WO2013029013A1 - Enzyme producing bacillus strains - Google Patents
Enzyme producing bacillus strains Download PDFInfo
- Publication number
- WO2013029013A1 WO2013029013A1 PCT/US2012/052360 US2012052360W WO2013029013A1 WO 2013029013 A1 WO2013029013 A1 WO 2013029013A1 US 2012052360 W US2012052360 W US 2012052360W WO 2013029013 A1 WO2013029013 A1 WO 2013029013A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- strain
- bacillus
- nrrl
- bacillus subtilis
- manure
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/10—Animal feeding-stuffs obtained by microbiological or biochemical processes
- A23K10/16—Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
- A23K10/18—Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K50/00—Feeding-stuffs specially adapted for particular animals
- A23K50/30—Feeding-stuffs specially adapted for particular animals for swines
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K50/00—Feeding-stuffs specially adapted for particular animals
- A23K50/70—Feeding-stuffs specially adapted for particular animals for birds
- A23K50/75—Feeding-stuffs specially adapted for particular animals for birds for poultry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/74—Bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/07—Bacillus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/07—Bacillus
- C12R2001/125—Bacillus subtilis ; Hay bacillus; Grass bacillus
Definitions
- the disclosure relates to Bacillus strains producing enzymes that provide benefits to animals and methods of using these strains. In one embodiment, the disclosure relates to methods of improving growth performance of an animal. In another embodiment, the disclosure relates to a direct fed microbial, and feed for an animal supplemented with a direct fed microbial. In another embodiment, the disclosure relates to methods for improving manure storage units. In yet another embodiment, the disclosure relates to methods for alleviating an inflammatory response.
- DDGS DDGS
- alterations in nutrient digestibility as a result of adding DDGS with a high fiber content have implications for swine manure handling, storage, and decomposition.
- the commercial swine industry has indicated that manure holding capacity is less in anaerobic deep-pit swine manure storage units, and that the manure from pigs fed high level of DDGS has more solids accumulation, as well as ammonia, methane, and hydrogen sulfide gas emissions.
- the disclosure relates to enzyme producing Bacillus strains.
- the strains are Bacillus subtilis.
- the strains are Bacillus pumilus.
- the B. subtilis strain(s) is (are) Bacillus subtilis
- the B. pumilus strain(s) is/are Bacillus pumilus AGTP BS 1068 and Bacillus pumilus KX1 1-1 , and strains having all the characteristics thereof, any derivative or variant thereof, and mixtures thereof.
- the disclosure relates to methods comprising administering an effective amount of enzyme producing strain(s), one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), feed including one or more strain(s) or mixtures thereof to a an animal, wherein the administration improves at least one of the following body weight, average daily gain, average daily feed intake, feed efficiency, carcass characteristics, nutrient digestibility and manure waste problems.
- the enzyme producing strains can be administered to an animal to improve at least one of the breakdown of complex dietary components, manure waste problems, the efficiency of production, carcass characteristics, and performance when feeding high levels of DDGS.
- one or more enzyme producing strain(s) is (are) administered as a direct-fed microbial (DFM).
- a direct-fed microbial includes one or more Bacillus strain(s).
- the enzyme producing strain(s) is (are) effective at degrading otherwise indigestible feedstuffs such as DDGS. This allows increased nutrient availability, resulting in an improved animal growth response. Additionally, enzyme producing strain(s) abate(s) manure associated odors, thereby improving operational environment air quality.
- odor reduction is by reducing volatile fatty acids, ammonia, and/or methane and hydrogen sulfide gas production.
- the disclosure relates to a method comprising
- the swine manure storage unit is a manure pit.
- the administration improves at least one of the following: less incidence of foaming, less accumulation of solids, and less nitrogen, sulfur, phosphorus, fiber-bound nitrogen, total protein, fat, and fiber content when compared to a control manure pit.
- the enzyme producing strain(s) are directly applied to a manure storage unit, such as a manure pit. Improvements resulting from contacting the enzyme producing strain(s) directly to a manure storage unit include at least one of less incidence of foaming, less accumulation of solids, and less nitrogen, sulfur, phosphorus, fiber-bound nitrogen, total protein, fat, and fiber content than control manure pits.
- the disclosure relates to a method of altering volatile fatty acid composition in a manure pit comprising administering an effective amount of enzyme producing strain(s), one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), feed including one or more strain(s) or mixtures thereof to animals whose manure is stored in the manure pit.
- the enzyme producing strains can be contacted directly to the manure pit.
- the disclosure relates to a method of altering gas emissions that accumulate in a room housing an animal comprising administering enzyme producing strain(s), one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), feed including one or more strain(s) or mixtures thereof to animals in an effective amount to reduce gas emissions.
- the disclosure relates to methods for alleviating an inflammatory response comprising administering enzyme producing strain(s), one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), feed including one or more strain(s) or mixtures thereof to animals in an effective amount to alleviate the inflammatory response.
- Figure 1 is a photograph of a gel showing a RAPD PCR profile of Bacillus $wto7w AGTP BS3BP5.
- Figure 2 is a partial 16S rDNA sequence of Bacillus subtilis AGTP BS3BP5.
- Figure 3 is a photograph of a gel showing a RAPD PCR profile of Bacillus subtilis AGTP BS442.
- Figure 4 is a partial 16S rDNA sequence of Bacillus subtilis AGTP BS442.
- Figure 5 is a photograph of a gel showing a RAPD PCR profile of Bacillus subtilis AGTP BS521.
- Figure 6 is a partial 16S rDNA sequence of Bacillus subtilis AGTP BS521.
- Figure 7 is a photograph of a gel showing a RAPD PCR profile of Bacillus subtilis AGTP BS918.
- Figure 8 is a partial 16S rDNA sequence of Bacillus subtilis AGTP BS918.
- Figure 9 is a photograph of a gel showing a RAPD PCR profile of Bacillus subtilis AGTP BS 1013.
- Figure 10 is a partial 16S rDNA sequence of Bacillus subtilis AGTP BS 1013.
- Figure 1 1 is a photograph of a gel showing a RAPD PCR profile of Bacillus pumilus AGTP BS 1068.
- Figure 12 is a partial 16S rDNA sequence of Bacillus pumilus AGTP BS 1068.
- Figure 13 is a photograph of a gel showing a RAPD PCR profile of Bacillus subtilis AGTP BS1069.
- Figure 14 is a partial 16S rDNA sequence of Bacillus subtilis AGTP BS 1069.
- Figure 15 is a photograph of a gel showing a RAPD PCR profile of Bacillus subtilis AGTP 944.
- Figure 16 is a photograph of a gel showing a RAPD PCR profile of Bacillus subtilis AGTP 944.
- Figure 17 is a photograph of a gel showing a RAPD PCR profile of Bacillus subtilis AGTP 944.
- Figure 18 is the partial 16S rDNA sequence of Bacillus subtilis AGTP 944.
- Figure 19 is a photograph of a gel showing a RAPD PCR profile of Bacillus pumilus KX1 1-1.
- Figure 20 is a photograph of a gel showing a RAPD PCR profile of Bacillus pumilus KX1 1-1.
- Figure 21 is the partial 16S rDNA sequence of Bacillus pumilus KX1 1 -1.
- Figure 22 is a representative schematic of a cell culture plate design for screening Bacillus strains for anti-inflammatory effects. LPS was used to induce the inflammatory response but any agent that induces the inflammatory response may be used.
- Figure 23 is a bar graph depicting the anti-inflammatory effects of Bacillus strains as shown in a representative macrophage cell line (chicken HD1 1).
- the agent used to induce the inflammatory response was LPS.
- the effects on IL- 1 ⁇ gene expression are shown by the white bars (P ⁇ 0.01).
- the effects on IL-8 gene expression are shown by the black bars (P ⁇ 0.01).
- Differing letters (a, b, c) indicate means differ statistically (P ⁇ 0.01).
- Figure 24 is a representative schematic of a plate design for cell culture screening for a candidate direct-fed microbial. LPS was used as the agent to induce the
- Figure 25 is a bar graph depicting the anti-inflammatory effects of Bacillus strains in a mammalian cell line (rat intestinal epithelial cell line (IEC-6)). LPS was used to induce the inflammatory response. Tumor necrosis factor-a (TNF-a) gene expression was measured. Differing letters (a or b) indicate means differ statistically (P ⁇ 0.10).
- Figure 26 is a line graph showing foam characteristics in a pit over 3 samplings within 170 day trial period.
- Figure 27 is a representative schematic of a BioLuminescence measure in each pen in the area marked with an "x.”
- administer is meant the action of introducing at least one strain and/or supernatant from a culture of at least one strain described herein into the animal's gastrointestinal tract. More particularly, this administration is an administration by oral route. This administration can in particular be carried out by supplementing the feed intended for the animal with the at least one strain, the thus supplemented feed then being ingested by the animal. The administration can also be carried out using a stomach tube or any other way to make it possible to directly introduce the at least one strain into the animal's gastrointestinal tract.
- at least one strain is meant a single strain but also mixtures of strains comprising at least two strains of bacteria.
- a mixture of at least two strains is meant a mixture of two, three, four, five, six or even more strains. In some embodiments of a mixture of strains, the proportions can vary from 1% to 99%.
- the proportion of a strain used in the mixture is at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95%.
- Other embodiments of a mixture of strains are from 25% to 75%. Additional embodiments of a mixture of strains are approximately 50% for each strain. When a mixture comprises more than two strains, the strains can be present in substantially equal proportions in the mixture or in different proportions.
- contacting is meant the action of bringing at least one strain and/or supernatant from a culture of at least one strain described herein into close proximity with a substrate, container, or substance, which includes but is not limited to a manure storage unit.
- the manure storage unit is a manure pit.
- Contacting can be through a direct or indirect manner.
- contacting includes applying, spraying, inoculating, dispersing dispensing, pouring, and other like terms.
- an effective amount is meant a quantity of strain and/or supernatant sufficient to allow improvement in at least one of the following: the efficiency of animal production, carcass characteristics, growth performance of an animal, growth
- "effective amount” is meant a quantity of strain and/or supernatant sufficient to allow improvement in at least one of the following: manure waste problems, the amount of foaming in a manure storage unit, the microbial ecology of a manure storage unit, the amount of volatile fatty acids in a manure storage unit, the amount of gas production in a room housing animals or a manure storage unit, including but not limited to methane and hydrogen sulfide.
- "effective amount” is meant a quantity of strain and/or supernatant sufficient to allow improvement in at least one of the following: the expression of a gene involved in the inflammatory response, the expression of a protein involved in the inflammatory response, and the activity of a protein involved in the inflammatory response.
- performance refers to the growth of an animal, such as a pig or poultry, measured by one or more of the following parameters: average daily gain (ADG), weight, scours, mortality, feed conversion, which includes both feed:gain and gaimfeed, and feed intake. "An improvement in performance” or “improved
- performance refers to an improvement in at least one of the parameters listed under the performance definition.
- a "variant" has at least 80% identity of genetic sequences with the disclosed strains using random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) analysis.
- the degree of identity of genetic sequences can vary.
- the variant has at least 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity of genetic sequences with the disclosed strains using RAPD-PCR analysis.
- Six primers that can be used for RAPD-PCR analysis include the following: Primer 1 (5'- GGTGCGGGA A-3 ') (SEQ ID NO. 1); PRIMER 2 (5'-GTTTCGCTCC-3') (SEQ ID NO.
- RAPD analysis can be performed using Ready-to-GoTM RAPD Analysis Beads (Amersham Biosciences, Sweden), which are designed as pre-mixed, pre-dispensed reactions for performing RAPD analysis.
- Bacillus strains have enzymatic activity(ies) that break down fiber(s), lipid(s), carbohydrate(s), and protein(s). These strain(s) is (are) referred to herein as "enzyme producing strain(s)," "Bacillus strain(s),” or “strain(s).”
- the enzymatic activity(ies) is (are) cellulase, a- amylase, xylanase, esterase, casein protease, corn starch amylase, ⁇ -mannanase, lipase, and/or protease, e.g., zeinase and soy protease.
- the inventors have found that certain microorganisms can be used to address the challenging components in dried distillers grains with solubles (DDGS).
- enzyme producing strains can improve at least one of the following: (1) breakdown of complex dietary components, (2) manure waste problems; (3) the efficiency of animal production; (4) animal carcass characteristics, (5) growth performance an animal; and (6) effects of an inflammatory response.
- Enzyme producing strains include Bacillus strains, including, but not limited to, B. subtilis, B. licheniformis, B. pumilus, B. coagulans, B. amyloliquefaciens, B.
- the B. subtilis strain(s) is (are) Bacillus subtilis AGTP BS3BP5, Bacillus subtilis AGTP BS442, Bacillus subtilis AGTP BS521 , Bacillus subtilis AGTP BS918, Bacillus subtilis AGTP BS1013, and Bacillus subtilis AGTP BS1069, and Bacillus subtilis AGTP 944, and strains having all the characteristics thereof, any derivative or variant thereof, and mixtures thereof.
- the B. pumilus strain(s) is/are Bacillus pumilus AGTP BS 1068 and Bacillus pumilus KX1 1-1 , and strains having all the characteristics thereof, any derivative or variant thereof, and mixtures thereof.
- the enzyme producing strains have enzymatic activity(ies) including but not limited to cellulase, a-amylase, xylanase, esterase, casein protease, corn starch amylase, ⁇ -mannanase, lipase, and/or protease, e.g., zeinase and soy protease.
- enzymatic activity(ies) including but not limited to cellulase, a-amylase, xylanase, esterase, casein protease, corn starch amylase, ⁇ -mannanase, lipase, and/or protease, e.g., zeinase and soy protease.
- more than one of the strain(s) described herein is (are) combined.
- Bacillus subtilis AGTP BS3BP5, Bacillus subtilis AGTP BS442, Bacillus subtilis AGTP BS521 , Bacillus subtilis AGTP BS918, Bacillus subtilis AGTP BS 1013, Bacillus subtilis AGTP BS1069, Bacillus subtilis AGTP 944, Bacillus pumilus AGTP BS 1068 and Bacillus pumilus KX1 1 -1 are also included and are useful in the methods described and claimed herein.
- any derivative or variant of Bacillus subtilis AGTP BS3BP5, Bacillus subtilis AGTP BS442, Bacillus subtilis AGTP BS521, Bacillus subtilis AGTP BS918, Bacillus subtilis AGTP BS 1013, Bacillus subtilis AGTP BS 1069, Bacillus subtilis AGTP 944, Bacillus pumilus AGTP BS 1068, and Bacillus pumilus KX1 1-1 are also included and are useful in the methods described and claimed herein.
- the enzyme producing strain(s) is (are) used in combination.
- the enzyme producing strains can be used in combination with bacterial strains from the Bacillus genus, and other bacterial strains from a different genus.
- the enzyme producing strain(s) and methods provided herein improve one or more of the following: the breakdown of complex dietary components, manure waste problems, the efficiency of production, carcass
- Manure waste problems include, but are not limited to, undesirable manure nutrient and microbial composition, and undesirable gas emissions from the manure storage units, such as manure pits.
- An improvement in manure waste problems include, but are not limited to, at least one of (1) less nutrients accumulated in the manure, (2) shift manure microbial communities to favorable populations for solids breakdown, and (3) a decrease in ammonia, methane, and hydrogen sulfide gas emissions.
- An improvement in carcass characteristics can be measured by at least one of increased percent lean yield and dressing percentage, and decreased fat iodine values. Performance can be measured by average daily gain, average daily feed intake, and feed required per unit of gain, and other measurements known in the art.
- the enzyme producing strain(s) When ingested, the enzyme producing strain(s) produce(s) enzymes. In some embodiments, the enzyme producing strain(s) produce(s) enzymes in vivo. In other embodiments, the enzyme producing strain(s) survive(s) in the manure of animals to which the strain are administered and produce(s) enzymes in the excreted manure.
- Bacillus strains are produced by fermentation of the bacterial strains.
- Fermentation can be started by scaling-up a seed culture. This involves repeatedly and aseptically transferring the culture to a larger and larger volume to serve as the inoculum for the fermentation, which is earned out in large stainless steel fermentors in medium containing proteins, carbohydrates, and minerals necessary for optimal growth.
- a non- limiting exemplary medium is TSB.
- CFU or colony forming unit is the viable cell count of a sample resulting from standard microbiological plating methods. The term is derived from the fact that a single cell when plated on appropriate medium will grow and become a viable colony in the agar medium. Since multiple cells may give rise to one visible colony, the term colony forming unit is a more useful unit measurement than cell number.
- each Bacillus strain is fermented between a 5 x 10 CFU/ml level to about a 4 x 10 9 CFU/ml level. In at least one embodiment, a level of 2 x 10 9 CFU/ml is used.
- the bacteria are harvested by centrifugation, and the supernatant is removed. The supernatant can be used in the methods described herein.
- the bacteria are pelleted. In at least some embodiments, the bacteria are freeze-dried. In at least some embodiments, the bacteria are mixed with a earner.
- strains can also be used with or without preservatives, and in concentrated, unconcentrated, or diluted form.
- a composition including one or more strain(s) described herein is provided.
- the composition can be fed to an animal as a direct-fed microbial (DFM).
- DFM direct-fed microbial
- One or more carrier(s) or other ingredients can be added to the DFM.
- the DFM may be presented in various physical forms, for example, as a top dress, as a water soluble concentrate for use as a liquid drench or to be added to a milk replacer, gelatin capsule, or gels.
- freeze-dried bacteria fermentation product is added to a carrier, such as whey, maltodextrin, sucrose, dextrose, limestone (calcium carbonate), rice hulls, yeast culture, dried starch, and/or sodium silico aluminate.
- freeze- dried bacteria fermentation product is added to a water soluble carrier, such as whey, maltodextrin, sucrose, dextrose, dried starch, sodium silico aluminate, and a liquid is added to form the drench or the supplement is added to milk or a milk replacer.
- a water soluble carrier such as whey, maltodextrin, sucrose, dextrose, dried starch, sodium silico aluminate
- a liquid is added to form the drench or the supplement is added to milk or a milk replacer.
- freeze-dried bacteria fermentation product is added to a carrier, such as whey, maltodextrin, sugar, limestone (calcium carbonate), rice hulls, yeast culture dried starch, and/or sodium silico aluminate.
- the bacteria and carrier are enclosed in a degradable gelatin capsule.
- freeze-dried bacteria fermentation product is added to a carrier, such as vegetable oil, sucrose, silicon dioxide, polysorbate 80, propylene glycol, butylated hydroxyanisole, citric acid, ethoxyquin, and/or artificial coloring to form the gel.
- a carrier such as vegetable oil, sucrose, silicon dioxide, polysorbate 80, propylene glycol, butylated hydroxyanisole, citric acid, ethoxyquin, and/or artificial coloring to form the gel.
- the strain(s) may optionally be admixed with a dry formulation of additives including but not limited to growth substrates, enzymes, sugars, carbohydrates, extracts and growth promoting micro-ingredients.
- additives including but not limited to growth substrates, enzymes, sugars, carbohydrates, extracts and growth promoting micro-ingredients.
- the sugars could include the following:
- lactose lactose
- maltose dextrose
- malto-dextrin glucose
- fructose mannose
- tagatose sorbose
- raffinose galactose
- the sugars range from 50-95%, either individually or in combination.
- the extracts could include yeast or dried yeast fermentation solubles ranging from 5-50%.
- the growth substrates could include: trypticase, ranging from 5- 25%; sodium lactate, ranging from 5-30%; and, Tween 80, ranging from 1 -5%.
- the carbohydrates could include mannitol, sorbitol, adonitol and arabitol. The carbohydrates range from 5-50%> individually or in combination.
- the micro-ingredients could include the following: calcium carbonate, ranging from 0.5-5.0%; calcium chloride, ranging from 0.5-5.0%>; dipotassium phosphate, ranging from 0.5-5.0%o; calcium phosphate, ranging from 0.5-5.0%o; manganese proteinate, ranging from 0.25- 1 .00%>; and, manganese, ranging from 0.25- 1 .0%).
- the culture(s) and carrier(s) (where used) can be added to a ribbon or paddle mixer and mixed for about 15 minutes, although the timing can be increased or decreased.
- the components are blended such that a uniform mixture of the cultures and carriers result.
- the final product is preferably a dry, flowable powder.
- the strain(s) can then be added to animal feed or a feed premix, added to an animal's water, or administered in other ways known in the art.
- a feed for an animal can be supplemented with one or more strain(s) described herein or with a composition described herein.
- the DFM provided herein can be administered, for example, as the strain- containing culture solution, the strain-producing supernatant, or the bacterial product of a culture solution.
- Administration of a DFM provided herein to an animal can increase the performance of the animal.
- administration of a DFM provided herein to an animal can increase the average daily feed intake (ADFI), average daily gain (ADG), or feed efficiency (gaimfeed; G:F or feed:gain; F:G) (collectively, "performance metrics").
- ADFI average daily feed intake
- ADG average daily gain
- G:F or feed:gain; F:G feed efficiency
- the DFM may be administered to the animal in one of many ways.
- the strain(s) can be administered in a solid form as a veterinary pharmaceutical, may be distributed in an excipient, preferably water, and directly fed to the animal, may be physically mixed with feed material in a dry form, or the strain(s) may be formed into a solution and thereafter sprayed onto feed material.
- the method of administration of the strain(s) to the animal is considered to be within the skill of the artisan.
- the strains can be administered in an effective amount to animals.
- the disclosure relates to a method comprising administering to an animal an effective amount of the enzyme producing strain(s), one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), or feed including one or more strain(s) or mixtures thereof.
- the animal is a pig. In another embodiment, the animal is poultry. In yet another embodiment, the animal is a ruminant.
- Administration of one or more enzyme producing strain(s) to animals is accomplished by any convenient method, including adding the strains to the animals' drinking water, to their feed, or to the bedding, or by direct oral insertion, such as by an aerosol or by injection.
- administration of one or more enzyme producing strains is by spraying the animal with the enzyme producing strains.
- the animal can clean or preen and ingest the enzyme producing strains.
- the Bacillus strains are administered as spores.
- animal includes but is not limited to human, mammal, amphibian, bird, reptile, swine, pigs, cows, cattle, goats, horses, sheep, poultry, and other animals kept or raised on a farm or ranch, sheep, big-horn sheep, buffalo, antelope, oxen, donkey, mule, deer, elk, caribou, water buffalo, camel, llama, alpaca, rabbit, mouse, rat, guinea pig, hamster, ferret, dog, cat, and other pets, primate, monkey, ape, and gorilla.
- the animals are birds of different ages, such as starters, growers and finishers.
- the animals are poultry and exotic fowl, including, but not limited to, chicks, turkey poults, goslings, ducklings, guinea keets, pullets, hens, roosters (also known as cocks), cockerels, and capons.
- the animals are pigs, including, but not limited to, nursery pigs, breeding stock, sows, gilts, boars, lactation-phase piglets, and finishing pigs.
- the strain(s) can be fed to a sow during the lactation period, although the strain(s) can be fed for different durations and at different times.
- the strain(s) is(are) administered to piglets by feeding the strain(s) to a gilt or sow. It is believed that the transfer to the piglets from the sow is accomplished via the fecal-oral route and/or via other routes.
- the enzyme producing strains can be administered to an animal to improve at least one of nutrient digestibility, swine growth performances, poultry growth
- DDGS feed efficiency
- body weight feed intake
- average daily gain average daily feed intake
- breakdown of complex dietary components the efficiency of poultry production
- the efficiency of swine production and mortality.
- the amount of improvement can be measured as described herein or by other methods known in the art. These effective amounts can be administered to the animal by providing ad libitum access to feed containing the DFM.
- the DFM can also be administered in one or more doses.
- the improvement is by at least 1-5%, 5-10%, 10-15%, 15-20%, 20-25%, 25-30%, 30-35%, 35-40%, 40-45%, 45-50%, 50-55%, 55-60%, 60- 65%, 65-70%, 70-75%, 75-80%, 80-85%, 85-90%, 90-95%, 96%, 97%, 98%, 99%, or greater than 99% as compared to an untreated control.
- the improvement in these measurements in an animal to which the strain(s) is/are administered is at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 1 1%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%
- the improvement in these measurements in an animal to which the strain(s) is/are administered is 2-8% compared to a control animal. In certain other embodiments, the improvement in these measurements in an animal to which the strain(s) is/are administered is at least 8%> compared to a control animal.
- a control animal is an animal that has not been
- This effective amount can be administered to the animal in one or more doses.
- the one or more Bacillus strain(s) is(are) added to an animal's feed at a rate of at least 1 x 10 4 CFU/animal/day.
- the administration improves at least one of nutrient digestibility, growth performance responses, e.g., feed efficiency, the breakdown of complex dietary components, the efficiency of production, body weight gain, feed intake, and mortality.
- the strain(s) is/are administered at about 1 x 10 5 CFU/animal/day to about 1 x 10" CFU/animal/day.
- the animal is a swine. In another embodiment, the animal is poultry.
- the method is used when the animal is fed high levels of dried distillers grains with solubles (DDGS).
- DDGS dried distillers grains with solubles
- the high levels of DDGS can be a rate of over 10% of the animal's diet.
- the high levels of DDGS can also be a rate of over 30% of the animal's diet.
- the effective amount of at least one strain of bacterium is administered to an animal by supplementing a feed intended for the animal with the effective amount of at least one strain of bacterium.
- supply means the action of incorporating the effective amount of bacteria provided herein directly into the feed intended for the animal.
- the animal when feeding, ingests the bacteria provided herein.
- the enzyme producing strains can be administered as a single strain or as multiple strains. Supernatant of one or more enzyme producing strains can be administered to an animal. When ingested, the enzyme producing strains produce enzymes.
- one or more enzyme producing strain(s) is (are) fed to swine.
- the one or more enzyme producing strain(s) address(es) the challenging components in dried distillers grains with solubles (DDGS).
- the enzyme producing strain(s) is(are) added to animal feed at a rate of 1 x 10 3 , 1 x 10 4 , 1 x 10 5 , 1 x 10 6 , 1 x 10 7 , 1 x 10 8 , 1 x 10 9 , 1 x 10 10 , 1 x l O 1 1 , 1 x 10 12 , 1 x 10 13 and greater than 1 x 10 13 CFU per gram of animal feed.
- the enzyme producing strain(s) is(are) added to animal feed at a rate of 1 x 10 3 , 1 x 10 4 , 1 x 10 5 , 1 x 10 6 , 1 x 10 7 , 1 x 10 8 , 1 x 10 9 , 1 x 10 10 , 1 x 10 1 1 , 1 x 10 12 , 1 x 10 13 and greater than 1 x 10 13 CFU per animal per day.
- the one or more Bacillus strain(s) is(are) added to pigs' feed at a rate of about 3.75 x 10 5 CFU per gram of feed. It(they) can also be fed at about 1 x 10 4 to about 1 x 10" CFU/animal/day.
- the one or more Bacillus strain(s) is(are) fed at about 1 x 10 8 CFU/animal/day.
- the one or more Bacillus strain(s) is(are) fed at about 5 x 10 9
- the one or more Bacillus strain(s) is(are) added to feed at about 1 x 10 4 CFU/g feed to about 1 x 10 10 CFU/g feed. In at least some embodiments, the one or more Bacillus strain(s) is fed at about 1 x 10 CFU/bird/day to about 1 x 10
- a feed for an animal comprises at least one strain of bacterium described herein.
- feed is supplemented with an effective amount of at least one strain of bacterium.
- supplying means the action of incorporating the effective amount of bacteria provided herein directly into the feed intended for the animal.
- the animal when feeding, ingests the bacteria provided herein.
- the feed material can include corn, soybean meal, byproducts like distillers dried grains with solubles (DDGS), and vitamin/mineral supplement.
- the feed material for ruminants can be grain or hay or silage or grass, or combinations thereof. Included amongst such feed materials are corn, dried grain, alfalfa, any feed ingredients and food or feed industry by- products as well as bio fuel industry by-products and corn meal and mixtures thereof. Other feed materials can also be used.
- the time of administration can vary so long as an improvement is shown in one or more of the following: (1) breakdown of complex dietary components, (2) nutrient digestibility, (3) manure waste problems, (4) the efficiency of production, (5) carcass characteristics, (6) growth performance, (7) growth performance when feeding high levels of DDGS, (8) poultry growth performance responses, (9) swine growth
- the disclosure relates to a method for improving growth performance of an animal comprising using one or more enzyme producing strains or supernatants therefrom to improve the growth performance of the animal relative to an animal that has not been administered the enzyme producing strains.
- the animal is a pig.
- the animal is poultry. In another
- the animal is a ruminant.
- growth performance includes but is not limited to nutrient digestibility, poultry growth performance responses, pig growth performance responses, feed efficiency, the breakdown of complex dietary components, average daily gain, averaging daily feed intake, body weight gain, feed intake, carcass characteristics and mortality.
- the methods disclosed herein are used to improve the growth performance of an animal fed an animal feed comprising DDGS.
- the improvement in growth performance is by at least 1 - 5%, 5-10%, 10-15%, 15-20%, 20-25%, 25-30%, 30-35%, 35-40%, 40-45%, 45-50%, 50- 55%, 55-60%, 60-65%, 65-70%, 70-75%, 75-80%, 80-85%, 85-90%, 90-95%, 96%, 97%, 98%, 99%, or greater than 99% as compared to an untreated control.
- the improvement in growth performance of an animal to which the strain(s) is/are administered is at least 1 %, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 1 1%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21 %, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 77%, 7
- the enzyme producing strains for improving growth performance of an animal comprise a Bacillus strain.
- the Bacillus strain is Bacillus subtilis.
- the Bacillus strain is Bacillus pumilus.
- the enzyme producing strains for improving growth performance include but are not limited to Bacillus subtilis AGTP BS3BP5, Bacillus subtilis AGTP BS442, Bacillus subtilis AGTP BS521 , Bacillus subtilis AGTP BS918, Bacillus subtilis AGTP BS 1013, and Bacillus subtilis AGTP BS 1069, Bacillus subtilis AGTP 944, Bacillus pumilus AGTP BS 1068 and Bacillus pumilus KXl 1-1 , and strains having all the characteristics thereof, any derivative or variant thereof, and mixtures thereof.
- the enzyme producing strain(s) for improving growth performance of an animal may be administered as a single strain, one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), feed including one or more strain(s) or mixtures thereof.
- the disclosure relates to a method of increasing digestibility of an animal feed comprising administering an enzyme producing strain to an animal in an amount effective to increase the digestibility of an animal feed as compared to an animal not administered the enzyme producing strain.
- the method further comprises measuring the amount of nutrients
- the animal feed comprises DDGS.
- the disclosure relates to a method of increasing digestibility of an animal feed comprising administering an animal a feed supplemented with an enzyme producing strain in an amount effective to increase the digestibility of the animal feed as compared to an animal not administered the enzyme producing strain.
- methods for improving growth performance of an animal comprise administering an enzyme producing strain to an animal, and reducing the amount of undigested nutrients by the animal as compared to an animal that was not administered the enzyme producing strain.
- methods for improving growth performance of an animal comprise reducing the amount of undigested nutrients by an animal by administering an enzyme producing strain to the animal as compared to an animal that was not
- methods for improving growth performance of an animal comprise administering an enzyme producing strain to an animal, measuring the amount of nutrients accumulated in a manure pit from the animal administered the enzyme producing strain, and comparing the amount of nutrients in the manure pit from an animal administered the enzyme producing strains to the amount of nutrients in a second manure pit from an animal not administered the enzyme-producing strain.
- digestibility of an animal feed can be measured by the amount of nutrients in a manure pit. Any nutrient can be measured from the manure pit including but not limited to dry matter, ash, total nitrogen, ammonium nitrogen, phosphorpus and calcium.
- the enzyme producing strain(s) for improving nutrient digestibility may be administered as a single strain, one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), feed including one or more strain(s) or mixtures thereof.
- the disclosure relates to a method of increasing poultry growth performance comprising administering an enzyme producing strain to poultry in an amount effective to increase the growth performance of the poultry as compared to poultry not administered the enzyme producing strain.
- the methods disclosed herein can be used to improve growth performance regardless of the feed or the diet of the poultry.
- the disclosure relates to a method of increasing growth performance in poultry fed a high fibrous by-product diet comprising administering an enzyme producing strain to a poultry, which are fed a high fibrous by-product diet, in an amount effective to increase the growth performance of the poultry as compared to poultry not administered the enzyme producing strain.
- the disclosure relates to a method of increasing the average daily gain in poultry comprising administering an enzyme producing strain to poultry in an amount effective to increase the average daily gain of the poultry as compared to poultry not administered the enzyme producing strain.
- the disclosure relates to a method of increasing the average daily feed intake in poultry comprising administering an enzyme producing strain to poultry in an amount effective to increase the average daily feed intake as compared to poultry not administered the enzyme producing strain.
- the disclosure relates to a method of improving feed efficiency of an animal feed in poultry comprising administering to poultry an animal feed supplemented with an enzyme producing strain in an amount effective to increase the feed efficiency in poultry as compared to poultry not administered the enzyme producing strain.
- the disclosure relates to a method of improving carcass characteristics comprising administering an enzyme producing strain to poultry in an amount effective to improve the carcass characteristics of the poultry as compared to poultry not administered the enzyme producing strain.
- Carcass characteristics that can be improved include but are not limited to fat depth, organ weights, breast characteristics, dressed weight, carcass grade, and carcass value.
- the measured value of the carcass characteristics may be increased or decreased.
- the measured value of one or more of the following carcass characteristics is increased: fat depth, organ weights, breast characteristics, dressed weight, carcass grade, and carcass value.
- the measured value of one or more of the following carcass characteristics is decreased: fat depth, organ weights, breast characteristics, dressed weight, carcass grade, and carcass value.
- the disclosure relates to a method of reducing mortality in poultry comprising administering an enzyme producing strain to poultry in an amount effective to reduce mortality of said poultry as compared to poultry not administered the enzyme producing strain.
- the disclosure relates to a method of improving lignin digestibility comprising administering an enzyme producing strain to poultry in an amount effective to improve lignin digestibility as compared to poultry not administered the enzyme producing strain.
- the disclosure relates to a method of improving lignin digestibility in high fibrous diets comprising administering an enzyme producing strain to poultry in an amount effective to improve lignin digestibility of the high fibrous diets as compared to poultry not administered the enzyme producing strain.
- the high fibrous diets comprise by-product based diets.
- the diet comprises DDGS.
- the disclosure relates to a method of improving apparent ileal digestibility comprising administering an enzyme producing strain to poultry in an amount effective to improve apparent ileal digestibility as compared to poultry not administered the enzyme producing strain.
- the disclosure relates to a method of improving apparent total tract digestibility comprising administering an enzyme producing strain to poultry in an amount effective to improve apparent total tract digestibility as compared to poultry not administered the enzyme producing strain.
- the disclosure relates to a method of lowering the pH of ileal digesta comprising administering an enzyme producing strain to poultry in an amount effective to lower the pH of ileal digesta as compared to poultry not administered the enzyme producing strain.
- the methods recited above further comprise administering a feed supplemented with an enzyme producing strain.
- the enzyme producing strain(s) for improving poultry growth performance may be administered as a single strain, one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), feed including one or more strain(s) or mixtures thereof.
- the disclosure relates to a method of increasing growth performance of a pig comprising administering an enzyme producing strain to a pig in an amount effective to increase the growth performance of the pig as compared to a pig not administered the enzyme producing strain.
- the methods disclosed herein can be used to improve growth performance regardless of the feed or the diet of the pig.
- the disclosure relates to a method of increasing growth performance in a pig fed a high fibrous by-product diet comprising administering an enzyme producing strain to a pig, which is fed a high fibrous by-product diet, in an amount effective to increase the growth performance of the pig as compared to a pig not administered the enzyme producing strain.
- the disclosure relates to a method of increasing the average daily gain in a pig comprising administering an enzyme producing strain to a pig in an amount effective to increase the average daily gain of the pig as compared to a pig not administered the enzyme producing strain.
- the disclosure relates to a method of increasing the average daily feed intake in a pig comprising administering an enzyme producing strain to a pig in an amount effective to increase the average daily feed intake as compared to a pig not administered the enzyme producing strain.
- the disclosure relates to a method of improving feed efficiency of animal feed in a pig comprising administering to a pig an animal feed supplemented with an enzyme producing strain in an amount effective to increase the feed efficiency in the pig as compared to a pig not administered the enzyme producing strain.
- the disclosure relates to a method of improving carcass characteristics of a pig comprising administering an enzyme producing strain to a pig in an amount effective to improve the carcass characteristics of the pig as compared to a pig not administered the enzyme producing strain.
- Carcass characteristics that can be improved include but are not limited to fat depth, loin depth; percent lean meat; hot carcass weight, organ weights, carcass grade, and carcass value.
- the measured value of the carcass characteristics may be increased or decreased.
- the measured value of one or more of the following carcass characteristics is increased: fat depth, loin depth; percent lean meat; hot carcass weight, organ weights, carcass grade, and carcass value.
- the measured value of one or more of the following carcass characteristics is decreased: fat depth, loin depth; percent lean meat; hot carcass weight, organ weights, carcass grade, and carcass value.
- the disclosure relates to a method of reducing mortality rate in pigs comprising administering an enzyme producing strain to pigs in an amount effective to reduce mortality of said pigs as compared to pigs not administered the enzyme producing strain.
- the disclosure relates to a method of improving lignin digestibility comprising administering an enzyme producing strain to a pig in an amount effective to improve lignin digestibility as compared to a pig not administered the enzyme producing strain.
- the disclosure relates to a method of improving lignin digestibility in high fibrous diets comprising administering an enzyme producing strain to a pig in an amount effective to improve lignin digestibility of the high fibrous diets as compared to a pig not administered the enzyme producing strain.
- the high fibrous diets comprise by-product based diets.
- the diet comprises DDGS.
- the disclosure relates to a method of improving apparent ileal digestibility comprising administering an enzyme producing strain to a pig in an amount effective to improve apparent ileal digestibility in the pig as compared to a pig not administered the enzyme producing strain.
- the disclosure relates to a method of improving apparent total tract digestibility comprising administering an enzyme producing strain to a pig in an amount effective to improve apparent total tract digestibility in the pig as compared to a pig not administered the enzyme producing strain.
- the disclosure relates to a method of lowering the pH of ileal digesta comprising administering an enzyme producing strain to a pig in an amount effective to lower the pH of ileal digesta in the pig as compared to a pig not administered the enzyme producing strain.
- the methods recited above further comprise administering a feed supplemented with an enzyme producing strain.
- the enzyme producing strains in the methods recited above related to pig growth performance is a composition comprising Bacillus subtilis strains AGTP BS918 (NRRL B-50508), AGTP BS 1013 (NRRL B-50509) and AGTP BS3BP5 (NRRL B-50510).
- the enzyme producing strain(s) for improving pig growth performance may be administered as a single strain, one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), feed including one or more strain(s) or mixtures thereof.
- the disclosure relates to a method for improving manure storage units comprising administering enzyme producing strain(s), one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), feed including one or more strain(s) or mixtures thereof an animal in an effective amount to improve the manure storage unit.
- the animal is a pig.
- the manure storage unit is a manure pit.
- the disclosure relates to a method for improving air quality in a room housing an animal comprising administering enzyme producing strain(s), one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), feed including one or more strain(s) or mixtures thereof to an animal in an effective amount to improve the air quality in the room.
- improving air quality comprises abating odors in the room.
- improving air quality comprises reducing production of one or more of the following: volatile fatty acids, ammonia, methane, or hydrogen sulfide.
- the administration improves at least one of the following: less incidence of foaming, less accumulation of solids, and less nitrogen, sulfur, phosphorus, fiber-bound nitrogen, total protein, fat, and fiber content when compared to a control manure pit.
- the enzyme producing strains for improving manure storage units comprise a Bacillus strain.
- the Bacillus strain is Bacillus subtilis.
- the Bacillus strain is Bacillus pumilus.
- the enzyme producing strains for improving a manure storage unit include but are not limited to Bacillus subtilis AGTP BS3BP5, Bacillus subtilis AGTP BS442, Bacillus subtilis AGTP BS521 , Bacillus subtilis AGTP BS918, Bacillus subtilis AGTP BS1013, and Bacillus subtilis AGTP BS 1069, Bacillus subtilis AGTP 944, Bacillus pumilus AGTP BS 1068 and Bacillus pumilus KX1 1 -1 , and strains having all the characteristics thereof, any derivative or variant thereof, and mixtures thereof.
- the disclosure relates to a method for improving a manure storage unit comprising contacting enzyme producing strain(s), one or more
- Improvements resulting from contacting the enzyme producing strain(s) directly to a manure storage unit include at least one of less incidence of foaming, less accumulation of solids, and less nitrogen, sulfur, phosphorus, fiber- bound nitrogen, total protein, fat, and fiber content than control manure pits.
- the methods described above can be used to improve manure waste problems, which include but are not limited to foaming in the manure pit, accumulation of solids, increases in (a) nitrogen, (b) sulfur, (c) phosphorus, (d) fiber- bound nitrogen,(e) total protein, (f) fat, and (g) fiber content.
- the disclosure relates to a method for controlling or reducing foam in a manure storage unit comprising administering an effective amount of enzyme producing strain(s), one or more combination(s) of the strain(s), one or more
- the foam: liquid ratio of the manure storage unit is reduced.
- the disclosure relates to a method for controlling or reducing foam in a storage pit comprising contacting enzyme producing strain(s), one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), compositions including one or more strain(s) or mixtures thereof directly to a manure storage pit in an effective amount to control reduce the foam in a manure storage pit as compared to a manure storage pit without the enzyme producing strains.
- the foam: liquid ratio of the manure storage unit is reduced.
- the amount of foam in a manure storage unit is associated with the amount of solids in the manure storage unit.
- Manure storage units with a higher percentage of solids generally have greater foam: liquid ratio, and hence more foam.
- the disclosure relates to a method for controlling or reducing foam in a manure storage unit comprising administering an effective amount of enzyme producing strain(s), one or more combination(s) of the strain(s), one or more
- the foam: liquid ratio of the manure storage unit is reduced.
- the disclosure relates to a method for controlling or reducing foam in a manure storage unit comprising contacting enzyme producing strain(s), one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), compositions including one or more strain(s) or mixtures thereof directly to a manure storage unit in an effective amount to reduce the amount of solids in the manure storage unit as compared to a manure storage unit without the enzyme producing strains.
- the foam: liquid ratio of the manure storage unit is reduced.
- the disclosure relates to a method for altering a microbial ecology in a manure storage unit comprising administering enzyme producing strain(s), one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), feed including one or more strain(s) or mixtures thereof to a an animal in an effective amount to alter the microbial ecology in the manure storage unit as compared to a manure storage unit where animals were not administered the enzyme producing strains.
- the disclosure relates to a method for altering a microbial ecology in a manure storage unit comprising contacting enzyme producing strain(s), one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), compositions including one or more strain(s) or mixtures thereof directly to the manure storage unit in an effective amount to alter the microbial ecology in the manure storage unit as compared to a manure storage unit where the enzyme producing strains were not used.
- enzyme producing strains can alter, either directly or indirectly, the microbial ecology in a manure storage unit and cause an increase in the population of certain bacterial species and a decrease in the population of other bacterial species.
- Bacterial species that can be altered, either directly or indirectly, by the enzyme producing strains include but are not limited to methanogens, bacteroides, Clostridium cluster I, Clostridium cluster IV, Clostridium cluster XlVa, and sulfate reducing bacteria.
- the enzyme producing strains have the ability to shift nutrient utilization by the microbial population and subsequently alter the microbial ecology such that aggregated foaming incidents are alleviated, either by lessening gas production available to be trapped in the foam matrix, altering the availability of molecular compounds making up the foam matrix, or directly inhibiting the growth of bacteria associated with foaming incidents.
- the disclosure relates to a method for altering volatile fatty acid composition in manure comprising administering an enzyme producing strain to an animal in an effective amount to alter fatty acid composition in manure from said animal as compared to manure from a second animal not administered an enzyme producing strain.
- altering fatty acid composition may result in an increase in certain fatty acids and a decrease in other fatty acids.
- altering fatty acid compositions may occur in a direct or indirect manner.
- the disclosure relates to a method for altering volatile fatty acid composition in a manure storage unit comprising administering an enzyme producing strain to an animal in an effective amount to alter the fatty acid composition in manure from said animal that is stored in said manure storage unit as compared manure from a second animal not administered an enzyme producing strain.
- the animal is a pig.
- the manure storage unit is a manure pit.
- the disclosure relates to a method for altering volatile fatty acid composition in a manure storage unit comprising administering an enzyme producing strain to an animal; measuring the amount of volatile fatty acid in manure from the animal fed the enzyme producing strains; and adjusting the concentration of enzyme producing strain fed to the animal to achieve a desired volatile fatty acid concentration in the manure stored in the manure pit.
- the disclosure relates to a method for altering volatile fatty acid composition in a manure storage unit comprising contacting an enzyme producing strain directly to the manure storage unit in an effective amount to alter fatty acid composition in the manure storage unit as compared to a manure storage unit without an enzyme producing strain.
- the volatile fatty acids that can be altered by the methods disclosed herein include but are not limited to acetate, propionate, butyrate, I-butyrate, 4- methyl-valerate.
- methods disclosed herein increase the fatty acid butyrate in the manure.
- the methods disclosed herein decrease the fatty acid 4-methyl-valerte in the manure.
- total volatile fatty acids can be altered.
- methods disclosed herein reduce total volatile fatty acids in the manure.
- the disclosure relates to a method for altering gas emissions comprising administering an enzyme producing strain to an animal in an effective amount to alter gas emissions as compared to an animal not administered an enzyme producing strain.
- altering gas emissions may result in an increase in certain gas emissions and a decrease in other gas emissions.
- altering gas emissions may occur in a direct or indirect manner.
- the enzyme producing strains for altering gas emissions comprise a Bacillus strain.
- the Bacillus strain is Bacillus subtilis.
- the Bacillus strain is Bacillus pumilus.
- enzyme producing strains for altering gas emissions include but are not limited to Bacillus subtilis AGTP BS3BP5, Bacillus subtilis AGTP BS442, Bacillus subtilis AGTP BS521 , Bacillus subtilis AGTP BS918, Bacillus subtilis AGTP BS 1013, and Bacillus subtilis AGTP BS1069, Bacillus subtilis AGTP 944,
- the enzyme producing strain(s) for altering gas emissions may be administered as a single strain, one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), feed including one or more strain(s) or mixtures thereof.
- Gases that can be altered by the enzyme producing strains include but are not limited to ammonia, carbon dioxide, methane, and hydrogen sulfide.
- the disclosure relates to a to a method for altering gas emissions in a room housing an animal comprising administering an enzyme producing strain to an animal in an effective amount to alter gas emissions in the room as compared to a room housing animals that were not administered the enzyme producing strains.
- the animal is a pig.
- the room is located in a barn.
- methane and hydrogen sulfide gas emissions are reduced in the room housing animals that were administered the enzyme producing strains.
- the disclosure relates to a method for altering gas emissions in a room housing animals comprising administering an enzyme producing strain to an animal in an effective amount to alter gas emissions in the room housing the animal; and measuring the amount of gas in the room.
- the disclosure relates to a method for altering gas emissions in a manure storage unit comprising administering an enzyme producing strain to an animal in an effective amount to alter gas emissions in the manure storage unit as compared to a manure storage unit with manure from animals that were not administered the enzyme producing strains.
- the animal is a pig.
- the manure storage unit is a manure pit.
- the disclosure relates to a method for altering gas emissions in a manure storage unit comprising contacting an enzyme producing strain directly to the manure storage unit in an effective amount to alter gas emissions as compared to a manure storage unit without the enzyme producing strains.
- the animal is a pig.
- the manure storage unit is a manure pit.
- methane and hydrogen sulfide gas emissions are reduced.
- the disclosure relates to a method of alleviating inflammatory effects in an animal comprising administering an enzyme producing strain to the animal in an amount effective to alleviate or inhibit the inflammatory response.
- the animal is a mammal.
- the animal is poultry.
- the animal is a chicken.
- the animal is a pig.
- the enzyme producing strains can alleviate or inhibit the inflammatory response from 2-5%, 5-10%, 10-15%, 15-20%, 20-25%, 25-30%, 30-35%, 35-40%, 40-45%, 45- 50%, 50-55%, 55-60%, 60-65%, 65-70%, 70-75%, 75-80%, 80-85%, 85-90%, 90-95%, and greater than 95% as compared to a reference control (e.g., an agent with no antiinflammatory properties, such as a buffered saline or a strain with no anti-inflammatory properties).
- a reference control e.g., an agent with no antiinflammatory properties, such as a buffered saline or a strain with no anti-inflammatory properties.
- the enzyme producing strains for alleviating inflammatory effects in an animal comprise a Bacillus strain.
- the Bacillus strain is Bacillus subtilis.
- the Bacillus strain is Bacillus pumilus.
- composition comprising Bacillus subtilis AGTP BS 1013, Bacillus subtilis AGTP BS3BP5, and Bacillus subtilis AGTP 944.
- the enzyme producing strains can alleviate or inhibit the inflammatory response by reducing the expression of genes involved in the inflammatory response.
- the enzyme producing strains can reduce the expression of a gene from 2- 5%, 5-10%, 10-15%, 15-20%, 20-25%, 25-30%, 30-35%, 35-40%, 40-45%, 45-50%, 50- 55%, 55-60%, 60-65%, 65-70%, 70-75%, 75-80%, 80-85%, 85-90%, 90-95%, and greater than 95% as compared to a reference control ⁇ e.g., an agent with no antiinflammatory properties, such as a buffered saline or a strain with no anti-inflammatory properties).
- the enzyme producing strains can alleviate or inhibit the inflammatory response by reducing the expression of a protein involved in the inflammatory response.
- the enzyme producing strains can alleviate or inhibit the inflammatory response by reducing the activity of a protein involved in the inflammatory response.
- the enzyme producing strains can reduce the expression or activity of a protein from 2-5%, 5-10%, 10-15%, 15-20%, 20-25%, 25-30%, 30-35%, 35_40%, 40-45%, 45-50%, 50-55%, 55-60%, 60-65%, 65-70%, 70-75%, 75-80%, 80- 85%o, 85-90%), 90-95%), and greater than 95% as compared to a reference control (e.g., an agent with no anti-inflammatory properties, such as a buffered saline or a strain with no anti-inflammatory properties).
- a reference control e.g., an agent with no anti-inflammatory properties, such as a buffered saline or a strain with no anti-inflammatory properties.
- enzyme producing strains can reduce expression of a gene or reduce activity of a protein involved in any pathway involved in the
- inflammatory response including but not limited to adhesion-extravasation-migration; apoptosis signaling; calcium signaling; complement cascade; cytokines, and cytokine signaling; eicosanoid synthesis and signaling; glucocorticoid/PPAR signaling; G-protein coupled receptor signaling; innate pathogen detection; leukocyte signaling; MAPK signaling; natural killer cell signaling; NK-kappa B signaling; antigen presentation; PI3K/AKT signaling; ROS/glutathione/cytotoxic granules; and TNF superfamily and signaling.
- the enzyme producing strains can reduce the activity of or expression of cytokines including but not limited to interleukins, interferons, tumor necrosis factor, erythropoietin, Tpo, Fit-3L, SCF, M-CSF, and MSP.
- cytokines including but not limited to interleukins, interferons, tumor necrosis factor, erythropoietin, Tpo, Fit-3L, SCF, M-CSF, and MSP.
- interleukins include but are not limited to interleukin (IL) -1 ,
- interferons include but are not limited to IFN-a, IFN- ⁇ , and IFN-gamma.
- tumor necrosis factor includes but is not limited to CD154, LT- ⁇ , TNF-a, TNF- ⁇ , TGF- ⁇ , ⁇ - ⁇ 2, ⁇ - ⁇ 3, 4-1BBL, APRIL, CD70, CD 153, CD 178, GITRL, LIGHT, OX40L, TALL-1 , TRAIL, TWEAK, and TRANCE.
- the enzyme producing strains can be used to reduce the activity of or reduce the expression of chemokines including but not limited to C chemokines, CC chemokines, CXC chemokines, and CXC3 chemokines.
- C chemokines include but are not limited to XCL1 , and XCL2.
- CC chemokines include but are not limited to CCL1 , CCL 2, CCL 3, CCL 4, CCL 5, CCL 6, CCL 7, CCL 8, CCL 9, CCL 10, CCL 1 1 , CCL 12, CCL 13, CCL 14, CCL 15, CCL 16, CCL 17, CCL 18, CCL 19, CCL 20, CCL 21 , CCL 22, CCL 23, CCL 24, CCL 25, CCL 26, CCL 27, and CCL 28.
- CXC chemokines include but are not limited to CXCL1 ,
- the enzyme producing strain(s) for alleviating an inflammatory response may be administered as a single strain, one or more combination(s) of the strain(s), one or more supernatant(s) from a culture of the strain(s), feed including one or more strain(s) or mixtures thereof.
- the enzymatic activity is selected from the group consisting of cellulase activity, a-amylase activity, xylanase activity, esterase, ⁇ -mannanase, lipase activity, protease activity, and combinations thereof. 3. The strain of any of the preceding paragraphs, wherein the enzymatic activity is selected from the group consisting of zeinase activity and soy protease activity, and combinations thereof.
- strain of any of the preceding paragraphs wherein, when the strain is administered to an animal, the strain provides an improvement in at least one of the breakdown of complex dietary components, manure waste problems, the efficiency of swine production, carcass characteristics, and swine performance when feeding high levels of DDGS as compared to a control animal.
- strain of any of the preceding paragraphs wherein, when the strain is administered to an animal, the strain provides an improvement in at least one of the breakdown of complex dietary components, manure waste problems, the efficiency of swine production, carcass characteristics, and swine performance when feeding high levels of DDGS by at least 2% compared to a control animal.
- strain of any of the preceding paragraphs wherein, when the strain is administered to an animal, the strain provides an improvement in at least one of the following: body weight, average daily gain, average daily feed intake, feed efficiency, carcass characteristics, nutrient digestibility and manure waste problems as compared to a control animal.
- strain of any of the preceding paragraphs wherein, when the strain is administered to an animal, the strain provides an improvement in at least one of the following: body weight, average daily gain, average daily feed intake, feed efficiency, carcass characteristics, nutrient digestibility and manure waste problems by at least 2% compared to a control.
- strain selected from the group consisting of the species B. subtilis and B. pumilus, strains having all the characteristics thereof, any derivative or variant thereof, and mixtures thereof.
- strain(s) is(are) selected from the group consisting of Bacillus subtilis AGTP BS3BP5 (NRRL B-50510), Bacillus subtilis AGTP BS442 (NRRL B-50542), Bacillus subtilis AGTP BS521 (NRRL B-50545), Bacillus subtilis AGTP BS918 (NRRL B-50508), Bacillus subtilis AGTP BS1013 (NRRL B-50509), Bacillus subtilis AGTP BS 1069 (NRRL B-50544), 5ac/7/ «i JKM/W AGTP 944 (NRRL B-50548), 5ac // «j pumilus AGTP BS 1068 (NRRL B- 50543), and Bacillus pumilus KX1 1-1 (NRRL B-50546), and strains having all the characteristics thereof and any derivative or variant thereof, and mixtures thereof.
- strain(s) is(are) selected from the group consisting of Bacillus subtilis AGTP BS3BP5 (NRRL B-50510), Bacillus subtilis AGTP BS442 (NRRL B-50542), Bacillus subtilis AGTP BS521 (NRRL B-50545), Bacillus subtilis AGTP BS918 (NRRL B-50508), Bacillus subtilis AGTP BS 1013 (NRRL B-50509), Bacillus subtilis AGTP BS 1069 (NRRL B-50544), Bacillus subtilis AGTP 944 (NRRL B-50548), Bacillus pumilus AGTP BS 1068 (NRRL B- 50543), and Bacillus pumilus KX1 1 -1 (NRRL B-50546) any derivative or variant thereof, and mixtures thereof.
- Bacillus subtilis AGTP BS3BP5 NRRL B-50510
- Bacillus subtilis AGTP BS442 NRRL B-50542
- Bacillus subtilis AGTP BS521
- Bacillus strain is Bacillus subtilis AGTP BS3BP5 (NRRL B-50510).
- Bacillus strain is Bacillus subtilis AGTP BS442 (NRRL B-50542).
- Bacillus strain is Bacillus subtilis AGTP BS521 (NRRL B-50545).
- Bacillus strain is Bacillus subtilis AGTP BS918 (NRRL B-50508).
- Bacillus strain is Bacillus pumilus KX1 1 -1 (NRRL B-50546).
- composition comprising supernatant from one or more culture(s) of one or more strain(s) according to any one of paragraphs 1-19, and mixtures thereof.
- composition comprising one or more strain(s) according to any one of paragraphs 1-19, and mixtures thereof.
- a feed for an animal wherein the feed is supplemented with the isolated strain(s) according to any one of paragraphs 1 - 19 or with the composition(s) according to any one of paragraphs 20-23 or mixtures thereof.
- a method comprising the step of administering to an animal an effective amount of the strain(s) according to any one of paragraphs 1-19 or the composition(s) according to any one of paragraphs 20-23, the feed according to paragraph 24 or mixtures thereof, wherein administration enzymatically breaks down at least one of fiber, protein, carbohydrate, and lipid in a diet fed to the animal when feeding high levels of DDGS to the animal.
- a method comprising the step of administering to an animal an effective amount of the strain(s) according to any one of paragraphs 1-19, the composition(s) according to any one of paragraphs 20-23, the feed according to paragraph 24, or mixtures thereof, wherein the administration improves at least one of the breakdown of complex dietary components, manure waste problems, the efficiency of swine
- a method comprising the step of administering to an animal an effective amount of the strain(s) according to any one of paragraphs 1-19, the composition(s) according to any one of paragraphs 20-23, the feed according to paragraph 24, or mixtures thereof, wherein the administration improves at least one of the following body weight, average daily gain, average daily feed intake, feed efficiency, carcass
- a method comprising the step of administering to poultry an effective amount of the strain(s) according to any one of paragraphs 1-19, the composition(s) according to any one of paragraphs 20-23, the feed according to paragraph 24, or mixtures thereof, wherein the administration improves at least one of the following body weight, average daily gain, average daily feed intake, feed efficiency, carcass
- a method comprising the step of administering to a pig an effective amount of the strain(s) according to any one of paragraphs 1 -19, the composition(s) according to any one of paragraphs 20-23, the feed according to paragraph 24, or mixtures thereof, wherein the administration improves at least one of the following body weight, average daily gain, average daily feed intake, feed efficiency, carcass
- a method comprising the step of administering an effective amount of the strain(s) according to any one of paragraphs 1 - 19 or with the composition(s) according to any one of paragraphs 20-23 to a swine manure storage unit.
- a method of forming a composition comprising: (a) growing, in a liquid broth, a culture including one of the isolated strain(s) according to any one of paragraphs 1-19; and (b) separating the strain from the liquid broth.
- a method for improving growth performance of an animal comprising administering to an animal an effective amount of the strain(s) according to any one of paragraphs 1 -19, the composition(s) according to any one of paragraphs 20-23, the feed according to paragraph 24, or mixtures thereof as compared to a control animal.
- a method for improving manure storage units comprising administering to an animal an effective amount of the strain(s) according to any one of paragraphs 1 -19, the composition(s) according to any one of paragraphs 20-23, the feed according to paragraph 24, or mixtures thereof in an effective amount to improve the manure storage unit as compared to the manure from an control animal, which is stored in a second manure storage unit.
- a method for improving manure storage units comprising contacting an effective amount of the strain(s) according to any one of paragraphs 1 -19, the
- a method of controlling or reducing foam in a manure pit comprising administering an effective amount of the strain(s) according to any one of paragraphs 1 -19, the composition(s) according to any one of paragraphs 20-23, the feed according to paragraph 24, or mixtures thereof to animals whose manure is stored in the manure pit.
- a method of controlling or reducing foam in a manure pit comprising contacting an effective amount of the strain(s) according to any one of paragraphs 1 -19, the composition(s) according to any one of paragraphs 20-23, the feed according to paragraph 24, or mixtures thereof directly to the manure pit.
- a method of altering the microbial ecology in a manure pit comprising administering an effective amount of the strain(s) according to any one of paragraphs 1 -19, the composition(s) according to any one of paragraphs 20-23, the feed according to paragraph 24, or mixtures thereof to animals whose manure is stored in the manure pit.
- a method of altering the microbial ecology in a manure pit comprising contacting an effective amount of the strain(s) according to any one of paragraphs 1 -19, the composition(s) according to any one of paragraphs 20-23, the feed according to paragraph 24, or mixtures thereof directly to the manure pit.
- a method of altering volatile fatty acid composition in a manure pit comprising administering an effective amount of the strain(s) according to any one of paragraphs 1-19, the composition(s) according to any one of paragraphs 20-23, the feed according to paragraph 24, or mixtures thereof to animals whose manure is stored in the manure pit.
- a method of altering volatile fatty acid composition in a manure pit comprising contacting an effective amount of the strain(s) according to any one of paragraphs 1-19, the composition(s) according to any one of paragraphs 20-23, the feed according to paragraph 24, or mixtures thereof directly to the manure pit.
- a method of altering gas emissions in a room housing an animal comprising administering an effective amount of the strain(s) according to any one of paragraphs 1-19, the composition(s) according to any one of paragraphs 20-23, the feed according to paragraph 24, or mixtures thereof to animals in an effective amount to reduce gas emissions.
- a method of altering gas emissions in a manure storage unit comprising administering an effective amount of the strain(s) according to any one of paragraphs 1- 19, the composition(s) according to any one of paragraphs 20-23, the feed according to paragraph 24, or mixtures thereof to animals in an effective amount to reduce gas emissions.
- a method of altering gas emissions in a manure storage unit comprising contacting an effective amount of the strain(s) according to any one of paragraphs 1-19, the composition(s) according to any one of paragraphs 20-23, the feed according to paragraph 24, or mixtures thereof directly to the manure storage unit in an effective amount to reduce gas emissions.
- Agricultural and environmental waste samples were collected from diverse source locations over a period of several years. Upon arrival, all samples were diluted in a 1 % peptone solution, spore treated for 35 minutes at 65°C and serially diluted onto tryptic soy agar plates (BD Difco, Franklin Lakes, NJ). Following incubation at 32°C for 48 hours, growth of diverse unknown environmental colonies were cultured from the plates into tryptic soy broth (TSB), similarly re-incubated and stored frozen at -85°C for later analysis. Approximately 4000 presumptive Bacillus isolates of environmental origin were collected and screened for their ability to degrade a variety of substrates of interest. Environmental cultures were picked from library freezer stocks and incubated in 0.5ml TSB at 32°C for 24 hours in an orbital shaking incubator, with speed set to 130
- Bacillus subtilis AGTP BS3BP5 Figures 1 & 2), Bacillus subtilis AGTP BS442 ( Figures 3 & 4), Bacillus subtilis AGTP BS521 ( Figures 5 & 6), Bacillus subtilis AGTP BS918 ( Figures 7 & 8), Bacillus subtilis AGTP BS1013 ( Figures 9 & 10), Bacillus pumilus AGTP BS 1068 ( Figures 1 1 & 12), Bacillus subtilis AGTP BS 1069 ( Figures 13 & 14), Bacillus subtilis AGTP 944, ( Figures 15-18), and Bacillus pumilus KXl 1-1 ( Figures 19- 21).
- Table 1- Media components used to assay the enzymatic activities illustrated by 5 substrate utilization ro erties of environmentall derived Bacillus.
- a Values represent the zone of substrate degradation in millimeters (mm), as indicated by clearing of the surrounding edge of colony growth for each strain.
- the three Microsource® S Bacillus strains (B. subtilis 27 (BS 27), B.
- B. amyloliquefaciens 842 and B. licheniformis 21 (Bl 21) were picked from individual library freezer stocks and incubated in 0.5ml TSB at 32°C for 24 hours in an orbital shaking incubator, with speed set to 130
- Table 3- Media components used to assay the enzymatic activities illustrated by substrate utilization roperties of environmentally derived Bacillus.
- a Values represent the zone of substrate degradation in millimeters (mm), as 5 indicated by clearing of the surrounding edge of colony growth for each strain.
- Phase 1 50 to 90 lbs
- Phase 2 90 to 130 lbs
- Phase 3 130 to 180 lbs
- Phase 4 180 to 230 lbs
- Phase 5 Phase 5
- the two dietary treatments consisted of a basal control diet devoid of DFM 3BP5 and the basal diet with DFM 3BP5 in a five phase grower-finisher pig study. Diets were formulated to meet or exceed NRC (1988) requirements and consisted predominately of corn, soybean meal, and DDGS at 47%, 18.6%, and 30% of the diet, respectively. Strain Bacillus subtilis AGTP BS3BP5 was added to the diet at 7.3 x 10 CFU/kg feed and supplied approximately 1 x 10 CFU/head/day based on average daily feed intake (ADFI). Data collected were average daily gain, average daily feed intake, and feed required per unit of gain during each of the five growing-finishing phases. Pigs were removed from the study when the average pig weight of the entire barn reached approximately 270 lbs.
- Performance data were analyzed as a randomized complete block design with pen as the experimental unit and blocks based on initial body weight. Analysis of variance was performed using the GLM procedures of SAS (SAS Institute, Inc., Cary, NC).
- Pigs fed diets containing strain Bacillus subtilis AGTP BS3BP5 had greater (P ⁇ 0.01) average daily gain (ADG) and gaimfeed during the Phase 1 growing period and tended (P ⁇ 0.08) to have greater ADG and gaimfeed in the combined Phase 1 and Phase 2 periods compared to pigs fed the control diet (Table 5).
- the increase in ADG during the first growing period resulted in pigs fed strain Bacillus subtilis AGTP BS3BP5 having greater (P ⁇ 0.01) body weight at the end of the Phase 1 period compared to pigs fed the control diet.
- Table 5 Growth performance responses of pigs fed Bacillus subtilis AGTP 3BP5 compared to pigs fed control diets.
- a pig feeding trial was conducted to assess the effects of a Bacillus-based direct- fed microbial (DFM) administered in the diet to grower-finisher pigs on growth performance responses (average daily gain (ADG), average daily feed intake (ADFI), and gaimfeed), carcass yield and quality measurements, manure nutrient composition, microbial composition of manure pit, and gas emissions (ammonia, methane, and hydrogen sulfide) from the manure pit.
- a total of 720 pigs (Yorkshire-Landrace x Duroc genotype) were housed in 12 rooms with 12 pens/room and 5 pigs/pen. Each room contained two manure pits with capacity to store manure for an entire wean-to-finish period.
- Each manure pit is located under 6 pens with a wall under the central walkway dividing the two pits in each room.
- Each of the twelve rooms was equipped to monitor gas emissions from each independently ventilated room. Pigs were weaned and placed in pens prior to the start of the study and began to receive experimental test feed when they had reached an average body weight of 29.5 kg. Pigs were fed for five feeding phases lasting three weeks each, and ending when pigs reached an average slaughter weight of 120 kg.
- DFM were equally represented in the experimental test material that contained 1.47 x 10 CFU of the DFM per gram of material.
- the Bacillus combination DFM was added to the diet at 7.3 x 10 CFU/kg feed and supplied approximately 1 x 10 CFU/head/day based on average daily feed intake.
- Pig performance measures were determined at the end of each feeding phase. These data were represented by 72 replicates/treatment). Manure pits were vacuum sampled at week 0 (initially and prior to pigs receiving treatment), week 9, and week 15 and proximate analysis was performed on the nutrients contained in the swine manure waste (12 replicates/treatment). A subsample on each day was also obtained to determine volatile fatty acid content and microbial community analysis (12 replicates/treatment).
- Phase 3 (wk 6-9) 0.343 0.337 0.025 0.369
- Data are the means of 24 pens/treatment.
- a study will be conducted to assess the efficacy of a Bacillus-based swine manure pit additive on solids accumulation, nutrient composition, and manure foaming characteristics. Multiple production sites will be identified that contain at least three barns with separate manure handling and storage units. Manure pits at each site will be treated with a Bacillus-based additive at two doses and one manure pit will be left untreated. The low dose pit treatment will be added to one manure pit on each production site in 500 g of test material per 100,000 gallons of manure formulated to contain 4 x 10 10 CFU per gram of test material.
- the high dose treatment will be added to a different manure pit from the low dose at each production site in 500 g of test material per 100,000 gallons of manure formulated to contain 1 x 10" CFU per gram of test material.
- the third manure pit on each site will be left untreated as a control.
- Samples will be obtained from each manure pit at each production site on test initially prior to any treatment and periodically (approximately once every month) over a three to six month period. Data from manure pits will be collected to assess the incidence of foaming and manure samples will be analyzed to assess solids accumulation and nutrient composition. Expectations are that treated swine manure pits will have less incidence of foaming, less accumulation of solids, and less nitrogen, sulfur, phosphorus, fiber-bound nitrogen, total protein, fat, and fiber content than control manure pits.
- Poultry Feeding Trial Demonstrating Improved Growth Performance in Response to Bacillus Strain Combinations Added to Poultry Diets.
- Poultry feeding trials will be conducted to assess the effects of a Bacillus-based direct-fed microbial (DFM) feed additive on body weight gain, feed intake, feed efficiency and mortality of turkeys, broilers, and layers.
- Dietary treatments may consist of several combinations of Bacillus strains administered as a DFM and experimental DFM treatments combined with enzymes, compared to a relative control group of birds.
- Bacillus DFM treatments will be added to the diet at 1.5 x 10 5 CFU/g feed and supplied approximately 1 x 10 7 to 5 x 10 7 CFU/head/day based on average daily feed intake of various production systems (turkeys, broilers, layers).
- Diets will consist of corn-soybean meal-DDGS based diets. Energy and all other nutrient levels will be formulated to meet or exceed the requirements of the test birds. Diets will be fed for an approximate 42-day test period and will be fed in three feeding phases: starter (dl- 20) and grower (d 21 -38) and finisher (d38-42). Diets will be pelleted (approximately 75 °C), and starter feed will be crumbled.
- Body weight, body weight gain, feed intake, FCR, FCE and mortality will be analyzed by analysis of variance (ANOVA) and least significant difference tests.
- the data will support efficacy of the DFM treatment(s). Specifically, it is expected that the DFM treatment will increase percent lean yield and dressing percentage, shift gastrointestinal microbial communities to favorable populations for nutrient utilization, and improve the efficiency of bird growth, and improve egg case weights.
- a total of 444 pigs (200 barrows and 244 gilts) were used in a 15-wk grow-fmish study to investigate the use of a Bacillus direct-fed microbial supplement on growth performance, carcass measurements, manure pit characteristics and gas emissions.
- Pigs were housed in an environmentally controlled barn, which contained 12 identical rooms with 12 pens per room. Two manure pits were contained in each of under each of the 12 rooms with 6 pens over each manure pit. Prior to the start of the experiment, manure pits were thoroughly cleaned. Manure pits were then charged with a small amount of water (-600 gallons).
- Pigs allocated to test were weaned, blocked by body weight and sex, and randomly assigned to dietary treatments (Control and Bacillus DFM) with 4-5 pigs per pen (2-3 barrows and 2-3 gilts per pen). Prior to the start of dietary treatments, pigs were fed an adjustment diet for two weeks to seed the pits with manure. Pigs were then fed either a control diet or the control diet with Bacillus DFM supplementation.
- the Bacillus DFM microbial consisted of equal proportions of Bacillus subiilis strains AGTP BS918 (NRRL B-50508), AGTP BS1013 (NRRL B-50509) and AGTP BS3BP5 (NRRL B-
- Dietary treatments were maintained throughout the experiment, but diets were adjusted every three weeks to better meet the nutritional needs of the pigs, resulting in 5 dietary phases (3 grower phases, 2 finisher phases) formulated to meet or exceed the nutrient requirements of pigs at each production stage in each of the five phases (NRC, 1998). Diet formulations were based on corn and soybean meal with varying levels of corn-based dried distillers grains with solubles (DDGS) over the five phases.
- DDGS corn-based dried distillers grains with solubles
- diets for grower Phases 1 , 2, and 3 were formulated to contain 25% DDGS, the finisher Phase 4 diet contained 20% DDGS, and the second finisher Phase 5 diet contained 10% DDGS.
- Manure pits were sampled at the start and end of each of the grower and finisher phases using a vacuum core sampler designed with a vacuum pump connected to two vacuum flasks with clear plastic tubing with a hard plastic core sampler end. Core samples of the manure pit were obtained by sampling four locations under every pen over each pit on test. Manure pit sampling locations relative to the pen included: (1) beneath the center of the pen; (2) under the pen waterer; (3) under the front of the pen feeder; and (4) beneath the far corner of the pen opposite the feeder. Manure contents were analyzed 0
- the supernatant was filtered (0.22 ⁇ ) and analyzed for acetic acid, propionic acid, butyric acid, I-butyric acid, I- valeric acid, valeric acid, 4-mefhylvalerate using a Waters 2695 separation module (Waters Corp., Milford, MA) equipped with a 300 X 7.8 mm Aminex HPX-87H column (Biorad Laboratories, Inc., Hercules, CA). An isocratic method was applied with a mobile phase solvent consisting of 16.8 mM phosphoric acid in water/acetonitrile (98:2, v/v) at 0.85 mL/min flow rate and 65 °C column temperature. All analytes were detected with a 2996 PDA detector (Waters) at 21 1 nm absorption.
- Pigs averaged 64.5 lb at the start of the experiment and weighed an average of 257.1 lb after 15 wk of feeding. Pigs fed the diet containing the supplemental DFM were 4 lb heavier (P 0.10) at the end of the experiment compared to control fed pigs (Table 7). This response resulted from faster growth when pigs were fed the DFM supplement compared to control pigs (2.01 vs. 1.93 lb/d, respectively; P ⁇ .03; Table 8). Average daily feed intake (ADFI) was unaffected by dietary treatment (Table 9).
- Hot carcass weights were 4.5 lb heavier (P ⁇ 0.01) for pigs fed DFM
- Manure nutrient values measured from samples obtained throughout the trial period are reported in Table 12.
- Bacillus DFM supplementation decreased dry matter 7%, ash by 8%, and ammonium nitrogen by 5% in manure from treated pigs compared to control. The observed reductions in dry matter and ash excretion may be attributable to improvements in feed efficiency.
- VFA Total volatile fatty acids
- Bacillus DFM during the growing and finishing production phases results in improved growth rate, feed efficiency, and final hot carcass weight. Supplementation with the DFM also can reduce dry matter, ash, and ammonium N in the manure pit. Furthermore, reductions in methane and hydrogen sulfide emissions from stored swine manure were evident when the Bacillus DFM was supplemented to pig diets.
- Table 17 Feeding phases and diet composition.
- Vitamin premix 0.150 0.150 0.090 0.090 0.075
- Diets were formulated to simulate standard commercial diets with excess crude protein but limited energy. Except for the first 6 weeks of trial, no antibiotic growth promoters were fed. Treatment consisted of direct-fed microbial (DFM) supplementation compared to control diet without DFM.
- the direct-fed microbial consisted of equal proportions of Bacillus subtilis strains AGTP BS918 (NRRL B-50508), AGTP BS 1013 (NRRL B-50509) and AGTP BS3BP5 (NRRL B-50510) summing to a guaranteed 3.0 x 10 8 cfu/g of DFM product, included at a rate of 1 lb/ton in feed, resulting in a
- Average daily gain of pigs fed the DFM was greater (P ⁇ 0.05) from d 0 to 14 and d 14 to 28 of the trial compared to control pigs (Table 18), which resulted in a greater (P ⁇ 0.05) body weight of DFM supplemented pigs on dl4 and d 28 of the study (Table 19).
- Table 20 Average daily feed intake (adfi) over the duration of the study.
- Direct-fed microbial supplementation resulted in greater (P ⁇ 0.10) ADG and ADFI during the early grower phase (d 42 to 63 of the trial).
- the improved ADG response with DFM treatment from d 84 to 105 and lack of ADFI response resulted in improved (P ⁇ 0.01) feed conversion during this period.
- Vitamin premix 0.150 0.150 0.090 0.090 0.075
- SBM soybean meal
- CP crude protein
- cDDGS corn dried distiller's grains with solubles with ⁇ 10% oil; treatment included to the expense of corn.
- the direct-fed microbial consisted of equal proportions of Bacillus subtilis strains AGTP BS918 (NRRL B-50508), AGTP BS1013 (NRRL B-50509) and AGTP BS3BP5 (NRRL B-50510) summing to a guaranteed 3.0 x 10 8 cfu/g of DFM product, included at a rate of 1 lb/ton in feed, resulting in a
- a total of 480 pigs (initial body weight: approximately 6.0 kg) were weaned at 21 days of age and penned 10 pigs/pen in an environmentally controlled nursery pig facility.
- Pigs were placed on test from 21 days of age to 63 days of age and fed a two phase feeding program with diets formulated based on corn, soybean meal, and 40% corn DDGS (Table 23) and to meet the nutrient requirements of pigs at each of the two production phases (Table 24).
- Table 23 Basal diet composition of Phase 1 and 2 nursery pig diets.
- the direct-fed microbial consisted of equal proportions of Bacillus subtilis strains AGTP BS918 (NRRL B-50508), AGTP BS1013 (NRRL B-50509) and AGTP BS3BP5 (NRRL B-50510) summing to a guaranteed 3.0 x 10 8 cfu/g of DFM product, included at a rate of 0.5 or 1.0 lb/ton of feed resulting in a concentration of 7.5 x 10 4 cfu/g or 1.5 x 10 5 cfu/g in the diet, respectively.
- Pig body weight gain and pen feed intake were determined on d 21 and d 42 of the trial to calculate feed efficiency as gaimfeed. Feed efficiency may also be calculated as feed:gain.
- 2AII diets contained 500 FTU/kg feed of Phytase.
- Table 26 Body weight and feed efficiency of nursery pigs fed high-fibre-based diets supplemented with a Bacillus DFM at two inclusion levels in the diet.
- a digestibility study was conducted on growing pigs to measure the effects of a Bacillus direct-fed microbial (DFM) on ileal and total tract digestibilities of energy and nutrients in diets containing 40% corn dried distillers grains including solubles (DDGS).
- DFM Bacillus direct-fed microbial
- DDGS corn dried distillers grains including solubles
- Twenty four pigs (initial BW: approximately 25 kg) originating from the matings of G- Performer boars to F-25 females (Genetiporc, Alexandria, MN) were surgically equipped with a T-cannula in the distal ileum. Following surgeries, pigs were allowed 21 d to recuperate.
- a standard corn-soybean meal based diet was provided on an ad libitum basis during this period.
- pigs were allotted to two dietary treatments consisting of a control basal diet and a Bacillus DFM. Pigs were housed in individual pens (1.2 ⁇ 1.5 m) in an environmentally controlled room. Each pen was equipped with a feeder and a nipple drinker and had fully slatted concrete floors
- the experimental basal diet was formulated based on corn, soybean meal, and 40% corn DDGS (Table 27). The dietary treatments were: (1) a basal diet with no DFM ; or (2) the basal diet with 0.05% DFM added at the expense of cornstarch.
- the direct-fed microbial consisted of equal proportions of Bacillus subtilis strains AGTP BS918 (NRRL B-50508), AGTP BS1013 (NRRL B-50509) and AGTP BS3BP5 (NRRL B-50510) summing to a guaranteed 3.0 x 10 8 cfu/g of DFM product, included at a rate of 1 .0 lb/ton of feed resulting in a concentration of 1.5 x 10 5 cfu/g in the diet. All diets were formulated to meet or exceed the nutrient requirements for growing pigs (NRC, 1998).
- Vitamin-mineral premix 3 0.30
- Direct-fed microbial treatment was added at 0.05% of the diet at the expense of cornstarch.
- the vitamin-micromineral premix provided the following quantities of vitamins and minerals per kilogram of complete diet: Vitamin A, 10,990 IU; vitamin D 3 , 1 ,648 IU; vitamin E, 55 IU; vitamin K, 4.4 mg; thiamin, 3.3 mg; riboflavin, 9.9 mg; pyridoxine, 3.3 mg; vitamin Bi 2 , 0.044 mg; D-pantothenic acid, 33 mg; niacin, 55 mg; folic acid, 1.1 mg; biotin, 0.17 mg; Cu, 16 mg as copper sulfate; Fe, 165 mg as iron sulfate; I, 0.36 mg as potassium iodate; Mn, 44 mg as manganese sulfate; Se, 0.3 mg as sodium selenite; Zn, 165 mg as zinc oxide.
- Titanium dioxide was used as an indigestible marker in all diets.
- the diets were fed to the 12 pigs, providing 6 pigs per diet for 17 days. Pigs were allowed ad libitum intake of diets and water throughout the experiment.
- pens fed diets without DFM were fed first followed by DFM- treated pens. After feeding each treatment, feed delivery carts were completely cleaned. Pigs fed diets without DFM were also weighed and collected first before pigs fed DFM- containing diets.
- Fecal samples were collected on d 12 via grab sampling and ileal samples were collected on d 13 and 14. Ileal samples were collected continuously for 9 h starting at 0800 on each collection day. Cannulas were opened and 225-mL plastic bags were attached to the cannula barrel using cable ties, which allowed digesta to flow from the cannula to the bag. Bags were changed whenever filled with digesta or at least once every 30 min. The pH in the digesta was measured in the first bag collected after 0900, 1 100, 1300 and 1500 on each collection day. Following the final ileal collection, pigs were fed their respective experimental diets for 3 additional days. The morning meal (at 0700) that is fed on the day following the last ileal collection contained a green marker. During the following 36 h, ileal digesta and feces were scored every 30 min from all pigs, and the first time the marker appears at any of these sites were recorded and used as a measure of rate of passage for this particular diet.
- samples were thawed and mixed within animal and diet and a sub-sample was collected for chemical analysis. All samples were lyophilized and ground prior to analysis. All samples were also analyzed for dry matter (DM), acid detergent fiber (ADF), neutral detergent fiber (NDF), and lignin.
- DM dry matter
- ADF acid detergent fiber
- NDF neutral detergent fiber
- lignin lignin
- Table 28 Effect of Bacillus DFM on pH and rate of passage of ileal digesta and feces in growing pigs fed corn-soybean meal diets containing 40% DDGS 1
- the chicken macrophage cell line HD1 1 was used to determine the inflammatory response to LPS and determine the potential of direct-fed microbial Bacillus strains to alleviate inflammation associated with a gram negative bacterial infection.
- Bacillus strains were screened in a cell culture assay to determine changes in inflammatory cytokine gene expression responses to LPS and each of the Bacillus strains (Bacillus subtilis AGTP BS1013 (NRRL B-50509), Bacillus subtilis AGTP BS3BP5 (NRRL B- 50510), and Bacillus subtilis AGTP BS944 (NRRL B-50548).
- HD1 1 cells were incubated either: (1) alone (unstimulated); (2) with LPS,; (3) with each Bacillus strain, and (4) with LPS + Bacillus strain.
- the plate template design is illustrated in Figure 22.
- HD1 1 cells were grown to confluence and plated in 24-well tissue culture plates with antibiotic free Roswell Park Memorial Institute 1640 (RPMI) media containing 10% fetal bovine serum (FBS; Atlanta Biologicals, Inc., Lawrenceville, GA). Once confluent, media was removed and the treatments were administered in antibiotic free media and were then incubated for 1 hour at 41 °C. After the incubation, cells were washed twice with PBS and were incubated in 380 TRIzol (Invitrogen, Life Technologies Corp., Carlsbad, CA) for 5 minutes. Samples were removed from plates, placed in 2 mL microcentrifuge tubes, snap frozen, and stored at -80°C until RNA isolation.
- RPMI Roswell Park Memorial Institute 1640
- RNA cleanup was done using the RNeasy mini kit (Qiagen, Inc., Valencia, CA) and DNase digestion was done using the RNase-Free DNase kit (Qiagen).
- cDNA was synthesized using the qScript cDNA SuperMix (VWR, Radnor, PA) immediately following the RNA isolation.
- IL- ⁇ F 5'-AGGTCAACATCGCCACCTAC-3' (SEQ 196
- IL-8 F 5'-GCTCTGTCGCAAGGTAGGAC-3' (SEQ 231
- ⁇ -actin F 5'- ATGAAGCCCAGAGCAAAAGA-3' (SEQ 223
- Lipopolysaccharide challenge in the HDl 1 chicken macrophage cell line resulted in an increase (P ⁇ 0.01) in gene expression of the inflammatory cytokines, Interleukin (IL)-l ⁇ and IL-8, compared to unstimulated HDl 1 cells ( Figure 23).
- strain AGTP BS1013 was added to the HDl 1 cells with LPS in spore state, this Bacillus strain decreased (P ⁇ 0.01) the gene expression of the inflammatory cytokines, IL-1 ⁇ and IL-8, resulting from the administration of LPS alone and was more similar to the gene expression profile of unstimulated HDl 1 cells.
- Bacillus DFM strains demonstrate the efficacy of Bacillus DFM strains for alleviating inflammation associated with a bacterial infection, and their effectiveness in avian species.
- the Bacillus DFM strains can be used to alleviate macrophage inflammation.
- the Bacillus DFM strains can be used to alleviate gram negative bacterial infections, and the effects of these bacterial infections.
- the rat intestinal epithelial cell line IEC-6 was used to determine the rat intestinal epithelial cell line
- Bacillus strains were screened in a cell culture assay to determine changes in inflammatory cytokine gene expression responses to LPS and each of the Bacillus strains (Bacillus subtilis AGTP BS 1013 (NRRL B-50509), Bacillus subtilis AGTP BS3BP5 (NRRL B-50510), and Bacillus subtilis AGTP BS944 (NRRL B-50548), Bacillus subtilis AGTP BS1069 (NRRL B-50544), Bacillus subtilis AGTP BS 442 (NRRL B-50542), Bacillus subtilis AGTP BS521 (NRRL B-50545), and Bacillus subtilis AGTP BS918 (NRRL B-50508)). Additional Bacillus strains could be used including but not limited to Bacillus pumilus AGTP BS 1068, (NRRL B-50543) and Bacillus pum
- IEC-6 cells were incubated either: (1) alone (unstimulated); (2) with LPS; (3) with each DFM Bacillus strain, and (4) with LPS + Bacillus strain.
- the plate template design is illustrated in Figure 24.
- IEC-6 cells were grown to confluence and plated in 24-well tissue culture plates with Dulbecco's Modified Eagle's Medium (DMEM) (Invitrogen, Life Technologies).
- DMEM Dulbecco's Modified Eagle's Medium
- IEC-6 cells were washed three times with phosphate buffered saline (PBS). The treatments were administered in antibiotic free media and were then incubated for 1 hour at 37°C. After the incubation, cells were washed twice with PBS and were incubated in 380 ⁇ ⁇ TRIzol (Invitrogen) for 5 minutes.
- PBS phosphate buffered saline
- RNA isolation was done using the RNeasy mini kit (Qiagen, Inc., Valencia, CA) and DNase digestion was done using the RNase-Free DNase kit (Qiagen).
- cDNA was synthesized using the qScript cDNA SuperMix (VWR, Radnor, PA) immediately following the RNA isolation.
- TNF-a F 5'-GGCAGCCTTGTCCCTTGAAGAG-3' 171
- ⁇ -actin F 5'-TGACGAGGCCCAGAGCAAGA-3' (SEQ 331
- Lipopolysaccharide challenge in the IEC-6 rat intestinal epithelial cell line resulted in an increase (P ⁇ 0.01) in gene expression of the inflammatory cytokine, TNF- a, compared to unstimulated IEC-6 cells ( Figure 25).
- Bacillus strains BS1013 and BS1069 decreased (P ⁇ 0.10) the gene expression of TNF- a resulting from the administration of LPS alone when in either spore or vegetative states.
- Bacillus strains BS3BP5, BS442, and BS521 also decreased (P ⁇ 0.10) the gene expression of TNF- a resulting from the administration of LPS alone, but only when in spore form.
- Bacillus strain BS918 decreased (P ⁇ 0.10) the gene expression of TNF- a resulting from the administration of LPS alone, but only in its vegetative form.
- the Bacillus DFM strains can be used to alleviate macrophage inflammation.
- the Bacillus DFM strains can be used to alleviate gram negative bacterial infections, and the effects of these bacterial infections.
- Efficacy of a Bacillus DFM to reduce foam formation in commercial deep pit swine manure storage systems Deep swine manure pit systems are common in the US Midwest and have high potential for foaming. This is believed to be the result of the steadily increasing inclusion of fibrous by-products in swine feed and the resulting shifts in microbial ecology and fermentation characteristics in the stored manure.
- the efficacy of a three-strain Bacillus DFM was assessed to determine if its application in swine manure pits could positively alter the manure pit microbial fermentation profile and provide a tool for pit foam control.
- Five production sites each with three identical grow-finish barns (1400 head each) over individual deep pit systems were selected for evaluation. All sites were traditionally at high risk for foam production based on high inclusion levels of dried distillers grains containing solubles (DDGS) and other fibrous by-product ingredients in diets and from past historical incidences of foaming.
- DDGS dried distillers grains containing solubles
- Bacillus strains can be used including but not limited to Bacillus subtilis AGTP BS442, Bacillus subtilis AGTP BS521 , and Bacillus subtilis AGTP BS1069, and Bacillus subtilis AGTP 944, Bacillus pumilus AGTP BS 1068 and Bacillus pumilus KX1 1-1.
- the Bacillus pit inoculant was applied at a rate of 5.3 x 10 4 cfu/mL manure to be equivalent to the inoculation rate if fed to the animal at 1.5 x 10 5 cfu/g of feed and a 2.5-fold increased dose (2.5X) applied to the manure pit at a rate of 1.3 x 10 6 cfu/mL manure.
- LSD Least Square Difference
- Foam:liquid ratio was also reduced (P ⁇ 0.10) with Bacillus inoculant at either application rate compared to control pits, when values were averaged over all three sampling points in the course of the 170 day trial (Table 34). Data indicate that the higher inclusion rate of the Bacillus inoculant resulted in more consistent reduction of foam over the course of the study ( Figure 26).
- Bacillus strains can be used including but not limited to Bacillus subtilis AGTP BS442, Bacillus subtilis AGTP BS521 , and Bacillus subtilis AGTP BS1069, and Bacillus subtilis AGTP 944, Bacillus pumilus AGTP BS 1068 and Bacillus pumilus KX1 1-1.
- the Bacillus product was tested at three production sites for one 60 day period to determine if it could improve manure management characteristics above the effect from MicroSource S® administration in the swine feed.
- Each site consisted of two identical rooms with individual manure pits and a capacity for 2250 market hogs. Per site, one barn was used as untreated control whereas the other barn received Bacillus pit treatment. For treated pits, Bacillus product inclusion rate was based on manure volume, with an application rate of 5.3 x 10 4 cfu/mL manure. Initial volume of the swine manure pits on test was estimated to be 120,000 gallons of manure, therefore a total of 2.4 x 10° cfu of Bacillus product was applied directly to the pit.
- Control and treatment pits were sampled before and 60 days after Bacillus product application. Sampling over the entire pit depth was accomplished using a 1 ' PVC pipe fitted with a ball valve to trap the sample. Test indicator of improved manure
- Table 35 Solid reduction after 60 days past Bacillus pit product application to treatment manure pits compared to control manure pit at the same production site.
- Treatments consisted of a control basal diet, a three-strain Bacillus direct-fed microbial (DFM), and
- DFM MicroSource S®
- the basal diet was formulated to contain 50% by-product (35% DDGS and 15% wheat middlings; Table 36). Phytase (500 FTU/kg) was added to all diets.
- the novel Bacillus DFM consisted of equal proportions of Bacillus subtilis strains AGTP BS918 (NRRL B-50508), AGTP BS 1013 (NRRL B-50509) and AGTP BS3BP5 (NRRL B- 50510) summing to a guaranteed 3.0 x 10 cfu/g of DFM product, included at a rate of 0.25 lb/ton of feed resulting in a concentration of 3.75 x 10 4 cfu/g in the diet.
- Bacillus strains can be used including but not limited to Bacillus subtilis AGTP BS442, Bacillus subtilis AGTP BS521, and Bacillus subtilis AGTP BS 1069, and Bacillus subtilis AGTP 944, Bacillus pumilus AGTP BS 1068 and Bacillus pumilus X1 1 -1.
- MicroSource S® was included in the diet at 1 lb/ton of feed, resulting in 7.5 x 10 4 cfu/g in the diet.
- Pig body weight gain and pen feed intake were determined on d 21 and d 42 of the trial, and average daily gain (ADG), average daily feed intake(ADFI), and gai feed (G:F) were calculated.
- ADG average daily gain
- ADFI average daily feed intake
- G:F gai feed
- Pigs fed diets supplemented with the novel Bacillus DFM had greater ADG from d 0 to 21 of the trial than pigs fed the control diets or diets supplemented with the commercial DFM, Microsource S® (Table 37). This increase in daily gain tended to result in greater (P ⁇ 0.10) body weight in pigs fed the novel Bacillus DFM on d 21 of the study compared to the other two treatments. These data indicate that the novel Bacillus DFM improves body weight gain in growing pigs compared to an existing commercial Bacillus-based DFM (MicroSource S®). Table 37. Growth performance of pigs fed a novel Bacillus DFM compared to
- Table 38 Media components used to assay the enzymatic activities illustrated by substrate utilization properties of environmentally derived Bacillus.
- Bacillus pumilus strains are reported in Table 39. All strains exhibit degrading activity against at least two of the three fibrous substrates evaluated. These data indicate that these novel Bacillus strains have enzyme degrading capacity against cellulose, xylan, and ⁇ -mannose.
- Table 39 Cellulase, xylanase, and ⁇ -mannanase activities of Bacillus strains.
- Bacillus strains can be used including but not limited to Bacillus subtilis AGTP BS442, Bacillus subtilis AGTP BS521 , and Bacillus subtilis AGTP BS 1069, and Bacillus subtilis AGTP 944, Bacillus pumilus AGTP BS 1068 and Bacillus pumilus KX1 1 -1. rable 40. Feeding phases and diet composition. 1
- SBM soybean meal
- CP crude protein
- cDDGS corn dried distiller's grains with solubles with ⁇ 10% oil content included to the expense of corn.
- a 16 in area of the facility flooring was swabbed using a pre-moistened sterile swab (PocketSwab Plus, Charm Sciences, Lawrence, MA).
- the sample area was passed 10 times for each swab and analyzed in triplicate.
- the swab was placed in LUMT Bioluminescence reader (Charm Sciences, Lawrence, MA).
- the resulting relative light unit (RLU) values were recorded and averaged by pen before statistical analysis.
- Liu K. 201 Chemical composition of distillers grains, a review. J. Agric. Food CheM 59: 1508-1526.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Polymers & Plastics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Food Science & Technology (AREA)
- Animal Husbandry (AREA)
- Biomedical Technology (AREA)
- Birds (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Molecular Biology (AREA)
- Physiology (AREA)
- Mycology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Fodder In General (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112014003950-0A BR112014003950B1 (en) | 2011-08-24 | 2012-08-24 | USE OF ISOLATED ENZYME-PRODUCING STRAPS OF BACILLUS AND AN ANIMAL FEEDING |
DK12753898.1T DK2748300T3 (en) | 2011-08-24 | 2012-08-24 | ENZYM-PRODUCING BACILLUS STUMS |
CA2845576A CA2845576C (en) | 2011-08-24 | 2012-08-24 | Enzyme producing bacillus strains |
ES12753898T ES2702230T3 (en) | 2011-08-24 | 2012-08-24 | Bacillus strains that produce enzymes |
RU2014119583/10A RU2014119583A (en) | 2011-08-24 | 2012-08-24 | STRAIN OF BACILLUS AND ITS COMPOSITION |
CN201280052430.7A CN103930540B (en) | 2011-08-24 | 2012-08-24 | Enzyme producing bacillus strains |
PL12753898T PL2748300T3 (en) | 2011-08-24 | 2012-08-24 | Enzyme producing bacillus strains |
EP12753898.1A EP2748300B1 (en) | 2011-08-24 | 2012-08-24 | Enzyme producing bacillus strains |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161526881P | 2011-08-24 | 2011-08-24 | |
US61/526,881 | 2011-08-24 | ||
US201161527371P | 2011-08-25 | 2011-08-25 | |
US61/527,371 | 2011-08-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2013029013A1 true WO2013029013A1 (en) | 2013-02-28 |
WO2013029013A8 WO2013029013A8 (en) | 2017-09-28 |
Family
ID=46785824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/052360 WO2013029013A1 (en) | 2011-08-24 | 2012-08-24 | Enzyme producing bacillus strains |
Country Status (10)
Country | Link |
---|---|
US (2) | US9089151B2 (en) |
EP (1) | EP2748300B1 (en) |
CN (2) | CN107418908B (en) |
BR (1) | BR112014003950B1 (en) |
CA (1) | CA2845576C (en) |
DK (1) | DK2748300T3 (en) |
ES (1) | ES2702230T3 (en) |
PL (1) | PL2748300T3 (en) |
RU (1) | RU2014119583A (en) |
WO (1) | WO2013029013A1 (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013155468A3 (en) * | 2012-04-12 | 2014-08-07 | Dupont Nutrition Biosciences Aps | Microbial strains and their use in animals |
WO2015091770A1 (en) * | 2013-12-18 | 2015-06-25 | Waterford Institute Of Technology | The efficacy and safety of a marine-derived bacillus strain for use as an in-feed probiotic for newly weaned pigs |
CN104974967A (en) * | 2015-07-22 | 2015-10-14 | 江南大学 | Bacillus pumilus strain and composite microecological preparation for nursing baby pigs |
CN105062916A (en) * | 2015-07-22 | 2015-11-18 | 江南大学 | Application of bacillus coagulans in improving egg production of laying hen |
WO2015092549A3 (en) * | 2013-12-18 | 2015-12-10 | Dupont Nutrition Biosciences Aps | Biologicals for plants |
WO2016060935A3 (en) * | 2014-10-08 | 2016-06-09 | Novozymes A/S | Compositions and methods of improving the digestibility of animal feed |
WO2016118840A1 (en) * | 2015-01-23 | 2016-07-28 | Novozymes A/S | Bacillus strains improving health and performance of production animals |
WO2017048636A1 (en) * | 2015-09-14 | 2017-03-23 | Agri-King, Inc. | Bacteria and enzymes produced therefrom and methods of using same |
WO2017081105A1 (en) * | 2015-11-09 | 2017-05-18 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Bacillus strains and agents with beneficial properties |
WO2017083196A1 (en) | 2015-11-09 | 2017-05-18 | Dupont Nutrition Biosciences Aps | Feed additive composition |
WO2018005225A1 (en) | 2016-06-30 | 2018-01-04 | Danisco Us Inc | Aspartic proteases |
WO2018112006A1 (en) | 2016-12-16 | 2018-06-21 | Dupont Nutrition Biosciences Aps | Bacillus-based components for inhibiting or delaying the growth of enterococcus spp. in animals |
WO2018118815A1 (en) | 2016-12-21 | 2018-06-28 | Dupont Nutrition Biosciences Aps | Methods of using thermostable serine proteases |
WO2018169780A1 (en) | 2017-03-15 | 2018-09-20 | Dupont Nutrition Biosciences Aps | Methods of using an archaeal serine protease |
WO2018169750A1 (en) | 2017-03-15 | 2018-09-20 | Danisco Us Inc | Trypsin-like serine proteases and uses thereof |
WO2018169784A1 (en) | 2017-03-15 | 2018-09-20 | Dupont Nutrition Biosciences Aps | Trypsin-like serine proteases and uses thereof cross-reference to related application |
WO2019040266A1 (en) * | 2017-08-23 | 2019-02-28 | Novozymes A/S | Direct fed microbials for improving the general condition and health of fish |
WO2019173174A1 (en) | 2018-03-06 | 2019-09-12 | Dupont Nutrition Biosciences Aps | Use of direct- fed microbials in preventing and/or treating e. coli-based infections in animals |
WO2020009964A1 (en) | 2018-07-06 | 2020-01-09 | Dupont Nutrition Biosciences Aps | Xylanase-containing feed additives for cereal-based animal feed |
WO2020106796A1 (en) | 2018-11-20 | 2020-05-28 | Dupont Nutrition Biosciences Aps | ENGINEERED ROBUST HIGH Tm-PHYTASE CLADE POLYPEPTIDES AND FRAGMENTS THEREOF |
WO2021007379A1 (en) | 2019-07-09 | 2021-01-14 | Dupont Nutrition Biosciences Aps | Fat coated particulate enzyme compositions |
WO2021046073A1 (en) | 2019-09-05 | 2021-03-11 | Dupont Nutrition Biosciences Aps | Feed composition |
WO2021102238A1 (en) | 2019-11-20 | 2021-05-27 | Dupont Nutrition Biosciences Aps | Thermostable phytase variants |
WO2021146582A1 (en) * | 2020-01-17 | 2021-07-22 | AgBiome, Inc. | Compositions and methods for controlling undesirable microbes and improving animal health |
WO2021173974A1 (en) | 2020-02-28 | 2021-09-02 | Dupont Nutrition Biosciences Aps | Feed compositions |
US11166989B2 (en) | 2015-01-23 | 2021-11-09 | Novozymes A/S | Bacillus strains improving health and performance of production animals |
US11473052B2 (en) | 2015-01-23 | 2022-10-18 | Novozymes A/S | Bacillus subtilis subspecies |
WO2023069530A1 (en) * | 2021-10-19 | 2023-04-27 | Raison, Llp | Microbial compositions and methods for reducing methane emissions |
WO2023225510A1 (en) | 2022-05-17 | 2023-11-23 | Dupont Nutrition Biosciences Aps | Feed additive comprising enzyme combinations |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016083481A1 (en) * | 2014-11-26 | 2016-06-02 | Dupont Nutrition Biosciences Aps | Strains and methods for energy partitioning in ruminants |
DK2370585T3 (en) * | 2008-12-02 | 2016-09-26 | Dupont Nutrition Biosci Aps | TRIBES AND PRACTICES TO IMPROVE ruminants HEALTH AND / OR -performance |
EP2748300B1 (en) | 2011-08-24 | 2018-09-19 | DuPont Nutrition Biosciences ApS | Enzyme producing bacillus strains |
CN104135868B (en) * | 2011-12-19 | 2016-08-17 | 德意诺夫 | Composition for animal feed composition |
US10006073B2 (en) | 2013-05-24 | 2018-06-26 | Chr, Hansen A/S | Use of Bacillus composition for increasing the amount of available sugars in animal feed |
RU2542486C1 (en) * | 2013-09-23 | 2015-02-20 | Федеральное государственное бюджетное учреждение науки Институт цитологии и генетики Сибирского отделения Российской академии наук (ИЦиг СО РАН) | STRAIN OF Esherichia coli EX pQE30 BACTERIUM, PRODUCER OF ENDOXYLANASE OF Geobacillus stearothermophillus 22 BACTERIUM |
US10357046B2 (en) * | 2014-05-13 | 2019-07-23 | Microbial Discovery Group, Llc | Direct-fed microbials and methods of their use |
US10201574B1 (en) | 2015-09-16 | 2019-02-12 | Church & Dwight Co., Inc. | Methods of microbial treatment of poultry |
CN106922951A (en) * | 2015-12-30 | 2017-07-07 | 联发生物科技股份有限公司 | Feed addition microbial inoculum and preparation method thereof, bacterial strain screening method |
MX2018010428A (en) | 2016-02-29 | 2018-11-29 | Microbial Discovery Group Llc | Direct-fed microbials. |
KR101808847B1 (en) * | 2016-03-28 | 2017-12-13 | 재단법인 발효미생물산업진흥원 | Bacillus subtilis strain having enzyme activity, ammonia and hydrogen sulfide odor removal activity and uses thereof |
US11298383B2 (en) | 2016-05-20 | 2022-04-12 | Church & Dwight Co., Inc. | Lactobacillus and bacillus based direct fed microbial treatment for poultry and method of use |
CN109563472B (en) | 2016-05-25 | 2023-07-28 | 丘奇和德怀特有限公司 | Bacillus compositions and methods for ruminants |
CN107058181B (en) * | 2017-04-13 | 2020-07-28 | 中国农业科学院特产研究所 | Bacillus subtilis and separation method and application thereof |
US11622569B2 (en) | 2017-07-24 | 2023-04-11 | Church & Dwight Co., Inc. | Bacillus microbial terroir for pathogen control in swine |
US12005087B2 (en) * | 2017-09-25 | 2024-06-11 | Deerland Enzymes, Inc. | Probiotic (Bacillus subtilis) supplementation for improvement of body composition in female athletes |
CN109161498B (en) * | 2018-08-28 | 2020-11-06 | 华中农业大学 | Bacillus subtilis M406 and application thereof in preparation of bacteriocin and cellulase |
WO2020069255A1 (en) | 2018-09-28 | 2020-04-02 | Microbial Discovery Group, Llc | Microorganisms for plant pathogen inhibition |
WO2020072578A1 (en) | 2018-10-02 | 2020-04-09 | Microbial Discovery Group, Llc | Microbials for animals |
AU2019359209A1 (en) * | 2018-10-09 | 2021-04-08 | Locus Ip Company, Llc | Compositions and methods for reducing atmospheric methane and nitrous oxide emissions |
US20220061356A1 (en) * | 2018-12-14 | 2022-03-03 | ProAgni Pty Ltd | Animal feed composition |
US20200236971A1 (en) * | 2019-01-29 | 2020-07-30 | Bond Pet Foods, Inc. | Compositions and methods for producing recombinant animal proteins in prokaryotic organisms for use in food and feed |
WO2020179999A1 (en) * | 2019-03-07 | 2020-09-10 | 씨제이제일제당(주) | Bacillus subtilis cjbs303 and composition comprising same |
KR102299266B1 (en) * | 2019-03-07 | 2021-09-08 | 씨제이제일제당 주식회사 | Bacillus subtilis CJBS303 and composition comprising the same |
KR20220000398A (en) | 2019-04-12 | 2022-01-03 | 로커스 아이피 컴퍼니 엘엘씨 | Pasture treatment for improved carbon sequestration and reduction of livestock production greenhouse gas emissions |
CN115103601A (en) * | 2020-02-11 | 2022-09-23 | 轨迹Ip有限责任公司 | Method and composition for reducing harmful atmospheric gases in livestock intestinal tract |
US20220174984A1 (en) * | 2020-12-09 | 2022-06-09 | Purina Animal Nutrition Llc | Feed compositions and methods for inhibiting focal ulcerative dermatitis |
CN112625972A (en) * | 2021-01-05 | 2021-04-09 | 深圳市善成生物技术有限公司 | Bacillus amyloliquefaciens and fermentation product and application thereof |
BR112023018884A2 (en) * | 2021-03-20 | 2023-10-03 | Locus Solutions Ipco Llc | HOLISTIC AND ECOLOGICALLY CORRECT SYSTEMS FOR CROP, SOIL, WATER AND LIVESTOCK MANAGEMENT |
WO2023239344A1 (en) * | 2022-06-06 | 2023-12-14 | Hydrogreen, Inc. | Hydroponically sprouted cereal grains for reducing enteric methane, feedlot characteristics, and nutrient digestibility of beef cattle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4288545A (en) * | 1979-01-17 | 1981-09-08 | Sybron Corporation | Microbiological process for removing oleaginous material from wastewater and microbiological combination capable of same |
US4655794A (en) * | 1986-03-20 | 1987-04-07 | Sybron Chemicals Holdings Inc. | Liquid cleaner containing viable microorganisms |
US4882059A (en) * | 1987-11-25 | 1989-11-21 | General Environmental Science | Solubilization of organic materials in wastewater treatment |
US5449619A (en) * | 1992-04-16 | 1995-09-12 | Sybron Chemical Holdings, Inc. | Drain opener formulation |
US6177012B1 (en) * | 1999-04-14 | 2001-01-23 | Roebic Laboratories, Inc. | Enzyme-producing strain of bacillus bacteria |
WO2010139726A1 (en) * | 2009-06-02 | 2010-12-09 | Dsm Ip Assets B.V. | Reduction of odor gases from animal manure using a combination of direct fed microbials and essential oils |
Family Cites Families (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2906622A (en) | 1954-04-16 | 1959-09-29 | James C Lewis | Production of growth stimulating agents |
US2942977A (en) | 1954-04-16 | 1960-06-28 | James C Lewis | Preparation of growth factors |
US3892846A (en) | 1970-06-19 | 1975-07-01 | Allied Chem | Animal litter resistant to ammonia odor formation |
JPS5310129B2 (en) | 1972-05-29 | 1978-04-11 | ||
DE2253426A1 (en) | 1972-10-31 | 1974-05-30 | Maizena Gmbh | Ruminant feed of high propionate and acetate content - by culturing Propionibacterium in corn steep liquor/ammonia nutrient medium |
US3984575A (en) | 1974-02-06 | 1976-10-05 | Microlife Technics, Inc. | Bacterial compositions for changing the digestive system bacteria in animals |
US4449968A (en) | 1981-03-09 | 1984-05-22 | Select Laboratories, Inc. | Poultry vaccination system |
US4394399A (en) | 1981-06-25 | 1983-07-19 | The Quaker Oats Company | Low calorie table syrup product |
JPS5911177A (en) | 1982-07-12 | 1984-01-20 | Seikenkai | Novel lactobacillus |
US4591499A (en) | 1984-01-20 | 1986-05-27 | J. B. Lima, Inc. | Method for treatment and prevention of mastitis |
US5139777A (en) | 1984-08-15 | 1992-08-18 | Richter Cedeon Vegveszeti | Composition and method for improving the efficiency of ruminant feed utilization |
GR861387B (en) | 1985-05-29 | 1986-10-02 | Pioneer Hi Bred Int | Method of treating gastrointestinal disease in animals |
US4850997A (en) | 1987-01-23 | 1989-07-25 | Keevet Laboratories, Inc. | Spray vaccinator apparatus |
JPS63209580A (en) | 1987-02-25 | 1988-08-31 | Karupisu Shokuhin Kogyo Kk | Bacillus subtilis c-3102 |
US5413960A (en) | 1987-05-01 | 1995-05-09 | Biogaia Ab | Antibiotic reuterin |
US4820531A (en) | 1987-10-22 | 1989-04-11 | Pioneer Hi-Bred International | Bacterial treatment to preserve hay quality by addition of microorganisms of the genus bacillus |
FR2630888B1 (en) | 1988-05-09 | 1991-08-30 | Guyomarch Nutrition Animale | PROCESS FOR INCREASING THE PRODUCTIVITY OF SOWS |
US4910024A (en) | 1988-07-05 | 1990-03-20 | Micro Chemical, Inc. | Method and apparatus for administering live bacteria as feed additives to livestock and poultry |
US5068104A (en) | 1988-08-01 | 1991-11-26 | A. H. Robins Company Incorporated | Live vaccine for coccidiosis utilizing coccidial sporozoites |
DE69014030T3 (en) | 1989-09-05 | 1999-06-24 | Ajinomoto Co., Inc., Tokio/Tokyo | Means for the prevention and treatment of diarrhea. |
US5140949A (en) | 1989-09-19 | 1992-08-25 | Mobil Oil Corporation | Zeolite-clay composition and uses thereof |
US4981705A (en) | 1989-11-06 | 1991-01-01 | Pioneer Hi-Bred International, Inc. | Bacterial treatment to preserve silage |
US5296221A (en) | 1990-01-31 | 1994-03-22 | Sani-Ei Sucrochemical Co., Ltd. | Lactobacillus johnsonii ferm bp-2680 lactic acid bacteria preparations using the same and a process of manufacturing the preparations |
JPH0732702B2 (en) | 1990-02-23 | 1995-04-12 | 雪印乳業株式会社 | Novel lactic acid bacterium, antibacterial substance produced by the lactic acid bacterium, fermented milk starter containing the lactic acid bacterium, and method for producing fermented milk using the same |
US5026647A (en) | 1990-05-03 | 1991-06-25 | Pioneer Hi-Bred International, Inc. | Selective medium for propionibacterium growth |
US5262187A (en) | 1990-06-28 | 1993-11-16 | The Pillsbury Company | Low-fat cereal-grain food composition |
US5705152A (en) | 1990-10-26 | 1998-01-06 | Interprise Limited | Antimicrobial composition |
US5478559A (en) | 1991-01-15 | 1995-12-26 | National Federation Of Agricultural Cooperative Associations | Method and composition for increasing body weight and stimulating immune systems |
US5314700A (en) | 1991-01-28 | 1994-05-24 | Ethyl Corporation | Poultry feed component |
US5186962A (en) | 1991-03-12 | 1993-02-16 | Board Of Regents Of The University Of Nebraska | Composition and method for inhibiting pathogens and spoilage organisms in foods |
GB9200891D0 (en) | 1992-01-16 | 1992-03-11 | Mann Stephen P | Formulation of microorganisms |
US6120810A (en) | 1992-03-30 | 2000-09-19 | Oklahoma State University | Bacterial composition to reduce the toxic effects of high nitrate consumption in livestock |
US5311841A (en) | 1992-07-10 | 1994-05-17 | Thaxton J Paul | Administration of medicaments of poultry |
US5501857A (en) | 1992-07-24 | 1996-03-26 | Midwestern Bio-Ag Products & Services, Inc. | Oral nutritional and dietary composition |
US5478557A (en) | 1992-07-29 | 1995-12-26 | The United States Of America, As Represented By The Secretary Of Agriculture | Probiotic for control of salmonella |
US5840318A (en) | 1993-05-11 | 1998-11-24 | Immunom Technologies, Inc. | Methods and compositions for modulating immune systems of animals |
TW323222B (en) | 1993-12-27 | 1997-12-21 | Hayashibara Biochem Lab | |
AUPM627594A0 (en) | 1994-06-16 | 1994-07-07 | Willis, Gregory Lynn Dr | Animal bedding material |
US6221381B1 (en) | 1994-06-28 | 2001-04-24 | The University Of British Columbia | Enhancing milk production by adding to feed a nonionic surfactant coated on a carrier |
AUPM823094A0 (en) | 1994-09-16 | 1994-10-13 | Goodman Fielder Limited | Probiotic compositions |
US5725853A (en) | 1994-10-18 | 1998-03-10 | Pioneer Hi-Bred International, Inc. | 4 strain direct-fed microbial |
US5507250A (en) | 1994-10-18 | 1996-04-16 | Malireddy S. Reddy | Odor inhibiting pet litter |
US5534271A (en) | 1994-11-16 | 1996-07-09 | Nutrition Physiology | Process for improving the utilization of feedstuffs by ruminants |
US5529793A (en) | 1994-11-16 | 1996-06-25 | Nutrition Physiology Corporation | Compositions for improving the utilization of feedstuffs by ruminants |
GB9500863D0 (en) | 1995-01-17 | 1995-03-08 | Grampian Pharm Ltd | Medicated animal foodstuffs |
CA2169987C (en) | 1995-02-21 | 1999-02-02 | Eng-Hong Lee | Gel form of a vaccine |
US5674495A (en) | 1995-02-27 | 1997-10-07 | Purdue Research Foundation | Alginate-based vaccine compositions |
US5830993A (en) | 1995-04-10 | 1998-11-03 | Kansas State University Research Foundation | Synthetic antimicrobial peptide |
IES70514B2 (en) | 1995-04-12 | 1996-12-11 | Teagasc Agric Food Dev Authori | Bacteriocins |
US5976580A (en) | 1995-06-07 | 1999-11-02 | Novus International, Inc. | Nutrient formulation and process for enhancing the health, livability, cumulative weight gain or feed efficiency in poultry and other animals |
US5785990A (en) | 1995-07-10 | 1998-07-28 | Merrick's, Inc. | Feed fortifier and enhancer for preruminant calves and method of using same |
US5900262A (en) | 1995-09-20 | 1999-05-04 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Fermented formula feed, its production, and uses |
US5703040A (en) | 1995-11-22 | 1997-12-30 | Kansas State University Research Foundation | Broad spectrum antibiotic peptide |
KR19990082383A (en) | 1996-02-16 | 1999-11-25 | 스티븐슨 린다 에스. | Antimicrobial peptides and their use |
US5795602A (en) | 1996-04-12 | 1998-08-18 | Cargill, Incorporated | Milk enhancer and milk feed composition |
US5876990A (en) | 1996-10-22 | 1999-03-02 | Reddy; Malireddy S. | Biochemical media system for reducing pollution |
US6797276B1 (en) | 1996-11-14 | 2004-09-28 | The United States Of America As Represented By The Secretary Of The Army | Use of penetration enhancers and barrier disruption agents to enhance the transcutaneous immune response |
US5910306A (en) | 1996-11-14 | 1999-06-08 | The United States Of America As Represented By The Secretary Of The Army | Transdermal delivery system for antigen |
US5980898A (en) | 1996-11-14 | 1999-11-09 | The United States Of America As Represented By The U.S. Army Medical Research & Material Command | Adjuvant for transcutaneous immunization |
US20040047872A1 (en) | 1996-11-14 | 2004-03-11 | The Government Of The United States, As Represented By The Secretary Of The Army | Indicators for monitoring the technique of transcutaneous immunization |
US6132710A (en) | 1997-03-17 | 2000-10-17 | Probiotix, Inc. | Preventing/treating neonatal NEC by administering lactobacillus salivarius and lactobacillus plantarum or a combination thereof |
JP3028214B2 (en) | 1997-06-03 | 2000-04-04 | カルピス株式会社 | How to administer live birds |
US6896883B2 (en) | 1997-07-22 | 2005-05-24 | Cornell Research Foundation, Inc. | Biocontrol for plants with Bacillus subtilis, Pseudomonas putida, and Sporobolomyces roseus |
US5965128A (en) | 1997-08-13 | 1999-10-12 | University Of Georgia Research Foundation Inc. | Control of enterohemorrhagic E. coli 0157:H7 in cattle by probiotic bacteria and specific strains of E. coli |
CA2213385A1 (en) | 1997-08-20 | 1999-02-20 | Eng-Hong Lee | Method of protecting against coccidiosis infections in poultry |
US6221650B1 (en) | 1997-08-25 | 2001-04-24 | Agtech Products, Inc. | Waste treatment with a combination of denitrifying propionibacterium acidipropionici and protease-producing bacillus |
US5945333A (en) | 1997-08-26 | 1999-08-31 | Ag Tech Products, Inc. | Biological poultry litter treatment composition and its use |
US5879719A (en) | 1997-08-28 | 1999-03-09 | Midwest Zoological Research, Inc. | Process for control, elimination or inhibition of salmonellae in reptiles and/or amphibians |
SE511025C2 (en) | 1997-10-03 | 1999-07-26 | Probi Ab | Horse feed product comprising Lactobacillus plantarum JI: 1 and Lactobacillus plantarum JI: 1 and use thereof |
WO1999053775A1 (en) | 1998-04-17 | 1999-10-28 | The Board Of Regents For Oklahoma State University | Propionibacterium p-63 for use in direct fed microbials for animal feeds |
FR2778187B1 (en) | 1998-04-30 | 2001-06-22 | Sanofi Elf | METHOD FOR SELECTING BACTERIAL STRAINS |
US6461607B1 (en) | 1998-08-24 | 2002-10-08 | Ganeden Biotech, Inc. | Probiotic, lactic acid-producing bacteria and uses thereof |
US6156355A (en) | 1998-11-02 | 2000-12-05 | Star-Kist Foods, Inc. | Breed-specific canine food formulations |
IL143708A0 (en) | 1998-12-15 | 2002-04-21 | Rhodia | Broad-range antibacterial composition |
US20040170617A1 (en) | 2000-06-05 | 2004-09-02 | Finegold Sydney M. | Method of treating diseases associated with abnormal gastrointestinal flora |
WO2002041706A2 (en) | 2000-11-21 | 2002-05-30 | Alpha Foods Ingredients, Inc. | Bioactive compositions comprising conjugated linoleic acid glycerides and methods for producing bioactive conjugated linoleic acid |
US20020104485A1 (en) | 2000-12-11 | 2002-08-08 | Ms Bioscience | Method and apparatus for dispensing a liquid like gel or the like which may be used to treat dehydration in animals such as chicks and which may be used to carry other biological substances, for example, vaccines, nutrients, antibiotics and the like for other treatment purposes |
US20030021874A1 (en) | 2001-07-02 | 2003-01-30 | The Procter & Gamble Co. | Stabilized compositions and processes of their preparation |
US20030099624A1 (en) | 2001-07-05 | 2003-05-29 | Microbes, Inc. | Administering bacilus laterosporus to increase poultry feed conversion and weight gain |
US6951643B2 (en) | 2001-07-24 | 2005-10-04 | Oklahoma State University | Direct-fed microbial |
EP2336294A3 (en) | 2002-07-22 | 2014-07-02 | Agtech Products, Inc. | Lactobacillus strains and uses therefor |
US7141255B2 (en) | 2002-11-01 | 2006-11-28 | Mattel, Inc. | Food formulations |
US6910446B2 (en) | 2002-11-13 | 2005-06-28 | Merial Limited | Vaccine spray system |
US7247299B2 (en) | 2002-11-27 | 2007-07-24 | Kemin Industries, Inc. | Antimicrobial compounds from Bacillus subtilis for use against animal and human pathogens |
US6814872B2 (en) | 2002-12-03 | 2004-11-09 | General Electric Company | Controller and method for controlling regeneration of a water softener |
US6908620B2 (en) | 2002-12-09 | 2005-06-21 | University Of Georgia Research Foundation, Inc. | Coccidial vaccine and methods of making and using same |
WO2004104175A2 (en) | 2003-05-14 | 2004-12-02 | University Of Georgia Research Foundation, Inc. | Probiotic bacteria and methods |
WO2005000034A2 (en) | 2003-06-23 | 2005-01-06 | Agtech Products, Inc. | Lactic bacteria and its use in direct-fed microbials |
ES2392053T3 (en) | 2003-09-03 | 2012-12-04 | Alpharma, Llc | Method for vaccination of poultry by a bacteriophage lysate |
US7700094B1 (en) * | 2003-09-23 | 2010-04-20 | Pioneer Hi-Bred International, Inc. | Acetyl esterase producing strains and methods of using same |
CA2464522C (en) | 2004-04-15 | 2011-11-15 | Eng-Hong Lee | Soft gel delivery system for treating poultry |
WO2005112658A1 (en) | 2004-05-14 | 2005-12-01 | Agtech Products, Inc. | Method and composition for reducing e. coli disease and enhancing performance using bacillus |
US8802171B2 (en) | 2004-05-25 | 2014-08-12 | James B. Watson | Live organism product |
CN100419071C (en) * | 2004-10-26 | 2008-09-17 | 中国农业大学 | Bacillus of high proteinase yield and its induction mutation breeding method and uses |
RU2416636C2 (en) | 2004-12-06 | 2011-04-20 | Сейдж Байосайенсиз Инк. | Method for growing lysine-producing gram-positive bacterium for biologically active compounds delivery to ruminant animals; feed supplement (versions) and ruminant animals feeding method |
BRPI0607078A2 (en) | 2005-01-26 | 2009-08-04 | Avitech Llc | improved vaccine spray device for newborn chicks |
MX2008002487A (en) | 2005-08-25 | 2008-04-03 | Adm Alliance Nutrition Inc | Use of dextrin in animal feeds. |
US7754469B2 (en) | 2005-11-30 | 2010-07-13 | Agtech Products, Inc | Microorganisms and methods for treating poultry |
EP1979002A2 (en) | 2005-12-19 | 2008-10-15 | OSI Pharmaceuticals, Inc. | Combination of igfr inhibitor and anti-cancer agent |
US7754234B2 (en) | 2006-07-12 | 2010-07-13 | Jones Thomas L | Composition and method of treating a sore throat |
CN101244088A (en) * | 2007-02-13 | 2008-08-20 | 丁之铨 | Disease-resistant microorganism preparation special for chicken |
CA2694869C (en) | 2007-08-01 | 2016-11-29 | Jianhua Gong | Bacterial isolate and methods for detoxification of trichothecene mycotoxins |
US8021654B2 (en) | 2008-03-14 | 2011-09-20 | Danisco A/S | Methods of treating pigs with Bacillus strains |
US8025874B2 (en) | 2008-04-17 | 2011-09-27 | Danisco A/S | Bacillus strains useful for animal odor control |
US8642533B2 (en) | 2008-05-22 | 2014-02-04 | Marical, Inc. | Methods of nourishing animals |
CN102223809A (en) * | 2008-09-17 | 2011-10-19 | 阿格拉奎斯特公司 | Method for using a bacillus subtilis strain to enhance animal health |
DK2370585T3 (en) | 2008-12-02 | 2016-09-26 | Dupont Nutrition Biosci Aps | TRIBES AND PRACTICES TO IMPROVE ruminants HEALTH AND / OR -performance |
WO2010081138A1 (en) | 2009-01-12 | 2010-07-15 | Danisco A/S | Lactic acid bacteria and their use in swine direct-fed microbials |
EP2459568A4 (en) | 2009-07-28 | 2013-02-27 | Merck Frosst Canada Ltd | Novel spiro compounds useful as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
WO2012149159A1 (en) | 2011-04-26 | 2012-11-01 | Danisco A/S | Methane reducing strains and methods of use |
WO2013026033A2 (en) | 2011-08-18 | 2013-02-21 | Dupont Nutrition Biosciences Aps | Strains and methods useful for mycotoxins |
EP2748300B1 (en) | 2011-08-24 | 2018-09-19 | DuPont Nutrition Biosciences ApS | Enzyme producing bacillus strains |
GB201213801D0 (en) * | 2012-08-03 | 2012-09-12 | Dupont Nutrition Biosci Aps | Feed additive composition |
-
2012
- 2012-08-24 EP EP12753898.1A patent/EP2748300B1/en active Active
- 2012-08-24 WO PCT/US2012/052360 patent/WO2013029013A1/en unknown
- 2012-08-24 CN CN201710267185.6A patent/CN107418908B/en active Active
- 2012-08-24 US US13/594,594 patent/US9089151B2/en active Active
- 2012-08-24 RU RU2014119583/10A patent/RU2014119583A/en not_active Application Discontinuation
- 2012-08-24 CA CA2845576A patent/CA2845576C/en active Active
- 2012-08-24 PL PL12753898T patent/PL2748300T3/en unknown
- 2012-08-24 ES ES12753898T patent/ES2702230T3/en active Active
- 2012-08-24 CN CN201280052430.7A patent/CN103930540B/en active Active
- 2012-08-24 DK DK12753898.1T patent/DK2748300T3/en active
- 2012-08-24 BR BR112014003950-0A patent/BR112014003950B1/en active IP Right Grant
-
2015
- 2015-02-10 US US14/618,151 patent/US10058110B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4288545A (en) * | 1979-01-17 | 1981-09-08 | Sybron Corporation | Microbiological process for removing oleaginous material from wastewater and microbiological combination capable of same |
US4655794A (en) * | 1986-03-20 | 1987-04-07 | Sybron Chemicals Holdings Inc. | Liquid cleaner containing viable microorganisms |
US4882059A (en) * | 1987-11-25 | 1989-11-21 | General Environmental Science | Solubilization of organic materials in wastewater treatment |
US5449619A (en) * | 1992-04-16 | 1995-09-12 | Sybron Chemical Holdings, Inc. | Drain opener formulation |
US6177012B1 (en) * | 1999-04-14 | 2001-01-23 | Roebic Laboratories, Inc. | Enzyme-producing strain of bacillus bacteria |
WO2010139726A1 (en) * | 2009-06-02 | 2010-12-09 | Dsm Ip Assets B.V. | Reduction of odor gases from animal manure using a combination of direct fed microbials and essential oils |
Non-Patent Citations (9)
Title |
---|
"Nutrient Requirements of Swine", 1998, ACAD. PRESS |
"Official methods of analysis", 2007, ASSOCIATION OF ANALYTICAL CHEMISTS (AOAC |
LIU K.: "Chemical composition of distillers grains, a review", J. AGRIC. FOOD CHEM, vol. 59, 2011, pages 1508 - 1526 |
METZLER-ZEBELI, B. U.; HOODA, S.; PIEPER, R.; ZIJLSTRA, R. T.; VAN KESSEL, A. G.; MOSENTHIN, R.; G. GANZLE: "Polysaccharides Modulate Bacterial Microbiota, Pathways for Butyrate Production, and Abundance of Pathogenic Escherichia coli in the Pig Gastrointestinal Tract", J APPL ENV MICROBIOL, vol. 76, no. 11, 2010, pages 3692 - 3701 |
SPENCE, C.; WHITEHEAD, T. R.; M. A. COTTA: "Development and comparison of SYBR Green quantitative real-time PCR assays for detection and enumeration of sulfate reducing bacteria in stored swine manure", JAPPL MICROBIOL, vol. 105, 2008, pages 2143 - 2152 |
STEIN, H. H.; B. SEVE; M. F. FULLER; P. J. MOUGHAN; C. F. M. DE LANGE: "Invited review: Amino acid bioavailability and digestibility in pig feed ingredients: Terminology and application", J. ANIM. SCI., vol. 85, 2007, pages 172 - 180 |
STEIN, H. H.; G. C. SHURSON: "The use and application of distillers dried grains with solubles in swine diets", J. ANIM. SCI., vol. 87, 2009, pages 1292 - 1303 |
YEGANI M.; D. R. KORVER: "Factors affecting intestinal health in poultry", POULT. SCI, vol. 87, 2008, pages 2052 - 2063 |
YU, Y.; LEE, C.; KIM, J.; S. HWANG: "Group-Specific Primer and Probe Sets to Detect Methanogenic Communities Using Quantitative Real-Time Polymerase Chain Reaction", BIOTECHNOL BIOENG, vol. 89, 2005, pages 670 - 679 |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013155468A3 (en) * | 2012-04-12 | 2014-08-07 | Dupont Nutrition Biosciences Aps | Microbial strains and their use in animals |
WO2015092549A3 (en) * | 2013-12-18 | 2015-12-10 | Dupont Nutrition Biosciences Aps | Biologicals for plants |
WO2015091770A1 (en) * | 2013-12-18 | 2015-06-25 | Waterford Institute Of Technology | The efficacy and safety of a marine-derived bacillus strain for use as an in-feed probiotic for newly weaned pigs |
WO2016060935A3 (en) * | 2014-10-08 | 2016-06-09 | Novozymes A/S | Compositions and methods of improving the digestibility of animal feed |
US11473052B2 (en) | 2015-01-23 | 2022-10-18 | Novozymes A/S | Bacillus subtilis subspecies |
WO2016118840A1 (en) * | 2015-01-23 | 2016-07-28 | Novozymes A/S | Bacillus strains improving health and performance of production animals |
US11166989B2 (en) | 2015-01-23 | 2021-11-09 | Novozymes A/S | Bacillus strains improving health and performance of production animals |
US11331351B2 (en) | 2015-01-23 | 2022-05-17 | Novozymes A/S | Bacillus strains improving health and performance of production animals |
US11801272B2 (en) | 2015-01-23 | 2023-10-31 | Novozymes A/S | Bacillus strains improving health and performance of production animals |
CN105062916A (en) * | 2015-07-22 | 2015-11-18 | 江南大学 | Application of bacillus coagulans in improving egg production of laying hen |
AU2016297403B2 (en) * | 2015-07-22 | 2018-12-20 | Jiangnan University | Use of Bacillus coagulans strain in increasing egg production in laying hen |
CN105062916B (en) * | 2015-07-22 | 2017-12-12 | 江南大学 | Application of one bacillus coagulans on lifting laying hen egg yield |
CN104974967B (en) * | 2015-07-22 | 2018-04-17 | 江南大学 | One bacillus pumilus and its child care piglet compound micro-ecological preparation |
CN104974967A (en) * | 2015-07-22 | 2015-10-14 | 江南大学 | Bacillus pumilus strain and composite microecological preparation for nursing baby pigs |
AU2016297405B2 (en) * | 2015-07-22 | 2019-01-03 | Jiangnan University | Bacillus pumilus strain and microbial ecological combined agent thereof for weaned piglet |
WO2017048636A1 (en) * | 2015-09-14 | 2017-03-23 | Agri-King, Inc. | Bacteria and enzymes produced therefrom and methods of using same |
US10604727B2 (en) | 2015-09-14 | 2020-03-31 | Agri-King, Inc. | Bacteria and enzymes produced therefrom and methods of using same |
US11008534B2 (en) | 2015-09-14 | 2021-05-18 | Agri-King, Inc. | Bacteria and enzymes produced therefrom and methods of using same |
US10683473B2 (en) | 2015-09-14 | 2020-06-16 | Agri-King, Inc. | Bacteria and enzymes produced therefrom and methods of using same |
WO2017083196A1 (en) | 2015-11-09 | 2017-05-18 | Dupont Nutrition Biosciences Aps | Feed additive composition |
WO2017081105A1 (en) * | 2015-11-09 | 2017-05-18 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Bacillus strains and agents with beneficial properties |
WO2018005225A1 (en) | 2016-06-30 | 2018-01-04 | Danisco Us Inc | Aspartic proteases |
EP3825399A1 (en) | 2016-06-30 | 2021-05-26 | Danisco US Inc. | Aspartic proteases |
WO2018112006A1 (en) | 2016-12-16 | 2018-06-21 | Dupont Nutrition Biosciences Aps | Bacillus-based components for inhibiting or delaying the growth of enterococcus spp. in animals |
US11382938B2 (en) | 2016-12-16 | 2022-07-12 | Dupont Nutrition Biosciences Aps | Bacillus-based components for inhibiting or delaying the growth of Enterococcus spp. in animals |
WO2018118815A1 (en) | 2016-12-21 | 2018-06-28 | Dupont Nutrition Biosciences Aps | Methods of using thermostable serine proteases |
WO2018169750A1 (en) | 2017-03-15 | 2018-09-20 | Danisco Us Inc | Trypsin-like serine proteases and uses thereof |
WO2018169780A1 (en) | 2017-03-15 | 2018-09-20 | Dupont Nutrition Biosciences Aps | Methods of using an archaeal serine protease |
WO2018169784A1 (en) | 2017-03-15 | 2018-09-20 | Dupont Nutrition Biosciences Aps | Trypsin-like serine proteases and uses thereof cross-reference to related application |
WO2019040266A1 (en) * | 2017-08-23 | 2019-02-28 | Novozymes A/S | Direct fed microbials for improving the general condition and health of fish |
US11351207B2 (en) | 2018-03-06 | 2022-06-07 | Dupont Nutrition Biosciences Aps | Use of direct-fed microbials in preventing and/or treating E. coli-based infections in animals |
WO2019173174A1 (en) | 2018-03-06 | 2019-09-12 | Dupont Nutrition Biosciences Aps | Use of direct- fed microbials in preventing and/or treating e. coli-based infections in animals |
WO2020009964A1 (en) | 2018-07-06 | 2020-01-09 | Dupont Nutrition Biosciences Aps | Xylanase-containing feed additives for cereal-based animal feed |
WO2020106796A1 (en) | 2018-11-20 | 2020-05-28 | Dupont Nutrition Biosciences Aps | ENGINEERED ROBUST HIGH Tm-PHYTASE CLADE POLYPEPTIDES AND FRAGMENTS THEREOF |
WO2021007379A1 (en) | 2019-07-09 | 2021-01-14 | Dupont Nutrition Biosciences Aps | Fat coated particulate enzyme compositions |
WO2021046073A1 (en) | 2019-09-05 | 2021-03-11 | Dupont Nutrition Biosciences Aps | Feed composition |
WO2021102238A1 (en) | 2019-11-20 | 2021-05-27 | Dupont Nutrition Biosciences Aps | Thermostable phytase variants |
WO2021146582A1 (en) * | 2020-01-17 | 2021-07-22 | AgBiome, Inc. | Compositions and methods for controlling undesirable microbes and improving animal health |
WO2021173974A1 (en) | 2020-02-28 | 2021-09-02 | Dupont Nutrition Biosciences Aps | Feed compositions |
WO2023069530A1 (en) * | 2021-10-19 | 2023-04-27 | Raison, Llp | Microbial compositions and methods for reducing methane emissions |
WO2023225510A1 (en) | 2022-05-17 | 2023-11-23 | Dupont Nutrition Biosciences Aps | Feed additive comprising enzyme combinations |
Also Published As
Publication number | Publication date |
---|---|
BR112014003950A2 (en) | 2020-10-27 |
CA2845576A1 (en) | 2013-02-28 |
WO2013029013A8 (en) | 2017-09-28 |
EP2748300A1 (en) | 2014-07-02 |
CN103930540B (en) | 2017-05-17 |
ES2702230T3 (en) | 2019-02-28 |
US20150230498A1 (en) | 2015-08-20 |
US10058110B2 (en) | 2018-08-28 |
US9089151B2 (en) | 2015-07-28 |
CN103930540A (en) | 2014-07-16 |
BR112014003950B1 (en) | 2022-01-11 |
CN107418908B (en) | 2021-01-08 |
US20130064927A1 (en) | 2013-03-14 |
DK2748300T3 (en) | 2019-01-14 |
CN107418908A (en) | 2017-12-01 |
EP2748300B1 (en) | 2018-09-19 |
PL2748300T3 (en) | 2019-05-31 |
CA2845576C (en) | 2020-09-15 |
RU2014119583A (en) | 2015-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10058110B2 (en) | Enzyme producing bacillus strains | |
CA3004522C (en) | Feed additive composition | |
US11291695B2 (en) | Bacillus subtilis strains improving animal performance parameters | |
TWI702004B (en) | Direct-fed microbials and methods of their use | |
US11607434B2 (en) | Bacillus compositions and methods of use with ruminants | |
US11944656B2 (en) | Microbials for feed | |
US12115198B2 (en) | Microbials for animals | |
JP2023510910A (en) | Compositions and methods for controlling unwanted microorganisms and improving animal health | |
US20240358770A1 (en) | Methods of treating pododermatitis | |
RU2783525C2 (en) | Compositions of bacillus strains and methods for their use relatively to ruminants | |
EP4376632A1 (en) | Methods of treating pododermatitis | |
WO2024112863A1 (en) | Compositions and methods to increase feed efficiency in animals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12753898 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2845576 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014119583 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014003950 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014003950 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140220 |