WO2013029349A1 - 一种以旋切方式破岩的轮式钻头 - Google Patents

一种以旋切方式破岩的轮式钻头 Download PDF

Info

Publication number
WO2013029349A1
WO2013029349A1 PCT/CN2012/070829 CN2012070829W WO2013029349A1 WO 2013029349 A1 WO2013029349 A1 WO 2013029349A1 CN 2012070829 W CN2012070829 W CN 2012070829W WO 2013029349 A1 WO2013029349 A1 WO 2013029349A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit
cone
wheel
rock
rotary cutting
Prior art date
Application number
PCT/CN2012/070829
Other languages
English (en)
French (fr)
Inventor
张亮
李舒
田家林
曾德发
Original Assignee
四川深远石油钻井工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110248681.XA external-priority patent/CN102364031B/zh
Priority claimed from CN201110390021.5A external-priority patent/CN102434105B/zh
Application filed by 四川深远石油钻井工具有限公司 filed Critical 四川深远石油钻井工具有限公司
Priority to RU2014111463/03A priority Critical patent/RU2585777C2/ru
Priority to US14/240,739 priority patent/US9828806B2/en
Publication of WO2013029349A1 publication Critical patent/WO2013029349A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/08Roller bits

Definitions

  • the invention belongs to the technical equipment field of oil and gas drilling engineering, mining, geological drilling, construction engineering, tunnel engineering, shield tunneling and non-excavation, and specifically relates to a wheel drill bit which breaks rock in a rotary cutting manner.
  • the drill bit is a tool that directly contacts the rock during drilling and breaks the rock by cutting, stamping, etc.
  • the drill bits widely used in modern drilling engineering mainly include roller cone bits (including single-cone bit, tri-cone bit) and PDC bit (Polycrystalline Diamond Compact Bits).
  • roller cone bits including single-cone bit, tri-cone bit
  • PDC bit Polycrystalline Diamond Compact Bits
  • both roller cone bits and PDC bits have reached a fairly high level, but there are still some insurmountable problems.
  • the roller bearing bit of the sealed bearing, especially the PDC bit is damaged in advance;
  • the second is that the movement of the rock at the center of the well is small, the function is insufficient, the center rock is not easily broken, and the mechanical drilling speed of the drill bit is affected.
  • the center of the roller cone and the PDC bit are less prone to wear and are also the main cause of bit failure.
  • the rock breaks in the form of impact crushing and breaking rock, and the rock is crushed by the teeth on the cone to form a caliper (see Figure 11). Since the compressive strength of rock is much greater than the shear and tensile strength, the tri-cone bit uses the impact of the tooth on the rock to break the rock, and the energy utilization rate is not high. Especially in the case of high drilling pressure such as deep well drilling, due to the high density of drilling fluid, the chip holding effect of the bottom of the well is obvious, and the bit teeth are difficult to eat into the rock and impact the broken rock, so the rock breaking efficiency is relatively low.
  • the life of the tri-cone bit is one of the main factors that limit the service life of the drill bit.
  • the bearing bears the load caused by the weight-on-bit, and the tri-cone bit breaks the rock in the form of impact.
  • the bearing receives a large impact load and a high load amplitude.
  • the speed-increasing effect of the tri-cone bit The ratio of the tri-cone bit body (the ratio of the floss speed to the bit speed during drilling) is greater than 1, that is, the floss speed is greater than the bit drilling speed when the bit is drilled, so the bearing speed is relatively high. Fast, resulting in shorter bearing life of the tri-cone bit.
  • the cone of the double roller bit is arranged in the same way as the three cones, and the working faces of the cones (the curved faces of the teeth) are oppositely arranged, that is, they are all inward.
  • the teeth on the cone are in less contact with the rock at the bottom of the wellbore, and the distance of the tooth slipping at the bottom of the well is smaller, the center is broken.
  • the low rock efficiency affects the rate of penetration.
  • the shape of the single-cone bit is different from that of the double-cone and tri-cone (approximately hemispherical), but is nearly spherical, and the working surface is covered with the entire spherical surface (the working faces of the double and tri-conical wheels are semi-circular surfaces) ).
  • the rock is broken by the impact, rolling and scraping of the tooth on the ground.
  • the direction of the scraping movement is different in all parts of the surface of the cone, that is, the trajectory of different rows of teeth in different directions at the bottom of the well. Make a longer distance slip to cut the formation and form a mesh-like bottom hole trajectory (see Figure 12).
  • the single-cone bit is characterized by low speed of the cone, large bearing size and longer service life than the tri-cone bit, but It is a disadvantage that the single-cone bit can not be avoided:
  • the full-eye structure of the single-cone bit determines that it is prone to repeated crushing during rock breaking, and it is difficult to remove chips.
  • the wear resistance of the teeth is seriously insufficient. Once the teeth are blunt or broken, the mechanical drilling speed drops sharply.
  • the PDC bit is broken in the form of rock, which is used more and more in drilling, geology and even construction projects, and the proportion used in drilling engineering is increasing. Under the ideal working conditions where the center line of the drill bit and the center line of the wellbore coincide, the movement path of each cutting tooth when the drill bit is drilled is a relatively fixed concentric annular band (see Figure 13). Due to their rock breaking mechanism and structural differences, PDC drills are suitable for higher drilling speeds and soft to medium hard formations. The main disadvantages are as follows:
  • the rock breaking efficiency of the core is not high: The wear speed of the PDC teeth in different radial areas of the PDC bit is obviously different, the proportion of the rock in the outer shoulder is large, and the wear speed is fast. The PDC tooth contact in the heart is low in efficiency and wear is slow.
  • the present invention is directed to the improvement of the roller bit, and proposes a wheel bit that breaks the rock in a rotary cutting manner, which solves the problem of low energy utilization rate, low rock breaking efficiency and bearing life of the existing double and tri-cone bit. Short, low drilling efficiency, and difficulty in chip removal and poor wear resistance of the single-toothed eye structure.
  • the drill bit of the invention impacts, crushes and cuts the rock in a rotary cutting manner to realize rock breaking, and at the same time improves the structure of the drill bit bearing, and ensures the rock breaking efficiency and the service life of the drill bit.
  • a wheel drill bit that breaks rock in a rotary cutting manner comprising a drill body (1), a cone (2), a cutting tooth (3) on a working surface of the cone, a cone (2) and a drill body (1)
  • the roller journal constitutes a rotational connection, and is characterized in that: the angle between the upper journal surface of the main body (1) and the wheel body of the drill axis is 0° ⁇ ⁇ 90°, and the journal offset is
  • D is the drill diameter
  • Wheel angle and journal offset value ⁇ As shown in Figure 2, the cone face faces the well wall and the bottom of the well.
  • the rotary cutting bit of the invention directs the cone to the shaft wall or the bottom of the well.
  • the teeth in the cone ie, the large ring teeth
  • Each ring of teeth can impact crushing the bottom of the well and the wall rock in a rotary cut manner, which is the core of the present invention.
  • a rotary cut type analog drill bit was experimentally produced in September 2010, and was tested on a gantry.
  • the bottom hole profile drilled by the rotary cutting simulator bit (see Figure 10) and the bottom hole profile drilled by the tri-cone bit and the PDC bit are completely Different.
  • the fracture belts of the tri-cone bit and the PDC bit are concentric circles (see Figs. 11 and 13), and the fracture zone of the rotary-cut bit of the present invention is a daisy-like helix.
  • the spiral line is dense and disappears at the well wall, which fully proves that each row of teeth on the cone can cut the bottom of the well and the wall of the well to form a caliper.
  • the inner tooth breaking belt has a long spiral line, and the outer row tooth breaking belt has a short spiral line, so that the working load of the inner and outer teeth is relatively uniform.
  • the broken belt of the spiral illustrates the rock breaking mechanism of the rotary cutting bit.
  • Each row of teeth has both impact crushing and rock cutting.
  • the rock breaking efficiency of the center is increased, thereby increasing the drilling speed of the drill bit.
  • the increase in the journal offset value increases the radial slip and axial slip of the cutting teeth at the bottom of the well, that is, increases the total slip of the cutting teeth at the bottom of the well.
  • the range of the wheel angle 15 ° ⁇ ⁇ 85 °
  • the amount of wheel cutting teeth slipping at the bottom of the well and the well wall reduces the speed ratio of the wheel.
  • the angle of the wheel body is set to 30°.
  • Rotary cutting bit cone combinations include (but are not limited to) the following types:
  • Double cone The working surface of the two cones faces outward, the angle range and offset value are both 0° ⁇ 90°, - ⁇ ⁇ S ⁇ ⁇
  • the center of the offset direction is symmetrical.
  • the inner teeth of the two cones ie the large ring teeth
  • the inner teeth of the two cones are set to be not concentric at all times (cutting: the teeth are cut to the center of the wellbore, ie the outermost cutting teeth of the cone are at the bit axis position, or most The longitudinal position of the outer ring cutting teeth passes or exceeds the axis of the drill bit. It can be set as a non-cutting center (adjusting the distance of the edge of the large ring gear), or it can be set to infinitely close to the center of the two cones.
  • the center of the rock mass is broken by the impact force of the drill bit and the internal stress of the rock mass (the center area of the wellbore without direct chipping is infinitely close to zero).
  • Tri-cone The working surface of the tri-cone is facing outward, the angle range and offset value are both 0° ⁇ 90°, - ⁇ S ⁇ ⁇
  • the center of the offset direction is symmetrical.
  • the inner teeth of the tricone ie, the large teeth
  • the inner teeth of the single cone ie, the large teeth
  • the inner teeth of the single cone are set to be cut.
  • the cutting teeth (3) are spoon-shaped teeth, wedge-shaped teeth, tapered ball teeth, spherical teeth, frustum teeth, cylindrical truncated teeth or pyramid teeth; the cutting teeth (3) are made of cemented carbide , polycrystalline diamond composite, thermally stable polycrystalline diamond, impregnated diamond, natural diamond, cubic boron nitride or ceramic, or contains cemented carbide, diamond and cubic boron nitride.
  • the drill body (1) is a steel member, a steel group weldment or a sintered body of a steel body and a metal powder.
  • the cone (2) The structure has a milling toothed cone, an inset cone or a sintered cone of steel and metal powder.
  • the rock-breaking form of the rotary-cutting bit is impact, crushing and cutting, and the continuous cutting action makes the impact load of the drill bit small, load The amplitude is reduced.
  • the rotary wheel body speed ratio (the ratio of the cone rotation speed to the drill speed) is less than 1, that is, the rotation speed of the cone is smaller than the drill speed when the drill bit is drilled, so the bearing rotation speed is relatively slow, and the vibration impact of the rotary cutting bit is reduced.
  • the torsional vibration of the rotary cutting bit is reduced, the stick-slip at low speeds and the wellbore spiral at high speeds are reduced.
  • the wheel body speed ratio is less than 1, the bearing life condition is improved, and the rotary cutting bit life is improved:
  • the wheel body speed ratio of the rotary cutting bit is less than 1, and the journal size of the cone can be designed to be larger than the same size of the tricone bit. Larger, there is a clear advantage over roller cone bits in terms of journal strength and bit life.
  • the resultant force generated by the bottom hole and the well wall against the drill bit pushes the cone to the journal plane, which is beneficial to improve the bearing sealing performance and improve the bearing life, based on the bearing life for the drill bit. The significance is to achieve an increase in the life of the rotary cutting bit.
  • the teeth can be composite teeth: Wheel-type drills that can be broken by rotary cutting can use carbide cutting teeth, heat-stable polycrystalline diamond composite teeth (PDC), impregnated diamond cutting teeth, etc. as cutting teeth, teeth Both working life and cutting efficiency are superior to single-cone bit.
  • PDC heat-stable polycrystalline diamond composite teeth
  • the invention has the beneficial effects that the cutting teeth of the invention break rock in a rotary cutting manner, the center has high rock breaking efficiency, good diameter keeping effect, wear and tear, improved working condition of the bearing, high mechanical drilling speed and long service life of the drill bit.
  • Fig. 1 is a schematic view showing the structure of a double-cone according to the present invention, comprising a drill body (1), a cone (2), a cutting tooth (3), an oil reservoir (4), and a nozzle (5).
  • the drill body (1) includes a cone journal, a righting block, a high pressure mud passage and a connecting thread.
  • the cone (2) of the present invention and the journal on the body (1) employ a bearing and sealing structure commonly used for a tri-cone bit.
  • the multi-turn cutting teeth are arranged from the big end to the small end of the cone (2).
  • Figure 2 shows the cutting principle and main design parameters of the present invention: wheel body angle, journal offset value s, drill diameter!
  • FIG. 8 A schematic diagram of a toothed ring of a non-cutting part;
  • the wheel drill bit that breaks the rock by rotary cutting including the drill body (1), the cone (2), the cutting teeth (3), and the oil reservoir (4), nozzle (5).
  • the drill body (1) includes a roller journal, and may also have a righting block, a high pressure mud passage, and a connecting thread.
  • the cone (2) and the main body (1) form a rotational connection with the upper cone journal, and the bearing and sealing structure commonly used for the tri-cone bit are used with the journal on the main body (1).
  • the multi-turn cutting teeth are arranged from the big end to the small end of the cone (2).
  • Main body (1) The angle between the upper cone journal plane and the drill axis (hereinafter referred to as the angle of the wheel body) is
  • the neck offset is, D is the drill diameter.
  • the materials used were Hongya Stone: 225x200xl50ww 3 , blue sandstone: 150 x 150 x lOOww 3 .
  • the cuttings were collected, the difficulty of rock breaking and vibration were analyzed, the wear marks and directions of the cutting teeth were examined, and the cone and bit were calculated. Wheel speed ratio.
  • Example 3 The cone is a
  • the working face of the cone faces the wall between the well and the bottom of the well.
  • the angle between the plane of the upper journal of the cone (1) and the axis of the drill bit is 0° ⁇ y9 ⁇ 90°.
  • the offset of the journal is DD, the large circle of the cone Tooth cut heart.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

一种以旋切方式破岩的轮式钻头包括钻头主体(1)、牙轮(2)、切削齿(3)。钻头主体上牙轮轴径平面与钻头轴线的轮体夹角β的范围为0°<β<90°,轴颈偏移量为-D/2<S<D/2,其中D为钻头直径。该钻头内排打齿圈切削井底中心,每圈切削齿都能刮切井壁,保径和侧钻效果好。

Description

一种以旋切方式破岩的轮式钻头
技术领域
本发明属于石油天然气钻探工程、 矿山开采、 地质钻探、 建筑工程、 隧道工程、 盾构及 非开挖等技术设备领域, 具体的说涉及一种以旋切方式破岩的轮式钻头。
背景技术
钻头是钻井过程中直接与岩石接触, 通过切削、 冲压等作用破碎岩石的工具。 现代钻井 工程中广泛使用的钻头主要有牙轮钻头 (包括单牙轮钻头、 三牙轮钻头) 、 PDC 钻头 (Polycrystalline Diamond Compact Bits 聚晶金刚石复合片钻头) 。 当今, 牙轮钻头和 PDC 钻头都已发展到相当高的水平, 但仍存在一些不可克服的问题。 一是怕划眼和扩眼, 使 密封轴承的牙轮钻头, 特别是 PDC 钻头先期损坏; 二是对井底中心岩石的运动小, 功能不 足, 中心岩石不易破碎, 影响钻头的机械钻速, 牙轮钻头和 PDC钻头中心布齿少、 易磨损, 也是钻头失效的主要原因。
三牙轮钻头钻进时破岩形式为冲击压碎破岩, 通过牙轮上的牙齿对井底岩石形成冲击压 碎作用破碎岩石, 形成井径 (见图 11 ) 。 由于岩石的抗压强度远大于抗剪和抗拉强度, 而 三牙轮钻头利用牙齿对岩石的冲击作用来破岩, 能量利用率不高。 特别是在深井钻井等高钻 压情况下, 由于高密度的钻井液的作用, 井底的岩屑压持效应明显, 钻头牙齿难以吃入岩石 并冲击破碎岩石, 故破岩效率相对较低。
三牙轮钻头轴承寿命是制约钻头使用寿命的主要因素之一, 轴承承受钻压引起的载荷, 加上三牙轮钻头以冲击形式破岩, 轴承受到的冲击载荷大, 载荷幅值高, 加之三牙轮钻头的 增速效应: 三牙轮钻头轮体速比 (钻井时牙轮转速与钻头转速之比) 大于 1, 即钻头钻进时 牙轮转速大于钻头钻速, 所以轴承转速相对较快, 导致三牙轮钻头的轴承寿命较短。
双牙轮钻头的牙轮布置方式与三牙轮相同, 各牙轮工作面 (布牙齿的弧面) 均是相对设 置, 即均是向内。 除了造成以上的问题之外, 从牙轮钻头破岩过程和运动轨迹分析, 牙轮上 的牙齿与井底井壁岩石接触时间较少, 牙齿在井底滑移的距离也较小, 中心破岩效率低, 影 响了机械钻速。
单牙轮钻头牙轮形状不同于双牙轮和三牙轮的锥球形 (近似半球形) , 而是近球形, 工 作面布满整个球面 (双、 三牙轮的工作面是半圆弧面) 。 依靠牙齿对地层的冲击、 滚压和刮 切三种方式破碎岩石, 尤其是刮切运动的方向在牙轮表面的各个部位都不同, 即不同排数的 牙齿在井底沿不同方向的轨迹, 作较长距离的滑移来切削地层, 并形成网状的井底轨迹 (见 图 12 ) 。 单牙轮钻头的特点是牙轮转速低, 轴承尺寸较大, 使用寿命优于三牙轮钻头, 但 是单牙轮钻头有无法回避的缺点: 单牙轮钻头的满眼结构决定其破岩过程中容易发生重复破 碎, 排屑困难。 牙齿耐磨性严重不足, 一旦发生牙齿磨钝或断齿, 机械钻速急剧下降。
PDC 钻头破岩形式为刮削岩石, 在钻井、 地质乃至建筑工程中运用越来越广泛, 在钻井 工程中使用的比例越来越大。 在钻头中心线和井眼中心线重合的理想工作条件下, 钻头钻进 时各切削齿的运动轨迹为相对固定的同心圆环带 (见图 13 ) 。 由于其破岩机理和结构差 异, PDC钻头适用于较高钻速和软至中硬地层。 其不足主要有以下方面:
1. 井底条件要求高: 如果井底有异物, 会导致 PDC 钻头产生崩齿或热摩擦现象, 温度 升高烧黑胎体, 甚至熔化钎焊层, 产生掉齿现象, 影响机械钻速, 加速钻头失效。
2. PDC 齿失效的严重后果: 与牙轮钻头相比较, PDC 钻头个别齿的失效 (掉齿、 崩齿 等) 会严重增加附近 PDC齿的载荷, 加快其磨损速度, 加剧钻头失效。
3. 心部破岩效率不高: PDC 钻头不同径向区域上的 PDC 齿的磨损速度差异明显, 外肩 部切削岩石比例大, 磨损速度快。 心部 PDC齿接触破岩效率低, 磨损则较慢。
发明内容
鉴于 PDC钻头的缺陷, 本发明针对牙轮钻头进行改进, 提出一种以旋切方式破岩的轮式 钻头, 解决现有双、 三牙轮钻头能量利用率低、 破岩效率低、 轴承寿命短、 钻进效率低, 以 及单牙轮满眼结构造成的排屑困难、 牙齿耐磨性差等问题。
本发明的钻头以旋切方式冲击、 压碎、 切削岩石, 实现破岩, 同时改进钻头轴承结构, 确保提高破岩效率的同时增加钻头使用寿命。
为解决上述问题, 本发明的技术方案如下:
一种以旋切方式破岩的轮式钻头, 包括钻头主体 (1 ) 、 牙轮 (2 ) 、 牙轮工作面上的切 削齿 (3 ) , 牙轮 (2 ) 与钻头主体 (1 ) 上牙轮轴颈构成转动连接, 其特征在于: 主体 (1 ) 上牙轮轴颈平面与钻头轴线的轮体夹角 的范围为 0° < < 90°, 轴颈偏移量为
- - < s < - , 其中 D为钻头直径。
2 2
轮体夹角 和轴颈偏移值 ^如图 2所示, 牙轮工作面朝向井壁与井底。
本发明所述旋切式钻头将牙轮朝向井壁或井底, 破岩过程中, 牙轮内排齿 (即大圈齿) 可切削井底中心, 提高中心破岩效率; 牙轮上的每圈齿都可以以旋切方式冲击压碎切削井底 和井壁岩石, 这是本发明的核心。
根据上述发明, 已于 2010年 9月试制出了旋切式模拟钻头, 并在台架上进行了试验。 旋切式模拟钻头钻出的井底轮廓 (见图 10 ) 与三牙轮钻头和 PDC 钻头钻出的井底轮廓完全 不同。 三牙轮钻头和 PDC钻头的破碎带都是同心圆 (见图 11和图 13) , 而本发明的旋切钻 头的破碎带是成菊状的螺旋线。 螺旋线在井壁处密集并消失, 充分证明了牙轮上各排齿都能 切削井底和井壁, 形成井径。 内排齿破碎带螺旋线长, 外排齿破碎带螺旋线短, 可使内外排 齿的工作负载比较均勾。
螺旋线的破碎带, 说明旋切式钻头破岩机理, 每排齿既有冲击压碎作用, 又能切削岩 石。 同时提高中心破岩效率, 从而提高钻头机械钻速。
由于旋切式钻头破岩方式特点, 所以能适应各种钻井需要, 在侧钻和水平井钻井中比现 有牙轮钻头和金刚石钻头更为优越。
根据以上分析, 轴颈偏移值 ^增大, 会增大切削齿在井底的径向滑移和轴向滑移, 即增 大切削齿在井底的总的滑移量。 轮体夹角 取值范围为: 15°≤ ≤85°, 轴颈偏移值 s取值 范围为: ≤s≤^, 能更好地实现切削齿以旋切方式破岩。 优化 s和 , 可达到增大牙
4 4
轮切削齿在井底和井壁滑移量, 降低轮体速比的目的。 比如轮体夹角 设置为 30°。
旋切钻头牙轮组合方式包含 (但不限于) 以下类型:
1、 双牙轮: 两牙轮工作面朝外, 角度范围和偏移值均在 0°< <90°、 -^<S<^~范
2 2 围内, 偏移方向中心对称。 两牙轮的内排齿 (即大圈齿) 设置成不同时都切心 (切心: 牙齿 切削到井眼中心, 即牙轮的最外圈切削齿运行轨迹达到钻头轴线位置, 或者说最外圈切削齿 纵向位置通过或超过钻头轴线) , 可以设置为一个切心一个不切心 (调整大圈齿距牙轮边缘 的距离) , 也可设置为两个牙轮都无限接近切心, 依靠钻头的冲击力和岩体内部应力破碎岩 体中心 (未直接切屑的井眼中心面积已无限接近于零) 。
2、 三牙轮: 三牙轮工作面朝外, 角度范围和偏移值均在 0°< <90°、 - <S<^~范
2 2 围内, 偏移方向中心对称。 三牙轮的内排齿 (即大圈齿) 均设为不切心。 可用于扩孔。
3、 单牙轮, 牙轮工作面朝外, 角度范围和偏移值在 0°< <90°、 - <s< 范围
2 2 内, 单牙轮的内排齿 (即大圈齿) 设为切心。
本发明所述的切削齿 (3) 为勺形齿、 楔形齿、 锥球齿、 球形齿、 锥台齿、 圆柱截头齿 或棱锥齿; 所述的切削齿 (3) 材质包括硬质合金、 聚晶金刚石复合体、 热稳定聚晶金刚 石、 孕镶金刚石、 天然金刚石、 立方氮化硼或陶瓷, 或包含硬质合金、 金刚石和立方氮化 硼。 所述钻头主体 (1) 为钢件、 钢材组焊件或钢体与金属粉末的烧结体。 所述的牙轮 (2) 结构有铣齿牙轮、 镶齿牙轮或钢体与金属粉末的烧结牙轮。
本发明与现有技术相比的性能特点是:
( 1 ) 旋切方式破岩: 本发明的旋切钻头钻进过程中, 主体 α ) 上的牙轮轴颈指向井壁 或井底, 与旋切钻头轴线交一夹角又偏移钻头轴线 (即 ≠0°, 5≠0 ) 时, 旋切钻头牙轮
( 2) 以旋切方式冲击、 压碎、 切削岩石, 实现破岩钻进。 钻进过程旋切钻头切削齿 (3) 不 仅随着牙轮滚动, 形成对地层的压碎, 同时通过其在井底的滑移过程切削地层, 破岩效率 高。 根据不同的钻井需求, 改变轮体夹角 、 轴颈偏移值 s以及牙轮 (2 ) 尺寸和形状, 可 以使牙轮 (2) 上的各排切削齿 (3) 都切削到对应的井眼中心、 井眼边缘及井壁, 还能钻出 要求的井底形状。
( 2 ) 中心破岩性能高: 钻进过程中, 旋切钻头对应的井眼中心位置由大圈齿完成, 由 于旋切钻头切削齿圈中大齿圈直径最大, 齿数多 (可比三牙轮钻头中央布齿多 6倍以上) , 相对切削速度高, 可以从根本上解决现在三牙轮钻头和 PDC钻头心部破岩效率低的问题。
( 3 ) 机械钻速提高: 旋切钻头的结构 (关键参数包含轮体夹角 和轴颈偏移值 决 定了其破岩形式为冲击、 击碎、 切削作用, 同时对应的井眼中心破岩效率和进取性高, 避免 了满眼问题和重复破碎现象, 利于排屑, 提高钻头机械钻速。
( 4 ) 更好的动力学性能: 与牙轮钻头冲击形式破岩相比, 旋切钻头的破岩形式为冲 击、 击碎、 切削作用, 连续的切削作用使钻头受到的冲击载荷小, 载荷幅值降低。 同时旋切 钻头轮体速比 (牙轮转速与钻头转速之比) 小于 1, 即钻头钻进时牙轮转速小于钻头钻速, 所以轴承转速相对较慢, 旋切钻头振动冲击减小。 与普通 PDC 钻头相比, 旋切钻头扭转振 荡减小, 低转速下的粘滑和高转速下的井眼螺旋现象减少。 在本发明进行的台架实验结果, 也证明了与同尺寸、 同工况条件下的牙轮钻头、 PDC 钻头相比, 旋切钻头具备上述特点。 更 好的动力学性能使旋切钻头具有更大的适用范围和更好的控制能力。
( 5 ) 轮体速比小于 1、 轴承寿命条件改善、 旋切钻头寿命提高: 旋切钻头的轮体速比 小于 1, 而且牙轮的轴颈尺寸能比同规格的三牙轮钻头设计得更大, 在轴颈的强度和钻头使 用寿命方面比牙轮钻头有明显优势。 本发明的旋切钻头在破岩过程中, 井底和井壁对钻头产 生的合力推动牙轮紧贴轴颈平面, 这有利于改善轴承密封性能, 提高轴承使用寿命, 基于轴 承寿命对于钻头的重要意义, 从而实现旋切钻头寿命的提高。
( 6 ) 保径作用: 旋切钻头所有切削齿圈都能切削井底和井壁, 形成井径。 如果最先切 削井壁的那圈齿磨损变短, 第二圈齿就会接替第一圈齿的工作, 实现保径, 不致钻孔越来越 小。 如果第二圈齿也磨损失效, 第三圈齿仍可实现保径, 以此类推。 由于本发明的旋切钻头 具有所有齿圈都能切削旋切钻头对应井径的特点, 使其具有三牙轮钻头所不及的保径和侧钻 能力, 保径效果好。
( 7 ) 由于设置有偏移值, 钻井不会出现满眼现象, 解决了排屑问题和重复切屑问题。
( 8 ) 牙齿可采用复合齿: 以旋切方式破岩的轮式钻头可以利用硬质合金切削齿、 热稳 定聚晶金刚石复合齿 (PDC ) 、 孕镶金刚石切削齿等作为切削齿, 齿的工作寿命和切削效率 均优于单牙轮钻头。
本发明的有益效果: 本发明的切削齿以旋切方式破岩, 中心破岩效率高, 保径效果好, 磨损均勾, 轴承工作条件改善, 机械钻速高, 钻头使用寿命长。
附图说明
图 1 为本发明采用双牙轮的结构示意图, 包括钻头主体 (1 ) 、 牙轮 (2 ) 、 切削齿 ( 3 ) 、 储油囊 (4) 、 喷嘴 (5 ) 。 钻头主体 (1 ) 包括牙轮轴颈、 扶正块、 高压泥浆通道和 连接丝扣。 本发明的牙轮 (2 ) 与主体 (1 ) 上的轴颈采用三牙轮钻头常用的轴承与密封结 构。 牙轮 (2 ) 的大端到小端布置多圈切削齿。
图 2为本发明的切削原理及主要设计参数: 轮体夹角 、 轴颈偏移值 s、 钻头直径!)的 关系示意图; 图 3 为本发明牙轮数目为 2, 轮体夹角 = 30°, 轴颈偏移值 s = , 且一个牙轮切心
20
部, 一个牙轮不切心部时的冠顶结构示意图;
图 4 为本发明牙轮数目为 2, 轮体夹角 = 30°, 轴颈偏移值 ^ = 0, 且两个牙轮都切心 部时的牙轮齿圈投影示意图;
图 5 为本发明牙轮数目为 2, 轮体夹角 = 89.5°, 轴颈偏移值 s = 0, 且两个牙轮都切 心部时的牙轮齿圈投影示意图; 图 6 为本发明牙轮数目为 1, 轮体夹角 = 30°, 轴颈偏移值 s = ^, 且牙轮切心部时
20
的牙轮齿圈投影示意图; 图 7 为本发明牙轮数目为 2, 轮体夹角 = 30°, 轴颈偏移值 s = ^, 且一个切心部,
20
一个不切心部的牙轮齿圈投影示意图; 图 8 为本发明牙轮数目为 2, 轮体夹角 = 30°, 轴颈偏移值 s = ^, 且两个牙轮都不 切心部的牙轮齿圈投影示意图; 图 9 为本发明牙轮数目为 3, 轮体夹角 = 30°, 轴颈偏移值 s = , 且三个牙轮都不
20
切心部时的牙轮齿圈投影示意图;
图 10 为本发明牙轮数目为 2, 钻头直径/) = 4.75", 轮体夹角 = 30°, 轴颈偏移值 s =―的试验钻头进行模拟试验及钻出的井底轮廓;
20
图 11为三牙轮钻头直径 D = 4.5' '钻出的井底轮廓;
图 12为单牙轮钻头直径 Z) = 4.625"钻出的井底轮廓;
图 13为 PDC钻头直径/) = 4.125' '钻出的井底轮廓;
下面结合附图进一步详细阐述本发明具体实施方式。
具体实施方式
如图 1〜图 10 所示: 以旋切方式破岩的轮式钻头, 包括钻头主体 (1) 、 牙轮 (2) 、 切削齿 (3) , 还可附加储油囊 (4) 、 喷嘴 (5) 。 钻头主体 (1) 包括牙轮轴颈, 还可以有 扶正块、 高压泥浆通道和连接丝扣。 牙轮 (2) 与主体 (1) 上牙轮轴颈构成转动连接, 与主 体 (1) 上的轴颈采用三牙轮钻头常用的轴承与密封结构。 牙轮 (2) 的大端到小端布置多圈 切削齿。 主体 (1) 上牙轮轴颈平面与钻头轴线夹角 (以下简称轮体夹角) 的范围为
0°< <90。 (包含 = +1及 ≠ +1 ) , 轴颈偏移量 s的范围为 - <s< (包含 = +1及 ≠ +1) , 其中, 轮 对应的轮体夹角为 , 轮 对应的轴颈偏移量为 , D为钻 头直径。
实施例 1: 当本发明的旋切钻头的^ = 30°, s=―, 直径 Ζ) = 4.75", 钻速为《 = 180rp 时, 实验
20
用材料分别选用洪雅石: 225x200xl50ww3, 青砂石: 150 x 150 x lOOww3, 实验过程收集 岩屑, 分析破岩难易程度及振动情况, 检查切削齿磨痕及方向, 计算牙轮和钻头的轮体速 比。
实施例结果和理论计算同时表明: 实施例 1对应参数条件下, 轮体速比小于 1, 本实施 例中小于 0.55; 岩性越硬, 牙轮转速越高, 轮体速比越高。
实施例 2: 当牙轮 2 的^ = 30°, s = -—, 直径 Ζ) = 4.75", 钻速为《 = 180rp , 实验用材料分别 为洪雅石: 225 x 200 x l50ww3, 青砂石: 150 x 150 x lOOww3, 实验过程收集岩屑, 分析破 岩难易程度及振动情况, 检查切削齿磨痕及方向, 计算牙轮和钻头的轮体速比。 实施例结果和理论计算同时表明: 对应 ^ = - 时, 岩性越硬, 牙轮转速降低, 轮体速
20
比小于实施例 1对应的值。
综合对比分析上述实施结果可得: 优化轮体夹角 和轴颈偏移值 可达到增大牙轮切 削齿在井底和井壁滑移量、 降低轮体速比的目的, 提高旋切钻头的破岩效率和机械钻速。
实施例 3: 牙轮为一个
牙轮工作面朝向井壁与井底之间, 主体 (1 ) 上牙轮轴颈平面与钻头轴线夹角 的范围为 0° < y9 < 90° ' 轴颈偏移量为 D D, 牙轮大圈齿切心。

Claims

权 利 要 求 书
1. 一种以旋切方式破岩的轮式钻头, 包括钻头主体 (1 ) 、 牙轮 (2 ) 、 牙轮工作面上 的切削齿 (3 ) , 其特征在于: 钻头主体 (1 ) 上牙轮轴颈平面与钻头轴线的轮体夹角 的范 围为 0° < < 90°, 轴颈偏移量为 - < s < ^, 其中 D为钻头直径。
2 2
2. 根据权利要求 1 所述的一种以旋切方式破岩的轮式钻头, 其特征在于: 所述牙轮轴 颈平面与钻头轴线的轮体夹角 A = βΜ或 A≠ βΜ, 轴颈偏移量 Si = si+lSi≠ si+l, 其中, i 为牙轮的序号 ( 1 ) , 轮 对应的轮体夹角为 , 轮 对应的轴颈偏移量为 。
3. 根据权利要求 1或 2所述的一种以旋切方式破岩的轮式钻头, 其特征在于: 所述的 轮体夹角 β的范围是 15°≤ ≤ 85°。
4. 根据权利要求 3 所述的一种以旋切方式破岩的轮式钻头, 其特征在于: 所述的轮体 夹角 是 30°。
5. 根据权利要求 1或 2所述的一种以旋切方式破岩的轮式钻头, 其特征在于: 所述的 轴颈偏移值 ^的范围是 - ≤ s≤ ^。
4 4
6. 根据权利要求 1或 2所述的一种以旋切方式破岩的轮式钻头, 其特征在于: 所述旋 切钻头的轮体速比 (牙轮转速与钻头转速之比) 小于 1。
7. 根据权利要求 2 所述的一种以旋切方式破岩的轮式钻头, 其特征在于: 牙轮为一 个。
8. 根据权利要求 2 所述的一种以旋切方式破岩的轮式钻头, 其特征在于: 牙轮为以钻 头主体中心对称的两个。
9. 根据权利要求 2 所述的一种以旋切方式破岩的轮式钻头, 其特征在于: 牙轮为以钻 头主体中心对称的三个。
10、 根据权利要求 7-9任一所述的一种以旋切方式破岩的轮式钻头, 其特征在于: 至少有一 个牙轮的切削齿运行轨迹达到或越过钻头轴线位置。
PCT/CN2012/070829 2011-08-26 2012-02-01 一种以旋切方式破岩的轮式钻头 WO2013029349A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2014111463/03A RU2585777C2 (ru) 2011-08-26 2012-02-01 Шарошечное долото для разрушения породы роторным бурением
US14/240,739 US9828806B2 (en) 2011-08-26 2012-02-01 Roller bit for rock breaking by rotary cutting

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110248681.X 2011-08-26
CN201110248681.XA CN102364031B (zh) 2011-08-26 2011-08-26 一种以旋切方式破岩的轮式钻头
CN201110390021.5A CN102434105B (zh) 2011-11-30 2011-11-30 具有旋切破岩功能的复合钻头
CN201110390021.5 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013029349A1 true WO2013029349A1 (zh) 2013-03-07

Family

ID=47755253

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2012/070807 WO2013029347A1 (zh) 2011-08-26 2012-01-31 具有旋切破岩功能的复合钻头
PCT/CN2012/070829 WO2013029349A1 (zh) 2011-08-26 2012-02-01 一种以旋切方式破岩的轮式钻头

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070807 WO2013029347A1 (zh) 2011-08-26 2012-01-31 具有旋切破岩功能的复合钻头

Country Status (3)

Country Link
US (1) US9828806B2 (zh)
RU (1) RU2585777C2 (zh)
WO (2) WO2013029347A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9574405B2 (en) 2005-09-21 2017-02-21 Smith International, Inc. Hybrid disc bit with optimized PDC cutter placement
US8672060B2 (en) * 2009-07-31 2014-03-18 Smith International, Inc. High shear roller cone drill bits
CN107386986A (zh) * 2017-09-21 2017-11-24 四川川石金刚石钻头有限公司 一种带滚轮式规径的pdc钻头
CN107575167A (zh) * 2017-10-26 2018-01-12 兰州城市学院 一种非自洗复锥pdc牙轮复合钻头
CN108692903B (zh) * 2018-05-16 2020-10-02 长江大学 用于微钻实验给微pdc钻头施加扭转冲击的实验装置
CN108625788B (zh) * 2018-07-10 2023-05-26 西南石油大学 一种新型pdc、牙轮复合钻头
CN113405895B (zh) * 2021-05-31 2022-11-04 西南石油大学 一种用于刮切与冲击复合破岩试验的夹具
CN113255080A (zh) * 2021-06-04 2021-08-13 西南石油大学 一种基于精细控压钻井技术的复合钻头优选方法
CN113309521A (zh) * 2021-06-29 2021-08-27 中国科学院武汉岩土力学研究所 一种适用于硬岩的小口径矩形断面竖井开挖设备
CN114776226B (zh) * 2022-04-21 2023-06-23 中国石油大学(北京) 内外相异的pdc钻头及pdc钻头的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064007A (en) * 1988-11-23 1991-11-12 Norvic S.A. Three disc drill bit
RU2014422C1 (ru) * 1991-04-30 1994-06-15 Сургутское отделение Западно-Сибирского научно-исследовательского и проектно-конструкторского института технологии глубокого разведочного бурения Буровое долото
CH689948A5 (fr) * 1994-03-24 2000-02-15 Norvic Sa Dispositif de forage d'un puits.
CN1648403A (zh) * 2004-01-27 2005-08-03 杨绍金 增效钻头
CN2906027Y (zh) * 2006-06-01 2007-05-30 江汉石油钻头股份有限公司 一种不等移轴距三牙轮钻头
US20080190666A1 (en) * 2007-02-09 2008-08-14 Smith International, Inc. Gage insert
CN101382045A (zh) * 2008-07-30 2009-03-11 江汉石油钻头股份有限公司 一种用于水平井和硬地层井的三牙轮钻头

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1263799A1 (ru) * 1983-12-08 1986-10-15 Специальное Конструкторское Бюро По Долотам Шарошка бурового трехшарошечного долота
US4936398A (en) * 1989-07-07 1990-06-26 Cledisc International B.V. Rotary drilling device
AU2003221233A1 (en) * 2002-04-23 2003-11-10 Kingdream Public Ltd. Co. A roller bit with a journal pin offset from the central axis thereof
CN2725499Y (zh) * 2004-07-23 2005-09-14 大庆石油管理局 牙轮pdc组合式钻头
RU2306401C1 (ru) * 2006-05-06 2007-09-20 Николай Митрофанович Панин Породоразрушающий инструмент
RU2361998C1 (ru) * 2007-11-29 2009-07-20 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Буровое трехшарошечное долото
WO2011084944A2 (en) * 2010-01-05 2011-07-14 Smith International, Inc. High-shear roller cone and pdc hybrid bit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064007A (en) * 1988-11-23 1991-11-12 Norvic S.A. Three disc drill bit
RU2014422C1 (ru) * 1991-04-30 1994-06-15 Сургутское отделение Западно-Сибирского научно-исследовательского и проектно-конструкторского института технологии глубокого разведочного бурения Буровое долото
CH689948A5 (fr) * 1994-03-24 2000-02-15 Norvic Sa Dispositif de forage d'un puits.
CN1648403A (zh) * 2004-01-27 2005-08-03 杨绍金 增效钻头
CN2906027Y (zh) * 2006-06-01 2007-05-30 江汉石油钻头股份有限公司 一种不等移轴距三牙轮钻头
US20080190666A1 (en) * 2007-02-09 2008-08-14 Smith International, Inc. Gage insert
CN101382045A (zh) * 2008-07-30 2009-03-11 江汉石油钻头股份有限公司 一种用于水平井和硬地层井的三牙轮钻头

Also Published As

Publication number Publication date
WO2013029347A1 (zh) 2013-03-07
RU2585777C2 (ru) 2016-06-10
US20140202773A1 (en) 2014-07-24
US9828806B2 (en) 2017-11-28
RU2014111463A (ru) 2015-10-10

Similar Documents

Publication Publication Date Title
WO2013029349A1 (zh) 一种以旋切方式破岩的轮式钻头
CN102434105B (zh) 具有旋切破岩功能的复合钻头
US8028773B2 (en) Drill bit and cutter element having a fluted geometry
CN102392603B (zh) 旋切钻头与pdc刀翼形成的复合钻头
CN102536124B (zh) Pdc复合片单牙轮钻头
CN111411898B (zh) 一种复合钻头
CN108625788B (zh) 一种新型pdc、牙轮复合钻头
CN103939022B (zh) 一种pdc钻头与牙轮钻头联合破岩的组合钻头
WO2013170788A1 (zh) 一种刮切—冲击复合式钻头
CN111411897B (zh) 一种冲切pdc钻头
CN111852342A (zh) 一种切削齿可旋转的pdc钻头
CN202493219U (zh) 旋切钻头与pdc刀翼形成的复合钻头
CN102364030B (zh) 旋切方式破岩的钻头
CN102400646B (zh) 旋切钻头与牙轮钻头形成的复合钻头
CN208122768U (zh) 一种大口径钻进施工用金刚石钻头
CN110159202B (zh) 一种具有固定缓冲结构的金刚石钻头
CN102022084B (zh) 一种复合式单牙轮钻头
CN105507809B (zh) 一种交变轨迹切削破岩工具
CN202441267U (zh) 具有旋切破岩功能的复合钻头
CN203867472U (zh) 一种pdc钻头与牙轮钻头联合破岩的组合钻头
CN205638241U (zh) 一种特殊结构硬质合金基体pdc涂层的单牙轮钻头
CN202441259U (zh) 旋切钻头与牙轮钻头形成的复合钻头
CN207420458U (zh) 一种用于硬地层钻井的混合钻头
CN107060653B (zh) 一种混合破岩机构和一种长寿命混合钻头
CN203640608U (zh) 一种具有内锥的复合式单牙轮钻头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827298

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14240739

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014111463

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12827298

Country of ref document: EP

Kind code of ref document: A1