WO2013031123A1 - Compound lens, optical head device, optical disk device, and optical information device - Google Patents

Compound lens, optical head device, optical disk device, and optical information device Download PDF

Info

Publication number
WO2013031123A1
WO2013031123A1 PCT/JP2012/005178 JP2012005178W WO2013031123A1 WO 2013031123 A1 WO2013031123 A1 WO 2013031123A1 JP 2012005178 W JP2012005178 W JP 2012005178W WO 2013031123 A1 WO2013031123 A1 WO 2013031123A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
diffractive structure
optical
blue light
Prior art date
Application number
PCT/JP2012/005178
Other languages
French (fr)
Japanese (ja)
Inventor
金馬 慶明
文朝 山崎
和博 南
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011187200A external-priority patent/JP2014211923A/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013031123A1 publication Critical patent/WO2013031123A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • the present invention relates to a compound lens that condenses light on an optical information medium such as an optical disk, an optical head device that records, reproduces, or erases information on the optical information medium, an optical disk device including the optical head device, and
  • the present invention relates to an optical information device including an optical disk device.
  • a compact disc that can be said to be a first generation optical disc
  • infrared light having a wavelength ⁇ 3 (wavelength ⁇ 3 is 780 nm to 820 nm) and an objective lens having a numerical aperture (NA) of 0.45 are used.
  • the substrate thickness is 1.2 mm.
  • red light having a wavelength ⁇ 2 (wavelength ⁇ 2 is 630 nm to 680 nm) and an objective lens having an NA of 0.6 are used, and the substrate thickness of the optical disk is 0.6 mm.
  • blue light having a wavelength ⁇ 1 (wavelength ⁇ 1 is 390 nm to 415 nm) and an objective lens having an NA of 0.85 are used, and the substrate thickness of the optical disc is 0.1 mm. .
  • the substrate thickness refers to the thickness from the surface on which an optical beam (or optical information medium) is incident to the information recording surface on which information is recorded.
  • the substrate thickness of the high density optical disc is reduced.
  • an optical information apparatus capable of recording or reproducing information on optical disks having different substrate thicknesses or recording densities is desired.
  • an optical head device including a condensing optical system capable of condensing a light beam up to the diffraction limit on optical disks having different substrate thicknesses is required.
  • an optical head device that records or reproduces information on a high-density optical disk using an objective lens having a large NA has a stepped cross section for recording or reproducing information on a conventional optical disk such as a DVD.
  • a hologram with a grating having a shape is an integral multiple of the unit step, and the unit step gives an optical path difference of approximately 1.25 wavelengths to the first light beam having the wavelength ⁇ 1.
  • FIG. 27A is a cross-sectional view showing the basic shape of the grating in the first conventional example
  • FIG. 27B shows the phase modulation amount for the blue light beam of wavelength ⁇ 1 in the grating shown in FIG.
  • FIG. 27C is a diagram showing the amount of phase modulation with respect to the red light beam having the wavelength ⁇ 2 in the grating shown in FIG. 27A.
  • the wavelength ⁇ 1 is 390 nm to 415 nm.
  • one period of the grating is a stepped shape having heights 0, 1, 2, and 3 times higher than the step d1 in order from the outer peripheral side of the diffraction element to the optical axis side. is there.
  • the grating changes its phase in the same direction as the grating shape with respect to the blue light beam and exhibits a convex lens action.
  • FIG. 27C the grating changes its phase in the direction opposite to the grating shape with respect to the red light beam and exhibits a concave lens action.
  • the chromatic aberration of the refractive lens can be corrected with respect to the blue light beam.
  • the working distance (the distance between the surface of the objective lens and the surface of the optical disk) can be increased by the concave lens action for the red light beam.
  • a relay lens between a light source that emits infrared light having a wavelength ⁇ 3 (wavelength ⁇ 3 is 780 nm to 820 nm) and an objective lens, the infrared light and the NA are set to be 0.1.
  • a configuration is also known in which 45 objective lenses are used and compatibility with a first generation optical disc having a substrate thickness of 1.2 mm is realized (see, for example, Patent Document 2).
  • the first conventional example is developed to improve the diffraction efficiency with respect to infrared light having a wavelength ⁇ 3 (wavelength ⁇ 3 is 780 nm to 820 nm).
  • wavelength ⁇ 3 is 780 nm to 820 nm.
  • Patent Document 3 There is known a configuration that more easily realizes compatibility with a first generation optical disc (see, for example, Patent Document 3).
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a compound lens, an optical head device, an optical disk device, and an optical information device that can further improve the diffraction efficiency. .
  • a compound lens according to one aspect of the present invention includes a diffractive structure that diffracts light and a refracting surface that refracts the light, and the diffractive structure has (M ⁇ 1) stages of M levels (M is 3).
  • the step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light and an optical path difference less than one wavelength to red light.
  • the flat portions of the diffractive structure are inclined in the direction in which the stairs are raised.
  • the diffractive structure diffracts light and the refracting surface refracts light.
  • the diffractive structure has a step-like cross section in which one period is (M ⁇ 1) steps and M levels (M is a natural number of 3 or more).
  • the step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light and adds an optical path difference less than one wavelength to red light.
  • Each flat part of the diffractive structure is inclined in the direction in which the stairs are raised.
  • each flat portion of the diffractive structure is inclined in the direction in which the staircase becomes higher or vice versa, so that the diffraction efficiency of the desired order diffracted light of the desired wavelength can be further improved.
  • the generation of unnecessary orders of diffracted light can be suppressed.
  • FIG. 1 It is sectional drawing which shows the structure of the compound objective lens in Embodiment 1 of this invention. It is the top view which looked at the compound objective lens shown in Drawing 1 from the upper part.
  • (A) is a figure which shows the material shape of the diffraction structure formed on the base material in Embodiment 1 of this invention
  • (B) is with respect to blue light in Embodiment 1 of this invention.
  • (C) is a figure which shows the phase modulation amount with respect to red light in Embodiment 1 of this invention. It is a figure for demonstrating the manufacturing method of the metal mold
  • (C) is a figure which shows the phase modulation amount with respect to red light in Embodiment 2 of this invention.
  • Embodiment 2 of this invention it is a figure which shows the diffractive structure which has a step-shaped cross section with 5 steps 6 levels in 1 period. It is a figure which shows the relationship between the inclination width of the flat part of the diffraction structure shown in FIG. 17, and a diffraction efficiency calculation result.
  • (A) is a figure which shows the material shape of the diffraction structure formed on the base material in the modification of Embodiment 2 of this invention
  • (B) is a deformation
  • (C) is a figure which shows the phase modulation amount with respect to blue light
  • (C) is a figure which shows the phase modulation amount with respect to red light in the modification of Embodiment 2 of this invention.
  • FIG. 27C is a diagram showing the amount of phase modulation with respect to the red light beam having the wavelength ⁇ 2 in the grating shown in FIG.
  • FIG. 1 is a cross-sectional view showing a configuration of a composite objective lens according to Embodiment 1 of the present invention.
  • FIG. 1 schematically shows a cross section of the composite objective lens 201.
  • a diffractive structure 201 ⁇ / b> A is formed on one surface of a composite objective lens 201.
  • the compound objective lens 201 includes a diffractive structure 201A that diffracts light and a refracting surface 201B that refracts light.
  • the diffractive structure 201A is integrally formed on the refractive surface 201B.
  • the compound objective lens 201 is divided into two regions 202 and 203 on the inner and outer peripheral sides concentrically around the optical axis.
  • FIG. 2 is a plan view of the compound objective lens shown in FIG. 1 as viewed from above.
  • the compound objective lens 201 includes a first region 202 formed on the inner peripheral side and a second region 203 formed on the outer peripheral side.
  • the boundary 204A between the first region 202 and the second region 203 and the effective range 204D of light passing through the composite objective lens 201 are both virtual design boundaries.
  • the second region 203 converges blue light through a substrate of about 0.1 mm.
  • the second region 203 is formed with a diffractive structure having a sawtooth-shaped cross section or a diffractive structure having a stepped shape approximating the sawtooth shape.
  • the second region 203 is designed so that the incident blue light converges through a substrate of about 0.1 mm.
  • the second region 203 is a region dedicated to the first recording medium having a base of about 0.1 mm because it does not converge red light.
  • the first region 202 converges blue light on the recording surface of the first recording medium through a base of about 0.1 mm.
  • the first region 202 converges the blue light at the same position as the blue light that has passed through the second region 203.
  • the first region 202 also focuses red light through a substrate of about 0.6 mm. That is, the first area 202 is an area shared by the first recording medium and the second recording medium having a base of about 0.6 mm.
  • the numerical aperture at which the blue light having the wavelength ⁇ 1 is condensed through the base material having the thickness t1 is larger than the numerical aperture at which the red light having the wavelength ⁇ 2 is condensed through the base material having the thickness t2 larger than the thickness t1. large.
  • FIGS. 3A to 3C are diagrams for explaining the basic concept of the diffractive structure formed in the first region 202.
  • FIG. FIG. 3A is a diagram showing a material shape of a diffractive structure formed on a substrate in Embodiment 1 of the present invention.
  • FIG. 3B is a diagram showing a phase modulation amount for blue light in the first embodiment of the present invention. Note that the phase modulation amount for the blue light in the vertical direction shown in FIG. 3B is shown in units of one wavelength.
  • FIG. 3C is a diagram showing the amount of phase modulation with respect to red light in the first embodiment of the present invention. Note that the phase modulation amount for the red light in the vertical direction shown in FIG. 3C is shown in units of one wavelength.
  • the vertical direction indicates the thickness or height of the base material in the optical axis direction.
  • the refractive index of the element material for the blue light beam is nb.
  • the refractive index nb is 1.5302.
  • the refractive index nb is about 1.522.
  • One step d1 is designed so that the optical path length difference is about 1.25 wavelengths with respect to the blue light beam, that is, the phase difference is about 2 ⁇ + ⁇ / 2.
  • the unit level difference d1 0.97 ⁇ m if the base material is resin.
  • FIG. 3 (A) shows that the optical path difference caused by the unit step d1 is 1.25 times the wavelength ⁇ 1 of the blue light.
  • the optical path difference caused by the unit step d1 is represented by a step / (nb-1). Therefore, the value of 1.25 is a value obtained by dividing the step / (nb-1) by ⁇ 1.
  • FIG. 3B and FIG. 3C they are simply expressed in the form of optical path difference / wavelength, but they have the same meaning except that the integer part is subtracted.
  • the phase modulation amount for blue light due to the shape of the diffractive structure is 2 ⁇ + ⁇ / 2 per step.
  • the phase modulation amount given by each step is an integral multiple of 2 ⁇ + ⁇ / 2. This substantially means that the phase modulation amount is ⁇ / 2 per stage as shown in FIG.
  • the refractive index of the element material for the red light beam is nr
  • the refractive index nr is 1.5142 when the element material is, for example, BK7.
  • the element material is a polyolefin resin
  • the refractive index nr is about 1.505.
  • the optical path length difference with respect to the red light beam caused by the step d1 is d1 ⁇ (nr ⁇ 1) / ⁇ 2 ⁇ 0.75 regardless of whether the base material is quartz or resin. That is, the optical path length difference is about 3/4 times the wavelength ⁇ 2, and the phase modulation amount is about ⁇ / 2 per stage.
  • the height of the diffractive structure is made an integral multiple of one step d1, and the diffractive structure has a stepped cross section.
  • the phase modulation amount changes substantially by ⁇ / 2 per stage with respect to the blue light beam. That is, the optical path length difference changes by +1/4 with respect to the wavelength ⁇ 1 for each stage.
  • the phase changes by 2 ⁇ , and the diffraction efficiency of the + 1st order diffracted light generated from the diffraction structure of one period is calculated to be about 80% by scalar calculation. Therefore, the diffraction efficiency of the + 1st order diffracted light is the strongest among the diffraction orders.
  • the amount of phase modulation changes substantially by ⁇ / 2 per step as shown in FIG. That is, the optical path length difference changes by ⁇ 1/4 with respect to the wavelength ⁇ 2 for each stage.
  • the phase changes by 2 ⁇ , and the diffraction efficiency of the ⁇ 1st order diffracted light generated from the diffraction structure of one period is calculated to be about 80% by scalar calculation. Therefore, the diffraction efficiency of the ⁇ 1st order diffracted light is the strongest among the diffraction orders. Note that the fact that the diffraction order is negative means that light is bent in the opposite direction to the case where the diffraction order is positive.
  • the step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light and an optical path difference less than one wavelength to red light.
  • the wavefront converting action that the diffractive structure gives to red light is the opposite action compared to the wavefront converting action that the diffractive structure gives to blue light.
  • the diffractive structure has at least two diffractive regions formed concentrically around the optical axis of the light incident on the compound objective lens.
  • a diffraction structure having a stepped cross section is formed in the diffraction area that is not the outermost of the at least two diffraction areas.
  • the step d1 of the diffractive structure gives an optical path difference of approximately 1.25 wavelengths to blue light.
  • the diffractive structure is a three-step, four-level step-like cross section having a height of 0 times, 1 time, 2 times and 3 times the step d1 in order from the outer peripheral side of the diffractive structure to the optical axis side within one period. Have.
  • the order of diffraction of blue light is opposite to that of positive and negative with respect to red light. Accordingly, the minimum pitch of the diffractive structure necessary for exhibiting the aberration correction effect between wavelengths and the effect of moving the focal position can be widened, the diffractive structure can be easily manufactured, and the diffracted light quantity as calculated can be easily obtained. be able to. Further, when the diffractive structure acts as a convex lens with respect to the blue light beam, the chromatic dispersion of the diffractive action is in the opposite direction to the refractive action.
  • the objective lens which is a refractive convex lens and the diffractive structure are combined, chromatic aberration with respect to a wavelength change within several nm can be canceled and reduced, and in particular, the wavelength dependence of the focal length can be canceled and reduced.
  • the diffractive structure described above exhibits a concave lens action for red light, so that the working distance can be increased.
  • the step width ratio is 1: 1: 1: 1.
  • the ratio of the staircase width is the ratio of the physical length as it is.
  • the surrounding grid pitch is changing rapidly, it is desirable to change the step width ratio in accordance with the change.
  • the staircase width is a ratio to the lattice pitch, the same width change as the lattice pitch is necessary.
  • the ratio of the step width is changed by changing the ratio of the step widths according to the change of the surrounding grating pitch.
  • the ratio is 1: 1: 1: 1, and it can be said that the ratio of the lattice pitch is equal.
  • such a ratio of the lattice pitch is simply referred to as a staircase width or a staircase width.
  • the step width in one pitch is equal, and the phase modulation amount is changed by substantially the same amount per step. Thereby, the diffraction efficiency of the desired order with respect to a desired wavelength can be made higher. This also applies to the embodiments described later.
  • Such a diffractive structure is formed in the first region 202 shown in FIGS.
  • a diffractive structure is formed on a curved surface that causes the refractive action of the compound objective lens
  • a staircase shape as shown in FIG. 3A is formed on the basis of the curved surface.
  • the diffractive structure typically has a shape shown in the first region 202 of FIG.
  • FIGS. 4 to 8 are diagrams for explaining a mold manufacturing method for manufacturing the composite objective lens according to Embodiment 1 of the present invention.
  • the period of the diffraction grating (diffraction structure) that diffracts visible light is several microns to several tens of microns, and the depth of the unevenness of the diffraction structure is about submicron to several microns.
  • a cutting tool made of a particularly hard material such as diamond is desirable to use.
  • the cutting tool 211 has a cross-sectional shape with the tip as thin as possible and the base side thickened.
  • an optical path length difference that is an integral multiple of the wavelength, that is, an integral multiple of 2 ⁇ .
  • the step 212 is processed so that the surface of the cutting bit 211 is substantially parallel to the optical axis 213. It is desirable to do.
  • the mold is rotated around the optical axis 213 to form concentric lattice grooves.
  • the surface facing the surface contacting the step 212 of the cutting bit 211 is inclined with respect to the optical axis 213. Therefore, as shown in FIG. 5, the step 214 sandwiched between the highest level and the lowest level of the staircase shape cannot be parallel to the optical axis 213. Before the tip of the cutting bit 211 reaches the most recessed portion of the mold, the inclined portion of the cutting bit 211 hits the most protruding portion of the mold. Therefore, if the position in the direction of the optical axis 213 is maintained as it is and the cutting tool 211 is moved to the optical axis 213 side, the die will be shaved excessively.
  • the manufactured mold When cutting is stopped at a position where the inclined portion of the cutting tool 211 hits the most protruding portion of the mold, the manufactured mold remains without the dotted line portion shown in FIG. 6 being cut.
  • the dotted line portion shown in FIG. 6 is reduced. As a result, the width of the flat portion of only the highest step-shaped portion formed on the surface of the optical element (composite objective lens) becomes narrow.
  • the step widths constituting one period are all equal, and the phase modulation amount is changed by substantially the same amount per step, so that the diffraction efficiency of the desired order of the desired wavelength is obtained. Will be higher.
  • the inventors have invented that the most protruding portion of the mold is slightly cut as shown in FIG. As a result, as shown in FIG. 8, the width W4 of the flat portion at the highest level and the width W1 of the flat portion at the lowest level are both narrower than the widths W2, W3 of the other flat portions. In this case, as shown in FIG.
  • the diffractive structure in the first embodiment is a device for obtaining higher diffraction efficiency when the width of the flat portion becomes narrow for the convenience of the manufacturing method in the design in which all the step widths are the same. Therefore, as disclosed in Japanese Patent Application Laid-Open No. 5-232321, the method is completely different from the method of changing the diffraction efficiency by making the step widths constituting one period different from the step of designing the step shape.
  • wavelength ⁇ 3 is 780 nm to 820 nm. Accordingly, in addition to the first recording medium and the second recording medium, the same structure as the above-described diffraction structure is used for compatibility with a first generation optical disc (third recording medium) having a substrate thickness of 1.2 mm. And can be realized with a simpler optical system configuration.
  • the diffractive structure has a stepped cross section.
  • the refractive index of the element material of the compound objective lens is nb, nr, and ni for blue light with wavelength ⁇ 1, red light with wavelength ⁇ 2, and infrared light with wavelength ⁇ 3, respectively (J ⁇ ⁇ 1) / ( nb-1), (K ⁇ ⁇ 2) / (nr-1), and (L ⁇ ⁇ 3) / (ni-1) are substantially equal (J, K, and L are natural numbers, and J> M> K> L Is).
  • the step d1 of the diffractive structure is (J ⁇ ⁇ 1) / (nb-1), (K ⁇ ⁇ 2) / (nr-1), and (L ⁇ ⁇ 3) / (ni-1), respectively (1 / M). It is a value within the range between the minimum value and the maximum value among the multiplied values.
  • the average value of the refractive index nb, the refractive index nr, and the refractive index ni may be used as the refractive index nc.
  • the refractive index nc of the element material of the composite objective lens is substantially the same for the blue light having the wavelength ⁇ 1, the red light having the wavelength ⁇ 2, and the infrared light having the wavelength ⁇ 3, and (J ⁇ ⁇ 1) and ( K ⁇ ⁇ 2) and (L ⁇ ⁇ 3) are substantially equal (J, K, and L are natural numbers, and J> M> K> L).
  • the step d1 of the diffractive structure is (J ⁇ ⁇ 1) / (nc-1), (K ⁇ ⁇ 2) / (nc-1), and (L ⁇ ⁇ 3) / (nc-1), respectively (1 / M). It is a value within the range between the minimum value and the maximum value among the multiplied values.
  • the step d1 of the diffractive structure adds an optical path length difference of (J ⁇ ⁇ 1) / M to blue light having a wavelength ⁇ 1 and an optical path difference of (K ⁇ ⁇ 2) / M to red light having a wavelength ⁇ 2 (or (Also referred to as an optical path length difference), and an optical path length difference of (L ⁇ ⁇ 3) / M is added to infrared light of wavelength ⁇ 3.
  • FIG. 9 is a diagram showing a diffraction structure according to the first embodiment of the present invention.
  • the diffractive structure has a step-like cross section in which one period is seven steps and eight levels.
  • the diffraction efficiencies of the blue light + 2nd order diffracted light, the red light ⁇ 1st order diffracted light, and the infrared light ⁇ 2nd order diffracted light are larger than the other orders of diffracted light at the respective wavelengths.
  • the diffraction efficiencies of blue light and red light can be increased to the same extent.
  • the width W8 of the highest level flat portion and the width W1 of the lowest level flat portion of the staircase shape are both other flat portions. Narrower than the width W2 to W7.
  • FIG. 10 is a diagram showing a diffractive structure in the first modification of the first embodiment of the present invention.
  • the diffractive structure has a stepped cross section with one cycle having 6 steps and 7 levels.
  • the diffraction efficiencies of the blue light + 3rd order diffracted light, the red light ⁇ 1st order diffracted light, and the infrared light ⁇ 2nd order diffracted light are larger than those of other orders of diffracted light at the respective wavelengths.
  • the diffraction efficiency of infrared light can be increased.
  • the width W7 of the highest level flat portion and the width W1 of the lowest level flat portion of the staircase shape are both other flat portions. Narrower than the width W2 to W6.
  • FIG. 11 is a diagram showing a diffraction structure in the second modification of the first embodiment of the present invention.
  • the diffractive structure has a step-like cross section in which one period is eight steps and nine levels.
  • the diffraction efficiencies of the + 1st order diffracted light of blue light, the 3rd order diffracted light of red light, and the 4th order diffracted light of infrared light are larger than those of other orders of diffracted light at the respective wavelengths.
  • the diffraction efficiency of blue light can be increased.
  • the width W9 of the highest level flat portion and the width W1 of the lowest level flat portion of the staircase shape are both other flat portions. Narrower than the width W2 to W8.
  • FIG. 12 is a diagram showing a diffraction structure in the third modification of the first embodiment of the present invention.
  • the diffractive structure has a stepped cross section with one cycle having 6 steps and 7 levels.
  • the diffraction efficiencies of the + 1st order diffracted light of blue light, the ⁇ 2nd order diffracted light of red light, and the ⁇ 3rd order diffracted light of infrared light are larger than those of other orders of diffracted light at the respective wavelengths.
  • the diffraction efficiency of blue light can be increased.
  • the width W7 of the highest level flat portion and the width W1 of the lowest level flat portion of the staircase shape are both other flat portions. Narrower than the width W2 to W6.
  • FIG. 13 is a diagram showing a diffractive structure in the fourth modification of the first embodiment of the present invention.
  • the diffractive structure has a step-like cross section in which one period is five steps and six levels. The diffraction efficiencies of the blue light + 2nd order diffracted light, the red light ⁇ 1st order diffracted light, and the infrared light ⁇ 2nd order diffracted light are larger than the other orders of diffracted light at the respective wavelengths.
  • the diffraction efficiency of blue light can be increased.
  • the width W6 of the highest level flat portion and the width W1 of the lowest level flat portion of the staircase shape are both other flat portions. Narrower than the width W2 to W5.
  • the wave analysis was performed on the diffractive structure having a stepped cross section with 5 steps and 6 levels, and the diffraction efficiency was calculated.
  • the length of one period of the diffractive structure is about 20 ⁇ m.
  • the diffraction efficiency of the + 2nd order diffracted light of the blue light is about 48.4%. It was.
  • the width of the highest level flat portion and the width of the lowest level flat portion of the staircase shape shown in FIG. 8 are both narrower than the width of the other flat portions, the + second order diffracted light of blue light
  • the diffraction efficiency of was about 50.9%.
  • the diffraction efficiency of blue light in the diffraction structure shown in FIG. 8 was higher than the diffraction efficiency of blue light in the diffraction structure shown in FIG.
  • the diffraction efficiency of the ⁇ 1st order diffracted light of red light was about 59.3%.
  • the diffraction efficiency of the ⁇ 1st order diffracted light of the red light was about 62.8%.
  • the diffraction efficiency of red light in the diffraction structure shown in FIG. 8 was higher than the diffraction efficiency of red light in the diffraction structure shown in FIG.
  • the diffraction efficiency of the infrared second-order diffracted light was about 40.5%.
  • the diffraction efficiency of the second-order diffracted light of infrared light was about 41.8%.
  • the diffraction efficiency of infrared light in the diffraction structure shown in FIG. 8 was higher than the diffraction efficiency of infrared light in the diffraction structure shown in FIG.
  • the effect of the diffractive structure in the first embodiment was confirmed by numerical analysis.
  • FIG. 14 is a diagram showing a diffractive structure in the fifth modification of the first embodiment of the present invention.
  • the diffractive structure has a step-like cross section in which one period has four steps and five levels.
  • the diffraction efficiencies of the + 1st order diffracted light of blue light, the ⁇ 1st order diffracted light of red light, and the ⁇ 2nd order diffracted light of infrared light are larger than those of other orders of diffraction at each wavelength.
  • the width W5 of the highest level flat portion and the width W1 of the lowest level flat portion of the staircase shape are both other flat portions. Narrower than the width W2 to W4.
  • the diffractive structure has a step-like cross section in which one period is (M ⁇ 1) steps and M levels (M is a natural number of 3 or more).
  • M is a natural number of 3 or more.
  • the width W1 and the width WM are the width W2. Narrower than width W (M-1).
  • the surface connecting the end of the highest flat portion in the diffraction structure in the first period and the end of the lowest flat portion in the diffraction structure in the second period following the first period is an optical It is inclined at a predetermined angle with respect to the axis.
  • FIG. 15 is a diagram showing a compound objective lens according to the sixth modification of the first embodiment of the present invention.
  • the composite objective lens 221 shown in FIG. 15 is a diffraction that can realize compatibility with a first generation optical disc (third recording medium) having a substrate thickness of 1.2 mm in addition to the first recording medium and the second recording medium.
  • FIG. 15 is a view of the compound objective lens 221 as viewed from the side on which the diffraction grating is formed.
  • the boundary 221A, the boundary 221E, and the effective range 221D are virtual design boundary lines.
  • the compound objective lens 221 includes a first region 221C including the optical axis of light, a second region 221B formed in a direction farther from the optical axis than the first region 221C, and light more than the second region 221B. And a third region 221F formed in a direction away from the axis.
  • the third region 221F converges blue light on the recording surface of the first recording medium through the base material of about 0.1 mm.
  • a sawtooth-shaped diffractive structure or a diffractive structure in which the sawtooth shape is approximated by a staircase shape is formed.
  • the diffractive structure formed in the third region 221F is designed to converge on the recording surface of the first recording medium through the base material of about 0.1 mm when blue light is incident.
  • the third region 221F does not converge red light. Therefore, the third area 221F is a first recording medium dedicated area having a base of about 0.1 mm.
  • the third region 221F is the same region as the second region 203 in FIG.
  • the second region 221B converges blue light on the recording surface of the first recording medium through the base material of about 0.1 mm.
  • the second region 221B converges the blue light at the same position as the blue light that has passed through the third region 221F.
  • the second region 221B converges red light on the recording surface of the second recording medium through the base material of about 0.6 mm. That is, the second area 221B is an area shared by the first recording medium and the second recording medium having a base material of about 0.6 mm.
  • the second region 221B is the same region as the first region 202 in FIG.
  • the first region 221C converges blue light on the recording surface of the first recording medium through the base material of about 0.1 mm.
  • the first region 221C converges the blue light at the same position as the blue light that has passed through the third region 221F and the second region 221B.
  • the first region 221C converges red light on the recording surface of the second recording medium through the base material of about 0.6 mm.
  • the first region 221C converges the red light at the same position as the red light that has passed through the second region 221B.
  • the first region 221C converges infrared light on the recording surface of the third recording medium through the base material of about 1.2 mm. That is, the first area 221C is an area shared by the first recording medium, the second recording medium, and the third recording medium.
  • a diffraction structure having a stepped cross section is formed in the first region 221C.
  • blue light is condensed on the recording surface of the optical disc through the base material having a thickness t1
  • red light is condensed on the recording surface of the optical disc through a base material having a thickness t2 larger than the thickness t1.
  • Infrared light is condensed on the recording surface of the optical disc through the base material having a thickness t3 larger than the thickness t2.
  • the second region 221B condenses blue light on the recording surface of the optical disc through the base material having a thickness t1, and condenses red light on the recording surface of the optical disc through the base material of thickness t2.
  • the third region 221F condenses blue light on the recording surface of the optical disc through the base material having a thickness t1.
  • the step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light, adds an optical path difference of less than one wavelength to red light, and has one wavelength for infrared light having a wavelength ⁇ 3. Add less optical path difference.
  • the wavefront conversion action that the diffractive structure gives to red light and infrared light is the opposite action compared to the wavefront conversion action that the diffractive structure gives to blue light.
  • the diffraction structure is entirely formed on the surface of the composite objective lens 221, but the diffraction element having the diffraction structure may be combined with a refractive lens. That is, the diffractive structure 201A may be formed separately from the refractive surface 201B.
  • Patent Document 1 discloses a configuration that can maximize the diffraction efficiencies of both red light and blue light. Specifically, the number of levels of a diffractive structure having a stepped cross section and the height of a step (1 step) between each level can maximize the diffraction efficiency of both red light and blue light. Has been.
  • Patent Document 3 discloses a configuration capable of maximizing the diffraction efficiency of light having three wavelengths of infrared light, red light, and blue light. Specifically, a configuration is shown in which the number of levels of a diffractive structure having a stepped cross section and the height of a step (one step) between each level can maximize the diffraction efficiency of light of three wavelengths.
  • a plurality of configurations are shown, and various combinations of diffraction efficiency of light of each wavelength are shown.
  • the diffraction efficiency is a maximum value with respect to the height of the step. For this reason, once the configuration is determined, diffraction efficiency higher than the maximum value cannot be obtained even if the height of the step is changed.
  • unnecessary diffracted light of orders other than the diffraction order to be used is generated, a method for reducing unnecessary diffracted light is desired.
  • the second embodiment shows a configuration that can be further improved based on such a viewpoint.
  • FIGS. 16A to 16C are diagrams for explaining a diffractive structure having a step-shaped cross section in Embodiment 2 of the present invention.
  • FIG. 16A is a diagram showing a material shape of a diffractive structure formed on a substrate in Embodiment 2 of the present invention.
  • FIG. 16B is a diagram showing a phase modulation amount with respect to blue light in the second embodiment of the present invention. Note that the phase modulation amount for the blue light in the vertical direction shown in FIG. 16B is shown in units of one wavelength.
  • FIG. 16C is a diagram showing the amount of phase modulation for red light in the second embodiment of the present invention. Note that the phase modulation amount for the red light in the vertical direction shown in FIG. 16C is shown in units of one wavelength.
  • FIG. 16B shows that blue light undergoes a phase change by an optical path difference of 1 ⁇ 4 wavelength in one period of a three-stage four-level diffraction grating (diffraction structure). Then, a desired order of diffracted light generated by the sawtooth shape (blazed shape) represented by the slope shown by the dotted line in FIG. However, the difference between the dotted line and the solid line, in other words, the error that approximates the slope with a staircase shape, causes the diffraction efficiency of the diffracted light of the desired order to decrease and causes the unnecessary order of diffracted light to be generated. Become.
  • FIG. 16B shows the amount of phase modulation for blue light. Therefore, when the phase modulation amount shown in FIG. 16B is reflected in the material shape, the flat portion becomes the shape shown by the dotted line in FIG. As shown by the dotted line in FIG. 16A, the step-shaped flat portion is inclined, so that the diffraction efficiency of the diffracted light of the desired order of the blue light can be further improved beyond the conventional maximum value, Generation of unnecessary orders of diffracted light can be suppressed.
  • the material shape in the second embodiment is a shape formed only by the diffraction grating, and the diffraction grating is used in combination with other optical elements, such as when the diffraction grating is formed on the lens surface. Is a shape obtained by subtracting the shape of another optical element such as the shape of the lens refracting surface.
  • the diffractive structure has a step-like cross section in which one period is (M ⁇ 1) steps and M levels (M is a natural number of 3 or more).
  • the step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light and an optical path difference less than one wavelength to red light.
  • the plurality of flat portions of the diffractive structure are higher toward the optical axis. Each flat portion is inclined so that the end near the optical axis is higher than the end far from the optical axis.
  • the diffraction efficiency of the diffracted light of the desired order of blue light can be increased beyond the maximum value, but the diffraction efficiency of light of other wavelengths is reduced.
  • the phase or optical path difference of red light increases toward the left side of the drawing, but the inclination of the flat portion increases toward the right side of the drawing. Therefore, when red light is incident, the difference between the staircase shape and the sawtooth shape increases. As the difference between the staircase shape and the sawtooth shape increases, the diffraction efficiency of the desired order of red light decreases.
  • FIG. 17 is a diagram showing a diffractive structure having a stepped cross section with one cycle having five steps and six levels in the second embodiment of the present invention.
  • FIG. 17 shows the material shape of the diffractive structure formed on the substrate. As shown by the dotted line in FIG. 17, by tilting the flat portion of the staircase shape in the forward direction, the diffraction efficiency of the diffracted light of the desired order of blue light can be further improved beyond the conventional maximum value, which is unnecessary. The generation of diffracted light of a proper order can be suppressed.
  • FIG. 18 is a diagram showing the relationship between the inclination width of the flat portion of the diffraction structure shown in FIG. 17 and the diffraction efficiency calculation result.
  • the vertical axis represents the diffraction efficiency
  • the horizontal axis represents the inclination width C1.
  • the unit of the horizontal axis is an optical path difference of one wavelength of the blue light wavelength ⁇ 1.
  • the value “1” on the horizontal axis is ⁇ 1 / (nb ⁇ 1).
  • nb is the refractive index at the wavelength of blue light of the element material.
  • the diffraction efficiency was calculated by vector calculation. As described in the first embodiment, the diffraction efficiency was calculated in consideration of the manufacturing error when manufacturing the mold.
  • the grating pitch is about 0.2 mm. Reflection loss is not considered.
  • the solid line represents the diffraction efficiency of the + 2nd order diffracted light, which is the desired diffracted light of blue light.
  • the diffraction efficiency of the + 2nd order diffracted light of blue light increases.
  • the dotted line represents the diffraction efficiency of the fourth-order diffracted light of blue light, that is, unnecessary diffracted light.
  • the inclination width C1 increases from 0, the diffraction efficiency of the fourth-order diffracted light of blue light decreases.
  • the inclination width C1 is about 0.33, the diffraction efficiency is minimized, and then the diffraction efficiency increases conversely.
  • the reason for this is as follows.
  • the inclination width C1 is 0.33
  • the difference between the height of the right edge of the flat portion inclined in FIG. 17 and the height of the left edge of the inclined flat portion right next to the flat portion is 1 for blue light. It becomes the wavelength. Since the phases of the light that is an integral multiple of the wavelength are equal to each other, the phase change caused by the slope is continuously connected, and the staircase shape is equivalent to the sawtooth shape. Therefore, the diffraction efficiency of the desired order diffracted light is maximized, and the diffraction efficiency of unnecessary diffracted light is minimized.
  • the two-dot chain line represents the diffraction efficiency of the ⁇ 1st order diffracted light, which is the desired diffracted light of red light.
  • the alternate long and short dash line represents the diffraction efficiency of the ⁇ 2nd order diffracted light, which is the desired diffracted light of infrared light.
  • the diffraction efficiency decreases as the inclination width C1 increases. It can be seen from FIG. 18 that increasing the inclination width C1 to 0.33 or more reduces the diffraction efficiency of all three wavelengths and is not a good idea.
  • the inclination width C1 is preferably between 0 and 0.33, and is preferably set to the most balanced value of the diffraction efficiency of the three wavelengths.
  • the inclination width C1 is preferably in the range of 0 ⁇ C1 ⁇ 0.33.
  • the slope C1 can be generalized for diffractive structures with different number of levels.
  • the upper limit value of the inclination width C1 is a value in which the difference between the height of the inclined flat portion on the right side of the paper surface and the height of the inclined left portion of the inclined flat portion on the right side of the flat portion corresponds to one wavelength of blue light. .
  • the step d1 of the diffractive structure having a stepped cross section in one cycle adds an optical path difference Cd1 ⁇ ⁇ 1 longer than one wavelength to blue light of wavelength ⁇ 1, and the stepped flat portion is inclined in the forward direction.
  • the inclination width C1 of the flat portion may be set with the value obtained by subtracting 1 from the constant Cd1 as the upper limit. That is, the width C1 for inclining the flat portion may satisfy 0 ⁇ C1 ⁇ (Cd1-1).
  • diffraction efficiency of desired diffracted light of red light or infrared light can be increased to a maximum value or more.
  • a modification of the second embodiment will be described with reference to FIGS. 19A to 19C, taking as an example a diffraction structure having a stepped cross section with three steps and four levels.
  • FIG. 19 (A) is a diagram showing a material shape of a diffractive structure formed on a substrate in the modification of the second embodiment of the present invention.
  • FIG. 19B is a diagram showing a phase modulation amount with respect to blue light in the modification of the second embodiment of the present invention. Note that the phase modulation amount for the blue light in the vertical direction shown in FIG. 19B is shown in units of one wavelength.
  • FIG. 19C is a diagram showing a phase modulation amount with respect to red light in the modification of the second embodiment of the present invention. Note that the phase modulation amount for the red light in the vertical direction shown in FIG. 19C is shown in units of one wavelength.
  • a diffractive structure having a stepped cross-section with three steps and four levels in one cycle gives an optical path difference as shown by a solid line in FIG. 19C to red light of wavelength ⁇ 2.
  • the cross-sectional shape may be brought close to a sawtooth shape as indicated by the dotted line in FIG.
  • the material shape of the diffractive structure is the shape shown by the dotted line in FIG.
  • the step-shaped flat portion is inclined, so that the diffraction efficiency of the desired order of red light can be further improved beyond the conventional maximum value, which is unnecessary. Generation of diffracted light of the order can be suppressed.
  • the diffractive structure has a step-like cross section in which one period is (M ⁇ 1) steps and M levels (M is a natural number of 3 or more).
  • the step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light and an optical path difference less than one wavelength to red light.
  • the plurality of flat portions of the diffractive structure are higher toward the optical axis. Each flat portion is inclined so that the end portion on the side close to the optical axis is lower than the end portion on the side far from the optical axis.
  • Embodiment Mode 2 as shown by the dotted line in FIG. 19A, inclining the flat portion in the opposite direction to the direction in which the staircase becomes higher in the material shape is defined as “inclining the flat portion in the opposite direction”. To do. Further, as shown in FIG. 19A, the inclination width C2 represents a difference in height between both ends of the flat portion.
  • the diffraction efficiency of a desired order of diffracted light of red light is further improved beyond the conventional maximum value.
  • the range of the inclination width C2 can be determined as follows based on the same consideration as in the case of blue light.
  • the step d1 of the diffractive structure having a step-like cross section in one period is compared with the red light having the wavelength ⁇ 2.
  • an optical path difference Cd2 ⁇ ⁇ 2 shorter than one wavelength is added, the step-shaped flat portion is inclined in the reverse direction, and the inclination width C2 of the flat portion may be set with the value obtained by subtracting the constant Cd2 from 1 as an upper limit.
  • the width C2 for inclining the flat portion only needs to satisfy 0 ⁇ C2 ⁇ (1-Cd2).
  • the step d1 of the diffractive structure having one step having a step-like cross section is formed of red with a wavelength ⁇ 3.
  • An optical path difference Cd3 ⁇ ⁇ 3 shorter than one wavelength is added to the outside light, the staircase-shaped flat part is inclined in the opposite direction, and the flat part inclination width C2 is set with the value obtained by subtracting the constant Cd3 from 1 as an upper limit. That's fine. That is, the width C2 for inclining the flat portion only needs to satisfy 0 ⁇ C2 ⁇ (1 ⁇ Cd3).
  • the composite objective lens includes a diffractive structure that diffracts light and a refracting surface that refracts light.
  • the diffractive structure has a step-like cross section in which one period is (M ⁇ 1) steps and M levels (M is a natural number of 3 or more).
  • the step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light and an optical path difference less than one wavelength to red light.
  • each flat part of a diffraction structure inclines in the direction where a staircase becomes high. That is, each flat portion of the diffractive structure is inclined at a predetermined angle with respect to a direction perpendicular to the optical axis.
  • the diffractive structure has been described separately in the first embodiment and the second embodiment.
  • the first embodiment and the second embodiment can be used in combination.
  • the compound objective lens in the second embodiment can apply the contents of the first embodiment also to the region division of the lens structure or the diffractive structure, and is combined with the region configuration shown in Patent Document 1 or Patent Document 3. Is possible.
  • FIG. 20 is a diagram showing a schematic configuration of the optical head device according to Embodiment 3 of the present invention.
  • an optical head device 103 includes a laser light source 1, a three-beam grating 3, a beam splitter 4, a quarter wavelength plate 5, a condensing lens 6, a photodetector 7, a collimating lens 8, a rising mirror 12, and a composite.
  • An objective lens 221, an actuator 15, a beam splitter 16, a two-wavelength laser light source 20, a three-beam grating 22, a detection diffraction element 31, a detection lens 32, and a photodetector 33 are provided.
  • the laser light source 1 emits blue light having a wavelength ⁇ 1 which is in a range of 390 nm to 415 nm and is typically 408 nm.
  • the two-wavelength laser light source 20 is in the range of 630 nm to 680 nm, typically red light with a wavelength ⁇ 2 of 660 nm, and red with a wavelength ⁇ 3 of 770 nm to 810 nm, typically 780 nm. Emits external light.
  • the collimating lens 8 converts light into parallel light.
  • the rising mirror 12 bends the optical axis.
  • the compound objective lens 221 is the compound objective lens described with reference to FIG.
  • the optical disc (first recording medium) 9 has a substrate thickness t1 of about 0.1 mm (a substrate thickness of 0.11 mm or less including manufacturing errors is called about 0.1 mm) or a substrate thickness thinner than 0.1 mm.
  • the optical disc is a third generation optical disc such as a BD in which information is recorded or reproduced by a light beam having a wavelength ⁇ 1.
  • the optical disc (second recording medium) 10 has a substrate thickness t2 of about 0.6 mm (a substrate thickness of 0.5 mm to 0.7 mm including manufacturing errors is called about 0.6 mm), and has a wavelength ⁇ 2.
  • It is a second generation optical disc such as a DVD on which information is recorded or reproduced by a light beam.
  • the optical disk (third recording medium) 11 has a substrate thickness t3 of about 1.2 mm (a substrate thickness of 0.8 mm to 1.5 mm including manufacturing errors is called about 1.2 mm), and has a wavelength ⁇ 3. It is a first generation optical disc such as a CD on which information is recorded or reproduced by a light beam.
  • the optical disc 9 and the optical disc 10 shown in FIG. 20 show only the base material from the light incident surface to the recording surface. Actually, in order to reinforce the mechanical strength and to make the outer shape 1.2 mm, which is the same as that of the CD (optical disk 11), the base material and the protective material are bonded together.
  • the base material is bonded to a protective material having a thickness of 0.6 mm.
  • the base material is bonded to a protective material having a thickness of 1.1 mm.
  • the base material is bonded to a thin protective material.
  • the protective material is omitted for simplification.
  • the optical head device 103 includes a two-wavelength laser light source 20 that emits light of two wavelengths of wavelength ⁇ 2 and wavelength ⁇ 3.
  • a configuration including a dichroic mirror that matches an optical path of light from the light source may be used.
  • a laser light source that emits only red light having a wavelength ⁇ 2 may be used instead of a laser light source that emits infrared light having a wavelength ⁇ 3.
  • the optical head device 103 desirably includes the composite objective lens 201 shown in FIGS. 1 and 2 instead of the composite objective lens 221.
  • the laser light source 1 and the two-wavelength laser light source 20 are preferably constituted by a semiconductor laser light source, so that the optical head device and the optical information device including the optical head device can be reduced in size, weight, and power consumption.
  • the blue light 61 having the wavelength ⁇ 1 emitted from the laser light source 1 is reflected by the beam splitter 4 and converted into circularly polarized light by the quarter wavelength plate 5.
  • the The quarter-wave plate 5 is designed so as to act as a quarter-wave plate for both the light with the wavelengths ⁇ 1 and ⁇ 2.
  • the blue light 61 converted into circularly polarized light is converted into substantially parallel light by the collimating lens 8.
  • the blue light 61 converted into substantially parallel light is bent by the rising mirror 12 and condensed by the composite objective lens 221 on the information recording surface through the transparent base material of the optical disk 9 having a thickness of about 0.1 mm.
  • the rising mirror 12 is described as bending the light beam upward in the drawing, but actually, the light beam is emitted from the drawing to the front (or back) in a direction perpendicular to the drawing.
  • the shaft is bent.
  • the quarter wavelength plate 5 may be disposed between the composite objective lens 221 and the rising mirror 12.
  • the compound objective lens 221 is moved by the actuator 15 in the optical axis direction or the radial direction of the optical disk.
  • the blue light 61 reflected by the information recording surface of the optical disc 9 follows the original optical path in the reverse direction (return path) and is converted into linearly polarized light in a direction perpendicular to the forward path by the quarter wavelength plate 5,
  • the light passes through the beam splitter 16 almost completely.
  • the blue light 61 that has passed through the beam splitter 16 is diffracted by the detection diffraction element 31, further extended in focal length by the detection lens 32, and incident on the photodetector 33.
  • a servo signal used for focus control or tracking control and an information signal are obtained.
  • the beam splitter 4 includes the polarization separation film that totally reflects linearly polarized light in one direction and totally transmits linearly polarized light in a direction perpendicular to the blue light 61 having the wavelength ⁇ 1. As will be described later, the beam splitter 4 totally transmits the red light 62 or the infrared light 63 emitted from the two-wavelength laser light source 20 with respect to the red light 62 having the wavelength ⁇ 2 or the infrared light 63 having the wavelength ⁇ 3. .
  • the beam splitter 4 is an optical path branching element having wavelength selectivity as well as polarization characteristics.
  • the quarter wavelength plate 5 can be omitted by eliminating the polarization dependency from the beam splitter 4. A configuration in which the detection diffraction element 31 is omitted is also possible.
  • the substantially linearly polarized red light 62 having the wavelength ⁇ 2 emitted from the two-wavelength laser light source 20 is reflected by the beam splitter 16 and transmitted through the beam splitter 4.
  • the light is converted into substantially parallel light by the collimating lens 8.
  • the red light 62 converted into substantially parallel light is further bent by the rising mirror 12 and condensed by the composite objective lens 221 through the transparent base material of the optical disc 10 having a thickness of about 0.6 mm onto the information recording surface.
  • the red light 62 reflected by the information recording surface of the optical disk 10 traces the original optical path in the reverse direction (return path), passes through the beam splitter 4 almost entirely, and passes through the beam splitter 16.
  • the red light 62 that has passed through the beam splitter 16 is diffracted by the detection diffraction element 31, is further extended in focal length by the detection lens 32, and enters the photodetector 33.
  • a servo signal used for focus control or tracking control and an information signal are obtained.
  • the light emission point of the laser light source 1 and the red light emission of the two-wavelength laser light source 20 are obtained.
  • the points are arranged so as to form an imaging relationship with respect to the optical axis direction with respect to the common position on the compound objective lens 221 side.
  • the beam splitter 16 has a polarization separation film that totally transmits linearly polarized light in one direction and totally reflects linearly polarized light in a direction perpendicular to the red light 62 having the wavelength ⁇ 2. In addition, the beam splitter 16 totally transmits the blue light 61 having the wavelength ⁇ 1.
  • the beam splitter 16 is also an optical path branching element having wavelength selectivity as well as polarization characteristics.
  • the quarter wavelength plate 5 can be omitted by eliminating the polarization dependency from the beam splitter 16. A configuration in which the positional relationship between the two-wavelength laser light source 20 and the photodetector 33 is switched is also possible.
  • the operation when the infrared light 63 is emitted from the two-wavelength laser light source 20 to record or reproduce information on the optical disk 11 is performed by emitting the red light 62 from the two-wavelength laser light source 20 to record or reproduce information on the optical disk 10. It is the same as the operation at the time.
  • the important point of the present embodiment is the diffractive structure of the composite objective lens for realizing compatible reproduction or recording of the optical disc 9, the optical disc 10, and the optical disc 11.
  • the configuration described in addition to the compound objective lens includes the following contents, and even in the configuration already described, the beam splitter, the detection lens, and the detection diffraction element are not essential configurations, but each has an effect as a preferable configuration. Configurations can also be used as appropriate.
  • the optical head device further includes a three-beam grating (diffraction element) 3 between the laser light source 1 and the beam splitter 4 so that the well-known differential push-pull (DPP) It is also possible to detect by the method.
  • DPP differential push-pull
  • the optical head device may further include a relay lens between the laser light source 1 and the beam splitter 4. Thereby, it is possible to make the numerical aperture of the blue light 61 on the collimating lens 8 side appropriate.
  • the optical head device further includes a three-beam grating (diffraction element) 22 between the two-wavelength laser light source 20 and the beam splitter 16, so that the tracking error signal of the optical disk 10 can be well known differential push-pull (DPP). It is also possible to detect by the method.
  • DPP differential push-pull
  • FIG. 21 is an enlarged view of the vicinity of the composite objective lens of the optical head device according to Embodiment 3 of the present invention.
  • the substrate has a thickness error, or when the optical disc 9 is a two-layer disc, spherical aberration due to the interlayer thickness occurs.
  • spherical aberration can be corrected by moving the collimating lens 8 in the optical axis direction in this way.
  • the collimating lens 8 it is possible to correct a spherical aberration of about several hundred m ⁇ when the NA of the condensed light with respect to the optical disk is 0.85, and a substrate thickness error of ⁇ 30 ⁇ m can be corrected. It can also be corrected. Further, when information is reproduced on the optical disk 10 using the red light 62, the red light traveling toward the composite objective lens 221 is moved by moving the collimating lens 8 to the left side of FIG. 20, that is, the side closer to the two-wavelength laser light source 20. 62 is divergent light as shown in FIG.
  • the condensing spot with respect to the optical disk 10 is further away from the composite objective lens 221, and a part of the aberration due to the thickness of the base material is corrected, and the aberration correction amount required for the diffractive structure is reduced to widen the diffraction pitch. Further, the composite objective lens 221 can be easily created.
  • the beam splitter 4 transmits a part of the linearly polarized blue light emitted from the laser light source 1 (for example, about 10%), and the condenser lens 6 transmits the blue light transmitted through the beam splitter 4 to the photodetector 7. You may lead to. Then, a change in the amount of emitted light from the laser light source 1 is monitored using a signal obtained from the photodetector 7, and the change in the amount of emitted light emitted from the laser light source 1 is fed back to control to keep the emitted light amount of the laser light source 1 constant. it can.
  • the beam splitter 4 reflects a part of linearly polarized red light or infrared light (for example, about 10%) emitted from the two-wavelength laser light source 20, and the condenser lens 6 reflects the red light reflected from the beam splitter 4.
  • Light or infrared light may be guided to the photodetector 7. Then, a change in the amount of emitted light from the two-wavelength laser light source 20 is monitored using a signal obtained from the photodetector 7, and the change in the amount of emitted light emitted from the two-wavelength laser light source 20 is fed back to keep the emitted light amount from the two-wavelength laser light source 20 constant. Can also be done.
  • FIG. 22 is a diagram showing a schematic configuration of the optical disc apparatus according to Embodiment 4 of the present invention.
  • the optical disc device 100 includes a drive device 101, an electric circuit 102, an optical head device 103, and a motor 104.
  • the optical disc 9 (or the optical disc 10 or the optical disc 11) is placed on the turntable 105, fixed between the turntable 105 and the clamper 106, and rotated by the motor 104.
  • the optical head device 103 is the optical head device described in the third embodiment.
  • the driving device 101 coarsely moves the optical head device 103 to the position of the track on the optical disk 9 where desired information exists.
  • the optical head device 103 sends a focus error (focus error) signal or a tracking error signal to the electric circuit 102 in accordance with the positional relationship with the optical disk 9.
  • the electric circuit 102 sends a lens drive signal for finely moving the composite objective lens to the optical head device 103 in response to the focus error signal or the tracking error signal.
  • the optical head device 103 performs focus control or tracking control on the optical disc 9 by a lens drive signal, reads information from the optical disc 9, writes information on the optical disc 9 (records), and receives information from the optical disc 9. Or erase.
  • the optical disc device 100 according to the fourth embodiment includes the optical head device 103 described above in the third embodiment. Therefore, it is possible to cope with a plurality of optical discs having different recording densities by a small, inexpensive and light optical head device configured by a single small number of parts.
  • the computer, the optical disc player, the optical disc recorder, and the like provided with the optical disc apparatus 100 according to the fourth embodiment can record or reproduce information stably on different types of optical discs, and thus have an effect that it can be used for a wide range of applications.
  • These devices that exchange light with a recording medium using light are collectively referred to as an optical information device.
  • an optical information device that exchange light with a recording medium using light.
  • the fifth embodiment shows an embodiment of a computer provided with the optical disc device 100 of the fourth embodiment.
  • FIG. 23 is a diagram showing a schematic configuration of a computer according to Embodiment 5 of the present invention.
  • a computer 110 includes an optical disk device 100, an input device 112, a calculation device 111, and an output device 113.
  • the optical disc apparatus 100 is the optical disc apparatus described in the fourth embodiment.
  • the input device 112 is configured with a keyboard, a mouse, a touch panel, or the like, and receives input of information.
  • the arithmetic device 111 is composed of a central processing unit (CPU) or the like, and performs an operation based on information input from the input device 112 or information read from the optical disc device 100.
  • the output device 113 is configured by a display device such as a CRT (Cathode Ray Tube) monitor or a liquid crystal display device, and displays information such as a result calculated by the calculation device 111.
  • the output device 113 may be configured by a printer, and may print information such as a result calculated by the calculation device 111.
  • the arithmetic device 111 processes information recorded on the optical disc device 100 and / or information reproduced from the optical disc device 100.
  • the computer 110 corresponds to an example of an optical information device
  • the arithmetic device 111 corresponds to an example of an information processing unit.
  • the sixth embodiment shows an embodiment of an optical disc player including the optical disc device 100 of the fourth embodiment.
  • FIG. 24 is a diagram showing a schematic configuration of the optical disc player according to Embodiment 6 of the present invention.
  • the optical disc player 120 includes an optical disc device 100 and a decoder 121.
  • the optical disc apparatus 100 is the optical disc apparatus described in the fourth embodiment.
  • the decoder 121 converts the information signal obtained from the optical disc apparatus 100 into image information.
  • the decoder 121 processes information recorded on the optical disc apparatus 100 and / or information reproduced from the optical disc apparatus 100.
  • the optical disc player 120 having this configuration can be used as a car navigation system by combining with a GPS (Global Positioning System).
  • the optical disc player 120 may be configured to include a display device 122 for displaying information such as a liquid crystal display device.
  • the optical disc player 120 corresponds to an example of an optical information device
  • the decoder 121 corresponds to an example of an information processing unit.
  • the seventh embodiment shows an embodiment of an optical disc recorder provided with the optical disc device 100 of the fourth embodiment.
  • FIG. 25 is a diagram showing a schematic configuration of the optical disc recorder according to Embodiment 7 of the present invention.
  • the optical disk recorder 130 includes an optical disk device 100 and an encoder 132.
  • the optical disc apparatus 100 is the optical disc apparatus described in the fourth embodiment.
  • the encoder 132 converts the image information into an information signal to be recorded on the optical disc by the optical disc apparatus 100.
  • the encoder 132 processes information recorded on the optical disc device 100 and / or information reproduced from the optical disc device 100.
  • the optical disk recorder 130 includes a decoder 121 that converts an information signal obtained from the optical disk device 100 into image information, so that information already recorded on the optical disk can be reproduced.
  • the optical disk recorder 130 may include an output device 113 that outputs information.
  • the output device 113 includes a display device such as a CRT monitor or a liquid crystal display device, and displays the image information converted by the decoder 121.
  • the output device 113 may be configured with a printer.
  • the optical disk recorder 130 corresponds to an example of an optical information device
  • the encoder 132 corresponds to an example of an information processing unit.
  • the eighth embodiment shows an embodiment of an optical disk server provided with the optical disk device 100 of the fourth embodiment.
  • FIG. 26 is a diagram showing a schematic configuration of the optical disk server in the eighth embodiment of the present invention.
  • the optical disk server 140 includes an optical disk device 100 and an input / output unit 141.
  • the optical disc apparatus 100 is the optical disc apparatus described in the fourth embodiment.
  • the input / output unit 141 captures information to be recorded on the optical disc apparatus 100 and outputs information read by the optical disc apparatus 100 to the outside.
  • the input / output unit 141 is connected to the network 142 by wire or wireless.
  • the input / output unit 141 transmits / receives information to / from a plurality of devices such as a computer, a telephone, or a TV tuner via the network 142.
  • the optical disk server 140 can be used as an information server shared by the plurality of devices.
  • the optical disk server 140 may include an output device 113 that outputs information.
  • the output device 113 includes a display device such as a CRT monitor or a liquid crystal display device, and displays information.
  • the output device 113 may be configured with a printer.
  • the optical disk server 140 may include an input device 112 for inputting information such as a keyboard, a mouse, or a touch panel.
  • the optical disk server 140 may include a changer 143 for taking a plurality of optical disks into and out of the optical disk device 100. Thereby, a lot of information can be recorded and accumulated.
  • the optical disk server 140 corresponds to an example of an optical information device
  • the input / output unit 141 corresponds to an example of an information processing unit.
  • FIGS. 23 to 26 show the output device 113 and the display device 122.
  • the computer 110, the optical disc player 120, the optical disc recorder 130, and the optical disc server 140 have output terminals, respectively. Needless to say, there may be a product form that includes the output device 113 or the display device 122. 24 and 25 do not illustrate an input device, the optical disc player 120 and the optical disc recorder 130 may include an input device for inputting information such as a keyboard, a touch panel, a mouse, or a remote control device. Good. Conversely, in Embodiments 5 to 8 described above, the computer 110, the optical disc player 120, the optical disc recorder 130, and the optical disc server 140 may be provided with only an input terminal without including an input device.
  • a compound lens according to one aspect of the present invention includes a diffractive structure that diffracts light and a refracting surface that refracts the light, and the diffractive structure has (M ⁇ 1) stages of M levels (M is 3).
  • the step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light and an optical path difference less than one wavelength to red light.
  • the flat portions of the diffractive structure are inclined in the direction in which the stairs are raised.
  • the diffractive structure diffracts light and the refracting surface refracts light.
  • the diffractive structure has a step-like cross section in which one period is (M ⁇ 1) steps and M levels (M is a natural number of 3 or more).
  • the step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light and adds an optical path difference less than one wavelength to red light.
  • Each flat part of the diffractive structure is inclined in the direction in which the stairs are raised.
  • each flat portion of the diffractive structure is inclined in the direction in which the stairs are raised, the diffraction efficiency of a desired order of diffracted light can be further improved, and generation of unnecessary order of diffracted light is suppressed. be able to.
  • the plurality of flat portions of the diffractive structure are higher toward the optical axis, and each flat portion has an end portion closer to the optical axis at a side farther from the optical axis. It is preferable to incline so that it may become higher than an edge part.
  • the plurality of flat portions of the diffractive structure are higher toward the optical axis.
  • Each flat portion is inclined so that the end near the optical axis is higher than the end far from the optical axis, so that the diffraction efficiency of diffracted light of a desired order is further improved with respect to blue light. And generation of unnecessary orders of diffracted light can be suppressed.
  • the optical path difference given by the step d1 to the blue light having the wavelength ⁇ 1 is a constant Cd1 ⁇ ⁇ 1, and the width C1 for inclining the flat portion is 0 ⁇ C1 ⁇ (Cd1-1). ) Is preferably satisfied.
  • the width C1 for inclining the flat portion so as to satisfy 0 ⁇ C1 ⁇ (Cd1-1)
  • the diffraction efficiency of the diffracted light of a desired order with respect to the blue light having the wavelength ⁇ 1 is increased.
  • the generation of diffracted light of an unnecessary order can be suppressed.
  • the plurality of flat portions of the diffractive structure are higher toward the optical axis, and each flat portion has an end portion closer to the optical axis at a side farther from the optical axis. It is preferable to incline so that it may become lower than an edge part.
  • the plurality of flat portions of the diffractive structure are higher toward the optical axis.
  • Each flat portion is inclined so that the end portion closer to the optical axis is lower than the end portion far from the optical axis, so that the diffraction efficiency of diffracted light of a desired order is further improved with respect to red light. And generation of unnecessary orders of diffracted light can be suppressed.
  • the optical path difference given by the step d1 to the red light having the wavelength ⁇ 2 is a constant Cd2 ⁇ ⁇ 2, and the width C2 for inclining the flat portion is 0 ⁇ C2 ⁇ (1-Cd2). ) Is preferably satisfied.
  • the width C2 for inclining the flat portion so as to satisfy 0 ⁇ C2 ⁇ (1-Cd2), the diffraction efficiency of the desired order diffracted light with respect to the red light having the wavelength ⁇ 2 is increased. The generation of diffracted light of an unnecessary order can be suppressed.
  • the optical path difference given by the step d1 to the infrared light having the wavelength ⁇ 3 is a constant Cd3 ⁇ ⁇ 3, and the width C2 for inclining the flat portion is 0 ⁇ C2 ⁇ (1 ⁇ It is preferable to satisfy Cd3).
  • the width C2 for inclining the flat portion so as to satisfy 0 ⁇ C2 ⁇ (1-Cd3), the diffraction efficiency of the desired order diffracted light with respect to the infrared light having the wavelength ⁇ 3. Can be further improved, and generation of unnecessary orders of diffracted light can be suppressed.
  • a compound lens according to another aspect of the present invention includes a diffractive structure that diffracts light and a refracting surface that refracts the light, and the diffractive structure has (M ⁇ 1) stages of M levels (M is a period). A natural number of 3 or more), and the width of each flat portion of the diffractive structure is W1, W2,..., W (M ⁇ 1) and W1 in order from the lowest to the highest.
  • W1 and the width WM are narrower than the width W2 to the width W (M ⁇ 1).
  • the diffractive structure diffracts light and the refracting surface refracts light.
  • the diffractive structure has a step-like cross section in which one period is (M ⁇ 1) steps and M levels (M is a natural number of 3 or more). Then, when the width of each flat portion of the diffractive structure is W1, W2,..., W (M ⁇ 1) and WM in order from the lowest to the highest, the width W1 and the width WM are: It is narrower than the width W2 to the width W (M-1).
  • the width of each flat portion of the diffractive structure is W1, W2,..., W (M ⁇ 1) and WM in order from the lowest to the highest
  • the width W1 and the width WM are: Since it is narrower than the width W2 to the width W (M-1), the diffraction efficiency can be further improved in consideration of the shape of the cutting tool used for producing the mold.
  • the step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light, and adds an optical path difference less than one wavelength to red light. It is preferable that the wavefront converting action given to the red light is a reverse action compared to the wavefront converting action given to the blue light by the diffractive structure.
  • the wavefront converting action that the diffractive structure gives to the red light is the reverse of the wavefront converting action that the diffractive structure gives to the blue light.
  • the diffraction order of the blue light with respect to the red light When the positive and negative are opposite, the minimum pitch of the diffractive structure necessary for exhibiting the aberration correction effect between wavelengths and the effect of moving the focal position can be widened, and the diffractive structure can be easily manufactured.
  • the compound lens has at least two diffractive regions formed concentrically around the optical axis of light incident on the compound lens, and among the at least two diffractive regions,
  • the diffractive structure having a stepped cross section is formed in a diffractive region other than the outermost diffractive region, and the step d1 of the diffractive structure gives an optical path difference of approximately 1.25 wavelengths to blue light
  • the diffractive structure is a three-step, four-level step-like shape having a height of 0, 1, 2, and 3 times the step d1 in order from the outer peripheral side of the diffractive structure to the optical axis side within one period. It preferably has a cross section.
  • the composite lens has at least two diffraction regions formed concentrically around the optical axis of light incident on the composite lens.
  • a diffraction structure having a stepped cross section is formed in a diffraction region other than the outermost diffraction region among the at least two diffraction regions.
  • the step d1 of the diffractive structure gives an optical path difference of approximately 1.25 wavelengths to blue light.
  • the diffractive structure is a three-step, four-level step-like cross section having a height of 0 times, 1 time, 2 times and 3 times the step d1 in order from the outer peripheral side of the diffractive structure to the optical axis side within one period.
  • “1.25 wavelength” includes “substantially 1.25 wavelength”.
  • the step d1 of the diffractive structure gives an optical path difference of approximately 1.25 wavelengths to the blue light, so that the phase modulation amount for the blue light changes substantially by ⁇ / 2 per step, and the optical path length The difference changes by +1/4 with respect to the wavelength of blue light for each stage.
  • the phase changes by 2 ⁇ , so that the diffraction efficiency of the + 1st order diffracted light generated from a one-period diffraction structure can be maximized.
  • the numerical aperture at which the blue light having the wavelength ⁇ 1 is collected through the base material having the thickness t1 is set so that the red light having the wavelength ⁇ 2 is collected through the base material having the thickness t2 larger than the thickness t1. It is preferable that the numerical aperture is larger than the lighted numerical aperture.
  • the numerical aperture at which the blue light having the wavelength ⁇ 1 is collected through the base material having the thickness t1 is such that the red light having the wavelength ⁇ 2 is condensed through the base material having the thickness t2 larger than the thickness t1. Since it is larger than the numerical aperture, it is possible to increase the recording density of a recording medium that records or reproduces information using blue light.
  • the step d1 of the diffractive structure adds an optical path difference longer than one wavelength to the blue light, adds an optical path difference less than one wavelength to the red light, and adds to the infrared light.
  • the wavefront conversion effect that the diffraction structure gives to the red light and the infrared light by adding an optical path difference of less than one wavelength is the reverse of the wavefront conversion action that the diffraction structure gives to the blue light.
  • the wavefront converting action that the diffractive structure gives to red light and infrared light is the opposite action compared to the wavefront converting action that the diffractive structure gives to blue light.
  • the minimum pitch of the diffractive structure necessary to exhibit the aberration correction effect between wavelengths and the effect of moving the focal position can be widened, It can be easily manufactured.
  • the diffractive structure is integrally formed on the refracting surface, and the refractive index nc of the element material of the compound lens is blue light of wavelength ⁇ 1, red light of wavelength ⁇ 2, and wavelength ⁇ 3. It is substantially the same as infrared light, and (J ⁇ ⁇ 1), (K ⁇ ⁇ 2), and (L ⁇ ⁇ 3) are substantially equal (J, K, and L are natural numbers, and J> M> K > L), the step d1 of the diffractive structure preferably adds an optical path difference of (J ⁇ ⁇ 1) / M to the blue light having the wavelength ⁇ 1.
  • the diffractive structure is integrally formed on the refractive surface.
  • the refractive index nc of the element material of the compound lens is substantially the same for blue light having a wavelength ⁇ 1, red light having a wavelength ⁇ 2, and infrared light having a wavelength ⁇ 3.
  • (J ⁇ ⁇ 1), (K ⁇ ⁇ 2), and (L ⁇ ⁇ 3) are substantially equal (J, K, and L are natural numbers, and J> M> K> L), and the step d1 of the diffractive structure is An optical path difference of (J ⁇ ⁇ 1) / M is added to blue light of wavelength ⁇ 1.
  • the case of “same” and “equal” includes the case of substantially the same and the case of being substantially equal.
  • an optical path difference of (J ⁇ ⁇ 1) / M can be added to the blue light having the wavelength ⁇ 1 by the step d1 of the diffractive structure.
  • the diffractive structure is integrally formed on the refracting surface, and the refractive index nc of the element material of the compound lens is blue light of wavelength ⁇ 1, red light of wavelength ⁇ 2, and wavelength ⁇ 3. It is substantially the same as infrared light, and (J ⁇ ⁇ 1), (K ⁇ ⁇ 2), and (L ⁇ ⁇ 3) are substantially equal (J, K, and L are natural numbers, and J> M> K > L), the level difference d1 of the diffraction structure is (J ⁇ ⁇ 1) / (nc-1), (K ⁇ ⁇ 2) / (nc-1), and (L ⁇ ⁇ 3) / (nc-1). It is preferable that the value is in a range between the minimum value and the maximum value among the values obtained by multiplying (1 / M) by each.
  • the diffractive structure is integrally formed on the refractive surface.
  • the refractive index nc of the element material of the compound lens is substantially the same for blue light having a wavelength ⁇ 1, red light having a wavelength ⁇ 2, and infrared light having a wavelength ⁇ 3.
  • (J ⁇ ⁇ 1), (K ⁇ ⁇ 2), and (L ⁇ ⁇ 3) are substantially equal (J, K, and L are natural numbers, and J> M> K> L), and the step d1 of the diffractive structure is (J ⁇ ⁇ 1) / (nc-1), (K ⁇ ⁇ 2) / (nc-1), and (L ⁇ ⁇ 3) / (nc-1) multiplied by (1 / M), respectively.
  • the case of “same” and “equal” includes the case of substantially the same and the case of being substantially equal.
  • the level difference d1 of the diffractive structure is (J ⁇ ⁇ 1) / (nc-1), (K ⁇ ⁇ 2) / (nc-1), and (L ⁇ ⁇ 3) / (nc-1), respectively (1 / M)
  • a diffractive structure which is a value within the range between the minimum value and the maximum value among the multiplied values and is compatible with blue light of wavelength ⁇ 1, red light of wavelength ⁇ 2, and infrared light of wavelength ⁇ 3. Can be formed.
  • the diffractive structure is integrally formed on the refracting surface, and the refractive index of the element material of the compound lens is blue light of wavelength ⁇ 1, red light of wavelength ⁇ 2, and red light of wavelength ⁇ 3.
  • they are nb, nr and ni, respectively (J ⁇ ⁇ 1) / (nb-1), (K ⁇ ⁇ 2) / (nr-1) and (L ⁇ ⁇ 3) / (ni-1 ) Is substantially equal (J, K, and L are natural numbers, J> M> K> L), and the step d1 of the diffractive structure is (J ⁇ ⁇ 1) / (nb ⁇ 1) and (K ⁇ ⁇ 2) / (nr-1) and (L ⁇ ⁇ 3) / (ni-1) multiplied by (1 / M), and the value is within the range between the minimum value and the maximum value. Is preferred.
  • the diffractive structure is integrally formed on the refractive surface.
  • the refractive index of the element material of the compound lens is nb, nr, and ni for blue light of wavelength ⁇ 1, red light of wavelength ⁇ 2, and infrared light of wavelength ⁇ 3, respectively.
  • the level difference d1 of the diffractive structure is (1 / x-1) / (nb-1), (Kx ⁇ 2) / (nr-1), and (Lx ⁇ 3) / (ni-1) (1 / M)
  • a diffractive structure that is compatible with the blue light having the wavelength ⁇ 1, the red light having the wavelength ⁇ 2, and the infrared light having the wavelength ⁇ 3 because the value is within the range between the minimum value and the maximum value among the multiplied values. can be formed.
  • the compound lens includes a first region including the optical axis of the light, a second region formed in a direction away from the optical axis than the first region, and the first lens.
  • a third region formed in a direction away from the optical axis than the second region, the diffractive structure is formed in the first region, and the first region has a thickness of blue light.
  • the compound lens includes the first region including the optical axis of light, the second region formed in a direction farther from the optical axis than the first region, and the light from the second region. And a third region formed in a direction away from the axis.
  • a diffraction structure having a stepped cross section is formed in the first region. In the first region, blue light is condensed on the recording surface of the first recording medium through the base material having the thickness t1, and the red light is passed through the base material having the thickness t2 larger than the thickness t1. And the infrared light is condensed on the recording surface of the third recording medium through the base material having a thickness t3 larger than the thickness t2.
  • the second region condenses blue light on the recording surface of the first recording medium through the base material having a thickness of t1, and records the red light through the base material of thickness t2 on the recording surface of the second recording medium. Focus it up.
  • blue light is condensed on the recording surface of the first recording medium through the base material having a thickness t1.
  • the first region is shared by blue light, red light, and infrared light
  • the second region is shared by blue light and red light
  • the third region is used only for blue light. Therefore, it is possible to realize compatibility of light of three wavelengths having different numerical apertures.
  • the diffractive structure is integrally formed on the refractive surface.
  • the diffractive structure is integrally formed on the refracting surface, the number of parts can be reduced and downsizing can be realized.
  • An optical head device has a first light source that emits blue light, a second light source that emits red light, and a thickness t1 of blue light emitted from the first light source.
  • the red light emitted from the second light source is condensed on the recording surface of the first recording medium through the base material of the first recording medium, and recorded on the second recording medium through the base material having a thickness t2 larger than the thickness t1.
  • the compound lens according to claim 1 which collects light on a surface, and the blue light reflected on the recording surface of the first recording medium or the reflection on the recording surface of the second recording medium.
  • a photodetector that receives the red light and outputs an electrical signal according to the amount of received light.
  • the first light source emits blue light.
  • the second light source emits red light.
  • the compound lens condenses the blue light emitted from the first light source onto the recording surface of the first recording medium through the substrate having the thickness t1, and the red light emitted from the second light source has the thickness t1.
  • Light is condensed on the recording surface of the second recording medium through the base material having a larger thickness t2.
  • the photodetector receives blue light reflected on the recording surface of the first recording medium or red light reflected on the recording surface of the second recording medium, and outputs an electrical signal according to the amount of received light. Therefore, the above compound lens can be applied to an optical head device.
  • An optical head device includes a first light source that emits blue light, a second light source that emits red light, a third light source that emits infrared light, and the first light source.
  • the blue light emitted from the light source is condensed on the recording surface of the first recording medium through the substrate having the thickness t1, and the red light emitted from the second light source is thicker than the thickness t1.
  • the third recording medium is focused on the recording surface of the second recording medium through the base material of t2, and the infrared light emitted from the third light source passes through the base material of thickness t3 larger than the thickness t2.
  • the first light source emits blue light.
  • the second light source emits red light.
  • the third light source emits infrared light.
  • the compound lens condenses the blue light emitted from the first light source onto the recording surface of the first recording medium through the substrate having the thickness t1, and the red light emitted from the second light source has the thickness t1.
  • the infrared light emitted from the third light source is condensed on the recording surface of the second recording medium through the base material having the larger thickness t2, and the third light passes through the base material having the thickness t3 larger than the thickness t2. Condensed on the recording surface of the recording medium.
  • the photodetector is blue light reflected on the recording surface of the first recording medium, red light reflected on the recording surface of the second recording medium, or infrared light reflected on the recording surface of the third recording medium. Is received, and an electrical signal is output according to the amount of received light. Therefore, the above compound lens can be applied to an optical head device.
  • An optical disc apparatus provides a control for controlling the motor and the optical head device based on an electric signal obtained from the optical head device, a motor for rotating the optical disc, and the optical head device. A part. According to this configuration, the above optical head device can be applied to an optical disk device.
  • An optical information device includes the above-described optical disc device and an information processing unit that processes information recorded on the optical disc device and / or information reproduced from the optical disc device. According to this configuration, the optical disk device described above can be applied to an optical information device.
  • the compound lens according to the present invention can further improve the diffraction efficiency, is useful as an objective lens used in an optical head device, and can be applied to uses such as a lens used in optical communication.

Abstract

A compound objective lens is provided with a diffraction structure for diffracting light and a refraction surface for refracting light, the diffraction structure having a step-shaped cross-section with one cycle at an M level of M-1 (M being a natural number equal to or greater than 3) and a step (d1) adding an optical path difference longer than a wavelength 1 in relation to blue light and an optical path difference less than the wavelength 1 in relation to red light, each flat section of the diffraction structure being inclined upward.

Description

複合レンズ、光ヘッド装置、光ディスク装置及び光情報装置Compound lens, optical head device, optical disk device, and optical information device
 本発明は、例えば光ディスクなどの光情報媒体上に光を集光させる複合レンズ、光情報媒体に対して情報を記録、再生又は消去する光ヘッド装置、当該光ヘッド装置を備える光ディスク装置、及び当該光ディスク装置を備える光情報装置に関するものである。 The present invention relates to a compound lens that condenses light on an optical information medium such as an optical disk, an optical head device that records, reproduces, or erases information on the optical information medium, an optical disk device including the optical head device, and The present invention relates to an optical information device including an optical disk device.
 第1世代の光ディスクといえるコンパクトディスク(CD)では、波長λ3を有する赤外光(波長λ3は780nm~820nm)と、開口数(NA)が0.45の対物レンズとが使用され、光ディスクの基材厚は1.2mmである。第2世代のDVDでは、波長λ2を有する赤色光(波長λ2は630nm~680nm)と、NAが0.6の対物レンズとが使用され、光ディスクの基材厚は0.6mmである。そしてさらに、第3世代の光ディスクでは、波長λ1を有する青色光(波長λ1は390nm~415nm)と、NAが0.85の対物レンズとが使用され、光ディスクの基材厚は0.1mmである。 In a compact disc (CD) that can be said to be a first generation optical disc, infrared light having a wavelength λ3 (wavelength λ3 is 780 nm to 820 nm) and an objective lens having a numerical aperture (NA) of 0.45 are used. The substrate thickness is 1.2 mm. In the second generation DVD, red light having a wavelength λ2 (wavelength λ2 is 630 nm to 680 nm) and an objective lens having an NA of 0.6 are used, and the substrate thickness of the optical disk is 0.6 mm. Furthermore, in the third generation optical disc, blue light having a wavelength λ1 (wavelength λ1 is 390 nm to 415 nm) and an objective lens having an NA of 0.85 are used, and the substrate thickness of the optical disc is 0.1 mm. .
 なお、本明細書中では、基板厚み(又は基材厚)とは、光ディスク(又は光情報媒体)の光ビームが入射する面から、情報が記録されている情報記録面までの厚みを指す。 In this specification, the substrate thickness (or base material thickness) refers to the thickness from the surface on which an optical beam (or optical information medium) is incident to the information recording surface on which information is recorded.
 高密度光ディスクの基板厚みは薄くされている。経済性及び装置の占有スペースの観点から、上記基材厚又は記録密度の異なる光ディスクに情報を記録又は再生することができる光情報装置が望まれる。そのためには、基板の厚みがそれぞれ異なる光ディスク上に回折限界まで光ビームを集光することのできる集光光学系を備えた光ヘッド装置が必要である。 The substrate thickness of the high density optical disc is reduced. From the viewpoint of economy and space occupied by the apparatus, an optical information apparatus capable of recording or reproducing information on optical disks having different substrate thicknesses or recording densities is desired. For this purpose, an optical head device including a condensing optical system capable of condensing a light beam up to the diffraction limit on optical disks having different substrate thicknesses is required.
 また、基材の厚い光ディスクに対して情報を記録又は再生する場合には、光ディスクの表面より奥の方にある情報記録面上に光ビームを集光させる必要がある。そのため、焦点距離はより長くすることが望ましい。 In addition, when recording or reproducing information on an optical disk having a thick base material, it is necessary to focus the light beam on an information recording surface located deeper than the surface of the optical disk. Therefore, it is desirable to make the focal length longer.
 従来、基材厚が0.6mmであり波長λ2の赤色光に対応する光ディスクと、基材厚が0.1mmであり波長λ1の青色光に対応する光ディスクとの互換再生又は互換記録を目的とする構成が知られている。 Conventionally, for the purpose of compatible reproduction or compatible recording between an optical disc corresponding to red light having a substrate thickness of 0.6 mm and a wavelength λ2 and an optical disc corresponding to blue light having a substrate thickness of 0.1 mm and a wavelength λ1. The structure to do is known.
 第1の従来例としては、屈折型の対物レンズと回折素子とを組み合わせる構成が知られている。例えば、特許文献1において、NAが大きい対物レンズを用いて高密度光ディスクに情報を記録又は再生する光ヘッド装置は、DVDなどの従来型光ディスクにも情報を記録又は再生するために、階段状断面形状を有する格子を備えるホログラムを含む。階段状断面形状の1つの段差は、単位段差の整数倍であり、その単位段差は、波長λ1の第1光ビームに対して略1.25波長の光路差を与える。 As a first conventional example, a configuration in which a refractive objective lens and a diffraction element are combined is known. For example, in Patent Document 1, an optical head device that records or reproduces information on a high-density optical disk using an objective lens having a large NA has a stepped cross section for recording or reproducing information on a conventional optical disk such as a DVD. Includes a hologram with a grating having a shape. One step of the stepped cross-sectional shape is an integral multiple of the unit step, and the unit step gives an optical path difference of approximately 1.25 wavelengths to the first light beam having the wavelength λ1.
 図27(A)は、第1の従来例における格子の基本形状を示す断面図であり、図27(B)は、図27(A)に示す格子において波長λ1の青色光ビームに対する位相変調量を示す図であり、図27(C)は、図27(A)に示す格子において波長λ2の赤色光ビームに対する位相変調量を示す図である。 FIG. 27A is a cross-sectional view showing the basic shape of the grating in the first conventional example, and FIG. 27B shows the phase modulation amount for the blue light beam of wavelength λ1 in the grating shown in FIG. FIG. 27C is a diagram showing the amount of phase modulation with respect to the red light beam having the wavelength λ 2 in the grating shown in FIG. 27A.
 波長λ1は390nm~415nmである。図27(A)に示すように、格子の一周期は、回折素子の外周側から光軸側に向かって順に段差d1の0倍、1倍、2倍及び3倍の高さの階段状である。図27(B)に示すように、格子は、青色光ビームに対して、格子形状と同じ方向に位相が変化して凸レンズ作用を発揮する。また、図27(C)に示すように、格子は、赤色光ビームに対して、格子形状とは逆の方向に位相が変化して凹レンズ作用を発揮する。このため、青色光ビームに対して、屈折レンズの色収差を補正することができるという効果がある。また、赤色光ビームに対して、凹レンズ作用により、ワーキングディスタンス(対物レンズの表面と光ディスクの表面との間隔)を大きくできるという効果がある。 The wavelength λ1 is 390 nm to 415 nm. As shown in FIG. 27A, one period of the grating is a stepped shape having heights 0, 1, 2, and 3 times higher than the step d1 in order from the outer peripheral side of the diffraction element to the optical axis side. is there. As shown in FIG. 27B, the grating changes its phase in the same direction as the grating shape with respect to the blue light beam and exhibits a convex lens action. Further, as shown in FIG. 27C, the grating changes its phase in the direction opposite to the grating shape with respect to the red light beam and exhibits a concave lens action. For this reason, the chromatic aberration of the refractive lens can be corrected with respect to the blue light beam. In addition, the working distance (the distance between the surface of the objective lens and the surface of the optical disk) can be increased by the concave lens action for the red light beam.
 第2の従来例としては、波長λ3を有する赤外光(波長λ3は780nm~820nm)を出射する光源と対物レンズとの間にリレーレンズを配置することによって、赤外光とNAが0.45の対物レンズとが使用され基材厚が1.2mmである第1世代の光ディスクとの互換も実現する構成が知られている(例えば、特許文献2参照)。 As a second conventional example, by arranging a relay lens between a light source that emits infrared light having a wavelength λ3 (wavelength λ3 is 780 nm to 820 nm) and an objective lens, the infrared light and the NA are set to be 0.1. A configuration is also known in which 45 objective lenses are used and compatibility with a first generation optical disc having a substrate thickness of 1.2 mm is realized (see, for example, Patent Document 2).
 第3の従来例としては、第1の従来例を発展させ、波長λ3を有する赤外光(波長λ3は780nm~820nm)に対する回折効率を向上させることにより、基材厚が1.2mmの第1世代の光ディスクとの互換をより簡素に実現する構成が知られている(例えば、特許文献3参照)。 As a third conventional example, the first conventional example is developed to improve the diffraction efficiency with respect to infrared light having a wavelength λ3 (wavelength λ3 is 780 nm to 820 nm). There is known a configuration that more easily realizes compatibility with a first generation optical disc (see, for example, Patent Document 3).
 しかしながら、第1~第3の従来例の構成では、実際に回折構造を作製する際に発生する作成上の誤差への対処法が十分に示されておらず、より高い回折効率を得るための工夫の余地が残されているという課題を有していた。 However, in the configurations of the first to third conventional examples, a method for dealing with a production error that occurs when a diffractive structure is actually produced is not sufficiently shown, and a higher diffraction efficiency is obtained. There was a problem that there was room for ingenuity.
特開2004-071134号公報JP 2004-071134 A 特開2004-281034号公報JP 2004-281034 A 国際公開第2009/016847号International Publication No. 2009/016847
 本発明は、上記の問題を解決するためになされたもので、回折効率をより向上させることができる複合レンズ、光ヘッド装置、光ディスク装置及び光情報装置を提供することを目的とするものである。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a compound lens, an optical head device, an optical disk device, and an optical information device that can further improve the diffraction efficiency. .
 本発明の一局面に係る複合レンズは、光を回折させる回折構造と、前記光を屈折させる屈折面とを備え、前記回折構造は、一周期が(M-1)段Mレベル(Mは3以上の自然数)の階段状の断面を有し、前記回折構造の段差d1は、青色光に対して1波長より長い光路差を付加し、赤色光に対して1波長未満の光路差を付加し、前記回折構造の各平坦部は、階段が高くなる方向に傾斜している。 A compound lens according to one aspect of the present invention includes a diffractive structure that diffracts light and a refracting surface that refracts the light, and the diffractive structure has (M−1) stages of M levels (M is 3). The step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light and an optical path difference less than one wavelength to red light. The flat portions of the diffractive structure are inclined in the direction in which the stairs are raised.
 この構成によれば、回折構造は光を回折させ、屈折面は光を屈折させる。回折構造は、一周期が(M-1)段Mレベル(Mは3以上の自然数)の階段状の断面を有している。そして、回折構造の段差d1は、青色光に対して1波長より長い光路差を付加し、赤色光に対して1波長未満の光路差を付加する。回折構造の各平坦部は、階段が高くなる方向に傾斜している。 According to this configuration, the diffractive structure diffracts light and the refracting surface refracts light. The diffractive structure has a step-like cross section in which one period is (M−1) steps and M levels (M is a natural number of 3 or more). The step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light and adds an optical path difference less than one wavelength to red light. Each flat part of the diffractive structure is inclined in the direction in which the stairs are raised.
 本発明によれば、回折構造の各平坦部は、階段が高くなる方向又はその逆の方向に傾斜しているので、所望の波長の所望の次数の回折光の回折効率をより向上させることができ、不要な次数の回折光の発生を抑制することができる。 According to the present invention, each flat portion of the diffractive structure is inclined in the direction in which the staircase becomes higher or vice versa, so that the diffraction efficiency of the desired order diffracted light of the desired wavelength can be further improved. The generation of unnecessary orders of diffracted light can be suppressed.
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
本発明の実施の形態1における複合対物レンズの構成を示す断面図である。It is sectional drawing which shows the structure of the compound objective lens in Embodiment 1 of this invention. 図1に示す複合対物レンズを上側から見た平面図である。It is the top view which looked at the compound objective lens shown in Drawing 1 from the upper part. (A)は、本発明の実施の形態1において、基材上に形成した回折構造の物質的な形状を示す図であり、(B)は、本発明の実施の形態1において、青色光に対する位相変調量を示す図であり、(C)は、本発明の実施の形態1において、赤色光に対する位相変調量を示す図である。(A) is a figure which shows the material shape of the diffraction structure formed on the base material in Embodiment 1 of this invention, (B) is with respect to blue light in Embodiment 1 of this invention. It is a figure which shows a phase modulation amount, (C) is a figure which shows the phase modulation amount with respect to red light in Embodiment 1 of this invention. 本発明の実施の形態1における複合対物レンズを作製するための金型の作製方法について説明するための図である。It is a figure for demonstrating the manufacturing method of the metal mold | die for manufacturing the compound objective lens in Embodiment 1 of this invention. 本発明の実施の形態1における複合対物レンズを作製するための金型の作製方法について説明するための図である。It is a figure for demonstrating the manufacturing method of the metal mold | die for manufacturing the compound objective lens in Embodiment 1 of this invention. 本発明の実施の形態1における複合対物レンズを作製するための金型の作製方法について説明するための図である。It is a figure for demonstrating the manufacturing method of the metal mold | die for manufacturing the compound objective lens in Embodiment 1 of this invention. 本発明の実施の形態1における複合対物レンズを作製するための金型の作製方法について説明するための図である。It is a figure for demonstrating the manufacturing method of the metal mold | die for manufacturing the compound objective lens in Embodiment 1 of this invention. 本発明の実施の形態1における複合対物レンズを作製するための金型の作製方法について説明するための図である。It is a figure for demonstrating the manufacturing method of the metal mold | die for manufacturing the compound objective lens in Embodiment 1 of this invention. 本発明の実施の形態1における回折構造を示す図である。It is a figure which shows the diffraction structure in Embodiment 1 of this invention. 本発明の実施の形態1の第1の変形例における回折構造を示す図である。It is a figure which shows the diffraction structure in the 1st modification of Embodiment 1 of this invention. 本発明の実施の形態1の第2の変形例における回折構造を示す図である。It is a figure which shows the diffraction structure in the 2nd modification of Embodiment 1 of this invention. 本発明の実施の形態1の第3の変形例における回折構造を示す図である。It is a figure which shows the diffraction structure in the 3rd modification of Embodiment 1 of this invention. 本発明の実施の形態1の第4の変形例における回折構造を示す図である。It is a figure which shows the diffraction structure in the 4th modification of Embodiment 1 of this invention. 本発明の実施の形態1の第5の変形例における回折構造を示す図である。It is a figure which shows the diffraction structure in the 5th modification of Embodiment 1 of this invention. 本発明の実施の形態1の第6の変形例における複合対物レンズを示す図である。It is a figure which shows the compound objective lens in the 6th modification of Embodiment 1 of this invention. (A)は、本発明の実施の形態2において、基材上に形成した回折構造の物質的な形状を示す図であり、(B)は、本発明の実施の形態2において、青色光に対する位相変調量を示す図であり、(C)は、本発明の実施の形態2において、赤色光に対する位相変調量を示す図である。(A) is a figure which shows the material shape of the diffraction structure formed on the base material in Embodiment 2 of this invention, (B) is with respect to blue light in Embodiment 2 of this invention. It is a figure which shows a phase modulation amount, (C) is a figure which shows the phase modulation amount with respect to red light in Embodiment 2 of this invention. 本発明の実施の形態2において、1周期が5段6レベルの階段状の断面を有する回折構造を示す図である。In Embodiment 2 of this invention, it is a figure which shows the diffractive structure which has a step-shaped cross section with 5 steps 6 levels in 1 period. 図17に示す回折構造の平坦部の傾き幅と回折効率計算結果との関係を示す図である。It is a figure which shows the relationship between the inclination width of the flat part of the diffraction structure shown in FIG. 17, and a diffraction efficiency calculation result. (A)は、本発明の実施の形態2の変形例において、基材上に形成した回折構造の物質的な形状を示す図であり、(B)は、本発明の実施の形態2の変形例において、青色光に対する位相変調量を示す図であり、(C)は、本発明の実施の形態2の変形例において、赤色光に対する位相変調量を示す図である。(A) is a figure which shows the material shape of the diffraction structure formed on the base material in the modification of Embodiment 2 of this invention, (B) is a deformation | transformation of Embodiment 2 of this invention. In the example, it is a figure which shows the phase modulation amount with respect to blue light, (C) is a figure which shows the phase modulation amount with respect to red light in the modification of Embodiment 2 of this invention. 本発明の実施の形態3における光ヘッド装置の概略構成を示す図である。It is a figure which shows schematic structure of the optical head apparatus in Embodiment 3 of this invention. 本発明の実施の形態3における光ヘッド装置の複合対物レンズ近傍を拡大した図である。It is the figure which expanded the compound objective lens vicinity of the optical head apparatus in Embodiment 3 of this invention. 本発明の実施の形態4における光ディスク装置の概略構成を示す図である。It is a figure which shows schematic structure of the optical disk apparatus in Embodiment 4 of this invention. 本発明の実施の形態5におけるコンピュータの概略構成を示す図である。It is a figure which shows schematic structure of the computer in Embodiment 5 of this invention. 本発明の実施の形態6における光ディスクプレーヤの概略構成を示す図である。It is a figure which shows schematic structure of the optical disk player in Embodiment 6 of this invention. 本発明の実施の形態7における光ディスクレコーダの概略構成を示す図である。It is a figure which shows schematic structure of the optical disk recorder in Embodiment 7 of this invention. 本発明の実施の形態8における光ディスクサーバの概略構成を示す図である。It is a figure which shows schematic structure of the optical disk server in Embodiment 8 of this invention. (A)は、第1の従来例における格子の基本形状を示す断面図であり、(B)は、図27(A)に示す格子において波長λ1の青色光ビームに対する位相変調量を示す図であり、(C)は、図27(A)に示す格子において波長λ2の赤色光ビームに対する位相変調量を示す図である。(A) is sectional drawing which shows the basic shape of the grating | lattice in a 1st prior art example, (B) is a figure which shows the phase modulation amount with respect to the blue light beam of wavelength (lambda) 1 in the grating | lattice shown to FIG. 27 (A). FIG. 27C is a diagram showing the amount of phase modulation with respect to the red light beam having the wavelength λ2 in the grating shown in FIG.
 以下本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments are examples embodying the present invention, and do not limit the technical scope of the present invention.
 (実施の形態1)
 図1は、本発明の実施の形態1における複合対物レンズの構成を示す断面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a configuration of a composite objective lens according to Embodiment 1 of the present invention.
 図1は、複合対物レンズ201の断面を模式的に示している。図1において、複合対物レンズ201の一方の面には、回折構造201Aが作製されている。複合対物レンズ201は、光を回折させる回折構造201Aと、光を屈折させる屈折面201Bとを備える。なお、回折構造201Aは、屈折面201B上に一体に形成される。複合対物レンズ201は、光軸を中心とした同心円状に内周側と外周側との2つの領域202,203に分割されている。 FIG. 1 schematically shows a cross section of the composite objective lens 201. In FIG. 1, a diffractive structure 201 </ b> A is formed on one surface of a composite objective lens 201. The compound objective lens 201 includes a diffractive structure 201A that diffracts light and a refracting surface 201B that refracts light. The diffractive structure 201A is integrally formed on the refractive surface 201B. The compound objective lens 201 is divided into two regions 202 and 203 on the inner and outer peripheral sides concentrically around the optical axis.
 図2は、図1に示す複合対物レンズを上側から見た平面図である。複合対物レンズ201は、内周側に形成される第1の領域202と、外周側に形成される第2の領域203とを含む。第1の領域202と第2の領域203との境界204A及び複合対物レンズ201を通過する光の有効範囲204Dは、共に仮想的な設計上の境界線である。 FIG. 2 is a plan view of the compound objective lens shown in FIG. 1 as viewed from above. The compound objective lens 201 includes a first region 202 formed on the inner peripheral side and a second region 203 formed on the outer peripheral side. The boundary 204A between the first region 202 and the second region 203 and the effective range 204D of light passing through the composite objective lens 201 are both virtual design boundaries.
 第2の領域203は、青色光を約0.1mmの基材を通して収束させる。特許文献1~3にも開示されているように、第2の領域203には、鋸歯形状の断面を有する回折構造、又は鋸歯形状を近似した階段形状を有する回折構造が形成される。第2の領域203は、入射した青色光が約0.1mmの基材を通して収束するよう設計する。また、第2の領域203は、赤色光を収束させないので、約0.1mmの基材を有する第1の記録媒体専用領域である。 The second region 203 converges blue light through a substrate of about 0.1 mm. As disclosed in Patent Documents 1 to 3, the second region 203 is formed with a diffractive structure having a sawtooth-shaped cross section or a diffractive structure having a stepped shape approximating the sawtooth shape. The second region 203 is designed so that the incident blue light converges through a substrate of about 0.1 mm. The second region 203 is a region dedicated to the first recording medium having a base of about 0.1 mm because it does not converge red light.
 第1の領域202は、青色光を約0.1mmの基材を通して第1の記録媒体の記録面上へ収束させる。第1の領域202は、青色光を、第2の領域203を通った青色光と同じ位置に収束させる。また、第1の領域202は、赤色光を約0.6mmの基材を通して収束させる。すなわち、第1の領域202は、第1の記録媒体と、約0.6mmの基材を有する第2の記録媒体との共用の領域である。 The first region 202 converges blue light on the recording surface of the first recording medium through a base of about 0.1 mm. The first region 202 converges the blue light at the same position as the blue light that has passed through the second region 203. The first region 202 also focuses red light through a substrate of about 0.6 mm. That is, the first area 202 is an area shared by the first recording medium and the second recording medium having a base of about 0.6 mm.
 なお、波長λ1の青色光が厚さt1の基材を通して集光される開口数は、波長λ2の赤色光が厚さt1よりも大きい厚さt2の基材を通して集光される開口数よりも大きい。 The numerical aperture at which the blue light having the wavelength λ1 is condensed through the base material having the thickness t1 is larger than the numerical aperture at which the red light having the wavelength λ2 is condensed through the base material having the thickness t2 larger than the thickness t1. large.
 図3(A)~図3(C)は、第1の領域202に作製する回折構造の基本概念について説明するための図である。図3(A)は、本発明の実施の形態1において、基材上に形成した回折構造の物質的な形状を示す図である。図3(B)は、本発明の実施の形態1において、青色光に対する位相変調量を示す図である。なお、図3(B)に示す縦方向の青色光に対する位相変調量は、1波長を単位として示している。図3(C)は、本発明の実施の形態1において、赤色光に対する位相変調量を示す図である。なお、図3(C)に示す縦方向の赤色光に対する位相変調量は、1波長を単位として示している。 FIGS. 3A to 3C are diagrams for explaining the basic concept of the diffractive structure formed in the first region 202. FIG. FIG. 3A is a diagram showing a material shape of a diffractive structure formed on a substrate in Embodiment 1 of the present invention. FIG. 3B is a diagram showing a phase modulation amount for blue light in the first embodiment of the present invention. Note that the phase modulation amount for the blue light in the vertical direction shown in FIG. 3B is shown in units of one wavelength. FIG. 3C is a diagram showing the amount of phase modulation with respect to red light in the first embodiment of the present invention. Note that the phase modulation amount for the red light in the vertical direction shown in FIG. 3C is shown in units of one wavelength.
 図3(A)において、縦方向は、基材の光軸方向の厚さ又は高さを示している。青色光ビームに対する素子材料の屈折率をnbとする。素子材料が、例えば、BK7である場合、屈折率nbは、1.5302である。また、素子材料がポリオレフィン系の樹脂である場合、屈折率nbは、1.522程度である。 3 (A), the vertical direction indicates the thickness or height of the base material in the optical axis direction. The refractive index of the element material for the blue light beam is nb. For example, when the element material is BK7, the refractive index nb is 1.5302. When the element material is a polyolefin resin, the refractive index nb is about 1.522.
 1つの段差d1は、青色光ビームに対して光路長差が約1.25波長、すなわち位相差が約2π+π/2になるように設計される。例えば、単位段差d1は、基材が石英であれば、d1=λ1/(nb-1)×1.25=0.96μmとなる。また、単位段差d1は、基材が樹脂であれば、d1=0.97μmとなる。 One step d1 is designed so that the optical path length difference is about 1.25 wavelengths with respect to the blue light beam, that is, the phase difference is about 2π + π / 2. For example, the unit level difference d1 is d1 = λ1 / (nb−1) × 1.25 = 0.96 μm when the base material is quartz. Further, the unit level difference d1 is d1 = 0.97 μm if the base material is resin.
 図3(A)は、単位段差d1によって生じる光路差が、青色光の波長λ1の1.25倍であることを示している。単位段差d1によって生じる光路差は、段差/(nb-1)で表される。そのため、1.25という値は、段差/(nb-1)をλ1によって除算した値である。図3(B)及び図3(C)では、単に、光路差/波長という形によって表記しているが、整数部分を差し引いたことを除けば同様の意味を表している。 FIG. 3 (A) shows that the optical path difference caused by the unit step d1 is 1.25 times the wavelength λ1 of the blue light. The optical path difference caused by the unit step d1 is represented by a step / (nb-1). Therefore, the value of 1.25 is a value obtained by dividing the step / (nb-1) by λ1. In FIG. 3B and FIG. 3C, they are simply expressed in the form of optical path difference / wavelength, but they have the same meaning except that the integer part is subtracted.
 回折構造の高さ(レベル)が段差d1の整数倍であれば、回折構造の形状による青色光に対する位相変調量は一段あたり2π+π/2となる。言い換えると、各段差の与える位相変調量は2π+π/2の整数倍となる。これは実質的に、図3(B)に示すように位相変調量が一段あたりπ/2であることを意味する。 If the height (level) of the diffractive structure is an integral multiple of the level difference d1, the phase modulation amount for blue light due to the shape of the diffractive structure is 2π + π / 2 per step. In other words, the phase modulation amount given by each step is an integral multiple of 2π + π / 2. This substantially means that the phase modulation amount is π / 2 per stage as shown in FIG.
 一方、赤色光ビームに対する素子材料の屈折率をnrとすると、素子材料が、例えばBK7である場合、屈折率nrは、1.5142である。また、素子材料が、ポリオレフィン系の樹脂である場合、屈折率nrは、1.505程度である。段差d1によって生じる赤色光ビームに対する光路長差は、基材が石英及び樹脂のいずれの場合でも、d1×(nr-1)/λ2≒0.75となる。すなわち、光路長差は、波長λ2の約3/4倍となり、位相変調量は、一段あたり約-π/2となる。 On the other hand, when the refractive index of the element material for the red light beam is nr, the refractive index nr is 1.5142 when the element material is, for example, BK7. When the element material is a polyolefin resin, the refractive index nr is about 1.505. The optical path length difference with respect to the red light beam caused by the step d1 is d1 × (nr−1) /λ2≈0.75 regardless of whether the base material is quartz or resin. That is, the optical path length difference is about 3/4 times the wavelength λ2, and the phase modulation amount is about −π / 2 per stage.
 図3(A)に示すように、回折構造の高さが1つの段差d1の整数倍にされ、回折構造は、階段状の断面を有する。この場合、回折構造の段を1段ずつ重ねると、図3(B)に示すように、青色光ビームに対して位相変調量が一段あたり実質的にはπ/2ずつ変化する。すなわち、光路長差は、一段毎に波長λ1に対して+1/4ずつ変化する。階段が4段形成されることにより、位相は2π変化し、一周期の回折構造から発生する+1次回折光の回折効率は、スカラー計算により約80%と計算される。したがって、+1次回折光の回折効率は、回折次数の中で、最も強くなる。 As shown in FIG. 3A, the height of the diffractive structure is made an integral multiple of one step d1, and the diffractive structure has a stepped cross section. In this case, when the stages of the diffractive structure are stacked one by one, as shown in FIG. 3B, the phase modulation amount changes substantially by π / 2 per stage with respect to the blue light beam. That is, the optical path length difference changes by +1/4 with respect to the wavelength λ1 for each stage. By forming four steps, the phase changes by 2π, and the diffraction efficiency of the + 1st order diffracted light generated from the diffraction structure of one period is calculated to be about 80% by scalar calculation. Therefore, the diffraction efficiency of the + 1st order diffracted light is the strongest among the diffraction orders.
 赤色光ビームに対しては、回折構造の段を1段ずつ重ねると、図3(C)に示すように、位相変調量が一段あたり実質的には-π/2ずつ変化する。すなわち、光路長差は、一段毎に波長λ2に対して-1/4ずつ変化する。階段が4段形成されることにより、位相は2π変化し、一周期の回折構造から発生する-1次回折光の回折効率は、スカラー計算により約80%と計算される。したがって、-1次回折光の回折効率は、回折次数の中で、最も強くなる。なお、回折次数が負であることは、回折次数が正の場合とは逆方向に光が曲がることを意味している。 For the red light beam, when the steps of the diffractive structure are stacked one by one, the amount of phase modulation changes substantially by −π / 2 per step as shown in FIG. That is, the optical path length difference changes by −1/4 with respect to the wavelength λ2 for each stage. When the four steps are formed, the phase changes by 2π, and the diffraction efficiency of the −1st order diffracted light generated from the diffraction structure of one period is calculated to be about 80% by scalar calculation. Therefore, the diffraction efficiency of the −1st order diffracted light is the strongest among the diffraction orders. Note that the fact that the diffraction order is negative means that light is bent in the opposite direction to the case where the diffraction order is positive.
 上記のように、回折構造の段差d1は、青色光に対して1波長より長い光路差を付加し、赤色光に対して1波長未満の光路差を付加する。回折構造が赤色光に与える波面変換作用は、回折構造が青色光に与える波面変換作用に比べて逆の作用である。 As described above, the step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light and an optical path difference less than one wavelength to red light. The wavefront converting action that the diffractive structure gives to red light is the opposite action compared to the wavefront converting action that the diffractive structure gives to blue light.
 また、回折構造は、複合対物レンズに入射する光の光軸の周りに同心円状に形成される少なくとも2つの回折領域を有している。少なくとも2つの回折領域の内、最も外側ではない回折領域には、階段状の断面を有する回折構造が形成される。回折構造の段差d1は、青色光に対して略1.25波長の光路差を与える。回折構造は、一周期内において、回折構造の外周側から光軸側に向かって順に段差d1の0倍、1倍、2倍及び3倍の高さの3段4レベルの階段状の断面を有する。 Further, the diffractive structure has at least two diffractive regions formed concentrically around the optical axis of the light incident on the compound objective lens. A diffraction structure having a stepped cross section is formed in the diffraction area that is not the outermost of the at least two diffraction areas. The step d1 of the diffractive structure gives an optical path difference of approximately 1.25 wavelengths to blue light. The diffractive structure is a three-step, four-level step-like cross section having a height of 0 times, 1 time, 2 times and 3 times the step d1 in order from the outer peripheral side of the diffractive structure to the optical axis side within one period. Have.
 このような回折構造において、赤色光に対して青色光の回折次数は、正と負とが逆である。従って、波長間の収差補正効果及び焦点位置の移動効果を発揮させるために必要な回折構造の最小ピッチを広くでき、回折構造を容易に製作することができ、計算通りの回折光量を得やすくすることができる。また、回折構造が、青色光ビームに対して凸レンズとして作用する場合、回折作用の色分散は、屈折作用とは逆方向である。そのため、屈折型の凸レンズである対物レンズと回折構造とを組み合わせたときに、数nm以内の波長変化に対する色収差を相殺して低減でき、とりわけ焦点距離の波長依存性を相殺して低減できる。その上、上記の回折構造は、赤色光に対して凹レンズ作用を発揮するので、作動距離を長くすることができる。 In such a diffractive structure, the order of diffraction of blue light is opposite to that of positive and negative with respect to red light. Accordingly, the minimum pitch of the diffractive structure necessary for exhibiting the aberration correction effect between wavelengths and the effect of moving the focal position can be widened, the diffractive structure can be easily manufactured, and the diffracted light quantity as calculated can be easily obtained. be able to. Further, when the diffractive structure acts as a convex lens with respect to the blue light beam, the chromatic dispersion of the diffractive action is in the opposite direction to the refractive action. Therefore, when the objective lens which is a refractive convex lens and the diffractive structure are combined, chromatic aberration with respect to a wavelength change within several nm can be canceled and reduced, and in particular, the wavelength dependence of the focal length can be canceled and reduced. In addition, the diffractive structure described above exhibits a concave lens action for red light, so that the working distance can be increased.
 なお、図3(A)では、階段幅の比は、1:1:1:1としている。周囲の格子ピッチが一定の場合は、階段幅の比は、そのまま物理長の比になる。しかしながら、周囲の格子ピッチが急激に変化しているときはその変化に合わせて、階段幅の比を変化させることが望ましい。階段幅は、格子ピッチに対する割合であるので、格子ピッチと同様の幅変化が必要である。入射光と回折光との位相差が1/4になる毎に階段一段を形成する場合に、周囲の格子ピッチの変化に合わせて、階段幅の比を変化させることにより4レベルの階段幅の比が1:1:1:1になり、格子ピッチに占める割合が等しいと言える。このような格子ピッチに占める割合を本願では簡単に階段の幅又は階段幅と呼ぶ。1ピッチの中の階段幅が等しく、位相変調量が一段あたり実質的に同じ量ずつ変化する構成にする。これにより、所望の波長に対する所望の次数の回折効率をより高くすることができる。また、後から述べる実施の形態でもこの点は同じである。 In FIG. 3A, the step width ratio is 1: 1: 1: 1. When the surrounding grid pitch is constant, the ratio of the staircase width is the ratio of the physical length as it is. However, when the surrounding grid pitch is changing rapidly, it is desirable to change the step width ratio in accordance with the change. Since the staircase width is a ratio to the lattice pitch, the same width change as the lattice pitch is necessary. When one step is formed each time the phase difference between the incident light and the diffracted light becomes ¼, the ratio of the step width is changed by changing the ratio of the step widths according to the change of the surrounding grating pitch. The ratio is 1: 1: 1: 1, and it can be said that the ratio of the lattice pitch is equal. In this application, such a ratio of the lattice pitch is simply referred to as a staircase width or a staircase width. The step width in one pitch is equal, and the phase modulation amount is changed by substantially the same amount per step. Thereby, the diffraction efficiency of the desired order with respect to a desired wavelength can be made higher. This also applies to the embodiments described later.
 このような回折構造が、図1及び図2に示す第1の領域202に形成される。図1に示すように複合対物レンズの屈折作用を起こす曲面上に回折構造が形成されると、その曲面を基準として図3(A)のような階段形状が形成されることになる。回折構造は、模式的には図1の第1の領域202に示す形状のようになる。 Such a diffractive structure is formed in the first region 202 shown in FIGS. As shown in FIG. 1, when a diffractive structure is formed on a curved surface that causes the refractive action of the compound objective lens, a staircase shape as shown in FIG. 3A is formed on the basis of the curved surface. The diffractive structure typically has a shape shown in the first region 202 of FIG.
 このような形状の回折構造を有する複合対物レンズを成形によって作製するための金型の作製方法について図4~図8を用いて説明する。図4~図8は、本発明の実施の形態1における複合対物レンズを作製するための金型の作製方法について説明するための図である。可視光を回折させる回折格子(回折構造)の周期は、数ミクロンから数十ミクロンであり、回折構造の凹凸の深さは、サブミクロンから数ミクロン程度である。このような構造を持つ金型を形成するためにはダイヤモンドのような特に固い材質で作られた切削バイトを用いることが望ましい。 A method for producing a mold for producing a composite objective lens having such a diffractive structure by molding will be described with reference to FIGS. 4 to 8 are diagrams for explaining a mold manufacturing method for manufacturing the composite objective lens according to Embodiment 1 of the present invention. The period of the diffraction grating (diffraction structure) that diffracts visible light is several microns to several tens of microns, and the depth of the unevenness of the diffraction structure is about submicron to several microns. In order to form a mold having such a structure, it is desirable to use a cutting tool made of a particularly hard material such as diamond.
 しかし、例え切削バイトがダイヤモンド製であっても、細い針のような切削バイトでは金型を加工する際に折れてしまう可能性がある。そこで、図4に示すように、切削バイト211は、先端をできる限り細くし、根本側を太くした断面形状とすることが考えられる。先に説明したように、階段形状の回折構造では、1段の段差において青色光の1波長以上の光路差が不連続に起こる時に、波長の整数倍の光路長差、すなわち2πの整数倍の位相はないように見えることを利用している。従って、段差は可能な限り設計通りの形状を実現することが望ましい。この観点から、徐々に高さが変化する段差の形状を実現することを重視すると、図4に示すように、段差212に、光軸213に略平行な切削バイト211の面を当てるように加工することが望ましい。光軸213を中心として金型を回転させ、同心円状の格子溝が形成される。 However, even if the cutting tool is made of diamond, a cutting tool such as a thin needle may break when processing the mold. Therefore, as shown in FIG. 4, it is conceivable that the cutting tool 211 has a cross-sectional shape with the tip as thin as possible and the base side thickened. As described above, in a staircase-shaped diffraction structure, when an optical path difference of one wavelength or more of blue light occurs discontinuously at one step, an optical path length difference that is an integral multiple of the wavelength, that is, an integral multiple of 2π. We take advantage of the fact that there is no phase. Therefore, it is desirable to realize the shape of the step as much as possible. From this point of view, when emphasizing the realization of the shape of the step whose height gradually changes, as shown in FIG. 4, the step 212 is processed so that the surface of the cutting bit 211 is substantially parallel to the optical axis 213. It is desirable to do. The mold is rotated around the optical axis 213 to form concentric lattice grooves.
 このとき、切削バイト211の段差212に接する面に対向する面は光軸213に対して傾斜している。そのため、図5に示すように、階段形状の最も高いレベルと、最も低いレベルとの間に挟まれた段差214は、光軸213に対して平行にすることはできない。切削バイト211の先端が金型の最も凹んだ部分に達する前に、金型の最も突出した部分に切削バイト211の傾斜部が当たる。そのため、光軸213方向の位置をこのまま維持し、光軸213側に切削バイト211を移動させると、金型を削りすぎることになる。金型の最も突出した部分に切削バイト211の傾斜部が当たる位置で切削を止めると、作製される金型は、図6に示す点線部分が削られることなく残る。このようにして作製された金型を用いて光学素子を成形した場合、図6に示す点線部分が小さくなる。その結果、光学素子(複合対物レンズ)表面に形成した階段形状の最も高い部分のみの平坦部の幅が狭くなる。 At this time, the surface facing the surface contacting the step 212 of the cutting bit 211 is inclined with respect to the optical axis 213. Therefore, as shown in FIG. 5, the step 214 sandwiched between the highest level and the lowest level of the staircase shape cannot be parallel to the optical axis 213. Before the tip of the cutting bit 211 reaches the most recessed portion of the mold, the inclined portion of the cutting bit 211 hits the most protruding portion of the mold. Therefore, if the position in the direction of the optical axis 213 is maintained as it is and the cutting tool 211 is moved to the optical axis 213 side, the die will be shaved excessively. When cutting is stopped at a position where the inclined portion of the cutting tool 211 hits the most protruding portion of the mold, the manufactured mold remains without the dotted line portion shown in FIG. 6 being cut. When an optical element is molded using the mold thus produced, the dotted line portion shown in FIG. 6 is reduced. As a result, the width of the flat portion of only the highest step-shaped portion formed on the surface of the optical element (composite objective lens) becomes narrow.
 ここで、1周期を構成する階段幅が全て等しくなるように設計し、位相変調量が一段あたり実質的には同じ量ずつ変化する構成にすることにより、所望の波長の所望の次数の回折効率はより高くなる。このような観点から考えて、発明者らは、図7に示すように、あえて金型の最も突出した部分も若干削ることを発明した。その結果、図8に示すように、最も高いレベルの平坦部の幅W4と、最も低いレベルの平坦部の幅W1とが、いずれも、他の平坦部の幅W2,W3より狭くなる。この場合、図6に示すように、一周期の階段形状の中で特定の平坦部の幅のみが狭くなる場合に比べて対称性が良く、所望の波長の所望の次数の回折効率がより高くなる。本実施の形態1における回折構造は、すべての階段幅を同じ幅にする設計において、作製方法の都合上平坦部の幅が狭くなる場合に、より高い回折効率を得るための工夫である。そのため、特開平5-232321に開示されているように、階段形状の設計段階から一周期を構成する階段幅を互いに異なるようにして回折効率を変える手法とは全く異なる工夫である。 Here, it is designed so that the step widths constituting one period are all equal, and the phase modulation amount is changed by substantially the same amount per step, so that the diffraction efficiency of the desired order of the desired wavelength is obtained. Will be higher. In view of such a viewpoint, the inventors have invented that the most protruding portion of the mold is slightly cut as shown in FIG. As a result, as shown in FIG. 8, the width W4 of the flat portion at the highest level and the width W1 of the flat portion at the lowest level are both narrower than the widths W2, W3 of the other flat portions. In this case, as shown in FIG. 6, the symmetry is better than the case where only the width of a specific flat portion is narrowed in a stepped shape of one cycle, and the diffraction efficiency of a desired order at a desired wavelength is higher. Become. The diffractive structure in the first embodiment is a device for obtaining higher diffraction efficiency when the width of the flat portion becomes narrow for the convenience of the manufacturing method in the design in which all the step widths are the same. Therefore, as disclosed in Japanese Patent Application Laid-Open No. 5-232321, the method is completely different from the method of changing the diffraction efficiency by making the step widths constituting one period different from the step of designing the step shape.
 図3に示した階段形状の構成を発展させ、波長λ3を有する赤外光(波長λ3は780nm~820nm)の回折効率も向上させる。これにより、第1の記録媒体及び第2の記録媒体に加え、基材厚が1.2mmの第1世代の光ディスク(第3の記録媒体)との互換にも、上記の回折構造と同じ構成を適用でき、より簡素な光学系構成で実現できる。 3 is developed to improve the diffraction efficiency of infrared light having a wavelength λ3 (wavelength λ3 is 780 nm to 820 nm). Accordingly, in addition to the first recording medium and the second recording medium, the same structure as the above-described diffraction structure is used for compatibility with a first generation optical disc (third recording medium) having a substrate thickness of 1.2 mm. And can be realized with a simpler optical system configuration.
 回折構造は、階段状の断面を有している。複合対物レンズの素子材の屈折率は、波長λ1の青色光と波長λ2の赤色光と波長λ3の赤外光とに対して、それぞれnb、nr及びniであり、(J×λ1)/(nb-1)と(K×λ2)/(nr-1)と(L×λ3)/(ni-1)とは略等しい(J、K及びLは自然数であり、J>M>K>Lである)。回折構造の段差d1は、(J×λ1)/(nb-1)と(K×λ2)/(nr-1)と(L×λ3)/(ni-1)とをそれぞれ(1/M)倍した値のうちの最小値と最大値との間の範囲内の値である。 The diffractive structure has a stepped cross section. The refractive index of the element material of the compound objective lens is nb, nr, and ni for blue light with wavelength λ1, red light with wavelength λ2, and infrared light with wavelength λ3, respectively (J × λ1) / ( nb-1), (K × λ2) / (nr-1), and (L × λ3) / (ni-1) are substantially equal (J, K, and L are natural numbers, and J> M> K> L Is). The step d1 of the diffractive structure is (J × λ1) / (nb-1), (K × λ2) / (nr-1), and (L × λ3) / (ni-1), respectively (1 / M). It is a value within the range between the minimum value and the maximum value among the multiplied values.
 なお、屈折率nb、屈折率nr及び屈折率niが略等しいと見なせる場合には、屈折率nb、屈折率nr及び屈折率niの平均値を屈折率ncとしてもよい。このとき、複合対物レンズの素子材の屈折率ncは、波長λ1の青色光と波長λ2の赤色光と波長λ3の赤外光とに対して、略同じであり、(J×λ1)と(K×λ2)と(L×λ3)とは略等しい(J、K及びLは自然数であり、J>M>K>Lである)。回折構造の段差d1は、(J×λ1)/(nc-1)と(K×λ2)/(nc-1)と(L×λ3)/(nc-1)とをそれぞれ(1/M)倍した値のうちの最小値と最大値との間の範囲内の値である。 When the refractive index nb, the refractive index nr, and the refractive index ni can be regarded as substantially equal, the average value of the refractive index nb, the refractive index nr, and the refractive index ni may be used as the refractive index nc. At this time, the refractive index nc of the element material of the composite objective lens is substantially the same for the blue light having the wavelength λ1, the red light having the wavelength λ2, and the infrared light having the wavelength λ3, and (J × λ1) and ( K × λ2) and (L × λ3) are substantially equal (J, K, and L are natural numbers, and J> M> K> L). The step d1 of the diffractive structure is (J × λ1) / (nc-1), (K × λ2) / (nc-1), and (L × λ3) / (nc-1), respectively (1 / M). It is a value within the range between the minimum value and the maximum value among the multiplied values.
 回折構造の段差d1は、波長λ1の青色光に対して(J×λ1)/Mの光路長差を付加し、波長λ2の赤色光に対して(K×λ2)/Mの光路差(または光路長差ともいう)を付加し、波長λ3の赤外光に対して(L×λ3)/Mの光路長差を付加する。 The step d1 of the diffractive structure adds an optical path length difference of (J × λ1) / M to blue light having a wavelength λ1 and an optical path difference of (K × λ2) / M to red light having a wavelength λ2 (or (Also referred to as an optical path length difference), and an optical path length difference of (L × λ3) / M is added to infrared light of wavelength λ3.
 図9は、本発明の実施の形態1における回折構造を示す図である。図9では、(J,K,L,M)=(10,6,5,8)に基づく1周期の回折構造の基本形状を示す。J/M≒1.25であるので、1つの段差は、青色光の波長λ1の約1.25倍の光路差に相当する。回折構造は、一周期が7段8レベルの階段状の断面を有している。青色光の+2次回折光、赤色光の-1次回折光、及び赤外光の-2次回折光の回折効率が、それぞれの波長において他の次数の回折光より大きくなる。これにより、青色光と赤色光との回折効率をそれぞれ同じ程度に高くすることができる。光学素子(複合対物レンズ)の表面に回折構造が形成される時に、階段形状の最も高いレベルの平坦部の幅W8と最も低いレベルの平坦部の幅W1とは、いずれも、他の平坦部の幅W2~W7より狭い。 FIG. 9 is a diagram showing a diffraction structure according to the first embodiment of the present invention. FIG. 9 shows a basic shape of a one-period diffraction structure based on (J, K, L, M) = (10, 6, 5, 8). Since J / M≈1.25, one step corresponds to an optical path difference of about 1.25 times the wavelength λ1 of blue light. The diffractive structure has a step-like cross section in which one period is seven steps and eight levels. The diffraction efficiencies of the blue light + 2nd order diffracted light, the red light −1st order diffracted light, and the infrared light −2nd order diffracted light are larger than the other orders of diffracted light at the respective wavelengths. Thereby, the diffraction efficiencies of blue light and red light can be increased to the same extent. When the diffractive structure is formed on the surface of the optical element (compound objective lens), the width W8 of the highest level flat portion and the width W1 of the lowest level flat portion of the staircase shape are both other flat portions. Narrower than the width W2 to W7.
 図10は、本発明の実施の形態1の第1の変形例における回折構造を示す図である。図10では、(J,K,L,M)=(10,6,5,7)に基づく1周期の回折構造の基本形状を示す。J/M≒1.43であるので、1つの段差は、青色光の波長λ1の約1.43倍の光路差に相当する。回折構造は、一周期が6段7レベルの階段状の断面を有している。青色光の+3次回折光、赤色光の-1次回折光、及び赤外光の-2次回折光の回折効率が、それぞれの波長において他の次数の回折光より大きくなる。特に、本構成では、赤外光の回折効率を高くすることができる。光学素子(複合対物レンズ)の表面に回折構造が形成される時に、階段形状の最も高いレベルの平坦部の幅W7と最も低いレベルの平坦部の幅W1とは、いずれも、他の平坦部の幅W2~W6より狭い。 FIG. 10 is a diagram showing a diffractive structure in the first modification of the first embodiment of the present invention. FIG. 10 shows a basic shape of a one-period diffraction structure based on (J, K, L, M) = (10, 6, 5, 7). Since J / M≈1.43, one step corresponds to an optical path difference of about 1.43 times the wavelength λ1 of blue light. The diffractive structure has a stepped cross section with one cycle having 6 steps and 7 levels. The diffraction efficiencies of the blue light + 3rd order diffracted light, the red light −1st order diffracted light, and the infrared light −2nd order diffracted light are larger than those of other orders of diffracted light at the respective wavelengths. In particular, in this configuration, the diffraction efficiency of infrared light can be increased. When the diffractive structure is formed on the surface of the optical element (compound objective lens), the width W7 of the highest level flat portion and the width W1 of the lowest level flat portion of the staircase shape are both other flat portions. Narrower than the width W2 to W6.
 図11は、本発明の実施の形態1の第2の変形例における回折構造を示す図である。図11では、(J,K,L,M)=(10,6,5,9)に基づく1周期の回折構造の基本形状を示す。J/M≒1.11であるので、1つの段差は、青色光の波長λ1の約1.11倍の光路差に相当する。回折構造は、一周期が8段9レベルの階段状の断面を有している。青色光の+1次回折光、赤色光の-3次回折光、及び赤外光の-4次回折光の回折効率が、それぞれの波長において他の次数の回折光より大きくなる。特に、本構成では、青色光の回折効率を高くすることができる。光学素子(複合対物レンズ)の表面に回折構造が形成される時に、階段形状の最も高いレベルの平坦部の幅W9と最も低いレベルの平坦部の幅W1とは、いずれも、他の平坦部の幅W2~W8より狭い。 FIG. 11 is a diagram showing a diffraction structure in the second modification of the first embodiment of the present invention. FIG. 11 shows a basic shape of a one-period diffraction structure based on (J, K, L, M) = (10, 6, 5, 9). Since J / M≈1.11, one step corresponds to an optical path difference of about 1.11 times the wavelength λ1 of blue light. The diffractive structure has a step-like cross section in which one period is eight steps and nine levels. The diffraction efficiencies of the + 1st order diffracted light of blue light, the 3rd order diffracted light of red light, and the 4th order diffracted light of infrared light are larger than those of other orders of diffracted light at the respective wavelengths. In particular, in this configuration, the diffraction efficiency of blue light can be increased. When the diffractive structure is formed on the surface of the optical element (compound objective lens), the width W9 of the highest level flat portion and the width W1 of the lowest level flat portion of the staircase shape are both other flat portions. Narrower than the width W2 to W8.
 図12は、本発明の実施の形態1の第3の変形例における回折構造を示す図である。図12では、(J,K,L,M)=(8,5,4,7)に基づく1周期の回折構造の基本形状を示す。J/M≒1.14であるので、1つの段差は、青色光の波長λ1の約1.14倍の光路差に相当する。回折構造は、一周期が6段7レベルの階段状の断面を有している。青色光の+1次回折光、赤色光の-2次回折光、及び赤外光の-3次回折光の回折効率が、それぞれの波長において他の次数の回折光より大きくなる。特に、本構成では、青色光の回折効率を高くすることができる。光学素子(複合対物レンズ)の表面に回折構造が形成される時に、階段形状の最も高いレベルの平坦部の幅W7と最も低いレベルの平坦部の幅W1とは、いずれも、他の平坦部の幅W2~W6より狭い。 FIG. 12 is a diagram showing a diffraction structure in the third modification of the first embodiment of the present invention. FIG. 12 shows a basic shape of a one-period diffraction structure based on (J, K, L, M) = (8, 5, 4, 7). Since J / M≈1.14, one step corresponds to an optical path difference of about 1.14 times the wavelength λ1 of blue light. The diffractive structure has a stepped cross section with one cycle having 6 steps and 7 levels. The diffraction efficiencies of the + 1st order diffracted light of blue light, the −2nd order diffracted light of red light, and the −3rd order diffracted light of infrared light are larger than those of other orders of diffracted light at the respective wavelengths. In particular, in this configuration, the diffraction efficiency of blue light can be increased. When the diffractive structure is formed on the surface of the optical element (compound objective lens), the width W7 of the highest level flat portion and the width W1 of the lowest level flat portion of the staircase shape are both other flat portions. Narrower than the width W2 to W6.
 図13は、本発明の実施の形態1の第4の変形例における回折構造を示す図である。図13では、(J,K,L,M)=(8,5,4,6)に基づく1周期の回折構造の基本形状を示す。J/M≒1.33であるので、1つの段差は、青色光の波長λ1の約1.33倍の光路差に相当する。回折構造は、一周期が5段6レベルの階段状の断面を有している。青色光の+2次回折光、赤色光の-1次回折光、及び赤外光の-2次回折光の回折効率が、それぞれの波長において他の次数の回折光より大きくなる。特に、本構成では、青色光の回折効率を高くすることができる。光学素子(複合対物レンズ)の表面に回折構造が形成される時に、階段形状の最も高いレベルの平坦部の幅W6と最も低いレベルの平坦部の幅W1とは、いずれも、他の平坦部の幅W2~W5より狭い。 FIG. 13 is a diagram showing a diffractive structure in the fourth modification of the first embodiment of the present invention. FIG. 13 shows a basic shape of a one-period diffraction structure based on (J, K, L, M) = (8, 5, 4, 6). Since J / M≈1.33, one step corresponds to an optical path difference of about 1.33 times the wavelength λ1 of blue light. The diffractive structure has a step-like cross section in which one period is five steps and six levels. The diffraction efficiencies of the blue light + 2nd order diffracted light, the red light −1st order diffracted light, and the infrared light −2nd order diffracted light are larger than the other orders of diffracted light at the respective wavelengths. In particular, in this configuration, the diffraction efficiency of blue light can be increased. When the diffractive structure is formed on the surface of the optical element (compound objective lens), the width W6 of the highest level flat portion and the width W1 of the lowest level flat portion of the staircase shape are both other flat portions. Narrower than the width W2 to W5.
 この5段6レベルの階段状の断面を有する回折構造について波動解析を行い、回折効率を計算した。回折構造の一周期の長さは、約20μmである。この時、図6に示す階段形状の最も高いレベルの平坦部の幅のみを他の平坦部の幅よりも狭くした場合、青色光の+2次回折光の回折効率は、約48.4%であった。これに対し、図8に示す階段形状の最も高いレベルの平坦部の幅と最も低いレベルの平坦部の幅とを、いずれも他の平坦部の幅より狭くした場合、青色光の+2次回折光の回折効率は、約50.9%であった。このように、図8に示す回折構造における青色光の回折効率は、図6に示す回折構造における青色光の回折効率より高かった。 The wave analysis was performed on the diffractive structure having a stepped cross section with 5 steps and 6 levels, and the diffraction efficiency was calculated. The length of one period of the diffractive structure is about 20 μm. At this time, when only the width of the flat portion of the highest level of the staircase shape shown in FIG. 6 is made narrower than the width of the other flat portions, the diffraction efficiency of the + 2nd order diffracted light of the blue light is about 48.4%. It was. On the other hand, if the width of the highest level flat portion and the width of the lowest level flat portion of the staircase shape shown in FIG. 8 are both narrower than the width of the other flat portions, the + second order diffracted light of blue light The diffraction efficiency of was about 50.9%. Thus, the diffraction efficiency of blue light in the diffraction structure shown in FIG. 8 was higher than the diffraction efficiency of blue light in the diffraction structure shown in FIG.
 また、図6に示す回折構造の場合、赤色光の-1次回折光の回折効率は、約59.3%であった。これに対し、図8に示す回折構造の場合、赤色光の-1次回折光の回折効率は、約62.8%であった。このように、図8に示す回折構造における赤色光の回折効率は、図6に示す回折構造における赤色光の回折効率より高かった。 Further, in the case of the diffraction structure shown in FIG. 6, the diffraction efficiency of the −1st order diffracted light of red light was about 59.3%. On the other hand, in the case of the diffractive structure shown in FIG. 8, the diffraction efficiency of the −1st order diffracted light of the red light was about 62.8%. Thus, the diffraction efficiency of red light in the diffraction structure shown in FIG. 8 was higher than the diffraction efficiency of red light in the diffraction structure shown in FIG.
 さらに、図6に示す回折構造の場合、赤外光の-2次回折光の回折効率は、約40.5%であった。これに対し、図8に示す回折構造の場合、赤外光の-2次回折光の回折効率は、約41.8%であった。このように、やはり、図8に示す回折構造における赤外光の回折効率は、図6に示す回折構造における赤外光の回折効率より高かった。このように、本実施の形態1における回折構造の効果は数値解析でも裏付けられた。 Furthermore, in the case of the diffractive structure shown in FIG. 6, the diffraction efficiency of the infrared second-order diffracted light was about 40.5%. On the other hand, in the case of the diffractive structure shown in FIG. 8, the diffraction efficiency of the second-order diffracted light of infrared light was about 41.8%. As described above, the diffraction efficiency of infrared light in the diffraction structure shown in FIG. 8 was higher than the diffraction efficiency of infrared light in the diffraction structure shown in FIG. As described above, the effect of the diffractive structure in the first embodiment was confirmed by numerical analysis.
 図14は、本発明の実施の形態1の第5の変形例における回折構造を示す図である。図14では、(J,K,L,M)=(6,4,3,5)に基づく1周期の回折構造の基本形状を示す。J/M≒1.2であるので、1つの段差は、青色光の波長λ1の約1.2倍の光路差に相当する。回折構造は、一周期が4段5レベルの階段状の断面を有している。青色光の+1次回折光、赤色光の-1次回折光、及び赤外光の-2次回折光の回折効率が、それぞれの波長において他の次数の回折光より大きくなる。特に、本構成では、レベル数が小さいため、波長が設計波長からずれた場合の回折効率の変化を特に小さくすることができる。光学素子(複合対物レンズ)の表面に回折構造が形成される時に、階段形状の最も高いレベルの平坦部の幅W5と最も低いレベルの平坦部の幅W1とは、いずれも、他の平坦部の幅W2~W4より狭い。 FIG. 14 is a diagram showing a diffractive structure in the fifth modification of the first embodiment of the present invention. FIG. 14 shows a basic shape of a one-period diffraction structure based on (J, K, L, M) = (6, 4, 3, 5). Since J / M≈1.2, one step corresponds to an optical path difference of about 1.2 times the wavelength λ1 of blue light. The diffractive structure has a step-like cross section in which one period has four steps and five levels. The diffraction efficiencies of the + 1st order diffracted light of blue light, the −1st order diffracted light of red light, and the −2nd order diffracted light of infrared light are larger than those of other orders of diffraction at each wavelength. In particular, in this configuration, since the number of levels is small, the change in diffraction efficiency when the wavelength deviates from the design wavelength can be particularly reduced. When the diffractive structure is formed on the surface of the optical element (compound objective lens), the width W5 of the highest level flat portion and the width W1 of the lowest level flat portion of the staircase shape are both other flat portions. Narrower than the width W2 to W4.
 このように、回折構造は、一周期が(M-1)段Mレベル(Mは3以上の自然数)の階段状の断面を有している。回折構造の各平坦部の幅を、高さの低い方から高い方へ順にW1、W2、・・・、W(M-1)及びWMとしたときに、幅W1及び幅WMは、幅W2~幅W(M-1)よりも狭い。また、第1の周期内の回折構造において最も高い平坦部の端部と、第1の周期に続く第2の周期内の回折構造において最も低い平坦部の端部とを接続する面は、光軸に対して所定の角度で傾いている。これにより、加工上の誤差に対しても回折効率の低下を抑え、高い回折効率を得ることができる。 Thus, the diffractive structure has a step-like cross section in which one period is (M−1) steps and M levels (M is a natural number of 3 or more). When the width of each flat portion of the diffractive structure is W1, W2,..., W (M−1) and WM in order from the lowest to the highest, the width W1 and the width WM are the width W2. Narrower than width W (M-1). Further, the surface connecting the end of the highest flat portion in the diffraction structure in the first period and the end of the lowest flat portion in the diffraction structure in the second period following the first period is an optical It is inclined at a predetermined angle with respect to the axis. Thereby, it is possible to suppress a decrease in diffraction efficiency even with respect to processing errors and to obtain high diffraction efficiency.
 図15は、本発明の実施の形態1の第6の変形例における複合対物レンズを示す図である。図15に示す複合対物レンズ221は、第1の記録媒体及び第2の記録媒体に加え、基材厚が1.2mmの第1世代の光ディスク(第3の記録媒体)の互換も実現できる回折構造を備える。図15は、複合対物レンズ221を、回折格子が形成されている側から見た図である。境界221A、境界221E及び有効範囲221Dは、仮想的な設計上の境界線である。 FIG. 15 is a diagram showing a compound objective lens according to the sixth modification of the first embodiment of the present invention. The composite objective lens 221 shown in FIG. 15 is a diffraction that can realize compatibility with a first generation optical disc (third recording medium) having a substrate thickness of 1.2 mm in addition to the first recording medium and the second recording medium. Provide structure. FIG. 15 is a view of the compound objective lens 221 as viewed from the side on which the diffraction grating is formed. The boundary 221A, the boundary 221E, and the effective range 221D are virtual design boundary lines.
 複合対物レンズ221は、光の光軸を含む第1の領域221Cと、第1の領域221Cよりも光軸から離れる方向に形成された第2の領域221Bと、第2の領域221Bよりも光軸から離れる方向に形成された第3の領域221Fとを含む。 The compound objective lens 221 includes a first region 221C including the optical axis of light, a second region 221B formed in a direction farther from the optical axis than the first region 221C, and light more than the second region 221B. And a third region 221F formed in a direction away from the axis.
 第3の領域221Fは、青色光を約0.1mmの基材を通して第1の記録媒体の記録面上へ収束させる。第3の領域221Fには、特許文献1~3にも開示されているように、鋸歯形状の回折構造、又は鋸歯形状を階段形状で近似した回折構造が形成される。第3の領域221Fに形成される回折構造は、青色光が入射したときに約0.1mmの基材を通して第1の記録媒体の記録面上へ収束するよう設計される。また、第3の領域221Fは、赤色光を収束させない。そのため、第3の領域221Fは、約0.1mmの基材を有する第1の記録媒体専用領域である。第3の領域221Fは、図2における第2の領域203と同じ領域である。 The third region 221F converges blue light on the recording surface of the first recording medium through the base material of about 0.1 mm. In the third region 221F, as disclosed in Patent Documents 1 to 3, a sawtooth-shaped diffractive structure or a diffractive structure in which the sawtooth shape is approximated by a staircase shape is formed. The diffractive structure formed in the third region 221F is designed to converge on the recording surface of the first recording medium through the base material of about 0.1 mm when blue light is incident. The third region 221F does not converge red light. Therefore, the third area 221F is a first recording medium dedicated area having a base of about 0.1 mm. The third region 221F is the same region as the second region 203 in FIG.
 第2の領域221Bは、青色光を約0.1mmの基材を通して第1の記録媒体の記録面上へ収束させる。第2の領域221Bは、青色光を、第3の領域221Fを通った青色光と同じ位置に収束させる。また、第2の領域221Bは、赤色光を約0.6mmの基材を通して第2の記録媒体の記録面上へ収束させる。すなわち、第2の領域221Bは、第1の記録媒体と、約0.6mmの基材を有する第2の記録媒体との共用の領域である。第2の領域221Bは、図2における第1の領域202と同じ領域である。 The second region 221B converges blue light on the recording surface of the first recording medium through the base material of about 0.1 mm. The second region 221B converges the blue light at the same position as the blue light that has passed through the third region 221F. In addition, the second region 221B converges red light on the recording surface of the second recording medium through the base material of about 0.6 mm. That is, the second area 221B is an area shared by the first recording medium and the second recording medium having a base material of about 0.6 mm. The second region 221B is the same region as the first region 202 in FIG.
 第1の領域221Cは、青色光を約0.1mmの基材を通して第1の記録媒体の記録面上へ収束させる。第1の領域221Cは、青色光を、第3の領域221F及び第2の領域221Bを通った青色光と同じ位置に収束させる。また、第1の領域221Cは、赤色光を約0.6mmの基材を通して第2の記録媒体の記録面上へ収束させる。第1の領域221Cは、赤色光を、第2の領域221Bを通った赤色光と同じ位置に収束させる。また、第1の領域221Cは、赤外光を約1.2mmの基材を通して第3の記録媒体の記録面上へ収束させる。すなわち、第1の領域221Cは、第1の記録媒体と第2の記録媒体と第3の記録媒体との共用の領域である。 The first region 221C converges blue light on the recording surface of the first recording medium through the base material of about 0.1 mm. The first region 221C converges the blue light at the same position as the blue light that has passed through the third region 221F and the second region 221B. The first region 221C converges red light on the recording surface of the second recording medium through the base material of about 0.6 mm. The first region 221C converges the red light at the same position as the red light that has passed through the second region 221B. The first region 221C converges infrared light on the recording surface of the third recording medium through the base material of about 1.2 mm. That is, the first area 221C is an area shared by the first recording medium, the second recording medium, and the third recording medium.
 上記のように、第1の領域221Cには、階段状の断面を有する回折構造が形成される。第1の領域221Cは、青色光を厚さt1の基材を通して光ディスクの記録面上へ集光させ、赤色光を厚さt1より大きい厚さt2の基材を通して光ディスクの記録面上へ集光させ、赤外光を厚さt2より大きい厚さt3の基材を通して光ディスクの記録面上へ集光させる。また、第2の領域221Bは、青色光を厚さt1の基材を通して光ディスクの記録面上へ集光させ、赤色光を厚さt2の基材を通して光ディスクの記録面上へ集光させる。また、第3の領域221Fは、青色光を厚さt1の基材を通して光ディスクの記録面上へ集光させる。 As described above, a diffraction structure having a stepped cross section is formed in the first region 221C. In the first region 221C, blue light is condensed on the recording surface of the optical disc through the base material having a thickness t1, and red light is condensed on the recording surface of the optical disc through a base material having a thickness t2 larger than the thickness t1. Infrared light is condensed on the recording surface of the optical disc through the base material having a thickness t3 larger than the thickness t2. In addition, the second region 221B condenses blue light on the recording surface of the optical disc through the base material having a thickness t1, and condenses red light on the recording surface of the optical disc through the base material of thickness t2. The third region 221F condenses blue light on the recording surface of the optical disc through the base material having a thickness t1.
 また、回折構造の段差d1は、青色光に対して1波長より長い光路差を付加し、赤色光に対して1波長未満の光路差を付加し、波長λ3の赤外光に対して1波長未満の光路差を付加する。回折構造が赤色光及び赤外光に与える波面変換作用は、回折構造が青色光に与える波面変換作用に比べて逆の作用である。 The step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light, adds an optical path difference of less than one wavelength to red light, and has one wavelength for infrared light having a wavelength λ3. Add less optical path difference. The wavefront conversion action that the diffractive structure gives to red light and infrared light is the opposite action compared to the wavefront conversion action that the diffractive structure gives to blue light.
 なお、上記において回折構造はすべて複合対物レンズ221の表面上に形成される場合について説明したが、回折構造を形成した回折素子と、屈折型のレンズとを組み合わせてもよい。すなわち、回折構造201Aは、屈折面201Bと別に形成されてもよい。 In the above description, the diffraction structure is entirely formed on the surface of the composite objective lens 221, but the diffraction element having the diffraction structure may be combined with a refractive lens. That is, the diffractive structure 201A may be formed separately from the refractive surface 201B.
 (実施の形態2)
 特許文献1では、赤色光と青色光との両方の回折効率を極大にできる構成が示されている。具体的には、階段状の断面を有する回折構造のレベル数と、各レベル間の段差(1ステップ)の高さとが、赤色光と青色光との両方の回折効率を極大にできる構成が示されている。
(Embodiment 2)
Patent Document 1 discloses a configuration that can maximize the diffraction efficiencies of both red light and blue light. Specifically, the number of levels of a diffractive structure having a stepped cross section and the height of a step (1 step) between each level can maximize the diffraction efficiency of both red light and blue light. Has been.
 また、特許文献3では、赤外光と赤色光と青色光との3波長の光の回折効率を極大にできる構成が示されている。具体的には、階段状の断面を有する回折構造のレベル数と、各レベル間の段差(1ステップ)の高さとが、3波長の光の回折効率を極大にできる構成が示されている。 Further, Patent Document 3 discloses a configuration capable of maximizing the diffraction efficiency of light having three wavelengths of infrared light, red light, and blue light. Specifically, a configuration is shown in which the number of levels of a diffractive structure having a stepped cross section and the height of a step (one step) between each level can maximize the diffraction efficiency of light of three wavelengths.
 これらの従来例には、複数の構成が示されており、各波長の光の回折効率の様々な組み合わせが示されている。複数の構成の中から所望の構成を選ぶことにより、回折効率の組み合わせを選ぶことが可能である。しかしながら、従来例では回折効率は段差の高さに対する極大値である。そのため、構成を決めると、段差の高さを変えても極大値以上に高い回折効率を得ることができない。また、使用する回折次数以外の次数の不要な回折光が発生するので、不要な回折光を低減する方法が望まれる。本実施の形態2では、このような観点に基づき、さらに改良可能な構成を示す。 In these conventional examples, a plurality of configurations are shown, and various combinations of diffraction efficiency of light of each wavelength are shown. By selecting a desired configuration from a plurality of configurations, it is possible to select a combination of diffraction efficiencies. However, in the conventional example, the diffraction efficiency is a maximum value with respect to the height of the step. For this reason, once the configuration is determined, diffraction efficiency higher than the maximum value cannot be obtained even if the height of the step is changed. In addition, since unnecessary diffracted light of orders other than the diffraction order to be used is generated, a method for reducing unnecessary diffracted light is desired. The second embodiment shows a configuration that can be further improved based on such a viewpoint.
 図16(A)~図16(C)は、本発明の実施の形態2において、階段形状の断面を有する回折構造を説明するための図である。図16(A)は、本発明の実施の形態2において、基材上に形成した回折構造の物質的な形状を示す図である。図16(B)は、本発明の実施の形態2において、青色光に対する位相変調量を示す図である。なお、図16(B)に示す縦方向の青色光に対する位相変調量は、1波長を単位として示している。図16(C)は、本発明の実施の形態2において、赤色光に対する位相変調量を示す図である。なお、図16(C)に示す縦方向の赤色光に対する位相変調量は、1波長を単位として示している。 FIGS. 16A to 16C are diagrams for explaining a diffractive structure having a step-shaped cross section in Embodiment 2 of the present invention. FIG. 16A is a diagram showing a material shape of a diffractive structure formed on a substrate in Embodiment 2 of the present invention. FIG. 16B is a diagram showing a phase modulation amount with respect to blue light in the second embodiment of the present invention. Note that the phase modulation amount for the blue light in the vertical direction shown in FIG. 16B is shown in units of one wavelength. FIG. 16C is a diagram showing the amount of phase modulation for red light in the second embodiment of the present invention. Note that the phase modulation amount for the red light in the vertical direction shown in FIG. 16C is shown in units of one wavelength.
 図16(B)では、3段4レベルの回折格子(回折構造)の1周期の中で、青色光が、1/4波長の光路差ずつ、位相変化を受けることを示している。そして、図16(B)に点線で示した斜面で表される鋸歯形状(ブレーズ形状)によって発生する所望の次数の回折光が強く生じる。しかし、点線と実線との差、言い換えると、斜面を階段形状によって近似した誤差分は、所望の次数の回折光の回折効率を低下させる原因となり、かつ不要な次数の回折光を発生させる原因となる。 FIG. 16B shows that blue light undergoes a phase change by an optical path difference of ¼ wavelength in one period of a three-stage four-level diffraction grating (diffraction structure). Then, a desired order of diffracted light generated by the sawtooth shape (blazed shape) represented by the slope shown by the dotted line in FIG. However, the difference between the dotted line and the solid line, in other words, the error that approximates the slope with a staircase shape, causes the diffraction efficiency of the diffracted light of the desired order to decrease and causes the unnecessary order of diffracted light to be generated. Become.
 そこで、所望の次数の回折光の回折効率をさらに向上させ、不要な次数の回折光の発生を抑制するために、発明者らは、階段形状の回折構造の平坦部の形状を、図16(B)の点線に示す鋸歯形状の斜面に近づけることができないかと考えた。図16(B)は、青色光に対する位相変調量を表している。そのため、図16(B)に示す位相変調量を物質的な形状へ反映させると、平坦部は、図16(A)の点線で示す形状になる。図16(A)の点線に示すように、階段形状の平坦部が傾けられることにより、青色光の所望の次数の回折光の回折効率を従来の極大値を超えてさらに向上させることができ、不要な次数の回折光の発生を抑制することができる。 Therefore, in order to further improve the diffraction efficiency of the desired order diffracted light and suppress the generation of unnecessary order diffracted light, the inventors have changed the shape of the flat portion of the staircase-shaped diffraction structure to FIG. It was considered that it would be possible to approach the sawtooth-shaped slope indicated by the dotted line B). FIG. 16B shows the amount of phase modulation for blue light. Therefore, when the phase modulation amount shown in FIG. 16B is reflected in the material shape, the flat portion becomes the shape shown by the dotted line in FIG. As shown by the dotted line in FIG. 16A, the step-shaped flat portion is inclined, so that the diffraction efficiency of the diffracted light of the desired order of the blue light can be further improved beyond the conventional maximum value, Generation of unnecessary orders of diffracted light can be suppressed.
 なお、本実施の形態2では、図16(A)の点線で示すように、物質的な形状において階段が高くなる方向と同じ方向に平坦部を傾けることを「平坦部を順方向に傾ける」と定義する。さらに、本実施の形態2では、単一レベルの両端間での斜面の高さ変化量を「傾き幅」と定義する。図16(A)に示すように、傾き幅C1は、平坦部の両端の高さの差を表している。ただし、本実施の形態2における物質的な形状とは、回折格子のみによって形成される形状であり、回折格子をレンズ表面に形成する場合など、回折格子が他の光学素子と組み合わせて用いられる場合には、レンズ屈折面の形状などの他の光学素子の形状を差し引いた形状である。 In the second embodiment, as shown by a dotted line in FIG. 16A, inclining the flat portion in the same direction as the direction in which the staircase becomes higher in the material shape is “inclining the flat portion in the forward direction”. It is defined as Furthermore, in the second embodiment, the amount of change in the height of the slope between both ends of a single level is defined as “inclination width”. As shown in FIG. 16A, the inclination width C1 represents a difference in height between both ends of the flat portion. However, the material shape in the second embodiment is a shape formed only by the diffraction grating, and the diffraction grating is used in combination with other optical elements, such as when the diffraction grating is formed on the lens surface. Is a shape obtained by subtracting the shape of another optical element such as the shape of the lens refracting surface.
 このように、回折構造は、一周期が(M-1)段Mレベル(Mは3以上の自然数)の階段状の断面を有している。回折構造の段差d1は、青色光に対して1波長より長い光路差を付加し、赤色光に対して1波長未満の光路差を付加する。回折構造の複数の平坦部は、光軸に向かって高くなっている。各平坦部は、光軸に近い側の端部が光軸から遠い側の端部よりも高くなるように傾斜させる。 Thus, the diffractive structure has a step-like cross section in which one period is (M−1) steps and M levels (M is a natural number of 3 or more). The step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light and an optical path difference less than one wavelength to red light. The plurality of flat portions of the diffractive structure are higher toward the optical axis. Each flat portion is inclined so that the end near the optical axis is higher than the end far from the optical axis.
 なお、本実施の形態2では、青色光の所望の次数の回折光の回折効率は極大値を超えて高めることができるが、他の波長の光の回折効率は低下する。図16(C)の点線に示すように、赤色光の位相又は光路差は、紙面左側に向かって増えるが、平坦部の傾きは、逆に紙面右側に向かって増えることになる。そのため、赤色光が入射する場合、階段形状と鋸歯形状との差異が拡大する。階段形状と鋸歯形状との差異が拡大することにより、赤色光の所望の次数の回折効率が低下する。 In the second embodiment, the diffraction efficiency of the diffracted light of the desired order of blue light can be increased beyond the maximum value, but the diffraction efficiency of light of other wavelengths is reduced. As shown by the dotted line in FIG. 16C, the phase or optical path difference of red light increases toward the left side of the drawing, but the inclination of the flat portion increases toward the right side of the drawing. Therefore, when red light is incident, the difference between the staircase shape and the sawtooth shape increases. As the difference between the staircase shape and the sawtooth shape increases, the diffraction efficiency of the desired order of red light decreases.
 ここまでは、図16(A)~図16(C)を用いて、1周期が3段4レベルの階段状の断面を有する回折構造について説明したが、レベル数が異なる回折構造であっても、実施の形態2と同じ原理を適用できる。図17は、本発明の実施の形態2において、1周期が5段6レベルの階段状の断面を有する回折構造を示す図である。図17では、基材上に形成した回折構造の物質的な形状を示している。図17の点線で示すように、階段形状の平坦部を順方向に傾けることにより、青色光の所望の次数の回折光の回折効率を従来の極大値を超えてさらに向上させることができ、不要な次数の回折光の発生を抑制することができる。 Up to this point, the diffraction structure having a stepped cross section with three steps and four levels in one cycle has been described with reference to FIGS. 16A to 16C. The same principle as in the second embodiment can be applied. FIG. 17 is a diagram showing a diffractive structure having a stepped cross section with one cycle having five steps and six levels in the second embodiment of the present invention. FIG. 17 shows the material shape of the diffractive structure formed on the substrate. As shown by the dotted line in FIG. 17, by tilting the flat portion of the staircase shape in the forward direction, the diffraction efficiency of the diffracted light of the desired order of blue light can be further improved beyond the conventional maximum value, which is unnecessary. The generation of diffracted light of a proper order can be suppressed.
 図18は、図17に示す回折構造の平坦部の傾き幅と回折効率計算結果との関係を示す図である。図18において、縦軸は回折効率であり、横軸は傾き幅C1である。横軸の単位は、青色光の波長λ1の一波長の光路差である。単位長さを物質的な形状に換算すると、横軸の値“1”は、λ1/(nb-1)となる。ここで、nbは、素子材料の青色光の波長における屈折率である。回折効率は、ベクトル計算によって計算した。実施の形態1において述べたように、回折効率は、金型作製時の作製誤差も考慮して計算した。格子ピッチは約0.2mmである。反射損失は考慮していない。 FIG. 18 is a diagram showing the relationship between the inclination width of the flat portion of the diffraction structure shown in FIG. 17 and the diffraction efficiency calculation result. In FIG. 18, the vertical axis represents the diffraction efficiency, and the horizontal axis represents the inclination width C1. The unit of the horizontal axis is an optical path difference of one wavelength of the blue light wavelength λ1. When the unit length is converted into a physical shape, the value “1” on the horizontal axis is λ1 / (nb−1). Here, nb is the refractive index at the wavelength of blue light of the element material. The diffraction efficiency was calculated by vector calculation. As described in the first embodiment, the diffraction efficiency was calculated in consideration of the manufacturing error when manufacturing the mold. The grating pitch is about 0.2 mm. Reflection loss is not considered.
 図18において、実線は、青色光の所望の回折光である+2次回折光の回折効率を表している。傾き幅C1が0から増えるに従って、青色光の+2次回折光の回折効率は増加する。傾き幅C1が約0.33になると、回折効率は最大になり、その後、回折効率は逆に減少する。図18において、点線は、青色光の-4次回折光、すなわち不要な回折光の回折効率を表している。傾き幅C1が0から増えるに従って、青色光の-4次回折光の回折効率は減少する。傾き幅C1が約0.33になると、回折効率は最小になり、その後、回折効率は逆に増加する。 In FIG. 18, the solid line represents the diffraction efficiency of the + 2nd order diffracted light, which is the desired diffracted light of blue light. As the inclination width C1 increases from 0, the diffraction efficiency of the + 2nd order diffracted light of blue light increases. When the inclination width C1 becomes about 0.33, the diffraction efficiency becomes maximum, and then the diffraction efficiency decreases conversely. In FIG. 18, the dotted line represents the diffraction efficiency of the fourth-order diffracted light of blue light, that is, unnecessary diffracted light. As the inclination width C1 increases from 0, the diffraction efficiency of the fourth-order diffracted light of blue light decreases. When the inclination width C1 is about 0.33, the diffraction efficiency is minimized, and then the diffraction efficiency increases conversely.
 この理由は下記の通りである。傾き幅C1が0.33である時には、図17において傾斜した平坦部の紙面右端の高さと、当該平坦部の右隣の傾斜した平坦部の紙面左端の高さとの差分は、青色光の1波長分となる。波長の整数倍となる光の位相は、それぞれ等しくなるので、斜面に起因する位相変化が連続的につながり、階段形状は鋸歯形状と同等になる。従って、所望の次数の回折光の回折効率が最大になり、不要な回折光の回折効率が最小になる。 The reason for this is as follows. When the inclination width C1 is 0.33, the difference between the height of the right edge of the flat portion inclined in FIG. 17 and the height of the left edge of the inclined flat portion right next to the flat portion is 1 for blue light. It becomes the wavelength. Since the phases of the light that is an integral multiple of the wavelength are equal to each other, the phase change caused by the slope is continuously connected, and the staircase shape is equivalent to the sawtooth shape. Therefore, the diffraction efficiency of the desired order diffracted light is maximized, and the diffraction efficiency of unnecessary diffracted light is minimized.
 一方、図18において、二点鎖線は、赤色光の所望の回折光である-1次回折光の回折効率を表している。また、図18において、一点鎖線は、赤外光の所望の回折光である-2次回折光の回折効率を表している。いずれの場合も、図16(A)~図16(C)を用いて説明したとおり、回折効率は、傾き幅C1が増えるに従って減少する。傾き幅C1を0.33以上に増やすと3波長すべての回折効率が減少するので得策ではないことが図18からわかった。傾き幅C1は、0から0.33迄の間であることが好ましく、3波長の回折効率の最もバランスの良い値にすることが望ましい。 On the other hand, in FIG. 18, the two-dot chain line represents the diffraction efficiency of the −1st order diffracted light, which is the desired diffracted light of red light. In FIG. 18, the alternate long and short dash line represents the diffraction efficiency of the −2nd order diffracted light, which is the desired diffracted light of infrared light. In any case, as described with reference to FIGS. 16A to 16C, the diffraction efficiency decreases as the inclination width C1 increases. It can be seen from FIG. 18 that increasing the inclination width C1 to 0.33 or more reduces the diffraction efficiency of all three wavelengths and is not a good idea. The inclination width C1 is preferably between 0 and 0.33, and is preferably set to the most balanced value of the diffraction efficiency of the three wavelengths.
 ここでは、5段6レベルの階段状の断面を有する回折構造について説明したので、傾き幅C1は、0<C1≦0.33の範囲が望ましい。しかしながら、傾き幅C1は、レベル数が異なる回折構造について一般化することもできる。傾き幅C1の上限値は、傾斜した平坦部の紙面右端の高さと、当該平坦部の右隣の傾斜した平坦部の紙面左端の高さとの差分が青色光の1波長分となる値である。 Here, since the diffractive structure having a stepped cross section with 5 steps and 6 levels has been described, the inclination width C1 is preferably in the range of 0 <C1 ≦ 0.33. However, the slope C1 can be generalized for diffractive structures with different number of levels. The upper limit value of the inclination width C1 is a value in which the difference between the height of the inclined flat portion on the right side of the paper surface and the height of the inclined left portion of the inclined flat portion on the right side of the flat portion corresponds to one wavelength of blue light. .
 従って、1周期が階段状の断面を有する回折構造の段差d1は、波長λ1の青色光に対して1波長より長い光路差Cd1×λ1を付加し、階段形状の平坦部は順方向に傾け、平坦部の傾き幅C1は、定数Cd1から1を減じた値を上限として設定すればよい。すなわち、平坦部を傾ける幅C1は、0<C1≦(Cd1-1)を満たせばよい。 Accordingly, the step d1 of the diffractive structure having a stepped cross section in one cycle adds an optical path difference Cd1 × λ1 longer than one wavelength to blue light of wavelength λ1, and the stepped flat portion is inclined in the forward direction. The inclination width C1 of the flat portion may be set with the value obtained by subtracting 1 from the constant Cd1 as the upper limit. That is, the width C1 for inclining the flat portion may satisfy 0 <C1 ≦ (Cd1-1).
 なお、赤色光又は赤外光の所望の回折光の回折効率を極大値以上に増加させることも可能である。本実施の形態2の変形例について、3段4レベルの階段状の断面を有する回折構造を例にして、図19(A)~図19(C)を用いて説明する。 Note that the diffraction efficiency of desired diffracted light of red light or infrared light can be increased to a maximum value or more. A modification of the second embodiment will be described with reference to FIGS. 19A to 19C, taking as an example a diffraction structure having a stepped cross section with three steps and four levels.
 図19(A)は、本発明の実施の形態2の変形例において、基材上に形成した回折構造の物質的な形状を示す図である。図19(B)は、本発明の実施の形態2の変形例において、青色光に対する位相変調量を示す図である。なお、図19(B)に示す縦方向の青色光に対する位相変調量は、1波長を単位として示している。図19(C)は、本発明の実施の形態2の変形例において、赤色光に対する位相変調量を示す図である。なお、図19(C)に示す縦方向の赤色光に対する位相変調量は、1波長を単位として示している。 FIG. 19 (A) is a diagram showing a material shape of a diffractive structure formed on a substrate in the modification of the second embodiment of the present invention. FIG. 19B is a diagram showing a phase modulation amount with respect to blue light in the modification of the second embodiment of the present invention. Note that the phase modulation amount for the blue light in the vertical direction shown in FIG. 19B is shown in units of one wavelength. FIG. 19C is a diagram showing a phase modulation amount with respect to red light in the modification of the second embodiment of the present invention. Note that the phase modulation amount for the red light in the vertical direction shown in FIG. 19C is shown in units of one wavelength.
 1周期が3段4レベルの階段状の断面を有する回折構造は、波長λ2の赤色光に対して、図19(C)の実線で示すような光路差を与える。赤色光の回折効率を向上させるためには、図19(C)の点線で示すように、断面形状を鋸歯形状に近づければよい。従って、回折構造の物質的な形状は、図19(A)の点線で示す形状になる。図19(A)に示すように、階段形状の平坦部が傾けられることにより、赤色光の所望の次数の回折光の回折効率を従来の極大値を超えてさらに向上させることができ、不要な次数の回折光の発生を抑制することができる。 A diffractive structure having a stepped cross-section with three steps and four levels in one cycle gives an optical path difference as shown by a solid line in FIG. 19C to red light of wavelength λ2. In order to improve the diffraction efficiency of red light, the cross-sectional shape may be brought close to a sawtooth shape as indicated by the dotted line in FIG. Accordingly, the material shape of the diffractive structure is the shape shown by the dotted line in FIG. As shown in FIG. 19A, the step-shaped flat portion is inclined, so that the diffraction efficiency of the desired order of red light can be further improved beyond the conventional maximum value, which is unnecessary. Generation of diffracted light of the order can be suppressed.
 このように、回折構造は、一周期が(M-1)段Mレベル(Mは3以上の自然数)の階段状の断面を有している。回折構造の段差d1は、青色光に対して1波長より長い光路差を付加し、赤色光に対して1波長未満の光路差を付加する。回折構造の複数の平坦部は、光軸に向かって高くなっている。各平坦部は、光軸に近い側の端部が光軸から遠い側の端部より低くなるように傾斜させる。 Thus, the diffractive structure has a step-like cross section in which one period is (M−1) steps and M levels (M is a natural number of 3 or more). The step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light and an optical path difference less than one wavelength to red light. The plurality of flat portions of the diffractive structure are higher toward the optical axis. Each flat portion is inclined so that the end portion on the side close to the optical axis is lower than the end portion on the side far from the optical axis.
 本実施の形態2では、図19(A)の点線で示すように、物質的な形状において階段が高くなる方向と反対方向に平坦部を傾けることを「平坦部を逆方向に傾ける」と定義する。また、図19(A)に示すように、傾き幅C2は、平坦部の両端の高さの差を表している。ここでは、3段4レベルの階段状の断面を有する回折構造を例にして、赤色光の所望の次数の回折光の回折効率を従来の極大値を超えてさらに向上させることについて説明しているが、5レベル以上のレベル数の段を用いる場合の赤外光でも同じである。 In Embodiment Mode 2, as shown by the dotted line in FIG. 19A, inclining the flat portion in the opposite direction to the direction in which the staircase becomes higher in the material shape is defined as “inclining the flat portion in the opposite direction”. To do. Further, as shown in FIG. 19A, the inclination width C2 represents a difference in height between both ends of the flat portion. Here, taking a diffraction structure having a stepped cross section of three steps and four levels as an example, it is described that the diffraction efficiency of a desired order of diffracted light of red light is further improved beyond the conventional maximum value. However, the same applies to infrared light in the case of using stages with 5 or more levels.
 また、傾き幅C2の範囲については、青色光の場合と同じ考察により次のように定めることができる。赤色光の所望の次数の回折光の回折効率を従来の極大値を超えてさらに向上させるためには、1周期が階段状の断面を有する回折構造の段差d1は、波長λ2の赤色光に対して1波長より短い光路差Cd2×λ2を付加し、階段形状の平坦部は逆方向に傾け、平坦部の傾き幅C2は、1から定数Cd2を減じた値を上限として設定すればよい。すなわち、平坦部を傾ける幅C2は、0<C2≦(1-Cd2)を満たせばよい。 Further, the range of the inclination width C2 can be determined as follows based on the same consideration as in the case of blue light. In order to further improve the diffraction efficiency of the diffracted light of the desired order of red light beyond the conventional maximum value, the step d1 of the diffractive structure having a step-like cross section in one period is compared with the red light having the wavelength λ2. Thus, an optical path difference Cd2 × λ2 shorter than one wavelength is added, the step-shaped flat portion is inclined in the reverse direction, and the inclination width C2 of the flat portion may be set with the value obtained by subtracting the constant Cd2 from 1 as an upper limit. In other words, the width C2 for inclining the flat portion only needs to satisfy 0 <C2 ≦ (1-Cd2).
 そして、赤外光の所望の次数の回折光の回折効率を従来の極大値を超えてさらに向上させるためには、1周期が階段状の断面を有する回折構造の段差d1は、波長λ3の赤外光に対して1波長より短い光路差Cd3×λ3を付加し、階段形状の平坦部は逆方向に傾け、平坦部の傾き幅C2は、1から定数Cd3を減じた値を上限として設定すればよい。すなわち、平坦部を傾ける幅C2は、0<C2≦(1-Cd3)を満たせばよい。 In order to further improve the diffraction efficiency of the diffracted light of the desired order of the infrared light beyond the conventional maximum value, the step d1 of the diffractive structure having one step having a step-like cross section is formed of red with a wavelength λ3. An optical path difference Cd3 × λ3 shorter than one wavelength is added to the outside light, the staircase-shaped flat part is inclined in the opposite direction, and the flat part inclination width C2 is set with the value obtained by subtracting the constant Cd3 from 1 as an upper limit. That's fine. That is, the width C2 for inclining the flat portion only needs to satisfy 0 <C2 ≦ (1−Cd3).
 このように、複合対物レンズは、光を回折させる回折構造と、光を屈折させる屈折面とを備える。回折構造は、一周期が(M-1)段Mレベル(Mは3以上の自然数)の階段状の断面を有している。回折構造の段差d1は、青色光に対して1波長より長い光路差を付加し、赤色光に対して1波長未満の光路差を付加する。そして、回折構造の各平坦部は、階段が高くなる方向に傾斜している。すなわち、回折構造の各平坦部は、光軸に垂直な方向に対して所定の角度で傾斜している。 Thus, the composite objective lens includes a diffractive structure that diffracts light and a refracting surface that refracts light. The diffractive structure has a step-like cross section in which one period is (M−1) steps and M levels (M is a natural number of 3 or more). The step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light and an optical path difference less than one wavelength to red light. And each flat part of a diffraction structure inclines in the direction where a staircase becomes high. That is, each flat portion of the diffractive structure is inclined at a predetermined angle with respect to a direction perpendicular to the optical axis.
 以上、回折構造について実施の形態1と実施の形態2とに分けて説明したが、実施の形態1と実施の形態2とを組み合わせて利用することも可能である。また、実施の形態2における複合対物レンズは、レンズ構造又は回折構造の領域分割についても、実施の形態1の内容を適用可能であり、特許文献1又は特許文献3に示された領域構成とも組み合わせ可能である。 As described above, the diffractive structure has been described separately in the first embodiment and the second embodiment. However, the first embodiment and the second embodiment can be used in combination. In addition, the compound objective lens in the second embodiment can apply the contents of the first embodiment also to the region division of the lens structure or the diffractive structure, and is combined with the region configuration shown in Patent Document 1 or Patent Document 3. Is possible.
 (実施の形態3)
 図20は、本発明の実施の形態3における光ヘッド装置の概略構成を示す図である。図20において、光ヘッド装置103は、レーザ光源1、3ビーム格子3、ビームスプリッタ4、1/4波長板5、集光レンズ6、光検出器7、コリメートレンズ8、立ち上げミラー12、複合対物レンズ221、アクチュエータ15、ビームスプリッタ16、2波長レーザ光源20、3ビーム格子22、検出回折素子31、検出レンズ32及び光検出器33を備える。
(Embodiment 3)
FIG. 20 is a diagram showing a schematic configuration of the optical head device according to Embodiment 3 of the present invention. In FIG. 20, an optical head device 103 includes a laser light source 1, a three-beam grating 3, a beam splitter 4, a quarter wavelength plate 5, a condensing lens 6, a photodetector 7, a collimating lens 8, a rising mirror 12, and a composite. An objective lens 221, an actuator 15, a beam splitter 16, a two-wavelength laser light source 20, a three-beam grating 22, a detection diffraction element 31, a detection lens 32, and a photodetector 33 are provided.
 レーザ光源1は、390nm~415nmの範囲内であり、標準的には408nmである波長λ1の青色光を出射する。2波長レーザ光源20は、630nm~680nmの範囲内であり、標準的には660nmである波長λ2の赤色光と、770nm~810nmの範囲内であり、標準的には780nmである波長λ3の赤外光とを出射する。コリメートレンズ8は、光を平行光に変換する。立ち上げミラー12は光軸を折り曲げる。複合対物レンズ221は、図15を用いて説明した複合対物レンズである。 The laser light source 1 emits blue light having a wavelength λ1 which is in a range of 390 nm to 415 nm and is typically 408 nm. The two-wavelength laser light source 20 is in the range of 630 nm to 680 nm, typically red light with a wavelength λ2 of 660 nm, and red with a wavelength λ3 of 770 nm to 810 nm, typically 780 nm. Emits external light. The collimating lens 8 converts light into parallel light. The rising mirror 12 bends the optical axis. The compound objective lens 221 is the compound objective lens described with reference to FIG.
 光ディスク(第1の記録媒体)9は、基材厚みt1が約0.1mm(製造誤差を含め0.11mm以下の基材厚を約0.1mmと呼ぶ)又は0.1mmより薄い基材厚みで、波長λ1の光ビームによって情報が記録又は再生されるBD等の第3世代の光ディスクである。光ディスク(第2の記録媒体)10は、基材厚みt2が約0.6mm(製造誤差を含め0.5mm~0.7mmの基材厚を約0.6mmと呼ぶ)であり、波長λ2の光ビームによって情報が記録又は再生されるDVD等の第2世代の光ディスクである。光ディスク(第3の記録媒体)11は、基材厚みt3が約1.2mm(製造誤差を含め0.8mm~1.5mmの基材厚を約1.2mmと呼ぶ)であり、波長λ3の光ビームによって情報が記録又は再生されるCD等の第1世代の光ディスクである。 The optical disc (first recording medium) 9 has a substrate thickness t1 of about 0.1 mm (a substrate thickness of 0.11 mm or less including manufacturing errors is called about 0.1 mm) or a substrate thickness thinner than 0.1 mm. Thus, the optical disc is a third generation optical disc such as a BD in which information is recorded or reproduced by a light beam having a wavelength λ1. The optical disc (second recording medium) 10 has a substrate thickness t2 of about 0.6 mm (a substrate thickness of 0.5 mm to 0.7 mm including manufacturing errors is called about 0.6 mm), and has a wavelength λ2. It is a second generation optical disc such as a DVD on which information is recorded or reproduced by a light beam. The optical disk (third recording medium) 11 has a substrate thickness t3 of about 1.2 mm (a substrate thickness of 0.8 mm to 1.5 mm including manufacturing errors is called about 1.2 mm), and has a wavelength λ3. It is a first generation optical disc such as a CD on which information is recorded or reproduced by a light beam.
 図20に示す光ディスク9及び光ディスク10は、光の入射面から記録面までの基材のみを図示している。実際には、機械的強度を補強し、また、外形をCD(光ディスク11)と同じ1.2mmにするため、基材と保護材とが張り合わされている。光ディスク10では、基材は、厚み0.6mmの保護材と張り合わされる。光ディスク9では、基材は、厚み1.1mmの保護材と張り合わされる。光ディスク11でも、基材は、薄い保護材と張り合わされる。図20では、簡単化のため、保護材は省略している。 The optical disc 9 and the optical disc 10 shown in FIG. 20 show only the base material from the light incident surface to the recording surface. Actually, in order to reinforce the mechanical strength and to make the outer shape 1.2 mm, which is the same as that of the CD (optical disk 11), the base material and the protective material are bonded together. In the optical disc 10, the base material is bonded to a protective material having a thickness of 0.6 mm. In the optical disc 9, the base material is bonded to a protective material having a thickness of 1.1 mm. Also in the optical disc 11, the base material is bonded to a thin protective material. In FIG. 20, the protective material is omitted for simplification.
 なお、図20では、光ヘッド装置103が、波長λ2と波長λ3との2波長の光を出射する2波長レーザ光源20を備える構成を示しているが、波長毎にそれぞれ別個の光源と、各光源からの光の光路を合わせるダイクロイックミラーとを備える構成であってもよい。また、CD(第3の記録媒体)の互換再生を行わない場合は、波長λ3の赤外光を出射するレーザ光源を省略し、波長λ2の赤色光のみを出射するレーザ光源を用いてもよい。その場合、光ヘッド装置103は、複合対物レンズ221に代えて図1及び図2に示した複合対物レンズ201を備えることが望ましい。 20 shows a configuration in which the optical head device 103 includes a two-wavelength laser light source 20 that emits light of two wavelengths of wavelength λ2 and wavelength λ3. A configuration including a dichroic mirror that matches an optical path of light from the light source may be used. Further, when compatible reproduction of a CD (third recording medium) is not performed, a laser light source that emits only red light having a wavelength λ2 may be used instead of a laser light source that emits infrared light having a wavelength λ3. . In that case, the optical head device 103 desirably includes the composite objective lens 201 shown in FIGS. 1 and 2 instead of the composite objective lens 221.
 レーザ光源1及び2波長レーザ光源20は、好ましくは半導体レーザ光源で構成することにより、光ヘッド装置、及び当該光ヘッド装置を備える光情報装置を小型、軽量及び低消費電力にすることができる。 The laser light source 1 and the two-wavelength laser light source 20 are preferably constituted by a semiconductor laser light source, so that the optical head device and the optical information device including the optical head device can be reduced in size, weight, and power consumption.
 最も記録密度の高い光ディスク9に情報を記録又は再生する際には、レーザ光源1から出射した波長λ1の青色光61がビームスプリッタ4によって反射され、1/4波長板5によって円偏光に変換される。1/4波長板5は、波長λ1及び波長λ2の両方の光に対して、1/4波長板として作用するように設計する。円偏光に変換された青色光61は、コリメートレンズ8によって略平行光に変換される。略平行光に変換された青色光61は、立ち上げミラー12によって折り曲げられ、複合対物レンズ221によって厚さ約0.1mmの光ディスク9の透明基材を通して情報記録面に集光される。 When recording or reproducing information on the optical disk 9 having the highest recording density, the blue light 61 having the wavelength λ 1 emitted from the laser light source 1 is reflected by the beam splitter 4 and converted into circularly polarized light by the quarter wavelength plate 5. The The quarter-wave plate 5 is designed so as to act as a quarter-wave plate for both the light with the wavelengths λ1 and λ2. The blue light 61 converted into circularly polarized light is converted into substantially parallel light by the collimating lens 8. The blue light 61 converted into substantially parallel light is bent by the rising mirror 12 and condensed by the composite objective lens 221 on the information recording surface through the transparent base material of the optical disk 9 having a thickness of about 0.1 mm.
 ここで、図面の都合上、立ち上げミラー12は光ビームを図面の上方に曲げるように記述したが、実際には図面から手前(又は奥)へ図面に対して垂直な方向へ光ビームの光軸を折り曲げる構成とする。また、1/4波長板5は、複合対物レンズ221と立ち上げミラー12との間に配置してもよい。複合対物レンズ221は、アクチュエータ15によって光軸方向又は光ディスクの半径方向に移動される。 Here, for convenience of drawing, the rising mirror 12 is described as bending the light beam upward in the drawing, but actually, the light beam is emitted from the drawing to the front (or back) in a direction perpendicular to the drawing. The shaft is bent. The quarter wavelength plate 5 may be disposed between the composite objective lens 221 and the rising mirror 12. The compound objective lens 221 is moved by the actuator 15 in the optical axis direction or the radial direction of the optical disk.
 光ディスク9の情報記録面で反射した青色光61は、もとの光路を逆にたどって(復路)、1/4波長板5によって往路とは直角方向の直線偏光に変換され、ビームスプリッタ4をほぼ全透過し、ビームスプリッタ16を透過する。ビームスプリッタ16を透過した青色光61は、検出回折素子31によって回折され、さらに検出レンズ32によって焦点距離が伸ばされて、光検出器33に入射する。光検出器33の出力が演算されることによって、焦点制御又はトラッキング制御に用いるサーボ信号と、情報信号とが得られる。 The blue light 61 reflected by the information recording surface of the optical disc 9 follows the original optical path in the reverse direction (return path) and is converted into linearly polarized light in a direction perpendicular to the forward path by the quarter wavelength plate 5, The light passes through the beam splitter 16 almost completely. The blue light 61 that has passed through the beam splitter 16 is diffracted by the detection diffraction element 31, further extended in focal length by the detection lens 32, and incident on the photodetector 33. By calculating the output of the photodetector 33, a servo signal used for focus control or tracking control and an information signal are obtained.
 上記のように、ビームスプリッタ4は、波長λ1の青色光61に関しては、1方向の直線偏光を全反射し、それと直角方向の直線偏光を全透過する偏光分離膜を具備する。また、後で述べるように、ビームスプリッタ4は、波長λ2の赤色光62又は波長λ3の赤外光63に関しては、2波長レーザ光源20から出射する赤色光62又は赤外光63を全透過する。このように、ビームスプリッタ4は、偏光特性と共に波長選択性を持った光路分岐素子である。なお、ビームスプリッタ4から偏光依存性をなくすことにより、1/4波長板5を省略することも可能である。また、検出回折素子31を省略する構成も可能である。 As described above, the beam splitter 4 includes the polarization separation film that totally reflects linearly polarized light in one direction and totally transmits linearly polarized light in a direction perpendicular to the blue light 61 having the wavelength λ1. As will be described later, the beam splitter 4 totally transmits the red light 62 or the infrared light 63 emitted from the two-wavelength laser light source 20 with respect to the red light 62 having the wavelength λ2 or the infrared light 63 having the wavelength λ3. . Thus, the beam splitter 4 is an optical path branching element having wavelength selectivity as well as polarization characteristics. The quarter wavelength plate 5 can be omitted by eliminating the polarization dependency from the beam splitter 4. A configuration in which the detection diffraction element 31 is omitted is also possible.
 次に、光ディスク10に情報を記録又は再生する際には、2波長レーザ光源20から出射した略直線偏光で波長λ2の赤色光62は、ビームスプリッタ16を反射し、ビームスプリッタ4を透過し、コリメートレンズ8によって略平行光に変換される。略平行光に変換された赤色光62は、さらに立ち上げミラー12によって折り曲げられ、複合対物レンズ221によって厚さ約0.6mmの光ディスク10の透明基材を通して情報記録面に集光される。 Next, when information is recorded on or reproduced from the optical disk 10, the substantially linearly polarized red light 62 having the wavelength λ2 emitted from the two-wavelength laser light source 20 is reflected by the beam splitter 16 and transmitted through the beam splitter 4. The light is converted into substantially parallel light by the collimating lens 8. The red light 62 converted into substantially parallel light is further bent by the rising mirror 12 and condensed by the composite objective lens 221 through the transparent base material of the optical disc 10 having a thickness of about 0.6 mm onto the information recording surface.
 光ディスク10の情報記録面で反射した赤色光62は、もとの光路を逆にたどって(復路)、ビームスプリッタ4をほぼ全透過し、ビームスプリッタ16を透過する。ビームスプリッタ16を透過した赤色光62は、検出回折素子31によって回折され、さらに検出レンズ32によって焦点距離が伸ばされて、光検出器33に入射する。光検出器33の出力が演算されることによって、焦点制御又はトラッキング制御に用いるサーボ信号と、情報信号とが得られる。このように、青色光と赤色光とで共通の光検出器33から、光ディスク9及び光ディスク10のサーボ信号を得るためには、レーザ光源1の発光点と2波長レーザ光源20の赤色光の発光点とを、複合対物レンズ221側の共通の位置に対して光軸方向に関して、結像関係にあるように配置する。こうすることにより、光検出器の数も配線数も減らすことができる。 The red light 62 reflected by the information recording surface of the optical disk 10 traces the original optical path in the reverse direction (return path), passes through the beam splitter 4 almost entirely, and passes through the beam splitter 16. The red light 62 that has passed through the beam splitter 16 is diffracted by the detection diffraction element 31, is further extended in focal length by the detection lens 32, and enters the photodetector 33. By calculating the output of the photodetector 33, a servo signal used for focus control or tracking control and an information signal are obtained. As described above, in order to obtain servo signals of the optical disk 9 and the optical disk 10 from the photodetector 33 common to the blue light and the red light, the light emission point of the laser light source 1 and the red light emission of the two-wavelength laser light source 20 are obtained. The points are arranged so as to form an imaging relationship with respect to the optical axis direction with respect to the common position on the compound objective lens 221 side. By doing so, the number of photodetectors and the number of wirings can be reduced.
 ビームスプリッタ16は、波長λ2の赤色光62に関しては、1方向の直線偏光を全透過し、それと直角方向の直線偏光を全反射する偏光分離膜を有する。かつ、ビームスプリッタ16は、波長λ1の青色光61を全透過する。このように、ビームスプリッタ16も、偏光特性と共に波長選択性を持った光路分岐素子である。なお、ビームスプリッタ16から偏光依存性をなくすことにより、1/4波長板5を省略することも可能である。また、2波長レーザ光源20と光検出器33との位置関係を入れ替える構成も可能である。 The beam splitter 16 has a polarization separation film that totally transmits linearly polarized light in one direction and totally reflects linearly polarized light in a direction perpendicular to the red light 62 having the wavelength λ2. In addition, the beam splitter 16 totally transmits the blue light 61 having the wavelength λ1. Thus, the beam splitter 16 is also an optical path branching element having wavelength selectivity as well as polarization characteristics. The quarter wavelength plate 5 can be omitted by eliminating the polarization dependency from the beam splitter 16. A configuration in which the positional relationship between the two-wavelength laser light source 20 and the photodetector 33 is switched is also possible.
 2波長レーザ光源20から赤外光63を出射させて光ディスク11に情報を記録又は再生する際の動作は、2波長レーザ光源20から赤色光62を出射させて光ディスク10に情報を記録又は再生する際の動作と同様である。 The operation when the infrared light 63 is emitted from the two-wavelength laser light source 20 to record or reproduce information on the optical disk 11 is performed by emitting the red light 62 from the two-wavelength laser light source 20 to record or reproduce information on the optical disk 10. It is the same as the operation at the time.
 さらに、以下に、光ヘッド装置の全体構成として付加的に有効な構成例について説明する。ただし、本実施の形態の重要な点は、光ディスク9、光ディスク10及び光ディスク11の互換再生又は記録を実現するための複合対物レンズの回折構造にある。複合対物レンズ以外に説明する構成は、下記の内容を含め、すでに説明した構成でも、ビームスプリッタ、検出レンズ及び検出回折素子は必須の構成ではなく、好ましい構成としてそれぞれ効果を有するものの、それ以外の構成も適宜使用可能である。 Further, a configuration example that is additionally effective as the overall configuration of the optical head device will be described below. However, the important point of the present embodiment is the diffractive structure of the composite objective lens for realizing compatible reproduction or recording of the optical disc 9, the optical disc 10, and the optical disc 11. The configuration described in addition to the compound objective lens includes the following contents, and even in the configuration already described, the beam splitter, the detection lens, and the detection diffraction element are not essential configurations, but each has an effect as a preferable configuration. Configurations can also be used as appropriate.
 図20において、光ヘッド装置は、レーザ光源1とビームスプリッタ4との間に3ビーム格子(回折素子)3をさらに備えることにより、光ディスク9のトラッキングエラー信号をよく知られたディファレンシャルプッシュプル(DPP)法によって検出することも可能である。 In FIG. 20, the optical head device further includes a three-beam grating (diffraction element) 3 between the laser light source 1 and the beam splitter 4 so that the well-known differential push-pull (DPP) It is also possible to detect by the method.
 また、光ヘッド装置は、レーザ光源1とビームスプリッタ4との間にリレーレンズをさらに備えてもよい。これにより、青色光61のコリメートレンズ8側の開口数を適正なものにすることが可能である。 The optical head device may further include a relay lens between the laser light source 1 and the beam splitter 4. Thereby, it is possible to make the numerical aperture of the blue light 61 on the collimating lens 8 side appropriate.
 さらに、光ヘッド装置は、2波長レーザ光源20とビームスプリッタ16との間に3ビーム格子(回折素子)22をさらに備えることにより、光ディスク10のトラッキングエラー信号をよく知られたディファレンシャルプッシュプル(DPP)法によって検出することも可能である。 Further, the optical head device further includes a three-beam grating (diffraction element) 22 between the two-wavelength laser light source 20 and the beam splitter 16, so that the tracking error signal of the optical disk 10 can be well known differential push-pull (DPP). It is also possible to detect by the method.
 また、光ヘッド装置は、コリメートレンズ8を光軸方向(図20の左右方向)へ動かすことにより、光ビームの平行度を図21に示すように変化させることも有効である。図21は、本発明の実施の形態3における光ヘッド装置の複合対物レンズ近傍を拡大した図である。基材が厚さ誤差を有する場合、又は光ディスク9が2層ディスクである場合に、層間厚みに起因する球面収差が発生する。しかしながら、このようにコリメートレンズ8が光軸方向に移動することによって、球面収差を補正することができる。 It is also effective for the optical head device to change the parallelism of the light beam as shown in FIG. 21 by moving the collimating lens 8 in the optical axis direction (left-right direction in FIG. 20). FIG. 21 is an enlarged view of the vicinity of the composite objective lens of the optical head device according to Embodiment 3 of the present invention. When the substrate has a thickness error, or when the optical disc 9 is a two-layer disc, spherical aberration due to the interlayer thickness occurs. However, spherical aberration can be corrected by moving the collimating lens 8 in the optical axis direction in this way.
 このように、コリメートレンズ8を動かすことにより、光ディスクに対する集光光のNAが0.85である場合に数100mλ程度の球面収差を補正することが可能であり、±30μmの基材厚み誤差を補正することもできる。また、赤色光62を用いて光ディスク10に情報を再生する場合に、コリメートレンズ8を図20の左側、すなわち2波長レーザ光源20へ近い側に移動させることによって、複合対物レンズ221へ向かう赤色光62を図21に示すように発散光にする。これにより、光ディスク10に対する集光スポットをより複合対物レンズ221から離すと共に、基材厚みに起因する収差の一部を補正し、回折構造に求められる収差補正量を低減して回折ピッチを広くし、複合対物レンズ221の作成を容易にすることもできる。 Thus, by moving the collimating lens 8, it is possible to correct a spherical aberration of about several hundred mλ when the NA of the condensed light with respect to the optical disk is 0.85, and a substrate thickness error of ± 30 μm can be corrected. It can also be corrected. Further, when information is reproduced on the optical disk 10 using the red light 62, the red light traveling toward the composite objective lens 221 is moved by moving the collimating lens 8 to the left side of FIG. 20, that is, the side closer to the two-wavelength laser light source 20. 62 is divergent light as shown in FIG. As a result, the condensing spot with respect to the optical disk 10 is further away from the composite objective lens 221, and a part of the aberration due to the thickness of the base material is corrected, and the aberration correction amount required for the diffractive structure is reduced to widen the diffraction pitch. Further, the composite objective lens 221 can be easily created.
 さらに、ビームスプリッタ4は、レーザ光源1から出射する直線偏光の青色光の一部(例えば10%程度)を透過させ、集光レンズ6は、ビームスプリッタ4を透過した青色光を光検出器7へ導いてもよい。そして、光検出器7から得られる信号を用いてレーザ光源1の発光光量変化をモニタし、モニタされた発光光量変化をフィードバックして、レーザ光源1の発光光量を一定に保つ制御を行うこともできる。 Further, the beam splitter 4 transmits a part of the linearly polarized blue light emitted from the laser light source 1 (for example, about 10%), and the condenser lens 6 transmits the blue light transmitted through the beam splitter 4 to the photodetector 7. You may lead to. Then, a change in the amount of emitted light from the laser light source 1 is monitored using a signal obtained from the photodetector 7, and the change in the amount of emitted light emitted from the laser light source 1 is fed back to control to keep the emitted light amount of the laser light source 1 constant. it can.
 さらに、ビームスプリッタ4は、2波長レーザ光源20から出射する直線偏光の赤色光又は赤外光の一部(例えば10%程度)を反射させ、集光レンズ6は、ビームスプリッタ4を反射した赤色光又は赤外光を光検出器7へ導いてもよい。そして、光検出器7から得られる信号を用いて2波長レーザ光源20の発光光量変化をモニタし、モニタされた発光光量変化をフィードバックして、2波長レーザ光源20の発光光量を一定に保つ制御を行うこともできる。 Further, the beam splitter 4 reflects a part of linearly polarized red light or infrared light (for example, about 10%) emitted from the two-wavelength laser light source 20, and the condenser lens 6 reflects the red light reflected from the beam splitter 4. Light or infrared light may be guided to the photodetector 7. Then, a change in the amount of emitted light from the two-wavelength laser light source 20 is monitored using a signal obtained from the photodetector 7, and the change in the amount of emitted light emitted from the two-wavelength laser light source 20 is fed back to keep the emitted light amount from the two-wavelength laser light source 20 constant. Can also be done.
 (実施の形態4)
 さらに、本発明の実施の形態3における光ヘッド装置103を備える光ディスク装置について説明する。図22は、本発明の実施の形態4における光ディスク装置の概略構成を示す図である。光ディスク装置100は、駆動装置101、電気回路102、光ヘッド装置103及びモータ104を備える。
(Embodiment 4)
Furthermore, an optical disk device provided with the optical head device 103 according to Embodiment 3 of the present invention will be described. FIG. 22 is a diagram showing a schematic configuration of the optical disc apparatus according to Embodiment 4 of the present invention. The optical disc device 100 includes a drive device 101, an electric circuit 102, an optical head device 103, and a motor 104.
 図22において、光ディスク9(又は光ディスク10又は光ディスク11)は、ターンテーブル105に載置され、ターンテーブル105とクランパー106とで挟んで固定され、モータ104によって回転される。光ヘッド装置103は、実施の形態3で説明した光ヘッド装置である。駆動装置101は、光ディスク9の所望の情報の存在するトラックの位置まで、光ヘッド装置103を粗動する。 22, the optical disc 9 (or the optical disc 10 or the optical disc 11) is placed on the turntable 105, fixed between the turntable 105 and the clamper 106, and rotated by the motor 104. The optical head device 103 is the optical head device described in the third embodiment. The driving device 101 coarsely moves the optical head device 103 to the position of the track on the optical disk 9 where desired information exists.
 光ヘッド装置103は、光ディスク9との位置関係に対応して、フォーカスエラー(焦点誤差)信号又はトラッキングエラー信号を電気回路102へ送る。電気回路102は、フォーカスエラー信号又はトラッキングエラー信号に対応して複合対物レンズを微動させるためのレンズ駆動信号を光ヘッド装置103へ送る。光ヘッド装置103は、レンズ駆動信号によって、光ディスク9に対してフォーカス制御又はトラッキング制御を行い、光ディスク9から情報を読み出したり、光ディスク9に情報を書き込んだり(記録したり)、光ディスク9から情報を消去したりする。 The optical head device 103 sends a focus error (focus error) signal or a tracking error signal to the electric circuit 102 in accordance with the positional relationship with the optical disk 9. The electric circuit 102 sends a lens drive signal for finely moving the composite objective lens to the optical head device 103 in response to the focus error signal or the tracking error signal. The optical head device 103 performs focus control or tracking control on the optical disc 9 by a lens drive signal, reads information from the optical disc 9, writes information on the optical disc 9 (records), and receives information from the optical disc 9. Or erase.
 本実施の形態4の光ディスク装置100は、実施の形態3で上述した光ヘッド装置103を備える。したがって、単一の少ない部品点数によって構成された、小型、安価及び軽量の光ヘッド装置によって、記録密度の異なる複数の光ディスクに対応することができる。 The optical disc device 100 according to the fourth embodiment includes the optical head device 103 described above in the third embodiment. Therefore, it is possible to cope with a plurality of optical discs having different recording densities by a small, inexpensive and light optical head device configured by a single small number of parts.
 (実施の形態5)
 実施の形態4の光ディスク装置100を具備したコンピュータ、光ディスクプレーヤ及び光ディスクレコーダ等は、異なる種類の光ディスクに対して安定に情報を記録又は再生することができるので、広い用途に使用できるという効果を有する。光を用いて記録媒体との間で信号をやりとりするこれらの装置を総称して、光情報装置と呼ぶ。以下、光情報装置の具体例について説明する。
(Embodiment 5)
The computer, the optical disc player, the optical disc recorder, and the like provided with the optical disc apparatus 100 according to the fourth embodiment can record or reproduce information stably on different types of optical discs, and thus have an effect that it can be used for a wide range of applications. . These devices that exchange light with a recording medium using light are collectively referred to as an optical information device. Hereinafter, specific examples of the optical information device will be described.
 実施の形態5は、実施の形態4の光ディスク装置100を具備したコンピュータの実施の形態を示す。図23は、本発明の実施の形態5におけるコンピュータの概略構成を示す図である。図23において、コンピュータ110は、光ディスク装置100、入力装置112、演算装置111及び出力装置113を備える。 The fifth embodiment shows an embodiment of a computer provided with the optical disc device 100 of the fourth embodiment. FIG. 23 is a diagram showing a schematic configuration of a computer according to Embodiment 5 of the present invention. In FIG. 23, a computer 110 includes an optical disk device 100, an input device 112, a calculation device 111, and an output device 113.
 光ディスク装置100は、実施の形態4で説明した光ディスク装置である。入力装置112は、キーボード、マウス又はタッチパネルなどで構成され、情報の入力を受け付ける。演算装置111は、中央演算装置(CPU)などで構成され、入力装置112から入力された情報又は光ディスク装置100から読み出した情報などに基づいて演算を行う。出力装置113は、CRT(Cathode Ray Tube)モニタ又は液晶表示装置などの表示装置で構成され、演算装置111によって演算された結果などの情報を表示する。また、出力装置113は、プリンタで構成されてもよく、演算装置111によって演算された結果などの情報を印刷してもよい。演算装置111は、光ディスク装置100に記録する情報及び/又は光ディスク装置100から再生された情報を処理する。 The optical disc apparatus 100 is the optical disc apparatus described in the fourth embodiment. The input device 112 is configured with a keyboard, a mouse, a touch panel, or the like, and receives input of information. The arithmetic device 111 is composed of a central processing unit (CPU) or the like, and performs an operation based on information input from the input device 112 or information read from the optical disc device 100. The output device 113 is configured by a display device such as a CRT (Cathode Ray Tube) monitor or a liquid crystal display device, and displays information such as a result calculated by the calculation device 111. The output device 113 may be configured by a printer, and may print information such as a result calculated by the calculation device 111. The arithmetic device 111 processes information recorded on the optical disc device 100 and / or information reproduced from the optical disc device 100.
 なお、本実施の形態5において、コンピュータ110が光情報装置の一例に相当し、演算装置111が情報処理部の一例に相当する。 In the fifth embodiment, the computer 110 corresponds to an example of an optical information device, and the arithmetic device 111 corresponds to an example of an information processing unit.
 (実施の形態6)
 実施の形態6は、実施の形態4の光ディスク装置100を具備した光ディスクプレーヤの実施の形態を示す。
(Embodiment 6)
The sixth embodiment shows an embodiment of an optical disc player including the optical disc device 100 of the fourth embodiment.
 図24は、本発明の実施の形態6における光ディスクプレーヤの概略構成を示す図である。図24において、光ディスクプレーヤ120は、光ディスク装置100及びデコーダ121を備える。 FIG. 24 is a diagram showing a schematic configuration of the optical disc player according to Embodiment 6 of the present invention. 24, the optical disc player 120 includes an optical disc device 100 and a decoder 121.
 光ディスク装置100は、実施の形態4で説明した光ディスク装置である。デコーダ121は、光ディスク装置100から得られる情報信号を画像情報に変換する。デコーダ121は、光ディスク装置100に記録する情報及び/又は光ディスク装置100から再生された情報を処理する。また、本構成の光ディスクプレーヤ120は、GPS(Global Positioning System)と組み合わせるなどしてカーナビゲーションシステムとしても利用できる。また、光ディスクプレーヤ120は、液晶表示装置などの情報を表示するための表示装置122を加えた形態も可能である。 The optical disc apparatus 100 is the optical disc apparatus described in the fourth embodiment. The decoder 121 converts the information signal obtained from the optical disc apparatus 100 into image information. The decoder 121 processes information recorded on the optical disc apparatus 100 and / or information reproduced from the optical disc apparatus 100. Also, the optical disc player 120 having this configuration can be used as a car navigation system by combining with a GPS (Global Positioning System). Further, the optical disc player 120 may be configured to include a display device 122 for displaying information such as a liquid crystal display device.
 なお、本実施の形態6において、光ディスクプレーヤ120が光情報装置の一例に相当し、デコーダ121が情報処理部の一例に相当する。 In the sixth embodiment, the optical disc player 120 corresponds to an example of an optical information device, and the decoder 121 corresponds to an example of an information processing unit.
 (実施の形態7)
 実施の形態7は、実施の形態4の光ディスク装置100を具備した光ディスクレコーダの実施の形態を示す。
(Embodiment 7)
The seventh embodiment shows an embodiment of an optical disc recorder provided with the optical disc device 100 of the fourth embodiment.
 図25を用いて実施の形態7の光ディスクレコーダについて説明する。図25は、本発明の実施の形態7における光ディスクレコーダの概略構成を示す図である。図25において、光ディスクレコーダ130は、光ディスク装置100及びエンコーダ132を備える。 The optical disk recorder according to the seventh embodiment will be described with reference to FIG. FIG. 25 is a diagram showing a schematic configuration of the optical disc recorder according to Embodiment 7 of the present invention. In FIG. 25, the optical disk recorder 130 includes an optical disk device 100 and an encoder 132.
 光ディスク装置100は、実施の形態4で説明した光ディスク装置である。エンコーダ132は、画像情報を、光ディスク装置100によって光ディスクへ記録する情報信号に変換する。エンコーダ132は、光ディスク装置100に記録する情報及び/又は光ディスク装置100から再生された情報を処理する。望ましくは、光ディスクレコーダ130は、光ディスク装置100から得られる情報信号を画像情報に変換するデコーダ121を備えることにより、光ディスクに既に記録した情報を再生することも可能となる。 The optical disc apparatus 100 is the optical disc apparatus described in the fourth embodiment. The encoder 132 converts the image information into an information signal to be recorded on the optical disc by the optical disc apparatus 100. The encoder 132 processes information recorded on the optical disc device 100 and / or information reproduced from the optical disc device 100. Desirably, the optical disk recorder 130 includes a decoder 121 that converts an information signal obtained from the optical disk device 100 into image information, so that information already recorded on the optical disk can be reproduced.
 また、光ディスクレコーダ130は、情報を出力する出力装置113を備えてもよい。出力装置113は、CRTモニタ又は液晶表示装置などの表示装置で構成され、デコーダ121によって変換された画像情報を表示する。また、出力装置113は、プリンタで構成されてもよい。 Further, the optical disk recorder 130 may include an output device 113 that outputs information. The output device 113 includes a display device such as a CRT monitor or a liquid crystal display device, and displays the image information converted by the decoder 121. The output device 113 may be configured with a printer.
 なお、本実施の形態7において、光ディスクレコーダ130が光情報装置の一例に相当し、エンコーダ132が情報処理部の一例に相当する。 In the seventh embodiment, the optical disk recorder 130 corresponds to an example of an optical information device, and the encoder 132 corresponds to an example of an information processing unit.
 (実施の形態8)
 実施の形態8は、実施の形態4の光ディスク装置100を具備した光ディスクサーバの実施の形態を示す。
(Embodiment 8)
The eighth embodiment shows an embodiment of an optical disk server provided with the optical disk device 100 of the fourth embodiment.
 図26を用いて実施の形態8の光ディスクサーバについて説明する。図26は、本発明の実施の形態8における光ディスクサーバの概略構成を示す図である。図26において、光ディスクサーバ140は、光ディスク装置100及び入出力部141を備える。 The optical disk server according to the eighth embodiment will be described with reference to FIG. FIG. 26 is a diagram showing a schematic configuration of the optical disk server in the eighth embodiment of the present invention. In FIG. 26, the optical disk server 140 includes an optical disk device 100 and an input / output unit 141.
 光ディスク装置100は、実施の形態4で説明した光ディスク装置である。入出力部141は、光ディスク装置100に記録する情報を取り込むとともに、光ディスク装置100によって読み出された情報を外部に出力する。入出力部141は、有線又は無線によりネットワーク142に接続されている。入出力部141は、ネットワーク142を介して、例えば、コンピュータ、電話又はテレビチューナーなどの複数の機器と情報を送受信する。これにより、光ディスクサーバ140は、これら複数の機器によって共有される情報サーバとして利用することが可能となる。 The optical disc apparatus 100 is the optical disc apparatus described in the fourth embodiment. The input / output unit 141 captures information to be recorded on the optical disc apparatus 100 and outputs information read by the optical disc apparatus 100 to the outside. The input / output unit 141 is connected to the network 142 by wire or wireless. The input / output unit 141 transmits / receives information to / from a plurality of devices such as a computer, a telephone, or a TV tuner via the network 142. Thereby, the optical disk server 140 can be used as an information server shared by the plurality of devices.
 光ディスクサーバ140は、異なる種類の光ディスクに情報を安定に記録又は再生できるので、広い用途に使用できる効果を有する。なお、光ディスクサーバ140は、情報を出力する出力装置113を備えてもよい。出力装置113は、CRTモニタ又は液晶表示装置などの表示装置で構成され、情報を表示する。また、出力装置113は、プリンタで構成されてもよい。また、光ディスクサーバ140は、キーボード、マウス又はタッチパネルなどの情報を入力するための入力装置112を備えてもよい。 Since the optical disk server 140 can stably record or reproduce information on different types of optical disks, it has an effect that can be used for a wide range of purposes. The optical disk server 140 may include an output device 113 that outputs information. The output device 113 includes a display device such as a CRT monitor or a liquid crystal display device, and displays information. The output device 113 may be configured with a printer. The optical disk server 140 may include an input device 112 for inputting information such as a keyboard, a mouse, or a touch panel.
 さらに、光ディスクサーバ140は、複数の光ディスクを光ディスク装置100に出し入れするチェンジャー143を備えてもよい。これにより、多くの情報を記録及び蓄積することができる。 Furthermore, the optical disk server 140 may include a changer 143 for taking a plurality of optical disks into and out of the optical disk device 100. Thereby, a lot of information can be recorded and accumulated.
 なお、本実施の形態8において、光ディスクサーバ140が光情報装置の一例に相当し、入出力部141が情報処理部の一例に相当する。 In the eighth embodiment, the optical disk server 140 corresponds to an example of an optical information device, and the input / output unit 141 corresponds to an example of an information processing unit.
 なお、上述の実施の形態5~8において図23~図26には出力装置113及び表示装置122を示しているが、コンピュータ110、光ディスクプレーヤ120、光ディスクレコーダ130及び光ディスクサーバ140は、それぞれ出力端子を備えて、出力装置113又は表示装置122を備えない商品形態があり得ることはいうまでもない。また、図24及び図25には入力装置は図示していないが、光ディスクプレーヤ120及び光ディスクレコーダ130は、キーボード、タッチパネル、マウス又はリモートコントロール装置などの情報を入力するための入力装置を備えてもよい。逆に、上述の実施の形態5~8において、コンピュータ110、光ディスクプレーヤ120、光ディスクレコーダ130及び光ディスクサーバ140は、入力装置を備えず、入力端子のみを備える形態も可能である。 In the above fifth to eighth embodiments, FIGS. 23 to 26 show the output device 113 and the display device 122. The computer 110, the optical disc player 120, the optical disc recorder 130, and the optical disc server 140 have output terminals, respectively. Needless to say, there may be a product form that includes the output device 113 or the display device 122. 24 and 25 do not illustrate an input device, the optical disc player 120 and the optical disc recorder 130 may include an input device for inputting information such as a keyboard, a touch panel, a mouse, or a remote control device. Good. Conversely, in Embodiments 5 to 8 described above, the computer 110, the optical disc player 120, the optical disc recorder 130, and the optical disc server 140 may be provided with only an input terminal without including an input device.
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。 The specific embodiments described above mainly include inventions having the following configurations.
 本発明の一局面に係る複合レンズは、光を回折させる回折構造と、前記光を屈折させる屈折面とを備え、前記回折構造は、一周期が(M-1)段Mレベル(Mは3以上の自然数)の階段状の断面を有し、前記回折構造の段差d1は、青色光に対して1波長より長い光路差を付加し、赤色光に対して1波長未満の光路差を付加し、前記回折構造の各平坦部は、階段が高くなる方向に傾斜している。 A compound lens according to one aspect of the present invention includes a diffractive structure that diffracts light and a refracting surface that refracts the light, and the diffractive structure has (M−1) stages of M levels (M is 3). The step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light and an optical path difference less than one wavelength to red light. The flat portions of the diffractive structure are inclined in the direction in which the stairs are raised.
 この構成によれば、回折構造は光を回折させ、屈折面は光を屈折させる。回折構造は、一周期が(M-1)段Mレベル(Mは3以上の自然数)の階段状の断面を有している。そして、回折構造の段差d1は、青色光に対して1波長より長い光路差を付加し、赤色光に対して1波長未満の光路差を付加する。回折構造の各平坦部は、階段が高くなる方向に傾斜している。 According to this configuration, the diffractive structure diffracts light and the refracting surface refracts light. The diffractive structure has a step-like cross section in which one period is (M−1) steps and M levels (M is a natural number of 3 or more). The step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light and adds an optical path difference less than one wavelength to red light. Each flat part of the diffractive structure is inclined in the direction in which the stairs are raised.
 したがって、回折構造の各平坦部は、階段が高くなる方向に傾斜しているので、所望の次数の回折光の回折効率をより向上させることができ、不要な次数の回折光の発生を抑制することができる。 Accordingly, since each flat portion of the diffractive structure is inclined in the direction in which the stairs are raised, the diffraction efficiency of a desired order of diffracted light can be further improved, and generation of unnecessary order of diffracted light is suppressed. be able to.
 また、上記の複合レンズにおいて、前記回折構造の複数の平坦部は、光軸に向かって高くなっており、各平坦部は、前記光軸に近い側の端部が前記光軸から遠い側の端部より高くなるように傾斜させることが好ましい。 In the above compound lens, the plurality of flat portions of the diffractive structure are higher toward the optical axis, and each flat portion has an end portion closer to the optical axis at a side farther from the optical axis. It is preferable to incline so that it may become higher than an edge part.
 この構成によれば、回折構造の複数の平坦部は、光軸に向かって高くなっている。各平坦部は、光軸に近い側の端部が光軸から遠い側の端部より高くなるように傾斜させるので、青色光に対して、所望の次数の回折光の回折効率をより向上させることができ、不要な次数の回折光の発生を抑制することができる。 According to this configuration, the plurality of flat portions of the diffractive structure are higher toward the optical axis. Each flat portion is inclined so that the end near the optical axis is higher than the end far from the optical axis, so that the diffraction efficiency of diffracted light of a desired order is further improved with respect to blue light. And generation of unnecessary orders of diffracted light can be suppressed.
 また、上記の複合レンズにおいて、前記段差d1が波長λ1の青色光に対して付与する光路差は、定数Cd1×λ1であり、前記平坦部を傾ける幅C1は、0<C1≦(Cd1-1)を満たすことが好ましい。 In the above compound lens, the optical path difference given by the step d1 to the blue light having the wavelength λ1 is a constant Cd1 × λ1, and the width C1 for inclining the flat portion is 0 <C1 ≦ (Cd1-1). ) Is preferably satisfied.
 この構成によれば、0<C1≦(Cd1-1)を満たすように平坦部を傾ける幅C1を設計することにより、波長λ1の青色光に対して、所望の次数の回折光の回折効率をより向上させることができ、不要な次数の回折光の発生を抑制することができる。 According to this configuration, by designing the width C1 for inclining the flat portion so as to satisfy 0 <C1 ≦ (Cd1-1), the diffraction efficiency of the diffracted light of a desired order with respect to the blue light having the wavelength λ1 is increased. The generation of diffracted light of an unnecessary order can be suppressed.
 また、上記の複合レンズにおいて、前記回折構造の複数の平坦部は、光軸に向かって高くなっており、各平坦部は、前記光軸に近い側の端部が前記光軸から遠い側の端部より低くなるように傾斜させることが好ましい。 In the above compound lens, the plurality of flat portions of the diffractive structure are higher toward the optical axis, and each flat portion has an end portion closer to the optical axis at a side farther from the optical axis. It is preferable to incline so that it may become lower than an edge part.
 この構成によれば、回折構造の複数の平坦部は、光軸に向かって高くなっている。各平坦部は、光軸に近い側の端部が光軸から遠い側の端部より低くなるように傾斜させるので、赤色光に対して、所望の次数の回折光の回折効率をより向上させることができ、不要な次数の回折光の発生を抑制することができる。 According to this configuration, the plurality of flat portions of the diffractive structure are higher toward the optical axis. Each flat portion is inclined so that the end portion closer to the optical axis is lower than the end portion far from the optical axis, so that the diffraction efficiency of diffracted light of a desired order is further improved with respect to red light. And generation of unnecessary orders of diffracted light can be suppressed.
 また、上記の複合レンズにおいて、前記段差d1が波長λ2の赤色光に対して付与する光路差は、定数Cd2×λ2であり、前記平坦部を傾ける幅C2は、0<C2≦(1-Cd2)を満たすことが好ましい。 In the above compound lens, the optical path difference given by the step d1 to the red light having the wavelength λ2 is a constant Cd2 × λ2, and the width C2 for inclining the flat portion is 0 <C2 ≦ (1-Cd2). ) Is preferably satisfied.
 この構成によれば、0<C2≦(1-Cd2)を満たすように平坦部を傾ける幅C2を設計することにより、波長λ2の赤色光に対して、所望の次数の回折光の回折効率をより向上させることができ、不要な次数の回折光の発生を抑制することができる。 According to this configuration, by designing the width C2 for inclining the flat portion so as to satisfy 0 <C2 ≦ (1-Cd2), the diffraction efficiency of the desired order diffracted light with respect to the red light having the wavelength λ2 is increased. The generation of diffracted light of an unnecessary order can be suppressed.
 また、上記の複合レンズにおいて、前記段差d1が波長λ3の赤外光に対して付与する光路差は、定数Cd3×λ3であり、前記平坦部を傾ける幅C2は、0<C2≦(1-Cd3)を満たすことが好ましい。 In the above compound lens, the optical path difference given by the step d1 to the infrared light having the wavelength λ3 is a constant Cd3 × λ3, and the width C2 for inclining the flat portion is 0 <C2 ≦ (1− It is preferable to satisfy Cd3).
 この構成によれば、0<C2≦(1-Cd3)を満たすように平坦部を傾ける幅C2を設計することにより、波長λ3の赤外光に対して、所望の次数の回折光の回折効率をより向上させることができ、不要な次数の回折光の発生を抑制することができる。 According to this configuration, by designing the width C2 for inclining the flat portion so as to satisfy 0 <C2 ≦ (1-Cd3), the diffraction efficiency of the desired order diffracted light with respect to the infrared light having the wavelength λ3. Can be further improved, and generation of unnecessary orders of diffracted light can be suppressed.
 本発明の他の局面に係る複合レンズは、光を回折させる回折構造と、前記光を屈折させる屈折面とを備え、前記回折構造は、一周期が(M-1)段Mレベル(Mは3以上の自然数)の階段状の断面を有し、前記回折構造の各平坦部の幅を、高さの低い方から高い方へ順にW1、W2、・・・、W(M-1)及びWMとしたときに、幅W1及び幅WMは、幅W2~幅W(M-1)よりも狭い。 A compound lens according to another aspect of the present invention includes a diffractive structure that diffracts light and a refracting surface that refracts the light, and the diffractive structure has (M−1) stages of M levels (M is a period). A natural number of 3 or more), and the width of each flat portion of the diffractive structure is W1, W2,..., W (M−1) and W1 in order from the lowest to the highest. When WM is defined, the width W1 and the width WM are narrower than the width W2 to the width W (M−1).
 この構成によれば、回折構造は光を回折させ、屈折面は光を屈折させる。回折構造は、一周期が(M-1)段Mレベル(Mは3以上の自然数)の階段状の断面を有している。そして、回折構造の各平坦部の幅を、高さの低い方から高い方へ順にW1、W2、・・・、W(M-1)及びWMとしたときに、幅W1及び幅WMは、幅W2~幅W(M-1)よりも狭い。 According to this configuration, the diffractive structure diffracts light and the refracting surface refracts light. The diffractive structure has a step-like cross section in which one period is (M−1) steps and M levels (M is a natural number of 3 or more). Then, when the width of each flat portion of the diffractive structure is W1, W2,..., W (M−1) and WM in order from the lowest to the highest, the width W1 and the width WM are: It is narrower than the width W2 to the width W (M-1).
 したがって、回折構造の各平坦部の幅を、高さの低い方から高い方へ順にW1、W2、・・・、W(M-1)及びWMとしたときに、幅W1及び幅WMは、幅W2~幅W(M-1)よりも狭いので、金型を作製する際に用いられる切削バイトの形状を考慮して、回折効率をより向上させることができる。 Therefore, when the width of each flat portion of the diffractive structure is W1, W2,..., W (M−1) and WM in order from the lowest to the highest, the width W1 and the width WM are: Since it is narrower than the width W2 to the width W (M-1), the diffraction efficiency can be further improved in consideration of the shape of the cutting tool used for producing the mold.
 また、上記の複合レンズにおいて、前記回折構造の段差d1は、青色光に対して1波長より長い光路差を付加し、赤色光に対して1波長未満の光路差を付加し、前記回折構造が前記赤色光に与える波面変換作用は、前記回折構造が前記青色光に与える波面変換作用に比べて逆の作用であることが好ましい。 In the above compound lens, the step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light, and adds an optical path difference less than one wavelength to red light. It is preferable that the wavefront converting action given to the red light is a reverse action compared to the wavefront converting action given to the blue light by the diffractive structure.
 この構成によれば、回折構造が赤色光に与える波面変換作用は、回折構造が青色光に与える波面変換作用に比べて逆の作用であるので、例えば、赤色光に対して青色光の回折次数の正と負とが逆である場合、波長間の収差補正効果及び焦点位置の移動効果を発揮させるために必要な回折構造の最小ピッチを広くでき、回折構造を容易に製作することができる。 According to this configuration, the wavefront converting action that the diffractive structure gives to the red light is the reverse of the wavefront converting action that the diffractive structure gives to the blue light. For example, the diffraction order of the blue light with respect to the red light When the positive and negative are opposite, the minimum pitch of the diffractive structure necessary for exhibiting the aberration correction effect between wavelengths and the effect of moving the focal position can be widened, and the diffractive structure can be easily manufactured.
 また、上記の複合レンズにおいて、前記複合レンズは、前記複合レンズに入射する光の光軸の周りに同心円状に形成される少なくとも2つの回折領域を有し、前記少なくとも2つの回折領域の内、最も外側の回折領域以外の回折領域には、階段状の断面を有する前記回折構造が形成され、前記回折構造の段差d1は、青色光に対して略1.25波長の光路差を与え、前記回折構造は、一周期内において、前記回折構造の外周側から光軸側に向かって順に前記段差d1の0倍、1倍、2倍及び3倍の高さの3段4レベルの階段状の断面を有することが好ましい。 In the above compound lens, the compound lens has at least two diffractive regions formed concentrically around the optical axis of light incident on the compound lens, and among the at least two diffractive regions, The diffractive structure having a stepped cross section is formed in a diffractive region other than the outermost diffractive region, and the step d1 of the diffractive structure gives an optical path difference of approximately 1.25 wavelengths to blue light, The diffractive structure is a three-step, four-level step-like shape having a height of 0, 1, 2, and 3 times the step d1 in order from the outer peripheral side of the diffractive structure to the optical axis side within one period. It preferably has a cross section.
 この構成によれば、複合レンズは、複合レンズに入射する光の光軸の周りに同心円状に形成される少なくとも2つの回折領域を有している。少なくとも2つの回折領域の内、最も外側の回折領域以外の回折領域には、階段状の断面を有する回折構造が形成される。回折構造の段差d1は、青色光に対して略1.25波長の光路差を与える。回折構造は、一周期内において、回折構造の外周側から光軸側に向かって順に段差d1の0倍、1倍、2倍及び3倍の高さの3段4レベルの階段状の断面を有する。なお、上記において、「1.25波長」とした場合は、「実質的に1.25波長」である場合も含む。 According to this configuration, the composite lens has at least two diffraction regions formed concentrically around the optical axis of light incident on the composite lens. A diffraction structure having a stepped cross section is formed in a diffraction region other than the outermost diffraction region among the at least two diffraction regions. The step d1 of the diffractive structure gives an optical path difference of approximately 1.25 wavelengths to blue light. The diffractive structure is a three-step, four-level step-like cross section having a height of 0 times, 1 time, 2 times and 3 times the step d1 in order from the outer peripheral side of the diffractive structure to the optical axis side within one period. Have. In the above description, “1.25 wavelength” includes “substantially 1.25 wavelength”.
 したがって、回折構造の段差d1は、青色光に対して略1.25波長の光路差を与えるので、青色光に対して位相変調量が一段あたり実質的にはπ/2ずつ変化し、光路長差は、一段毎に青色光の波長に対して+1/4ずつ変化する。階段が4段形成されることにより、位相は2π変化するので、一周期の回折構造から発生する+1次回折光の回折効率を最も強くすることができる。 Therefore, the step d1 of the diffractive structure gives an optical path difference of approximately 1.25 wavelengths to the blue light, so that the phase modulation amount for the blue light changes substantially by π / 2 per step, and the optical path length The difference changes by +1/4 with respect to the wavelength of blue light for each stage. By forming four steps, the phase changes by 2π, so that the diffraction efficiency of the + 1st order diffracted light generated from a one-period diffraction structure can be maximized.
 また、上記の複合レンズにおいて、波長λ1の青色光が厚さt1の基材を通して集光される開口数は、波長λ2の赤色光が前記厚さt1よりも大きい厚さt2の基材を通して集光される開口数よりも大きいことが好ましい。 In the above compound lens, the numerical aperture at which the blue light having the wavelength λ1 is collected through the base material having the thickness t1 is set so that the red light having the wavelength λ2 is collected through the base material having the thickness t2 larger than the thickness t1. It is preferable that the numerical aperture is larger than the lighted numerical aperture.
 この構成によれば、波長λ1の青色光が厚さt1の基材を通して集光される開口数は、波長λ2の赤色光が厚さt1よりも大きい厚さt2の基材を通して集光される開口数よりも大きいので、青色光を用いて情報を記録又は再生する差異の記録媒体の記録密度を高くすることができる。 According to this configuration, the numerical aperture at which the blue light having the wavelength λ1 is collected through the base material having the thickness t1 is such that the red light having the wavelength λ2 is condensed through the base material having the thickness t2 larger than the thickness t1. Since it is larger than the numerical aperture, it is possible to increase the recording density of a recording medium that records or reproduces information using blue light.
 また、上記の複合レンズにおいて、前記回折構造の段差d1は、青色光に対して1波長より長い光路差を付加し、赤色光に対して1波長未満の光路差を付加し、赤外光に対して1波長未満の光路差を付加し、前記回折構造が前記赤色光及び前記赤外光に与える波面変換作用は、前記回折構造が前記青色光に与える波面変換作用に比べて逆の作用であることが好ましい。 In the above compound lens, the step d1 of the diffractive structure adds an optical path difference longer than one wavelength to the blue light, adds an optical path difference less than one wavelength to the red light, and adds to the infrared light. On the other hand, the wavefront conversion effect that the diffraction structure gives to the red light and the infrared light by adding an optical path difference of less than one wavelength is the reverse of the wavefront conversion action that the diffraction structure gives to the blue light. Preferably there is.
 この構成によれば、回折構造が赤色光及び赤外光に与える波面変換作用は、回折構造が青色光に与える波面変換作用に比べて逆の作用であるので、例えば、赤色光及び赤外光に対して青色光の回折次数の正と負とが逆である場合、波長間の収差補正効果及び焦点位置の移動効果を発揮させるために必要な回折構造の最小ピッチを広くでき、回折構造を容易に製作することができる。 According to this configuration, the wavefront converting action that the diffractive structure gives to red light and infrared light is the opposite action compared to the wavefront converting action that the diffractive structure gives to blue light. In contrast, when the positive and negative diffraction orders of blue light are opposite, the minimum pitch of the diffractive structure necessary to exhibit the aberration correction effect between wavelengths and the effect of moving the focal position can be widened, It can be easily manufactured.
 また、上記の複合レンズにおいて、前記回折構造は、前記屈折面上に一体に形成され、前記複合レンズの素子材の屈折率ncは、波長λ1の青色光と波長λ2の赤色光と波長λ3の赤外光とに対して、略同じであり、(J×λ1)と(K×λ2)と(L×λ3)とは略等しく(J、K及びLは自然数であり、J>M>K>Lである)、前記回折構造の段差d1は、波長λ1の青色光に対して(J×λ1)/Mの光路差を付加することが好ましい。 In the above compound lens, the diffractive structure is integrally formed on the refracting surface, and the refractive index nc of the element material of the compound lens is blue light of wavelength λ1, red light of wavelength λ2, and wavelength λ3. It is substantially the same as infrared light, and (J × λ1), (K × λ2), and (L × λ3) are substantially equal (J, K, and L are natural numbers, and J> M> K > L), the step d1 of the diffractive structure preferably adds an optical path difference of (J × λ1) / M to the blue light having the wavelength λ1.
 この構成によれば、回折構造は、屈折面上に一体に形成される。複合レンズの素子材の屈折率ncは、波長λ1の青色光と波長λ2の赤色光と波長λ3の赤外光とに対して、略同じである。(J×λ1)と(K×λ2)と(L×λ3)とは略等しく(J、K及びLは自然数であり、J>M>K>Lである)、回折構造の段差d1は、波長λ1の青色光に対して(J×λ1)/Mの光路差を付加する。なお、上記において、「同じ」とした場合及び「等しい」とした場合は、実質的に同じ場合及び実質的に等しい場合も含む。 According to this configuration, the diffractive structure is integrally formed on the refractive surface. The refractive index nc of the element material of the compound lens is substantially the same for blue light having a wavelength λ1, red light having a wavelength λ2, and infrared light having a wavelength λ3. (J × λ1), (K × λ2), and (L × λ3) are substantially equal (J, K, and L are natural numbers, and J> M> K> L), and the step d1 of the diffractive structure is An optical path difference of (J × λ1) / M is added to blue light of wavelength λ1. In the above description, the case of “same” and “equal” includes the case of substantially the same and the case of being substantially equal.
 したがって、回折構造の段差d1によって、波長λ1の青色光に対して(J×λ1)/Mの光路差を付加することができる。 Therefore, an optical path difference of (J × λ1) / M can be added to the blue light having the wavelength λ1 by the step d1 of the diffractive structure.
 また、上記の複合レンズにおいて、前記回折構造は、前記屈折面上に一体に形成され、前記複合レンズの素子材の屈折率ncは、波長λ1の青色光と波長λ2の赤色光と波長λ3の赤外光とに対して、略同じであり、(J×λ1)と(K×λ2)と(L×λ3)とは略等しく(J、K及びLは自然数であり、J>M>K>Lである)、前記回折構造の段差d1は、(J×λ1)/(nc-1)と(K×λ2)/(nc-1)と(L×λ3)/(nc-1)とをそれぞれ(1/M)倍した値のうちの最小値と最大値との間の範囲内の値であることが好ましい。 In the above compound lens, the diffractive structure is integrally formed on the refracting surface, and the refractive index nc of the element material of the compound lens is blue light of wavelength λ1, red light of wavelength λ2, and wavelength λ3. It is substantially the same as infrared light, and (J × λ1), (K × λ2), and (L × λ3) are substantially equal (J, K, and L are natural numbers, and J> M> K > L), the level difference d1 of the diffraction structure is (J × λ1) / (nc-1), (K × λ2) / (nc-1), and (L × λ3) / (nc-1). It is preferable that the value is in a range between the minimum value and the maximum value among the values obtained by multiplying (1 / M) by each.
 この構成によれば、回折構造は、屈折面上に一体に形成される。複合レンズの素子材の屈折率ncは、波長λ1の青色光と波長λ2の赤色光と波長λ3の赤外光とに対して、略同じである。(J×λ1)と(K×λ2)と(L×λ3)とは略等しく(J、K及びLは自然数であり、J>M>K>Lである)、回折構造の段差d1は、(J×λ1)/(nc-1)と(K×λ2)/(nc-1)と(L×λ3)/(nc-1)とをそれぞれ(1/M)倍した値のうちの最小値と最大値との間の範囲内の値である。なお、上記において、「同じ」とした場合及び「等しい」とした場合は、実質的に同じ場合及び実質的に等しい場合も含む。 According to this configuration, the diffractive structure is integrally formed on the refractive surface. The refractive index nc of the element material of the compound lens is substantially the same for blue light having a wavelength λ1, red light having a wavelength λ2, and infrared light having a wavelength λ3. (J × λ1), (K × λ2), and (L × λ3) are substantially equal (J, K, and L are natural numbers, and J> M> K> L), and the step d1 of the diffractive structure is (J × λ1) / (nc-1), (K × λ2) / (nc-1), and (L × λ3) / (nc-1) multiplied by (1 / M), respectively. A value in the range between the value and the maximum value. In the above description, the case of “same” and “equal” includes the case of substantially the same and the case of being substantially equal.
 したがって、回折構造の段差d1は、(J×λ1)/(nc-1)と(K×λ2)/(nc-1)と(L×λ3)/(nc-1)とをそれぞれ(1/M)倍した値のうちの最小値と最大値との間の範囲内の値であるで、波長λ1の青色光と波長λ2の赤色光と波長λ3の赤外光とで互換可能な回折構造を形成することができる。 Therefore, the level difference d1 of the diffractive structure is (J × λ1) / (nc-1), (K × λ2) / (nc-1), and (L × λ3) / (nc-1), respectively (1 / M) A diffractive structure which is a value within the range between the minimum value and the maximum value among the multiplied values and is compatible with blue light of wavelength λ1, red light of wavelength λ2, and infrared light of wavelength λ3. Can be formed.
 また、上記の複合レンズにおいて、前記回折構造は、前記屈折面上に一体に形成され、前記複合レンズの素子材の屈折率は、波長λ1の青色光と波長λ2の赤色光と波長λ3の赤外光とに対して、それぞれnb、nr及びniであり、(J×λ1)/(nb-1)と(K×λ2)/(nr-1)と(L×λ3)/(ni-1)とは略等しく(J、K及びLは自然数であり、J>M>K>Lである)、前記回折構造の段差d1は、(J×λ1)/(nb-1)と(K×λ2)/(nr-1)と(L×λ3)/(ni-1)とをそれぞれ(1/M)倍した値のうちの最小値と最大値との間の範囲内の値であることが好ましい。 In the above compound lens, the diffractive structure is integrally formed on the refracting surface, and the refractive index of the element material of the compound lens is blue light of wavelength λ1, red light of wavelength λ2, and red light of wavelength λ3. For external light, they are nb, nr and ni, respectively (J × λ1) / (nb-1), (K × λ2) / (nr-1) and (L × λ3) / (ni-1 ) Is substantially equal (J, K, and L are natural numbers, J> M> K> L), and the step d1 of the diffractive structure is (J × λ1) / (nb−1) and (K × λ2) / (nr-1) and (L × λ3) / (ni-1) multiplied by (1 / M), and the value is within the range between the minimum value and the maximum value. Is preferred.
 この構成によれば、回折構造は、屈折面上に一体に形成される。複合レンズの素子材の屈折率は、波長λ1の青色光と波長λ2の赤色光と波長λ3の赤外光とに対して、それぞれnb、nr及びniである。(J×λ1)/(nb-1)と(K×λ2)/(nr-1)と(L×λ3)/(ni-1)とは略等しく(J、K及びLは自然数であり、J>M>K>Lである)、回折構造の段差d1は、(J×λ1)/(nb-1)と(K×λ2)/(nr-1)と(L×λ3)/(ni-1)とをそれぞれ(1/M)倍した値のうちの最小値と最大値との間の範囲内の値である。なお、上記において、「等しい」とした場合は、実質的に等しい場合も含む。 According to this configuration, the diffractive structure is integrally formed on the refractive surface. The refractive index of the element material of the compound lens is nb, nr, and ni for blue light of wavelength λ1, red light of wavelength λ2, and infrared light of wavelength λ3, respectively. (J × λ1) / (nb-1), (K × λ2) / (nr-1), and (L × λ3) / (ni-1) are substantially equal (J, K, and L are natural numbers, J> M> K> L), and the step d1 of the diffraction structure is (J × λ1) / (nb−1), (K × λ2) / (nr−1), and (L × λ3) / (ni -1) is a value within a range between the minimum value and the maximum value among the values obtained by multiplying each by (1 / M). In the above description, “equal” includes the case where it is substantially equal.
 したがって、回折構造の段差d1は、(J×λ1)/(nb-1)と(K×λ2)/(nr-1)と(L×λ3)/(ni-1)とをそれぞれ(1/M)倍した値のうちの最小値と最大値との間の範囲内の値であるので、波長λ1の青色光と波長λ2の赤色光と波長λ3の赤外光とで互換可能な回折構造を形成することができる。 Therefore, the level difference d1 of the diffractive structure is (1 / x-1) / (nb-1), (Kxλ2) / (nr-1), and (Lxλ3) / (ni-1) (1 / M) A diffractive structure that is compatible with the blue light having the wavelength λ1, the red light having the wavelength λ2, and the infrared light having the wavelength λ3 because the value is within the range between the minimum value and the maximum value among the multiplied values. Can be formed.
 また、上記の複合レンズにおいて、前記複合レンズは、前記光の光軸を含む第1の領域と、第1の領域よりも前記光軸から離れる方向に形成された第2の領域と、前記第2の領域よりも前記光軸から離れる方向に形成された第3の領域とを有し、前記第1の領域には、前記回折構造が形成され、前記第1の領域は、青色光を厚さt1の基材を通して第1の記録媒体の記録面上へ集光させ、赤色光を前記厚さt1より大きい厚さt2の基材を通して第2の記録媒体の記録面上へ集光させ、赤外光を前記厚さt2より大きい厚さt3の基材を通して第3の記録媒体の記録面上へ集光させ、前記第2の領域は、青色光を前記厚さt1の基材を通して前記第1の記録媒体の記録面上へ集光させ、赤色光を前記厚さt2の基材を通して前記第2の記録媒体の記録面上へ集光させ、前記第3の領域は、青色光を前記厚さt1の基材を通して前記第1の記録媒体の記録面上へ集光させることが好ましい。 In the above compound lens, the compound lens includes a first region including the optical axis of the light, a second region formed in a direction away from the optical axis than the first region, and the first lens. A third region formed in a direction away from the optical axis than the second region, the diffractive structure is formed in the first region, and the first region has a thickness of blue light. Condensing on the recording surface of the first recording medium through the base material having a thickness t1, condensing red light on the recording surface of the second recording medium through the base material having a thickness t2 larger than the thickness t1, Infrared light is condensed on the recording surface of the third recording medium through a base material having a thickness t3 larger than the thickness t2, and the second region is configured to transmit blue light through the base material having the thickness t1. The second recording is performed by focusing the red light on the recording surface of the first recording medium and passing the red light through the base material having the thickness t2. Is converged to the body of the recording surface, said third region preferably be condensed onto the recording surface of the first recording medium blue light through the substrate of the thickness t1.
 この構成によれば、複合レンズは、光の光軸を含む第1の領域と、第1の領域よりも光軸から離れる方向に形成された第2の領域と、第2の領域よりも光軸から離れる方向に形成された第3の領域とを有している。第1の領域には、階段状の断面を有する回折構造が形成される。第1の領域は、青色光を厚さt1の基材を通して第1の記録媒体の記録面上へ集光させ、赤色光を厚さt1より大きい厚さt2の基材を通して第2の記録媒体の記録面上へ集光させ、赤外光を厚さt2より大きい厚さt3の基材を通して第3の記録媒体の記録面上へ集光させる。また、第2の領域は、青色光を厚さt1の基材を通して第1の記録媒体の記録面上へ集光させ、赤色光を厚さt2の基材を通して第2の記録媒体の記録面上へ集光させる。第3の領域は、青色光を厚さt1の基材を通して第1の記録媒体の記録面上へ集光させる。 According to this configuration, the compound lens includes the first region including the optical axis of light, the second region formed in a direction farther from the optical axis than the first region, and the light from the second region. And a third region formed in a direction away from the axis. A diffraction structure having a stepped cross section is formed in the first region. In the first region, blue light is condensed on the recording surface of the first recording medium through the base material having the thickness t1, and the red light is passed through the base material having the thickness t2 larger than the thickness t1. And the infrared light is condensed on the recording surface of the third recording medium through the base material having a thickness t3 larger than the thickness t2. The second region condenses blue light on the recording surface of the first recording medium through the base material having a thickness of t1, and records the red light through the base material of thickness t2 on the recording surface of the second recording medium. Focus it up. In the third region, blue light is condensed on the recording surface of the first recording medium through the base material having a thickness t1.
 したがって、第1の領域が、青色光と赤色光と赤外光とによって共用され、第2の領域が、青色光と赤色光とによって共用され、第3の領域が、青色光のみに用いられるので、開口数の異なる3つの波長の光の互換を実現することができる。 Therefore, the first region is shared by blue light, red light, and infrared light, the second region is shared by blue light and red light, and the third region is used only for blue light. Therefore, it is possible to realize compatibility of light of three wavelengths having different numerical apertures.
 また、上記の複合レンズにおいて、前記回折構造は、前記屈折面上に一体に形成されることが好ましい。 In the above compound lens, it is preferable that the diffractive structure is integrally formed on the refractive surface.
 この構成によれば、回折構造は、屈折面上に一体に形成されるので、部品点数を削減することができ、小型化を実現することができる。 According to this configuration, since the diffractive structure is integrally formed on the refracting surface, the number of parts can be reduced and downsizing can be realized.
 本発明の他の局面に係る光ヘッド装置は、青色光を出射する第1の光源と、赤色光を出射する第2の光源と、前記第1の光源から出射された青色光を厚さt1の基材を通して第1の記録媒体の記録面上へ集光し、前記第2の光源から出射された赤色光を前記厚さt1より大きい厚さt2の基材を通して第2の記録媒体の記録面上へ集光する請求項1~10のいずれかに記載の複合レンズと、前記第1の記録媒体の記録面上で反射した前記青色光又は前記第2の記録媒体の記録面上で反射した前記赤色光を受光し、受光量に応じて電気信号を出力する光検出器とを備える。 An optical head device according to another aspect of the present invention has a first light source that emits blue light, a second light source that emits red light, and a thickness t1 of blue light emitted from the first light source. The red light emitted from the second light source is condensed on the recording surface of the first recording medium through the base material of the first recording medium, and recorded on the second recording medium through the base material having a thickness t2 larger than the thickness t1. 11. The compound lens according to claim 1, which collects light on a surface, and the blue light reflected on the recording surface of the first recording medium or the reflection on the recording surface of the second recording medium. And a photodetector that receives the red light and outputs an electrical signal according to the amount of received light.
 この構成によれば、第1の光源は、青色光を出射する。第2の光源は、赤色光を出射する。複合レンズは、第1の光源から出射された青色光を厚さt1の基材を通して第1の記録媒体の記録面上へ集光し、第2の光源から出射された赤色光を厚さt1より大きい厚さt2の基材を通して第2の記録媒体の記録面上へ集光する。光検出器は、第1の記録媒体の記録面上で反射した青色光又は第2の記録媒体の記録面上で反射した赤色光を受光し、受光量に応じて電気信号を出力する。したがって、上記の複合レンズを光ヘッド装置に適用することができる。 According to this configuration, the first light source emits blue light. The second light source emits red light. The compound lens condenses the blue light emitted from the first light source onto the recording surface of the first recording medium through the substrate having the thickness t1, and the red light emitted from the second light source has the thickness t1. Light is condensed on the recording surface of the second recording medium through the base material having a larger thickness t2. The photodetector receives blue light reflected on the recording surface of the first recording medium or red light reflected on the recording surface of the second recording medium, and outputs an electrical signal according to the amount of received light. Therefore, the above compound lens can be applied to an optical head device.
 本発明の他の局面に係る光ヘッド装置は、青色光を出射する第1の光源と、赤色光を出射する第2の光源と、赤外光を出射する第3の光源と、前記第1の光源から出射された青色光を厚さt1の基材を通して第1の記録媒体の記録面上へ集光し、前記第2の光源から出射された赤色光を前記厚さt1より大きい厚さt2の基材を通して第2の記録媒体の記録面上へ集光し、前記第3の光源から出射された赤外光を前記厚さt2より大きい厚さt3の基材を通して第3の記録媒体の記録面上へ集光する請求項11~16のいずれかに記載の複合レンズと、前記第1の記録媒体の記録面上で反射した前記青色光、前記第2の記録媒体の記録面上で反射した前記赤色光又は前記第3の記録媒体の記録面上で反射した前記赤外光を受光し、受光量に応じて電気信号を出力する光検出器とを備える。 An optical head device according to another aspect of the present invention includes a first light source that emits blue light, a second light source that emits red light, a third light source that emits infrared light, and the first light source. The blue light emitted from the light source is condensed on the recording surface of the first recording medium through the substrate having the thickness t1, and the red light emitted from the second light source is thicker than the thickness t1. The third recording medium is focused on the recording surface of the second recording medium through the base material of t2, and the infrared light emitted from the third light source passes through the base material of thickness t3 larger than the thickness t2. The compound lens according to any one of claims 11 to 16, and the blue light reflected on the recording surface of the first recording medium, and the recording surface of the second recording medium. Receiving the red light reflected on the recording medium or the infrared light reflected on the recording surface of the third recording medium. Flip and a light detector for outputting an electrical signal.
 この構成によれば、第1の光源は、青色光を出射する。第2の光源は、赤色光を出射する。第3の光源は、赤外光を出射する。複合レンズは、第1の光源から出射された青色光を厚さt1の基材を通して第1の記録媒体の記録面上へ集光し、第2の光源から出射された赤色光を厚さt1より大きい厚さt2の基材を通して第2の記録媒体の記録面上へ集光し、第3の光源から出射された赤外光を厚さt2より大きい厚さt3の基材を通して第3の記録媒体の記録面上へ集光する。光検出器は、第1の記録媒体の記録面上で反射した青色光、第2の記録媒体の記録面上で反射した赤色光又は第3の記録媒体の記録面上で反射した赤外光を受光し、受光量に応じて電気信号を出力する。したがって、上記の複合レンズを光ヘッド装置に適用することができる。 According to this configuration, the first light source emits blue light. The second light source emits red light. The third light source emits infrared light. The compound lens condenses the blue light emitted from the first light source onto the recording surface of the first recording medium through the substrate having the thickness t1, and the red light emitted from the second light source has the thickness t1. The infrared light emitted from the third light source is condensed on the recording surface of the second recording medium through the base material having the larger thickness t2, and the third light passes through the base material having the thickness t3 larger than the thickness t2. Condensed on the recording surface of the recording medium. The photodetector is blue light reflected on the recording surface of the first recording medium, red light reflected on the recording surface of the second recording medium, or infrared light reflected on the recording surface of the third recording medium. Is received, and an electrical signal is output according to the amount of received light. Therefore, the above compound lens can be applied to an optical head device.
 本発明の他の局面に係る光ディスク装置は、上記の光ヘッド装置と、光ディスクを回転させるモータと、前記光ヘッド装置から得られる電気信号に基づいて、前記モータ及び前記光ヘッド装置を制御する制御部とを備える。この構成によれば、上記の光ヘッド装置を光ディスク装置に適用することができる。 An optical disc apparatus according to another aspect of the present invention provides a control for controlling the motor and the optical head device based on an electric signal obtained from the optical head device, a motor for rotating the optical disc, and the optical head device. A part. According to this configuration, the above optical head device can be applied to an optical disk device.
 本発明の他の局面に係る光情報装置は、上記の光ディスク装置と、前記光ディスク装置に記録する情報及び/又は前記光ディスク装置から再生された情報を処理する情報処理部とを備える。この構成によれば、上記の光ディスク装置を光情報装置に適用することができる。 An optical information device according to another aspect of the present invention includes the above-described optical disc device and an information processing unit that processes information recorded on the optical disc device and / or information reproduced from the optical disc device. According to this configuration, the optical disk device described above can be applied to an optical information device.
 なお、発明を実施するための形態の項においてなされた具体的な実施態様または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と特許請求事項との範囲内で、種々変更して実施することができるものである。 It should be noted that the specific embodiments or examples made in the section for carrying out the invention are merely to clarify the technical contents of the present invention, and are limited to such specific examples. The present invention should not be interpreted in a narrow sense, and various modifications can be made within the spirit and scope of the present invention.
 本発明に係る複合レンズは、回折効率をより向上させることができ、光ヘッド装置に用いられる対物レンズ等として有用であり、光通信に用いられるレンズ等の用途にも応用できる。 The compound lens according to the present invention can further improve the diffraction efficiency, is useful as an objective lens used in an optical head device, and can be applied to uses such as a lens used in optical communication.

Claims (20)

  1.  光を回折させる回折構造と、
     前記光を屈折させる屈折面とを備え、
     前記回折構造は、一周期が(M-1)段Mレベル(Mは3以上の自然数)の階段状の断面を有し、
     前記回折構造の段差d1は、青色光に対して1波長より長い光路差を付加し、赤色光に対して1波長未満の光路差を付加し、
     前記回折構造の各平坦部は、階段が高くなる方向に傾斜していることを特徴とする複合レンズ。
    A diffractive structure that diffracts light;
    A refracting surface for refracting the light,
    The diffractive structure has a step-like cross section with one cycle of (M−1) steps and M levels (M is a natural number of 3 or more),
    The step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light, adds an optical path difference less than one wavelength to red light,
    Each of the flat portions of the diffractive structure is inclined in the direction in which the stairs are raised.
  2.  前記回折構造の複数の平坦部は、光軸に向かって高くなっており、
     各平坦部は、前記光軸に近い側の端部が前記光軸から遠い側の端部より高くなるように傾斜させることを特徴とする請求項1記載の複合レンズ。
    The plurality of flat portions of the diffractive structure are higher toward the optical axis,
    2. The compound lens according to claim 1, wherein each flat portion is inclined so that an end portion on a side close to the optical axis is higher than an end portion on a side far from the optical axis.
  3.  前記段差d1が波長λ1の青色光に対して付与する光路差は、定数Cd1×λ1であり、
     前記平坦部を傾ける幅C1は、0<C1≦(Cd1-1)を満たすことを特徴とする請求項2記載の複合レンズ。
    The optical path difference that the step d1 gives to the blue light having the wavelength λ1 is a constant Cd1 × λ1.
    3. The compound lens according to claim 2, wherein a width C1 for inclining the flat portion satisfies 0 <C1 ≦ (Cd1-1).
  4.  前記回折構造の複数の平坦部は、光軸に向かって高くなっており、
     各平坦部は、前記光軸に近い側の端部が前記光軸から遠い側の端部より低くなるように傾斜させることを特徴とする請求項1記載の複合レンズ。
    The plurality of flat portions of the diffractive structure are higher toward the optical axis,
    2. The compound lens according to claim 1, wherein each flat portion is inclined so that an end portion on a side close to the optical axis is lower than an end portion on a side far from the optical axis.
  5.  前記段差d1が波長λ2の赤色光に対して付与する光路差は、定数Cd2×λ2であり、
     前記平坦部を傾ける幅C2は、0<C2≦(1-Cd2)を満たすことを特徴とする請求項4記載の複合レンズ。
    The optical path difference that the step d1 gives to the red light having the wavelength λ2 is a constant Cd2 × λ2.
    5. The compound lens according to claim 4, wherein a width C2 for inclining the flat portion satisfies 0 <C2 ≦ (1-Cd2).
  6.  前記段差d1が波長λ3の赤外光に対して付与する光路差は、定数Cd3×λ3であり、
     前記平坦部を傾ける幅C2は、0<C2≦(1-Cd3)を満たすことを特徴とする請求項4又は5記載の複合レンズ。
    The optical path difference that the step d1 gives to the infrared light having the wavelength λ3 is a constant Cd3 × λ3.
    6. The compound lens according to claim 4, wherein a width C2 for inclining the flat portion satisfies 0 <C2 ≦ (1-Cd3).
  7.  光を回折させる回折構造と、
     前記光を屈折させる屈折面とを備え、
     前記回折構造は、一周期が(M-1)段Mレベル(Mは3以上の自然数)の階段状の断面を有し、
     前記回折構造の各平坦部の幅を、高さの低い方から高い方へ順にW1、W2、・・・、W(M-1)及びWMとしたときに、幅W1及び幅WMは、幅W2~幅W(M-1)よりも狭いことを特徴とする複合レンズ。
    A diffractive structure that diffracts light;
    A refracting surface for refracting the light,
    The diffractive structure has a step-like cross section with one cycle of (M−1) steps and M levels (M is a natural number of 3 or more),
    When the width of each flat portion of the diffractive structure is W1, W2,..., W (M-1) and WM in order from the lowest to the highest, the width W1 and the width WM are the widths. A compound lens characterized by being narrower than W2 to width W (M-1).
  8.  前記回折構造の段差d1は、青色光に対して1波長より長い光路差を付加し、赤色光に対して1波長未満の光路差を付加し、
     前記回折構造が前記赤色光に与える波面変換作用は、前記回折構造が前記青色光に与える波面変換作用に比べて逆の作用であることを特徴とする請求項1~7のいずれかに記載の複合レンズ。
    The step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light, adds an optical path difference less than one wavelength to red light,
    The wavefront converting action that the diffractive structure gives to the red light is an action opposite to the wavefront converting action that the diffractive structure gives to the blue light. Compound lens.
  9.  前記複合レンズは、前記複合レンズに入射する光の光軸の周りに同心円状に形成される少なくとも2つの回折領域を有し、
     前記少なくとも2つの回折領域の内、最も外側の回折領域以外の回折領域には、階段状の断面を有する前記回折構造が形成され、
     前記回折構造の段差d1は、青色光に対して略1.25波長の光路差を与え、
     前記回折構造は、一周期内において、前記回折構造の外周側から光軸側に向かって順に前記段差d1の0倍、1倍、2倍及び3倍の高さの3段4レベルの階段状の断面を有することを特徴とする請求項1~8のいずれかに記載の複合レンズ。
    The compound lens has at least two diffraction regions formed concentrically around the optical axis of light incident on the compound lens;
    Of the at least two diffractive regions, the diffractive region other than the outermost diffractive region is formed with the diffractive structure having a stepped cross section,
    The step d1 of the diffractive structure gives an optical path difference of approximately 1.25 wavelengths to blue light,
    The diffractive structure has a three-step, four-level staircase shape having a height of 0, 1, 2, and 3 times the step d1 in order from the outer peripheral side of the diffractive structure to the optical axis side in one cycle. The compound lens according to claim 1, having a cross section of:
  10.  波長λ1の青色光が厚さt1の基材を通して集光される開口数は、波長λ2の赤色光が前記厚さt1よりも大きい厚さt2の基材を通して集光される開口数よりも大きいことを特徴とする請求項1~9のいずれかに記載の複合レンズ。 The numerical aperture at which the blue light having the wavelength λ1 is collected through the base material having the thickness t1 is larger than the numerical aperture at which the red light having the wavelength λ2 is condensed through the base material having the thickness t2 larger than the thickness t1. The compound lens according to any one of claims 1 to 9, wherein:
  11.  前記回折構造の段差d1は、青色光に対して1波長より長い光路差を付加し、赤色光に対して1波長未満の光路差を付加し、波長λ3の赤外光に対して1波長未満の光路差を付加し、
     前記回折構造が前記赤色光及び前記赤外光に与える波面変換作用は、前記回折構造が前記青色光に与える波面変換作用に比べて逆の作用であることを特徴とする請求項1~10のいずれかに記載の複合レンズ。
    The step d1 of the diffractive structure adds an optical path difference longer than one wavelength to blue light, adds an optical path difference less than one wavelength to red light, and less than one wavelength for infrared light having a wavelength λ3. The optical path difference of
    11. The wavefront converting action that the diffractive structure gives to the red light and the infrared light is an action opposite to the wavefront converting action that the diffractive structure gives to the blue light. The compound lens in any one.
  12.  前記回折構造は、前記屈折面上に一体に形成され、
     前記複合レンズの素子材の屈折率ncは、波長λ1の青色光と波長λ2の赤色光と波長λ3の赤外光とに対して、略同じであり、
     (J×λ1)と(K×λ2)と(L×λ3)とは略等しく(J、K及びLは自然数であり、J>M>K>Lである)、
     前記回折構造の段差d1は、波長λ1の青色光に対して(J×λ1)/Mの光路差を付加することを特徴とする請求項1~11のいずれかに記載の複合レンズ。
    The diffractive structure is integrally formed on the refractive surface,
    The refractive index nc of the element material of the compound lens is substantially the same for blue light having a wavelength λ1, red light having a wavelength λ2, and infrared light having a wavelength λ3.
    (J × λ1), (K × λ2), and (L × λ3) are substantially equal (J, K, and L are natural numbers, and J>M>K> L),
    12. The compound lens according to claim 1, wherein the step d1 of the diffractive structure adds an optical path difference of (J × λ1) / M to blue light having a wavelength λ1.
  13.  前記回折構造は、前記屈折面上に一体に形成され、
     前記複合レンズの素子材の屈折率ncは、波長λ1の青色光と波長λ2の赤色光と波長λ3の赤外光とに対して、略同じであり、
     (J×λ1)と(K×λ2)と(L×λ3)とは略等しく(J、K及びLは自然数であり、J>M>K>Lである)、
     前記回折構造の段差d1は、(J×λ1)/(nc-1)と(K×λ2)/(nc-1)と(L×λ3)/(nc-1)とをそれぞれ(1/M)倍した値のうちの最小値と最大値との間の範囲内の値であることを特徴とする請求項1~12のいずれかに記載の複合レンズ。
    The diffractive structure is integrally formed on the refractive surface,
    The refractive index nc of the element material of the compound lens is substantially the same for blue light having a wavelength λ1, red light having a wavelength λ2, and infrared light having a wavelength λ3.
    (J × λ1), (K × λ2), and (L × λ3) are substantially equal (J, K, and L are natural numbers, and J>M>K> L),
    The step d1 of the diffractive structure has (J × λ1) / (nc-1), (K × λ2) / (nc-1), and (L × λ3) / (nc-1), respectively (1 / M 13. The compound lens according to claim 1, wherein the compound lens has a value within a range between a minimum value and a maximum value among the multiplied values.
  14.  前記回折構造は、前記屈折面上に一体に形成され、
     前記複合レンズの素子材の屈折率は、波長λ1の青色光と波長λ2の赤色光と波長λ3の赤外光とに対して、それぞれnb、nr及びniであり、
     (J×λ1)/(nb-1)と(K×λ2)/(nr-1)と(L×λ3)/(ni-1)とは略等しく(J、K及びLは自然数であり、J>M>K>Lである)、
     前記回折構造の段差d1は、(J×λ1)/(nb-1)と(K×λ2)/(nr-1)と(L×λ3)/(ni-1)とをそれぞれ(1/M)倍した値のうちの最小値と最大値との間の範囲内の値であることを特徴とする請求項1~11のいずれかに記載の複合レンズ。
    The diffractive structure is integrally formed on the refractive surface,
    The refractive index of the element material of the compound lens is nb, nr and ni for blue light of wavelength λ1, red light of wavelength λ2 and infrared light of wavelength λ3, respectively.
    (J × λ1) / (nb-1), (K × λ2) / (nr-1), and (L × λ3) / (ni-1) are substantially equal (J, K, and L are natural numbers, J>M>K> L),
    The level difference d1 of the diffractive structure is (J × λ1) / (nb-1), (K × λ2) / (nr-1), and (L × λ3) / (ni-1), respectively (1 / M 12. The compound lens according to claim 1, wherein the compound lens has a value within a range between a minimum value and a maximum value among the multiplied values.
  15.  前記複合レンズは、前記光の光軸を含む第1の領域と、前記第1の領域よりも前記光軸から離れる方向に形成された第2の領域と、前記第2の領域よりも前記光軸から離れる方向に形成された第3の領域とを有し、
     前記第1の領域には、前記回折構造が形成され、
     前記第1の領域は、青色光を厚さt1の基材を通して第1の記録媒体の記録面上へ集光させ、赤色光を前記厚さt1より大きい厚さt2の基材を通して第2の記録媒体の記録面上へ集光させ、赤外光を前記厚さt2より大きい厚さt3の基材を通して第3の記録媒体の記録面上へ集光させ、
     前記第2の領域は、青色光を前記厚さt1の基材を通して前記第1の記録媒体の記録面上へ集光させ、赤色光を前記厚さt2の基材を通して前記第2の記録媒体の記録面上へ集光させ、
     前記第3の領域は、青色光を前記厚さt1の基材を通して前記第1の記録媒体の記録面上へ集光させることを特徴とする請求項11~14のいずれかに記載の複合レンズ。
    The compound lens includes a first region including an optical axis of the light, a second region formed in a direction farther from the optical axis than the first region, and the light from the second region. A third region formed in a direction away from the axis,
    The diffractive structure is formed in the first region,
    The first region collects blue light through the base material having a thickness of t1 onto the recording surface of the first recording medium, and causes the red light to pass through the base material having a thickness of t2 larger than the thickness t1. Condensing on the recording surface of the recording medium, and condensing infrared light onto the recording surface of the third recording medium through a base material having a thickness t3 larger than the thickness t2.
    The second region condenses blue light through the base material having the thickness t1 onto the recording surface of the first recording medium, and red light passes through the base material having the thickness t2. Focus on the recording surface of
    The compound lens according to any one of claims 11 to 14, wherein the third region condenses blue light on the recording surface of the first recording medium through the base material having the thickness t1. .
  16.  前記回折構造は、前記屈折面上に一体に形成されることを特徴とする請求項1~15のいずれかに記載の複合レンズ。 The compound lens according to claim 1, wherein the diffractive structure is integrally formed on the refractive surface.
  17.  青色光を出射する第1の光源と、
     赤色光を出射する第2の光源と、
     前記第1の光源から出射された青色光を厚さt1の基材を通して第1の記録媒体の記録面上へ集光し、前記第2の光源から出射された赤色光を前記厚さt1より大きい厚さt2の基材を通して第2の記録媒体の記録面上へ集光する請求項1~10のいずれかに記載の複合レンズと、
     前記第1の記録媒体の記録面上で反射した前記青色光又は前記第2の記録媒体の記録面上で反射した前記赤色光を受光し、受光量に応じて電気信号を出力する光検出器とを備えることを特徴とする光ヘッド装置。
    A first light source that emits blue light;
    A second light source that emits red light;
    The blue light emitted from the first light source is condensed on the recording surface of the first recording medium through the substrate having the thickness t1, and the red light emitted from the second light source is collected from the thickness t1. The compound lens according to any one of claims 1 to 10, which collects light on a recording surface of the second recording medium through a base material having a large thickness t2.
    A photodetector that receives the blue light reflected on the recording surface of the first recording medium or the red light reflected on the recording surface of the second recording medium, and outputs an electrical signal according to the amount of received light An optical head device comprising:
  18.  青色光を出射する第1の光源と、
     赤色光を出射する第2の光源と、
     赤外光を出射する第3の光源と、
     前記第1の光源から出射された青色光を厚さt1の基材を通して第1の記録媒体の記録面上へ集光し、前記第2の光源から出射された赤色光を前記厚さt1より大きい厚さt2の基材を通して第2の記録媒体の記録面上へ集光し、前記第3の光源から出射された赤外光を前記厚さt2より大きい厚さt3の基材を通して第3の記録媒体の記録面上へ集光する請求項11~16のいずれかに記載の複合レンズと、
     前記第1の記録媒体の記録面上で反射した前記青色光、前記第2の記録媒体の記録面上で反射した前記赤色光又は前記第3の記録媒体の記録面上で反射した前記赤外光を受光し、受光量に応じて電気信号を出力する光検出器とを備えることを特徴とする光ヘッド装置。
    A first light source that emits blue light;
    A second light source that emits red light;
    A third light source that emits infrared light;
    The blue light emitted from the first light source is condensed on the recording surface of the first recording medium through the substrate having the thickness t1, and the red light emitted from the second light source is collected from the thickness t1. The light is condensed on the recording surface of the second recording medium through the base material having the large thickness t2, and the infrared light emitted from the third light source is passed through the base material having the thickness t3 larger than the thickness t2. The compound lens according to any one of claims 11 to 16, which collects light on a recording surface of the recording medium of
    The blue light reflected on the recording surface of the first recording medium, the red light reflected on the recording surface of the second recording medium, or the infrared light reflected on the recording surface of the third recording medium. An optical head device comprising: a photodetector that receives light and outputs an electrical signal according to the amount of received light.
  19.  請求項17又は18記載の光ヘッド装置と、
     光ディスクを回転させるモータと、
     前記光ヘッド装置から得られる電気信号に基づいて、前記モータ及び前記光ヘッド装置を制御する制御部とを備えることを特徴とする光ディスク装置。
    The optical head device according to claim 17 or 18,
    A motor for rotating the optical disc;
    An optical disc apparatus comprising: a motor and a control unit that controls the optical head apparatus based on an electrical signal obtained from the optical head apparatus.
  20.  請求項19記載の光ディスク装置と、
     前記光ディスク装置に記録する情報及び/又は前記光ディスク装置から再生された情報を処理する情報処理部とを備えることを特徴とする光情報装置。
    An optical disc device according to claim 19,
    An optical information device comprising: an information processing unit that processes information recorded on the optical disc device and / or information reproduced from the optical disc device.
PCT/JP2012/005178 2011-08-30 2012-08-16 Compound lens, optical head device, optical disk device, and optical information device WO2013031123A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011187200A JP2014211923A (en) 2011-08-30 2011-08-30 Compound lens and optical head device using the same, optical disk unit and optical information apparatus
JP2011-187200 2011-08-30
JP2012-111449 2012-05-15
JP2012111449 2012-05-15

Publications (1)

Publication Number Publication Date
WO2013031123A1 true WO2013031123A1 (en) 2013-03-07

Family

ID=47755655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005178 WO2013031123A1 (en) 2011-08-30 2012-08-16 Compound lens, optical head device, optical disk device, and optical information device

Country Status (1)

Country Link
WO (1) WO2013031123A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147942A1 (en) * 2008-06-04 2009-12-10 コニカミノルタオプト株式会社 Objective lens and optical pickup device
WO2009154072A1 (en) * 2008-06-20 2009-12-23 コニカミノルタオプト株式会社 Objective lens, optical pickup device, and optical disk drive
JP2010055683A (en) * 2008-08-28 2010-03-11 Konica Minolta Opto Inc Objective optical element and optical pickup device
JP2011141909A (en) * 2009-06-18 2011-07-21 Sony Corp Objective lens, optical pickup, and optical disc apparatus
WO2011093007A1 (en) * 2010-01-27 2011-08-04 パナソニック株式会社 Compound objective lens, optical head device, optical information device and information processing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147942A1 (en) * 2008-06-04 2009-12-10 コニカミノルタオプト株式会社 Objective lens and optical pickup device
WO2009154072A1 (en) * 2008-06-20 2009-12-23 コニカミノルタオプト株式会社 Objective lens, optical pickup device, and optical disk drive
JP2010055683A (en) * 2008-08-28 2010-03-11 Konica Minolta Opto Inc Objective optical element and optical pickup device
JP2011141909A (en) * 2009-06-18 2011-07-21 Sony Corp Objective lens, optical pickup, and optical disc apparatus
WO2011093007A1 (en) * 2010-01-27 2011-08-04 パナソニック株式会社 Compound objective lens, optical head device, optical information device and information processing device

Similar Documents

Publication Publication Date Title
KR100592927B1 (en) Complex object lens, optical head apparatus, optical information apparatus, computer, optical disk player, car navigation system, optical disk recorder, optical disk server
JP4242296B2 (en) Optical head device, optical information device using the same, and computer, optical disk player, car navigation system, optical disk recorder, and optical disk server using the optical information device
US8509047B2 (en) Optical head device and optical information device using the same, computer, optical disk player, car navigation system, optical disk recorder, and optical disk server
JP3993837B2 (en) Compound objective lens, optical head device, optical information device, computer, optical disk player, car navigation system, optical disk recorder, optical disk server
US7248409B2 (en) Optical element, optical lens, optical head apparatus, optical information apparatus, computer, optical information medium player, car navigation system, optical information medium recorder, and optical information medium server
US8064314B2 (en) Optical head and optical disc device
JP4787060B2 (en) Optical pickup and optical information processing apparatus
JP3993870B2 (en) Compound objective lens, optical head device, optical information device, computer, optical disk player, car navigation system, optical disk recorder, optical disk server
JP5583700B2 (en) Compound objective lens, optical head device, optical information device, and information processing device
JP4336222B2 (en) Optical head device, optical information device using the same, computer, optical disk player, car navigation system, optical disk recorder, and optical disk server
WO2009147827A1 (en) Optical pickup and optical disc disk device, computer, optical disc disk player, optical disc disk recorder
JP4467957B2 (en) Optical lens, optical head device, optical information device, computer, optical information medium player, optical information medium server
JP2010040136A (en) Composite objective lens, optical head device, optical information apparatus and optical disc system
WO2013031123A1 (en) Compound lens, optical head device, optical disk device, and optical information device
WO2011033789A1 (en) Objective lens element
JP2014211923A (en) Compound lens and optical head device using the same, optical disk unit and optical information apparatus
JP2007294033A (en) Optical pickup and optical information processor
JP2004335077A (en) Diffraction element, diffraction grating design method and optical head device using it, optical information device, computer, optical information medium player, car-navigation system, optical information medium recorder, and optical disk server

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP