WO2013029747A1 - Refrigerant circuit having two compression stages and an intermediate pressure cylinder - Google Patents

Refrigerant circuit having two compression stages and an intermediate pressure cylinder Download PDF

Info

Publication number
WO2013029747A1
WO2013029747A1 PCT/EP2012/003420 EP2012003420W WO2013029747A1 WO 2013029747 A1 WO2013029747 A1 WO 2013029747A1 EP 2012003420 W EP2012003420 W EP 2012003420W WO 2013029747 A1 WO2013029747 A1 WO 2013029747A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
refrigerant
outlet
sector
compression means
Prior art date
Application number
PCT/EP2012/003420
Other languages
French (fr)
Inventor
Bertrand Nicolas
Mohamed Yahia
Régine Haller
Original Assignee
Valeo Systems Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systems Thermiques filed Critical Valeo Systems Thermiques
Publication of WO2013029747A1 publication Critical patent/WO2013029747A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves

Definitions

  • the technical sector of the present invention is that of assemblies or systems used to condition a flow of air entering a passenger compartment of a motor vehicle. More particularly, the invention relates to a refrigerant circuit used in heating mode, otherwise called heat pump, cooling mode or dehumidification mode and using three different pressure levels. The invention optimizes the architecture and performance of such a circuit in cooling mode but also in heating mode.
  • a motor vehicle is conventionally equipped with a loop or air conditioning circuit inside which circulates a refrigerant.
  • This loop conventionally comprises a compressor, a condenser, a pressure reducer and an evaporator traveled in this order by the refrigerant.
  • the evaporator is mounted inside a ventilation, heating and / or air conditioning installation generally placed in the passenger compartment of the vehicle to provide the latter with a flow of hot air or a cold air flow depending on the temperature. a request from the user of the vehicle.
  • the condenser is conventionally installed on the front of the vehicle to be traversed by the flow of air outside the vehicle.
  • This air conditioning loop can be used in cooling mode or heating mode.
  • cooling mode the coolant is sent to the front-end exchanger operating in condenser mode, where the coolant is cooled by the outside air flow. Then, the coolant flows to the pressure reducer where it undergoes a lowering of its pressure before entering the passenger compartment exchanger, the latter operating in evaporator mode.
  • the refrigerant fluid passing through the evaporator is then heated by the flow of air entering the ventilation system, which is correlatively reflected by a cooling of this air flow in order to air condition the passenger compartment of the vehicle.
  • the circuit being a closed loop, the refrigerant then returns to the compressor.
  • the fluid In heating mode, the fluid is circulated by the compressor which sends it to the passenger compartment exchanger, the latter then operating in condenser.
  • the latter then behaves as a condenser, where the coolant is cooled by the air circulating in the ventilation system. This air is heated in contact with the passenger compartment and thus brings calories to the passenger compartment of the vehicle.
  • the refrigerant After passing through the passenger compartment heat exchanger, the refrigerant is expanded by an expansion valve before reaching the front-face exchanger, the latter being used in evaporator mode.
  • the outside air flow then heats the refrigerant.
  • the outside air flow is consequently colder after passing through the front-end heat exchanger compared to its temperature before passing through the passenger compartment heat exchanger.
  • the refrigerant then returns to the compressor.
  • the operation of the loop in the heating mode is limited by the pressure of the refrigerant fluid on the low pressure side.
  • the operation of the loop in the heating mode is also limited by the value of the compression ratio of the compressor. Such difficulties hinder the improvement of a thermodynamic cycle used in the heating mode.
  • the object of the present invention is therefore to solve the defects described above mainly by adapting an air conditioning circuit comprising a double-stage compressor so that it operates effectively in operating mode. cooling, in dehumidification mode and especially in heating mode.
  • the invention therefore relates to a circuit for thermally conditioning a passenger compartment of a vehicle, comprising:
  • first circuit portion which extends between an inlet of a first compression means and an outlet of a first expansion element, said first portion comprising at least one external exchanger sharing said first portion in a first sector situated in upstream of the external exchanger and a second sector located downstream of said external exchanger,
  • a third portion of the circuit which extends between an outlet of a second expansion member and an outlet of a second compression means, said third portion comprising an evaporator sharing said third portion between a first zone situated upstream of the evaporator and a second zone located downstream of said evaporator, characterized in that the circuit comprises a first means which relates the first zone to the first sector and a second means which relates the second sector to the second zone.
  • a refrigerant fluid is able to circulate in said circuit to implement at least one heating mode of the passenger compartment and a cooling mode of the passenger compartment.
  • the circuit comprises a second circuit portion which extends between the output of the first expansion member and the output of the second expansion member, the output of the second compression means and the input of the second first compression means being in communication with the second portion via a refrigerant phase separation device.
  • the first means comprises at least one duct extending between the first zone and the first sector and a third branching member which manages a refrigerant circulation in said duct.
  • the third bifurcation member for example taking the form of a three-way valve with a control member, can then be installed at one or other of the ends of the duct, but it can also be installed in the duct. that is to say between said ends.
  • the first means comprises a fourth bifurcation member installed at a confluence of the first sector with said conduit, the third bifurcating member being installed at a confluence of the first zone with said conduit.
  • the confluences are at the ends of said duct, that is to say at the place where the portion and the duct separate or join.
  • the second means comprises at least one channel which extends between the second sector and the second zone and a fifth bifurcation member which manages a refrigerant circulation in said channel.
  • the fifth bifurcation member for example taking the form of a three-way valve control member, can then be installed at one or the other end of the channel but it can also be installed in the channel, it that is to say between said ends.
  • the second means comprises a sixth bifurcation member installed at a confluence of the second zone with said channel, the fifth bifurcation member being installed at a confluence of the second sector with said channel.
  • the confluences in question are at the ends of said channel, that is to say at the place where the portion and the channel separate or join.
  • the refrigerant circulates through the external exchanger in the same direction of circulation when the circuit is operated in the heating mode and cooling mode.
  • the circuit of the invention is arranged so that the refrigerant does not change direction by switching from one mode to another.
  • This arrangement of the circuit takes in particular the form of the first means and the second means.
  • the refrigerant circulates through the phase separation device of the refrigerant fluid in the same direction of circulation when the circuit is operated in heating mode, in cooling mode and advantageously in dehumidification mode, the latter corresponding to simultaneous activation of the heating mode and cooling mode.
  • the circuit of the invention is thus arranged so that the refrigerant does not change direction through the phase separation device passing from one mode to another.
  • This arrangement of the circuit takes in particular the form of the first means and the second means.
  • the refrigerant circulates through the second detent member in the same direction of circulation when the circuit is operated in heating mode, in cooling mode and advantageously in a dehumidification mode.
  • Such a solution optimizes the rate of use of the expansion member, the latter not being used only for the cooling mode. This relaxing organ is thus used for the heating mode and for the dehumidification mode.
  • the direction of circulation of the coolant in dehumidification mode in at least one of the three components mentioned above is also identical to the flow direction in heating mode or in cooling mode.
  • the first compression means and the second compression means are driven by the same driving element, said element advantageously being an electric motor.
  • said element advantageously being an electric motor.
  • the two compression means and the electric motor are integrated in the same compressor housing to form a monoblock unit, the electric motor being installed between each compression means.
  • the first compression means has a first displacement and the second compression means has a second displacement, the ratio between the second displacement and the first displacement being equal to 1.72 +/- 5% .
  • a compression ratio of the first compression means is equal to, or substantially equal to, a compression ratio of the second compression means and this, for a subcritical refrigerant fluid, such as R134a, for example.
  • the displacement of the second compression means is equal to 19 cm 3 while the displacement of the first compression means is equal to 11 cm 3 .
  • the refrigerant contained in the first portion is at a first pressure, called high pressure because it is the result of a compression action of the first compression means combined with that of the second compression means, while the fluid refrigerant contained in the third portion is at a third pressure, so-called low pressure, after relaxation successively by the expansion members, the refrigerant contained in the second portion being at a second pressure, called intermediate pressure, between the first pressure and the third pressure.
  • the phase separation device is in turn installed so as to contain the refrigerant fluid subjected to the intermediate pressure.
  • a first advantage according to the invention lies in the possibility of using a dual-stage compression system both in the cooling mode and also while the circuit is operating in the heating mode. This makes it possible to reach higher levels of high pressure so that the thermodynamic cycle has a higher efficiency, or coefficient of performance, than in the prior art and to limit the discharge temperature of the compression means.
  • the use of the two compression means in series also increases the enthalpy on the evaporator. Such an increase results in a decrease in the refrigerant flow rate and, consequently, a reduction in the work provided by the compression means.
  • the invention makes it possible to use a compression means which consumes less energy, or with iso-consumption of energy, the invention provides a greater thermodynamic capacity than that of the prior art.
  • Another advantage lies in the possibility of increasing the heating power of a circuit according to the invention. Indeed, increasing the enthalpy of the evaporator makes it possible to reduce the refrigerant flow rate in the third portion of the circuit. This has the effect of reducing the pressure losses between the evaporator and the second compression means while ensuring a refrigerant pressure side low pressure, that is to say in the third portion of the circuit, greater than the pressure atmospheric, 1 bar.
  • FIG. 1 is a schematic view of the circuit according to the invention, represented in a cooling mode
  • FIG. 2 is a schematic view of the circuit of FIG. 1, represented in a use according to a heating mode
  • - Figure 3 is a schematic view of the circuit of Figure 1, shown in a use in a dehumidification mode.
  • FIG. 1 illustrates a circuit 1 according to the invention.
  • the architecture of this circuit will be described in the following, whatever the mode of operation, and then, in a second step, the path taken or borrowed by a refrigerant will be described. circulating in the circuit for each of the modes of operation.
  • upstream and downstream refer to the direction of movement of the fluid considered in the component or portion considered.
  • the circuit 1 comprises portions, sectors or zones in solid lines symbolizing the circulation of the refrigerant during the operating mode under consideration and portions, sectors or dashed zones in which the refrigerant fluid does not circulate. .
  • the circuit 1, otherwise called air conditioning loop or refrigerant circuit, is a closed loop inside which a refrigerant circulates.
  • the refrigerant fluid is of the type of a subcritical fluid, such as hydrofluorocarbon known by the acronym R134a or a low greenhouse effect refrigerant, that is to say which is able to to offer a sustainable solution for car air conditioners, known as HFO1234yf. It can also be a super-critical fluid, such as carbon dioxide, for example, known as R744. In this case the condenser is replaced by a gas cooler.
  • Such a circuit serves to condition, that is to say adjust the temperature and humidity, the air present in a passenger compartment of a motor vehicle.
  • Circuit 1 is divided into several portions in which the pressure of the coolant is different from one portion relative to the other. Circuit 1 therefore comprises a first portion 2, a second portion 3 and a third portion 4.
  • the first portion 2 extends between an inlet 5 of a first compression means 6 and an outlet 7 of a first expansion member 8.
  • the first compression means 6 is in particular a compressor, for example electric, whose compression mechanism is of the spiral or piston type, driven by an electric motor integrated in a compressor housing.
  • the compression means 6 comprises an outlet 9 connected directly to an internal exchanger 10.
  • the first compression means 6 form a first compression stage by means of which the refrigerant circulates in the circuit 1 and undergoes an elevation of its pressure to go from an intermediate pressure Pi to a high pressure, referenced Hp.
  • This internal exchanger 10 is arranged to ensure a heat exchange between an interior air flow sent into the passenger compartment and the refrigerant flowing therethrough.
  • This indoor exchanger 10 has the function of heating the indoor air flow when the circuit is used in heating mode or in dehumidification mode.
  • This exchanger is called “interior” in that it is intended to change the temperature of the interior air flow sent into the passenger compartment, that it is directly by exchange with the flow of air passing through this exchanger, or indirectly, especially via a secondary loop (not shown) in which circulates a liquid heat transfer fluid responsible for transporting the heat generated by the inner heat exchanger 10 to a radiator that delivers these calories to the air flow inside.
  • first bifurcation member 1 1 of the refrigerant.
  • This first bifurcation member 1 1 has the function of diverting the refrigerant from the first portion 2 when the heating mode or the dehumidification mode is activated.
  • This first bifurcation member 11 is for example a three-way valve, comprising for example a movable element capable of controlling the flow from its inlet to one or the other of its outputs.
  • This first bifurcation device 11 has an inlet 12 through which the refrigerant enters, a first outlet 13 taken by the refrigerant when the cooling mode is active and a second outlet 14 through which the refrigerant flows when the heating mode or the dehumidification mode is active.
  • the first portion 2 of the circuit 1 further comprises an external exchanger 15 arranged to ensure a heat exchange between the refrigerant and a flow air.
  • the heat exchanger referenced 15 is described as "outside”, in that it is arranged to achieve a heat exchange between an air flow outside the passenger compartment of the vehicle and the refrigerant flowing in the circuit 1.
  • Such an external exchanger 15 can be used as a gas cooler or condenser when the refrigerant circuit is operated in the cooling mode of the air flow sent into the passenger compartment.
  • This same exchanger can also be used as an evaporator when the refrigerant circuit is operated in heating mode of the air flow sent into the passenger compartment.
  • the external exchanger 15 shares the first portion 2 of the circuit in two sectors 23 and 24 located on either side of this exchanger.
  • a first sector 23 is formed by the portion of the first portion 2 located downstream of the external exchanger 15 while the second sector 24 is formed by the portion of the first portion 2 located downstream of the external exchanger 15.
  • This first portion 2 of circuit 1 continues with a second bifurcation member 16 installed downstream of the external exchanger but directly upstream of the first expansion member 8.
  • This second bifurcation member 16 is in particular a three-way valve comprising, for example a movable element capable of controlling the flow from its input to one or other of its outputs.
  • this second bifurcation member is a "T" or "Y" connection without any element capable of blocking one or the other of the outlets.
  • This second bifurcation member has a first inlet 17 through which the refrigerant from the external exchanger 15 enters to be distributed to an outlet 18. The latter is directly connected to an inlet 20 of the first expansion member 8.
  • This second bifurcation member further comprises a second input 19 connected directly to the second output 14 of the first bifurcation member 1 1.
  • a line 21 installed between the second outlet 14 of the first bifurcation member 1 1 and the second inlet 19 of the second member of bifurcation 16 has a function of bypassing the external exchanger 15 by the coolant coming from the first compression means 6, when the circuit is used in the heating mode or in the dehumidification mode. In other words, driving 21 is allows the coolant to flow from the first sector 23 to the second sector 24 without passing through the external exchanger 15.
  • the first portion 2 of the circuit 1 which, as seen above starts at the inlet 5 of the first compression means 6, ends at the outlet 7 of the first expansion member 8.
  • the first portion 2 comprises components installed in series in the circuit 1, these components being at least the first compression means 6, the external exchanger 15 and the first expansion member 8.
  • these components are supplemented by the first bifurcation member 1 1 and the second bifurcation member 16.
  • the inner heat exchanger 10 is part of these components installed in series.
  • the circuit 1 comprises a second portion 3 which extends between the outlet 7 of the first expansion member 8 and an outlet 22 of a second expansion member 25.
  • the first expansion member 8 is responsible for lowering the pressure of the fluid refrigerant from a high pressure level Hp to a lower level, said intermediate pressure Pi, the latter prevailing in the second portion 3.
  • a phase separation device 26 of the refrigerant fluid is interposed between the first expansion member 8 and the second expansion member 25. It has a first inlet 27 connected to the outlet 7 of the first expansion element 8 and a first connected outlet 28 at an inlet 29 of the second expansion member 25.
  • the first expansion member 8 and / or the second expansion member 25 may be a thermostatic expansion valve, a calibrated orifice or an electronically controlled expansion valve, or a combination of these embodiments.
  • a calibrated orifice that is to say a fixed section
  • an accumulator will be placed upstream of the compressor to ensure the protection of the compressor against any circulation of coolant in the liquid state.
  • the circuit 1 comprises a third portion 4 which extends between the second portion 3 and the first portion 2 of the circuit 1.
  • This third portion 4 starts at the outlet 22 of the second expansion member 25 and ends at an outlet 30 of a second compression means 31.
  • the second compression means 31 is particularly a compressor, for example electric, whose compression mechanism is of the spiral or piston type, driven by an electric motor integrated in a compressor housing.
  • such a second compression means 31 is combined with the first compression means 6.
  • they are driven by the same drive element and can advantageously be collected in the same compressor housing.
  • the drive element is an electric motor that simultaneously drives both compression means.
  • the electric motor is disposed between the two compression means, the latter being rotated by a shaft of the electric motor which opens at each end of the electric motor.
  • the second compression means 31 forms a second compression stage through which the refrigerant circulates in the circuit 1 and undergoes an increase in pressure to go from a low pressure Bp to the intermediate pressure Pi.
  • the first compression means 6 has a first displacement and the second compression means 31 has a second displacement.
  • a ratio is chosen between the second displacement and the first displacement of 1.72 +/- 5%.
  • the second displacement is equal to 19 cm 3 while the first displacement is equal to 11 cm 3 .
  • the third portion 4 further comprises an evaporator 32 arranged to ensure cooling of the internal air flow by heat exchange with the refrigerant.
  • This evaporator 32 is installed in a housing (not shown) so as to be traversed by the interior air flow sent into the cabin of the vehicle.
  • This evaporator 32 is placed upstream of the internal exchanger 10, or the radiator in the case where the circuit comprises a secondary loop, according to the direction of movement of the air flow inside the housing.
  • This component is a heat exchanger intended to cool the interior air flow that passes through when the circuit is in cooling mode or in dehumidification mode.
  • This evaporator 32 correlatively ensures a drying of the interior air flow by condensation on its outer walls, this function being particularly sought when activating the dehumidification mode.
  • This evaporator 32 is interposed between the second expansion member 25 and the second compression means 31 in order to divide the third portion 4 of the circuit 1 between a first zone 33 situated upstream of the evaporator 32 and a second zone 34 located in downstream of this same evaporator.
  • phase separation device 26 of the refrigerant fluid is specifically installed in the circuit 1 between the first compression means 6 and the second compression means 31.
  • this separation device 26 contains a refrigerant fluid which is subjected to pressure Pi intermediate.
  • phase separation device 26 comprises a second input 60 and a second output 61.
  • the second input 60 is connected directly to the output 30 of the second compression means 31 and the second output 61 is connected directly to the inlet 5 of the first compression means 6.
  • the first inlet 27, the second inlet 60 and the second outlet 61 open into an internal volume of the phase separation device 26 where the refrigerant is in the gaseous state.
  • this first inlet 27, the second inlet 60 and the second outlet 61 pass through an upper wall of the phase separation device 26 and terminate immediately below this upper wall.
  • the phase separation device 26 is arranged so that the first outlet 28 dips to the bottom of the internal volume of said device in order to capture the cooling fluid in the liquid state.
  • the phase separation device 26 comprises a tube which has a first end connected to the first outlet 28 and a second end which opens in the immediate vicinity of a bottom which delimits the internal volume of the phase separation device. 26.
  • the circuit 1 has a first means 35 which connects the first zone 33 with the first sector 23 and a second means 36 which connects the second sector 24 with the second zone 34.
  • the first means 35 comprises at least one duct 37 which extends between the first zone 33 of the third portion 4 and the first sector 23 of the first portion 2 of the circuit 1.
  • This first means 35 also comprises a third bifurcation member 38 installed either at the junction of the first zone 33 with the duct 37 or at the level of the duct 37 and independently of the sector or area concerned, or at the junction of the first sector 23 with the duct 37.
  • this third bifurcation member 38 manages a circulation of refrigerant fluid in said duct according to the operating mode.
  • This is a three-way valve comprising, for example, a movable element capable of controlling the flow from its inlet to one or other of its outputs.
  • the third bifurcation member 38 is installed at a confluence of the first zone 33 with said duct 37, in other words in series with the constituent components of the third portion 4 of the circuit 1.
  • This three-way valve has an inlet 39 directly connected to the outlet 22 of the second expansion element 25, and where a first outlet 40 is directly connected to an inlet 41 of the evaporator 32 while a second outlet 42 is connected to the conduit 37.
  • the first means 35 comprises a fourth bifurcation member 43 installed at a confluence, that is to say at the junction of the first sector 23 with the duct 37.
  • the fourth member bifurcation 43 is a three-way valve interposed between the first outlet 13 of the first bifurcation member 1 1 and an inlet 44 of the outer heat exchanger 15.
  • this fourth bifurcation member is a "T" or "Y” connection devoid of any element likely to block one or the other of the outputs.
  • This fourth bifurcation member thus comprises an inlet 45 connected directly to the first outlet 13 of the first bifurcation member, a first outlet 46 connected directly to the inlet 44 of the external exchanger 15 and a second outlet 47 connected directly to the duct 37 .
  • the function of the first means 35 according to the invention is to bypass the second sector 24, including the external exchanger 15, and the second portion 3 while allowing or preventing the circulation of the refrigerant in this first means depending on the mode of operation. circuit operation 1.
  • the second means 36 comprises a channel 48 which extends between the second sector 24 and the second zone 34.
  • This second means 36 also comprises a fifth bifurcation member 49 installed either at the junction of the second sector 24 with the channel 48, or at the channel 48 and independently of the sector or zone concerned, or at the junction of the second zone 34 with the channel 48.
  • this fifth bifurcation member 49 manages a circulation of refrigerant in the channel depending on the mode of operation.
  • the fifth bifurcation member 49 is a three-way valve comprising for example a movable element capable of controlling the flow from its inlet to one or other of its outputs.
  • This fifth bifurcation member is installed at a confluence of the second sector 24 with the channel 48, in other words in series with the constituent components of the first portion 2.
  • This fifth bifurcation member comprises an inlet 50 directly connected to an outlet 51 of
  • the second means 36 comprises a sixth bifurcation member 54 installed at a confluence, that is to say at the
  • This sixth bifurcation member 54 is for example a three-way valve interposed between an outlet 55 of the evaporator 32 and an inlet 56 of the second compression means 31.
  • this sixth bifurcation member 54 is a "T" or "Y” fitting without any element capable of blocking one or the other of the outlets.
  • This sixth bifurcation member thus comprises a first inlet 57 connected directly to the outlet 55 of the evaporator 32, a second inlet 58 connected directly to the conduit 48 and an outlet 59 connected directly to the inlet 56 of the second compression means.
  • the function of the second means 36 according to the invention is to circumvent the
  • first means 35 and the second means 36 are arranged so that the refrigerant circulates through the outer heat exchanger 15 in the same direction of circulation in heating mode, in cooling mode and advantageously in dehumidification mode.
  • these means 35 and 36 allow the refrigerant to circulate through the phase separation device 26 of the refrigerant fluid in the same direction of circulation in the heating mode, in the cooling mode and advantageously in the dehumidification mode.
  • first means 35 and the second means 36 provide the possibility for the refrigerant to flow through the second expansion member 25 in the same direction of circulation in the heating mode, in the cooling mode and advantageously in the dehumidification.
  • Figure 1 illustrates the cooling mode.
  • the arrows symbolize the circulation of the refrigerant in the circuit 1.
  • the second compression means 31 raises the refrigerant pressure of the so-called low pressure level Bp to the level called the intermediate pressure Pi, the latter being greater than the value of the low pressure.
  • the refrigerant enters the phase separation device 26 through the second inlet 60 and the liquid phase of the refrigerant accumulates at the bottom of the phase separation device 26, while the gaseous phase remains in the upper part of the internal volume of this device.
  • This gaseous phase is sucked by the first compression means 6 and is raised to a so-called high pressure level Hp, the value of the latter being greater than the low pressure Bp and the intermediate pressure Pi.
  • the refrigerant passes through the inner heat exchanger 10 without undergoing heat exchange with the interior air flow.
  • a flap prevents the flow of air through the inner heat exchanger.
  • the circuit 1 may comprise a bypass line of the inner exchanger 10 which prevents the refrigerant from passing into this exchanger.
  • the inner heat exchanger 10 is inactive vis- with respect to the interior air flow.
  • the first bifurcation member 1 1 allows the passage of refrigerant from its inlet 12 to its first outlet 13 and prohibits the circulation of fluid in the pipe 21.
  • the fourth bifurcation member 43 allows the refrigerant to flow from its first inlet 45 to its outlet 46. In the case of a three-way valve, this prevents any flow from the conduit 37. The refrigerant then passes through the outside exchanger 15 where it is cooled by the outside air flow.
  • the fifth bifurcation member 49 allows the flow of refrigerant from its inlet 50 to its first outlet 52 and prohibits any circulation of the refrigerant towards the channel 48.
  • the second bifurcation member 16 lets the refrigerant flow from its first inlet 17 to its outlet 18. In the case of a three-way valve, this prevents any entry of the refrigerant from the pipe 21.
  • the refrigerant continues its course and passes through the first expansion member 8 where it undergoes a lowering of its pressure to go from the high pressure value Hp to the intermediate pressure value Pi.
  • the refrigerant then enters the internal volume of the phase separation device 26 through the first inlet 27 and leaves it in the liquid state through the first outlet 28.
  • the refrigerant undergoes another lowering of the pressure to go from the value of the intermediate pressure Pi to the value of the low pressure Bp.
  • the refrigerant continues its course through the third bifurcation member 38 from its inlet 39 to its first outlet 40, the second outlet 42 being closed to prevent any circulation of the refrigerant in the conduit 37.
  • the refrigerant then passes through the evaporator 32, where it captures the calories present in the interior air flow, thereby conditioning the vehicle interior.
  • the refrigerant fluid thus subjected to low pressure and low temperature then reaches the sixth bifurcation member 54 while flowing from the first inlet 57 to the outlet 59. In the case of a three-way valve, the latter prohibits any circulation from the second entrance 58.
  • the refrigerant fluid finally returns to the second compression means 31, before performing a new thermodynamic cycle.
  • the inner heat exchanger 10 dissipates the calories present in the refrigerant fluid, subjected to high pressure and high temperature, in the interior air flow that passes through it. This ensures the heating of the air sent into the cabin.
  • the first bifurcation member 11 forces the refrigerant coming from the inlet 12 to circulate towards the second outlet 14, thus preventing any exit of the refrigerant by the first outlet 13.
  • the high-pressure refrigerant then bypasses the outer heat exchanger 15 passing through the pipe 21 to join the second branching member 16, entering the latter through its second inlet 19 to exit through its outlet 18.
  • the refrigerant continues its course and passes through the first expansion member 8 where it undergoes a lowering of its pressure to go from the high pressure value Hp to the intermediate pressure value Pi.
  • the refrigerant then enters the internal volume of the phase separation device 26 through the first inlet 27 and leaves it in the liquid state through the first outlet 28.
  • the coolant undergoes another lowering of the pressure from the value of the intermediate pressure Pi to the value of the low pressure Bp.
  • the refrigerant continues its course through the third bifurcation member 38 from its inlet 39 to its second outlet 42, the first outlet 40 being closed to prevent any circulation of the refrigerant in direction of the evaporator 32.
  • the refrigerant then circulates in the first means 35. It thus passes into the duct 37 and joins the fourth bifurcation member 43, for entry into it by its second inlet 47 and exit through its outlet 46.
  • the refrigerant then reaches the outer heat exchanger 15 and passes through the latter undergoing heating to the benefit of the outside air flow.
  • the refrigerant then prepares to take the second means 36. It thus enters the fifth bifurcation member 49 through its inlet 50 and out of its second outlet 53 to flow in the channel 48.
  • the refrigerant then joins the sixth bifurcation member 54 and enters the latter through its second inlet 58 to exit its outlet 59 before returning to the second compression means 31.
  • FIG 3 illustrates the operation of the circuit in dehumidification mode. This mode of operation is close to that described in Figure 1 and reference is made to the description thereof to know the structure. Note that the refrigerant flows in the same direction at the heart of the circuit 1 as the direction of circulation for the cooling mode shown in Figure 1. The description below focuses on differences compared to the latter.
  • the dehumidification mode cools and heats successively the flow of indoor air sent into the passenger compartment. While in the cooling mode, the inner heat exchanger 10 was rendered inactive with respect to the interior air flow, it is here crossed by this flow of air in order to dissipate the calories generated by the refrigerant fluid subjected to high pressure Hp and high temperature.
  • the first bifurcation member 1 1 then receives the refrigerant from the indoor exchanger 10 via its inlet 12.
  • the first outlet 13 is then closed while the second outlet 14 is open, thereby allowing the refrigerant to circulate in the pipe 21.
  • the second bifurcation member referenced 16 allows an entry of the refrigerant fluid through its second inlet 19 and an outlet thereof through the outlet 18.
  • the outer heat exchanger 15 is bypassed since the refrigerant passes through the pipe 21 instead of crossing it.
  • the remainder of the circuit is identical to that detailed with respect to the cooling mode, the evaporator 32 then being active so as to dry out the flow of air sent into the cabin and thus reduce the moisture content present in the cabin of the vehicle.
  • bifurcation member that can take the form of three-way valves with control member or "T" connection without a control member.
  • the invention covers the case where the first means 35, the second means 36 and the duct 21 each comprise at least one three-way valve to allow or interrupt the circulation of fluid in the portion concerned, this valve being able to be placed at one end. or at the other end of the first means 35, the second means 36 or the pipe 21.
  • the first means comprises a three-way valve with a control member at each of its ends.
  • the second means 36 comprises a three-way valve control member at each of its ends.
  • the pipe 21 comprises a three-way valve control member at each of its ends.
  • the invention ultimately covers the case where all the bifurcation members are three-way valves with a control member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The invention relates to a circuit (1) for the air-conditioning of a vehicle passenger compartment, including: a first portion (2) of the circuit (1), which extends between an inlet (5) of a first compression means (6) and an outlet (7) of a first expansion member (8), said first portion (2) including at least one outer exchanger (15) dividing said first portion (2) into a first sector (24) located upstream from said outer exchanger (15) and a second sector (24) located downstream from said outer exchanger (15); a third portion (4) of the circuit (1), which extends between an outlet (22) of a second expansion member (25) and an outlet (30) of a second compression means (31), said third portion (4) including an evaporator (32) dividing said third portion (4) between a first area (33) located upstream from the evaporator (32) and a second area (34) located downstream from said evaporator (32), characterized in that the circuit (1) includes a first means (35) which connects the first area (33) to the first sector (23) and a second means (36) which connects the second sector (24) to the second area (34).

Description

CIRCUIT DE FLUIDE REFRIGERANT A DEUX ETAGES DE COMPRESSION ET BOUTEILLE A PRESSION INTERMEDIAIRE  REFRIGERANT FLUID CIRCUIT WITH TWO COMPRESSION STAGES AND INTERMEDIATE PRESSURE BOTTLE
Le secteur technique de la présente invention est celui des ensembles ou systèmes utilisés pour conditionner un flux d'air entrant dans un habitacle de véhicule automobile. Plus particulièrement, l'invention vise un circuit de fluide réfrigérant utilisé en mode de chauffage, autrement appelé pompe à chaleur, en mode de refroidissement ou en mode déshumidification et faisant appel à trois niveaux de pression distincts. L'invention optimise l'architecture et les performances d'un tel circuit en mode de refroidissement mais aussi en mode de chauffage. The technical sector of the present invention is that of assemblies or systems used to condition a flow of air entering a passenger compartment of a motor vehicle. More particularly, the invention relates to a refrigerant circuit used in heating mode, otherwise called heat pump, cooling mode or dehumidification mode and using three different pressure levels. The invention optimizes the architecture and performance of such a circuit in cooling mode but also in heating mode.
Un véhicule automobile est classiquement équipé d'une boucle ou circuit de climatisation à l'intérieur duquel circule un fluide frigorigène. Cette boucle comprend classiquement un compresseur, un condenseur, un détendeur et un évaporateur parcourus dans cet ordre par le fluide frigorigène. L'évaporateur est monté à l'intérieur d'une installation de ventilation, chauffage et/ou climatisation généralement placée dans l'habitacle du véhicule pour fournir à ce dernier un flux d'air chaud ou un flux d'air froid en fonction d'une demande de l'utilisateur du véhicule. Le condenseur est quant à lui classiquement installé en face avant du véhicule pour être traversé par le flux d'air extérieur au véhicule.  A motor vehicle is conventionally equipped with a loop or air conditioning circuit inside which circulates a refrigerant. This loop conventionally comprises a compressor, a condenser, a pressure reducer and an evaporator traveled in this order by the refrigerant. The evaporator is mounted inside a ventilation, heating and / or air conditioning installation generally placed in the passenger compartment of the vehicle to provide the latter with a flow of hot air or a cold air flow depending on the temperature. a request from the user of the vehicle. The condenser is conventionally installed on the front of the vehicle to be traversed by the flow of air outside the vehicle.
Cette boucle de climatisation peut être utilisée en mode de refroidissement ou en mode de chauffage. En mode de refroidissement, le fluide réfrigérant est envoyé vers l'échangeur de face avant fonctionnant en mode condenseur, où le fluide réfrigérant est refroidi par le flux d'air extérieur. Puis, le fluide réfrigérant circule vers le détendeur où il subit un abaissement de sa pression avant d'entrer dans l'échangeur habitacle, ce dernier fonctionnant en mode évaporateur. Le fluide réfrigérant traversant l'évaporateur est alors chauffé par le flux d'air entrant dans l'installation de ventilation, ce qui se traduit corrélativement par un refroidissement de ce flux d'air dans le but de climatiser l'habitacle du véhicule. Le circuit étant une boucle fermée, le fluide réfrigérant retourne alors vers le compresseur.  This air conditioning loop can be used in cooling mode or heating mode. In cooling mode, the coolant is sent to the front-end exchanger operating in condenser mode, where the coolant is cooled by the outside air flow. Then, the coolant flows to the pressure reducer where it undergoes a lowering of its pressure before entering the passenger compartment exchanger, the latter operating in evaporator mode. The refrigerant fluid passing through the evaporator is then heated by the flow of air entering the ventilation system, which is correlatively reflected by a cooling of this air flow in order to air condition the passenger compartment of the vehicle. The circuit being a closed loop, the refrigerant then returns to the compressor.
En mode chauffage, le fluide est mis en circulation par le compresseur qui l'envoie vers l'échangeur habitacle, ce dernier fonctionnant alors en mode condenseur. Ce dernier se comporte alors comme un condenseur, où le fluide réfrigérant est refroidi par l'air circulant dans l'installation de ventilation. Cet air se chauffe donc au contact de l'échangeur habitacle et apporte ainsi des calories à l'habitacle du véhicule. Après passage dans l'échangeur habitacle, le fluide réfrigérant est détendu par un détendeur avant d'arriver dans l'échangeur de face avant, ce dernier étant utilisé en mode évaporateur. Le flux d'air extérieur chauffe alors le fluide réfrigérant. Le flux d'air extérieur est par conséquent plus froid après son passage dans l'échangeur de face avant comparé à sa température avant son passage au travers de l'échangeur habitacle. Le fluide réfrigérant retourne alors vers le compresseur. In heating mode, the fluid is circulated by the compressor which sends it to the passenger compartment exchanger, the latter then operating in condenser. The latter then behaves as a condenser, where the coolant is cooled by the air circulating in the ventilation system. This air is heated in contact with the passenger compartment and thus brings calories to the passenger compartment of the vehicle. After passing through the passenger compartment heat exchanger, the refrigerant is expanded by an expansion valve before reaching the front-face exchanger, the latter being used in evaporator mode. The outside air flow then heats the refrigerant. The outside air flow is consequently colder after passing through the front-end heat exchanger compared to its temperature before passing through the passenger compartment heat exchanger. The refrigerant then returns to the compressor.
Une telle organisation a été améliorée en complétant la boucle de climatisation présentée ci-dessus par l'ajout d'un échangeur supplémentaire traversé par le fluide réfrigérant et dont la fonction est de chauffer l'air envoyé dans l'habitacle. Ainsi, cet échangeur dit « intérieur » se comporte comme un radiateur à la place de Γ évaporateur, en mode de chauffage.  Such an organization has been improved by completing the air conditioning loop presented above by adding an additional heat exchanger through which the refrigerant fluid and whose function is to heat the air sent into the cabin. Thus, this exchanger called "inside" behaves like a radiator instead of Γ evaporator, in heating mode.
Le fonctionnement de la boucle en mode de chauffage est limité par la pression du fluide réfrigérant côté basse pression. Quand la température extérieure est faible, il existe un risque de voir la pression du fluide réfrigérant côté basse pression passer en dessous de la pression atmosphérique, ce qui se traduit par un risque d'entrée d'air extérieur dans le circuit et une déformation des conduites. Le fonctionnement de la boucle en mode de chauffage est également limité par la valeur du taux de compression du compresseur. De telles difficultés forment un frein à l'amélioration d'un cycle thermodynamique utilisé en mode de chauffage.  The operation of the loop in the heating mode is limited by the pressure of the refrigerant fluid on the low pressure side. When the outside temperature is low, there is a risk that the pressure of the refrigerant fluid at the low pressure side will fall below atmospheric pressure, which results in a risk of outside air entering the circuit and deformation of the air. pipes. The operation of the loop in the heating mode is also limited by the value of the compression ratio of the compressor. Such difficulties hinder the improvement of a thermodynamic cycle used in the heating mode.
Le document US5322424 divulgue un circuit de climatisation comprenant un compresseur équipé de deux mécanismes de compression. Un tel circuit est adapté pour un fonctionnement en mode de refroidissement mais il n'est à l'évidence pas adapté à un fonctionnement en mode chauffage, c'est-à-dire en pompe à chaleur. Il s'agit ici d'un inconvénient majeur que l'invention se propose également de résoudre.  The document US5322424 discloses an air conditioning circuit comprising a compressor equipped with two compression mechanisms. Such a circuit is suitable for operation in cooling mode but it is obviously not suitable for operation in heating mode, that is to say in heat pump. This is a major drawback that the invention also proposes to solve.
Le but de la présente invention est donc de résoudre les défauts décrits ci- dessus principalement en adaptant un circuit de climatisation comprenant un compresseur à double étages afin qu'il fonctionne efficacement en mode de refroidissement, en mode de déshumidification et surtout en mode de chauffage.The object of the present invention is therefore to solve the defects described above mainly by adapting an air conditioning circuit comprising a double-stage compressor so that it operates effectively in operating mode. cooling, in dehumidification mode and especially in heating mode.
L'invention a donc pour objet un circuit pour conditionner thermiquement un habitacle d'un véhicule, comprenant : The invention therefore relates to a circuit for thermally conditioning a passenger compartment of a vehicle, comprising:
- une première portion de circuit qui s'étend entre une entrée d'un premier moyen de compression et une sortie d'un premier organe de détente, ladite première portion comprenant au moins un échangeur extérieur partageant ladite première portion en un premier secteur situé en amont de l'échangeur extérieur et un deuxième secteur situé en aval dudit échangeur extérieur,  a first circuit portion which extends between an inlet of a first compression means and an outlet of a first expansion element, said first portion comprising at least one external exchanger sharing said first portion in a first sector situated in upstream of the external exchanger and a second sector located downstream of said external exchanger,
- une troisième portion du circuit qui s'étend entre une sortie d'un deuxième organe de détente et une sortie d'un deuxième moyen de compression, ladite troisième portion comprenant un évaporateur partageant ladite troisième portion entre une première zone située en amont de l'évaporateur et une deuxième zone située en aval dudit évaporateur, caractérisé en que le circuit comprend un premier moyen qui met en relation la première zone avec le premier secteur et un deuxième moyen qui met en relation le deuxième secteur avec la deuxième zone.  a third portion of the circuit which extends between an outlet of a second expansion member and an outlet of a second compression means, said third portion comprising an evaporator sharing said third portion between a first zone situated upstream of the evaporator and a second zone located downstream of said evaporator, characterized in that the circuit comprises a first means which relates the first zone to the first sector and a second means which relates the second sector to the second zone.
Avantageusement, un fluide réfrigérant est apte à circuler dans ledit circuit pour mettre en œuvre au moins un mode de chauffage de l'habitacle et un mode de refroidissement de l'habitacle.  Advantageously, a refrigerant fluid is able to circulate in said circuit to implement at least one heating mode of the passenger compartment and a cooling mode of the passenger compartment.
Selon une première caractéristique de l'invention, le circuit comprend une deuxième portion de circuit qui s'étend entre la sortie du premier organe de détente et la sortie du deuxième organe de détente, la sortie du deuxième moyen de compression et l'entrée du premier moyen de compression étant en communication avec la deuxième portion par l'intermédiaire d'un dispositif de séparation de phases du fluide réfrigérant.  According to a first characteristic of the invention, the circuit comprises a second circuit portion which extends between the output of the first expansion member and the output of the second expansion member, the output of the second compression means and the input of the second first compression means being in communication with the second portion via a refrigerant phase separation device.
Selon une caractéristique de l'invention, le premier moyen comprend au moins un conduit qui s'étend entre la première zone et le premier secteur et un troisième organe de bifurcation qui gère une circulation de fluide réfrigérant dans ledit conduit. Le troisième organe de bifurcation, prenant par exemple la forme d'une vanne trois voies à organe de commande, peut alors être installé à l'une ou l'autre des extrémités du conduit mais il peut également être installé dans le conduit, c'est-à-dire entre lesdites extrémités.  According to a characteristic of the invention, the first means comprises at least one duct extending between the first zone and the first sector and a third branching member which manages a refrigerant circulation in said duct. The third bifurcation member, for example taking the form of a three-way valve with a control member, can then be installed at one or other of the ends of the duct, but it can also be installed in the duct. that is to say between said ends.
Selon une deuxième caractéristique de l'invention, le premier moyen comprend un quatrième organe de bifurcation installé à une confluence du premier secteur avec ledit conduit, le troisième organe de bifurcation étant installé à une confluence de la première zone avec ledit conduit. Les confluences sont aux extrémités dudit conduit, c'est-à-dire à l'endroit où la portion et le conduit se séparent ou se rejoignent. According to a second characteristic of the invention, the first means comprises a fourth bifurcation member installed at a confluence of the first sector with said conduit, the third bifurcating member being installed at a confluence of the first zone with said conduit. The confluences are at the ends of said duct, that is to say at the place where the portion and the duct separate or join.
Selon une autre caractéristique de l'invention, le deuxième moyen comprend au moins un canal qui s'étend entre le deuxième secteur et la deuxième zone et un cinquième organe de bifurcation qui gère une circulation de fluide réfrigérant dans ledit canal. Le cinquième organe de bifurcation, prenant par exemple la forme d'une vanne trois voies à organe de commande, peut alors être installé à l'une ou l'autre des extrémités du canal mais il peut également être installé dans le canal, c'est-à-dire entre lesdites extrémités.  According to another characteristic of the invention, the second means comprises at least one channel which extends between the second sector and the second zone and a fifth bifurcation member which manages a refrigerant circulation in said channel. The fifth bifurcation member, for example taking the form of a three-way valve control member, can then be installed at one or the other end of the channel but it can also be installed in the channel, it that is to say between said ends.
Selon encore une caractéristique de l'invention, le deuxième moyen comprend un sixième organe de bifurcation installé à une confluence de la deuxième zone avec ledit canal, le cinquième organe de bifurcation étant installé à une confluence du deuxième secteur avec ledit canal. Les confluences en question sont aux extrémités dudit canal, c'est-à-dire à l'endroit où la portion et le canal se séparent ou se rejoignent.  According to another characteristic of the invention, the second means comprises a sixth bifurcation member installed at a confluence of the second zone with said channel, the fifth bifurcation member being installed at a confluence of the second sector with said channel. The confluences in question are at the ends of said channel, that is to say at the place where the portion and the channel separate or join.
Selon encore une autre caractéristique de l'invention, le fluide réfrigérant circule au travers de l'échangeur extérieur selon un même sens de circulation quand le circuit est opéré en mode de chauffage et en mode de refroidissement. Autrement dit, le circuit de l'invention est agencé pour que le fluide réfrigérant ne change pas de sens en passant d'un mode à l'autre. Cet agencement du circuit prend notamment la forme du premier moyen et du deuxième moyen.  According to yet another characteristic of the invention, the refrigerant circulates through the external exchanger in the same direction of circulation when the circuit is operated in the heating mode and cooling mode. In other words, the circuit of the invention is arranged so that the refrigerant does not change direction by switching from one mode to another. This arrangement of the circuit takes in particular the form of the first means and the second means.
Avantageusement, le fluide réfrigérant circule au travers du dispositif de séparation de phases du fluide réfrigérant selon un même sens de circulation quand le circuit est opéré en mode de chauffage, en mode de refroidissement et avantageusement en mode déshumidification, ce dernier correspondant à activation simultanée du mode de chauffage et du mode de refroidissement. Le circuit de l'invention est ainsi agencé pour que le fluide réfrigérant ne change pas de sens au travers du dispositif de séparation de phases en passant d'un mode à l'autre. Cet agencement du circuit prend notamment la forme du premier moyen et du deuxième moyen.  Advantageously, the refrigerant circulates through the phase separation device of the refrigerant fluid in the same direction of circulation when the circuit is operated in heating mode, in cooling mode and advantageously in dehumidification mode, the latter corresponding to simultaneous activation of the heating mode and cooling mode. The circuit of the invention is thus arranged so that the refrigerant does not change direction through the phase separation device passing from one mode to another. This arrangement of the circuit takes in particular the form of the first means and the second means.
Avantageusement encore, le fluide réfrigérant circule au travers du deuxième organe de détente selon un même sens de circulation quand le circuit est opéré en mode de chauffage, en mode de refroidissement et avantageusement en un mode de déshumidification. Une telle solution permet d'optimiser le taux d'utilisation de l'organe de détente, ce dernier n'étant pas employé seulement pour le mode de refroidissement. Cet organe de détente est ainsi mis à profit pour le mode de chauffage et pour le mode de déshumidification. Advantageously, the refrigerant circulates through the second detent member in the same direction of circulation when the circuit is operated in heating mode, in cooling mode and advantageously in a dehumidification mode. Such a solution optimizes the rate of use of the expansion member, the latter not being used only for the cooling mode. This relaxing organ is thus used for the heating mode and for the dehumidification mode.
On notera encore que le sens de circulation du fluide réfrigérant en mode déshumidification dans au moins l'une des trois composants mentionnés ci- dessus est également identique au sens de circulation en mode de chauffage ou en mode de refroidissement.  Note also that the direction of circulation of the coolant in dehumidification mode in at least one of the three components mentioned above is also identical to the flow direction in heating mode or in cooling mode.
Selon une première caractéristique de l'invention, le premier moyen de compression et le deuxième moyen de compression sont entraînés par un même élément d'entraînement, ledit élément étant avantageusement un moteur électrique. Dans un tel exemple de réalisation, les deux moyens de compression et le moteur électrique sont intégrés dans un même boîtier de compresseur afin de former une unité monobloc, le moteur électrique étant installé entre chaque moyen de compression.  According to a first characteristic of the invention, the first compression means and the second compression means are driven by the same driving element, said element advantageously being an electric motor. In such an embodiment, the two compression means and the electric motor are integrated in the same compressor housing to form a monoblock unit, the electric motor being installed between each compression means.
Selon une deuxième caractéristique de l'invention, le premier moyen de compression présente une première cylindrée et le deuxième moyen de compression présente une deuxième cylindrée, le rapport entre la deuxième cylindrée et la première cylindrée étant égale à 1 ,72 +/- 5%. On garantit ainsi qu'un taux de compression du premier moyen de compression est égal, ou sensiblement égal, à un taux de compression du deuxième moyen de compression et ce, pour un fluide réfrigérant sous-critique, tel que le R134a, par exemple.  According to a second characteristic of the invention, the first compression means has a first displacement and the second compression means has a second displacement, the ratio between the second displacement and the first displacement being equal to 1.72 +/- 5% . This ensures that a compression ratio of the first compression means is equal to, or substantially equal to, a compression ratio of the second compression means and this, for a subcritical refrigerant fluid, such as R134a, for example.
Selon un exemple de mise en œuvre de ce rapport, la cylindrée du deuxième moyen de compression est égale à 19 cm3 alors que la cylindrée du premier moyen de compression est égale à 11 cm3. According to an example of implementation of this report, the displacement of the second compression means is equal to 19 cm 3 while the displacement of the first compression means is equal to 11 cm 3 .
On notera enfin que le fluide réfrigérant contenu dans la première portion est à une première pression, appelé haute pression car elle est le résultat d'une action de compression du premier moyen de compression combinée à celle du deuxième moyen de compression, alors que le fluide réfrigérant contenu dans la troisième portion est à une troisième pression, dite basse pression, après détente successive par les organes de détente, le fluide réfrigérant contenu dans la deuxième portion étant à une deuxième pression, appelée pression intermédiaire, comprise entre la première pression et la troisième pression. Note finally that the refrigerant contained in the first portion is at a first pressure, called high pressure because it is the result of a compression action of the first compression means combined with that of the second compression means, while the fluid refrigerant contained in the third portion is at a third pressure, so-called low pressure, after relaxation successively by the expansion members, the refrigerant contained in the second portion being at a second pressure, called intermediate pressure, between the first pressure and the third pressure.
Le dispositif de séparation de phases est quant à lui installé de sorte à contenir le fluide réfrigérant soumis à la pression intermédiaire.  The phase separation device is in turn installed so as to contain the refrigerant fluid subjected to the intermediate pressure.
Un tout premier avantage selon l'invention réside dans la possibilité d'utiliser un système de compression à double étages à la fois dans le mode de refroidissement mais aussi pendant que le circuit fonctionne en mode de chauffage. Ceci permet d'atteindre des niveaux de haute pression plus élevés de sorte que le cycle thermodynamique présente un rendement, ou coefficient de performance, plus important que dans l'art antérieur et de limiter la température de refoulement du moyen de compression.  A first advantage according to the invention lies in the possibility of using a dual-stage compression system both in the cooling mode and also while the circuit is operating in the heating mode. This makes it possible to reach higher levels of high pressure so that the thermodynamic cycle has a higher efficiency, or coefficient of performance, than in the prior art and to limit the discharge temperature of the compression means.
L'utilisation des deux moyens de compression en série permet également d'augmenter l'enthalpie sur l'évaporateur. Une telle augmentation se traduit par une diminution du débit de fluide réfrigérant et, par conséquent, une réduction du travail fournit par les moyens de compression. Ainsi, à iso-performances avec l'art antérieur, l'invention permet d'utiliser un moyen de compression qui consomme moins d'énergie, ou à iso-consommation d'énergie, l'invention fournit une capacité thermodynamique plus importante que celle de l'art antérieur.  The use of the two compression means in series also increases the enthalpy on the evaporator. Such an increase results in a decrease in the refrigerant flow rate and, consequently, a reduction in the work provided by the compression means. Thus, at iso-performance with the prior art, the invention makes it possible to use a compression means which consumes less energy, or with iso-consumption of energy, the invention provides a greater thermodynamic capacity than that of the prior art.
Un autre avantage réside dans la possibilité d'augmenter la puissance de chauffage d'un circuit selon l'invention. En effet, l'augmentation de l'enthalpie de l'évaporateur permet de réduire le débit de fluide réfrigérant dans la troisième portion du circuit. Ceci a pour conséquence de diminuer les pertes de charges entre l'évaporateur et le deuxième moyen de compression tout en assurant une pression du fluide réfrigérant côté basse pression, c'est-à-dire dans la troisième portion du circuit, supérieure à la pression atmosphérique, soit 1 bar.  Another advantage lies in the possibility of increasing the heating power of a circuit according to the invention. Indeed, increasing the enthalpy of the evaporator makes it possible to reduce the refrigerant flow rate in the third portion of the circuit. This has the effect of reducing the pressure losses between the evaporator and the second compression means while ensuring a refrigerant pressure side low pressure, that is to say in the third portion of the circuit, greater than the pressure atmospheric, 1 bar.
D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description donnée ci-après à titre indicatif en relation avec des dessins dans lesquels :  Other characteristics, details and advantages of the invention will emerge more clearly on reading the description given below as an indication in relation to drawings in which:
- la figure 1 est une vue schématique du circuit selon l'invention, en représenté selon un mode de refroidissement,  FIG. 1 is a schematic view of the circuit according to the invention, represented in a cooling mode,
- la figure 2 est une vue schématique du circuit de la figure 1 , représenté dans une utilisation selon un mode de chauffage, - la figure 3 est une vue schématique du circuit de la figure 1 , représentée dans une utilisation selon un mode de déshumidification. FIG. 2 is a schematic view of the circuit of FIG. 1, represented in a use according to a heating mode, - Figure 3 is a schematic view of the circuit of Figure 1, shown in a use in a dehumidification mode.
Il faut noter que les figures exposent l'invention de manière détaillée pour mettre en œuvre l'invention, lesdites figures pouvant bien entendu servir à mieux définir l'invention le cas échéant.  It should be noted that the figures disclose the invention in detail to implement the invention, said figures can of course be used to better define the invention where appropriate.
La figure 1 illustre un circuit 1 selon l'invention. On s'attachera ci-après à décrire dans un premier temps l'architecture de ce circuit quel que soit le mode de fonctionnement, puis, dans un deuxième temps, on décrira le parcours emprunté, ou apte à être emprunté, par un fluide réfrigérant circulant dans le circuit pour chacun des modes de fonctionnement.  FIG. 1 illustrates a circuit 1 according to the invention. The architecture of this circuit will be described in the following, whatever the mode of operation, and then, in a second step, the path taken or borrowed by a refrigerant will be described. circulating in the circuit for each of the modes of operation.
Les termes « amont » et « aval » employés ci-dessous se réfèrent au sens de déplacement du fluide considéré dans le composant ou portion considérée.  The terms "upstream" and "downstream" used below refer to the direction of movement of the fluid considered in the component or portion considered.
Sur les figures 1 à 3, le circuit 1 comprend des portions, secteurs ou zones en trait plein symbolisant la circulation du fluide réfrigérant pendant le mode de fonctionnement considéré et des portions, secteurs ou zones en trait pointillé dans lesquelles le fluide réfrigérant ne circule pas.  In FIGS. 1 to 3, the circuit 1 comprises portions, sectors or zones in solid lines symbolizing the circulation of the refrigerant during the operating mode under consideration and portions, sectors or dashed zones in which the refrigerant fluid does not circulate. .
Le circuit 1 , autrement appelé boucle de climatisation ou circuit frigorigène, est une boucle fermée à l'intérieur de laquelle un fluide réfrigérant circule. Le fluide réfrigérant est du type d'un fluide sous-critique, tel que l'hydrofluorocarbone connu sous l'acronyme R134a ou un fluide frigorigène à faible nuisance sur l'effet de serre, c'est-à-dire qui soit en mesure d'offrir une solution durable pour les climatiseurs automobiles, connu sous la dénomination HFO1234yf. Il peut aussi être un fluide sur-critique, tel que du dioxyde de carbone, par exemple, connu sous l'appellation R744. Dans ce cas le condenseur est remplacé par un refroidisseur de gaz.  The circuit 1, otherwise called air conditioning loop or refrigerant circuit, is a closed loop inside which a refrigerant circulates. The refrigerant fluid is of the type of a subcritical fluid, such as hydrofluorocarbon known by the acronym R134a or a low greenhouse effect refrigerant, that is to say which is able to to offer a sustainable solution for car air conditioners, known as HFO1234yf. It can also be a super-critical fluid, such as carbon dioxide, for example, known as R744. In this case the condenser is replaced by a gas cooler.
Un tel circuit sert à conditionner, c'est-à-dire ajuster la température et l'humidité, de l'air présent dans un habitacle d'un véhicule automobile.  Such a circuit serves to condition, that is to say adjust the temperature and humidity, the air present in a passenger compartment of a motor vehicle.
Le circuit 1 est divisé en plusieurs portions dans lesquelles la pression du fluide réfrigérant est différente d'une portion par rapport à l'autre. Le circuit 1 comprend donc une première portion 2, une deuxième portion 3 et une troisième portion 4.  The circuit 1 is divided into several portions in which the pressure of the coolant is different from one portion relative to the other. Circuit 1 therefore comprises a first portion 2, a second portion 3 and a third portion 4.
La première portion 2 s'étend entre une entrée 5 d'un premier moyen de compression 6 et une sortie 7 d'un premier organe de détente 8. Le premier moyen de compression 6 est notamment un compresseur, par exemple électrique, dont le mécanisme de compression est de type à spiral ou à pistons, entraîné par un moteur électrique intégré dans un boîtier du compresseur. Le moyen de compression 6 comprend une sortie 9 raccordée directement à un échangeur intérieur 10. Selon l'invention, le premier moyen de compression 6 forme un premier étage de compression grâce auquel le fluide réfrigérant circule dans le circuit 1 et subit une élévation de sa pression pour passer d'une pression intermédiaire Pi à une haute pression, référencée Hp. The first portion 2 extends between an inlet 5 of a first compression means 6 and an outlet 7 of a first expansion member 8. The first compression means 6 is in particular a compressor, for example electric, whose compression mechanism is of the spiral or piston type, driven by an electric motor integrated in a compressor housing. The compression means 6 comprises an outlet 9 connected directly to an internal exchanger 10. According to the invention, the first compression means 6 form a first compression stage by means of which the refrigerant circulates in the circuit 1 and undergoes an elevation of its pressure to go from an intermediate pressure Pi to a high pressure, referenced Hp.
Cet échangeur intérieur 10 est agencé pour assurer un échange thermique entre un flux d'air intérieur envoyé dans l'habitacle et le fluide réfrigérant qui le traverse. Cet échangeur intérieur 10 a pour fonction de chauffer ce flux d'air intérieur quand le circuit est utilisé en mode de chauffage ou en mode de déshumidification. Cet échangeur est qualifié « d'intérieur » en ce sens qu'il est destiné à modifier la température du flux d'air intérieur envoyé dans l'habitacle, que cela soit directement par échange avec le flux d'air passant au travers de cet échangeur, soit indirectement, notamment par l'intermédiaire d'une boucle secondaire (non représentée) dans laquelle circule un fluide caloporteur liquide chargé de transporter les calories générées par l'échangeur intérieur 10 vers un radiateur qui délivre ces calories au flux d'air intérieur.  This internal exchanger 10 is arranged to ensure a heat exchange between an interior air flow sent into the passenger compartment and the refrigerant flowing therethrough. This indoor exchanger 10 has the function of heating the indoor air flow when the circuit is used in heating mode or in dehumidification mode. This exchanger is called "interior" in that it is intended to change the temperature of the interior air flow sent into the passenger compartment, that it is directly by exchange with the flow of air passing through this exchanger, or indirectly, especially via a secondary loop (not shown) in which circulates a liquid heat transfer fluid responsible for transporting the heat generated by the inner heat exchanger 10 to a radiator that delivers these calories to the air flow inside.
Immédiatement en aval de cet échangeur intérieur 10, on trouve un premier organe de bifurcation 1 1 du fluide réfrigérant. Ce premier organe de bifurcation 1 1 a pour fonction de détourner le fluide réfrigérant de la première portion 2 quand le mode de chauffage ou le mode déshumidification est activé. Ce premier organe de bifurcation 11 est par exemple une vanne trois voies, comprenant par exemple un élément mobile susceptible de commander la circulation à partir de son entrée vers l'une ou l'autre des ses sorties.  Immediately downstream of this inner exchanger 10, there is a first bifurcation member 1 1 of the refrigerant. This first bifurcation member 1 1 has the function of diverting the refrigerant from the first portion 2 when the heating mode or the dehumidification mode is activated. This first bifurcation member 11 is for example a three-way valve, comprising for example a movable element capable of controlling the flow from its inlet to one or the other of its outputs.
Ce premier organe de bifurcation 11 présente une entrée 12 par laquelle le fluide réfrigérant pénètre, une première sortie 13 empruntée par le fluide réfrigérant quand le mode de refroidissement est actif et une deuxième sortie 14 parcourue par le fluide réfrigérant quand le mode de chauffage ou le mode de déshumidification est actif.  This first bifurcation device 11 has an inlet 12 through which the refrigerant enters, a first outlet 13 taken by the refrigerant when the cooling mode is active and a second outlet 14 through which the refrigerant flows when the heating mode or the dehumidification mode is active.
La première portion 2 du circuit 1 comprend encore échangeur extérieur 15 agencé pour assurer un échange thermique entre le fluide réfrigérant et un flux d'air. L'échangeur de chaleur référencé 15 est qualifié « d'extérieur », en ce sens qu'il est agencé pour réaliser un échange thermique entre un flux d'air extérieur à l'habitacle du véhicule et le fluide réfrigérant qui circule dans le circuit 1. The first portion 2 of the circuit 1 further comprises an external exchanger 15 arranged to ensure a heat exchange between the refrigerant and a flow air. The heat exchanger referenced 15 is described as "outside", in that it is arranged to achieve a heat exchange between an air flow outside the passenger compartment of the vehicle and the refrigerant flowing in the circuit 1.
Un tel échangeur extérieur 15 peut être utilisé en tant que refroidisseur de gaz ou condenseur quand le circuit de fluide réfrigérant est opéré en mode de refroidissement du flux d'air envoyé dans l'habitacle.  Such an external exchanger 15 can be used as a gas cooler or condenser when the refrigerant circuit is operated in the cooling mode of the air flow sent into the passenger compartment.
Ce même échangeur peut également être utilisé en tant qu'évaporateur quand le circuit de fluide réfrigérant est opéré en mode de chauffage du flux d'air envoyé dans l'habitacle.  This same exchanger can also be used as an evaporator when the refrigerant circuit is operated in heating mode of the air flow sent into the passenger compartment.
L'échangeur extérieur 15 partage la première portion 2 du circuit en deux secteurs 23 et 24 situés de part et d'autre de cet échangeur. Autrement dit, un premier secteur 23 est formé par la partie de la première portion 2 située en aval de l'échangeur extérieur 15 alors que le deuxième secteur 24 est formé par la partie de la première portion 2 située en aval de l'échangeur extérieur 15.  The external exchanger 15 shares the first portion 2 of the circuit in two sectors 23 and 24 located on either side of this exchanger. In other words, a first sector 23 is formed by the portion of the first portion 2 located downstream of the external exchanger 15 while the second sector 24 is formed by the portion of the first portion 2 located downstream of the external exchanger 15.
Cette première portion 2 de circuit 1 se poursuit par un deuxième organe de bifurcation 16 installé en aval de l'échangeur extérieur mais directement en amont du premier organe de détente 8. Ce deuxième organe de bifurcation 16 est notamment une vanne trois voies comprenant par exemple un élément mobile susceptible de commander la circulation à partir de son entrée vers l'une ou l'autre des ses sorties. Selon une autre variante de réalisation qui simplifie le circuit, ce deuxième organe de bifurcation est un raccord en « T » ou « Y » dépourvu d'élément susceptible de bloquer l'une ou l'autre des sorties.  This first portion 2 of circuit 1 continues with a second bifurcation member 16 installed downstream of the external exchanger but directly upstream of the first expansion member 8. This second bifurcation member 16 is in particular a three-way valve comprising, for example a movable element capable of controlling the flow from its input to one or other of its outputs. According to another variant embodiment which simplifies the circuit, this second bifurcation member is a "T" or "Y" connection without any element capable of blocking one or the other of the outlets.
Ce deuxième organe de bifurcation présente une première entrée 17 par laquelle le fluide réfrigérant en provenance de l'échangeur extérieur 15 pénètre pour être distribué vers une sortie 18. Cette dernière est directement raccordée à une entrée 20 du premier organe de détente 8. Ce deuxième organe de bifurcation comprend par ailleurs une seconde entrée 19 connectée directement à la deuxième sortie 14 du premier organe de bifurcation 1 1. Une conduite 21 installée entre la deuxième sortie 14 du premier organe de bifurcation 1 1 et la seconde entrée 19 du deuxième organe de bifurcation 16 présente une fonction de contournement de l'échangeur extérieur 15 par le fluide réfrigérant provenant du premier moyen de compression 6, quand le circuit est utilisé en mode de chauffage ou en mode de déshumidification. Autrement dit, la conduite 21 est permet au fluide réfrigérant de circuler du premier secteur 23 vers le deuxième secteur 24 sans traverser l'échangeur extérieur 15. This second bifurcation member has a first inlet 17 through which the refrigerant from the external exchanger 15 enters to be distributed to an outlet 18. The latter is directly connected to an inlet 20 of the first expansion member 8. This second bifurcation member further comprises a second input 19 connected directly to the second output 14 of the first bifurcation member 1 1. A line 21 installed between the second outlet 14 of the first bifurcation member 1 1 and the second inlet 19 of the second member of bifurcation 16 has a function of bypassing the external exchanger 15 by the coolant coming from the first compression means 6, when the circuit is used in the heating mode or in the dehumidification mode. In other words, driving 21 is allows the coolant to flow from the first sector 23 to the second sector 24 without passing through the external exchanger 15.
La première portion 2 du circuit 1 qui, comme on l'a vu plus haut débute à l'entrée 5 du premier moyen de compression 6, se termine à la sortie 7 du premier organe de détente 8.  The first portion 2 of the circuit 1 which, as seen above starts at the inlet 5 of the first compression means 6, ends at the outlet 7 of the first expansion member 8.
Ainsi, la première portion 2 comprend des composants installés en série dans le circuit 1 , ces composant étant au moins le premier moyen de compression 6, l'échangeur extérieur 15 et le premier organe de détente 8. Avantageusement, ces composants sont complétés par le premier organe de bifurcation 1 1 et le deuxième organe de bifurcation 16. Avantageusement encore, l'échangeur intérieur 10 fait partie de ces composants installés en série.  Thus, the first portion 2 comprises components installed in series in the circuit 1, these components being at least the first compression means 6, the external exchanger 15 and the first expansion member 8. Advantageously, these components are supplemented by the first bifurcation member 1 1 and the second bifurcation member 16. Advantageously, the inner heat exchanger 10 is part of these components installed in series.
Le circuit 1 comprend une deuxième portion 3 qui s'étend entre la sortie 7 du premier organe de détente 8 et une sortie 22 d'un deuxième organe de détente 25. Le premier organe de détente 8 est chargé d'abaisser la pression du fluide réfrigérant d'un niveau de haute pression Hp à un niveau inférieur, dite pression intermédiaire Pi, cette dernière régnant dan la deuxième portion 3.  The circuit 1 comprises a second portion 3 which extends between the outlet 7 of the first expansion member 8 and an outlet 22 of a second expansion member 25. The first expansion member 8 is responsible for lowering the pressure of the fluid refrigerant from a high pressure level Hp to a lower level, said intermediate pressure Pi, the latter prevailing in the second portion 3.
Un dispositif de séparation de phases 26 du fluide réfrigérant est intercalé entre le premier organe de détente 8 et le deuxième organe de détente 25. Il présente une première entrée 27 raccordée à la sortie 7 du premier organe de détente 8 et une première sortie 28 connectée à une entrée 29 du deuxième organe de détente 25.  A phase separation device 26 of the refrigerant fluid is interposed between the first expansion member 8 and the second expansion member 25. It has a first inlet 27 connected to the outlet 7 of the first expansion element 8 and a first connected outlet 28 at an inlet 29 of the second expansion member 25.
A titre d'exemple de réalisation, le premier organe de détente 8 et/ou le deuxième organe de détente 25 peuvent être un détendeur thermostatique, un orifice calibré ou un détendeur à commande électronique, ou encore une combinaison de ces exemples de réalisation. Dans le cas d'un orifice calibré, c'est-à-dire à section fixe, un accumulateur sera placé en amont du compresseur afin d'assurer la protection du compresseur contre toute circulation de fluide réfrigérant à l'état liquide.  As an exemplary embodiment, the first expansion member 8 and / or the second expansion member 25 may be a thermostatic expansion valve, a calibrated orifice or an electronically controlled expansion valve, or a combination of these embodiments. In the case of a calibrated orifice, that is to say a fixed section, an accumulator will be placed upstream of the compressor to ensure the protection of the compressor against any circulation of coolant in the liquid state.
Le circuit 1 comprend une troisième portion 4 qui s'étend entre la deuxième portion 3 et la première portion 2 du circuit 1.  The circuit 1 comprises a third portion 4 which extends between the second portion 3 and the first portion 2 of the circuit 1.
Cette troisième portion 4 débute au niveau de la sortie 22 du deuxième organe de détente 25 et se termine à une sortie 30 d'un deuxième moyen de compression 31. Le deuxième moyen de compression 31 est notamment un compresseur, par exemple électrique, dont le mécanisme de compression est de type à spiral ou à pistons, entraîné par un moteur électrique intégré dans un boîtier du compresseur. This third portion 4 starts at the outlet 22 of the second expansion member 25 and ends at an outlet 30 of a second compression means 31. The second compression means 31 is particularly a compressor, for example electric, whose compression mechanism is of the spiral or piston type, driven by an electric motor integrated in a compressor housing.
Selon une variante de l'invention, un tel deuxième moyen de compression 31 est combiné au premier moyen de compression 6. Dans cette situation, ils sont entraînés par un même élément d'entraînement et peuvent avantageusement être rassemblés dans un même boîtier de compresseur. Selon un exemple, l'élément d'entraînement est un moteur électrique qui entraîne simultanément les deux moyens de compression. De manière intéressante, le moteur électrique est disposé entre les deux moyens de compression, ceux-ci étant entraînés en rotation par un arbre du moteur électrique qui débouche à chaque extrémité du moteur électrique.  According to a variant of the invention, such a second compression means 31 is combined with the first compression means 6. In this situation, they are driven by the same drive element and can advantageously be collected in the same compressor housing. In one example, the drive element is an electric motor that simultaneously drives both compression means. Interestingly, the electric motor is disposed between the two compression means, the latter being rotated by a shaft of the electric motor which opens at each end of the electric motor.
Selon l'invention, le deuxième moyen de compression 31 forme un deuxième étage de compression grâce auquel le fluide réfrigérant circule dans le circuit 1 et subit une élévation de sa pression pour passer d'une basse pression Bp à la pression intermédiaire Pi.  According to the invention, the second compression means 31 forms a second compression stage through which the refrigerant circulates in the circuit 1 and undergoes an increase in pressure to go from a low pressure Bp to the intermediate pressure Pi.
Le premier moyen de compression 6 présente une première cylindrée et le deuxième moyen de compression 31 présente une deuxième cylindrée. Selon l'invention, on choisit un rapport entre la deuxième cylindrée et la première cylindrée égale à 1 ,72 +/- 5%. Selon un exemple de réalisation mettant en œuvre ce rapport, la deuxième cylindrée est égale à 19 cm3 alors que la première cylindrée est égale à 11 cm3. The first compression means 6 has a first displacement and the second compression means 31 has a second displacement. According to the invention, a ratio is chosen between the second displacement and the first displacement of 1.72 +/- 5%. According to an exemplary embodiment implementing this ratio, the second displacement is equal to 19 cm 3 while the first displacement is equal to 11 cm 3 .
La troisième portion 4 comprend encore un évaporateur 32 agencé pour assurer un refroidissement du flux d'air intérieur par échange thermique avec le fluide réfrigérant. Cet évaporateur 32 est installé dans un boîtier (non représenté) de sorte à être traversé par le flux d'air intérieur envoyé dans l'habitacle du véhicule. Cet évaporateur 32 est placé en amont de l'échangeur intérieur 10, ou du radiateur dans le cas où le circuit comprend une boucle secondaire, selon le sens de déplacement du flux d'air intérieur dans le boîtier. Ce composant est un échangeur thermique destiné à refroidir le flux d'air intérieur qui passe à son travers quand le circuit est en mode de refroidissement ou en mode de déshumidification. Cet évaporateur 32 assure corrélativement un assèchement du flux d'air intérieur par condensation sur ses parois externes, cette fonction étant particulièrement recherchée lors de l'activation du mode de déshumidification.The third portion 4 further comprises an evaporator 32 arranged to ensure cooling of the internal air flow by heat exchange with the refrigerant. This evaporator 32 is installed in a housing (not shown) so as to be traversed by the interior air flow sent into the cabin of the vehicle. This evaporator 32 is placed upstream of the internal exchanger 10, or the radiator in the case where the circuit comprises a secondary loop, according to the direction of movement of the air flow inside the housing. This component is a heat exchanger intended to cool the interior air flow that passes through when the circuit is in cooling mode or in dehumidification mode. This evaporator 32 correlatively ensures a drying of the interior air flow by condensation on its outer walls, this function being particularly sought when activating the dehumidification mode.
Cet évaporateur 32 est intercalé entre le deuxième organe de détente 25 et le deuxième moyen de compression 31 afin de partager la troisième portion 4 du circuit 1 entre une première zone 33 située en amont de l'évaporateur 32 et une 5 deuxième zone 34 située en aval de ce même évaporateur. This evaporator 32 is interposed between the second expansion member 25 and the second compression means 31 in order to divide the third portion 4 of the circuit 1 between a first zone 33 situated upstream of the evaporator 32 and a second zone 34 located in downstream of this same evaporator.
Le dispositif de séparation de phases 26 du fluide réfrigérant est spécifiquement installé dans le circuit 1 entre le premier moyen de compression 6 et le deuxième moyen de compression 31. Autrement dit, ce dispositif de séparation 26 contient un fluide réfrigérant qui est soumis à la pression i o intermédiaire Pi.  The phase separation device 26 of the refrigerant fluid is specifically installed in the circuit 1 between the first compression means 6 and the second compression means 31. In other words, this separation device 26 contains a refrigerant fluid which is subjected to pressure Pi intermediate.
Outre sa première entrée 27 et sa première sortie 28, le dispositif de séparation de phases 26 comprend une deuxième entrée 60 et une deuxième sortie 61. La deuxième entrée 60 est raccordée directement à la sortie 30 du deuxième moyen de compression 31 et la deuxième sortie 61 est raccordée 15 directement à l'entrée 5 du premier moyen de compression 6.  In addition to its first input 27 and its first output 28, the phase separation device 26 comprises a second input 60 and a second output 61. The second input 60 is connected directly to the output 30 of the second compression means 31 and the second output 61 is connected directly to the inlet 5 of the first compression means 6.
La première entrée 27, la deuxième entrée 60 et la deuxième sortie 61 débouchent dans un volume interne du dispositif de séparation de phases 26 où le fluide réfrigérant est à l'état gazeux. Autrement dit, cette première entrée 27, la deuxième entrée 60 et la deuxième sortie 61 traversent une paroi supérieure du 20 dispositif de séparation de phases 26 et se terminent immédiatement sous cette paroi supérieure.  The first inlet 27, the second inlet 60 and the second outlet 61 open into an internal volume of the phase separation device 26 where the refrigerant is in the gaseous state. In other words, this first inlet 27, the second inlet 60 and the second outlet 61 pass through an upper wall of the phase separation device 26 and terminate immediately below this upper wall.
Le dispositif de séparation de phases 26 est agencé pour que la première sortie 28 plonge au fond du volume interne dudit dispositif afin de capter le fluide réfrigérant à l'état liquide. Pour ce faire, le dispositif de séparation de phases 26 25 comprend un tube qui présente une première extrémité raccordée à la première sortie 28 et une deuxième extrémité qui débouche à proximité immédiate d'un fond qui délimite le volume interne du dispositif de séparation de phases 26.  The phase separation device 26 is arranged so that the first outlet 28 dips to the bottom of the internal volume of said device in order to capture the cooling fluid in the liquid state. To do this, the phase separation device 26 comprises a tube which has a first end connected to the first outlet 28 and a second end which opens in the immediate vicinity of a bottom which delimits the internal volume of the phase separation device. 26.
Le circuit 1 selon l'invention présente un premier moyen 35 qui met en relation la première zone 33 avec le premier secteur 23 et un deuxième moyen 36 30 qui met en relation le deuxième secteur 24 avec la deuxième zone 34.  The circuit 1 according to the invention has a first means 35 which connects the first zone 33 with the first sector 23 and a second means 36 which connects the second sector 24 with the second zone 34.
Le premier moyen 35 comprend au moins un conduit 37 qui s'étend entre la première zone 33 de la troisième portion 4 et le premier secteur 23 de la première portion 2 du circuit 1. Ce premier moyen 35 comprend également un troisième organe de bifurcation 38 installé soit à la jonction de la première zone 33 avec le conduit 37, soit au niveau du conduit 37 et indépendamment du secteur ou de la zone concerné, soit à la jonction du premier secteur 23 avec le conduit 37. The first means 35 comprises at least one duct 37 which extends between the first zone 33 of the third portion 4 and the first sector 23 of the first portion 2 of the circuit 1. This first means 35 also comprises a third bifurcation member 38 installed either at the junction of the first zone 33 with the duct 37 or at the level of the duct 37 and independently of the sector or area concerned, or at the junction of the first sector 23 with the duct 37.
D'une manière générale, ce troisième organe de bifurcation 38 gère une circulation de fluide réfrigérant dans ledit conduit en fonction du mode de fonctionnement. Il s'agit d'une vanne trois voies comprenant, par exemple, un élément mobile susceptible de commander la circulation à partir de son entrée vers l'une ou l'autre des ses sorties.  In general, this third bifurcation member 38 manages a circulation of refrigerant fluid in said duct according to the operating mode. This is a three-way valve comprising, for example, a movable element capable of controlling the flow from its inlet to one or other of its outputs.
Selon une variante de l'invention, le troisième organe de bifurcation 38 est installé à une confluence de la première zone 33 avec ledit conduit 37, autrement dit en série avec les composants constitutifs de la troisième portion 4 du circuit 1. Cette vanne trois voies présente une entrée 39 directement raccordée à la sortie 22 du deuxième organe de détente 25, et où une première sortie 40 est directement raccordée à une entrée 41 de l'évaporateur 32 alors qu'une deuxième sortie 42 est raccordée au conduit 37.  According to a variant of the invention, the third bifurcation member 38 is installed at a confluence of the first zone 33 with said duct 37, in other words in series with the constituent components of the third portion 4 of the circuit 1. This three-way valve has an inlet 39 directly connected to the outlet 22 of the second expansion element 25, and where a first outlet 40 is directly connected to an inlet 41 of the evaporator 32 while a second outlet 42 is connected to the conduit 37.
Selon un exemple de réalisation, le premier moyen 35 comprend un quatrième organe de bifurcation 43 installé à une confluence, c'est-à-dire à la jonction du premier secteur 23 avec le conduit 37. Selon un mode de réalisation, le quatrième organe de bifurcation 43 est une vanne trois voies intercalée entre la première sortie 13 du premier organe de bifurcation 1 1 et une entrée 44 de l'échangeur extérieur 15. Alternativement, ce quatrième organe de bifurcation est un raccord en « T » ou « Y » dépourvu d'élément susceptible de bloquer l'une ou l'autre des sorties.  According to an exemplary embodiment, the first means 35 comprises a fourth bifurcation member 43 installed at a confluence, that is to say at the junction of the first sector 23 with the duct 37. According to one embodiment, the fourth member bifurcation 43 is a three-way valve interposed between the first outlet 13 of the first bifurcation member 1 1 and an inlet 44 of the outer heat exchanger 15. Alternatively, this fourth bifurcation member is a "T" or "Y" connection devoid of any element likely to block one or the other of the outputs.
Ce quatrième organe de bifurcation comprend ainsi une entrée 45 raccordée directement à la première sortie 13 du premier organe de bifurcation, une première sortie 46 raccordée directement à l'entrée 44 de l'échangeur extérieur 15 et une deuxième sortie 47 raccordée directement au conduit 37.  This fourth bifurcation member thus comprises an inlet 45 connected directly to the first outlet 13 of the first bifurcation member, a first outlet 46 connected directly to the inlet 44 of the external exchanger 15 and a second outlet 47 connected directly to the duct 37 .
La fonction du premier moyen 35 selon l'invention est de contourner le deuxième secteur 24, y compris l'échangeur extérieur 15, et la deuxième portion 3 tout en autorisant ou interdisant la circulation du fluide réfrigérant dans ce premier moyen en fonction du mode de fonctionnement du circuit 1.  The function of the first means 35 according to the invention is to bypass the second sector 24, including the external exchanger 15, and the second portion 3 while allowing or preventing the circulation of the refrigerant in this first means depending on the mode of operation. circuit operation 1.
Le deuxième moyen 36 selon l'invention comprend un canal 48 qui s'étend entre le deuxième secteur 24 et la deuxième zone 34. Ce deuxième moyen 36 comprend également un cinquième organe de bifurcation 49 installé soit à la jonction du deuxième secteur 24 avec le canal 48, soit au niveau du canal 48 et indépendamment du secteur ou de la zone concerné, soit à la jonction de la deuxième zone 34 avec le canal 48. The second means 36 according to the invention comprises a channel 48 which extends between the second sector 24 and the second zone 34. This second means 36 also comprises a fifth bifurcation member 49 installed either at the junction of the second sector 24 with the channel 48, or at the channel 48 and independently of the sector or zone concerned, or at the junction of the second zone 34 with the channel 48.
5 D'une manière générale, ce cinquième organe de bifurcation 49 gère une circulation de fluide réfrigérant dans le canal en fonction du mode de fonctionnement.  In general, this fifth bifurcation member 49 manages a circulation of refrigerant in the channel depending on the mode of operation.
Selon une variante de l'invention, le cinquième organe de bifurcation 49 est une vanne trois voies comprenant par exemple un élément mobile susceptible de î o commander la circulation à partir de son entrée vers l'une ou l'autre des ses sorties. Ce cinquième organe de bifurcation est installé à une confluence du deuxième secteur 24 avec le canal 48, autrement dit en série avec les composants constitutifs de la première portion 2. Ce cinquième organe de bifurcation comprend une entrée 50 directement raccordée à une sortie 51 de According to a variant of the invention, the fifth bifurcation member 49 is a three-way valve comprising for example a movable element capable of controlling the flow from its inlet to one or other of its outputs. This fifth bifurcation member is installed at a confluence of the second sector 24 with the channel 48, in other words in series with the constituent components of the first portion 2. This fifth bifurcation member comprises an inlet 50 directly connected to an outlet 51 of
15 l'échangeur extérieur 15, et où une première sortie 52 est directement raccordée à la première entrée 17 du premier organe de détente 16 alors qu'une deuxième sortie 53 est raccordée au canal 48. The outer heat exchanger 15, and wherein a first outlet 52 is directly connected to the first inlet 17 of the first expansion member 16 while a second outlet 53 is connected to the channel 48.
Selon un exemple de réalisation, le deuxième moyen 36 comprend un sixième organe de bifurcation 54 installé à une confluence, c'est-à-dire à la According to an exemplary embodiment, the second means 36 comprises a sixth bifurcation member 54 installed at a confluence, that is to say at the
20 jonction de la deuxième zone 34 avec le canal 48. Ce sixième organe de bifurcation 54 est par exemple une vanne trois voies intercalée entre une sortie 55 de l'évaporateur 32 et une entrée 56 du deuxième moyen de compression 31. Alternativement, ce sixième organe de bifurcation 54 est un raccord en « T » ou « Y » dépourvu d'élément susceptible de bloquer l'une ou l'autre des sorties. Joining the second zone 34 with the channel 48. This sixth bifurcation member 54 is for example a three-way valve interposed between an outlet 55 of the evaporator 32 and an inlet 56 of the second compression means 31. Alternatively, this sixth bifurcation member 54 is a "T" or "Y" fitting without any element capable of blocking one or the other of the outlets.
25 Ce sixième organe de bifurcation comprend ainsi une première entrée 57 raccordée directement à sortie 55 de l'évaporateur 32, une deuxième entrée 58 raccordée directement au conduit 48 et une sortie 59 raccordée directement à l'entrée 56 du deuxième moyen de compression.  This sixth bifurcation member thus comprises a first inlet 57 connected directly to the outlet 55 of the evaporator 32, a second inlet 58 connected directly to the conduit 48 and an outlet 59 connected directly to the inlet 56 of the second compression means.
La fonction du deuxième moyen 36 selon l'invention est de contourner la The function of the second means 36 according to the invention is to circumvent the
30 deuxième portion 3 et la première zone, y compris l'évaporateur 32, tout en autorisant ou interdisant la circulation du fluide réfrigérant dans ce deuxième moyen en fonction du mode de fonctionnement du circuit 1. Second portion 3 and the first zone, including the evaporator 32, while allowing or preventing the circulation of the refrigerant in this second means depending on the operating mode of the circuit 1.
On notera tout particulièrement que le premier moyen 35 et le deuxième moyen 36 sont agencés pour que le fluide réfrigérant circule au travers de l'échangeur extérieur 15 selon un même sens de circulation en mode de chauffage, en mode de refroidissement et avantageusement en mode de déshumidification. It will be particularly noted that the first means 35 and the second means 36 are arranged so that the refrigerant circulates through the outer heat exchanger 15 in the same direction of circulation in heating mode, in cooling mode and advantageously in dehumidification mode.
5 On notera encore que ces moyens 35 et 36 permettent au fluide réfrigérant de circuler au travers du dispositif de séparation de phases 26 du fluide réfrigérant selon un même sens de circulation en mode de chauffage, en mode de refroidissement et avantageusement en mode de déshumidification.  It will also be noted that these means 35 and 36 allow the refrigerant to circulate through the phase separation device 26 of the refrigerant fluid in the same direction of circulation in the heating mode, in the cooling mode and advantageously in the dehumidification mode.
On notera enfin que le premier moyen 35 et le deuxième moyen 36 offrent la î o possibilité au fluide réfrigérant de circuler au travers du deuxième organe de détente 25 selon un même sens de circulation en mode de chauffage, en mode de refroidissement et avantageusement en mode de déshumidification.  Finally, it should be noted that the first means 35 and the second means 36 provide the possibility for the refrigerant to flow through the second expansion member 25 in the same direction of circulation in the heating mode, in the cooling mode and advantageously in the dehumidification.
Après avoir décrit en détails la structure du circuit selon l'invention, on explique maintenant la circulation du fluide réfrigérant dans ce circuit quand celui- 15 ci est en fonctionnement selon le mode choisi.  After having described in detail the structure of the circuit according to the invention, the circulation of the coolant in this circuit is now explained when it is in operation according to the mode chosen.
La figure 1 illustre le mode de refroidissement. Les flèches symbolisent la circulation du fluide réfrigérant dans le circuit 1.  Figure 1 illustrates the cooling mode. The arrows symbolize the circulation of the refrigerant in the circuit 1.
Le deuxième moyen de compression 31 élève la pression du fluide réfrigérant du niveau appelé basse pression Bp au niveau appelé pression 20 intermédiaire Pi, cette dernière étant supérieure à la valeur de la basse pression.  The second compression means 31 raises the refrigerant pressure of the so-called low pressure level Bp to the level called the intermediate pressure Pi, the latter being greater than the value of the low pressure.
Le fluide réfrigérant entre dans le dispositif de séparation de phases 26 par la deuxième entrée 60 et la phase liquide du fluide réfrigérant s'accumule au fond du dispositif de séparation de phases 26, alors que la phase gazeuse reste dans la partie supérieure du volume interne de ce dispositif.  The refrigerant enters the phase separation device 26 through the second inlet 60 and the liquid phase of the refrigerant accumulates at the bottom of the phase separation device 26, while the gaseous phase remains in the upper part of the internal volume of this device.
25 Cette phase gazeuse est aspirée par le premier moyen de compression 6 et se trouve élevée à un niveau dit de haute pression Hp, la valeur de cette dernière étant supérieure à la basse pression Bp et là pression intermédiaire Pi. This gaseous phase is sucked by the first compression means 6 and is raised to a so-called high pressure level Hp, the value of the latter being greater than the low pressure Bp and the intermediate pressure Pi.
En mode refroidissement, le fluide réfrigérant traverse l'échangeur intérieur 10 sans subir d'échange thermique avec le flux d'air intérieur. Pour ce faire, un 30 volet (non représenté) interdit le passage du flux d'air au travers de l'échangeur intérieur. Alternativement, le circuit 1 peut comprendre une canalisation de contournement de l'échangeur intérieur 10 qui évite au fluide réfrigérant de passer dans cet échangeur. En tout état de cause, l'échangeur intérieur 10 est inactif vis- à-vis du flux d'air intérieur. In cooling mode, the refrigerant passes through the inner heat exchanger 10 without undergoing heat exchange with the interior air flow. To do this, a flap (not shown) prevents the flow of air through the inner heat exchanger. Alternatively, the circuit 1 may comprise a bypass line of the inner exchanger 10 which prevents the refrigerant from passing into this exchanger. In any case, the inner heat exchanger 10 is inactive vis- with respect to the interior air flow.
Le premier organe de bifurcation 1 1 autorise le passage de fluide réfrigérant de son entrée 12 à sa première sortie 13 et interdit la circulation de fluide dans la conduite 21.  The first bifurcation member 1 1 allows the passage of refrigerant from its inlet 12 to its first outlet 13 and prohibits the circulation of fluid in the pipe 21.
Le quatrième organe de bifurcation 43 autorise la circulation du fluide réfrigérant de sa première entrée 45 à sa sortie 46. Dans le cas d'une vanne trois voies, celle-ci interdit toute circulation en provenance du conduit 37. Le fluide réfrigérant traverse alors l'échangeur extérieur 15 où il est refroidit par le flux d'air extérieur.  The fourth bifurcation member 43 allows the refrigerant to flow from its first inlet 45 to its outlet 46. In the case of a three-way valve, this prevents any flow from the conduit 37. The refrigerant then passes through the outside exchanger 15 where it is cooled by the outside air flow.
Le cinquième organe de bifurcation 49 autorise la circulation du fluide réfrigérant de son entrée 50 à sa première sortie 52 et interdit toute circulation du fluide réfrigérant en direction du canal 48.  The fifth bifurcation member 49 allows the flow of refrigerant from its inlet 50 to its first outlet 52 and prohibits any circulation of the refrigerant towards the channel 48.
Le deuxième organe de bifurcation 16 laisse passer le fluide réfrigérant de sa première entrée 17 vers sa sortie 18. Dans le cas d'une vanne trois voies, celle-ci interdit toute entrée du fluide réfrigérant en provenance de la conduite 21.  The second bifurcation member 16 lets the refrigerant flow from its first inlet 17 to its outlet 18. In the case of a three-way valve, this prevents any entry of the refrigerant from the pipe 21.
Le fluide réfrigérant continue son parcours et traverse le premier organe de détente 8 où il subit un abaissement de sa pression pour passer de la valeur de haute pression Hp à la valeur de pression intermédiaire Pi.  The refrigerant continues its course and passes through the first expansion member 8 where it undergoes a lowering of its pressure to go from the high pressure value Hp to the intermediate pressure value Pi.
Le fluide réfrigérant entre ensuite dans le volume interne du dispositif de séparation de phases 26 par la première entrée 27 et en ressort à l'état liquide par la première sortie 28.  The refrigerant then enters the internal volume of the phase separation device 26 through the first inlet 27 and leaves it in the liquid state through the first outlet 28.
En traversant le deuxième organe de détente 25, le fluide réfrigérant subit un autre abaissement de la pression pour passer de la valeur de la pression intermédiaire Pi à la valeur de la basse pression Bp.  By passing through the second expansion member 25, the refrigerant undergoes another lowering of the pressure to go from the value of the intermediate pressure Pi to the value of the low pressure Bp.
Le fluide réfrigérant poursuit son parcours en traversant le troisième organe de bifurcation 38 depuis son entrée 39 vers sa première sortie 40, la deuxième sortie 42 étant obturée pour empêcher toute circulation du fluide réfrigérant dans le conduit 37.  The refrigerant continues its course through the third bifurcation member 38 from its inlet 39 to its first outlet 40, the second outlet 42 being closed to prevent any circulation of the refrigerant in the conduit 37.
Le fluide réfrigérant traverse ensuite l'évaporateur 32, où il capte les calories présent dans le flux d'air intérieur, climatisant ainsi l'habitacle du véhicule. Le fluide réfrigérant ainsi soumis à basse pression et basse température atteint ensuite le sixième organe de bifurcation 54 en circulant depuis la première entrée 57 vers la sortie 59. Dans le cas d'une vanne trois voies, celle-ci interdit toute circulation depuis la deuxième entrée 58. The refrigerant then passes through the evaporator 32, where it captures the calories present in the interior air flow, thereby conditioning the vehicle interior. The refrigerant fluid thus subjected to low pressure and low temperature then reaches the sixth bifurcation member 54 while flowing from the first inlet 57 to the outlet 59. In the case of a three-way valve, the latter prohibits any circulation from the second entrance 58.
Le fluide réfrigérant retourne enfin vers le deuxième moyen de compression 31 , avant d'effectuer un nouveau cycle thermodynamique.  The refrigerant fluid finally returns to the second compression means 31, before performing a new thermodynamic cycle.
On constate qu'en mode de refroidissement, la conduite 21 , le conduit 37 et 5 le canal 48 ne sont pas parcourus par le fluide réfrigérant.  It is found that in cooling mode, the pipe 21, the duct 37 and the channel 48 are not traversed by the refrigerant.
On se reportera à la figure 2 pour la description du mode de chauffage. On notera que le fluide réfrigérant circule dans le même sens au cœur du circuit 1 que le sens de circulation pour le mode de refroidissement présenté ci-dessus. La description ci-dessous s'attache aux différences et on se reportera à la description î o de la figure 1 pour les éléments identiques.  Refer to Figure 2 for the description of the heating mode. It will be noted that the refrigerant circulates in the same direction at the heart of the circuit 1 as the direction of circulation for the cooling mode presented above. The following description focuses on the differences and reference is made to the description of Figure 1 for identical elements.
L'échangeur intérieur 10 dissipe les calories présentes dans le fluide réfrigérant, soumis à haute pression et haute température, dans le flux d'air intérieur qui le traverse. On assure ainsi le chauffage de l'air envoyé dans l'habitacle.  The inner heat exchanger 10 dissipates the calories present in the refrigerant fluid, subjected to high pressure and high temperature, in the interior air flow that passes through it. This ensures the heating of the air sent into the cabin.
15 Le premier organe de bifurcation 11 oblige le fluide réfrigérant qui provient de l'entrée 12 à circuler vers la deuxième sortie 14, interdisant ainsi toute sortie du fluide réfrigérant par la première sortie 13.  The first bifurcation member 11 forces the refrigerant coming from the inlet 12 to circulate towards the second outlet 14, thus preventing any exit of the refrigerant by the first outlet 13.
Le fluide réfrigérant à haute pression contourne alors l'échangeur extérieur 15 en passant au travers de la conduite 21 pour rejoindre le deuxième organe de 20 bifurcation 16, en entrant dans ce dernier par sa deuxième entrée 19 pour en sortir par sa sortie 18.  The high-pressure refrigerant then bypasses the outer heat exchanger 15 passing through the pipe 21 to join the second branching member 16, entering the latter through its second inlet 19 to exit through its outlet 18.
Le fluide réfrigérant continue son parcours et traverse le premier organe de détente 8 où il subit un abaissement de sa pression pour passer de la valeur de haute pression Hp à la valeur de pression intermédiaire Pi.  The refrigerant continues its course and passes through the first expansion member 8 where it undergoes a lowering of its pressure to go from the high pressure value Hp to the intermediate pressure value Pi.
25 Le fluide réfrigérant entre ensuite dans le volume interne du dispositif de séparation de phases 26 par la première entrée 27 et en ressort à l'état liquide par la première sortie 28. The refrigerant then enters the internal volume of the phase separation device 26 through the first inlet 27 and leaves it in the liquid state through the first outlet 28.
En traversant le deuxième organe de détente 25, le fluide réfrigérant subit un autre abaissement de la pression pour passer de la valeur de la pression 30 intermédiaire Pi à la valeur de la basse pression Bp.  By passing through the second expansion member 25, the coolant undergoes another lowering of the pressure from the value of the intermediate pressure Pi to the value of the low pressure Bp.
Le fluide réfrigérant poursuit son parcours en traversant le troisième organe de bifurcation 38 depuis son entrée 39 vers sa deuxième sortie 42, la première sortie 40 étant obturée pour empêcher toute circulation du fluide réfrigérant en direction de l'évaporateur 32. The refrigerant continues its course through the third bifurcation member 38 from its inlet 39 to its second outlet 42, the first outlet 40 being closed to prevent any circulation of the refrigerant in direction of the evaporator 32.
Le fluide réfrigérant circule alors dans le premier moyen 35. Il passe ainsi dans le conduit 37 et rejoint le quatrième organe de bifurcation 43, pour entrée dans celle-ci par sa deuxième entrée 47 et en sortir par sa sortie 46.  The refrigerant then circulates in the first means 35. It thus passes into the duct 37 and joins the fourth bifurcation member 43, for entry into it by its second inlet 47 and exit through its outlet 46.
Le fluide réfrigérant atteint alors l'échangeur extérieur 15 et traverse ce dernier en subissant un échauffement au bénéfice du flux d'air extérieur.  The refrigerant then reaches the outer heat exchanger 15 and passes through the latter undergoing heating to the benefit of the outside air flow.
Le fluide réfrigérant s'apprête alors à emprunter le deuxième moyen 36. Il entre ainsi dans le cinquième organe de bifurcation 49 par son entrée 50 et en ressort par sa deuxième sortie 53 afin de circuler dans le canal 48.  The refrigerant then prepares to take the second means 36. It thus enters the fifth bifurcation member 49 through its inlet 50 and out of its second outlet 53 to flow in the channel 48.
Le fluide réfrigérant rejoint alors le sixième organe de bifurcation 54 et entre dans ce dernier par sa deuxième entrée 58 pour en sortir pas sa sortie 59 avant de retourner au deuxième moyen de compression 31.  The refrigerant then joins the sixth bifurcation member 54 and enters the latter through its second inlet 58 to exit its outlet 59 before returning to the second compression means 31.
La figure 3 illustre le fonctionnement du circuit en mode de déshumidification. Ce mode de fonctionnement est proche de celui décrit à la figure 1 et on se reportera à la description de celle-ci pour en connaître la structure. On notera que le fluide réfrigérant circule dans le même sens au cœur du circuit 1 que le sens de circulation pour le mode de refroidissement présenté à la figure 1. La description ci-dessous s'attache aux différences comparées à cette dernière.  Figure 3 illustrates the operation of the circuit in dehumidification mode. This mode of operation is close to that described in Figure 1 and reference is made to the description thereof to know the structure. Note that the refrigerant flows in the same direction at the heart of the circuit 1 as the direction of circulation for the cooling mode shown in Figure 1. The description below focuses on differences compared to the latter.
Le mode de déshumidification refroidit et chauffe successivement le flux d'air intérieur envoyé dans l'habitacle. Alors que dans le mode de refroidissement, l'échangeur intérieur 10 était rendu inactif vis-à-vis du flux d'air intérieur, il est ici traversé par ce flux d'air afin de dissiper les calories générées par le fluide réfrigérant soumis à haute pression Hp et haute température.  The dehumidification mode cools and heats successively the flow of indoor air sent into the passenger compartment. While in the cooling mode, the inner heat exchanger 10 was rendered inactive with respect to the interior air flow, it is here crossed by this flow of air in order to dissipate the calories generated by the refrigerant fluid subjected to high pressure Hp and high temperature.
Le premier organe de bifurcation 1 1 reçoit alors le fluide réfrigérant en provenance de l'échangeur intérieur 10 par l'intermédiaire de son entrée 12. La première sortie 13 est alors fermée alors que la deuxième sortie 14 est ouverte, autorisant ainsi le fluide réfrigérant à circuler dans la conduite 21.  The first bifurcation member 1 1 then receives the refrigerant from the indoor exchanger 10 via its inlet 12. The first outlet 13 is then closed while the second outlet 14 is open, thereby allowing the refrigerant to circulate in the pipe 21.
Le deuxième organe de bifurcation référencé 16 autorise une entrée du fluide réfrigérant par sa deuxième entrée 19 et une sortie de celui-ci par la sortie 18.  The second bifurcation member referenced 16 allows an entry of the refrigerant fluid through its second inlet 19 and an outlet thereof through the outlet 18.
De la sorte, l'échangeur extérieur 15 est contourné puisque le fluide réfrigérant passe par la conduite 21 au lieu de le traverser. Le reste du circuit est identique à celui détaillé en rapport avec le mode de refroidissement, l'évaporateur 32 étant alors actif de sorte à assécher le flux d'air envoyé dans l'habitacle et ainsi réduire le taux d'humidité présent dans l'habitacle du véhicule. In this way, the outer heat exchanger 15 is bypassed since the refrigerant passes through the pipe 21 instead of crossing it. The remainder of the circuit is identical to that detailed with respect to the cooling mode, the evaporator 32 then being active so as to dry out the flow of air sent into the cabin and thus reduce the moisture content present in the cabin of the vehicle.
La description ci-dessus emploi le terme « directement » pour qualifier la position d'un composant par rapport à un autre. Ce terme doit être compris en ce sens qu'un premier composant considéré est adjacent à une deuxième composant considéré, ou éventuellement relié l'un à l'autre exclusivement par un moyen de transport de fluide réfrigérant qui prend, par exemple, la forme d'un conduit ou d'un tube, notamment flexible ou rigide. Autrement dit, le premier composant considéré est relié au deuxième composant considéré par un moyen inactif au regard du cycle thermodynamique qui s'opère dans le circuit.  The above description uses the term "directly" to describe the position of one component over another. This term must be understood in the sense that a first component considered is adjacent to a second component considered, or possibly connected to each other exclusively by a refrigerant transport means which takes, for example, the form of a conduit or tube, especially flexible or rigid. In other words, the first component considered is connected to the second component considered by an inactive means with regard to the thermodynamic cycle that takes place in the circuit.
La description des modes de fonctionnement présentés ci-dessus utilise la deuxième et le sixième organe de bifurcation mais l'homme du métier saura adapter le fonctionnement au cas où le premier moyen 35 et/ou le deuxième moyen 36 ne comportent qu'une seule vanne trois voies.  The description of the modes of operation presented above uses the second and sixth bifurcation members, but the person skilled in the art will be able to adapt the operation in the case where the first means 35 and / or the second means 36 comprise only one valve. three ways.
La description ci-dessus fait état d'organe de bifurcation pouvant prendre la forme de vannes trois voies à organe de commande ou de raccord en « T » dépourvu d'organe de commande.  The above description discloses a bifurcation member that can take the form of three-way valves with control member or "T" connection without a control member.
L'invention couvre le cas où le premier moyen 35, le deuxième moyen 36 et la conduit 21 comprennent chacun au moins une vanne trois voies pour autoriser ou interrompre la circulation de fluide dans la portion concernée, cette vanne pouvant être placée à l'une ou à l'autre des extrémité du premier moyen 35, du deuxième moyen 36 ou de la conduite 21.  The invention covers the case where the first means 35, the second means 36 and the duct 21 each comprise at least one three-way valve to allow or interrupt the circulation of fluid in the portion concerned, this valve being able to be placed at one end. or at the other end of the first means 35, the second means 36 or the pipe 21.
De manière complémentaire, il est prévu par l'invention que le premier moyen 35 comprenne une vanne trois voies à organe de commande à chacune des ses extrémités.  In a complementary manner, it is provided by the invention that the first means comprises a three-way valve with a control member at each of its ends.
De manière alternative et/ou complémentaire, il est prévu par l'invention que le deuxième moyen 36 comprenne une vanne trois voies à organe de commande à chacune des ses extrémités.  Alternatively and / or complementary, it is provided by the invention that the second means 36 comprises a three-way valve control member at each of its ends.
De manière alternative et/ou complémentaire, il est prévu par l'invention que la conduite 21 comprenne une vanne trois voies à organe de commande à chacune des ses extrémités. Ainsi, l'invention couvre, de manière ultime, le cas où tous les organes de bifurcation sont des vannes trois voies à organe de commande. Alternatively and / or complementary, it is provided by the invention that the pipe 21 comprises a three-way valve control member at each of its ends. Thus, the invention ultimately covers the case where all the bifurcation members are three-way valves with a control member.

Claims

REVENDICATIONS
1. Circuit (1) pour conditionner thermiquement un habitacle d'un véhicule, comprenant :  Circuit (1) for thermally conditioning a passenger compartment of a vehicle, comprising:
- une première portion (2) de circuit (1) qui s'étend entre une entrée (5) d'un premier moyen de compression (6) et une sortie (7) d'un premier organe de détente (8), ladite première portion (2) comprenant au moins un échangeur extérieur (15) partageant ladite première portion (2) en un premier secteur (23) situé en amont de l'échangeur extérieur (15) et un deuxième secteur (24) situé en aval dudit échangeur extérieur (15),  a first portion (2) of circuit (1) extending between an inlet (5) of a first compression means (6) and an outlet (7) of a first expansion member (8), said first portion (2) comprising at least one external exchanger (15) sharing said first portion (2) in a first sector (23) located upstream of the external exchanger (15) and a second sector (24) located downstream of said external exchanger (15),
- une troisième portion (4) du circuit (1) qui s'étend entre une sortie (22) d'un deuxième organe de détente (25) et une sortie (30) d'un deuxième moyen de compression (31), ladite troisième portion (4) comprenant un évaporateur (32) partageant ladite troisième portion (4) entre une première zone (33) située en amont de l'évaporateur (32) et une deuxième zone (34) située en aval dudit évaporateur (32), caractérisé en que le circuit (1) comprend un premier moyen (35) qui met en relation la première zone (33) avec le premier secteur (23) et un deuxième moyen (36) qui met en relation le deuxième secteur (24) avec la deuxième zone (34).  a third portion (4) of the circuit (1) extending between an outlet (22) of a second expansion member (25) and an outlet (30) of a second compression means (31), said third portion (4) comprising an evaporator (32) sharing said third portion (4) between a first zone (33) located upstream of the evaporator (32) and a second zone (34) located downstream of said evaporator (32) characterized in that the circuit (1) comprises a first means (35) which connects the first zone (33) with the first sector (23) and a second means (36) which connects the second sector (24). with the second zone (34).
2. Circuit selon la revendication 1 , comprenant une deuxième portion (3) de circuit (1) qui s'étend entre la sortie (7) du premier organe de détente (8) et la sortie (22) du deuxième organe de détente (25), la sortie (30) du deuxième moyen de compression (31) et l'entrée (5) du premier moyen de compression (6) étant en communication avec la deuxième portion (3) par l'intermédiaire d'un dispositif de séparation de phases (26) du fluide réfrigérant.  2. Circuit according to claim 1, comprising a second portion (3) of circuit (1) which extends between the outlet (7) of the first expansion member (8) and the outlet (22) of the second expansion member ( 25), the outlet (30) of the second compression means (31) and the inlet (5) of the first compression means (6) being in communication with the second portion (3) via a device phase separation (26) of the refrigerant.
3. Circuit selon l'une quelconque des revendications 1 ou 2, dans lequel le premier moyen (35) comprend au moins un conduit (37) qui s'étend entre la première zone (33) et le premier secteur (23) et un troisième organe de bifurcation (38) qui gère une circulation de fluide réfrigérant dans ledit conduit (37).  3. Circuit according to any one of claims 1 or 2, wherein the first means (35) comprises at least one duct (37) extending between the first zone (33) and the first sector (23) and a third bifurcation member (38) which manages a refrigerant circulation in said conduit (37).
4. Circuit selon la revendication 3, dans lequel le premier moyen (35) comprend un quatrième organe de bifurcation (43) installé à une confluence du premier secteur (23) avec ledit conduit (37), le troisième organe de bifurcation (38) étant installé à une confluence de la première zone (33) avec ledit conduit (37).  4. Circuit according to claim 3, wherein the first means (35) comprises a fourth bifurcation member (43) installed at a confluence of the first sector (23) with said duct (37), the third bifurcation member (38). being installed at a confluence of the first zone (33) with said conduit (37).
5. Circuit selon l'une quelconque des revendications 1 à 4, dans lequel le deuxième moyen (36) comprend au moins un canal (48) qui s'étend entre le deuxième secteur (24) et la deuxième zone (34) et un cinquième organe de bifurcation (49) qui gère une circulation de fluide réfrigérant dans ledit canal (48). The circuit of any one of claims 1 to 4, wherein the second means (36) comprises at least one channel (48) extending between the second sector (24) and the second zone (34) and a fifth bifurcation member (49) which manages a refrigerant circulation in said channel (48).
6. Circuit selon la revendication 5, dans lequel le deuxième moyen (36) comprend un sixième organe de bifurcation (54) installé à une confluence de la deuxième zone (34) avec ledit canal (48), le cinquième organe de bifurcation (49) étant installé à une confluence du deuxième secteur (24) avec ledit canal (48).  The circuit of claim 5, wherein the second means (36) comprises a sixth bifurcation member (54) installed at a confluence of the second zone (34) with said channel (48), the fifth bifurcation member (49). ) being installed at a confluence of the second sector (24) with said channel (48).
7. Circuit selon l'une quelconque des revendications précédentes, dans lequel le fluide réfrigérant circule au travers de l'échangeur extérieur (15) selon un même sens de circulation quand le circuit est opéré en un mode de chauffage, en mode de déshumidification et en un mode de refroidissement.  7. Circuit according to any one of the preceding claims, wherein the refrigerant circulates through the outer heat exchanger (15) in the same direction of circulation when the circuit is operated in a heating mode, in dehumidification mode and in a cooling mode.
8. Circuit selon la revendication 2, dans lequel le fluide réfrigérant circule au travers du dispositif de séparation de phases (26) du fluide réfrigérant selon un même sens de circulation quand le circuit est opéré en un mode de chauffage, en mode de déshumidification et en un mode de refroidissement.  8. Circuit according to claim 2, wherein the refrigerant circulates through the phase separation device (26) of the refrigerant in a same direction of circulation when the circuit is operated in a heating mode, dehumidification mode and in a cooling mode.
9. Circuit selon l'une quelconque des revendications précédentes, dans lequel le fluide réfrigérant circule au travers du deuxième organe de détente (25) selon un même sens de circulation quand le circuit est opéré en un mode de chauffage, en mode de déshumidification et en un mode de refroidissement.  9. Circuit according to any one of the preceding claims, wherein the coolant flows through the second expansion member (25) in the same direction of circulation when the circuit is operated in a heating mode, in dehumidification mode and in a cooling mode.
10. Circuit selon l'une quelconque des revendications précédentes, dans lequel le premier moyen de compression (6) et le deuxième moyen de compression (31) sont entraînés par un même élément d'entraînement, ledit élément étant avantageusement un moteur électrique.  10. Circuit according to any one of the preceding claims, wherein the first compression means (6) and the second compression means (31) are driven by a same driving element, said element being advantageously an electric motor.
11. Circuit selon l'une quelconque des revendications précédentes, dans lequel le premier moyen de compression (6) présente une première cylindrée et le deuxième moyen de compression (31) présente une deuxième cylindrée, le rapport entre la deuxième cylindrée et la première cylindrée étant égale à 1 ,72 +/- 5%.  11. Circuit according to any one of the preceding claims, wherein the first compression means (6) has a first displacement and the second compression means (31) has a second displacement, the ratio between the second displacement and the first displacement. being equal to 1.72 +/- 5%.
12. Circuit selon la revendication 11 , dans lequel la deuxième cylindrée est égale à 19 cm3 alors que la première cylindrée est égale à 11 cm3. 12. Circuit according to claim 11, wherein the second displacement is equal to 19 cm 3 while the first displacement is equal to 11 cm 3 .
13. Circuit selon l'une quelconque des revendications précédentes, dans lequel le fluide réfrigérant contenu dans la première portion (2) est à une première pression, dite haute pression Hp, alors que le fluide réfrigérant contenu dans la troisième portion (4) est à une troisième pression, dite basse pression Bp, le fluide réfrigérant contenu dans une deuxième portion (3) de circuit (1 ) qui s'étend entre la sortie (7) du premier organe de détente (8) et la sortie (22) du deuxième organe de détente (25) étant à une deuxième pression, dite pression intermédiaire Pi, comprise entre la première pression et la troisième pression. 13. Circuit according to any one of the preceding claims, wherein the refrigerant contained in the first portion (2) is at a first pressure, said high pressure Hp, while the refrigerant contained in the third portion (4) is at a third pressure, said low pressure Bp, the refrigerant contained in a second portion (3) of circuit (1) which extends between the outlet (7) of the first expansion member (8) and the outlet (22) of the second expansion member (25) being at a second pressure, said intermediate pressure Pi, between the first pressure and the third pressure.
PCT/EP2012/003420 2011-08-29 2012-08-09 Refrigerant circuit having two compression stages and an intermediate pressure cylinder WO2013029747A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1102615A FR2979287B1 (en) 2011-08-29 2011-08-29 REFRIGERANT FLUID CIRCUIT WITH TWO COMPRESSION STAGES AND INTERMEDIATE PRESSURE BOTTLE
FRFR1102615 2011-08-29

Publications (1)

Publication Number Publication Date
WO2013029747A1 true WO2013029747A1 (en) 2013-03-07

Family

ID=46724321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/003420 WO2013029747A1 (en) 2011-08-29 2012-08-09 Refrigerant circuit having two compression stages and an intermediate pressure cylinder

Country Status (2)

Country Link
FR (1) FR2979287B1 (en)
WO (1) WO2013029747A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105928138A (en) * 2016-04-25 2016-09-07 广东美的制冷设备有限公司 Air conditioner and control method thereof
CN106671740A (en) * 2017-01-03 2017-05-17 埃贝思(天津)新能源技术有限公司 Energy-saving type vehicle-mounted refrigerating system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020202313A1 (en) * 2020-02-24 2021-08-26 Mahle International Gmbh Heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322424A (en) 1991-11-12 1994-06-21 Matsushita Electric Industrial Co., Ltd. Two stage gas compressor
DE10224754A1 (en) * 2002-06-04 2003-12-24 Webasto Thermosysteme Gmbh Motor vehicle air conditioning system feeds coolant from condenser to cold storage device to charge it, can use cold released when discharging cold storage device to reduce condensation temperature
US20060042284A1 (en) * 2004-09-01 2006-03-02 Behr Gmbh & Co. Kg Stationary vehicle air conditioning system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322424A (en) 1991-11-12 1994-06-21 Matsushita Electric Industrial Co., Ltd. Two stage gas compressor
DE10224754A1 (en) * 2002-06-04 2003-12-24 Webasto Thermosysteme Gmbh Motor vehicle air conditioning system feeds coolant from condenser to cold storage device to charge it, can use cold released when discharging cold storage device to reduce condensation temperature
US20060042284A1 (en) * 2004-09-01 2006-03-02 Behr Gmbh & Co. Kg Stationary vehicle air conditioning system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105928138A (en) * 2016-04-25 2016-09-07 广东美的制冷设备有限公司 Air conditioner and control method thereof
CN105928138B (en) * 2016-04-25 2021-05-25 广东美的制冷设备有限公司 Air conditioner and control method thereof
CN106671740A (en) * 2017-01-03 2017-05-17 埃贝思(天津)新能源技术有限公司 Energy-saving type vehicle-mounted refrigerating system

Also Published As

Publication number Publication date
FR2979287B1 (en) 2013-08-30
FR2979287A1 (en) 2013-03-01

Similar Documents

Publication Publication Date Title
EP2643643B1 (en) Device for the thermal conditioning of a passenger compartment of a vehicle
EP2791596B1 (en) Device for air conditioning a drive train and a passenger compartment of a vehicle
EP2895806B1 (en) Device for thermally conditioning an interior of an electric vehicle
EP2601458A1 (en) Air-conditioning loop comprising a device for receiving a refrigerant
EP2473362B1 (en) Method of operating an hvac unit of an automotive vehicle comprising a secondary circuit
FR2936445A1 (en) Heating and/or air conditioning device for e.g. electric car, has evaporation, cooling and reversible units exchanging heat with three secondary loops, where one of loops is connected to exchanger exchanging heat with traction unit
EP2785543B1 (en) Circuit including an internal heat exchanger, through one branch of which a coolant flows in two opposite directions
EP2720890B1 (en) Refrigerant circuit and method of controlling such a circuit
EP2790938B1 (en) Method for controlling a thermal conditioning unit of a motor vehicle passenger compartment
WO2013029747A1 (en) Refrigerant circuit having two compression stages and an intermediate pressure cylinder
EP3458783A1 (en) Refrigerant circuit designed for thermal control of an energy source
WO2013079364A1 (en) Reversible air-conditioning loop with simplified design
FR3061867A1 (en) CIRCULATING LOOP OF A REFRIGERANT FLUID FOR THE AIR CONDITIONING OF A VEHICLE
FR2967483A1 (en) AIR CONDITIONING LOOP, SYSTEM COMPRISING SUCH A LOOP AND METHOD OF IMPLEMENTING SUCH A SYSTEM
FR2957851A1 (en) Heating, ventilating and/or air-conditioning device for motor vehicle, has switching unit in position in which refrigerant is flown from compressor toward internal exchanger, accumulator, evaporator, external exchanger and compressor
EP3606775B1 (en) Ventilation, heating and/or air-conditioning installation comprising an additional air inlet
WO2013053835A1 (en) Depressurization device including a depressurization means and a means for bypassing the depressurization means
WO2023057245A1 (en) Thermal conditioning system and method for a motor vehicle
WO2013000547A1 (en) Coolant circuit comprising two means for storing coolant
FR2957850A1 (en) Heating, ventilation and/or air-conditioning device for motor vehicle, has external heat exchanger connected to switching unit, and pipeline in communication with connection pipe connected to compressor inlet in position of switching unit
FR3065060A1 (en) VENTILATION, HEATING AND / OR AIR CONDITIONING INSTALLATION COMPRISING A HEAT EXCHANGER PROVIDING SUB-COOLING
FR2989036A1 (en) Heating-, ventilation-, and air-conditioning apparatus for use in passenger compartment of motor car, has air-conditioning loop with compressor, which includes cooling system, and heat exchanger arranged downstream of compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12750323

Country of ref document: EP

Kind code of ref document: A1