further, the frame 16 can receive the outer peripheral end of the liquid crystal panel 11 from the back side.
 LED17は、図13及び図14に示されるように、LED基板18Cに固着される基板部上にLEDチップを樹脂材により封止した構成とされる。LED基板18Cは、図12に示されるように、シャーシ14の長辺方向に沿って延在する、長手の板状をなしており、液晶パネル11及び導光部材22(光学部材15)の板面と直交させた姿勢でシャーシ14内に収容されている。つまり、このLED基板18Cは、板面における長辺方向がX軸方向と、短辺方向がZ軸方向とそれぞれ一致し、さらには板面と直交する板厚方向がY軸方向と一致した姿勢とされる。 13 and 14, the LED 17 has a configuration in which an LED chip is sealed with a resin material on a substrate portion fixed to the LED substrate 18C. As shown in FIG. 12, the LED substrate 18 </ b> C has a long plate shape extending along the long side direction of the chassis 14, and is a plate of the liquid crystal panel 11 and the light guide member 22 (optical member 15). It is accommodated in the chassis 14 in a posture orthogonal to the surface. That is, the LED substrate 18C has a posture in which the long side direction on the plate surface coincides with the X-axis direction, the short side direction coincides with the Z-axis direction, and the plate thickness direction orthogonal to the plate surface coincides with the Y-axis direction. It is said.
 LED基板18Cは、図12に示されるように、Y軸方向について導光部材22を挟んだ位置に対をなして配されており、詳しくは導光部材22とシャーシ14における長辺側の各側板14cとの間に介在するようそれぞれ配されている。LED基板18Cの板面のうち、内側、つまり導光部材22側を向いた面(導光部材22との対向面)には、複数(本実施形態では27個)のLED17がLED基板18Cの長辺方向(シャーシ14の長辺方向、X軸方向)に沿って間欠的に並列して配されている。LED17は、LED基板18Cにおける導光部材22側を向いた面に表面実装されており、当該面をLED17が実装された板面(光源が実装された板面)と呼ぶ。LED17が実装された板面には、X軸方向に沿って延在するとともにLED17同士を直列接続する、金属膜(銅箔など)からなるパターン配線(不図示)が形成されている。パターン配線の両端部には、図示しない端子部が形成され、端子部が外部の駆動回路に接続されることで、駆動電力を各LED17に供給することが可能とされる。さらに、パターン配線の表面には、配線を保護する白色のソルダーレジスト層32(反射層)が積層されている。ソルダーレジスト層32については、後に詳述することとする。一対のLED基板18Cは、図12に示されるように、LED17が実装された板面とは反対側の板面がシャーシ14における長辺側の一対の側板14cの内面に接する形でそれぞれ取り付けられている。 As shown in FIG. 12, the LED substrate 18 </ b> C is arranged in a pair at a position where the light guide member 22 is sandwiched in the Y-axis direction. Specifically, each of the long side sides of the light guide member 22 and the chassis 14 is arranged. They are respectively arranged so as to be interposed between the side plates 14c. Among the plate surfaces of the LED substrate 18C, a plurality (27 in this embodiment) of LEDs 17 are arranged on the inner side, that is, the surface facing the light guide member 22 side (a surface facing the light guide member 22) of the LED substrate 18C. They are arranged intermittently in parallel along the long side direction (the long side direction of the chassis 14, the X-axis direction). The LED 17 is surface-mounted on the surface of the LED substrate 18C facing the light guide member 22 side, and the surface is referred to as a plate surface on which the LED 17 is mounted (a plate surface on which a light source is mounted). On the plate surface on which the LEDs 17 are mounted, pattern wiring (not shown) made of a metal film (such as a copper foil) is formed that extends along the X-axis direction and connects the LEDs 17 in series. Terminal portions (not shown) are formed at both ends of the pattern wiring, and the terminal portions are connected to an external driving circuit, so that driving power can be supplied to each LED 17. Further, a white solder resist layer 32 (reflection layer) for protecting the wiring is laminated on the surface of the pattern wiring. The solder resist layer 32 will be described in detail later. As shown in FIG. 12, the pair of LED boards 18 </ b> C are respectively attached such that the plate surface opposite to the plate surface on which the LEDs 17 are mounted is in contact with the inner surfaces of the pair of side plates 14 c on the long side of the chassis 14. ing.
 導光部材22は、屈折率が空気よりも十分に高く且つほぼ透明な(透光性に優れた)合成樹脂材料(例えばアクリルなど)からなる。導光部材22は、図12に示されるように、液晶パネル11及びシャーシ14と同様に平面に視て横長の方形状をなす板状とされており、その板面における長辺方向がX軸方向と、短辺方向がY軸方向とそれぞれ一致し、且つ板面と直交する板厚方向がZ軸方向と一致している。導光部材22は、図13に示されるように、シャーシ14内において液晶パネル11及び光学部材15の直下位置に配されており、シャーシ14における長辺側の両端部に配された対をなすLED基板18C間にY軸方向について挟み込まれる形で配されている。そして、導光部材22は、LED17からY軸方向に向けて発せられた光を導入するとともに、その光を内部で伝播させつつ光学部材15側(表側、光出射側)へ向くよう立ち上げて出射させる機能を有する。 The light guide member 22 is made of a synthetic resin material (for example, acrylic or the like) having a refractive index sufficiently higher than air and substantially transparent (excellent translucency). As shown in FIG. 12, the light guide member 22 is formed in a plate shape that has a horizontally long rectangular shape in a plan view, like the liquid crystal panel 11 and the chassis 14, and the long side direction on the plate surface is the X axis. The direction and the short side direction coincide with the Y-axis direction, respectively, and the plate thickness direction orthogonal to the plate surface coincides with the Z-axis direction. As shown in FIG. 13, the light guide member 22 is disposed in the chassis 14 at a position immediately below the liquid crystal panel 11 and the optical member 15, and forms a pair disposed at both ends of the long side of the chassis 14. The LED boards 18C are arranged so as to be sandwiched between the Y-axis directions. Then, the light guide member 22 introduces light emitted from the LED 17 in the Y-axis direction, and rises toward the optical member 15 side (front side, light emission side) while propagating the light inside. It has a function to emit light.
 導光部材22の板面のうち、表側を向いた面が内部の光を光学部材15及び液晶パネル11に向けて出射させる光出射面22bとなっている。導光部材22における板面に対して隣り合う外周端面のうち、X軸方向に沿って長手状をなす長辺側の両端面は、図13に示されるように、それぞれLED17(LED基板518)と所定の空間を空けて対向状をなしており、これらがLED17から発せられた光が入射される光入射面22aとなっている。 Of the plate surface of the light guide member 22, the surface facing the front side is a light emitting surface 22 b that emits internal light toward the optical member 15 and the liquid crystal panel 11. Of the outer peripheral end surfaces adjacent to the plate surface of the light guide member 22, both end surfaces on the long side which are long along the X-axis direction are respectively LEDs 17 (LED substrates 518) as shown in FIG. And are opposed to each other with a predetermined space therebetween, which constitute a light incident surface 22a on which light emitted from the LED 17 is incident.
 導光部材22の板面のうち、光出射面22bとは反対側の面22cには、図13に示されるように、導光部材22内の光を反射して表側へ立ち上げることが可能な反射性光学部材25がその全域を覆う形で設けられている。なお、導光部材22における光出射面22bと反対側の面22cとの少なくともいずれか一方、または反射性光学部材25の表面には、導光部材22内の光を散乱させる散乱部(図示せず)などが所定の面内分布を持つようパターニングされており、それにより光出射面22bからの出射光が面内において均一な分布となるよう制御されている。 Of the plate surface of the light guide member 22, the surface 22c opposite to the light exit surface 22b can reflect the light in the light guide member 22 and rise to the front side as shown in FIG. A reflective optical member 25 is provided so as to cover the entire area. Note that a scattering portion (not shown) that scatters light in the light guide member 22 is formed on at least one of the light exit surface 22b and the opposite surface 22c of the light guide member 22 or on the surface of the reflective optical member 25. ) And the like are patterned so as to have a predetermined in-plane distribution, and thereby, the emitted light from the light emitting surface 22b is controlled to have a uniform distribution in the surface.
 LED基板18Cに設けられるソルダーレジスト層32について説明する。ソルダーレジスト層32は、実施形態1と同じものが利用される。ソルダーレジスト層32は、図14に示されるように、LED17が実装される部分を除いて、LED基板18Cにおける板面(実装面)の略全面に亘って設けられている。ソルダーレジスト層32は、導光部材22の光入射面22aと対向し、導光部材22の光入射面22aとLED基板18Cの基材との間に位置している。したがって、LED17から導光部材22に向かって出射された光のうち、導光部材22側からLED基板18C側に戻された光について、ソルダーレジスト層32は、再び導光部材22側に向かわせるように反射させることができる。 The solder resist layer 32 provided on the LED substrate 18C will be described. The same solder resist layer 32 as in the first embodiment is used. As shown in FIG. 14, the solder resist layer 32 is provided over substantially the entire plate surface (mounting surface) of the LED substrate 18 </ b> C except for the portion where the LED 17 is mounted. The solder resist layer 32 faces the light incident surface 22a of the light guide member 22, and is located between the light incident surface 22a of the light guide member 22 and the base material of the LED substrate 18C. Therefore, among the light emitted from the LED 17 toward the light guide member 22, the solder resist layer 32 is directed again toward the light guide member 22 for the light returned from the light guide member 22 side to the LED substrate 18 </ b> C side. Can be reflected.
 LED基板18Cにおけるソルダーレジスト層32の黄変度(光反射率)は、LED基板18Cの長辺方向(シャーシ14の長辺方向、X軸方向)における両端部181Cと、両端部181Cで挟まれた中央部182Cとで異なるものとされている。端部181Cにおけるソルダーレジスト層32は、白色のソルダーレジスト層32Aからなり、中央部182Cにおけるソルダーレジスト層32は、黄変されたソルダーレジスト層32Bからなる。すなわり、中央部182Cの黄変度は、端部182Cの黄変度よりも高く設定されており、端部181Cの光反射率が中央部182Cの光反射率よりも相対的に高いものとされている。なお、本実施形態のソルダーレジスト層32A,32Bは、実施形態1と同種のものからなる。 The yellowing degree (light reflectance) of the solder resist layer 32 in the LED substrate 18C is sandwiched between both end portions 181C and both end portions 181C in the long side direction (long side direction of the chassis 14, X-axis direction) of the LED substrate 18C. The center portion 182C is different. The solder resist layer 32 at the end portion 181C is made of a white solder resist layer 32A, and the solder resist layer 32 at the center portion 182C is made of a yellowed solder resist layer 32B. That is, the yellowing degree of the central part 182C is set higher than the yellowing degree of the end part 182C, and the light reflectance of the end part 181C is relatively higher than the light reflectance of the central part 182C. It is said that. Note that the solder resist layers 32A and 32B of the present embodiment are made of the same type as in the first embodiment.
 本実施形態のような、エッジライト型のバックライト装置12Cにおいても、LED基板18Cの両端部181C側に、LED17を多く配置することができない。特に、LED基板18Cの両末端に、各LED17に外部からの電力を供給するためのコネクタが設けられている場合、LED17の両端部181C側にLED17を配置するスペースが限られてくる。そのため、LED17から直接、導光部材22内に供給される光のみを考えた場合、光出射部12aの短辺側の両端部は、それらで挟まれた部分(光出射部12aの中央部分)と比べて、輝度が低くなってしまう。 Even in the edge light type backlight device 12C as in the present embodiment, many LEDs 17 cannot be arranged on both ends 181C side of the LED substrate 18C. In particular, when connectors for supplying external power to the respective LEDs 17 are provided at both ends of the LED substrate 18C, the space for disposing the LEDs 17 on both ends 181C of the LEDs 17 is limited. Therefore, when only the light supplied directly from the LED 17 into the light guide member 22 is considered, both end portions on the short side of the light emitting portion 12a are sandwiched between them (the central portion of the light emitting portion 12a). Compared to the above, the luminance is lowered.
 しかしながら、上述したように、本実施形態では、LED基板18Cの両端部181Cにおける光反射率が、中央部182Cにおける光反射率よりも高く設定されているため、中央部182Cのソルダーレジスト層32Bで光反射が抑制されると共に、両端部181Cのソルダーレジスト層32Aで光反射が促進される。その結果、導光部材22における長手状の光入射面22aのうち、両端部分における光入射面22aに、ソルダーレジスト層32による反射光が多く入射されることになる。つまり、光出射部12aの短辺側の両端部における光量不足が、ソルダーレジスト層32Bによる反射光によって、補われる。したがって、本実施形態のバックライト装置12Cにおいても、その光出射部12aの輝度ムラが抑制される。 However, as described above, in the present embodiment, the light reflectance at both end portions 181C of the LED substrate 18C is set higher than the light reflectance at the central portion 182C, so the solder resist layer 32B of the central portion 182C is used. Light reflection is suppressed and light reflection is promoted by the solder resist layer 32A at both ends 181C. As a result, a large amount of reflected light from the solder resist layer 32 is incident on the light incident surfaces 22a at both ends of the long light incident surface 22a of the light guide member 22. That is, the shortage of light quantity at both ends on the short side of the light emitting part 12a is compensated by the reflected light from the solder resist layer 32B. Therefore, also in the backlight device 12C of the present embodiment, luminance unevenness of the light emitting unit 12a is suppressed.
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
 (1)実施形態1等では、拡散レンズ19を備えるものを例示したが、他の実施形態においては、拡散レンズ19を備えない構成としてもよい。 (1) In the first embodiment and the like, the example including the diffusing lens 19 is illustrated, but in another embodiment, the diffusing lens 19 may not be provided.
 (2)実施形態1等では、シャーシ14の端部側に配されるソルダーレジスト層32として、白色のソルダーレジスト層32A利用していた。他の実施形態においては、例えば、実施形態1におけるソルダーレジスト層32Aをソルダーレジスト層32Bに置き換え、更に、実施形態1におけるソルダーレジスト層32Bをソルダーレジスト層32C(実施形態2参照)に置き換えてもよい。要するに、本発明では、シャーシ14内において、反射光を促進したい個所に設けられるソルダーレジスト層32の黄変度が、反対に反射光を抑制したい個所に設けられるソルダーレジスト層32の黄変度よりも、相対的に低く設定されればよい。 (2) In the first embodiment and the like, the white solder resist layer 32A is used as the solder resist layer 32 disposed on the end side of the chassis 14. In other embodiments, for example, the solder resist layer 32A in the first embodiment may be replaced with the solder resist layer 32B, and the solder resist layer 32B in the first embodiment may be replaced with the solder resist layer 32C (see the second embodiment). Good. In short, in the present invention, the yellowing degree of the solder resist layer 32 provided at the location where the reflected light is desired to be promoted in the chassis 14 is more than the yellowing degree of the solder resist layer 32 provided at the location where the reflected light is desired to be suppressed. May be set relatively low.
 (3)実施形態1等では、LED基板18の基材30として、シャーシ14と同じアルミ系材料等の金属製とされるものを例示した、セラミック等の絶縁材料を用いることも可能である。 (3) In the first embodiment or the like, it is also possible to use an insulating material such as ceramic as an example of the base material 30 of the LED substrate 18 that is made of a metal such as the same aluminum material as the chassis 14.
 (4)実施形態1等では、反射シート21を備えたものを示したが、他の実施形態においては、反射シートを備えない構成であってもよい。 (4) In Embodiment 1 or the like, the one provided with the reflective sheet 21 is shown, but in other embodiments, a configuration without the reflective sheet may be used.
 (5)実施形態1等では、光源としてLED17を用いたものを例示したが、他の実施形態においては、LED以外の光源を用いてもよい。 (5) In Embodiment 1 or the like, an example using the LED 17 as the light source is illustrated, but in other embodiments, a light source other than the LED may be used.
 (6)実施形態1等では、液晶表示装置のスイッチング素子としてTFTを用いたが、他の実施形態においてはTFT以外のスイッチング素子(例えば、膜膜ダイオード(TFD))を用いた液晶表示装置にも適用可能であり、カラー表示する液晶表示装置以外にも、白黒表示する液晶表示装置にも適用可能である。 (6) Although the TFT is used as the switching element of the liquid crystal display device in the first embodiment and the like, the liquid crystal display device using a switching element other than the TFT (for example, a film diode (TFD)) is used in other embodiments. In addition to a liquid crystal display device that performs color display, the present invention can also be applied to a liquid crystal display device that performs monochrome display.
 (7)実施形態1等では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、他の実施形態においては、他の種類の表示パネルを用いた表示装置であってもよい。 (7) In the first embodiment and the like, a liquid crystal display device using a liquid crystal panel as a display panel has been exemplified, but in other embodiments, a display device using another type of display panel may be used.
 (8)実施形態1等では、チューナーを備えたテレビ受信装置を例示したが、他の実施形態の表示装置としては、チューナーを備えないものであってもよい。 (8) In the first embodiment and the like, the television receiver provided with the tuner is illustrated, but the display device according to the other embodiment may not include the tuner.
 10…液晶表示装置(表示装置)、11…液晶パネル、12…バックライト装置(照明装置)、13…ベゼル、14…シャーシ、15…光学部材、16…フレーム、17…LED(光源)、18…LED基板(光源基板)、19…拡散レンズ、20…支持部材、21…反射シート、22…導光部材、32…ソルダーレジスト層、32A…白色のソルダーレジスト層,32B…黄変されたソルダーレジスト層 DESCRIPTION OF SYMBOLS 10 ... Liquid crystal display device (display device), 11 ... Liquid crystal panel, 12 ... Backlight device (illumination device), 13 ... Bezel, 14 ... Chassis, 15 ... Optical member, 16 ... Frame, 17 ... LED (light source), 18 DESCRIPTION OF SYMBOLS ... LED board (light source board), 19 ... Diffusing lens, 20 ... Support member, 21 ... Reflective sheet, 22 ... Light guide member, 32 ... Solder resist layer, 32A ... White solder resist layer, 32B ... Yellowed solder Resist layer

Claims (11)

  1.  1ないし複数の光源と、
     前記光源が実装されてなる光源基板と、
     板状部材であって、その板面上に前記光源基板が配されてなるシャーシと、
     前記光源基板上に配される反射層であって、前記シャーシの板面全体で見た場合に、前記シャーシのうち端部側に位置する部分よりも、前記端部側に位置する部分より中央部側に位置する部分において、相対的に黄変度が高く形成されている反射層と、を備える照明装置。
    One or more light sources;
    A light source substrate on which the light source is mounted;
    A chassis in which the light source substrate is disposed on the plate surface, which is a plate-like member;
    A reflection layer disposed on the light source substrate, and when viewed from the entire plate surface of the chassis, is more central than a portion located on the end portion side than a portion located on the end portion side of the chassis. And a reflective layer that is formed with a relatively high degree of yellowing in a portion located on the part side.
  2.  前記反射層は、紫外線が照射されると、黄変度が高くなるソルダーレジスト層からなる請求項1に記載の照明装置。 The illuminating device according to claim 1, wherein the reflective layer is formed of a solder resist layer that increases in yellowing degree when irradiated with ultraviolet rays.
  3.  光を拡散するレンズ部材であって、前記光源基板の前記板面上に配され、前記光源の光出射側を覆うレンズ部材を備え、
     前記反射層は、少なくとも前記レンズ部材と重畳する部分に形成されている請求項1又は請求項2に記載の照明装置。
    A lens member for diffusing light, comprising a lens member disposed on the plate surface of the light source substrate and covering a light emitting side of the light source;
    The lighting device according to claim 1, wherein the reflective layer is formed at least in a portion overlapping with the lens member.
  4.  光を反射させる反射シートであって、前記レンズ部材の外形よりも大きく開口した開口部を有し、前記レンズ部材を前記開口部に挿通させると共に、前記光源基板の前記板面上に配される反射シートを備え、
     前記反射層は、少なくとも前記開口部から露出する部分に形成されている請求項3に記載の照明装置。
    A reflection sheet for reflecting light, having an opening that is opened larger than the outer shape of the lens member, allowing the lens member to pass through the opening and being disposed on the plate surface of the light source substrate. With a reflective sheet,
    The lighting device according to claim 3, wherein the reflective layer is formed at least in a portion exposed from the opening.
  5.  前記反射層を全て黄変されていない白色のソルダーレジスト層に置き換えた場合に、前記光源から出射される面状の光の輝度分布に基づいて、前記反射層における黄変度の分布が定められる請求項1ないし請求項4のいずれか一項に記載の照明装置。 When the reflective layer is entirely replaced with a white solder resist layer that is not yellowed, the distribution of yellowing degree in the reflective layer is determined based on the luminance distribution of planar light emitted from the light source. The illumination device according to any one of claims 1 to 4.
  6.  前記反射層における前記端部側に位置する部分の光反射率と、前記反射層における前記中央部側に位置する部分の光反射率との差が、5%以上である請求項1ないし請求項5のいずれか一項に記載の照明装置。 The difference between the light reflectance of the portion located on the end side of the reflective layer and the light reflectance of the portion located on the center side of the reflective layer is 5% or more. The lighting device according to claim 5.
  7.  前記シャーシは、前記光源からの光を出射させる光出射部を有しており、
     前記光出射部を覆う形で配される光学部材を更に備え、
     前記光学部材は、前記光源からの光を拡散する機能を有する拡散板と、前記拡散板を透過した光を集光する機能と、前記拡散板を透過した光を拡散する機能との少なくとも一方の機能を有する光学シートと、を備える請求項1ないし請求項6のいずれか一項に記載の照明装置。
    The chassis has a light emitting portion that emits light from the light source,
    An optical member disposed so as to cover the light emitting portion;
    The optical member has at least one of a diffusion plate having a function of diffusing light from the light source, a function of collecting light transmitted through the diffusion plate, and a function of diffusing light transmitted through the diffusion plate. An illumination device according to any one of claims 1 to 6, comprising an optical sheet having a function.
  8.  前記光源は、発光ダイオードを含むものからなる請求項1ないし請求項7のいずれか一項に記載の照明装置。 The illumination device according to any one of claims 1 to 7, wherein the light source includes a light emitting diode.
  9.  請求項1ないし請求項8のいずれか一項に記載の照明装置と、前記照明装置からの光を利用して表示を行う表示パネルとを備える表示装置。 A display device comprising: the illumination device according to any one of claims 1 to 8; and a display panel that performs display using light from the illumination device.
  10.  前記表示パネルは、一対の基板間に液晶を封入してなる液晶パネルからなる請求項9に記載の表示装置。 The display device according to claim 9, wherein the display panel is a liquid crystal panel in which liquid crystal is sealed between a pair of substrates.
  11.  請求項9又は請求項10に記載された表示装置を備えるテレビ受信装置。 A television receiver comprising the display device according to claim 9 or 10.
PCT/JP2012/071407 2011-08-31 2012-08-24 Illumination device, display device, and television reception device WO2013031674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-188754 2011-08-31
JP2011188754 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013031674A1 true WO2013031674A1 (en) 2013-03-07

Family

ID=47756164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071407 WO2013031674A1 (en) 2011-08-31 2012-08-24 Illumination device, display device, and television reception device

Country Status (1)

Country Link
WO (1) WO2013031674A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196572A1 (en) * 2019-03-27 2020-10-01 株式会社エンプラス Planar light source device, and display device
CN112631026A (en) * 2020-12-31 2021-04-09 联晶智能电子有限公司 Backlight lens and module
JP2022000857A (en) * 2015-06-26 2022-01-04 ソニーグループ株式会社 Light-emitting device, display device, and lighting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015646A1 (en) * 2003-08-07 2005-02-17 Matsushita Electric Industrial Co., Ltd. Led illumination light source
JP2011165434A (en) * 2010-02-08 2011-08-25 Panasonic Corp Light source, backlight unit, and liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015646A1 (en) * 2003-08-07 2005-02-17 Matsushita Electric Industrial Co., Ltd. Led illumination light source
JP2011165434A (en) * 2010-02-08 2011-08-25 Panasonic Corp Light source, backlight unit, and liquid crystal display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022000857A (en) * 2015-06-26 2022-01-04 ソニーグループ株式会社 Light-emitting device, display device, and lighting device
JP7166413B2 (en) 2015-06-26 2022-11-07 ソニーグループ株式会社 Light-emitting device, display device and lighting device
US11846847B2 (en) 2015-06-26 2023-12-19 Saturn Licensing Llc Light-emitting device, display apparatus, and lighting apparatus
WO2020196572A1 (en) * 2019-03-27 2020-10-01 株式会社エンプラス Planar light source device, and display device
CN112631026A (en) * 2020-12-31 2021-04-09 联晶智能电子有限公司 Backlight lens and module
CN112631026B (en) * 2020-12-31 2024-05-10 联晶智能电子有限公司 Backlight lens and module

Similar Documents

Publication Publication Date Title
JP5292476B2 (en) Lighting device, display device, and television receiver
US8894237B2 (en) Lighting device, display device and television receiver
JP5337883B2 (en) Lighting device, display device, and television receiver
JP5133459B2 (en) Lighting device, display device, and television receiver
US20130148036A1 (en) Lighting device, display device and television device
WO2010146920A1 (en) Illumination device, display device, and television receiver
JP2013143217A (en) Lighting device, display device and television receiver
JP5138813B2 (en) Lighting device, display device, and television receiver
US9528690B2 (en) Lighting device, display device and television device
US20130002987A1 (en) Edge light type planar light source device and liquid crystal display device
JP5662952B2 (en) Lighting device, display device, and television receiver
US8801257B2 (en) Edge light type planar light source device and liquid crystal display device
US9116385B2 (en) Light source unit base material, lighting device, display device and television receiver
US8657458B2 (en) Lighting device, display device and television receiver
WO2013051437A1 (en) Lighting device, display device and television receiving device
WO2013024714A1 (en) Illumination device, display device, and television reception device
JP2013157173A (en) Lighting device and display device
WO2013031674A1 (en) Illumination device, display device, and television reception device
WO2013021933A1 (en) Lighting device, display device, and television receiver
US20130135536A1 (en) Illuminating device, display device and television receiving device
JP2013143220A (en) Lighting system, display device, and television receiver
KR102129437B1 (en) backlight unit and liquid crystal display module including the same
WO2011105147A1 (en) Lighting device, display device, and television receiver
JP5509325B2 (en) Manufacturing method of optical member
WO2013047374A1 (en) Lighting device, display device and television receiver device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP