WO2013031321A1 - Temperature control device and temperature control method - Google Patents

Temperature control device and temperature control method Download PDF

Info

Publication number
WO2013031321A1
WO2013031321A1 PCT/JP2012/064109 JP2012064109W WO2013031321A1 WO 2013031321 A1 WO2013031321 A1 WO 2013031321A1 JP 2012064109 W JP2012064109 W JP 2012064109W WO 2013031321 A1 WO2013031321 A1 WO 2013031321A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
current
battery pack
unit
thermoelectric element
Prior art date
Application number
PCT/JP2012/064109
Other languages
French (fr)
Japanese (ja)
Inventor
宗隆 山本
守 倉石
正彰 鈴木
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013031321A1 publication Critical patent/WO2013031321A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a temperature control device and a temperature control method using a thermoelectric element.
  • a battery pack configured of one or more secondary batteries mounted in an electric vehicle, a plug-in hybrid vehicle or the like.
  • the battery pack is deteriorated when used at high temperature, and the output is reduced when used at low temperature. Therefore, during use of the battery pack, it is desirable to maintain the temperature of the battery pack at a temperature at which the influence of the deterioration at a high temperature or the reduction of the output at a low temperature can be ignored.
  • thermoelectric element by cooling and heating the battery pack with a thermoelectric element, control is performed to maintain the temperature of the battery pack at a temperature at which the influence of the deterioration at a high temperature or the output decrease at a low temperature can be ignored.
  • FIG. 13 is a graph showing temperature control of the conventional battery pack.
  • the target temperature is a temperature at which the influence of the deterioration at a high temperature or the output decrease at a low temperature can be ignored.
  • the cooling threshold is a threshold temperature at which the battery pack starts to be cooled.
  • the heating threshold is a threshold temperature at which the battery pack starts to be heated.
  • the vertical axis represents the temperature of the battery pack, and the horizontal axis represents the elapsed time.
  • the temperature of the battery pack is measured by a thermistor or the like. Then, when the measured temperature becomes higher than the cooling threshold, the battery pack is cooled by the thermoelectric element. Conversely, when the measured temperature is lower than the heating threshold, the thermoelectric element heats the battery pack. By this control, the temperature of the battery pack is kept near the target temperature.
  • the temperature accuracy the temperature accuracy is higher as the temperature of the battery pack is kept near the target temperature
  • JP 2008-41614 A JP, 2009-43080, A Japanese Patent Laid-Open No. 2000-220932 JP 2004-47133 A JP, 2010-226894, A
  • An object of the present invention is to provide a temperature control device and a temperature control method capable of performing temperature control of a battery pack with high accuracy.
  • thermoelectric element for heating or cooling the battery according to the supplied current
  • Temperature measurement means for measuring
  • current supply means for supplying current to the thermoelectric element, and when the temperature of the battery is higher than the target temperature, current for cooling the battery is supplied to the thermoelectric element
  • control means for controlling the operation of the current supply means to supply a current for heating the battery to the thermoelectric element when the temperature of the battery is lower than the target temperature.
  • the difference between the temperature of the battery pack and the target temperature can be kept within a narrow range.
  • FIG. 1 is a block diagram showing a configuration of a temperature control device of Embodiment 1.
  • FIG. 2 is a diagram showing a configuration of a control unit of the first embodiment.
  • 5 is a flowchart of temperature control of the first embodiment.
  • 5 is a flowchart of first current value calculation according to the first embodiment. It is a figure which shows the required heat amount map of Embodiment 1, an endothermic amount map, and a calorific value map.
  • 7 is a flowchart of second current value calculation according to the first embodiment.
  • 5 is a graph showing temperature control of the battery pack of Embodiment 1.
  • FIG. FIG. 7 is a block diagram showing a configuration of a control unit of Embodiment 2.
  • 7 is a flowchart of temperature control of the second embodiment.
  • Embodiment 1 Hereinafter, the temperature control device 10 of Embodiment 1 of the invention will be described.
  • FIG. 1 is a diagram showing the configuration of the temperature control device 10 of the first embodiment.
  • the temperature control device 10 is a control device for controlling the temperature of the battery pack 11 to be close to the target temperature, and the battery pack 11 (battery), the thermoelectric element 12, the temperature measuring unit 13 (temperature measuring means), the current supply unit 14 (Current supply means), and a control unit 20 (control means).
  • the battery pack 11 is configured of, for example, one or more secondary batteries. Further, the battery pack 11 may be provided with a heat sink, or may be provided with an axial fan for heat dissipation of the heat sink.
  • the thermoelectric element 12 includes, for example, one or more Peltier elements, and is used as a heat source for cooling and heating the battery pack 11. Then, depending on the direction of current flow, heat is generated at one of the bonding portions and heat is absorbed at the other bonding portion. In addition, when the current flow direction is reversed, heat is absorbed at one of the junctions and heat is generated at the other junction. Thus, the thermoelectric element 12 generates a heat amount (heat absorption amount) for cooling the battery pack 11 and a heat amount (heat generation amount) for heating the battery pack 11.
  • thermoelectric elements 12 are installed so as to sandwich the battery pack 11 in pairs.
  • the thermoelectric element 12 is not particularly limited to the Peltier element, and may be any element that generates heat for cooling and heating the battery pack 11.
  • the installation position of the thermoelectric element 12 is not particularly limited, and it may be installed so that the battery pack 11 can be heated and cooled. In the following description, when the heat amount is described, the heat absorption amount and the heat generation amount are included.
  • the temperature measurement unit 13 is formed of, for example, a temperature sensor using a thermistor or the like, and outputs a temperature obtained by measuring the temperature of the battery pack 11 (hereinafter referred to as a measurement temperature) to the control unit 20.
  • the temperature measuring unit 13 is not particularly limited to a thermistor, and may be a temperature sensor that can measure the temperature of the battery pack 11.
  • the current supply unit 14 is configured of, for example, a DC-DC converter or the like.
  • the output voltage is variably controlled by a PWM (Pulse Width Modulation) signal input from the control unit 20. Then, a current corresponding to the controlled voltage is supplied to the thermoelectric element 12.
  • PWM Pulse Width Modulation
  • a current direction switching circuit (not shown) switches the direction of the current supplied to the thermoelectric element 12 based on a direction switching signal which is a control signal for switching the direction of the current output from the control unit 20. including.
  • an external power source (not shown) may be used, or the battery pack 11 may be used.
  • the current supply unit 14 is not particularly limited to a DC-DC converter, and may be configured to vary the magnitude of the current supplied to the thermoelectric element 12 based on the control signal input from the control unit 20. Just do it.
  • the control unit 20 includes, for example, a computer (not shown) that performs arithmetic processing, such as an electronic control unit (ECU), and controls the direction of current flow and the current value supplied to the thermoelectric element 12 by the current supply unit 14. And control signals to be output.
  • a computer not shown
  • ECU electronice control unit
  • the control unit 20 is also triggered by a request for starting temperature control input by the user using an input device (not shown), an engine start of an electric vehicle or a plug-in hybrid vehicle equipped with the battery pack 11, etc.
  • an input device not shown
  • temperature control of the battery pack 11 is started.
  • a signal input to the control unit 20 at this time is referred to as a control start signal.
  • control unit 20 is created using a request for temperature control termination input by the user using an input device (not shown), an engine stop of an electric car or a plug-in hybrid car equipped with the battery pack 11, etc.
  • an input device not shown
  • the temperature control of the battery pack 11 is stopped.
  • a signal input to the control unit 20 at this time is referred to as a control end signal.
  • control unit 20 measures time by a clocking means (not shown) that counts a clock of a computer or the like.
  • the clocking means is not particularly limited to the configuration for counting clocks of a computer or the like, and any other configuration may be used as long as clocking can be performed.
  • time counting means may be provided separately.
  • the control unit 20 is not particularly limited to the ECU, and may be a computer capable of arithmetic processing. Further, the start of the temperature control is not limited to the configuration listed above as a trigger, and may be set so as to appropriately start the temperature control in a scene where the temperature control of the battery pack 11 is necessary. Further, the end of the temperature control is not limited to the configuration listed above as a trigger, and may be set so as to end the temperature control as appropriate when the temperature control of the battery pack 11 is unnecessary.
  • the fan 30 is, for example, an axial flow fan and is installed at the position shown in FIG. 1 and sends heat in the direction of the air flow 31 to dissipate the heat of the thermoelectric element 12.
  • the air volume of the air blower 31 may be constant or may be controlled by a control signal from the control unit 20.
  • the fan 30 is not particularly limited to the axial flow fan, and may be any fan that can dissipate heat of the thermoelectric element 12. Further, in the case where the installation position of the thermoelectric element 12 with respect to the battery pack 11 is different, the fan 30 may be appropriately installed at an optimum position where heat release of the thermoelectric element 12 can be performed.
  • FIG. 2 is a diagram showing the configuration of the control unit of the first embodiment.
  • the control unit 20 includes a storage unit 21, a determination unit 22, a calculation unit 23, and a control signal generation unit 24.
  • the storage unit 21 is composed of, for example, a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, a DVD, etc., and the computer reads and writes the storage. Then, in order to set the battery pack 11 to the target temperature according to the temperature difference, the target temperature in advance, the control time until the thermoelectric element 12 reaches the target temperature, and the temperature difference obtained by subtracting the target temperature from the measured temperature.
  • a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, a DVD, etc.
  • a required heat amount map showing a correspondence relationship with a required heat amount (hereinafter referred to as a required heat amount), a heat absorption showing a correspondence relationship between a value of current supplied to the thermoelectric element 12 and a heat absorption amount per unit time of the thermoelectric element 12
  • a calorific value map is stored, and a calorific value map is stored that indicates the correspondence between the value of the current supplied to the thermoelectric element 12 and the calorific value per unit time of the thermoelectric element 12.
  • the time limit is, for example, a time that the user has determined in advance by experiment, for example, when the temperature of the battery pack 11 becomes high or low and the influence of the deterioration at high temperature or the reduction of output at low temperature is acceptable. It is. Therefore, the time limit may be set appropriately according to the characteristics of the secondary battery used for the battery pack 11.
  • the determination unit 22 is configured as, for example, a part of a computer, and acquires the measured temperature from the temperature measurement unit 13. Then, it is determined whether the acquired measured temperature is higher or lower than the target temperature stored in the storage unit 21. Also, if the measured temperature is higher than the target temperature, a high temperature determination signal including the measured temperature is created, and if the measured temperature is lower than the target temperature, a low temperature determination signal including the measured temperature is created, and the calculation unit Output to 23. In addition, acquisition of measurement temperature may be always acquired, and may be acquired for every control time.
  • the determination unit 22 is not particularly limited to a part of the computer, and may be separately provided as long as the temperature of the battery pack 11 can be compared with the target temperature.
  • the calculation unit 23 is configured as a part of a computer, and when the battery pack 11 is cooled, the first current value, which is the value of the current supplied from the current supply unit 14 to the thermoelectric element 12, When heating, the second current value that is the value of the current supplied from the current supply unit 14 to the thermoelectric element 12 is calculated. Then, the calculated first current value or the second current value is output to the control signal generation unit 24.
  • the calculating unit 23 is not particularly limited to a part of a computer, and may be an arithmetic unit capable of calculating the magnitude of the current supplied to the battery pack 11.
  • the control signal generation unit 24 is configured as, for example, a part of a computer, and a current of a first current value (hereinafter referred to as a first current) or a current of a second current value input from the calculation unit 23.
  • a control signal for causing the current supply unit 14 to output a second current is created.
  • the generated control signal is output to the current supply unit 14.
  • the control signal generation unit 24 sets the PWM signal as a control signal (corresponding to a first control signal and a second control signal described later). It is created and output to the current supply unit 14.
  • the duty ratio of the PWM signal is determined based on the current value calculated by the calculation unit 23.
  • the control signal generation unit 24 determines the direction of the current supplied from the current supply unit 14 to the thermoelectric element 12 based on the current value, and the current A direction switching signal is generated which indicates the current direction to the direction switching circuit. Then, the direction switching signal is output to the current direction switching circuit.
  • the current direction switching circuit may switch the direction of the current supplied to the thermoelectric element 12 by switching the switch based on a direction switching signal using, for example, the configuration of a known inverter circuit.
  • the configuration may be any configuration as long as the direction of the current supplied to the thermoelectric element 12 can be switched based on the direction switching signal.
  • the control signal generation unit 24 is not particularly limited to a part of the computer, and generation and output of control signals and direction switching signals indicating the value and direction of the current supplied by the current supply unit 14 to the battery pack 11 Any configuration that can
  • FIG. 3 is a flowchart of temperature control of the first embodiment.
  • control unit 20 When the control start signal is input to the control unit 20, the control unit 20 outputs a temperature control start signal for starting measurement of the temperature of the battery pack 11 to the temperature measurement unit 13. Then, when the control start signal is input, the temperature measurement unit 13 starts temperature measurement of the battery pack 11 (S301).
  • the temperature measurement unit 13 outputs a measurement temperature signal for notifying the determination unit 22 of the measured temperature at which the temperature of the battery pack 11 has been measured.
  • the determination unit 22 acquires the measured temperature of the battery pack 11, and acquires the target temperature from the storage unit 21 (S302).
  • the determination unit 22 compares and determines whether the measured temperature is higher than the target temperature (S303). If it is determined that the measured temperature is higher than the target temperature, the high temperature determination signal which is the determination result is output to the calculation unit 23, and the process proceeds to S304.
  • the calculation unit 23 calculates a first current value and outputs the first current value to the control signal generation unit 24 (S304). The method of calculating the first current value will be described later.
  • control signal creation unit 24 creates a first control signal based on the first current value (S305).
  • control signal generation unit 24 supplies the current in the direction to cool the battery pack 11 so that the current supply unit 14 supplies the thermoelectric element 12 with the current direction switching circuit.
  • a first direction switching signal for controlling switch switching is created (S306).
  • control signal generation unit 24 outputs the first control signal to the current supply unit 14 to the current supply unit 14, and outputs the first direction switching signal to the current direction switching circuit (S307).
  • the elapsed time is clocked by the clocking means, triggered by the output of the first control signal. Then, the control signal generation unit 24 acquires the time limit stored in the storage unit 21 and monitors the clocking of the clock means, so that the current supply unit 14 transmits the first voltage to the thermoelectric element 12 during the time limit. Current is supplied (S308).
  • the control unit 20 checks whether or not the control end signal is input after S301, and if there is no input of the control end signal, the process returns to S301. If the control end signal is input after S301, the temperature control is ended (S309).
  • the determination unit 22 further determines whether the measured temperature is lower than the target temperature (S310). When it is determined that the measured temperature is lower than the target temperature, the low temperature determination signal, which is the determination result, is output to the calculation unit 23, and the process proceeds to S311.
  • the calculation unit 23 calculates a second current value and outputs the second current value to the control signal generation unit 24 (S311). The method of calculating the second current value will be described later.
  • control signal creation unit 24 creates a second control signal based on the second current value (S312).
  • control signal generation unit 24 supplies the current in the direction to overheat the battery pack 11 so that the current supply unit 14 supplies the thermoelectric element 12 with the current direction switching circuit.
  • a second direction switching signal for controlling switch switching is created (S313). Then, the process proceeds to step S307.
  • FIG. 4 is a flowchart of first current value calculation of the first embodiment.
  • the high temperature determination signal is input from the determination unit 22 to the calculation unit 23 (S401).
  • the calculation unit 23 acquires the measured temperature from the high temperature determination signal (S402).
  • the calculation unit 23 acquires the target temperature from the storage unit 21 (S403).
  • the calculation unit 23 subtracts the target temperature from the measured temperature to calculate a temperature difference (S404).
  • the calculation unit 23 acquires the required heat amount corresponding to the temperature difference from the required heat amount map 100 shown in FIG. 5 stored in the storage unit 21 (S405).
  • the minus sign attached to the required heat amount of the required heat amount map 100 of FIG. 5 indicates that it is the heat absorption amount.
  • the plus sign attached to the required heat amount indicates that it is a calorific value.
  • the required heat amount map 100 shown in FIG. 5 is an example, and a wider and detailed map may be used.
  • the heat capacity of the battery pack 11 may be stored in the storage unit 21 and the required heat may be acquired by multiplying the temperature difference by the heat capacity.
  • the calculation unit 23 acquires the time limit from the storage unit 21 (S406).
  • the calculation unit 23 calculates the heat absorption amount per unit time necessary to bring the battery pack 11 to the target temperature within the time limit by dividing the required heat amount by the time limit (S407).
  • the heat absorption amount per unit time is referred to as a first unit heat amount.
  • the calculation unit 23 acquires a first current value corresponding to the first unit heat quantity from the heat absorption amount map 200 shown in FIG. 5 stored in the storage unit 21 (S408). Note that the values of the heat absorption amount map 200 shown in FIG. 5 are an example, and a wider and detailed map may be used.
  • FIG. 6 is a flowchart of second current value calculation of the first embodiment.
  • the low temperature determination signal is input from the determination unit 22 to the calculation unit 23 (S601).
  • the calculation unit 23 acquires the measured temperature from the low temperature determination signal (S602).
  • the calculation unit 23 acquires the target temperature from the storage unit 21 (S603).
  • the calculation unit 23 subtracts the target temperature from the measured temperature to calculate a temperature difference (S604).
  • the calculation unit 23 acquires the required heat amount corresponding to the temperature difference from the required heat amount map 100 shown in FIG. 5 stored in the storage unit 21 (S605).
  • the heat capacity of the battery pack 11 may be stored in the storage unit 21 and the required heat may be acquired by multiplying the temperature difference by the heat capacity.
  • the calculation unit 23 acquires the time limit from the storage unit 21 (S606).
  • the calculation unit 23 calculates the calorific value per unit time necessary to bring the battery pack 11 to the target temperature within the time limit by dividing the required heat amount by the time limit (S607).
  • the calorific value per unit time is referred to as a second unit heat quantity.
  • the calculation unit 23 obtains a second current value corresponding to the second unit heat quantity from the heat generation amount map 200 shown in FIG. 5 stored in the storage unit 21 (S608).
  • the values of the calorific value map 300 shown in FIG. 5 are merely an example, and a wider and detailed map may be used.
  • the control signal is calculated on the assumption that all the heat generated by the thermoelectric element 12 is transmitted to the battery pack 11 for the sake of simplicity. However, not all heat is transmitted in practice. In addition, the amount of heat transferred to the battery pack 11 is affected by the air volume of the fan 30, the arrangement of the battery pack 11 and the thermoelectric element 12, the outside temperature, and the like. Therefore, when actually using the temperature control device 10, it is preferable to consider the efficiency of transferring the heat generated by the thermoelectric element 12 to the battery pack 11.
  • the current value supplied to the thermoelectric element 12 is changed based on the temperature difference from the target temperature, and temperature control is performed to set the temperature of the battery pack 11 to the target temperature within the time limit. There is. And while performing temperature control, in order to make the temperature of the battery pack 11 approach a target temperature, the thermoelement 12 is always driven. Thereby, as shown in FIG. 7, the difference between the temperature of the battery pack 11 in use and the target temperature is compared with the conventional temperature control in which the thermoelectric element 12 is driven intermittently by providing a threshold other than the target temperature. Within a narrow range.
  • the configuration of the second embodiment is the same as the configuration of the first embodiment except for the configuration of the control unit 20. Therefore, only a part where the operation or the content is different will be described.
  • FIG. 8 is a diagram showing the configuration of the control unit of the second embodiment.
  • the same reference numerals are given to components overlapping with those in FIG. 2.
  • the control unit 20 differs from the configuration of the control unit 20 of the first embodiment in that the calculation unit 23 and the clocking means are omitted.
  • the storage unit 21 stores in advance the target temperature, the third current value, and the fourth current value.
  • the third current value is a fixed value, and is a current value of a third current supplied to the thermoelectric element 12 to cool the battery pack 11.
  • the fourth current value is a fixed value, and is a current value of a fourth current supplied to the thermoelectric element 12 to heat the battery pack 11. Further, the third current value and the fourth current value may be set to values appropriately selected by the user according to the use environment of the battery pack 11. For example, it is preferable to select a current value that maximizes the coefficient of performance (COP).
  • COP coefficient of performance
  • a current value that can set the battery pack 11 at the target temperature is determined through experiments. Set it.
  • the required heat amount map 100, the heat absorption amount map 200, and the calorific value map 300 may not be stored. Also, the time limit may not be stored.
  • the determination unit 22 always obtains the measured temperature from the temperature measurement unit 13. Then, it is always determined whether the temperature is higher or lower than the target temperature stored in the storage unit 21. Then, based on the determination result, the high temperature determination signal or the low temperature determination signal is always output to the control signal generation unit 24.
  • the input of the measured temperature to the determination unit 22 and the output of the temperature determination signal may be performed at an appropriately determined cycle using a clock of a computer such as an ECU.
  • the control signal generation unit 24 acquires a third current value from the storage unit 21 and generates a third control signal based on the third current value. create.
  • the fourth current value is acquired from the storage unit 21, and a fourth control signal based on the fourth current value is created. Then, the generated third control signal or fourth control signal is output to the current supply unit 14.
  • the third control signal or the fourth control signal is generated as a PWM signal by the control signal generation unit 24 when the current supply unit 14 is a DC-DC converter, for example.
  • the duty ratio of the PWM signal may be stored in advance in the storage unit 21 for each of the third current value and the fourth current value. Alternatively, the current value of the current supplied by the current supply unit 14 may be calculated each time the third current value and the fourth current value are switched.
  • FIG. 9 is a flowchart of temperature control of the second embodiment.
  • the same reference numerals are attached to the same operation flow as that of FIG. 3 which is the flowchart of the temperature control of the first embodiment. In the following description, only an operation flow different from that of FIG. 3 will be described. The other operation flow is the same as that of the first embodiment.
  • S308 waiting for the time limit is omitted.
  • control signal generation unit 24 acquires a third current value from the storage unit 21 (S901).
  • control signal creation unit 24 creates a third control signal based on the third current value (S902).
  • control signal creation unit 24 creates a first direction switching signal (S903).
  • control signal generation unit 24 acquires a fourth current value from the storage unit 21 (S904).
  • control signal creation unit 24 creates a fourth control signal based on the fourth current value (S905).
  • control signal creation unit 24 creates a second direction switching signal (S906).
  • the current supplied to the battery pack 11 is switched between the third current value and the fourth current value depending on whether the measured temperature is always higher than the target temperature. Therefore, the difference between the temperature of the battery pack 11 in use and the target temperature can be kept within a narrow range.
  • the current value supplied to the thermoelectric element 12 may be switched according to the temperature difference between the target temperature and the measured temperature. In that case, for example, the larger the temperature difference between the target temperature and the measured temperature, the larger the current flowing through the thermoelectric element 12. Further, as the temperature difference between the target temperature and the measured temperature is smaller, a smaller current is set to flow through the thermoelectric element 12. Further, based on the magnitude relationship between the target temperature and the measured temperature, a first direction switching signal is created when measured temperature> target temperature, and a second direction switching signal is created when measured temperature ⁇ target temperature.
  • thermoelectric element 12 is driven with a large current value to set the temperature of the battery pack 11 to the target temperature in a short time. It can be approached. As a result, it is possible to reduce the effects of deterioration of the battery pack 11 at high temperatures and output reduction at low temperatures.
  • the thermoelectric element 12 can be driven with a small current value, and the temperature of the battery pack 11 can be brought close to the target temperature by a gradual temperature change. As a result, it is possible to prevent the battery pack 11 from being cooled excessively and to be heated excessively.
  • the configuration of the third embodiment is a combination of the first embodiment and the second embodiment.
  • a point added to the configurations of the first embodiment and the second embodiment is that the storage unit 21 further stores the predetermined temperature difference ⁇ and the predetermined temperature difference ⁇ .
  • FIG. 11 is a flowchart of temperature control of the third embodiment.
  • the same reference numeral is attached to the same operation flow as that of FIG. 9 which is the flowchart of the temperature control of the second embodiment. Only the operation flow different from that of FIG. 9 will be described below.
  • the determination unit 22 compares and determines whether the measured temperature is higher than the target temperature + ⁇ (S1201). If it is determined that the measured temperature is higher than the target temperature + ⁇ , a high temperature determination signal that is the determination result is output to the control signal generation unit 24, and the process proceeds to S901.
  • the determination unit 22 When it is determined in S1201 that the measured temperature is not higher than the target temperature + ⁇ , the determination unit 22 further compares and determines whether the measured temperature is lower than the target temperature - ⁇ . If it is determined that the measured temperature is lower than the target temperature - ⁇ , the control signal generation unit 24 outputs a low temperature determination signal as the determination result, and the process proceeds to S904.
  • the third current value is set to a current value at which the first unit heat quantity of the thermoelectric element 12 is maximized, that is, a current value at which the maximum output of the thermoelectric element 12 is obtained.
  • the fourth current value is set to a current value at which the second unit heat quantity of the thermoelectric element 12 is maximized, that is, a current value at which the maximum output of the thermoelectric element 12 is obtained.
  • the target temperature + ⁇ is set to a temperature at which the influence of deterioration of the battery pack 11 at high temperature increases, and the target temperature ⁇ is set to a temperature at which the influence of output decrease at low temperature of the battery pack 11 increases.
  • the temperature of the battery pack 11 can approach the target temperature in a short time as much as possible. Further, in the temperature range of target temperature + ⁇ ⁇ measurement temperature ⁇ target temperature ⁇ , the necessary heat quantity can be controlled to be generated in the thermoelectric element 12 by the control of the first embodiment.
  • the control is performed based on the temperature difference between the target temperature and the measured temperature, and the thermoelectric element 12 is always driven to keep the deviation between the battery pack temperature and the target temperature within a narrow range. It is possible to provide a temperature control device that can

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Control Of Temperature (AREA)

Abstract

In the present invention, the temperature of a battery pack (11) is measured and consistently supplied to a control unit (20) by a temperature measuring unit (13). The control unit (20) compares the temperature of the battery pack (11) inputted from the temperature measuring unit (13) with a pre-set target temperature. If the temperature of the battery pack (11) is higher than the target temperature, the control unit (20) controls a current supplying unit (14) so that a current for cooling the battery pack (11) is supplied to a thermoelectric element (12). Moreover, if the temperature of the battery pack (11) is lower than the target temperature, the control unit (20) controls the current supplying unit (14) so that a current for heating the battery pack (11) is supplied to the thermoelectric element (12).

Description

温度制御装置及び温度制御方法Temperature control device and temperature control method
 本発明は熱電素子を用いた温度制御装置及び温度制御方法に関するものである。 The present invention relates to a temperature control device and a temperature control method using a thermoelectric element.
 電気自動車やプラグインハイブリッド車等に搭載される単数又は複数の二次電池で構成されている電池パックがある。 There is a battery pack configured of one or more secondary batteries mounted in an electric vehicle, a plug-in hybrid vehicle or the like.
 電池パックは、高温で使用すると劣化し、低温で使用すると出力が低下するという問題がある。したがって、電池パックの使用中は、高温での劣化や低温での出力低下の影響が無視できる温度に、電池パックの温度を保つことが望ましい。 The battery pack is deteriorated when used at high temperature, and the output is reduced when used at low temperature. Therefore, during use of the battery pack, it is desirable to maintain the temperature of the battery pack at a temperature at which the influence of the deterioration at a high temperature or the reduction of the output at a low temperature can be ignored.
 そのために、従来から熱電素子により電池パックを冷却及び加熱することにより、高温での劣化や低温での出力低下の影響が無視できる温度に、電池パックの温度を保つ制御が行なわれている。 Therefore, conventionally, by cooling and heating the battery pack with a thermoelectric element, control is performed to maintain the temperature of the battery pack at a temperature at which the influence of the deterioration at a high temperature or the output decrease at a low temperature can be ignored.
 図13は、従来の電池パックの温度制御を示すグラフである。図13において、目標温度は高温での劣化や低温での出力低下の影響が無視できる温度である。また、冷却閾値は電池パックを冷却し始める閾値温度である。さらに、加熱閾値は電池パックを加熱し始める閾値温度である。そして、縦軸は電池パックの温度、横軸は経過時間を示している。 FIG. 13 is a graph showing temperature control of the conventional battery pack. In FIG. 13, the target temperature is a temperature at which the influence of the deterioration at a high temperature or the output decrease at a low temperature can be ignored. Further, the cooling threshold is a threshold temperature at which the battery pack starts to be cooled. Furthermore, the heating threshold is a threshold temperature at which the battery pack starts to be heated. The vertical axis represents the temperature of the battery pack, and the horizontal axis represents the elapsed time.
 図13に示す制御では、まず、サーミスタ等で電池パックの温度を計測する。そして、計測温度が冷却閾値よりも高い温度になった場合には、熱電素子で電池パックを冷却する。逆に、計測温度が加熱閾値よりも低い温度になった場合には、熱電素子で電池パックを加熱する。この制御により、電池パックの温度を目標温度付近に保つようにしている。しかし、従来の電池パックの温度制御では、冷却閾値と加熱閾値に基づいた制御をしているため、それらの閾値の範囲によって、電池パックの温度が目標温度から離れてしまう。このため、温度精度(電池パックの温度が目標温度付近に保たれているほど温度精度は高い。)が悪くなるという問題があった。 In the control shown in FIG. 13, first, the temperature of the battery pack is measured by a thermistor or the like. Then, when the measured temperature becomes higher than the cooling threshold, the battery pack is cooled by the thermoelectric element. Conversely, when the measured temperature is lower than the heating threshold, the thermoelectric element heats the battery pack. By this control, the temperature of the battery pack is kept near the target temperature. However, in the conventional temperature control of the battery pack, since the control is performed based on the cooling threshold and the heating threshold, the temperature of the battery pack deviates from the target temperature depending on the range of the threshold. Therefore, there has been a problem that the temperature accuracy (the temperature accuracy is higher as the temperature of the battery pack is kept near the target temperature) becomes worse.
特開2008-41614号公報JP 2008-41614 A 特開2009-43080号公報JP, 2009-43080, A 特開2000-220932号公報Japanese Patent Laid-Open No. 2000-220932 特開2004-47133号公報JP 2004-47133 A 特開2010-226894号公報JP, 2010-226894, A
 本発明は、本発明は、電池パックの温度制御を精度良く行なうことができる温度制御装置及び温度制御方法を提供することを目的とする。 An object of the present invention is to provide a temperature control device and a temperature control method capable of performing temperature control of a battery pack with high accuracy.
 上述した課題を解決し、目的を達成するため、電池の温度を目標温度にする温度制御装置において、供給される電流に応じて、前記電池を加熱または冷却する熱電素子と、前記電池の温度を計測する温度計測手段と、前記熱電素子に電流を供給する電流供給手段と、前記電池の温度が前記目標温度よりも高い場合には、前記熱電素子に前記電池を冷却するための電流を供給し、前記電池の温度が前記目標温度よりも低い場合には、前記熱電素子に前記電池を加熱するための電流を供給するように前記電流供給手段の動作を制御する制御手段と、を備えることを特徴とする。 In order to solve the problems described above and achieve the purpose, in a temperature control device for setting the temperature of the battery to a target temperature, a thermoelectric element for heating or cooling the battery according to the supplied current, and the temperature of the battery Temperature measurement means for measuring, current supply means for supplying current to the thermoelectric element, and when the temperature of the battery is higher than the target temperature, current for cooling the battery is supplied to the thermoelectric element Providing control means for controlling the operation of the current supply means to supply a current for heating the battery to the thermoelectric element when the temperature of the battery is lower than the target temperature. It features.
 本発明によれば、常に熱電素子を駆動させながら温度制御することで、電池パックの温度と目標温度との乖離を狭い範囲に収めることができる。 According to the present invention, by always controlling the temperature while driving the thermoelectric element, the difference between the temperature of the battery pack and the target temperature can be kept within a narrow range.
実施形態1の温度制御装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a temperature control device of Embodiment 1. 実施形態1の制御部の構成を示す図である。FIG. 2 is a diagram showing a configuration of a control unit of the first embodiment. 実施形態1の温度制御のフローチャートである。5 is a flowchart of temperature control of the first embodiment. 実施形態1の第1の電流値算出のフローチャートである。5 is a flowchart of first current value calculation according to the first embodiment. 実施形態1の要求熱量マップ、吸熱量マップ及び発熱量マップを示す図である。It is a figure which shows the required heat amount map of Embodiment 1, an endothermic amount map, and a calorific value map. 実施形態1の第2の電流値算出のフローチャートである。7 is a flowchart of second current value calculation according to the first embodiment. 実施形態1の電池パックの温度制御を示すグラフである。5 is a graph showing temperature control of the battery pack of Embodiment 1. FIG. 実施形態2の制御部の構成を示すブロック図である。FIG. 7 is a block diagram showing a configuration of a control unit of Embodiment 2. 実施形態2の温度制御のフローチャートである。7 is a flowchart of temperature control of the second embodiment. 実施形態2の電池パックの温度制御を示すグラフであるIt is a graph which shows the temperature control of the battery pack of Embodiment 2. 実施形態3の温度制御のフローチャートである。7 is a flowchart of temperature control of the third embodiment. 実施形態3の電池パックの温度制御を示すグラフである。It is a graph which shows temperature control of the battery pack of Embodiment 3. FIG. 従来の電池パックの温度制御を示すグラフである。It is a graph which shows the temperature control of the conventional battery pack.
[実施形態1]
 以下、発明の実施形態1の温度制御装置10について説明する。
Embodiment 1
Hereinafter, the temperature control device 10 of Embodiment 1 of the invention will be described.
 まず、温度制御装置10の構成について説明する。
 図1は、実施形態1の温度制御装置10の構成を示した図である。
First, the configuration of the temperature control device 10 will be described.
FIG. 1 is a diagram showing the configuration of the temperature control device 10 of the first embodiment.
 温度制御装置10は、電池パック11の温度を目標温度付近に保つ制御をする制御装置であり、電池パック11(電池)、熱電素子12、温度計測部13(温度計測手段)、電流供給部14(電流供給手段)、制御部20(制御手段)を備えている。 The temperature control device 10 is a control device for controlling the temperature of the battery pack 11 to be close to the target temperature, and the battery pack 11 (battery), the thermoelectric element 12, the temperature measuring unit 13 (temperature measuring means), the current supply unit 14 (Current supply means), and a control unit 20 (control means).
 電池パック11は、例えば、単数又は複数の二次電池で構成される。また、電池パック11は、ヒートシンクが備え付けられていても良いし、そのヒートシンクの放熱のための軸流ファンを備えていても良い。 The battery pack 11 is configured of, for example, one or more secondary batteries. Further, the battery pack 11 may be provided with a heat sink, or may be provided with an axial fan for heat dissipation of the heat sink.
 熱電素子12は、例えば、単数又は複数のペルチェ素子からなり、電池パック11を冷却及び加熱するための熱源として用いられる。そして、電流の通電方向により、一方の接合部で発熱をして他方の接合部で吸熱をする。また、電流の通電方向を逆にすると、一方の接合部で吸熱をして他方の接合部で発熱を行う。これにより、熱電素子12は、電池パック11を冷却するための熱量(吸熱量)、及び電池パック11を加熱するための熱量(発熱量)を発生する。 The thermoelectric element 12 includes, for example, one or more Peltier elements, and is used as a heat source for cooling and heating the battery pack 11. Then, depending on the direction of current flow, heat is generated at one of the bonding portions and heat is absorbed at the other bonding portion. In addition, when the current flow direction is reversed, heat is absorbed at one of the junctions and heat is generated at the other junction. Thus, the thermoelectric element 12 generates a heat amount (heat absorption amount) for cooling the battery pack 11 and a heat amount (heat generation amount) for heating the battery pack 11.
 また、熱電素子12は、2つ一組で電池パック11を挟み込むように設置されている。
 なお、熱電素子12は、ペルチェ素子に特に限定されるものではなく、電池パック11を冷却及び加熱させる熱量を発生する素子であれば良い。また、熱電素子12の設置位置についても特に限定されるものではなく、電池パック11を加熱及び冷却できるように設置すれば良い。以下の説明では、熱量と記載した場合には、吸熱量と発熱量を含めたものとする。
Also, the thermoelectric elements 12 are installed so as to sandwich the battery pack 11 in pairs.
The thermoelectric element 12 is not particularly limited to the Peltier element, and may be any element that generates heat for cooling and heating the battery pack 11. Further, the installation position of the thermoelectric element 12 is not particularly limited, and it may be installed so that the battery pack 11 can be heated and cooled. In the following description, when the heat amount is described, the heat absorption amount and the heat generation amount are included.
 温度計測部13は、例えば、サーミスタ等を用いた温度センサで構成され、電池パック11の温度を計測した温度(以下、計測温度という。)を制御部20に出力する。 The temperature measurement unit 13 is formed of, for example, a temperature sensor using a thermistor or the like, and outputs a temperature obtained by measuring the temperature of the battery pack 11 (hereinafter referred to as a measurement temperature) to the control unit 20.
 なお、温度計測部13は、サーミスタに特に限定されるものではなく、電池パック11の温度を計測できる温度センサであれば良い。 The temperature measuring unit 13 is not particularly limited to a thermistor, and may be a temperature sensor that can measure the temperature of the battery pack 11.
 電流供給部14は、例えば、DC-DCコンバータ等で構成されている。この場合には、制御部20から入力されるPWM(Pulse Width Modulation)信号により出力電圧を可変制御される。そして、制御された電圧に応じた電流を熱電素子12に供給する。 The current supply unit 14 is configured of, for example, a DC-DC converter or the like. In this case, the output voltage is variably controlled by a PWM (Pulse Width Modulation) signal input from the control unit 20. Then, a current corresponding to the controlled voltage is supplied to the thermoelectric element 12.
 さらに、電流供給部14は、制御部20から出力される電流の向きを切替える制御信号である方向切替え信号に基づいて、熱電素子12に供給する電流の方向を切替える電流方向切替え回路(図示なし)を含む。 Furthermore, a current direction switching circuit (not shown) switches the direction of the current supplied to the thermoelectric element 12 based on a direction switching signal which is a control signal for switching the direction of the current output from the control unit 20. including.
 また、電流供給部14を駆動する電源は、図示しない外部電源を用いても良いし、電池パック11を用いても良い。 Further, as a power source for driving the current supply unit 14, an external power source (not shown) may be used, or the battery pack 11 may be used.
 なお、電流供給部14は、DC-DCコンバータに特に限定されるものではなく、制御部20からの入力される制御信号に基づいて熱電素子12に供給する電流の大きさを可変できる構成であれば良い。 The current supply unit 14 is not particularly limited to a DC-DC converter, and may be configured to vary the magnitude of the current supplied to the thermoelectric element 12 based on the control signal input from the control unit 20. Just do it.
 制御部20は、例えば、演算処理をする図示しないECU(Electronic Control Unit)等のコンピュータを備えて構成され、電流供給部14が熱電素子12に供給する電流の通電方向と、電流値とを制御する制御信号とを作成して出力する。 The control unit 20 includes, for example, a computer (not shown) that performs arithmetic processing, such as an electronic control unit (ECU), and controls the direction of current flow and the current value supplied to the thermoelectric element 12 by the current supply unit 14. And control signals to be output.
 また、制御部20は、図示しない入力装置を用いてユーザにより入力される温度制御開始の要求や、電池パック11を搭載している電気自動車やプラグインハイブリッド車のエンジン始動等をトリガとして作成される信号が入力されると、電池パック11の温度制御を開始する。以下、この時に制御部20に入力される信号を、制御開始信号という。 The control unit 20 is also triggered by a request for starting temperature control input by the user using an input device (not shown), an engine start of an electric vehicle or a plug-in hybrid vehicle equipped with the battery pack 11, etc. When the signal is input, temperature control of the battery pack 11 is started. Hereinafter, a signal input to the control unit 20 at this time is referred to as a control start signal.
 さらに、制御部20は、図示しない入力装置を用いてユーザにより入力される温度制御終了の要求や、電池パック11を搭載している電気自動車やプラグインハイブリッド車のエンジン停止等をトリガとして作成される信号が入力されると、電池パック11の温度制御を停止する。以下、この時に制御部20に入力される信号を、制御終了信号という。 Furthermore, the control unit 20 is created using a request for temperature control termination input by the user using an input device (not shown), an engine stop of an electric car or a plug-in hybrid car equipped with the battery pack 11, etc. When the signal is input, the temperature control of the battery pack 11 is stopped. Hereinafter, a signal input to the control unit 20 at this time is referred to as a control end signal.
 また、制御部20は、コンピュータ等のクロックをカウントする図示しない計時手段により、時間を計時する。なお、計時手段は、コンピュータ等のクロックをカウントする構成に特に限定するものではなく、計時が行える構成であれば他の構成を用いても良い。また、時間の計時手段を別に設けていても良い。 Further, the control unit 20 measures time by a clocking means (not shown) that counts a clock of a computer or the like. The clocking means is not particularly limited to the configuration for counting clocks of a computer or the like, and any other configuration may be used as long as clocking can be performed. In addition, time counting means may be provided separately.
 なお、制御部20は、ECUに特に限定されるものではなく、演算処理ができるコンピュータであれば良い。また、温度制御の開始は、上記に列挙した構成のみをトリガとするものではなく、電池パック11の温度制御が必要な場面において適宜温度制御を開始するように設定すれば良い。さらに、温度制御の終了は、上記に列挙した構成のみをトリガとするものではなく、電池パック11の温度制御が不要な場面において適宜温度制御を終了するように設定すれば良い。 The control unit 20 is not particularly limited to the ECU, and may be a computer capable of arithmetic processing. Further, the start of the temperature control is not limited to the configuration listed above as a trigger, and may be set so as to appropriately start the temperature control in a scene where the temperature control of the battery pack 11 is necessary. Further, the end of the temperature control is not limited to the configuration listed above as a trigger, and may be set so as to end the temperature control as appropriate when the temperature control of the battery pack 11 is unnecessary.
 ファン30は、例えば、軸流ファンであり、図1に示す位置に設置され、送風31の向きに風を送ることで熱電素子12の放熱を行なう。そして、送風31の風量は一定でも良いし、制御部20からの制御信号により制御されても良い。なお、ファン30は、軸流ファンに特に限定されるものではなく、熱電素子12の熱量を放熱できるものであれば良い。また、電池パック11に対する熱電素子12の設置位置が異なる場合には、熱電素子12の放熱ができる最適な位置にファン30を適宜設置すれば良い。 The fan 30 is, for example, an axial flow fan and is installed at the position shown in FIG. 1 and sends heat in the direction of the air flow 31 to dissipate the heat of the thermoelectric element 12. The air volume of the air blower 31 may be constant or may be controlled by a control signal from the control unit 20. The fan 30 is not particularly limited to the axial flow fan, and may be any fan that can dissipate heat of the thermoelectric element 12. Further, in the case where the installation position of the thermoelectric element 12 with respect to the battery pack 11 is different, the fan 30 may be appropriately installed at an optimum position where heat release of the thermoelectric element 12 can be performed.
 次に、温度制御装置10の制御部20の構成について説明する。
 図2は、実施形態1の制御部の構成を示す図である。
Next, the configuration of the control unit 20 of the temperature control device 10 will be described.
FIG. 2 is a diagram showing the configuration of the control unit of the first embodiment.
 制御部20は、記憶部21、判定部22、算出部23及び制御信号作成部24を備えている。 The control unit 20 includes a storage unit 21, a determination unit 22, a calculation unit 23, and a control signal generation unit 24.
 記憶部21は、例えば、ハードディスク、フレキシブルディスク、CD-ROM、MO、DVD等のコンピュータで読み取り可能な記録媒体で構成され、コンピュータにより記憶の読み出し書込みが行われる。そして、予め目標温度と、熱電素子12を目標温度にするまでの制御時間と、計測温度から目標温度を減算した温度差と、その温度差に対応して電池パック11を目標温度とするために必要な熱量(以下、要求熱量という。)との対応関係を示す要求熱量マップと、熱電素子12に供給する電流の値と、熱電素子12の単位時間当たりの吸熱量との対応関係を示す吸熱量マップと、熱電素子12に供給する電流の値と、熱電素子12の単位時間当たりの発熱量との対応関係を示す発熱量マップが記憶されている。なお、制限時間は、例えば、電池パック11の温度が高温又は低温となった時に高温での劣化や低温での出力低下の影響が許容範囲ですむ時間等を、ユーザが実験により予め定めた時間である。よって、制限時間は、電池パック11に使用される二次電池の特性により適宜設定すれば良い。 The storage unit 21 is composed of, for example, a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, a DVD, etc., and the computer reads and writes the storage. Then, in order to set the battery pack 11 to the target temperature according to the temperature difference, the target temperature in advance, the control time until the thermoelectric element 12 reaches the target temperature, and the temperature difference obtained by subtracting the target temperature from the measured temperature. A required heat amount map showing a correspondence relationship with a required heat amount (hereinafter referred to as a required heat amount), a heat absorption showing a correspondence relationship between a value of current supplied to the thermoelectric element 12 and a heat absorption amount per unit time of the thermoelectric element 12 A calorific value map is stored, and a calorific value map is stored that indicates the correspondence between the value of the current supplied to the thermoelectric element 12 and the calorific value per unit time of the thermoelectric element 12. The time limit is, for example, a time that the user has determined in advance by experiment, for example, when the temperature of the battery pack 11 becomes high or low and the influence of the deterioration at high temperature or the reduction of output at low temperature is acceptable. It is. Therefore, the time limit may be set appropriately according to the characteristics of the secondary battery used for the battery pack 11.
 判定部22は、例えば、コンピュータの一部として構成され、温度計測部13から計測温度を取得する。そして、記憶部21に記憶されている目標温度よりも、取得した計測温度が高い温度であるか、低い温度であるかを判定する。また、計測温度が目標温度よりも高い場合には、計測温度を含む高温判定信号を作成し、計測温度が目標温度よりも低い場合には、計測温度を含む低温判定信号を作成し、算出部23に出力する。なお、計測温度の取得は、常に取得しても良いし、制御時間おきに取得しても良い。また、判定部22は、コンピュータの一部に特に限定されるものではなく、電池パック11の温度と目標温度との比較ができる構成であれば別に設けても良い。 The determination unit 22 is configured as, for example, a part of a computer, and acquires the measured temperature from the temperature measurement unit 13. Then, it is determined whether the acquired measured temperature is higher or lower than the target temperature stored in the storage unit 21. Also, if the measured temperature is higher than the target temperature, a high temperature determination signal including the measured temperature is created, and if the measured temperature is lower than the target temperature, a low temperature determination signal including the measured temperature is created, and the calculation unit Output to 23. In addition, acquisition of measurement temperature may be always acquired, and may be acquired for every control time. The determination unit 22 is not particularly limited to a part of the computer, and may be separately provided as long as the temperature of the battery pack 11 can be compared with the target temperature.
 算出部23は、例えば、コンピュータの一部として構成され、電池パック11を冷却する際に、電流供給部14から熱電素子12に供給する電流の値である第1の電流値と、電池パック11を加熱する際に、電流供給部14から熱電素子12に供給する電流の値である第2の電流値とを算出する。そして、算出した第1の電流値又は第2の電流値を、制御信号作成部24に出力する。なお、算出部23は、コンピュータの一部に特に限定されるものではなく、電池パック11へ供給する電流の大きさを算出できる演算器であれば良い。 For example, the calculation unit 23 is configured as a part of a computer, and when the battery pack 11 is cooled, the first current value, which is the value of the current supplied from the current supply unit 14 to the thermoelectric element 12, When heating, the second current value that is the value of the current supplied from the current supply unit 14 to the thermoelectric element 12 is calculated. Then, the calculated first current value or the second current value is output to the control signal generation unit 24. The calculating unit 23 is not particularly limited to a part of a computer, and may be an arithmetic unit capable of calculating the magnitude of the current supplied to the battery pack 11.
 制御信号作成部24は、例えば、コンピュータの一部として構成され、算出部23から入力された第1の電流値の電流(以下、第1の電流という。)又は第2の電流値の電流(以下、第2の電流という。)を、電流供給部14に出力させるための制御信号を作成する。さらに、作成した制御信号を電流供給部14に出力する。一例として、電流供給部14がDC-DCコンバータである場合には、制御信号作成部24は、PWM信号を制御信号(後述する第1の制御信号及び第2の制御信号に対応する。)として作成し、電流供給部14に出力する。なお、PWM信号のDuty比は、算出部23で算出された電流値に基づいて決定される。 The control signal generation unit 24 is configured as, for example, a part of a computer, and a current of a first current value (hereinafter referred to as a first current) or a current of a second current value input from the calculation unit 23. Hereinafter, a control signal for causing the current supply unit 14 to output a second current is created. Furthermore, the generated control signal is output to the current supply unit 14. As an example, when the current supply unit 14 is a DC-DC converter, the control signal generation unit 24 sets the PWM signal as a control signal (corresponding to a first control signal and a second control signal described later). It is created and output to the current supply unit 14. The duty ratio of the PWM signal is determined based on the current value calculated by the calculation unit 23.
 また、制御信号作成部24は、算出部23により算出された電流値が入力されると、その電流値に基づいて、電流供給部14から熱電素子12に供給する電流の向きを決定し、電流方向切替え回路に電流方向を指示する方向切替え信号を作成する。そして、方向切替え信号を電流方向切替え回路に出力する。なお、電流方向切替え回路は、例えば、公知のインバータ回路の構成を用いて、そのスイッチを方向切替え信号に基づいて切替えることにより熱電素子12に供給する電流の方向を切替える構成でも良いし、他の構成でも熱電素子12に供給する電流の方向を、方向切替え信号に基づいて切替えることができる構成であれば良い。また、制御信号作成部24は、コンピュータの一部に特に限定されるものではなく、電流供給部14が電池パック11へ供給する電流の値と方向示す、制御信号と方向切替え信号の作成及び出力ができる構成であれば良い。 Further, when the current value calculated by the calculation unit 23 is input, the control signal generation unit 24 determines the direction of the current supplied from the current supply unit 14 to the thermoelectric element 12 based on the current value, and the current A direction switching signal is generated which indicates the current direction to the direction switching circuit. Then, the direction switching signal is output to the current direction switching circuit. The current direction switching circuit may switch the direction of the current supplied to the thermoelectric element 12 by switching the switch based on a direction switching signal using, for example, the configuration of a known inverter circuit. The configuration may be any configuration as long as the direction of the current supplied to the thermoelectric element 12 can be switched based on the direction switching signal. In addition, the control signal generation unit 24 is not particularly limited to a part of the computer, and generation and output of control signals and direction switching signals indicating the value and direction of the current supplied by the current supply unit 14 to the battery pack 11 Any configuration that can
 次に、実施形態1の温度制御装置10の温度制御について説明する。
 図3は、実施形態1の温度制御のフローチャートである。
Next, temperature control of the temperature control device 10 according to the first embodiment will be described.
FIG. 3 is a flowchart of temperature control of the first embodiment.
 まず、制御開始信号が制御部20に入力されると、制御部20は、温度計測部13に電池パック11の温度の計測を開始するための温度制御開始信号を出力する。そして、制御開始信号が入力されると、温度計測部13は電池パック11の温度計測を開始する(S301)。 First, when the control start signal is input to the control unit 20, the control unit 20 outputs a temperature control start signal for starting measurement of the temperature of the battery pack 11 to the temperature measurement unit 13. Then, when the control start signal is input, the temperature measurement unit 13 starts temperature measurement of the battery pack 11 (S301).
 温度計測部13は、電池パック11の温度を計測した計測温度を、判定部22に通知する計測温度信号を出力する。計測温度信号が判定部22に入力されると、判定部22は電池パック11の計測温度を取得し、かつ、記憶部21から目標温度を取得する(S302)。 The temperature measurement unit 13 outputs a measurement temperature signal for notifying the determination unit 22 of the measured temperature at which the temperature of the battery pack 11 has been measured. When the measured temperature signal is input to the determination unit 22, the determination unit 22 acquires the measured temperature of the battery pack 11, and acquires the target temperature from the storage unit 21 (S302).
 そして、判定部22は、計測温度が目標温度よりも高い温度であるか否かを比較判定する(S303)。計測温度が目標温度よりも高い温度であると判定された場合には、算出部23にその判定結果である高温判定信号を出力し、S304に進む。 Then, the determination unit 22 compares and determines whether the measured temperature is higher than the target temperature (S303). If it is determined that the measured temperature is higher than the target temperature, the high temperature determination signal which is the determination result is output to the calculation unit 23, and the process proceeds to S304.
 高温判定信号が算出部23に入力されると、算出部23は第1の電流値を算出して制御信号作成部24に出力する(S304)。なお、第1の電流値の算出方法については後述する。 When the high temperature determination signal is input to the calculation unit 23, the calculation unit 23 calculates a first current value and outputs the first current value to the control signal generation unit 24 (S304). The method of calculating the first current value will be described later.
 そして、制御信号作成部24は、第1の電流値が入力されると第1の電流値に基づいた第1の制御信号を作成する(S305)。 Then, when the first current value is input, the control signal creation unit 24 creates a first control signal based on the first current value (S305).
 さらに、制御信号作成部24は、第1の電流値が入力されると、電池パック11を冷却する方向の電流を、電流供給部14が熱電素子12に供給するように、電流方向切替え回路のスイッチを切替える制御をする第1の方向切り替え信号を作成する(S306)。 Furthermore, when the first current value is input, the control signal generation unit 24 supplies the current in the direction to cool the battery pack 11 so that the current supply unit 14 supplies the thermoelectric element 12 with the current direction switching circuit. A first direction switching signal for controlling switch switching is created (S306).
 そして、制御信号作成部24は、電流供給部14に第1の制御信号を電流供給部14に出力し、かつ、第1の方向切替え信号を電流方向切替え回路に出力する(S307)。 Then, the control signal generation unit 24 outputs the first control signal to the current supply unit 14 to the current supply unit 14, and outputs the first direction switching signal to the current direction switching circuit (S307).
 第1の制御信号を出力したことをトリガとして、計時手段により経過時間を計時する。そして、制御信号作成部24は、記憶部21に記憶されている制限時間を取得し、計時手段の計時を監視することで、その制限時間の間、電流供給部14から熱電素子12に第1の電流を供給させる(S308)。 The elapsed time is clocked by the clocking means, triggered by the output of the first control signal. Then, the control signal generation unit 24 acquires the time limit stored in the storage unit 21 and monitors the clocking of the clock means, so that the current supply unit 14 transmits the first voltage to the thermoelectric element 12 during the time limit. Current is supplied (S308).
 制限時間が経過すると、制御部20は、S301以降に制御終了信号が入力されたか否かを確認し、制御終了信号の入力がなければS301に戻る。S301以降に制御終了信号の入力がされていた場合には、温度制御を終了する(S309)。 When the time limit time has elapsed, the control unit 20 checks whether or not the control end signal is input after S301, and if there is no input of the control end signal, the process returns to S301. If the control end signal is input after S301, the temperature control is ended (S309).
 S303において、計測温度が目標温度よりも高くないと判定した場合には、判定部22は、さらに計測温度が目標温度よりも低い温度であるか否かを比較判定する(S310)。そして、計測温度が目標温度よりも低い温度であると判定された場合には、算出部23にその判定結果である低温判定信号を出力し、S311に進む。 If it is determined in S303 that the measured temperature is not higher than the target temperature, the determination unit 22 further determines whether the measured temperature is lower than the target temperature (S310). When it is determined that the measured temperature is lower than the target temperature, the low temperature determination signal, which is the determination result, is output to the calculation unit 23, and the process proceeds to S311.
 低温判定信号が算出部23に入力されると、算出部23は第2の電流値を算出して、制御信号作成部24に出力する(S311)。なお、第2の電流値の算出方法については後述する。 When the low temperature determination signal is input to the calculation unit 23, the calculation unit 23 calculates a second current value and outputs the second current value to the control signal generation unit 24 (S311). The method of calculating the second current value will be described later.
 そして、制御信号作成部24は、第2の電流値が入力されると第2の電流値に基づいた第2の制御信号を作成する(S312)。 Then, when the second current value is input, the control signal creation unit 24 creates a second control signal based on the second current value (S312).
 さらに、制御信号作成部24は、第2の電流値が入力されると、電池パック11を過熱する方向の電流を、電流供給部14が熱電素子12に供給するように、電流方向切替え回路のスイッチを切替える制御をする第2の方向切り替え信号を作成する(S313)。そして、S307に進む。 Furthermore, when the second current value is input, the control signal generation unit 24 supplies the current in the direction to overheat the battery pack 11 so that the current supply unit 14 supplies the thermoelectric element 12 with the current direction switching circuit. A second direction switching signal for controlling switch switching is created (S313). Then, the process proceeds to step S307.
 また、S303において、計測温度が目標温度よりも低くないと判定した場合、すなわち計測温度と目標温度が等しい場合には、S309に進む。 If it is determined in S303 that the measured temperature is not lower than the target temperature, that is, if the measured temperature and the target temperature are equal, the process proceeds to S309.
 次に、第1の電流値の算出について説明する。
 図4は、実施形態1の第1の電流値算出のフローチャートである。
Next, calculation of the first current value will be described.
FIG. 4 is a flowchart of first current value calculation of the first embodiment.
 判定部22から高温判定信号が算出部23に入力される(S401)。
 算出部23は、高温判定信号から計測温度を取得する(S402)。
The high temperature determination signal is input from the determination unit 22 to the calculation unit 23 (S401).
The calculation unit 23 acquires the measured temperature from the high temperature determination signal (S402).
 算出部23は、記憶部21から目標温度を取得する(S403)。
 算出部23は、計測温度から目標温度を減算して、温度差を算出する(S404)。
The calculation unit 23 acquires the target temperature from the storage unit 21 (S403).
The calculation unit 23 subtracts the target temperature from the measured temperature to calculate a temperature difference (S404).
 算出部23は、記憶部21に記憶されている図5に示す要求熱量マップ100から、温度差に対応する要求熱量を取得する(S405)。なお、図5の要求熱量マップ100の要求熱量に付されているマイナス符号は、吸熱量であることを示している。また、要求熱量に付されているプラス符号は、発熱量であることを示している。そして、図5に示される要求熱量マップ100は一例であり、さらに広範囲で詳細なマップを用いても良い。また、他の形態として、電池パック11の熱容量を記憶部21に記憶しておき、温度差に熱容量を乗算することで要求熱量を取得しても良い。 The calculation unit 23 acquires the required heat amount corresponding to the temperature difference from the required heat amount map 100 shown in FIG. 5 stored in the storage unit 21 (S405). The minus sign attached to the required heat amount of the required heat amount map 100 of FIG. 5 indicates that it is the heat absorption amount. Also, the plus sign attached to the required heat amount indicates that it is a calorific value. And, the required heat amount map 100 shown in FIG. 5 is an example, and a wider and detailed map may be used. As another form, the heat capacity of the battery pack 11 may be stored in the storage unit 21 and the required heat may be acquired by multiplying the temperature difference by the heat capacity.
 算出部23は、記憶部21から制限時間を取得する(S406)。
 算出部23は、要求熱量を制限時間で除算することで、制限時間以内に電池パック11を目標温度にするために必要な、単位時間当たりの吸熱量を算出する(S407)。以下、単位時間当たりの吸熱量を第1の単位熱量という。
The calculation unit 23 acquires the time limit from the storage unit 21 (S406).
The calculation unit 23 calculates the heat absorption amount per unit time necessary to bring the battery pack 11 to the target temperature within the time limit by dividing the required heat amount by the time limit (S407). Hereinafter, the heat absorption amount per unit time is referred to as a first unit heat amount.
 算出部23は、記憶部21に記憶されている図5に示す吸熱量マップ200から、第1の単位熱量に対応する第1の電流値を取得する(S408)。なお、図5に示される吸熱量マップ200の値は一例であり、さらに広範囲で詳細なマップを用いても良い。 The calculation unit 23 acquires a first current value corresponding to the first unit heat quantity from the heat absorption amount map 200 shown in FIG. 5 stored in the storage unit 21 (S408). Note that the values of the heat absorption amount map 200 shown in FIG. 5 are an example, and a wider and detailed map may be used.
 次に、第2の電流値の算出について説明する。
 図6は、実施形態1の第2の電流値算出のフローチャートである。
Next, calculation of the second current value will be described.
FIG. 6 is a flowchart of second current value calculation of the first embodiment.
 判定部22から低温判定信号が算出部23に入力される(S601)。
 算出部23は、低温判定信号から計測温度を取得する(S602)。
The low temperature determination signal is input from the determination unit 22 to the calculation unit 23 (S601).
The calculation unit 23 acquires the measured temperature from the low temperature determination signal (S602).
 算出部23は、記憶部21から目標温度を取得する(S603)。
 算出部23は、計測温度から目標温度を減算して、温度差を算出する(S604)。
The calculation unit 23 acquires the target temperature from the storage unit 21 (S603).
The calculation unit 23 subtracts the target temperature from the measured temperature to calculate a temperature difference (S604).
 算出部23は、記憶部21に記憶されている図5に示す要求熱量マップ100から、温度差に対応する要求熱量を取得する(S605)。なお、他の形態として、電池パック11の熱容量を記憶部21に記憶しておき、温度差に熱容量を乗算することで要求熱量を取得しても良い。 The calculation unit 23 acquires the required heat amount corresponding to the temperature difference from the required heat amount map 100 shown in FIG. 5 stored in the storage unit 21 (S605). As another mode, the heat capacity of the battery pack 11 may be stored in the storage unit 21 and the required heat may be acquired by multiplying the temperature difference by the heat capacity.
 算出部23は、記憶部21から制限時間を取得する(S606)。
 算出部23は、要求熱量を制限時間で除算することで、制限時間以内に電池パック11を目標温度にするために必要な、単位時間当たりの発熱量を算出する(S607)。以下、単位時間当たりの発熱量を第2の単位熱量という。
The calculation unit 23 acquires the time limit from the storage unit 21 (S606).
The calculation unit 23 calculates the calorific value per unit time necessary to bring the battery pack 11 to the target temperature within the time limit by dividing the required heat amount by the time limit (S607). Hereinafter, the calorific value per unit time is referred to as a second unit heat quantity.
 算出部23は、記憶部21に記憶されている図5に示す発熱量マップ200から、第2の単位熱量に対応する第2の電流値を取得する(S608)。なお、図5に示される発熱量マップ300の値は一例であり、さらに広範囲で詳細なマップを用いても良い。 The calculation unit 23 obtains a second current value corresponding to the second unit heat quantity from the heat generation amount map 200 shown in FIG. 5 stored in the storage unit 21 (S608). The values of the calorific value map 300 shown in FIG. 5 are merely an example, and a wider and detailed map may be used.
 上記の説明では、簡潔に説明するため、熱電素子12で発生した熱量は全て電池パック11に伝わるものとして制御信号を算出している。しかし、実際には全ての熱量が伝わるわけではない。また、実際に電池パック11に伝わる熱量は、ファン30の風量、電池パック11と熱電素子12の配置及び外気温等に影響を受けて変化する。したがって、実際に温度制御装置10を使用する際には、熱電素子12で発生した熱量が電池パック11に伝わる効率を考慮すると良い。 In the above description, the control signal is calculated on the assumption that all the heat generated by the thermoelectric element 12 is transmitted to the battery pack 11 for the sake of simplicity. However, not all heat is transmitted in practice. In addition, the amount of heat transferred to the battery pack 11 is affected by the air volume of the fan 30, the arrangement of the battery pack 11 and the thermoelectric element 12, the outside temperature, and the like. Therefore, when actually using the temperature control device 10, it is preferable to consider the efficiency of transferring the heat generated by the thermoelectric element 12 to the battery pack 11.
 以上のように、実施形態1では、熱電素子12へ供給する電流値を目標温度からの温度差に基づいて変更し、制限時間以内に電池パック11の温度を目標温度にする温度制御を行なっている。そして、温度制御を行なっている間、電池パック11の温度を目標温度に近づけるために熱電素子12を常に駆動する。これにより、目標温度以外の閾値を設けて断続的に熱電素子12を駆動する従来の温度制御と比較して、図7に示されるように使用中の電池パック11の温度と目標温度との乖離を狭い範囲に収めることができる。 As described above, in the first embodiment, the current value supplied to the thermoelectric element 12 is changed based on the temperature difference from the target temperature, and temperature control is performed to set the temperature of the battery pack 11 to the target temperature within the time limit. There is. And while performing temperature control, in order to make the temperature of the battery pack 11 approach a target temperature, the thermoelement 12 is always driven. Thereby, as shown in FIG. 7, the difference between the temperature of the battery pack 11 in use and the target temperature is compared with the conventional temperature control in which the thermoelectric element 12 is driven intermittently by providing a threshold other than the target temperature. Within a narrow range.
 また、制限時間おきに、計測温度と目標温度との温度差をなくすように温度制御をしているので、制御信号及び方向切替え信号を常に作成しなくても良いので、制御が煩雑になるのを防ぐことができる。
[実施形態2]
 次に、発明の実施形態2の温度制御装置10について説明する。
In addition, since the temperature control is performed so as to eliminate the temperature difference between the measured temperature and the target temperature at every time limit, the control signal and the direction switching signal do not have to be always generated, which makes the control complicated. You can prevent.
Second Embodiment
Next, a temperature control device 10 according to a second embodiment of the present invention will be described.
 実施形態2の構成については、制御部20の構成以外は実施形態1の構成と同じである。したがって、一部動作や内容が異なるところのみを説明する。 The configuration of the second embodiment is the same as the configuration of the first embodiment except for the configuration of the control unit 20. Therefore, only a part where the operation or the content is different will be described.
 図8は、実施形態2の制御部の構成を示す図である。なお、図8において、図2と重複する構成要素については同じ参照符号を付与している。 FIG. 8 is a diagram showing the configuration of the control unit of the second embodiment. In FIG. 8, the same reference numerals are given to components overlapping with those in FIG. 2.
 制御部20は、実施形態1の制御部20の構成と異なり、算出部23と計時手段を除いた構成である。 The control unit 20 differs from the configuration of the control unit 20 of the first embodiment in that the calculation unit 23 and the clocking means are omitted.
 記憶部21は、予め目標温度と、第3の電流値と、第4の電流値とを記憶している。第3の電流値とは、固定値であり、電池パック11を冷却するために熱電素子12に供給する第3の電流の電流値である。第4の電流値とは、固定値であり、電池パック11を加熱するために熱電素子12に供給する第4の電流の電流値である。また、第3の電流値と第4の電流値には、電池パック11の使用環境により、ユーザが適宜選択した値を設定すれば良い。例えば、COP(Coefficient of performance)が最大になる電流値を選択すると良い。また、COPが最大になる電流値では、電池パック11を目標温度にできる単位時間当たりの熱量が得られない使用環境では、実験等で電池パック11を目標温度にすることができる電流値を割り出して設定すれば良い。なお、実施形態2では、要求熱量マップ100と、吸熱量マップ200と、発熱量マップ300は記憶しておかなくても良い。また、制限時間を記憶しなくても良い。 The storage unit 21 stores in advance the target temperature, the third current value, and the fourth current value. The third current value is a fixed value, and is a current value of a third current supplied to the thermoelectric element 12 to cool the battery pack 11. The fourth current value is a fixed value, and is a current value of a fourth current supplied to the thermoelectric element 12 to heat the battery pack 11. Further, the third current value and the fourth current value may be set to values appropriately selected by the user according to the use environment of the battery pack 11. For example, it is preferable to select a current value that maximizes the coefficient of performance (COP). In addition, at the current value at which the COP is maximized, in a use environment where heat quantity per unit time that can set the battery pack 11 to the target temperature can not be obtained, a current value that can set the battery pack 11 at the target temperature is determined through experiments. Set it. In the second embodiment, the required heat amount map 100, the heat absorption amount map 200, and the calorific value map 300 may not be stored. Also, the time limit may not be stored.
 判定部22は、温度計測部13から計測温度を常に取得する。そして、記憶部21に記憶されている目標温度よりも高い温度であるか、低い温度であるかを常に判定する。そして、判定結果に基づいて、高温判定信号又は低温判定信号を制御信号作成部24に常に出力する。なお、判定部22への計測温度の入力、温度判定信号の出力は、ECU等のコンピュータのクロックを用いて、適宜定めた周期ごとに行なっても良い。 The determination unit 22 always obtains the measured temperature from the temperature measurement unit 13. Then, it is always determined whether the temperature is higher or lower than the target temperature stored in the storage unit 21. Then, based on the determination result, the high temperature determination signal or the low temperature determination signal is always output to the control signal generation unit 24. The input of the measured temperature to the determination unit 22 and the output of the temperature determination signal may be performed at an appropriately determined cycle using a clock of a computer such as an ECU.
 制御信号作成部24は、判定部22から高温判定信号が入力された場合には、記憶部21から第3の電流値を取得して、第3の電流値に基づいた第3の制御信号を作成する。また、判定部22から低温判定信号が入力された場合には、記憶部21から第4の電流値を取得して、第4の電流値に基づいた第4の制御信号を作成する。そして、作成した第3の制御信号又は第4の制御信号を電流供給部14に出力する。なお、第3の制御信号又は第4の制御信号は、一例として、電流供給部14がDC-DCコンバータである場合には、制御信号作成部24によりPWM信号として作成される。なお、PWM信号のDuty比は、第3の電流値と第4の電流値のそれぞれについて、予め記憶部21に記憶しておいても良い。または、電流供給部14の供給する電流の電流値が、第3の電流値と第4の電流値で切り替わる毎に算出してもよい。 When the high temperature determination signal is input from the determination unit 22, the control signal generation unit 24 acquires a third current value from the storage unit 21 and generates a third control signal based on the third current value. create. When the low temperature determination signal is input from the determination unit 22, the fourth current value is acquired from the storage unit 21, and a fourth control signal based on the fourth current value is created. Then, the generated third control signal or fourth control signal is output to the current supply unit 14. The third control signal or the fourth control signal is generated as a PWM signal by the control signal generation unit 24 when the current supply unit 14 is a DC-DC converter, for example. The duty ratio of the PWM signal may be stored in advance in the storage unit 21 for each of the third current value and the fourth current value. Alternatively, the current value of the current supplied by the current supply unit 14 may be calculated each time the third current value and the fourth current value are switched.
 次に、実施形態2の温度制御装置10の温度制御について説明する。
 図9は、実施形態2の温度制御のフローチャートである。なお、実施形態1の温度制御のフローチャートである図3と同じ動作フローについては、同じ参照符号を付している。以下の説明では、図3と異なる動作フローについてのみ説明する。その他の動作フローは実施形態1と同じである。なお、実施形態2では制限時間がなくなったので、制限時間待ちのS308を省略している。
Next, temperature control of the temperature control device 10 according to the second embodiment will be described.
FIG. 9 is a flowchart of temperature control of the second embodiment. The same reference numerals are attached to the same operation flow as that of FIG. 3 which is the flowchart of the temperature control of the first embodiment. In the following description, only an operation flow different from that of FIG. 3 will be described. The other operation flow is the same as that of the first embodiment. In the second embodiment, since the time limit has run out, S308 waiting for the time limit is omitted.
 高温判定信号が制御信号作成部24に入力されると、制御信号作成部24は、第3の電流値を記憶部21から取得する(S901)。 When the high temperature determination signal is input to the control signal generation unit 24, the control signal generation unit 24 acquires a third current value from the storage unit 21 (S901).
 そして、制御信号作成部24は、第3の電流値に基づいた第3の制御信号を作成する(S902)。 Then, the control signal creation unit 24 creates a third control signal based on the third current value (S902).
 さらに、制御信号作成部24は、高温判定信号が入力されると、第1の方向切り替え信号を作成する(S903)。 Furthermore, when the high temperature determination signal is input, the control signal creation unit 24 creates a first direction switching signal (S903).
 低温判定信号が制御信号作成部24に入力されると、制御信号作成部24は、第4の電流値を記憶部21から取得する(S904)。 When the low temperature determination signal is input to the control signal generation unit 24, the control signal generation unit 24 acquires a fourth current value from the storage unit 21 (S904).
 そして、制御信号作成部24は、第4の電流値に基づいた第4の制御信号を作成する(S905)。 Then, the control signal creation unit 24 creates a fourth control signal based on the fourth current value (S905).
 さらに、制御信号作成部24は、低温判定信号が入力されると、第2の方向切り替え信号を作成する(S906)。 Furthermore, when the low temperature determination signal is input, the control signal creation unit 24 creates a second direction switching signal (S906).
 実施形態2によれば、図10に示すように、常に計測温度が目標温度よりも高いか否かにより、電池パック11へ供給する電流を第3の電流値及び第4の電流値を切替えているので、使用中の電池パック11の温度と目標温度との乖離を狭い範囲に収めることができる。 According to the second embodiment, as shown in FIG. 10, the current supplied to the battery pack 11 is switched between the third current value and the fourth current value depending on whether the measured temperature is always higher than the target temperature. Therefore, the difference between the temperature of the battery pack 11 in use and the target temperature can be kept within a narrow range.
 また、第3の電流値及び第4の電流値をユーザが設定した固定値としたので、温度制御のための演算を簡略化することができる。 In addition, since the third current value and the fourth current value are fixed values set by the user, the calculation for temperature control can be simplified.
 また、実施形態2では、記憶部21に記憶されている電流値は、第3の電流値と第4の電流値のみとしたが、その他の電流値を複数記憶しておいても良い。そして、目標温度と計測温度との温度差によって、熱電素子12に供給する電流値を切替える構成としても良い。その場合には、例えば、目標温度と計測温度との温度差が大きいほど、熱電素子12に大きな電流が流れるように設定する。また、目標温度と計測温度との温度差が小さいほど、熱電素子12に小さな電流が流れるように設定する。さらに、目標温度と計測温度との大小関係によって、計測温度>目標温度のときには、第1の方向切り替え信号を作成し、計測温度<目標温度のときには、第2の方向切替え信号を作成する。以上のように設定することで、電池パック11の温度と目標温度の温度差が大きい場合には、大きな電流値で熱電素子12を駆動して、短時間で電池パック11の温度を目標温度に近づけることができる。これにより、電池パック11の高温での劣化や低温での出力低下の影響を少なくすることができる。また、電池パック11の温度と目標温度の温度差が小さい場合には、小さな電流値で熱電素子12を駆動して、緩やかな温度変化で電池パック11の温度を目標温度に近づけることができる。これにより、電池パック11を余分に冷却することや、余分に加熱することを防ぐことができる。
[実施形態3]
 次に、発明の実施形態3の温度制御装置10について説明する。
In the second embodiment, only the third current value and the fourth current value are stored as the current values stored in the storage unit 21. However, a plurality of other current values may be stored. Then, the current value supplied to the thermoelectric element 12 may be switched according to the temperature difference between the target temperature and the measured temperature. In that case, for example, the larger the temperature difference between the target temperature and the measured temperature, the larger the current flowing through the thermoelectric element 12. Further, as the temperature difference between the target temperature and the measured temperature is smaller, a smaller current is set to flow through the thermoelectric element 12. Further, based on the magnitude relationship between the target temperature and the measured temperature, a first direction switching signal is created when measured temperature> target temperature, and a second direction switching signal is created when measured temperature <target temperature. By setting as described above, when the temperature difference between the temperature of the battery pack 11 and the target temperature is large, the thermoelectric element 12 is driven with a large current value to set the temperature of the battery pack 11 to the target temperature in a short time. It can be approached. As a result, it is possible to reduce the effects of deterioration of the battery pack 11 at high temperatures and output reduction at low temperatures. In addition, when the temperature difference between the temperature of the battery pack 11 and the target temperature is small, the thermoelectric element 12 can be driven with a small current value, and the temperature of the battery pack 11 can be brought close to the target temperature by a gradual temperature change. As a result, it is possible to prevent the battery pack 11 from being cooled excessively and to be heated excessively.
Third Embodiment
Next, a temperature control device 10 according to a third embodiment of the present invention will be described.
 実施形態3の構成は実施形態1と実施形態2を組み合わせたものである。
 実施形態1と実施形態2の構成に加えた点としては、記憶部21に所定の温度差α及び所定の温度差βをさらに記憶したところである。
The configuration of the third embodiment is a combination of the first embodiment and the second embodiment.
A point added to the configurations of the first embodiment and the second embodiment is that the storage unit 21 further stores the predetermined temperature difference α and the predetermined temperature difference β.
 図11は、実施形態3の温度制御のフローチャートである。なお、実施形態2の温度制御のフローチャートである図9と同じ動作フローについては、同じ参照符号を付している。以下では図9と異なる動作フローについてのみ説明する。 FIG. 11 is a flowchart of temperature control of the third embodiment. The same reference numeral is attached to the same operation flow as that of FIG. 9 which is the flowchart of the temperature control of the second embodiment. Only the operation flow different from that of FIG. 9 will be described below.
 温度計測部13から計測温度が入力されると判定部22は、計測温度が目標温度+αよりも高い温度であるか否かを比較判定する(S1201)。計測温度が目標温度+αよりも高い温度であると判定された場合には、制御信号作成部24にその判定結果である高温判定信号を出力し、S901に進む。 When the measured temperature is input from the temperature measurement unit 13, the determination unit 22 compares and determines whether the measured temperature is higher than the target temperature + α (S1201). If it is determined that the measured temperature is higher than the target temperature + α, a high temperature determination signal that is the determination result is output to the control signal generation unit 24, and the process proceeds to S901.
 S1201において、計測温度が目標温度+αよりも高くないと判定した場合には、判定部22は、さらに計測温度が目標温度-βよりも低い温度であるか否かを比較判定する。そして、計測温度が目標温度-βよりも低い温度であると判定された場合には、制御信号作成部24にその判定結果である低温判定信号を出力し、S904に進む。 When it is determined in S1201 that the measured temperature is not higher than the target temperature + α, the determination unit 22 further compares and determines whether the measured temperature is lower than the target temperature -β. If it is determined that the measured temperature is lower than the target temperature -β, the control signal generation unit 24 outputs a low temperature determination signal as the determination result, and the process proceeds to S904.
 また、S1202において、計測温度が目標温度-αよりも低くないと判定した場合、すなわち目標温度+α≧計測温度≧目標温度-β(所定の温度範囲)である場合には、S1203に進み、実施形態1の温度制御を行なう。 If it is determined in S1202 that the measured temperature is not lower than the target temperature-α, that is, if the target temperature + α 計 測 the measured temperature 温度 the target temperature-β (predetermined temperature range), the process proceeds to S 1203 and The temperature control of mode 1 is performed.
 実施形態3では、例えば、図12に示すように、第3の電流値を熱電素子12の第1の単位熱量が最も大きくなる電流値、すなわち熱電素子12の最大出力となる電流値に設定し、かつ、第4の電流値を熱電素子12の第2の単位熱量が最も大きくなる電流値、すなわち熱電素子12の最大出力となる電流値に設定する。さらに、目標温度+αを電池パック11の高温での劣化の影響が大きくなる温度に設定し、目標温度-βを電池パック11の低温での出力低下の影響が大きくなる温度に設定する。これにより、電池パック11の高温での劣化や低温での出力低下の影響が大きくなる温度では、電池パック11の温度をできる限り短時間で目標温度に近づけることができる。また、目標温度+α≧計測温度≧目標温度-βの温度範囲では、実施形態1の制御をすることで、必要な熱量だけ熱電素子12に発生させるように制御することができる。 In the third embodiment, for example, as shown in FIG. 12, the third current value is set to a current value at which the first unit heat quantity of the thermoelectric element 12 is maximized, that is, a current value at which the maximum output of the thermoelectric element 12 is obtained. Also, the fourth current value is set to a current value at which the second unit heat quantity of the thermoelectric element 12 is maximized, that is, a current value at which the maximum output of the thermoelectric element 12 is obtained. Further, the target temperature + α is set to a temperature at which the influence of deterioration of the battery pack 11 at high temperature increases, and the target temperature −β is set to a temperature at which the influence of output decrease at low temperature of the battery pack 11 increases. As a result, at a temperature at which the battery pack 11 is deteriorated at high temperature and the output is reduced at low temperature, the temperature of the battery pack 11 can approach the target temperature in a short time as much as possible. Further, in the temperature range of target temperature + α 温度 measurement temperature ≧ target temperature−β, the necessary heat quantity can be controlled to be generated in the thermoelectric element 12 by the control of the first embodiment.
 上述した実施形態1~3により、目標温度と計測温度との温度差に基づいて制御をし、熱電素子12を常に駆動することで、電池パックの温度と目標温度との乖離を狭い範囲に収めることができる温度制御装置を提供することができる。
 
According to the first to third embodiments described above, the control is performed based on the temperature difference between the target temperature and the measured temperature, and the thermoelectric element 12 is always driven to keep the deviation between the battery pack temperature and the target temperature within a narrow range. It is possible to provide a temperature control device that can

Claims (5)

  1.  電池の温度を目標温度にする温度制御装置において、
     供給される電流に応じて、前記電池を加熱または冷却する熱電素子と、
     前記電池の温度を計測する温度計測手段と、
     前記熱電素子に電流を供給する電流供給手段と、
     前記電池の温度が前記目標温度よりも高い場合には、前記熱電素子に前記電池を冷却するための電流を供給し、前記電池の温度が前記目標温度よりも低い場合には、前記熱電素子に前記電池を加熱するための電流を供給するように、前記電流供給手段の動作を制御する制御手段と、
     を備えることを特徴とする温度制御装置。
    In the temperature control device that brings the battery temperature to the target temperature,
    A thermoelectric element that heats or cools the battery depending on the current supplied;
    Temperature measuring means for measuring the temperature of the battery;
    Current supply means for supplying current to the thermoelectric element;
    When the temperature of the battery is higher than the target temperature, a current for cooling the battery is supplied to the thermoelectric element, and when the temperature of the battery is lower than the target temperature, the thermoelectric element is used. Control means for controlling the operation of the current supply means to supply a current for heating the battery;
    A temperature control device comprising:
  2.  前記制御手段は、制限時間ごとに前記電流供給手段の動作を制御することを特徴とする請求項1に記載の温度制御装置。 The temperature control device according to claim 1, wherein the control means controls the operation of the current supply means at each time limit.
  3.  前記目標温度は所定の温度範囲を有し、
     前記制御手段は、前記電池の温度が前記所定の温度範囲内であるときに、前記制限時間ごとに前記電流供給手段の動作を制御することを特徴とする請求項2に記載の温度制御装置。
    The target temperature has a predetermined temperature range,
    The temperature control device according to claim 2, wherein the control unit controls the operation of the current supply unit for each time limit when the temperature of the battery is within the predetermined temperature range.
  4.  前記熱電素子はペルチェ素子であることを特徴とする請求項1~3のいずれか一つに記載の温度制御装置。 The temperature control device according to any one of claims 1 to 3, wherein the thermoelectric element is a Peltier element.
  5.  電池の温度を目標温度にする温度制御装置の温度制御方法において、
     温度計測手段により前記電池の温度を計測し、
     前記電池の温度が前記目標温度よりも高い場合には、供給される電流に応じて、前記電池を加熱または冷却するための熱量を発生する熱電素子に前記電池を冷却するための電流を供給し、前記電池の温度が前記目標温度よりも低い場合には、前記熱電素子に前記電池を加熱するための電流を供給するように、前記熱電素子に電流を供給する電流供給手段の動作を制御することを特徴とする温度制御方法。
    In a temperature control method of a temperature control device for setting a battery temperature to a target temperature,
    Measuring the temperature of the battery by temperature measuring means;
    When the temperature of the battery is higher than the target temperature, a current for cooling the battery is supplied to a thermoelectric element that generates heat for heating or cooling the battery according to the supplied current. And controlling the operation of the current supply means for supplying a current to the thermoelectric element so as to supply the current for heating the battery to the thermoelectric element when the temperature of the battery is lower than the target temperature. Temperature control method characterized in that
PCT/JP2012/064109 2011-08-29 2012-05-31 Temperature control device and temperature control method WO2013031321A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011186452A JP5273225B2 (en) 2011-08-29 2011-08-29 Temperature control apparatus and temperature control method
JP2011-186452 2011-08-29

Publications (1)

Publication Number Publication Date
WO2013031321A1 true WO2013031321A1 (en) 2013-03-07

Family

ID=47755837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064109 WO2013031321A1 (en) 2011-08-29 2012-05-31 Temperature control device and temperature control method

Country Status (2)

Country Link
JP (1) JP5273225B2 (en)
WO (1) WO2013031321A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112092679A (en) * 2020-09-07 2020-12-18 中国第一汽车股份有限公司 Heating control method, device, equipment and storage medium
CN114179403A (en) * 2022-02-15 2022-03-15 深圳市博盛新材料有限公司 Battery diaphragm manufacturing system of rechargeable battery and manufacturing method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101772061B1 (en) 2014-09-22 2017-08-28 주식회사 엘지화학 Battery pack containing thermoelectric devices for controlling temperature and cold-starting method for electric vehicle using the same
US10876510B2 (en) 2016-03-02 2020-12-29 Gentherm Incorporated Systems and methods for supplying power in a hybrid vehicle using capacitors, a battery and one or more DC/DC converters
US10886583B2 (en) 2016-03-02 2021-01-05 Gentherm Incorporated Battery and capacitor assembly for a vehicle and a method for heating and cooling the battery and capacitor assembly
KR102196265B1 (en) * 2017-06-13 2020-12-29 주식회사 엘지화학 Method and system for controling temperature of a battery pack
CN109599632B (en) * 2017-09-30 2020-11-20 比亚迪股份有限公司 Temperature adjusting method and temperature adjusting system for vehicle-mounted battery
CN109599630B (en) 2017-09-30 2021-02-23 比亚迪股份有限公司 Temperature regulation system for vehicle-mounted battery
CN109599626B (en) 2017-09-30 2021-01-19 比亚迪股份有限公司 Temperature adjusting method and temperature adjusting system for vehicle
KR102335019B1 (en) 2019-11-04 2021-12-02 삼성에스디아이 주식회사 Battery pack and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010295A (en) * 2006-06-29 2008-01-17 Hokuriku Electric Power Co Inc:The Method of keeping warmth, and device for keeping warmth of secondary battery
JP2009110829A (en) * 2007-10-31 2009-05-21 Toyota Motor Corp Thermal conditioning apparatus of battery
JP2010282878A (en) * 2009-06-05 2010-12-16 Nec Corp Secondary battery system and method of controlling temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010295A (en) * 2006-06-29 2008-01-17 Hokuriku Electric Power Co Inc:The Method of keeping warmth, and device for keeping warmth of secondary battery
JP2009110829A (en) * 2007-10-31 2009-05-21 Toyota Motor Corp Thermal conditioning apparatus of battery
JP2010282878A (en) * 2009-06-05 2010-12-16 Nec Corp Secondary battery system and method of controlling temperature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112092679A (en) * 2020-09-07 2020-12-18 中国第一汽车股份有限公司 Heating control method, device, equipment and storage medium
CN114179403A (en) * 2022-02-15 2022-03-15 深圳市博盛新材料有限公司 Battery diaphragm manufacturing system of rechargeable battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP5273225B2 (en) 2013-08-28
JP2013048063A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
WO2013031321A1 (en) Temperature control device and temperature control method
JP5856488B2 (en) Temperature control device
KR101870474B1 (en) System and methods for improving power handling of an electronic device
CN107293821B (en) Power battery heat treatment method and device and electric automobile
RU2608385C2 (en) Power system of electric vehicle, electric vehicle comprising same and method for heating battery group of electric vehicle
JP2012216423A (en) Thermal input/output quantity control system in view of temperature unevenness
KR101899618B1 (en) System and methods for improving power handling of an electronic device comprising a battery charger and a field exciter
JP2012216424A (en) Heat input timing control device, system and method
JP2012216422A (en) Reduction in temperature variance between batteries
JP2013543366A (en) Charging method of power supply battery for driving motor of automobile vehicle
JP2010259238A (en) Regenerative power managing system
KR101628603B1 (en) Charger Cooling System Control Method and Controller for Green Car
JP2018117400A (en) Driving device for vehicle, and vehicle
US9283850B2 (en) Semiconductor device and cooling system for semiconductor device
JP2013026116A (en) System and method for controlling battery temperature
JP2007109536A (en) Temperature detection device
JP2018115869A (en) Lifetime estimation device, and vehicle
JP5780151B2 (en) Battery temperature control device and vehicle
JP2013125646A (en) Temperature adjusting system for battery, and vehicle
JP2013165041A (en) Battery temperature control device
JP6031802B2 (en) Temperature control device
JP2013070466A (en) Cooling device for electric vehicle
KR102096132B1 (en) Apparatus and Method for balancing of battery cell
US20170213948A1 (en) Power generator for vehicle
KR20120129214A (en) Temperature control device and method for high power laser modules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827384

Country of ref document: EP

Kind code of ref document: A1