WO2013029531A1 - 现场修复系统和方法 - Google Patents

现场修复系统和方法 Download PDF

Info

Publication number
WO2013029531A1
WO2013029531A1 PCT/CN2012/080673 CN2012080673W WO2013029531A1 WO 2013029531 A1 WO2013029531 A1 WO 2013029531A1 CN 2012080673 W CN2012080673 W CN 2012080673W WO 2013029531 A1 WO2013029531 A1 WO 2013029531A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
mprom
memory
rom
player
Prior art date
Application number
PCT/CN2012/080673
Other languages
English (en)
French (fr)
Inventor
张国飙
Original Assignee
Zhang Guobiao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhang Guobiao filed Critical Zhang Guobiao
Priority to CN201280042120.7A priority Critical patent/CN103875039A/zh
Publication of WO2013029531A1 publication Critical patent/WO2013029531A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/80Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout
    • G11C29/816Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout for an application-specific layout
    • G11C29/822Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout for an application-specific layout for read only memories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/44Indication or identification of errors, e.g. for repair
    • G11C29/4401Indication or identification of errors, e.g. for repair for self repair
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C2029/0409Online test

Definitions

  • This invention relates to the field of integrated circuit memory and, more particularly, to a mask programming read only memory (mask-ROM).
  • mask-ROM mask programming read only memory
  • a 3D-MPROM is disclosed in U.S. Patent 5,835,396.
  • the 3D-MPROM is a monolithic integrated circuit that contains a semiconductor substrate. 0 and a three-dimensional stack 10 stacked on a substrate 0.
  • the three-dimensional stack 10 contains M (M ⁇ 2) memory layers stacked on each other (eg, 10A, 10B).
  • Each storage layer (such as 10A ) contains multiple top address lines (such as 2a), bottom address lines (such as 1a), and storage elements (such as 5aa).
  • Each memory element stores n ( n ⁇ 1 ) bits of data.
  • Storage layer (such as 10A, 10B ) is coupled to substrate 0 through contact channel holes (eg 1av , 1 ' av ).
  • Substrate 0 contains a transistor. The transistor and its interconnect form a substrate circuit 0X.
  • Substrate circuit 0X contains Peripheral circuit of 3D-MPROM.
  • xMxn 3D-MPROM refers to a storage layer containing M (M ⁇ 2), and each storage element stores n ( n ⁇ 1 ) Bit 3D-MPROM.
  • the 3D-MPROM is a diode-based cross-point array memory.
  • Each storage element (such as 5aa) generally contains a diode 3d .
  • a diode generally refers to any two-port device having the following characteristics: when the magnitude of the voltage it receives is less than the read voltage, or the direction of the voltage it receives is different from the read voltage, its resistance is greater than the resistance at the read voltage.
  • Each storage layer (such as 10A) also contains at least one layer of data entry film (eg 6A).
  • the graphic in the data entry film is a data graphic representing the data stored in the data entry film.
  • the data entry film 6A An insulating dielectric film 3b is provided which blocks current flow between the top address line and the bottom address line.
  • the data entry film 6A distinguishes the different states of the memory cells by the presence or absence of the data opening 6ca.
  • the data entry film 6A may also contain a resistive film (see U.S. Patent Application Serial No. 12/785,621) or an additional doped film (see U.S. Patent 7,821,080).
  • Mask-ROM is inevitably flawed.
  • This repair method is a factory repair method.
  • Figure 2 depicts the flow of a factory repair method.
  • the erroneous data refers to data that cannot be corrected.
  • the factory repair method needs to read all the data in the mask-ROM.
  • the storage capacity is limited, and the factory repair method is easier to implement.
  • factory repair methods are more difficult to implement. This is because reading a large capacity All data for mask-ROM - especially 3D-MPROM - takes a long time.
  • a 3D-MPROM can have a storage capacity of up to 1TB and its read speed is only ⁇ 3MB/s, it takes about half a week to read all of its data. In other words, the test time of 3D-MPROM will be as long as half a week.
  • the invention proposes a large-capacity mask-ROM - especially a 3D-MPROM - On-site repair system. It contains a player (such as a cell phone, IPTV, or computer) and a 3D-MPROM memory card. 3D-MPROM Most of the data is not detected at the factory and is detected and repaired at the site of use.
  • a main feature distinguishing the present invention from the prior art is that the present invention uses a player instead of a tester to pair 3D-MPROM. Data is detected and repaired. As a consumer grade appliance, the player is completely incompatible with the tester as an industrial device in terms of price and complexity.
  • the on-site repair method can be based on network communication, or based on temporary storage (referred to as temporary storage), or a combination of the two.
  • temporary storage refers to a memory that can temporarily store content for a period of time. After this time, content can be deleted from the temporary storage to make room for other content.
  • Temporary storage is mainly through rewritable non-volatile memory ( RWM, such as flash memory) is implemented.
  • Network on-site repair is based on network communication, which makes full use of the communication means (such as network, WiFi) Or mobile communication) can communicate with remote servers at any time.
  • the remote server stores a backup of the 3D-MPROM content, which can be used as the correct version of the 3D-MPROM data. Read out at the player Error detection is performed simultaneously with 3D-MPROM data. When erroneous data is found, the correct data of the substitute erroneous data is obtained from the remote server by means of communication.
  • the temporary site repair makes full use of the features of the player's own temporary storage to erase data and rewrite data, and the corresponding hybrid content distribution method.
  • a publishing cycle newly published content is first transmitted to the player through communication means such as the Internet, and stored in the Within RWM.
  • the user receives a 3D-MPROM memory card that stores a collection of published content during this time.
  • the contents stored in RWM can be used as 3D-MPROM
  • the correct version of the data Error detection is performed while the player reads out 3D-MPROM data.
  • the correct erroneous data is obtained from RWM and stored in redundant read-only memory ( ROM).
  • ROM redundant read-only memory
  • the present invention has the following beneficial effects:
  • Figure 1 is a cross-sectional view of a 3D-MPROM.
  • Figure 2 is a flow chart of a factory repair method used in the prior art.
  • Figure 3 shows a field repair system and its communication with a remote server.
  • Figures 4A and 4B show two players.
  • Figure 5 is a flow chart of a test/repair.
  • Figure 6 reveals more details of the network field repair system.
  • Figure 7 is a flow chart of a network site repair method.
  • Figure 8 shows a hybrid content distribution system.
  • Figure 9 is a flow chart of a hybrid content distribution method.
  • Figure 10 depicts the storage space occupied by RWM at different points in time.
  • Figure 11 reveals more details of the temporary site repair system.
  • Figure 12 reveals more details of the temporary site repair method.
  • Figure 13 is a flow chart of a hybrid formation repair method.
  • Figure 14 is a cross-sectional view of a 3D-MPROM memory card.
  • Figure 15A and Figure 15B show a 3D-MPROM storage box at two time points T1, T2 Sectional view at the time.
  • the data entry method of the mask-ROM mainly includes photolithography (Photo-lithography ) and imprint-lithography Etc.; the 'mask version' in mask programming can be the data mask used in photolithography, or the nano-imprint mold or nano-imprint template used in imprinting ( Nano-imprint template ).
  • Figure 3 shows a field repair system 40 and its communication channel 50 with the remote server 100.
  • On-site repair system 40 includes a memory card 20 and a player 30.
  • Memory card 20 can contain a storage package or storage module. It contains at least one 3D-MPROM chip. Broadly speaking, memory card 20 Contains at least one large-capacity mask-ROM chip. The memory card 20 stores contents including movies, video games, maps, music libraries, electronic library, software, and the like.
  • Player 30 (broadly speaking, consumer-grade information processing device) from memory card 20 Read and process data, such as playing movies, playing video games, viewing maps, listening to music, reading e-books, running software, and more.
  • the player 30 communicates with the remote server 100 via the communication channel 50.
  • Remote server 100 There is a huge library of content.
  • Communication channels 50 include communication signals such as the Internet, WiFi, and mobile phones (such as 3G and 4G).
  • Figure 4A shows a player-phone 30. It communicates with the remote server 100 via the handset signal 50.
  • Mobile phone 30 also contains a slot 32. A memory card 20 can be inserted into the slot 32, and the memory card 20 can also be pulled out of the slot 32. When using the phone 30, you can pair the memory card 20 The data is detected and repaired.
  • Figure 4B shows another player - Internet TV (or computer) 30. It connects to the remote server via a network connection 50 (including wired or wireless connection) 100 Communication.
  • the IPTV (or computer) 30 also contains a slot 32. A memory card 20 can be inserted in the slot 32, and the memory card 20 can also be inserted from the slot 32. Pull out.
  • the Internet TV (or computer) 30 the data of the memory card 20 can be detected and repaired.
  • Figure 5 shows a test/repair method for the memory card 20. It contains factory test steps 70 and field repair steps 80 . Factory Test Procedures 70 Only perform a basic test on the 3D-MPROM, such as testing the integrity of the substrate circuit, but not testing most of the 3D-MPROM data. Factory Test Steps 70 Only a small amount of test time is required, and the detection cost is very low.
  • Field repair steps 80 are performed in the usage environment.
  • the memory card 20 When the memory card 20 is inserted into the player 30, it can be in the player 30. Data recovery of memory card 20 when idle (ie, when it is idle), or when using memory card 20 - especially the first time using memory card 20 Time - for data repair (ie first use fix). In general, once the memory card 20 is repaired, it does not need to be repaired. Repaired memory card 20 Can be played directly into other players (including players without communication).
  • the on-site repair method can be based on network communication, or based on temporary storage (referred to as temporary storage), or a combination of the two.
  • network site repair the content stored by the remote server is used as The correct version of the 3D-MPROM data
  • the scratch-based field repair referred to as the temporary site repair
  • the contents of the temporary storage are used as the correct version of the 3D-MPROM data.
  • FIG. 6 discloses more details of the network field repair system 40.
  • the system 40 contains a 3D-MPROM chip 10 , read only memory (ROM) 28, error detection means 32, random access memory (RAM) 38 and communication means 36. Their respective details are described in the following paragraphs.
  • 3D-MPROM chip 10 Store content data.
  • the data preferably employs a code that can easily detect an error, and such code is referred to as an error detection code in the present invention.
  • the error checking code preferably has error correction capability. In general, the ability of the error detection code to detect errors should be much stronger than its error correction capability. Examples include Reed-Solomon code, Golay code, BCH code, multi-dimensional parity code, Hamming code and convolutional code.
  • ROM 28 as a redundant memory for 3D-MPROM 10, storing 3D-MPROM The address of the wrong data and the correct data corresponding to the error data. It is preferably a non-volatile memory that can be programmed at least once, such as one-time programming memory (OTP), EPROM, EEPROM. Or flash memory.
  • OTP one-time programming memory
  • the ROM 28 is preferably located in the same memory card 20 as the 3D-MPROM 10, so that the repaired memory card 20 can be directly used in other players 30. (including players without communication function).
  • address 41 is first compared to the address stored in ROM 28. If there is the same address, the data is from the ROM Read out in 28 (dashed line in Figure 6), otherwise read out from 3D-MPROM 10.
  • Error detection means 32 Detecting data from the 3D-MPROM, it is best to correct it. Error detection means 32 can be targeted The error detection code used in the 3D-MPROM data uses the corresponding error detection algorithm. The error detecting means 32 may be located in the memory card 20 or in the player 30.
  • the RAM 38 is located in the player 30 and its function is to provide buffering of data from the 3D-MPROM.
  • Remote server 100 Far from the user, the process of getting the correct data from the remote server 100 takes a long delay. In order for the user to be unaware of this delay time, RAM 38 is required. As a cache. The first use of the repair in particular requires a larger capacity of RAM 38 because the unrepaired 3D-MPROM contains many defects.
  • the means of communication 36 is located in the player 30, which is the player 30 and the remote server 100 Provide communication between. Specifically, the communication means 36 obtains the correct data from the remote server 100 via the communication channel 50.
  • Communication means 36 can include internet, WiFi , mobile phones and other means of communication.
  • Figure 7 is a flow chart of a network field repair method, which is combined with Figure 6 to describe the network field repair method.
  • steps 71-78 are repeated for the next address 41 until all data is detected (step 89). Due to incorrect data in The proportion of the overall data of the 3D-MPROM is small, and the network field repair step 80 requires little bandwidth for the communication channel 50.
  • Temporary site repair is based on a hybrid content distribution method. Due to the mask-ROM in the prior art Limited storage capacity, a new mask-ROM is required each time new content is published storage card. With the gradual increase in content, users need to manage hundreds or thousands of memory cards, which is cumbersome for users. Accordingly, the present invention proposes a hybrid content distribution.
  • a hybrid content distribution system includes a player (such as a cell phone, a network television, or a computer) and uses two types of memory to store content: a rewritable write memory (RWM) and a 3D-MPROM. It makes full use of it 3D-MPROM is cheaper than RWM, try to store previously published content in 3D-MPROM; at the same time, it also takes advantage of RWM repeatability, try to only be in RWM Store newly published content.
  • Figure 8 shows a hybrid content distribution system. Similar to Fig. 3, it also contains a memory card 20 and a player 30. Memory card 20 contains at least one 3D-MPROM 10 .
  • Player 30 contains RWM, which is a rewritable non-volatile memory such as flash memory.
  • FIG 9 is a flow chart of the hybrid content distribution method;
  • Figure 10 shows the storage space occupied in the RWM at different time points.
  • the hybrid content distribution method includes multiple publication periods (such as period 1 and period 2), each of which contains similar steps.
  • cycle 1 (as in the first two months)
  • new content is transmitted 100 to the player 30 by the remote server once it is released.
  • content C 1 (such as movie 1) is transmitted (step 70 1 );
  • content C 2 (such as movie 2) is transmitted (step 70 2 ), ... at time point t n , the content C n (e.g., movie n) is transmitted (step 70 n ).
  • the new content can be transmitted by means of download by the player 30 or by the remote server 100.
  • the transferred content is stored in RWM 48. This is represented by a stepped curve of time period t 1 to T 1 in Fig. 10.
  • the player 30 accesses the contents C 1 , C 2 , ... C n from the RWM 48.
  • the user receives a memory card M 1 (step 76).
  • the memory card M1 stores a first content set S 1 .
  • the memory card M 1 data is detected and repaired by the temporary site repair method (step 80). The details of the temporary site repair are more disclosed in Figures 11 and 12.
  • the first content set S 1 is deleted from the RWM 48 (step 84). This is indicated by the vertical drop of the curve at time T 1 in Figure 10. Since RWM 48 has been vacated, Cycle 2 can begin. After the end of cycle 1, the player 30 from the memory card to access the contents of M 1 C 1, C 2, ... C n.
  • the hybrid content distribution method ensures that the user can access the newly published content in real time.
  • the RWM 48 since the content published in the previous publication cycle exists in the memory card (such as M 1 , M 2 ), the RWM 48 only needs to store the content released in the most recent publication cycle, so the system only needs a small amount of RWM 48 .
  • the hybrid content distribution method has lower storage cost than the method used in the prior art to store all content in RWM.
  • FIG 11 discloses more details of the temporary site repair system 40.
  • the system 40 contains a 3D-MPROM 10 , ROM 28, error detection means 32, RWM 48 and communication means 36. Among them, 3D-MPROM 10, ROM 28, error detection means 32 and means of communication 36 Similar to Figure 6.
  • the RWM 48 is located in the player 30 and is stored in the remote server 100 from each publication cycle (e.g., cycle 1). The content transferred. In order to make room for newly published content in the next publishing cycle, the content stored jointly by 3D-MPROM and RWM is removed from RWM 48 at the end of each publishing cycle.
  • RWM 48 is a rewritable non-volatile memory such as flash memory.
  • Figure 12 discloses more details of the temporary site repair step 80R in Figure 9.
  • the data at address 41 is read out 43 (step 81).
  • the error detecting means 32 detects the data 43 (step 83). If an erroneous data is found, an error signal is sent and then the system 40 Obtain the correct data at address 41 from RWM 48 (step 85). After that, the correct data 47 and address 41 are written to the ROM 28 (step 87). ). In the present invention, the correct data 47 and address 41 are collectively referred to as redundant information. Then, repeat steps 81-87 (step 88) for the next address 41 until all data is detected (steps) 89).
  • FIG. 13 Represents a hybrid on-site repair method.
  • the player detects the data of the content it stores.
  • search for the content in RWM 48 step 80x ). If the content is found, the RWM data is used as the correct version of the data and a temporary site repair is used (step 80R). If the content is not found, the remote server 100 The data in is used as the correct version of the data and is subject to network field repair (step 80C).
  • Figure 14 shows a 3D-MPROM memory card 20. It contains a multi-chip package (multi-die Package ) and contains multiple stacked 3D-MPROM chips 10A, 10B and a redundant ROM chip 28 . These chips are stacked on a package substrate ( Interposer ) 93 and is located inside the package 91. Lead 95 provides electrical connections for chips 10A, 10B, and 28. In this embodiment, a ROM chip 28 Store redundant information for multiple 3D-MPROM chips (such as 10A, 10B). It is noted that the 3D-MPROM memory card 20 can also contain a multi-package module ( Multi-package module ).
  • Multi-package module Multi-package module
  • FIGS 15A-15B show the storage case 90 at two points in time (T 1 , T 2 ). It contains a frame 99 with multiple slots (such as 90B), etc. Each slot can be inserted into a memory card.
  • T 1 the user receives the memory card 20A, which contains two 3D-MPROM chips 10A, 10B stacked on each other.
  • the memory card 20A can be inserted into the slot at the lowest end of the storage case 90.
  • slot 90B is still empty.
  • the user receives the memory card 20B, which contains two 3D-MPROM chips 10C, 10D stacked on each other.
  • the memory card 20B can be inserted into the slot 90B of the storage case 90.
  • Frame 99 provides electrical connections (not shown here) for memory cards 20A, 20B.
  • the player 30 preferably reads data directly from the storage box 90.
  • the storage box 90 can contain more than three slots. For example, it can contain six slots. Assuming that a memory card is issued every two months, one storage box 90 can hold all the memory cards issued within one year. The storage box 90 makes management of the memory card easier.
  • the redundancy ROM chip 28 stores redundant information for the plurality of memory cards 20A, 20B (including the 3D-MPROM chips 10A, 10B, 10C, 10D).
  • the on-site repair method can also be applied to other content stores.
  • the content memory refers to a semiconductor memory in which at least one content is stored.
  • the content store can be a mask-ROM, a one-time read-only memory ( OTP), EPROM, EEPROM Or flash memory.
  • OTP one-time read-only memory
  • EPROM EPROM
  • EEPROM Electrically erasable programmable read-only memory
  • flash memory flash memory
  • the present invention proposes a subsequent use repair method.
  • data repair is performed the first time the content storage is used, data monitoring and repair of the content storage needs to be continued in subsequent use. Specifically, error reading is performed on the read data while reading the content from the content memory. If the data is wrong, the correct data is obtained from a remote server by means of communication.
  • the remote server stores at least one backup of the read content. In general, any time the content store has data output, it can be inspected and repaired on site. Subsequent use of the repair ensures that the data processed by the player is

Landscapes

  • Techniques For Improving Reliability Of Storages (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

提供一种现场修复系统。该系统的播放器对三维掩膜编程只读存储器(3D-MPROM)的数据进行检测,当发现错误数据时,从一远程伺服器处获取正确数据,或从播放器的暂时存储器中获取正确数据。该方案中,三维掩膜编程只读存储器的大部分数据在出厂时未被检测,而在使用现场被检测和修复,可以缩短测试时间,降低测试成本。

Description

现场修复系统和方法 技术领域
本发明涉及集成电路存储器领域,更确切地说,涉及掩膜编程只读存储器( mask-ROM )。
背景技术
随着三维掩膜编程只读存储器( 3D-MPROM )的出现,掩膜编程只读存储器( mask-ROM )的容量极大地提高。美国专利 5,835,396 披露了一种 3D-MPROM 。如图 1 所示, 3D-MPROM 是一种单片集成电路,它含有一半导体衬底 0 及一堆叠在衬底 0 上的三维堆 10 。三维堆 10 含有 M ( M ≥ 2 )个相互堆叠的存储层(如 10A 、 10B )。每个存储层(如 10A )含有多条顶地址线(如 2a )、底地址线(如 1a )和存储元(如 5aa )。每个存储元存储 n ( n ≥ 1 )位数据。存储层(如 10A 、 10B )通过接触通道孔(如 1av 、 1 ' av )与衬底 0 耦合。衬底 0 含有晶体管。晶体管及其互连线构成衬底电路 0X 。衬底电路 0X 含有 3D-MPROM 的周边电路。在本申请中, xMxn 3D-MPROM 是指一个含有 M ( M ≥ 2 )个存储层、每个存储元存储 n ( n ≥ 1 )位的 3D-MPROM 。
3D-MPROM 是一种基于二极管的交叉点( cross-point )阵列存储器。每个存储元(如 5aa )一般含有一个二极管 3d 。在本发明中,二极管泛指任何具有如下特性的两端口器件:当其所受电压的大小小于读电压,或者其所受电压的方向与读电压不同时,其电阻大于在读电压下的电阻。每个存储层(如 10A )还至少含有一层数据录入膜(如 6A )。数据录入膜中的图形为数据图形,它代表该数据录入膜所存储的数据。在图 1 中,数据录入膜 6A 含有一层隔离介质膜 3b ,它阻挡顶地址线和底地址线之间的电流流动。数据录入膜 6A 通过数据开口 6ca 的存在与否来区别存储元的不同状态。除了隔离介质膜 3b ,数据录入膜 6A 也可以含有电阻膜(参见美国专利申请 12/785,621 )或额外掺杂膜(参见美国专利 7,821,080 )。
技术问题
Mask-ROM 不可避免地会有缺陷。在以往技术中, mask-ROM 的缺陷在工厂中通过测试仪来检测和修复。这种修复法是一种工厂修复法。图 2 描述了一种工厂修复法的流程。首先,读出地址 A 处的数据(步骤 61 );然后检测数据(步骤 63 );如果该数据没有错误,递增地址 A 并读出下个数据(步骤 65 );如果数据错误,则从检测仪中获取正确数据(步骤 67 ),并将地址 A 及其相应的正确数据写入一冗余存储器中(步骤 69 )。这里,错误数据是指无法纠错的数据。
工厂修复法需要读出 mask-ROM 中的所有数据。在以往技术中,由于常规 mask-ROM 的存储容量有限,工厂修复法较易实现。但是,对于大容量 mask-ROM -尤其是 3D-MPROM -来说,工厂修复法较难实现。这是因为读出一个大容量 mask-ROM -尤其是 3D-MPROM -的所有数据需要很长时间。例如说,一个 3D-MPROM 的存储容量可以高达 1TB ,其读速度仅为 ~3MB/s ,读出其所有数据需要大约半周时间。也就是说, 3D-MPROM 的测试时间将长达半周。如此长的测试时间使工厂修复法对于大容量 mask-ROM -尤其是 3D-MPROM -来说过于昂贵。此外,在使用过程中, mask-ROM 也会因为存储元老化而产生新的错误数据,工厂修复法对于这些错误数据无能为力。
技术解决方案
本发明提出一种大容量 mask-ROM -尤其是 3D-MPROM -的现场修复系统。它含有一播放器(如手机、网络电视、或计算机)和一 3D-MPROM 存储卡。 3D-MPROM 的大部分数据在出厂时未被检测,而在使用现场被检测和修复。区别本发明和以往技术的一个主要特征是:本发明采用播放器,而非测试仪,来对 3D-MPROM 数据进行检测和修复。作为一种消费级电器,播放器在价格和复杂度上完全不能与作为工业设备的测试仪相提并论。
现场修复法可以基于网络通讯,也可以基于暂时存储器(简称为暂存),或者两者的结合。在基于网络的现场修复(简称为网络现场修复)中,远程伺服器存储的内容被用作 3D-MPROM 数据的正确版本;在基于暂存的现场修复(简称为暂存现场修复)中,暂存存储的内容被用作 3D-MPROM 数据的正确版本。这里,暂存是指可以将内容暂时存储一段时间的存储器,在这段时间结束后可以将内容从暂存中删除,以便为别的内容腾出空间。暂存主要通过可重复写非易失性存储器( RWM , 如快闪存储器)来实现。
网络现场修复基于网络通讯,它充分利用了播放器自带的通讯手段(如网络、 WiFi 或手机通讯)能随时与远程伺服器通讯的特点。远程伺服器存储 3D-MPROM 内容的一个备份,它可以作为 3D-MPROM 数据的正确版本。在播放器读出 3D-MPROM 数据的同时进行错误检测。当发现错误数据时,通过通讯手段从远程伺服器处获取替代错误数据的正确数据。
暂存现场修复充分利用了播放器自带的暂存可以擦除数据和重写数据的特点,以及相应的混合型内容发行方法。在一出版周期内,新出版的内容首先通过网络等通讯手段传输到播放器中,并存储在 RWM 内。在这个出版周期结束时,用户收到一 3D-MPROM 存储卡,它存储这段时间内出版内容的一个集合。 RWM 中存储的内容可以作为 3D-MPROM 数据的正确版本。在播放器读出 3D-MPROM 数据的同时进行错误检测。当发现错误数据时,则从 RWM 中获取替代错误数据正确数据并存入冗余只读存储器( ROM )中。总体说来,现场修复法可以极大地缩短测试时间,降低测试成本。
有益效果
从上述方案可以看出,本发明具有以下有益效果:
降低了大容量 mask-ROM -尤其是 3D-MPROM -的测试成本;
缩短了大容量 mask-ROM -尤其是 3D-MPROM -的测试时间;
能在使用现场修复因为存储元老化而产生的错误数据。
附图说明
图 1 是一种 3D-MPROM 的截面图。
图 2 是一种以往技术采用的工厂修复法之流程图。
图 3 表示一种现场修复系统以及它和一远程伺服器之间的通讯。
图 4A 和图 4B 表示两种播放器。
图 5 是一种测试 / 修复的流程图。
图 6 披露了网络现场修复系统的更多细节。
图 7 是一种网络现场修复法的流程图。
图 8 表示一种混合型内容发行系统。
图 9 是一种混合型内容发行方法的流程图。
[根据细则91更正 25.09.2012] 
图 10 描述在不同时间点 RWM 中被占用的存储空间。
图 11 披露了暂存现场修复系统的更多细节。
图 12 披露了暂存现场修修复法的更多细节。
图 13 是一种混合型形成修复法的流程图。
图 14 是一种 3D-MPROM 存储卡的截面图。
图 15A 和图 15B 是一种 3D-MPROM 存储盒在两个时间点 T1 、 T2 时的截面图。
本发明的最佳实施方式
本说明书以 3D-MPROM 为例阐述现场修复法,这些实施例均可以应用到大容量 mask-ROM 中。一个大容量 mask-ROM 的存储容量在 GB 量级,甚至高达 TB 量级。在本发明中, mask-ROM 的数据录入方式主要包括光刻法( photo-lithography )和压印法( imprint-lithography )等;掩膜编程中的'掩膜版'可以是光刻法采用的数据掩膜版,也可以是压印法采用的纳米压印模子( nano-imprint mold )或纳米压印模板( nano-imprint template )。
图 3 表示一种现场修复系统 40 以及它和远程伺服器 100 之间的通讯渠道 50 。现场修复系统 40 包括一存储卡 20 和一播放器 30 。存储卡 20 可以含有存储封装或存储模块。它含有至少一个 3D-MPROM 芯片。广义地讲,存储卡 20 含有至少一个大容量 mask-ROM 芯片。存储卡 20 存储的内容包括电影、电子游戏、地图、音乐库、电子图书库、软件等。
播放器 30 (广义地讲,消费级信息处理装置)从存储卡 20 中读取并处理数据,如播放电影、玩电子游戏、查阅地图、听音乐、看电子书、运行软件等。播放器 30 通过通讯渠道 50 与远程伺服器 100 通讯。远程伺服器 100 存有海量内容库。通讯渠道 50 包括因特网、 WiFi 、手机(如 3G 、 4G )等通讯信号。
图 4A 表示一种播放器-手机 30 。它通过手机信号 50 与远程伺服器 100 通讯。手机 30 还含有一个插槽 32 。插槽 32 中可以插入存储卡 20 ,存储卡 20 也可以从插槽 32 中拔出。在使用手机 30 时,可以对存储卡 20 的数据进行检测和修复。图 4B 表示另一种播放器-网络电视(或电脑) 30 。它通过网络连接 50 (包括有线连接或无线连接)与远程伺服器 100 通讯。网络电视(或电脑) 30 还含有一个插槽 32 。插槽 32 中可以插入存储卡 20 ,存储卡 20 也可以从插槽 32 中拔出。在使用网络电视(或电脑) 30 时,可以对存储卡 20 的数据进行检测和修复。
图 5 表示一种对存储卡 20 的测试 / 修复方法。它含有工厂测试步骤 70 和现场修复步骤 80 。工厂测试步骤 70 仅对 3D-MPROM 做一个基本测试,如测试其衬底电路的完好性等,但是对大部分 3D-MPROM 数据不做检测。工厂测试步骤 70 仅需少量测试时间,其检测成本很低。
现场修复步骤 80 在使用环境中进行。当存储卡 20 被插入播放器 30 后,可以在播放器 30 闲置时对存储卡 20 进行数据修复(即闲置时修复),也可以在使用存储卡 20 时-尤其是第一次使用存储卡 20 时-进行数据修复(即首次使用修复)。一般说来,一旦存储卡 20 被修复,它不需要再被修复。修复后的存储卡 20 可以被插入其它播放器(包括没有通讯功能的播放器)中直接播放。
现场修复法可以基于网络通讯,也可以基于暂时存储器(简称为暂存),或者两者的结合。在基于网络的现场修复(简称为网络现场修复)中,远程伺服器存储的内容被用作 3D-MPROM 数据的正确版本;在基于暂存的现场修复(简称为暂存现场修复)中,暂存存储的内容被用作 3D-MPROM 数据的正确版本。
图 6 披露了网络现场修复系统 40 的更多细节。该系统 40 含有 3D-MPROM 芯片 10 、只读存储器( ROM ) 28 、错误检测手段 32 、随机存取存储器( RAM ) 38 和通讯手段 36 。它们各自的细节在下面段落中描述。
3D-MPROM 芯片 10 存储内容数据。为了便于检测错误,其数据最好采用一种能够易于检测错误的代码,这种代码在本发明中被称为查错码。查错码最好具有纠错能力。总的说来,查错码检测错误的能力应远强于其纠错能力,其例子包括 Reed-Solomon 码、 Golay 码、 BCH 码、多维奇偶码、 Hamming 码和 convolutional 码等。
ROM 28 作为 3D-MPROM 10 的冗余存储器,存储 3D-MPROM 中错误数据的地址及与错误数据对应的正确数据。它最好是一个能至少一次编程的非易失性存储器,如一次编程存储器( OTP )、 EPROM 、 EEPROM 或快闪存储器。 ROM 28 最好和 3D-MPROM 10 位于同一存储卡 20 中,这样修复后的存储卡 20 可以直接用在其他播放器 30 (包括没有通讯功能的播放器)中。在读一个修复后的存储卡 20 时,首先将地址 41 和存储在 ROM 28 中的地址比较。如果有相同的地址,则数据从 ROM 28 中读出(图 6 中的虚线),反之则从 3D-MPROM 10 中读出。
错误检测手段 32 检测来自 3D-MPROM 中数据,它最好还能纠错。错误检测手段 32 可以针对 3D-MPROM 数据采用的查错码采用相应的错误检测算法。错误检测手段 32 可以位于存储卡 20 中,也可以位于播放器 30 中。
RAM 38 位于播放器 30 中,其功能是为来自 3D-MPROM 的数据提供缓存。由于远程伺服器 100 离用户较远,从远程伺服器 100 处获取正确数据的过程需要较长的延迟时间。为了使用户不察觉到这个延迟时间,需要 RAM 38 作为缓存。首次使用修复尤其需要较大容量的 RAM 38 ,这是因为未修复的 3D-MPROM 含有很多缺陷。
通讯手段 36 位于播放器 30 中,它为播放器 30 和远程伺服器 100 之间提供通讯。具体说来,通讯手段 36 通过通讯渠道 50 从远程伺服器 100 获取正确数据。通讯手段 36 可以包括因特网、 WiFi 、手机等通讯手段。
图 7 是一种网络现场修复法的流程图,在此将它与图 6 结合在一起描述网络现场修复法。首先,从 3D-MPROM 10 中读出地址 41 处的数据 43 (步骤 71 )。错误检测手段 32 检测数据 43 (步骤 73 )。如果没有错误,数据 43 被写入 RAM 38 (步骤 75 )。否则,送出一出错信号,然后系统 40 从远程伺服器 100 处获取地址 41 的正确数据 47 (步骤 77 )。之后,正确数据 47 被写入 RAM 38 中,同时正确数据 47 及地址 41 被写入 ROM 28 中(步骤 78 )。在本发明中,正确数据 47 和地址 41 被统称为冗余信息。再后,对于下一个地址 41 重复步骤 71-78 (步骤 88 ),直到所有数据都被检测(步骤 89 )。由于错误数据在 3D-MPROM 的整体数据中所占比例很小,网络现场修复步骤 80 对通讯渠道 50 的带宽要求很小。
暂存现场修复基于一种混合型内容发行方法。由于以往技术中的 mask-ROM 存储容量有限,每次出版新内容时都需要发行一个新的 mask-ROM 存储卡。随着内容的逐渐增多,用户需要管理成百上千张存储卡,这对用户来说很繁琐。相应地,本发明提出一种混合型内容发行。
混合型内容发行系统含有一播放器(如手机、网络电视、或计算机)并采用两种存储器来存储内容:可重复写存储器( RWM )和 3D-MPROM 。它充分利用 3D-MPROM 比 RWM 便宜的优势,尽量将以往出版的内容存储在 3D-MPROM 中;同时,它也利用 RWM 可重复写的优势,尽量只在 RWM 中存储新出版的内容。图 8 表示一种混合型内容发行系统。与图 3 类似,它也含有一存储卡 20 和一播放器 30 。存储卡 20 含有至少一 3D-MPROM 10 。播放器 30 含有 RWM ,它是一种可重复写非易失性存储器,如快闪存储器。
图 9 是混合型内容发行法的流程图;图 10 表示在不同时间点 RWM 中被占用的存储空间。该混合型内容发行法包括多个出版周期(如周期 1 和周期 2 ),每个周期均含有类似的步骤。在周期 1 (如第一个两个月内)中,新内容一旦发行则由远程伺服器传 100 至播放器 30 。例如说,在时间点 t1 ,传输内容 C1 (如电影 1 )(步骤 701 );在时间点 t2 ,传输内容 C2 (如电影 2 )(步骤 702 ),… 在时间点 tn ,传输内容 Cn (如电影 n )(步骤 70n )。这里,新内容可以通过由播放器 30 下载的方式传输,也可以通过远程伺服器 100 推送的方式传输。在周期 1 中,传输来的内容均被存储在 RWM 48 中。这由图 10 中时间段 t1 到 T1 的阶梯形曲线表示。这时,播放器 30 从 RWM 48 中访问内容 C1 、 C2 、… Cn
在周期 1 结束时,在 RWM 48 中存储了第一内容集合 S1 ,它是在周期 1 内传输的内容的一个集合,即 S1=C1+C2+ … +Cn 。在时间点 T1 ,用户收到一张存储卡 M1 (步骤 76 )。该存储卡 M1 存有第一内容集合 S1 。注意到,为了降低测试成本, 3D-MPROM 中的大部分数据在出厂时未被检测。这时,利用暂存现场修复法对存储卡 M1 数据进行检测和修复(步骤 80 )。暂存现场修复的细节在图 11 和图 12 中有更多的披露。之后,第一内容集合 S1 从 RWM 48 中删除(步骤 84 )。这由图 10 中时间点 T1 处曲线的竖直下降表示。由于 RWM 48 已被腾空,周期 2 可以开始。在周期 1 结束后,播放器 30 从存储卡 M1 中访问内容 C1 、 C2 、… Cn
在周期 2 (如下一个两个月内)中,重复上述步骤 701-84 。在时间点 tn+1 、 tn+2 、… tm 分别传输内容 Cn+1 、 Cn+2 、… Cm 。在这期间,用户从 RWM 48 中访问 Cn+1 、 Cn+2 、… Cm 。在周期 2 结束时,在 RWM 48 中存储第二内容集合 S2 ,它是在周期 2 内传输的内容的一个集合,即 S2=C n+1+Cn+2+ … +Cm 。在时间点 T2 ,用户收到二个存储卡 M2 。它存储第二内容集合 S2 。之后,第二内容集合 S2 从 RWM 48 中删除。在周期 2 结束后,播放器 30 从存储卡 M2 中访问内容 Cn+1 、 Cn+2 、… Cm
由于播放器 30 可以和远程伺服器 100 即时通讯,混合型内容发行法可以保证用户即时访问新出版的内容。另外,由于以前出版周期中发行的内容均存在存储卡(如 M1 、 M2 )中, RWM 48 只需要存储最近出版周期中发行的内容,故本系统只需要少量的 RWM 48 。考虑到 3D-MPROM 比 RWM 便宜,因此混合型内容发行法要比以往技术中采用的、将所有内容均存储在 RWM 中的方法具有较低的存储成本。
图 11 披露了暂存现场修复系统 40 的更多细节。该系统 40 含有 3D-MPROM 10 、 ROM 28 、错误检测手段 32 、 RWM 48 和通讯手段 36 。 其中,3D-MPROM 10 、 ROM 28 、错误检测手段 32 和通讯手段 36 与图 6 类似。 RWM 48 位于播放器 30 中,它存储在每个出版周期(如周期 1 )中从远程伺服器 100 传输来的内容。为了给下一出版周期内新出版的内容腾出空间,在每个出版周期结束后, 3D-MPROM 和 RWM 共同存储的内容从 RWM 48 中删除。 RWM 48 是一种可重复写非易失性存储器,如快闪存储器。
图 12 披露了图 9 中暂存现场修复步骤 80R 的更多细节。首先,从 3D-MPROM 10 中读出地址 41 处的数据 43 (步骤 81 )。错误检测手段 32 检测数据 43 (步骤 83 )。如果发现错误数据,则送出一个出错信号,然后系统 40 从 RWM 48 处获取地址 41 处的正确数据 47 (步骤 85 )。之后,正确数据 47 及地址 41 被写入 ROM 28 中(步骤 87 )。在本发明中,正确数据 47 和地址 41 被统称为冗余信息。再后,对于下一个地址 41 重复步骤 81-87 (步骤 88 ),直到所有数据都被检测(步骤 89 )。
由于 RWM 数据在播放器中,暂存现场修复速度很快。另一方面,只要有网络连接,网络现场修复随时都可以进行。这两种现场修复法可以结合起来以发挥它们各自的优势。图 13 表示一种混合型现场修复法。当存储卡 20 被插入播放器 30 中后,播放器检测其所存内容的数据。首先,在 RWM 48 中搜寻该内容(步骤 80x )。如果发现该内容,则 RWM 数据被用作数据的正确版本,并采用暂存现场修复(步骤 80R )。如果没有发现该内容,则远程伺服器 100 中的数据被用作数据的正确版本,并采用网络现场修复(步骤 80C )。
图 14 表示一种 3D-MPROM 存储卡 20 。它含有一个多芯片封装( multi-die package ),并含有多个堆叠的 3D-MPROM 芯片 10A 、 10B 和一冗余 ROM 芯片 28 。这些芯片堆叠在封装衬底( interposer ) 93 上,并位于封装壳 91 内。引线 95 为芯片 10A 、 10B 、 28 提供电连接。在该实施例中,一个 ROM 芯片 28 为多个 3D-MPROM 芯片(如 10A 、 10B )存储冗余信息。注意到, 3D-MPROM 存储卡 20 也可以含有一个多封装模块( multi-package module )。
本发明还提出一种适合混合型内容发行法的存储盒( cartridge )。图 15A- 图 15B 表示了在两个时间点( T1 、 T2 )的存储盒 90 。它含有一个框架 99 ,该框架 99 具有多个插槽(如 90B )等,每个插槽可以插入一张存储卡。在时间点 T1 ,用户收到存储卡 20A ,它含有两个相互堆叠的 3D-MPROM 芯片 10A 、 10B 。该存储卡 20A 可以被插入存储盒 90 最低端的插槽中。这时,插槽 90B 还是空的。在时间点 T2 ,用户收到存储卡 20B ,它含有两个相互堆叠的 3D-MPROM 芯片 10C 、 10D 。该存储卡 20B 可以被插入存储盒 90 的插槽 90B 中。框架 99 为存储卡 20A 、 20B 提供电连接(此处未画出)。播放器 30 最好能直接从存储盒 90 中读取数据。很明显,存储盒 90 可以含有多于三个的插槽。比如说,它可以含有六个插槽。假设每两个月发行一张存储卡,一个存储盒 90 就可以装下一年内发行的所有存储卡。存储盒 90 使存储卡的管理更为容易。另外,在本实施例中,冗余 ROM 芯片 28 为多个存储卡 20A 、 20B (包括 3D-MPROM 芯片 10A 、 10B 、 10C 、 10D )存储冗余信息。
除了 mask-ROM ,现场修复法还可以应用到其它内容存储器中。这里,内容存储器是指存储有至少一内容的半导体存储器。内容存储器可以是 mask-ROM 、一次编程只读存储器( OTP )、 EPROM 、 EEPROM 或快闪存储器。在使用过程中,存储元老化会产生新的错误数据。相应地,本发明提出一种后续使用修复法。虽然在首次使用内容存储器时进行了数据修复,在后续使用时仍需要继续对内容存储器进行数据监控和修复。具体说来,从内容存储器中读内容的同时,对读出数据进行错误检测。如果数据错误,则通过通讯手段从一远程伺服器中获取正确数据。这里,远程伺服器至少存储在读内容的一个备份。总体说来,任何时候只要内容存储器有数据输出,就可以对它进行现场检测和修复。后续使用修复保证播放器处理的数据均为正确数据。
应该了解,在不远离本发明的精神和范围的前提下,可以对本发明的形式和细节进行改动,这并不妨碍它们应用本发明的精神。因此,除了根据附加的权利要求书的精神,本发明不应受到任何限制。

Claims (20)

  1. 一种现场修复系统,其特征在于包括:
    一播放器,该播放器含有一通讯手段;
    一三维掩膜编程只读存储器( 3D-MPROM ),该 3D-MPROM 含有多个相互堆叠的存储层;
    一错误检测手段,该错误检测手段检测该 3D-MPROM 的数据;
    当该错误检测手段从该 3D-MPROM 发现错误数据时,该播放器通过该通讯手段从一远程伺服器处获取替换该错误数据的正确数据。
  2. 一种现场修复系统,其特征在于包括:
    一播放器,该播放器含有一可重复写存储器( RWM );
    一三维掩膜编程只读存储器( 3D-MPROM ),该 3D-MPROM 含有多个相互堆叠的存储层;
    一错误检测手段,该错误检测手段检测该 3D-MPROM 的数据;
    当该错误检测手段从该 3D-MPROM 发现错误数据时,该播放器从该 RWM 处获取替换该错误数据的正确数据。
  3. 根据权利要求 1 和 2 所述的现场修复系统,其特征还在于:该播放器是一手机、网络电视或电脑。
  4. 根据权利要求 1 和 2 所述的现场修复系统,其特征还在于:该 3D-MPROM 数据使用查错码。
  5. 根据权利要求 1 和 2 所述的现场修复系统,其特征还在于还含有:一只读存储器( ROM ),该 ROM 存储该 3D-MPROM 的冗余信息。
  6. 根据权利要求 5 所述的现场修复系统,其特征还在于还含有:该 ROM 存储多个 3D-MPROM 芯片的冗余信息。
  7. 根据权利要求 1 所述的现场修复系统,其特征还在于:该通讯手段包括因特网、 WiFi 和手机通讯手段。
  8. 根据权利要求 1 所述的现场修复系统,其特征还在于还含有:一随机存取存储器( RAM ),该 RAM 缓存该 3D-MPROM 的数据。
  9. 根据权利要求 2 所述的现场修复系统,其特征还在于:所述 RWM 是快闪存储器。
  10. 根据权利要求 2 所述的现场修复系统,其特征还在于包括:一通讯手段,该通讯手段从一远程伺服器传输内容至该 RWM 。
  11. 一种现场修复方法,其特征在于包括如下步骤:
    1 )从一半导体存储器中读出数据,该半导体存储器存有至少一内容;
    2 )检测从该半导体存储器中读出的数据;
    3 )当从该数据中发现错误数据时,通过一通讯手段从一远程伺服器处获取替换该错误数据的正确数据;
    其中,步骤 1 ) -3 )由一播放器执行,该播放器含有该通讯手段。
  12. 根据权利要求 11 所述的现场修复方法,其特征还在于:该半导体存储器是掩膜编程只读存储器( mask-ROM )。
  13. 根据权利要求 12 所述的现场修复方法,其特征还在于:该 mask-ROM 是三维掩膜编程只读存储器( 3D-MPROM )。
  14. 根据权利要求 11 所述的现场修复方法,其特征还在于:该半导体存储器是 OTP 、 EPROM 、 EEPROM 或快闪存储器。
  15. 一种现场修复方法,其特征在于包括如下步骤:
    1 )从一掩膜编程只读存储器( mask-ROM )中读出数据;
    2 )检测从该 mask-ROM 中读出的数据;
    3 )当从该数据中发现错误数据时,从一可重复写存储器( RWM )中获取替换该错误数据的正确数据;
    其中,步骤 1 ) -3 )由一播放器执行,该播放器含有该 RWM 。
  16. 根据权利要求 15 所述的现场修复方法,其特征还在于:该 mask-ROM 是三维掩膜编程只读存储器( 3D-MPROM )。
  17. 根据权利要求 11 和 15 所述的现场修复方法,其特征还在于:该播放器是一手机、网络电视或电脑。
  18. 根据权利要求 11 和 15 所述的现场修复方法,其特征在于还含有:一只读存储器( ROM ),该 ROM 存储冗余信息。
  19. 一种混合型内容发行方法,其特征在于包括如下步骤:
    1 )在一段时间内,一通讯手段从一远程伺服器处传输内容至一可重复写存储器( RWM )中;
    2 )在该段时间结束时,用户收到一掩膜编程只读存储器( mask-ROM ),该 mask-ROM 存储该段时间内传输内容的一个集合;
    3 )从所述 RWM 中删除该 mask-ROM 和该 RWM 共同存储的内容;
    其中,该 RWM 和该通讯手段位于一播放器中。
  20. 根据权利要求 19 所述的内容发行方法,其特征还在于:该 mask-ROM 是三维掩膜编程只读存储器( 3D-MPROM ) 。
PCT/CN2012/080673 2011-09-01 2012-08-28 现场修复系统和方法 WO2013029531A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280042120.7A CN103875039A (zh) 2011-09-01 2012-08-28 现场修复系统和方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201161529923P 2011-09-01 2011-09-01
US201161529925P 2011-09-01 2011-09-01
US201161529926P 2011-09-01 2011-09-01
US61/529,923 2011-09-01
US61/529,926 2011-09-01
US61/529,925 2011-09-01

Publications (1)

Publication Number Publication Date
WO2013029531A1 true WO2013029531A1 (zh) 2013-03-07

Family

ID=47755332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080673 WO2013029531A1 (zh) 2011-09-01 2012-08-28 现场修复系统和方法

Country Status (2)

Country Link
CN (1) CN103875039A (zh)
WO (1) WO2013029531A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525326A (zh) * 2003-02-28 2004-09-01 吴廷金 缺陷存储器的管理系统
CN101632131A (zh) * 2007-02-26 2010-01-20 索尼爱立信移动通讯股份有限公司 闪速存储器的内置自测试
CN101763877A (zh) * 2009-12-23 2010-06-30 北京中星微电子有限公司 一种多媒体播放的快速芯片验证方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0168896B1 (ko) * 1993-09-20 1999-02-01 세키자와 다다시 패리티에 의해 에러를 수정할 수 있는 반도체 메모리장치
JP3750494B2 (ja) * 1999-08-31 2006-03-01 松下電器産業株式会社 半導体装置
US7442997B2 (en) * 2002-08-28 2008-10-28 Guobiao Zhang Three-dimensional memory cells
CN101540318B (zh) * 2002-11-17 2010-10-06 张国飙 采用微晶半导体材料的三维只读存储器
CN101221816B (zh) * 2007-01-12 2013-04-24 张国飙 具有预留空间的掩膜编程存储器
KR101524830B1 (ko) * 2009-07-20 2015-06-03 삼성전자주식회사 반도체 소자 및 그 형성방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525326A (zh) * 2003-02-28 2004-09-01 吴廷金 缺陷存储器的管理系统
CN101632131A (zh) * 2007-02-26 2010-01-20 索尼爱立信移动通讯股份有限公司 闪速存储器的内置自测试
CN101763877A (zh) * 2009-12-23 2010-06-30 北京中星微电子有限公司 一种多媒体播放的快速芯片验证方法和装置

Also Published As

Publication number Publication date
CN103875039A (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
US8122319B2 (en) Page-based failure management for flash memory
US20180005709A1 (en) Self-repair logic for stacked memory architecture
US11200961B1 (en) Apparatus, system and method to log memory commands and associated addresses of a memory array
WO2022151717A1 (zh) 封装后的内存修复方法及装置、存储介质、电子设备
US20100293355A1 (en) Fast data access through page manipulation
KR20110044186A (ko) 반도체 장치
US20180039411A1 (en) Method and Apparatus for Providing Data Storage and Network Communication Using an Auxiliary Plug
KR20160143744A (ko) 로컬 메모리를 갖는 제어기를 가진 메모리 디바이스
US20100185811A1 (en) Data processing system and method
US20220116487A1 (en) Method and apparatus to perform operations on multiple segments of a data packet in a network interface controller
US8879295B1 (en) Electronic circuit for remapping faulty memory arrays of variable size
US9015444B2 (en) Access apparatus and available storage space calculation method
CN105869675A (zh) 半导体器件及其操作方法
KR20170094815A (ko) 비휘발성 메모리, 그것을 포함하는 컴퓨팅 시스템, 및 그것의 읽기 방법
CN114334686A (zh) 在多芯片封装(mcp)中实现的存储设备的测试方法和包括测试方法的制造mcp的方法
US9401226B1 (en) MRAM initialization devices and methods
WO2013029531A1 (zh) 现场修复系统和方法
CN108122592A (zh) 半导体装置和半导体集成系统
CN112000589A (zh) 一种数据写入方法、数据读取方法、装置及电子设备
US20170255516A1 (en) Field-Repair System and Method of Mask-Programmed Read-Only Memory
US20150317207A1 (en) Field-Repair System and Method
CN101873254A (zh) 传输流处理系统及传输流处理方法
CN106897045B (zh) 音频播放方法、装置和计算机设备
CN108628766B (zh) 非易失存储器、计算系统、及读取方法
CN102969024A (zh) 自修复系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826697

Country of ref document: EP

Kind code of ref document: A1