WO2013027816A1 - Radiographic imaging system, radiographic imaging method and radiographic imaging system error-processing method - Google Patents

Radiographic imaging system, radiographic imaging method and radiographic imaging system error-processing method Download PDF

Info

Publication number
WO2013027816A1
WO2013027816A1 PCT/JP2012/071385 JP2012071385W WO2013027816A1 WO 2013027816 A1 WO2013027816 A1 WO 2013027816A1 JP 2012071385 W JP2012071385 W JP 2012071385W WO 2013027816 A1 WO2013027816 A1 WO 2013027816A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
value
irradiation dose
radiographic imaging
control unit
Prior art date
Application number
PCT/JP2012/071385
Other languages
French (fr)
Japanese (ja)
Inventor
北野浩一
大田恭義
岩切直人
西納直行
中津川晴康
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013027816A1 publication Critical patent/WO2013027816A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure

Definitions

  • the present invention relates to a radiographic image capturing system, a radiographic image capturing method, and a radiographic image capturing system capable of obtaining a moving image of a radiographic image by executing radiographic imaging at a set frame rate using a radiographic image capturing apparatus. It relates to an error handling method.
  • radiation image information can be read and displayed immediately from the radiation detector after imaging in order to quickly and accurately treat the patient. is required.
  • a radiation detector capable of meeting such demands, a solid-state detection element (referred to as a pixel) that converts radiation directly into an electrical signal, or converts radiation into visible light with a scintillator and then converts it into an electrical signal for reading.
  • a radiation detector referred to as a flat panel detector (FPD) using the above has been developed.
  • an X-ray diagnostic imaging device in which a radiographic image is displayed on a monitor by executing radiography at a set frame rate, so that, for example, the catheter entry status with respect to the subject can be grasped in real time. Has been.
  • Japanese Patent Application Laid-Open No. 2007-82908 is carried out to prevent re-imaging due to improper imaging, but detection of exposure failure due to radiation source / generator malfunction and detection of exposure failure. It does not take into account the correspondence of the case, and does not include the concept of the difference between the gray values between the two frames.
  • Japanese Patent Application Laid-Open No. 2011-98009 uses a technique related to automatic brightness control (ABC). From the description in paragraphs [0015] and [0019], etc. Only one frame of computation is included. For this reason, it is not possible to carry out abnormality detection using a difference in gray value between a plurality of frames under automatic luminance control.
  • ABSC automatic brightness control
  • Japanese Patent Application Laid-Open No. 2009-297304 has automatic brightness control as an auxiliary means, and when communication is abnormal, exposure is continued by any means including automatic brightness control. With this technology, it is not possible to cope with poor exposure due to malfunction of the tube, radiation source, and generator, and the exposure continues and excessive exposure increases.
  • the automatic brightness control obtains the gray value (average of QL value, etc.) of the region of interest for each frame, determines whether it is higher or lower than the gray value expected from the imaging region and imaging conditions, This is a method of raising and lowering the X-ray irradiation energy in the next radiography. If any abnormality occurs and the gray value decreases, control for increasing the X-ray irradiation energy is performed without detecting the abnormality. If such control is left unattended, there is a risk of subjecting a subject (such as a patient) to high energy exposure despite the occurrence of an abnormality in the system and the X-ray irradiation control system.
  • the present invention has been made in consideration of such problems, and in a system using automatic brightness control, when an abnormality occurs in the system or the radiation irradiation control system, the subject (patient etc.) has high irradiation energy. It is an object of the present invention to provide a radiographic imaging system, a radiographic imaging method, and an error processing method of the radiographic imaging system that can prevent exposure to radiation and reduce the risk after an abnormality has occurred. .
  • a radiographic imaging system includes a radiation apparatus having a radiation source, an irradiation dose control unit for controlling an irradiation dose irradiated from the radiation source, and the radiation source transmitted through the subject.
  • a radiation image capturing device that converts the radiation of the radiation into radiation image information
  • a system control unit that controls the radiation image capture device to perform radiation imaging at a set frame rate.
  • the irradiation dose control unit increases the irradiation dose of the next radiation when the gray value of the radiation image information is lower than the reference value, and increases the next radiation dose when the gray value is higher than the reference value.
  • the system control unit controls the irradiation dose control unit when the gray value is different from an expected result. Without increasing the radiation dose of the next radiation, and having an error processing unit for controlling to perform at least one of radiography.
  • the irradiation dose control unit increases the next radiation irradiation dose when the gray value of the radiation image information is lower than the reference value, and sets the next radiation irradiation dose when the gray value is higher than the reference value. It is controlled to decrease. Under such control, if the gray value is significantly lower than the reference value due to abnormalities in the system or radiation irradiation control system, etc., normally, control is performed to increase the irradiation dose to the maximum. Therefore, the radiation set to the maximum irradiation dose is irradiated to the subject.
  • the first aspect of the present invention increases the irradiation dose of the next radiation by controlling the irradiation dose control unit when the gray value is different from the expected result. And control to perform at least one radiation imaging.
  • the system control unit includes a gray level difference acquisition unit that acquires a gray level difference of radiation image information based on at least two times of radiography, and the gray level difference is near a specified value.
  • an error notification unit may be provided that notifies the error that the gray value is different from the expected result.
  • the error processing unit controls the irradiation dose control unit to decrease without increasing the next radiation irradiation dose. Then, control may be performed so that at least one radiation imaging is performed.
  • the error notification unit is configured such that the gray value of the radiation image information based on the current radiographing is lower than the gray value of the radiographic image information based on the previous radiography by the vicinity of the specified value or more. In this case, the error notification may be performed.
  • the irradiation dose control unit uses the upper limit signal value Vmax corresponding to the upper limit value of the irradiation dose and the lower limit signal value Vmin corresponding to the lower limit value of the irradiation dose as a dynamic range, and the reference value
  • the radiation source You may make it control the irradiation dose of the radiation from.
  • the irradiation dose control unit sets the signal value V to be equal to or lower than a reference signal value Vo based on an instruction from the error processing unit. It may be.
  • the irradiation dose control unit sets the signal value V to a reference signal value Vo or less based on an instruction from the error processing unit, And you may make it set to the value according to the difference of the said light and shade value.
  • the irradiation dose control unit sets the signal value V to the lower limit signal value Vmin ⁇ constant Ka (when the difference between the gray values is not less than the specified value and less than the second specified value). 0 ⁇ Ka ⁇ 1.0) may be set, and the signal value V may be set to the lower limit signal value Vmin when the difference between the gray values is equal to or less than the second specified value.
  • the one-time radiography may be performed at the set frame rate.
  • the error processing section performs radiation imaging by gradually increasing the radiation dose each time radiation imaging is performed at the frame rate after performing the one radiation imaging. You may make it control to perform.
  • a radiographic imaging method includes a radiation apparatus having a radiation source, an irradiation dose control unit that controls an irradiation dose irradiated from the radiation source, and the radiation source that has passed through a subject.
  • the irradiation dose control unit includes the radiation When the gray value of the image information is lower than the reference value, the next radiation dose is increased, and when the gray value is higher than the reference value, the next radiation dose is controlled to be reduced, When the gray value is different from the expected result, the irradiation dose control unit is controlled to increase at least once without increasing the irradiation dose of the next radiation. Characterized in that it has an error processing step of controlling to perform radiography.
  • An error processing method for a radiographic imaging system includes a radiation apparatus having a radiation source, an irradiation dose control unit that controls an irradiation dose emitted from the radiation source, and transmitted through the subject.
  • the irradiation dose control unit increases the next radiation irradiation dose when the gray value of the radiation image information is lower than the reference value, and sets the next radiation irradiation dose when the gray value is higher than the reference value. If the gray value is different from the expected result, the irradiation dose control unit is controlled and the next radiation is controlled. Without increasing the radiation dose, and having an error processing step of controlling to perform at least one of radiography.
  • the radiographic image capturing system, the radiographic image capturing method, and the error processing method of the radiographic image capturing system according to the present invention in the system using the automatic brightness control, the system and the radiation irradiation control system are abnormal. When this occurs, it is possible to prevent the subject (patient or the like) from being exposed with high irradiation energy, and to reduce the risk after the occurrence of an abnormality.
  • the radiographic image capturing system 10 includes a radiographic image capturing device 12 and a radiographic image capturing device 12 that are set at a set frame rate (for example, 15 frames / second to 60 frames). And a system control unit 14 that performs control so as to execute radiation imaging at a time of 1 second / second).
  • a console 16 is connected to the system control unit 14 so that data communication with the console 16 is possible.
  • Connected to the console 16 are a monitor 18 for image observation and diagnostic imaging, and an input device 20 (keyboard, mouse, etc.) for operation input.
  • An operator uses the input device 20 to set a radiation exposure dose or a radiographic frame rate suitable for the current situation in an operation or catheter insertion operation while observing a moving image.
  • Data input using the input device 20 and data created and edited by the console 16 are input to the system control unit 14. Further, radiation image information and the like from the system control unit 14 is supplied to the console 16 and displayed on the monitor 18.
  • the radiographic imaging device 12 includes a radiation device 28 that irradiates radiation 26 toward a subject 24 on an imaging table 22, a radiation detection device 30 that converts radiation 26 transmitted through the subject 24 into radiation image information, and a radiation detection device.
  • a detection device control unit 32 that transmits and receives data such as radiation image information between the system control unit 14 and the system control unit 14, and controls the radiation detection device 30 based on an instruction from the system control unit 14 (including moving drive). Have.
  • the movement detection of the radiation detection apparatus 30 is performed when a relatively wide range is imaged, for example, a moving image of the spine or a moving image of the catheter entry position. That is, in such imaging, a movement control signal based on an operation input from an operator (doctor or radiographer) is output from the system control unit 14 and input to the detection device control unit 32. Based on the movement control signal from the system control unit 14, the detection device control unit 32 controls the movement drive mechanism (not shown) to move the radiation detection device 30.
  • the radiation device 28 is based on a radiation source 34, a radiation source controller 36 that controls the radiation source 34 based on an instruction from the system controller 14, and an instruction from the system controller 14. And an automatic collimator unit 38 that widens or narrows the irradiation area of the radiation 26.
  • the radiation detector 30 includes a radiation detector 40, a battery 42 as a power source, a cassette control unit 44 that drives and controls the radiation detector 40, and a signal including radiation image information from the radiation detector 40.
  • a transmitter / receiver 46 for transmitting and receiving data is accommodated.
  • the radiation image information output from the transceiver 46 is input to the system control unit 14 and the console 16 via the detection device control unit 32 and is displayed on the monitor 18. That is, radiation image information based on radiation imaging at a set frame rate is sequentially input to the system control unit 14, and thus a moving image of the radiation image information is displayed on the monitor 18 in real time.
  • the cassette control unit 44 and the transceiver 46 are provided with lead plates or the like on the irradiation surface side of the cassette control unit 44 and the transceiver 46 in order to avoid damage due to the radiation 26 being irradiated. Is preferred.
  • the radiation detector 40 for example, the radiation 26 that has passed through the subject 24 is once converted into visible light by a scintillator, and the converted visible light is a solid-state detection element (hereinafter referred to as “a-Si”).
  • a-Si solid-state detection element
  • An indirect conversion type radiation detector (including a front side reading method and a back side reading method) that converts to an electric signal can also be used.
  • An ISS (Irradiation Side Sampling) type radiation detector which is a surface reading method, has a configuration in which a solid detection element and a scintillator are sequentially arranged along the irradiation direction of the radiation 26.
  • a PSS (Penetration Side Sampling) type radiation detector which is a back side reading method, has a configuration in which a scintillator and a solid state detection element are sequentially arranged along the radiation 26 irradiation direction.
  • the radiation detector 40 in addition to the above-described indirect conversion type radiation detector, direct conversion in which the dose of the radiation 26 is directly converted into an electric signal by a solid detection element made of a substance such as amorphous selenium (a-Se).
  • a-Se amorphous selenium
  • the radiation detector 40 has a photoelectric conversion layer 52 in which each pixel 50 made of a material such as a-Si that converts visible light into an electrical signal is formed on an array of matrix thin film transistors (hereinafter referred to as TFTs 54). It has the structure arranged in. In this case, in each pixel 50, the charge generated by converting visible light into an electrical signal (analog signal) is accumulated, and the charge can be read out as an image signal by sequentially turning on the TFT 54 for each row. .
  • TFTs 54 matrix thin film transistors
  • a gate line 56 extending in parallel with the row direction and a signal line 58 extending in parallel with the column direction are connected to the TFT 54 connected to each pixel 50.
  • Each gate line 56 is connected to a line scan driver 60, and each signal line 58 is connected to a multiplexer 62.
  • Control signals Von and Voff for controlling on / off of the TFTs 54 arranged in the row direction are supplied from the line scan driving unit 60 to the gate line 56.
  • the line scan driving unit 60 includes a plurality of switches SW1 for switching the gate lines 56, and a first address decoder 64 for outputting a selection signal for selecting the switches SW1.
  • An address signal is supplied from the cassette control unit 44 to the first address decoder 64.
  • each pixel 50 flows out to the signal line 58 via the TFTs 54 arranged in the column direction. This charge is amplified by the charge amplifier 66.
  • a multiplexer 62 is connected to the charge amplifier 66 through a sample and hold circuit 68.
  • each charge amplifier 66 includes an operational amplifier 70, a capacitor 72, and a switch 74. When the switch 74 is off, the charge amplifier 66 converts the charge signal input to one input terminal of the operational amplifier 70 into a voltage signal and outputs the voltage signal.
  • the charge amplifier 66 amplifies and outputs the electrical signal with the gain set by the cassette control unit 44.
  • Information relating to the gain of the charge amplifier 66 (gain setting information) is supplied from the system control unit 14 to the cassette control unit 44 via the detection device control unit 32.
  • the cassette control unit 44 sets the gain of the charge amplifier 66 based on the supplied gain setting information.
  • the other input terminal of the operational amplifier 70 is connected to GND (ground potential) (ground).
  • GND ground potential
  • the switch 74 When all the TFTs 54 are turned on and the switch 74 is turned on, the charge accumulated in the capacitor 72 is discharged by the closed circuit of the capacitor 72 and the switch 74, and the charge accumulated in the pixel 50 is closed. It is swept out to GND (ground potential) via the switch 74 and the operational amplifier 70.
  • the operation of turning on the switch 74 of the charge amplifier 66 to discharge the charge accumulated in the capacitor 72 and sweeping out the charge accumulated in the pixel 50 to GND (ground potential) is a reset operation (empty reading operation). Call it. That is, in the reset operation, the voltage signal corresponding to the charge signal stored in the pixel 50 is discarded without being output to the multiplexer 62.
  • the multiplexer 62 includes a plurality of switches SW2 for switching the signal line 58 and a second address decoder 76 for outputting a selection signal for selecting the switch SW2.
  • An address signal is supplied from the cassette control unit 44 to the second address decoder 76.
  • An A / D converter 78 is connected to the multiplexer 62, and radiation image information converted into a digital signal by the A / D converter 78 is supplied to the cassette control unit 44.
  • the TFT 54 functioning as a switching element may be realized in combination with another imaging element such as a CMOS (Complementary Metal-Oxide Semiconductor) image sensor. Furthermore, it can be replaced with a CCD (Charge-Coupled Device) image sensor that transfers charges while shifting the charges with a shift pulse corresponding to a gate signal referred to as a TFT.
  • CMOS Complementary Metal-Oxide Semiconductor
  • CCD Charge-Coupled Device
  • the cassette control unit 44 of the radiation detection apparatus 30 includes an address signal generation unit 80, an image memory 82, and a cassette ID memory 84, as shown in FIG.
  • the address signal generator 80 sends an address signal to the first address decoder 64 of the line scan driver 60 and the second address decoder 76 of the multiplexer 62 shown in FIG. 3 based on the read control information from the system controller 14. Supply.
  • the read control information includes, for example, progressive mode, interlace mode (odd row read mode, even row read mode, second row read mode, third row read mode, etc.), binning mode (1 pixel / 4 pixel read mode, 1 pixel / 6-pixel readout mode, 1-pixel / 9-pixel readout mode, etc.) are included.
  • the 1-pixel / 4-pixel readout mode two adjacent gate lines are simultaneously activated (set to Von), and two adjacent signal lines are selected at the same time.
  • the address signal generator 80 generates an address signal corresponding to the mode indicated by the read control information, and outputs the address signal to the first address decoder 64 of the line scan driver 60 and the second address decoder 76 of the multiplexer 62.
  • the read control information is created by the system control unit 14 based on an operation input from an operator, for example, and is input to the cassette control unit 44 of the radiation detection apparatus 30.
  • the image memory 82 stores radiation image information detected by the radiation detector 40.
  • the cassette ID memory 84 stores cassette ID information for specifying the radiation detection apparatus 30.
  • the transceiver 46 transmits the cassette ID information stored in the cassette ID memory 84 and the radiation image information stored in the image memory 82 to the system control unit 14 via the detection device control unit 32 by wired communication or wireless communication.
  • the system controller 14 of the radiographic image capturing system 10 calculates the gray value Da of the region of interest of the radiographic image information and stores it in the gray value storage unit 100.
  • an irradiation dose control unit 104 that performs the same control as the automatic brightness control.
  • the irradiation dose control unit 104 includes a reference value generation unit 106 that generates a reference value Db corresponding to an imaging region, and an irradiation dose control signal (hereinafter referred to as a first control) according to a difference between the current gray value Da and the reference value Db.
  • a control signal generator 108 that generates a signal Sa1 and outputs it to the radiation device 28, and a control signal (first control signal Sa1 and a later-described first control signal Sa1) and a normal operation period Ta and an error processing period Tb (see FIG. 7).
  • a switching unit 110 that switches between two control signals Sa2).
  • the error processing period Tb is a period (for example, 5 to 10 seconds) set in advance from the time ta when the error notification Sb described later is performed.
  • a period other than the error processing period Tb is a normal operation period Ta.
  • gray value Da an average value of the pixel values (QL values) of all the pixels included in the region of interest is used.
  • the gray value Da is the same concept as the luminance value.
  • the first control signal Sa1 output from the control signal generator 108 uses the upper limit signal value Vmax corresponding to the upper limit value of the irradiation dose and the lower limit signal value Vmin corresponding to the lower limit value of the irradiation dose as the dynamic range, and is set to the reference value Db.
  • the corresponding reference signal value is Vo
  • the signal value corresponding to the difference between the gray value Da and the reference value Db is V.
  • the signal form may be an analog signal or a digital signal. 0 may be used as the reference signal value Vo.
  • the control signal generation unit 108 In the normal operation period Ta, the control signal generation unit 108 generates and outputs a signal value (Vo + V) for increasing the irradiation dose of the next radiation imaging when the current gray value Da is lower than the reference value Db.
  • a signal value (Vo-V) for reducing the irradiation dose of the next radiography is generated and output.
  • the irradiation dose control unit 104 increases the next irradiation dose when the gray value Da of the region of interest is lower than the reference value Db, and the gray value Da of the region of interest is higher than the reference value Db. If it is high, control to reduce the next irradiation dose.
  • system control unit 14 includes a shading difference acquisition unit 112, an error notification unit 114, and an error processing unit 116.
  • the density difference acquisition unit 112 acquires the difference ⁇ D of the density value Da of the region of interest based on at least two radiation irradiations.
  • the error notification unit 114 performs error notification Sb, assuming that an error has occurred when the obtained gray value is different from the expected result.
  • the result different from the expected result is that normally, in the irradiation dose control, the radiation device 28 is feedback-controlled so that the difference d between the obtained gray value Da and the reference value Db is reduced.
  • Da is normally a value approximated to the reference value Db.
  • the maximum value of the gray value Da is set to +128
  • the result is expected to be within ⁇ 10 with respect to the reference value Db.
  • the gray value Da suddenly becomes 0 or almost 0, or becomes the maximum value or almost the maximum value, the gray value Da is different from the expected result. This is considered to be based on an abnormality in the radiation device 28, an exposure failure due to a malfunction of the generator, or an abnormality in the radiation detection device 30, the detection device control unit 32, or the like.
  • the error notification unit 114 sets the specified value Dc in advance to determine whether or not the obtained gray value Da is a result different from the expected result, and the gray value difference ⁇ D is determined.
  • An error notification (Sb) is made when an error has occurred when the value changes near the prescribed value Dc.
  • the vicinity of the specified value Dc refers to, for example, a range from the specified value Dc ⁇ (1.0 ⁇ coefficient Kc) to the specified value Dc ⁇ (1.0 + coefficient Kc).
  • the coefficient Kc is 0 ⁇ Kc ⁇ 1.0, and is set in advance by simulation or experiment. In the present embodiment, for example, a range of 0.1 to 0.2 can be used as the coefficient Kc.
  • the difference ⁇ D between the gray values without using the difference d between the gray value Da and the reference value Db is based on the fact that the radiographic image information between frames has high correlation.
  • the gray value difference ⁇ D is substantially constant.
  • the error processing unit 116 controls the irradiation dose control unit 104 so as to reduce at least one radiation imaging without increasing the next radiation irradiation dose. To control.
  • the radiation imaging may be performed with the irradiation dose immediately before the error notification without decreasing.
  • the error notification unit 114 performs the error notification Sb particularly when the gray value Da of the region of interest based on the current radiographing is lower than the gray value Da of the region of interest based on the previous radiography by the vicinity of the specified value Dc.
  • the prescribed value Dc a value of 25% or more, preferably 30% or more of 1/2 of the maximum density value (maximum density value) can be used. Further, regarding the relationship between the radiation exposure amount to the radiation detector 40 and the gray value Da of the radiation image, the gray value Da decreases as the exposure amount to the radiation detector 40 decreases.
  • the gray value Da of the region of interest based on the current radiography is lower than the gray value Da of the region of interest based on the previous radiography by at least the vicinity of the specified value Dc. Indicates a white image. This is considered to be based on the radiation source 34 and the error of poor exposure due to the malfunction of the generator.
  • the error processing unit 116 includes a switching signal output unit 118 and a control signal calculation unit 120.
  • the switching signal output unit 118 outputs the switching signal Sc to the switching unit 110 when the error notification Sb is received and when the error processing period Tb has elapsed.
  • the switching unit 110 sets the signal path of the control signal to the control signal generation unit 108 side of the irradiation dose control unit 104, and the first control signal Sa1 from the control signal generation unit 108 is sent to the radiation apparatus 28.
  • the signal path of the control signal is switched to the control signal calculation unit 120 side of the error processing unit 116 based on the input of the switching signal Sc from the switching signal output unit 118 based on the error notification Sb.
  • the second control signal Sa2 from the control signal calculation unit 120 is supplied to the radiation device 28.
  • the signal path of the control signal is switched again to the control signal generation unit 108 side of the irradiation dose control unit 104.
  • control signal calculation unit 120 calculates the second control signal Sa2 for each frame in the error processing period Tb and outputs the second control signal Sa2 for each frame.
  • the second control signal Sa2 has the same signal form as the first control signal Sa1 described above.
  • the signal value V1 of the second control signal Sa2 in the first radiography after the error notification Sb is given is, for example, the following four types. It is done.
  • the signal value V1 is set to be equal to or less than the reference signal value Vo.
  • the signal value V1 is set to a value that is equal to or less than the reference signal value Vo and that corresponds to the difference ⁇ D of the gray value.
  • the signal value V1 is set to the lower limit signal value Vmin ⁇ constant Ka (0 ⁇ Ka ⁇ 1.0).
  • the signal value V1 is set to the lower limit signal value Vmin.
  • the signal value Vj of the second control signal Sa2 in the second and subsequent radiation imaging in the error processing period Tb can be obtained as follows.
  • Va is the signal value generated for the radiography immediately before the error notification Sb
  • F is the number of frames in the error processing period Tb
  • j (j 2, 3,...
  • the signal value Vj can be obtained by the following arithmetic expressions (A) and (B).
  • Signal value Vj V1 + ⁇ V ⁇ (j ⁇ 1) (A)
  • ⁇ V (Va ⁇ V1) / F (B)
  • the error processing unit 116 receives the error notification Sb, performs the first radiography, and then gradually increases the irradiation dose every time radiography is performed at the currently set frame rate. It will be controlled to perform.
  • the error processing period Tb elapses, the signal value Va almost returns immediately before the error notification Sb, and the normal operation can be smoothly performed.
  • step S2 the control signal generation unit 108 of the irradiation dose control unit 104 sets the signal value V to the reference signal value Vo. For example, 0 is used as the reference signal value Vo.
  • step S3 the system control unit 14 determines whether a time corresponding to the latest frame rate has elapsed since the start of the previous radiation imaging.
  • the process proceeds to the next step S4, and the control signal generator 108 determines the current signal value.
  • V is stored in a register as the latest signal value Va.
  • step S5 the control signal generation unit 108 outputs the current signal value V to the radiation device 28 via the switching unit 110.
  • the radiation source control unit 36 of the radiation apparatus 28 changes the tube voltage, tube current, imaging time, etc. of the radiation source 34 based on the signal value V from the irradiation dose control unit 104, and outputs the radiation source 34. Set the new exposure dose.
  • step S6 the system control unit 14 outputs an exposure start signal Sd to the radiation device 28 at the start of the k-th radiation imaging.
  • the radiation source control unit 36 of the radiation apparatus 28 controls the radiation source 34 based on the input of the exposure start signal Sd from the system control unit 14, and irradiates the radiation with the irradiation dose set from the radiation source 34.
  • step S ⁇ b> 7 the system control unit 14 outputs an exposure notification Se indicating that the radiation device 28 has started exposure to the radiation detection device 30 via the detection device control unit 32.
  • step S8 the radiation detection apparatus 30 performs charge accumulation and charge reading based on the input of the exposure notification Se. That is, the radiation 26 that has passed through the subject 24 is once converted into visible light by the scintillator, and the visible light is photoelectrically converted in each pixel 50 to accumulate an amount of electric charge corresponding to the amount of light. Then, a synchronization signal (for example, a vertical synchronization signal) is output at the start of the reading period and input to the detection device control unit 32. The detection device controller 32 synchronizes the reception timing of the radiation image information with the output timing of the radiation image information from the radiation detection device 30 based on the input of the synchronization signal.
  • a synchronization signal for example, a vertical synchronization signal
  • the radiation detection apparatus 30 reads out charges in accordance with currently set readout control information (information indicating progressive mode, interlace mode, and binning mode), and uses the image memory 82, for example, in a FIFO manner. Outputs radiation image information. Radiation image information from the radiation detection device 30 is supplied to the system control unit 14 via the detection device control unit 32.
  • currently set readout control information information indicating progressive mode, interlace mode, and binning mode
  • step S ⁇ b> 9 the gray value acquisition unit 102 calculates the gray value Da of the region of interest (for example, the average value of the pixel values (QL values) of all the pixels included in the region of interest) in the radiographic image information. Store in the storage unit 100.
  • the gray value Da of the region of interest for example, the average value of the pixel values (QL values) of all the pixels included in the region of interest
  • step S10 the system control unit 14 transfers the supplied radiation image information to the console 16.
  • the console 16 stores the transferred radiation image information in the frame memory, and displays it on the monitor 18 as a radiation image obtained by the k-th radiation imaging, that is, a radiation image of the k-th frame in the normal operation period.
  • step S12 it is determined whether or not the gray value Da1 is lower than the gray value Da2 by the vicinity of the specified value Dc. This determination is made based on whether or not the difference ⁇ D is negative and the absolute value
  • step S14 the control signal generation unit 108 determines whether or not the difference d ⁇ 0. If the difference d is negative, the process proceeds to step S15, and the signal value V is increased according to the difference d. On the contrary, if the difference d is positive, the process proceeds to step S16, and the signal value V is decreased according to the difference d.
  • step S17 the value of the counter k is updated by +1.
  • step S18 the system control unit 14 determines whether or not there is a system termination request. If there is no system termination request, the process returns to step S3, and the processes after step S3 are repeated. Until it is determined in step S12 that the gray value Da1 is lower than the gray value Da2 by the vicinity of the specified value Dc, the operations in steps S3 to S18 are repeated, and the radiation image at the set frame rate is displayed on the monitor 18. Will be displayed.
  • step S12 When it is determined in step S12 that the gray value Da1 is lower than the gray value Da2 by the vicinity of the specified value Dc, the process proceeds to step S19 in FIG. 6 and the switching signal output unit 118 switches to the switching unit 110.
  • the signal Sc is output.
  • the signal path of the control signal is switched to the control signal calculation unit 120 side of the error processing unit 116.
  • step S21 the system control unit 14 determines whether or not a time corresponding to the latest frame rate has elapsed since the start of the previous radiation imaging.
  • the process proceeds to the next step S22, and whether or not the first radiation imaging is entered in the error processing period Tb, that is, the value of the counter j is an initial value. It is determined whether or not.
  • the process proceeds to the next step S23, and the control signal calculation unit 120 calculates the signal value V1 of the second control signal Sa2 in the first radiation imaging.
  • the calculation method any one of (1) to (4) described above can be selected.
  • step S24 the control signal calculation unit 120 outputs the signal value V1 to the radiation device 28 via the switching unit 110.
  • the radiation source control unit 36 of the radiation apparatus 28 changes the tube voltage, tube current, imaging time, etc. of the radiation source 34 based on the signal value V1 from the error processing unit 116 and outputs the radiation source 34 from the radiation source 34. Set the exposure dose to a new exposure dose.
  • step S25 the control signal calculation unit 120 calculates the signal value Vj of the second control signal Sa2 in the second and subsequent radiographs from the above-described calculation formula (A). And (B).
  • step S26 the control signal calculation unit 120 outputs the signal value Vj to the radiation device 28 via the switching unit 110.
  • the radiation source control unit 36 of the radiation apparatus 28 sets the irradiation dose based on the signal value Vj from the error processing unit 116.
  • step S24 the process proceeds to the next step S27, and the system control unit 14 sends an exposure start signal Sd to the radiation apparatus 28 at the start of the j-th radiation imaging. Is output.
  • the radiation source control unit 36 of the radiation apparatus 28 controls the radiation source 34 based on the input of the exposure start signal Sd from the system control unit 14, and irradiates the radiation with the irradiation dose set from the radiation source 34.
  • step S28 the system control unit 14 outputs an exposure notification Se indicating that the radiation device 28 has started exposure to the radiation detection device 30 via the detection device control unit 32.
  • step S29 the radiation detection apparatus 30 performs charge accumulation and charge readout based on the input of the exposure notification Se. Since this operation is the same as the operation in step S8 described above, a duplicate description thereof is omitted here.
  • step S30 the system control unit 14 transfers the supplied radiation image information to the console 16.
  • the console 16 stores the transferred radiation image information in the frame memory and displays it on the monitor 18 as a radiation image obtained by the j-th radiation imaging, that is, a radiation image of the jth frame in the error processing period.
  • step S31 the value of the counter j is updated by +1.
  • step S32 the switching signal output unit 118 determines whether or not the error processing period Tb has elapsed. If the error processing period Tb has not elapsed, the process returns to step S21, and the processes after step S21 are repeated.
  • the process proceeds to the next step S33, and the switching signal output unit 118 outputs the switching signal Sc to the switching unit 110.
  • the signal path of the control signal is switched again to the control signal generation unit 108 side of the irradiation dose control unit 104.
  • step S3 the process returns to step S3 in FIG. 5 and the processes after step S3 are repeated.
  • step S18 when it is determined that there is a system termination request, the processing in the radiation image capturing system 10 is terminated.
  • radiation imaging is performed at the start time tn + 1 of the (N + 1) th radiation imaging in the normal operation period Ta, so that the radiation image information D (N + 1) obtained by the N + 1th radiation imaging is transmitted to the system control unit 14. ) Is supplied.
  • the system control unit 14 transfers the supplied radiation image information D (N + 1) to the console 16 and displays it on the monitor 18 as a radiation image of the Nth frame.
  • the system control unit 14 calculates a difference ⁇ D between the previous (Nth) gray value and the current (N + 1) gray value.
  • the difference ⁇ D (indicated by “ ⁇ 2” for convenience) is not a value that has decreased by more than a predetermined value (for example, “ ⁇ 50”), the normal operation is continued and the system control unit 14 changes the density of the region of interest.
  • the signal value V of the first control signal Sa1 corresponding to the difference between the value Da and the reference value Db is calculated and output to the radiation device 28.
  • the radiation device 28 sets the irradiation dose of the radiation source 34 to an amount corresponding to the signal value V (for convenience, indicated by “+2”) for the next N + 2th radiography.
  • N + 2th radiography and N + 3th radiography are sequentially performed, and the radiation apparatus 28 determines the radiation dose of the radiation source 34 as a signal value V (for convenience) for the next N + 4th radiography.
  • the amount is set according to “ ⁇ 1”.
  • the gray value Da of the region of interest obtained by the N + 4th radiography is approximately 0, for example, and the signal value V of the first control signal Sa1 corresponding to the difference between the gray value Da and the reference value Db is, for example, the maximum value (
  • the maximum value Vmax is output to the radiation device 28 and set to the maximum irradiation dose.
  • the subject 24 is irradiated with the radiation 26 set to the maximum irradiation dose.
  • the system control unit 14 calculates a difference ⁇ D between the previous (N + 3) gray value and the current (N + 4) gray value. Since the difference ⁇ D (denoted by “ ⁇ 128” for convenience) is a value that has decreased by more than a specified value (for example, “ ⁇ 50”), the operation of the error processing unit 116 is started, and the system control unit 14 Then, the signal value V1 of the second control signal Sa2 of the first radiation imaging in the error processing period Tb is calculated and output to the radiation device 28.
  • a specified value for example, “ ⁇ 50”
  • the radiation device 28 sets the irradiation dose of the radiation source 34 to an amount corresponding to the signal value V1 (for example, the lower limit signal value “Vmin”) for the first radiation imaging in the error processing period Tb.
  • V1 for example, the lower limit signal value “Vmin”
  • the radiation 26 set to the minimum irradiation dose is irradiated to the subject 24, and the burden of exposure on the subject 24 can be reduced.
  • the irradiation dose gradually increases for each radiation imaging by the processing in step S25 and step S26, and error processing is performed when the error processing period Tb elapses. Radiation imaging is performed with the irradiation dose immediately before the start of the period Tb, and the normal operation is smoothly performed.
  • the radiographic imaging system 10 in the radiographic imaging system 10 according to the present exemplary embodiment, in the system using automatic luminance control, for example, when an abnormality occurs in the system or the radiation irradiation control system, the subject 24 (patient or the like) Exposure to high irradiation energy can be prevented, and the risk after an abnormality has occurred can be reduced.
  • an instruction to narrow the irradiation area is output from the system control unit 14 to the automatic collimator unit 38 of the radiation apparatus 28. May be. For example, it is narrowed within a range of 1 ⁇ 4 to 1/10 of the irradiation region immediately before the start of the error processing period Tb.
  • This ratio is set in advance by simulation or experiment according to the imaging region or the like. Thereby, the burden concerning the exposure to the subject 24 can be further reduced.
  • an instruction to increase the gain of the charge amplifier 66 may be output from the system control unit 14 to the radiation detection device 30 via the detection device control unit 32.
  • the reading mode in the radiation detection apparatus 30 may be set to, for example, an interlace mode.
  • the burden on the signal processing system related to charge readout in the radiation detection apparatus 30 can be reduced, and the risk that an error will occur again can be reduced.
  • radiographic imaging system is not limited to the above-described embodiment, and various configurations can be adopted without departing from the gist of the present invention.
  • the radiation detector 40 may be the radiation detector 600 according to the modification shown in FIGS.
  • FIG. 8 is a schematic cross-sectional view schematically showing the configuration of three pixel portions of the radiation detector 600 according to the modification.
  • the radiation detector 600 includes a signal output unit 604, a sensor unit 606 (photoelectric conversion unit), and a scintillator 608 sequentially stacked on an insulating substrate 602.
  • a pixel unit is configured by the sensor unit 606.
  • a plurality of pixel portions are arranged in a matrix on the substrate 602, and the signal output portion 604 and the sensor portion 606 in each pixel portion are configured to overlap each other.
  • the scintillator 608 is formed on the sensor unit 606 with a transparent insulating film 610 interposed therebetween.
  • the scintillator 608 converts the radiation 26 incident from above (the side opposite to the side where the substrate 602 is located) into light and emits light.
  • the body is formed into a film.
  • the wavelength range of light emitted by the scintillator 608 is preferably the visible light range (wavelength 360 nm to 830 nm), and in order to enable monochrome imaging by the radiation detector 600, the wavelength range of green is included. Is more preferable.
  • the phosphor used in the scintillator 608 preferably contains cesium iodide (CsI) when imaging using X-rays as the radiation 26, and the emission spectrum upon X-ray irradiation is 420 nm to 700 nm. It is particularly preferred to use some CsI (Tl) (cesium iodide with thallium added). Note that the emission peak wavelength of CsI (Tl) in the visible light region is 565 nm.
  • CsI cesium iodide
  • the scintillator 608 may be formed, for example, by vapor-depositing CsI (Tl) having a columnar crystal structure on a vapor deposition base.
  • CsI CsI
  • Al is often used as the vapor deposition substrate from the viewpoint of X-ray transmittance and cost, but is not limited thereto.
  • GOS vapor-depositing CsI
  • the scintillator 608 may be formed by applying GOS to the surface of the TFT active matrix substrate without using a vapor deposition substrate.
  • the scintillator 608 may be bonded to the TFT active matrix substrate.
  • the TFT active matrix substrate can be preserved even if GOS application fails.
  • the sensor unit 606 includes an upper electrode 612, a lower electrode 614, and a photoelectric conversion film 616 disposed between the upper electrode 612 and the lower electrode 614.
  • the upper electrode 612 Since the upper electrode 612 needs to make the light generated by the scintillator 608 incident on the photoelectric conversion film 616, it is preferable that the upper electrode 612 is made of a conductive material that is transparent at least with respect to the emission wavelength of the scintillator 608. It is preferable to use a transparent conductive oxide (TCO) having a high transmittance for visible light and a low resistance value. Note that although a metal thin film such as Au can be used as the upper electrode 612, a resistance value tends to increase when the transmittance of 90% or more is obtained, so that the TCO is preferable.
  • TCO transparent conductive oxide
  • the upper electrode 612 may have a single configuration common to all the pixel portions, or may be divided for each pixel portion.
  • the photoelectric conversion film 616 includes an organic photoconductor (OPC: Organic Photo Conductors), absorbs light emitted from the scintillator 608, and generates a charge corresponding to the absorbed light. If the photoelectric conversion film 616 includes an organic photoconductor (organic photoelectric conversion material), the photoelectric conversion film 616 has a sharp absorption spectrum in the visible light region, and electromagnetic waves other than light emitted by the scintillator 608 are almost absorbed by the photoelectric conversion film 616. In addition, noise generated when the radiation 26 is absorbed by the photoelectric conversion film 616 can be effectively suppressed. Note that the photoelectric conversion film 616 may be configured to include amorphous silicon instead of the organic photoconductor. In this case, it has a wide absorption spectrum and can efficiently absorb light emitted by the scintillator 608.
  • OPC Organic Photo Conductors
  • the organic photoconductor constituting the photoelectric conversion film 616 preferably has a peak wavelength closer to the emission peak wavelength of the scintillator 608 in order to absorb light emitted by the scintillator 608 most efficiently.
  • the absorption peak wavelength of the organic photoconductor coincides with the emission peak wavelength of the scintillator 608.
  • the difference between the absorption peak wavelength of the organic photoconductor and the emission peak wavelength of the scintillator 608 with respect to the radiation 26 is preferably within 10 nm, and more preferably within 5 nm.
  • organic photoconductors that can satisfy such conditions include quinacridone organic compounds and phthalocyanine organic compounds.
  • quinacridone organic compounds since the absorption peak wavelength in the visible region of quinacridone is 560 nm, if quinacridone is used as the organic photoconductor and CsI (Tl) is used as the material of the scintillator 608, the difference between the peak wavelengths can be within 5 nm. Thus, the amount of charge generated in the photoelectric conversion film 616 can be substantially maximized.
  • the sensor unit 606 is a stack of a part that absorbs electromagnetic waves, a photoelectric conversion part, an electron transport part, a hole transport part, an electron blocking part, a hole blocking part, a crystallization prevention part, an electrode, an interlayer contact improvement part, or the like.
  • An organic layer formed by mixing is included.
  • the organic layer preferably contains an organic p-type compound (organic p-type semiconductor) or an organic n-type compound (organic n-type semiconductor).
  • An organic p-type semiconductor is a donor organic semiconductor (compound) typified by a hole-transporting organic compound and refers to an organic compound having a property of easily donating electrons. More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound.
  • Organic n-type semiconductors are acceptor organic semiconductors (compounds) typified mainly by electron-transporting organic compounds and refer to organic compounds that have the property of easily accepting electrons. More specifically, the organic compound having the higher electron affinity when two organic compounds are used in contact with each other. Therefore, any organic compound can be used as the acceptor organic compound as long as it is an electron-accepting organic compound.
  • the photoelectric conversion film 616 may be formed by further containing fullerenes or carbon nanotubes.
  • the thickness of the photoelectric conversion film 616 is preferably as large as possible in terms of absorbing light from the scintillator 608. However, when the thickness is larger than a certain level, the photoelectric conversion film 616 is generated in the photoelectric conversion film 616 by a bias voltage applied from both ends of the photoelectric conversion film 616. Since electric field strength is reduced and charges cannot be collected, the thickness is preferably 30 nm to 300 nm, more preferably 50 nm to 250 nm, and particularly preferably 80 nm to 200 nm.
  • the photoelectric conversion film 616 has a single configuration common to all pixel portions, but may be divided for each pixel portion.
  • the lower electrode 614 is a thin film divided for each pixel portion. However, the lower electrode 614 may have a single configuration common to all the pixel portions.
  • the lower electrode 614 can be made of a transparent or opaque conductive material, and aluminum, silver, or the like can be preferably used.
  • the thickness of the lower electrode 614 can be, for example, 30 nm or more and 300 nm or less.
  • the sensor unit 606 by applying a predetermined bias voltage between the upper electrode 612 and the lower electrode 614, one of charges (holes, electrons) generated in the photoelectric conversion film 616 is moved to the upper electrode 612. The other can be moved to the lower electrode 614.
  • a wiring is connected to the upper electrode 612, and a bias voltage is applied to the upper electrode 612 via the wiring.
  • the polarity of the bias voltage is determined so that electrons generated in the photoelectric conversion film 616 move to the upper electrode 612 and holes move to the lower electrode 614, but this polarity is opposite. May be.
  • the sensor unit 606 constituting each pixel unit only needs to include at least the lower electrode 614, the photoelectric conversion film 616, and the upper electrode 612. In order to suppress an increase in dark current, the electron blocking film 618 and the hole blocking are included. It is preferable to provide at least one of the films 620, and it is more preferable to provide both.
  • the electron blocking film 618 can be provided between the lower electrode 614 and the photoelectric conversion film 616.
  • a bias voltage is applied between the lower electrode 614 and the upper electrode 612, electrons are transferred from the lower electrode 614 to the photoelectric conversion film 616. It is possible to suppress the dark current from increasing due to the injection of.
  • An electron donating organic material can be used for the electron blocking film 618.
  • the material actually used for the electron blocking film 618 may be selected according to the material of the adjacent electrode, the material of the adjacent photoelectric conversion film 616, and the like, and 1.3 eV or more from the work function (Wf) of the material of the adjacent electrode. Those having a large electron affinity (Ea) and an Ip equivalent to or smaller than the ionization potential (Ip) of the material of the adjacent photoelectric conversion film 616 are preferable. Since the material applicable as the electron donating organic material is described in detail in Japanese Patent Application Laid-Open No. 2009-32854, description thereof is omitted.
  • the thickness of the electron blocking film 618 is preferably 10 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, and particularly preferably, in order to surely exhibit the dark current suppressing effect and prevent a decrease in photoelectric conversion efficiency of the sensor unit 606. It is good to set it to 50 nm or more and 100 nm or less.
  • the hole blocking film 620 can be provided between the photoelectric conversion film 616 and the upper electrode 612. When a bias voltage is applied between the lower electrode 614 and the upper electrode 612, the hole blocking film 620 is applied from the upper electrode 612 to the photoelectric conversion film 616. It is possible to suppress the increase in dark current due to the injection of holes.
  • An electron-accepting organic material can be used for the hole blocking film 620.
  • the thickness of the hole blocking film 620 is preferably 10 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, and particularly preferably, in order to reliably exhibit the dark current suppressing effect and prevent a decrease in photoelectric conversion efficiency of the sensor unit 606. Is preferably 50 nm to 100 nm.
  • the material actually used for the hole blocking film 620 may be selected according to the material of the adjacent electrode, the material of the adjacent photoelectric conversion film 616, and the like, and 1.3 eV from the work function (Wf) of the material of the adjacent electrode. As described above, it is preferable that the ionization potential (Ip) is large and the Ea is equal to or larger than the electron affinity (Ea) of the material of the adjacent photoelectric conversion film 616. Since the material applicable as the electron-accepting organic material is described in detail in Japanese Patent Application Laid-Open No. 2009-32854, description thereof is omitted.
  • the electron blocking film 618 and the hole blocking are set.
  • the position of the film 620 may be reversed. Further, it is not necessary to provide both the electron blocking film 618 and the hole blocking film 620. If either one is provided, a certain dark current suppressing effect can be obtained.
  • the signal output unit 604 is provided on the surface of the substrate 602 corresponding to the lower electrode 614 of each pixel unit, and the storage capacitor 622 that accumulates the electric charge moved to the lower electrode 614,
  • the TFT 624 converts the electric charge accumulated in the accumulation capacitor 622 into an electric signal and outputs the electric signal.
  • the region where the storage capacitor 622 and the TFT 624 are formed has a portion that overlaps with the lower electrode 614 in plan view. With such a structure, the signal output unit 604 and the sensor unit 606 in each pixel unit are connected to each other. There will be overlap in the thickness direction. If the signal output unit 604 is formed so as to completely cover the storage capacitor 622 and the TFT 624 with the lower electrode 614, the plane area of the radiation detector 600 (pixel unit) can be minimized.
  • the storage capacitor 622 is electrically connected to the corresponding lower electrode 614 through a wiring made of a conductive material that penetrates an insulating film 626 provided between the substrate 602 and the lower electrode 614. Thereby, the charge collected by the lower electrode 614 can be moved to the storage capacitor 622.
  • a gate electrode 628, a gate insulating film 630, and an active layer (channel layer) 632 are stacked, and a source electrode 634 and a drain electrode 636 are formed on the active layer 632 with a predetermined interval.
  • the active layer 632 can be formed of, for example, amorphous silicon, amorphous oxide, organic semiconductor material, carbon nanotube, or the like. Note that the material forming the active layer 632 is not limited thereto.
  • the amorphous oxide that can form the active layer 632 is preferably an oxide containing at least one of In, Ga, and Zn (for example, In—O-based), and at least two of In, Ga, and Zn. Oxides containing one (eg, In—Zn—O, In—Ga—O, and Ga—Zn—O) are more preferred, and oxides containing In, Ga, and Zn are particularly preferred.
  • In—Ga—Zn—O-based amorphous oxide an amorphous oxide whose composition in a crystalline state is represented by InGaO 3 (ZnO) m (m is a natural number less than 6) is preferable, and InGaZnO is particularly preferable. 4 is more preferable. Note that the amorphous oxide that can form the active layer 632 is not limited thereto.
  • Examples of the organic semiconductor material that can form the active layer 632 include, but are not limited to, phthalocyanine compounds, pentacene, vanadyl phthalocyanine, and the like.
  • the configuration of the phthalocyanine compound is described in detail in Japanese Patent Application Laid-Open No. 2009-212389, so that the description thereof is omitted.
  • the active layer 632 of the TFT 624 is formed of an amorphous oxide, an organic semiconductor material, or a carbon nanotube, the radiation 26 such as X-rays is not absorbed, or even if it is absorbed, a very small amount remains. Generation of noise in the unit 604 can be effectively suppressed.
  • the switching speed of the TFT 624 can be increased, and a TFT 624 having a low light absorption in the visible light region can be formed.
  • the performance of the TFT 624 is remarkably deteriorated only by mixing a very small amount of metallic impurities into the active layer 632, so that extremely high purity carbon nanotubes are separated by centrifugation or the like. ⁇ It needs to be extracted and formed.
  • the substrate 602 is not limited to a substrate having high heat resistance such as a semiconductor substrate, a quartz substrate, and a glass substrate, and a flexible substrate such as plastic, aramid, or bionanofiber can also be used.
  • flexible substrates such as polyesters such as polyethylene terephthalate, polybutylene phthalate, polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, polychlorotrifluoroethylene, etc. Can be used. If such a plastic flexible substrate is used, it is possible to reduce the weight, which is advantageous for carrying around, for example.
  • the photoelectric conversion film 616 is formed from an organic photoconductor
  • the TFT 624 is formed from an organic semiconductor material, whereby the photoelectric conversion film 616 and the TFT 624 are formed at a low temperature on a plastic flexible substrate (substrate 602). It is possible to reduce the thickness and weight of the radiation detector 600 as a whole. Thereby, the radiation detection apparatus 30 that accommodates the radiation detector 600 can be made thinner and lighter, and convenience in use outside the hospital is improved.
  • the base material of the photoelectric conversion portion is made of a material having flexibility different from that of general glass, it is possible to improve damage resistance when the device is carried or used.
  • the substrate 602 is provided with an insulating layer for ensuring insulation, a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving flatness or adhesion to electrodes, and the like. May be.
  • the transparent electrode material can be cured at a high temperature to lower its resistance, and can also be used for automatic mounting of a driver IC including a solder reflow process.
  • aramid has a thermal expansion coefficient close to that of ITO (Indium Tin Oxide) or a glass substrate, warping after manufacturing is small and it is difficult to crack.
  • aramid can form a substrate thinner than a glass substrate or the like. Note that the substrate 602 may be formed by stacking an ultrathin glass substrate and an aramid.
  • Bionanofiber is a composite of a cellulose microfibril bundle (bacterial cellulose) produced by bacteria (acetobacterium Xylinum) and a transparent resin.
  • the cellulose microfibril bundle has a width of 50 nm and a size of 1/10 of the visible light wavelength, and has high strength, high elasticity, and low thermal expansion.
  • a transparent resin such as acrylic resin or epoxy resin
  • a bio-nanofiber having a light transmittance of about 90% at a wavelength of 500 nm can be obtained while containing 60-70% of the fiber.
  • Bionanofiber has a low coefficient of thermal expansion (3-7ppm) comparable to silicon crystals, and is as strong as steel (460MPa), highly elastic (30GPa), and flexible. Compared to glass substrates, etc. Thus, a thin substrate 602 can be formed.
  • a signal output unit 604, a sensor unit 606, and a transparent insulating film 610 are sequentially formed on a substrate 602, and a scintillator 608 is attached to the substrate 602 using an adhesive resin having low light absorption.
  • the radiation detector 600 is formed.
  • the photoelectric conversion film 616 is made of an organic photoconductor, and the active layer 632 of the TFT 624 is made of an organic semiconductor material. Therefore, the photoelectric conversion film 616 and the signal output unit 604 are used. Therefore, the radiation 26 is hardly absorbed. Thereby, the fall of the sensitivity with respect to the radiation 26 can be suppressed.
  • Both the organic semiconductor material constituting the active layer 632 of the TFT 624 and the organic photoconductor constituting the photoelectric conversion film 616 can be formed at a low temperature. Therefore, the substrate 602 can be formed of a plastic resin, aramid, or bionanofiber that absorbs less radiation 26. Thereby, the fall of the sensitivity with respect to the radiation 26 can be suppressed further.
  • the radiation detector 600 when the radiation detector 600 is attached to a portion of the irradiation surface in the housing and the substrate 602 is formed of a highly rigid plastic resin, aramid, or bionanofiber, the rigidity of the radiation detector 600 itself may be increased. Therefore, the irradiation surface portion of the housing can be formed thin.
  • the substrate 602 is formed of a highly rigid plastic resin, aramid, or bionanofiber, the radiation detector 600 itself has flexibility, so that even when an impact is applied to the irradiated surface, the radiation detector 600 is not easily damaged. .
  • the radiation detector 600 described above may be configured as follows.
  • the photoelectric conversion film 616 may be formed of an organic photoelectric conversion material, and the TFT layer 638 using a CMOS sensor may be formed. In this case, since only the photoelectric conversion film 616 is made of an organic material, the TFT layer 638 including the CMOS sensor may not have flexibility.
  • the photoelectric conversion film 616 may be formed of an organic photoelectric conversion material, and the flexible TFT layer 638 may be realized by a CMOS circuit including a TFT 624 made of an organic material.
  • CMOS circuit including a TFT 624 made of an organic material.
  • pentacene may be adopted as the material of the p-type organic semiconductor used in the CMOS circuit
  • copper fluoride phthalocyanine (F 16 CuPc) may be adopted as the material of the n-type organic semiconductor.
  • F 16 CuPc copper fluoride phthalocyanine
  • the gate insulating film, the semiconductor, and each electrode can be manufactured at room temperature or 100 ° C. or lower.
  • a CMOS circuit can be directly formed over the flexible substrate 602.
  • the TFT 624 made of an organic material can be miniaturized by a manufacturing process in accordance with a scaling law. Note that when the polyimide precursor is applied to a thin polyimide substrate by a spin coat method and heated, the polyimide precursor is changed to polyimide, so that a flat substrate without unevenness can be realized.
  • a self-alignment placement technique (Fluidic Self-Assembly method) that places a plurality of micron-order device blocks at specified positions on a substrate 602, a photoelectric conversion film 616 and a TFT 624 made of crystalline Si are formed on a resin substrate You may arrange
  • the photoelectric conversion film 616 and TFT 624 as micro device blocks of micron order are fabricated in advance on another substrate and then separated from the substrate, and the photoelectric conversion film 616 and TFT 624 in the liquid are placed on the substrate 602 as the target substrate. Sprinkle on and place statistically.
  • the substrate 602 is processed in advance to be adapted to the device block, and the device block can be selectively placed on the substrate 602. Therefore, an optimal device block (photoelectric conversion film 616 and TFT 624) made of an optimal material can be integrated on an optimal substrate (semiconductor substrate, quartz substrate, glass substrate, etc.), and is not a crystal. It is also possible to integrate device blocks (photoelectric conversion film 616 and TFT 624) optimum for a substrate (flexible substrate such as plastic).
  • the light emitted from the scintillator 608 is converted into charges by the sensor unit 606 (photoelectric conversion film 616) located on the side opposite to the side where the radiation source 34 is located.
  • the sensor unit 606 photoelectric conversion film 616 located on the side opposite to the side where the radiation source 34 is located.
  • PSS Packetration Side Sampling
  • the radiation detector may be configured as a so-called surface reading method (ISS (Irradiation Side Sampling) method).
  • ISS Industrial Side Sampling
  • the substrate 602, the signal output unit 604, the sensor unit 606, and the scintillator 608 are laminated in this order along the irradiation direction of the radiation 26, and the light emitted from the scintillator 608 is sensor unit on the side where the radiation source 34 is located.
  • the radiation image is read after being converted into electric charges.
  • the scintillator 608 emits light more strongly on the irradiation surface side of the radiation 26 than on the back surface side.
  • the scintillator is compared with the radiation detector configured by the back surface reading method.
  • the distance until the light emitted in 608 reaches the photoelectric conversion film 616 can be shortened. Thereby, since the diffusion / attenuation of the light can be suppressed, the resolution of the radiation image can be increased.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

In the radiographic imaging system, radiographic imaging method and radiographic imaging system error-processing method of the invention, a radiation dose control unit performs control so that the radiation dose for the subsequent imaging is increased when the gray value of the radiographic image information is lower than a reference value and the radiation dose for the subsequent imaging is decreased when the gray value is higher than the reference value. The system control unit has an error-processing unit that, when results differ from the results anticipated for said gray value, controls the radiation dose control unit and performs control so that at least one radiographic imaging is performed without increasing the radiation dose for the subsequent imaging.

Description

放射線画像撮影システム、放射線画像撮影方法及び放射線画像撮影システムのエラー処理方法Radiographic imaging system, radiographic imaging method, and error processing method of radiographic imaging system
 本発明は、放射線画像撮影装置を用いて、設定されたフレームレートで放射線撮影を実行することで放射線画像の動画を得られるようにした放射線画像撮影システム、放射線画像撮影方法及び放射線画像撮影システムのエラー処理方法に関する。 The present invention relates to a radiographic image capturing system, a radiographic image capturing method, and a radiographic image capturing system capable of obtaining a moving image of a radiographic image by executing radiographic imaging at a set frame rate using a radiographic image capturing apparatus. It relates to an error handling method.
 近時、手術時等、造影撮影時、あるいは骨折等の治療時等においては、患者に対して迅速且つ的確な処置を施すため、撮影後の放射線検出器から直ちに放射線画像情報を読み出して表示できることが必要である。このような要求に対応可能な放射線検出器として、放射線を直接電気信号に変換し、あるいは、放射線をシンチレータで可視光に変換した後、電気信号に変換して読み出す固体検出素子(画素という。)を用いたフラットパネルデテクタ(FPD)と称される放射線検出器が開発されている。 In recent times, during surgery, during contrast imaging, or during treatment of fractures, etc., radiation image information can be read and displayed immediately from the radiation detector after imaging in order to quickly and accurately treat the patient. is required. As a radiation detector capable of meeting such demands, a solid-state detection element (referred to as a pixel) that converts radiation directly into an electrical signal, or converts radiation into visible light with a scintillator and then converts it into an electrical signal for reading. A radiation detector referred to as a flat panel detector (FPD) using the above has been developed.
 特に、設定されたフレームレートで放射線撮影を実行することで放射線画像による動画をモニタに表示することで、被写体に対する例えばカテーテルの進入状況等をリアルタイムで把握できるようにしたX線画像診断装置が提案されている。 In particular, an X-ray diagnostic imaging device is proposed in which a radiographic image is displayed on a monitor by executing radiography at a set frame rate, so that, for example, the catheter entry status with respect to the subject can be grasped in real time. Has been.
 従来は、このようなX線画像診断装置において、被写体の体動による構造変化の検出を2フレーム間差分で実施する方法が提案されている(特開2007-82908号公報参照)。 Conventionally, in such an X-ray diagnostic imaging apparatus, a method for detecting a structural change due to body movement of a subject with a difference between two frames has been proposed (see JP 2007-82908 A).
 また、従来は、撮影中にX線照射エネルギーを制御する自動輝度制御(Automatic Brightness Control (ABC))を用いたX線画像診断装置が提案されている(特開2011-98009号公報参照)。 Also, conventionally, an X-ray diagnostic imaging apparatus using automatic brightness control (Automatic Brightness Control (ABC)) for controlling X-ray irradiation energy during imaging has been proposed (see JP 2011-98009 A).
 さらに、従来では、X線照射用の操作部との通信異常を検出して、撮影部位に応じた、又は安全なパラメータを適用する技術が提案されている(特開2009-297304号公報参照)。 Further, conventionally, there has been proposed a technique for detecting an abnormality in communication with an operation unit for X-ray irradiation and applying a safe parameter according to an imaging region (see JP 2009-297304 A). .
 しかしながら、特開2007-82908号公報に記載の方法は、不適切撮影による再撮影防止のために実施するものであるが、放射線源・ジェネレータ不調による曝射不良の検出、並びに曝射不良を検出した場合の対応について考慮されておらず、また、2フレーム間の濃淡値の差分という概念も含まれていない。 However, the method described in Japanese Patent Application Laid-Open No. 2007-82908 is carried out to prevent re-imaging due to improper imaging, but detection of exposure failure due to radiation source / generator malfunction and detection of exposure failure. It does not take into account the correspondence of the case, and does not include the concept of the difference between the gray values between the two frames.
 特開2011-98009号公報に記載の方法は、自動輝度制御(ABC)に関する技術を用いているが、段落[0015]や段落[0019]の記載等から、関心領域内の濃度平均など、単一フレームの演算しか含まれていない。このことから自動輝度制御下での複数フレーム間の濃淡値の差分を用いて異常検出を行うことが実施できない。 The method described in Japanese Patent Application Laid-Open No. 2011-98009 uses a technique related to automatic brightness control (ABC). From the description in paragraphs [0015] and [0019], etc. Only one frame of computation is included. For this reason, it is not possible to carry out abnormality detection using a difference in gray value between a plurality of frames under automatic luminance control.
 特開2009-297304号公報に記載の方法は、自動輝度制御を補助手段として有しており、通信異常時に、自動輝度制御を含むいずれかの手段で曝射を継続するようにしているが、この技術だと、管球、放射線源、ジェネレータ不調による曝射不良に対応できず、曝射が継続されて余計な被曝が増えてしまう。 The method described in Japanese Patent Application Laid-Open No. 2009-297304 has automatic brightness control as an auxiliary means, and when communication is abnormal, exposure is continued by any means including automatic brightness control. With this technology, it is not possible to cope with poor exposure due to malfunction of the tube, radiation source, and generator, and the exposure continues and excessive exposure increases.
 このように、特開2007-82908号公報及び特開2011-98009号公報に記載の技術では、自動輝度制御における複数フレーム間の濃淡値の差分を用いての曝射不良の検出ができない。特開2007-82908号公報、特開2011-98009号公報及び特開2009-297304号公報の技術では、不良検出した後の対応において、X線の照射線量に関するリスクの低減策をとることができない。 As described above, with the techniques described in Japanese Patent Application Laid-Open Nos. 2007-82908 and 2011-98009, it is impossible to detect an exposure failure using the difference in gray value between a plurality of frames in automatic luminance control. With the techniques disclosed in Japanese Patent Application Laid-Open Nos. 2007-82908, 2011-98009, and 2009-297304, it is impossible to take measures to reduce the risk related to the X-ray irradiation dose in the response after the failure is detected. .
 すなわち、自動輝度制御は、毎フレームの関心領域の濃淡値(QL値の平均等)を取得し、撮影部位や撮影条件から期待される濃淡値と比べて高いか、低いかを判断して、次回の放射線撮影でのX線の照射エネルギーを上下させる方法である。もし、何らかの異常が発生して濃淡値が低下したら、異常であるとの検出がなされずにX線の照射エネルギーを上げる制御が実施される。このような制御が放置されると、システムやX線照射の制御系に異常が発生しているにもかかわらず、被写体(患者等)に対して高エネルギー被曝を与えるリスクが生じる。 That is, the automatic brightness control obtains the gray value (average of QL value, etc.) of the region of interest for each frame, determines whether it is higher or lower than the gray value expected from the imaging region and imaging conditions, This is a method of raising and lowering the X-ray irradiation energy in the next radiography. If any abnormality occurs and the gray value decreases, control for increasing the X-ray irradiation energy is performed without detecting the abnormality. If such control is left unattended, there is a risk of subjecting a subject (such as a patient) to high energy exposure despite the occurrence of an abnormality in the system and the X-ray irradiation control system.
 本発明はこのような課題を考慮してなされたものであり、自動輝度制御を用いたシステムにおいて、システムや放射線照射の制御系に異常が発生した場合に、被写体(患者等)が高い照射エネルギーで被曝することを防止することができ、異常が発生した後のリスクを低減することができる放射線画像撮影システム、放射線画像撮影方法及び放射線画像撮影システムのエラー処理方法を提供することを目的とする。 The present invention has been made in consideration of such problems, and in a system using automatic brightness control, when an abnormality occurs in the system or the radiation irradiation control system, the subject (patient etc.) has high irradiation energy. It is an object of the present invention to provide a radiographic imaging system, a radiographic imaging method, and an error processing method of the radiographic imaging system that can prevent exposure to radiation and reduce the risk after an abnormality has occurred. .
[1] 第1の本発明に係る放射線画像撮影システムは、放射線源を有する放射線装置と、前記放射線源から照射される照射線量を制御する照射線量制御部と、被写体を透過した前記放射線源からの放射線を放射線画像情報に変換する放射線検出装置と、を有する放射線画像撮影装置と、前記放射線画像撮影装置を、設定されたフレームレートで放射線撮影を実行するように制御するシステム制御部とを有し、前記照射線量制御部は、前記放射線画像情報の濃淡値が基準値よりも低い場合に次回の放射線の照射線量を増大させ、前記濃淡値が前記基準値よりも高い場合に次回の放射線の照射線量を減少させるように制御し、前記システム制御部は、前記濃淡値が予想される結果と異なった結果になった場合に、前記照射線量制御部を制御して、次回の放射線の照射線量を増大させずに、少なくとも1回の放射線撮影を行うように制御するエラー処理部とを有することを特徴とする。 [1] A radiographic imaging system according to a first aspect of the present invention includes a radiation apparatus having a radiation source, an irradiation dose control unit for controlling an irradiation dose irradiated from the radiation source, and the radiation source transmitted through the subject. A radiation image capturing device that converts the radiation of the radiation into radiation image information, and a system control unit that controls the radiation image capture device to perform radiation imaging at a set frame rate. The irradiation dose control unit increases the irradiation dose of the next radiation when the gray value of the radiation image information is lower than the reference value, and increases the next radiation dose when the gray value is higher than the reference value. The system control unit controls the irradiation dose control unit when the gray value is different from an expected result. Without increasing the radiation dose of the next radiation, and having an error processing unit for controlling to perform at least one of radiography.
 照射線量制御部は、前記放射線画像情報の濃淡値が基準値よりも低い場合に次回の放射線の照射線量を増大させ、前記濃淡値が前記基準値よりも高い場合に次回の放射線の照射線量を減少させるように制御している。このような制御下において、システムや放射線照射の制御系の異常等によって、濃淡値が基準値よりも大きく低下してしまった場合、通常であれば、照射線量を最大まで増加させるように制御することから、最大の照射線量に設定された放射線が被写体に照射されることになる。 The irradiation dose control unit increases the next radiation irradiation dose when the gray value of the radiation image information is lower than the reference value, and sets the next radiation irradiation dose when the gray value is higher than the reference value. It is controlled to decrease. Under such control, if the gray value is significantly lower than the reference value due to abnormalities in the system or radiation irradiation control system, etc., normally, control is performed to increase the irradiation dose to the maximum. Therefore, the radiation set to the maximum irradiation dose is irradiated to the subject.
 第1の本発明は、これを回避するために、前記濃淡値が予想される結果と異なった結果になった場合に、前記照射線量制御部を制御して、次回の放射線の照射線量を増大させずに、少なくとも1回の放射線撮影を行うように制御する。 In order to avoid this, the first aspect of the present invention increases the irradiation dose of the next radiation by controlling the irradiation dose control unit when the gray value is different from the expected result. And control to perform at least one radiation imaging.
 これにより、システムや放射線照射の制御系に異常が発生した場合に、被写体(患者等)が高い照射エネルギーで被曝することを防止することができ、異常が発生した後のリスクを低減することができる。 This can prevent the subject (patient, etc.) from being exposed with high irradiation energy when an abnormality occurs in the system or the radiation irradiation control system, and can reduce the risk after the abnormality has occurred. it can.
[2] 第1の本発明において、前記システム制御部は、少なくとも2回の放射線撮影に基づく放射線画像情報の濃淡値の差分を取得する濃淡差分取得部と、前記濃淡値の差分が規定値付近以上変化した場合に、前記濃淡値が予想される結果と異なった結果になったものとしてエラー通知を行うエラー通知部とを有するようにしてもよい。 [2] In the first aspect of the present invention, the system control unit includes a gray level difference acquisition unit that acquires a gray level difference of radiation image information based on at least two times of radiography, and the gray level difference is near a specified value. In the case where the above change has occurred, an error notification unit may be provided that notifies the error that the gray value is different from the expected result.
[3] 第1の本発明において、前記エラー処理部は、前記エラー通知が行われた場合に、前記照射線量制御部を制御して、次回の放射線の照射線量を増大させずに、減少させて少なくとも1回の放射線撮影を行うように制御するようにしてもよい。 [3] In the first aspect of the present invention, when the error notification is made, the error processing unit controls the irradiation dose control unit to decrease without increasing the next radiation irradiation dose. Then, control may be performed so that at least one radiation imaging is performed.
[4] 第1の本発明において、前記エラー通知部は、今回の放射線撮影に基づく放射線画像情報の濃淡値が、前回の放射線撮影に基づく放射線画像情報の濃淡値よりも前記規定値付近以上低い場合に、前記エラー通知を行うようにしてもよい。 [4] In the first aspect of the present invention, the error notification unit is configured such that the gray value of the radiation image information based on the current radiographing is lower than the gray value of the radiographic image information based on the previous radiography by the vicinity of the specified value or more. In this case, the error notification may be performed.
[5] 第1の本発明において、前記照射線量制御部は、照射線量の上限値に対応した上限信号値Vmaxと照射線量の下限値に対応した下限信号値Vminをダイナミックレンジとし、前記基準値に対応する基準信号値をVoとし、前記濃淡値と前記基準値との比較に基づく照射線量を制御するための信号値をVとする制御信号を前記放射線装置に出力することによって、前記放射線源からの放射線の照射線量を制御するようにしてもよい。 [5] In the first aspect of the present invention, the irradiation dose control unit uses the upper limit signal value Vmax corresponding to the upper limit value of the irradiation dose and the lower limit signal value Vmin corresponding to the lower limit value of the irradiation dose as a dynamic range, and the reference value By outputting to the radiation apparatus a control signal in which the reference signal value corresponding to is Vo and the signal value for controlling the irradiation dose based on the comparison between the gray value and the reference value is V, the radiation source You may make it control the irradiation dose of the radiation from.
[6] [5]において、前記エラー通知が行われた場合に、前記照射線量制御部は、前記エラー処理部からの指示に基づいて、信号値Vを、基準信号値Vo以下に設定するようにしてもよい。 [6] When the error notification is performed in [5], the irradiation dose control unit sets the signal value V to be equal to or lower than a reference signal value Vo based on an instruction from the error processing unit. It may be.
[7] [5]において、前記エラー通知が行われた場合に、前記照射線量制御部は、前記エラー処理部からの指示に基づいて、信号値Vを、基準信号値Vo以下であって、且つ、前記濃淡値の差分に応じた値に設定するようにしてもよい。 [7] In [5], when the error notification is performed, the irradiation dose control unit sets the signal value V to a reference signal value Vo or less based on an instruction from the error processing unit, And you may make it set to the value according to the difference of the said light and shade value.
[8] [7]において、前記照射線量制御部は、前記濃淡値の差分が前記規定値付近以上、第2規定値未満の場合に、前記信号値Vを前記下限信号値Vmin×定数Ka(0<Ka<1.0)に設定し、前記濃淡値の差分が前記第2規定値以下の場合に、前記信号値Vを前記下限信号値Vminに設定するようにしてもよい。 [8] In [7], the irradiation dose control unit sets the signal value V to the lower limit signal value Vmin × constant Ka (when the difference between the gray values is not less than the specified value and less than the second specified value). 0 <Ka <1.0) may be set, and the signal value V may be set to the lower limit signal value Vmin when the difference between the gray values is equal to or less than the second specified value.
[9] 第1の本発明において、前記1回の放射線撮影は、前記設定されたフレームレートで行われるようにしてもよい。 [9] In the first aspect of the present invention, the one-time radiography may be performed at the set frame rate.
[10] 第1の本発明において、前記エラー処理部は、前記1回の放射線撮影を行った後、前記フレームレートで放射線撮影を行う毎に、放射線の照射線量を徐々に上昇させて放射線撮影を行うように制御するようにしてもよい。 [10] In the first aspect of the present invention, the error processing section performs radiation imaging by gradually increasing the radiation dose each time radiation imaging is performed at the frame rate after performing the one radiation imaging. You may make it control to perform.
[11] 第2の本発明に係る放射線画像撮影方法は、放射線源を有する放射線装置と、前記放射線源から照射される照射線量を制御する照射線量制御部と、被写体を透過した前記放射線源からの放射線を放射線画像情報に変換する放射線検出装置と、を有する放射線画像撮影装置を用いて、設定されたフレームレートで放射線撮影を実行する放射線画像撮影方法において、前記照射線量制御部は、前記放射線画像情報の濃淡値が基準値よりも低い場合に次回の放射線の照射線量を増大させ、前記濃淡値が前記基準値よりも高い場合に次回の放射線の照射線量を減少させるように制御し、前記濃淡値が予想される結果と異なった結果になった場合に、前記照射線量制御部を制御して、次回の放射線の照射線量を増大させずに、少なくとも1回の放射線撮影を行うように制御するエラー処理ステップを有することを特徴とする。 [11] A radiographic imaging method according to a second aspect of the present invention includes a radiation apparatus having a radiation source, an irradiation dose control unit that controls an irradiation dose irradiated from the radiation source, and the radiation source that has passed through a subject. In a radiographic imaging method of performing radiography at a set frame rate using a radiographic imaging device having a radiation detection device that converts the radiation of the image into radiation image information, the irradiation dose control unit includes the radiation When the gray value of the image information is lower than the reference value, the next radiation dose is increased, and when the gray value is higher than the reference value, the next radiation dose is controlled to be reduced, When the gray value is different from the expected result, the irradiation dose control unit is controlled to increase at least once without increasing the irradiation dose of the next radiation. Characterized in that it has an error processing step of controlling to perform radiography.
[12] 第3の本発明に係る放射線画像撮影システムのエラー処理方法は、放射線源を有する放射線装置と、前記放射線源から照射される照射線量を制御する照射線量制御部と、被写体を透過した前記放射線源からの放射線を放射線画像情報に変換する放射線検出装置と、を有する放射線画像撮影装置を用いて、設定されたフレームレートで放射線撮影を実行する放射線画像撮影システムのエラー処理方法において、前記照射線量制御部は、前記放射線画像情報の濃淡値が基準値よりも低い場合に次回の放射線の照射線量を増大させ、前記濃淡値が前記基準値よりも高い場合に次回の放射線の照射線量を減少させるように制御し、前記濃淡値が予想される結果と異なった結果になった場合に、前記照射線量制御部を制御して、次回の放射線の照射線量を増大させずに、少なくとも1回の放射線撮影を行うように制御するエラー処理ステップとを有することを特徴とする。 [12] An error processing method for a radiographic imaging system according to the third aspect of the present invention includes a radiation apparatus having a radiation source, an irradiation dose control unit that controls an irradiation dose emitted from the radiation source, and transmitted through the subject. In an error processing method for a radiographic imaging system that performs radiography at a set frame rate using a radiographic imaging device having a radiation detection device that converts radiation from the radiation source into radiation image information, The irradiation dose control unit increases the next radiation irradiation dose when the gray value of the radiation image information is lower than the reference value, and sets the next radiation irradiation dose when the gray value is higher than the reference value. If the gray value is different from the expected result, the irradiation dose control unit is controlled and the next radiation is controlled. Without increasing the radiation dose, and having an error processing step of controlling to perform at least one of radiography.
 以上説明したように、本発明に係る放射線画像撮影システム、放射線画像撮影方法及び放射線画像撮影システムのエラー処理方法によれば、自動輝度制御を用いたシステムにおいて、システムや放射線照射の制御系に異常が発生した場合に、被写体(患者等)が高い照射エネルギーで被曝することを防止することができ、異常が発生した後のリスクを低減することができる。 As described above, according to the radiographic image capturing system, the radiographic image capturing method, and the error processing method of the radiographic image capturing system according to the present invention, in the system using the automatic brightness control, the system and the radiation irradiation control system are abnormal. When this occurs, it is possible to prevent the subject (patient or the like) from being exposed with high irradiation energy, and to reduce the risk after the occurrence of an abnormality.
本実施の形態に係る放射線画像撮影システムを示す構成図である。It is a block diagram which shows the radiographic imaging system which concerns on this Embodiment. 主に放射線画像撮影システムの放射線装置及び放射線検出装置の構成を示すブロック図である。It is a block diagram which mainly shows the structure of the radiation apparatus and radiation detection apparatus of a radiographic imaging system. 放射線検出装置の構成を示し、特に、放射線検出器の構成を示す回路図である。It is a circuit diagram which shows the structure of a radiation detection apparatus, and shows the structure of a radiation detector especially. 主に放射線画像撮影システムのシステム制御部の構成を示すブロック図である。It is a block diagram which mainly shows the structure of the system control part of a radiographic imaging system. 放射線画像撮影システムの処理動作を示すフローチャート(その1)である。It is a flowchart (the 1) which shows the processing operation of a radiographic imaging system. 放射線画像撮影システムの処理動作を示すフローチャート(その2)である。It is a flowchart (the 2) which shows the processing operation of a radiographic imaging system. 放射線画像撮影システムの処理動作を示すタイムチャートである。It is a time chart which shows the processing operation of a radiographic imaging system. 変形例に係る放射線検出器の3画素分の構成を概略的に示す図である。It is a figure which shows roughly the structure for 3 pixels of the radiation detector which concerns on a modification. 図8に示すTFT及び電荷蓄積部の概略構成図である。It is a schematic block diagram of TFT shown in FIG. 8 and an electric charge storage part.
 以下、本発明に係る放射線画像撮影システム、放射線画像撮影方法及び放射線画像撮影システムのエラー処理方法の実施の形態例を図1~図9を参照しながら説明する。 Hereinafter, embodiments of the radiographic image capturing system, the radiographic image capturing method, and the error processing method of the radiographic image capturing system according to the present invention will be described with reference to FIGS.
 先ず、本実施の形態に係る放射線画像撮影システム10は、図1に示すように、放射線画像撮影装置12と、放射線画像撮影装置12を、設定されたフレームレート(例えば15フレーム/秒~60フレーム/秒等)で放射線撮影を実行するように制御するシステム制御部14とを有する。システム制御部14には、コンソール16が接続され、コンソール16とのデータ通信が可能となっている。コンソール16には、画像観察や画像診断用のモニタ18や、操作入力用の入力装置20(キーボードやマウス等)が接続されている。オペレータ(医師、放射線技師)は、動画を観察しながらの手術やカテーテルの挿入作業等において、現在の状況に適した放射線の照射線量や放射線撮影のフレームレートを入力装置20を使って設定する。入力装置20を使用して入力されたデータやコンソール16にて作成編集等されたデータはシステム制御部14に入力される。また、システム制御部14からの放射線画像情報等はコンソール16に供給されて、モニタ18に映し出される。 First, as shown in FIG. 1, the radiographic image capturing system 10 according to the present exemplary embodiment includes a radiographic image capturing device 12 and a radiographic image capturing device 12 that are set at a set frame rate (for example, 15 frames / second to 60 frames). And a system control unit 14 that performs control so as to execute radiation imaging at a time of 1 second / second). A console 16 is connected to the system control unit 14 so that data communication with the console 16 is possible. Connected to the console 16 are a monitor 18 for image observation and diagnostic imaging, and an input device 20 (keyboard, mouse, etc.) for operation input. An operator (physician or radiographer) uses the input device 20 to set a radiation exposure dose or a radiographic frame rate suitable for the current situation in an operation or catheter insertion operation while observing a moving image. Data input using the input device 20 and data created and edited by the console 16 are input to the system control unit 14. Further, radiation image information and the like from the system control unit 14 is supplied to the console 16 and displayed on the monitor 18.
 放射線画像撮影装置12は、撮影台22上の被写体24に向けて放射線26を照射する放射線装置28と、被写体24を透過した放射線26を放射線画像情報に変換する放射線検出装置30と、放射線検出装置30とシステム制御部14間で放射線画像情報等のデータの送受信を行ったり、放射線検出装置30をシステム制御部14からの指示に基づいて制御(移動駆動を含む)する検出装置制御部32とを有する。 The radiographic imaging device 12 includes a radiation device 28 that irradiates radiation 26 toward a subject 24 on an imaging table 22, a radiation detection device 30 that converts radiation 26 transmitted through the subject 24 into radiation image information, and a radiation detection device. A detection device control unit 32 that transmits and receives data such as radiation image information between the system control unit 14 and the system control unit 14, and controls the radiation detection device 30 based on an instruction from the system control unit 14 (including moving drive). Have.
 放射線検出装置30の移動駆動は、例えば背骨の動画撮影やカテーテルの進入位置の動画撮影等のように比較的広範囲を撮影させる場合に行われる。すなわち、このような撮影において、オペレータ(医師や放射線技師)からの操作入力に基づいた移動制御信号がシステム制御部14から出力されて検出装置制御部32に入力される。検出装置制御部32は、システム制御部14からの移動制御信号に基づいて、図示しない移動駆動機構を駆動制御して、放射線検出装置30を移動させる。 The movement detection of the radiation detection apparatus 30 is performed when a relatively wide range is imaged, for example, a moving image of the spine or a moving image of the catheter entry position. That is, in such imaging, a movement control signal based on an operation input from an operator (doctor or radiographer) is output from the system control unit 14 and input to the detection device control unit 32. Based on the movement control signal from the system control unit 14, the detection device control unit 32 controls the movement drive mechanism (not shown) to move the radiation detection device 30.
 放射線装置28は、図2に示すように、放射線源34と、システム制御部14からの指示に基づいて放射線源34を制御する線源制御部36と、システム制御部14からの指示に基づいて放射線26の照射領域を広げたり狭くする自動コリメータ部38とを有する。 As shown in FIG. 2, the radiation device 28 is based on a radiation source 34, a radiation source controller 36 that controls the radiation source 34 based on an instruction from the system controller 14, and an instruction from the system controller 14. And an automatic collimator unit 38 that widens or narrows the irradiation area of the radiation 26.
 放射線検出装置30は、放射線検出器40と、電源としてのバッテリ42と、放射線検出器40を駆動制御するカセッテ制御部44と、放射線検出器40からの放射線画像情報を含む信号を外部との間で送受信する送受信機46とが収容されている。送受信機46から出力された放射線画像情報は、検出装置制御部32を介してシステム制御部14及びコンソール16に入力され、モニタ18に映し出される。すなわち、システム制御部14には、設定されたフレームレートでの放射線撮影に基づく放射線画像情報が順次入力されることから、モニタ18には、放射線画像情報の動画がリアルタイムで映し出されることになる。 The radiation detector 30 includes a radiation detector 40, a battery 42 as a power source, a cassette control unit 44 that drives and controls the radiation detector 40, and a signal including radiation image information from the radiation detector 40. A transmitter / receiver 46 for transmitting and receiving data is accommodated. The radiation image information output from the transceiver 46 is input to the system control unit 14 and the console 16 via the detection device control unit 32 and is displayed on the monitor 18. That is, radiation image information based on radiation imaging at a set frame rate is sequentially input to the system control unit 14, and thus a moving image of the radiation image information is displayed on the monitor 18 in real time.
 なお、カセッテ制御部44及び送受信機46には、放射線26が照射されることによる損傷を回避するため、カセッテ制御部44及び送受信機46の照射面側に鉛板等を配設しておくことが好ましい。 The cassette control unit 44 and the transceiver 46 are provided with lead plates or the like on the irradiation surface side of the cassette control unit 44 and the transceiver 46 in order to avoid damage due to the radiation 26 being irradiated. Is preferred.
 放射線検出器40としては、例えば、被写体24を透過した放射線26をシンチレータにより可視光に一旦変換し、変換した前記可視光をアモルファスシリコン(a-Si)等の物質からなる固体検出素子(以下、画素ともいう。)により電気信号に変換する間接変換型の放射線検出器(表面読取方式及び裏面読取方式を含む)を使用することができる。表面読取方式であるISS(Irradiation Side Sampling)方式の放射線検出器は、放射線26の照射方向に沿って、固体検出素子及びシンチレータが順に配置された構成を有する。裏面読取方式であるPSS(Penetration Side Sampling)方式の放射線検出器は、放射線26の照射方向に沿って、シンチレータ及び固体検出素子が順に配置された構成を有する。また、放射線検出器40としては、上述の間接変換型の放射線検出器のほか、放射線26の線量をアモルファスセレン(a-Se)等の物質からなる固体検出素子により電気信号に直接変換する直接変換型の放射線検出器を採用することができる。 As the radiation detector 40, for example, the radiation 26 that has passed through the subject 24 is once converted into visible light by a scintillator, and the converted visible light is a solid-state detection element (hereinafter referred to as “a-Si”). An indirect conversion type radiation detector (including a front side reading method and a back side reading method) that converts to an electric signal can also be used. An ISS (Irradiation Side Sampling) type radiation detector, which is a surface reading method, has a configuration in which a solid detection element and a scintillator are sequentially arranged along the irradiation direction of the radiation 26. A PSS (Penetration Side Sampling) type radiation detector, which is a back side reading method, has a configuration in which a scintillator and a solid state detection element are sequentially arranged along the radiation 26 irradiation direction. Further, as the radiation detector 40, in addition to the above-described indirect conversion type radiation detector, direct conversion in which the dose of the radiation 26 is directly converted into an electric signal by a solid detection element made of a substance such as amorphous selenium (a-Se). A type of radiation detector can be employed.
 次に、一例として、間接変換型の放射線検出器40を採用した場合の放射線検出装置30の回路構成に関し、図3を参照しながら詳細に説明する。 Next, as an example, the circuit configuration of the radiation detection apparatus 30 when the indirect conversion type radiation detector 40 is employed will be described in detail with reference to FIG.
 放射線検出器40は、可視光を電気信号に変換するa-Si等の物質からなる各画素50が形成された光電変換層52を、行列状の薄膜トランジスタ(以下、TFT54と記す)のアレイの上に配置した構造を有する。この場合、各画素50では、可視光を電気信号(アナログ信号)に変換することにより発生した電荷が蓄積され、各行毎にTFT54を順次オンにすることにより前記電荷を画像信号として読み出すことができる。 The radiation detector 40 has a photoelectric conversion layer 52 in which each pixel 50 made of a material such as a-Si that converts visible light into an electrical signal is formed on an array of matrix thin film transistors (hereinafter referred to as TFTs 54). It has the structure arranged in. In this case, in each pixel 50, the charge generated by converting visible light into an electrical signal (analog signal) is accumulated, and the charge can be read out as an image signal by sequentially turning on the TFT 54 for each row. .
 各画素50に接続されるTFT54には、行方向と平行に延びるゲート線56と、列方向と平行に延びる信号線58とが接続される。各ゲート線56は、ライン走査駆動部60に接続され、各信号線58は、マルチプレクサ62に接続される。ゲート線56には、行方向に配列されたTFT54をオンオフ制御する制御信号Von、Voffがライン走査駆動部60から供給される。この場合、ライン走査駆動部60は、ゲート線56を切り替える複数のスイッチSW1と、スイッチSW1を選択する選択信号を出力する第1アドレスデコーダ64とを備える。第1アドレスデコーダ64には、カセッテ制御部44からアドレス信号が供給される。 A gate line 56 extending in parallel with the row direction and a signal line 58 extending in parallel with the column direction are connected to the TFT 54 connected to each pixel 50. Each gate line 56 is connected to a line scan driver 60, and each signal line 58 is connected to a multiplexer 62. Control signals Von and Voff for controlling on / off of the TFTs 54 arranged in the row direction are supplied from the line scan driving unit 60 to the gate line 56. In this case, the line scan driving unit 60 includes a plurality of switches SW1 for switching the gate lines 56, and a first address decoder 64 for outputting a selection signal for selecting the switches SW1. An address signal is supplied from the cassette control unit 44 to the first address decoder 64.
 また、信号線58には、列方向に配列されたTFT54を介して各画素50に保持されている電荷が流出する。この電荷は、チャージアンプ66によって増幅される。チャージアンプ66には、サンプルホールド回路68を介してマルチプレクサ62が接続される。 Further, the charge held in each pixel 50 flows out to the signal line 58 via the TFTs 54 arranged in the column direction. This charge is amplified by the charge amplifier 66. A multiplexer 62 is connected to the charge amplifier 66 through a sample and hold circuit 68.
 すなわち、読み出された各列の電荷は、各信号線58を介して各列のチャージアンプ66に入力される。各チャージアンプ66は、オペアンプ70と、コンデンサ72と、スイッチ74とで構成されている。チャージアンプ66は、スイッチ74がオフの場合には、オペアンプ70の一方の入力端子に入力された電荷信号を電圧信号に変換して出力する。チャージアンプ66は、カセッテ制御部44によって設定されたゲインで電気信号を増幅して出力する。チャージアンプ66のゲインに関する情報(ゲイン設定情報)は、システム制御部14から検出装置制御部32を介してカセッテ制御部44に供給される。カセッテ制御部44は、供給されたゲイン設定情報に基づいてチャージアンプ66のゲインを設定する。 That is, the read charge of each column is input to the charge amplifier 66 of each column via each signal line 58. Each charge amplifier 66 includes an operational amplifier 70, a capacitor 72, and a switch 74. When the switch 74 is off, the charge amplifier 66 converts the charge signal input to one input terminal of the operational amplifier 70 into a voltage signal and outputs the voltage signal. The charge amplifier 66 amplifies and outputs the electrical signal with the gain set by the cassette control unit 44. Information relating to the gain of the charge amplifier 66 (gain setting information) is supplied from the system control unit 14 to the cassette control unit 44 via the detection device control unit 32. The cassette control unit 44 sets the gain of the charge amplifier 66 based on the supplied gain setting information.
 オペアンプ70の他方の入力端子はGND(グランド電位)に接続されている(接地)。全TFT54がオンとなって、且つ、スイッチ74がオンした場合は、コンデンサ72に蓄積された電荷がコンデンサ72とスイッチ74の閉回路により放電されると共に、画素50に蓄積されていた電荷が閉じられたスイッチ74及びオペアンプ70を介してGND(グランド電位)に掃き出される。チャージアンプ66のスイッチ74をオンにして、コンデンサ72に蓄積された電荷を放電させると共に、画素50に蓄積された電荷をGND(グランド電位)に掃き出す動作のことを、リセット動作(空読み動作)と呼ぶ。つまり、リセット動作の場合は、画素50に蓄積された電荷信号に対応する電圧信号は、マルチプレクサ62に出力されずに捨てられる。 The other input terminal of the operational amplifier 70 is connected to GND (ground potential) (ground). When all the TFTs 54 are turned on and the switch 74 is turned on, the charge accumulated in the capacitor 72 is discharged by the closed circuit of the capacitor 72 and the switch 74, and the charge accumulated in the pixel 50 is closed. It is swept out to GND (ground potential) via the switch 74 and the operational amplifier 70. The operation of turning on the switch 74 of the charge amplifier 66 to discharge the charge accumulated in the capacitor 72 and sweeping out the charge accumulated in the pixel 50 to GND (ground potential) is a reset operation (empty reading operation). Call it. That is, in the reset operation, the voltage signal corresponding to the charge signal stored in the pixel 50 is discarded without being output to the multiplexer 62.
 マルチプレクサ62は、信号線58を切り替える複数のスイッチSW2と、スイッチSW2を選択する選択信号を出力する第2アドレスデコーダ76とを備える。第2アドレスデコーダ76には、カセッテ制御部44からアドレス信号が供給される。マルチプレクサ62には、A/D変換器78が接続され、A/D変換器78によってデジタル信号に変換された放射線画像情報がカセッテ制御部44に供給される。 The multiplexer 62 includes a plurality of switches SW2 for switching the signal line 58 and a second address decoder 76 for outputting a selection signal for selecting the switch SW2. An address signal is supplied from the cassette control unit 44 to the second address decoder 76. An A / D converter 78 is connected to the multiplexer 62, and radiation image information converted into a digital signal by the A / D converter 78 is supplied to the cassette control unit 44.
 なお、スイッチング素子として機能するTFT54は、CMOS(Complementary Metal-Oxside Semiconductor)イメージセンサ等、他の撮像素子と組み合わせて実現してもよい。さらにまた、TFTで言うところのゲート信号に相当するシフトパルスにより電荷をシフトしながら転送するCCD(Charge-Coupled Device)イメージセンサに置き換えることも可能である。 The TFT 54 functioning as a switching element may be realized in combination with another imaging element such as a CMOS (Complementary Metal-Oxide Semiconductor) image sensor. Furthermore, it can be replaced with a CCD (Charge-Coupled Device) image sensor that transfers charges while shifting the charges with a shift pulse corresponding to a gate signal referred to as a TFT.
 放射線検出装置30のカセッテ制御部44は、図2に示すように、アドレス信号発生部80と、画像メモリ82と、カセッテIDメモリ84とを備える。 The cassette control unit 44 of the radiation detection apparatus 30 includes an address signal generation unit 80, an image memory 82, and a cassette ID memory 84, as shown in FIG.
 アドレス信号発生部80は、例えばシステム制御部14からの読出制御情報に基づいて、図3に示すライン走査駆動部60の第1アドレスデコーダ64及びマルチプレクサ62の第2アドレスデコーダ76に対してアドレス信号を供給する。読出制御情報は、例えばプログレッシブモード、インターレースモード(奇数行読出モード、偶数行読出モード、2行置き読出モード、3行置き読出モード等)、ビニングモード(1画素/4画素読出モード、1画素/6画素読出モード、1画素/9画素読出モード等)を示す情報が含まれる。例えば1画素/4画素読出モードは、隣接する2本のゲート線を同時に活性化(Vonとする)し、隣接する2本の信号線を同時に選択することで、隣接する2行2列の4画素分の電荷を混合して1画素として読み出すモードである。アドレス信号発生部80は、読出制御情報が示すモードに応じたアドレス信号を作成して、ライン走査駆動部60の第1アドレスデコーダ64及びマルチプレクサ62の第2アドレスデコーダ76に出力する。読出制御情報は、例えばオペレータからの操作入力に基づいてシステム制御部14にて作成されて、放射線検出装置30のカセッテ制御部44に入力される。 For example, the address signal generator 80 sends an address signal to the first address decoder 64 of the line scan driver 60 and the second address decoder 76 of the multiplexer 62 shown in FIG. 3 based on the read control information from the system controller 14. Supply. The read control information includes, for example, progressive mode, interlace mode (odd row read mode, even row read mode, second row read mode, third row read mode, etc.), binning mode (1 pixel / 4 pixel read mode, 1 pixel / 6-pixel readout mode, 1-pixel / 9-pixel readout mode, etc.) are included. For example, in the 1-pixel / 4-pixel readout mode, two adjacent gate lines are simultaneously activated (set to Von), and two adjacent signal lines are selected at the same time. In this mode, charges for pixels are mixed and read as one pixel. The address signal generator 80 generates an address signal corresponding to the mode indicated by the read control information, and outputs the address signal to the first address decoder 64 of the line scan driver 60 and the second address decoder 76 of the multiplexer 62. The read control information is created by the system control unit 14 based on an operation input from an operator, for example, and is input to the cassette control unit 44 of the radiation detection apparatus 30.
 画像メモリ82は、放射線検出器40によって検出された放射線画像情報を記憶する。カセッテIDメモリ84は、放射線検出装置30を特定するためのカセッテID情報を記憶する。送受信機46は、カセッテIDメモリ84に記憶されたカセッテID情報及び画像メモリ82に記憶された放射線画像情報を有線通信又は無線通信により検出装置制御部32を介してシステム制御部14に送信する。 The image memory 82 stores radiation image information detected by the radiation detector 40. The cassette ID memory 84 stores cassette ID information for specifying the radiation detection apparatus 30. The transceiver 46 transmits the cassette ID information stored in the cassette ID memory 84 and the radiation image information stored in the image memory 82 to the system control unit 14 via the detection device control unit 32 by wired communication or wireless communication.
 そして、この放射線画像撮影システム10のシステム制御部14は、図4に示すように、放射線画像情報の関心領域の濃淡値Daを演算して濃淡値記憶部100に記憶する濃淡値取得部102と、自動輝度制御と同様の制御を行う照射線量制御部104とを有する。 Then, as shown in FIG. 4, the system controller 14 of the radiographic image capturing system 10 calculates the gray value Da of the region of interest of the radiographic image information and stores it in the gray value storage unit 100. And an irradiation dose control unit 104 that performs the same control as the automatic brightness control.
 照射線量制御部104は、撮影部位に応じた基準値Dbを生成する基準値生成部106と、現在の濃淡値Daと基準値Dbとの差分に応じた照射線量制御信号(以下、第1制御信号Sa1と記す)を生成して放射線装置28に出力する制御信号生成部108と、通常動作期間Taとエラー処理期間Tb(図7参照)とで制御信号(第1制御信号Sa1及び後述する第2制御信号Sa2)を切り替える切替部110とを有する。 The irradiation dose control unit 104 includes a reference value generation unit 106 that generates a reference value Db corresponding to an imaging region, and an irradiation dose control signal (hereinafter referred to as a first control) according to a difference between the current gray value Da and the reference value Db. A control signal generator 108 that generates a signal Sa1 and outputs it to the radiation device 28, and a control signal (first control signal Sa1 and a later-described first control signal Sa1) and a normal operation period Ta and an error processing period Tb (see FIG. 7). And a switching unit 110 that switches between two control signals Sa2).
 エラー処理期間Tbは、後述するエラー通知Sbが行われた時点taから予め設定された期間(例えば5~10秒)をいう。エラー処理期間Tb以外の期間が通常動作期間Taとなる。 The error processing period Tb is a period (for example, 5 to 10 seconds) set in advance from the time ta when the error notification Sb described later is performed. A period other than the error processing period Tb is a normal operation period Ta.
 濃淡値Daは、関心領域に含まれる全画素の画素値(QL値)の平均値等が用いられる。なお、濃淡値Daは輝度値と同じ概念である。 As the gray value Da, an average value of the pixel values (QL values) of all the pixels included in the region of interest is used. The gray value Da is the same concept as the luminance value.
 制御信号生成部108から出力される第1制御信号Sa1は、照射線量の上限値に対応した上限信号値Vmaxと照射線量の下限値に対応した下限信号値Vminをダイナミックレンジとし、基準値Dbに対応する基準信号値をVo、濃淡値Daと基準値Dbとの差分に応じた信号値をVとした信号形態であり、アナログ信号でもデジタル信号でもよい。基準信号値Voとして0を用いてもよい。 The first control signal Sa1 output from the control signal generator 108 uses the upper limit signal value Vmax corresponding to the upper limit value of the irradiation dose and the lower limit signal value Vmin corresponding to the lower limit value of the irradiation dose as the dynamic range, and is set to the reference value Db. The corresponding reference signal value is Vo, and the signal value corresponding to the difference between the gray value Da and the reference value Db is V. The signal form may be an analog signal or a digital signal. 0 may be used as the reference signal value Vo.
 そして、制御信号生成部108は、通常動作期間Taでは、現在の濃淡値Daが基準値Dbよりも低い場合に、次回の放射線撮影の照射線量を増大させる信号値(Vo+V)を生成して出力し、現在の濃淡値Daが基準値Dbよりも高い場合に、次回の放射線撮影の照射線量を減少させる信号値(Vo-V)を生成して出力する。 In the normal operation period Ta, the control signal generation unit 108 generates and outputs a signal value (Vo + V) for increasing the irradiation dose of the next radiation imaging when the current gray value Da is lower than the reference value Db. When the current gray value Da is higher than the reference value Db, a signal value (Vo-V) for reducing the irradiation dose of the next radiography is generated and output.
 従って、照射線量制御部104は、通常動作期間Taでは、関心領域の濃淡値Daが基準値Dbよりも低い場合に次回の照射線量を増大させ、関心領域の濃淡値Daが基準値Dbよりも高い場合に次回の照射線量を減少させるように制御する。 Therefore, in the normal operation period Ta, the irradiation dose control unit 104 increases the next irradiation dose when the gray value Da of the region of interest is lower than the reference value Db, and the gray value Da of the region of interest is higher than the reference value Db. If it is high, control to reduce the next irradiation dose.
 また、システム制御部14は、濃淡差分取得部112と、エラー通知部114と、エラー処理部116とを有する。 In addition, the system control unit 14 includes a shading difference acquisition unit 112, an error notification unit 114, and an error processing unit 116.
 濃淡差分取得部112は、少なくとも2回の放射線照射に基づく関心領域の濃淡値Daの差分ΔDを取得する。 The density difference acquisition unit 112 acquires the difference ΔD of the density value Da of the region of interest based on at least two radiation irradiations.
 エラー通知部114は、得られた濃淡値が予想される結果と異なった結果となった場合に、エラーが発生したとして、エラー通知Sbを行う。予想される結果と異なった結果とは、通常、照射線量制御では、得られた濃淡値Daと基準値Dbとの差dが減少するように、放射線装置28をフィードバック制御することから、濃淡値Daは基準値Dbに近似した値になるのが普通であり、例えば濃淡値Daの最大値を+128とした場合、基準値Dbに対して例えば±10以内に収まるのが予想される結果である。このような場合に、突然、濃淡値Daが0又はほぼ0になったり、最大値又はほぼ最大値になるということは、濃淡値Daが予想される結果と異なった結果になったことであり、これは、放射線装置28の異常やジェネレータ不調による曝射不良、あるいは放射線検出装置30や検出装置制御部32等の異常に基づくものと考えられる。 The error notification unit 114 performs error notification Sb, assuming that an error has occurred when the obtained gray value is different from the expected result. The result different from the expected result is that normally, in the irradiation dose control, the radiation device 28 is feedback-controlled so that the difference d between the obtained gray value Da and the reference value Db is reduced. Da is normally a value approximated to the reference value Db. For example, when the maximum value of the gray value Da is set to +128, the result is expected to be within ± 10 with respect to the reference value Db. . In such a case, when the gray value Da suddenly becomes 0 or almost 0, or becomes the maximum value or almost the maximum value, the gray value Da is different from the expected result. This is considered to be based on an abnormality in the radiation device 28, an exposure failure due to a malfunction of the generator, or an abnormality in the radiation detection device 30, the detection device control unit 32, or the like.
 従って、エラー通知部114は、得られた濃淡値Daが予想される結果と異なった結果であるか否かを判別するために、予め規定値Dcを設定しておき、濃淡値の差分ΔDが規定値Dc付近以上変化した場合に、エラーが発生したとして、エラー通知(Sb)を行う。規定値Dc付近とは、例えば規定値Dc×(1.0-係数Kc)~規定値Dc×(1.0+係数Kc)の範囲をいう。ここで、係数Kcは0<Kc<1.0であり、シミュレーションや実験等で予め設定しておく。本実施の形態では、係数Kcとして、例えば0.1~0.2の範囲を用いることができる。 Therefore, the error notification unit 114 sets the specified value Dc in advance to determine whether or not the obtained gray value Da is a result different from the expected result, and the gray value difference ΔD is determined. An error notification (Sb) is made when an error has occurred when the value changes near the prescribed value Dc. The vicinity of the specified value Dc refers to, for example, a range from the specified value Dc × (1.0−coefficient Kc) to the specified value Dc × (1.0 + coefficient Kc). Here, the coefficient Kc is 0 <Kc <1.0, and is set in advance by simulation or experiment. In the present embodiment, for example, a range of 0.1 to 0.2 can be used as the coefficient Kc.
 また、本実施の形態において、濃淡値Daと基準値Dbとの差分dを用いずに、濃淡値の差分ΔDを用いるのは、フレーム間での放射線画像情報に高い相関性があることに基づく。例えばカテーテルの挿入操作において、関心領域が例えば全体的に濃淡値が低い部位から全体的に濃淡値が高い部位に移動した場合であっても、濃淡値の差分ΔDはほぼ一定であり、この濃淡値の差分ΔDと規定値付近とを比較することで、エラーを確実に検出することができる。 In the present embodiment, the difference ΔD between the gray values without using the difference d between the gray value Da and the reference value Db is based on the fact that the radiographic image information between frames has high correlation. . For example, in the catheter insertion operation, even when the region of interest moves from, for example, a region having a generally low gray value to a region having a high gray value, the gray value difference ΔD is substantially constant. By comparing the value difference ΔD with the vicinity of the specified value, an error can be reliably detected.
 エラー処理部116は、エラー通知Sbが行われた場合に、照射線量制御部104を制御して、次回の放射線の照射線量を増大させずに、減少させて少なくとも1回の放射線撮影を行うように制御する。もちろん、減少させずに、エラー通知直前の照射線量で放射線撮影を行うようにしてもよい。 When the error notification Sb is performed, the error processing unit 116 controls the irradiation dose control unit 104 so as to reduce at least one radiation imaging without increasing the next radiation irradiation dose. To control. Of course, the radiation imaging may be performed with the irradiation dose immediately before the error notification without decreasing.
 エラー通知部114は、特に、今回の放射線撮影に基づく関心領域の濃淡値Daが、前回の放射線撮影に基づく関心領域の濃淡値Daよりも規定値Dc付近以上低い場合に、エラー通知Sbを行う。規定値Dcとしては、濃淡最大値(濃淡値の最大値)の1/2の25%以上、好ましくは30%以上の値を用いることができる。また、放射線検出器40への放射線の曝射量と放射線画像の濃淡値Daとの関係は、放射線検出器40への曝射量が少ないほど濃淡値Daは低くなる。従って、今回の放射線撮影に基づく関心領域の濃淡値Daが、前回の放射線撮影に基づく関心領域の濃淡値Daよりも規定値Dc付近以上低いということは、今回の放射線撮影に基づく関心領域がほとんど白い画像であることを示す。これは、放射線源34や、ジェネレータ不調による曝射不良のエラーに基づくものと考えられる。 The error notification unit 114 performs the error notification Sb particularly when the gray value Da of the region of interest based on the current radiographing is lower than the gray value Da of the region of interest based on the previous radiography by the vicinity of the specified value Dc. . As the prescribed value Dc, a value of 25% or more, preferably 30% or more of 1/2 of the maximum density value (maximum density value) can be used. Further, regarding the relationship between the radiation exposure amount to the radiation detector 40 and the gray value Da of the radiation image, the gray value Da decreases as the exposure amount to the radiation detector 40 decreases. Therefore, the gray value Da of the region of interest based on the current radiography is lower than the gray value Da of the region of interest based on the previous radiography by at least the vicinity of the specified value Dc. Indicates a white image. This is considered to be based on the radiation source 34 and the error of poor exposure due to the malfunction of the generator.
 エラー処理部116は、切替信号出力部118と、制御信号演算部120とを有する。 The error processing unit 116 includes a switching signal output unit 118 and a control signal calculation unit 120.
 切替信号出力部118は、エラー通知Sbを受けた時点と、エラー処理期間Tbが経過した時点とにおいて、それぞれ切替信号Scを切替部110に出力する。 The switching signal output unit 118 outputs the switching signal Sc to the switching unit 110 when the error notification Sb is received and when the error processing period Tb has elapsed.
 切替部110は、システム起動時では、制御信号の信号経路を照射線量制御部104の制御信号生成部108側に設定し、該制御信号生成部108からの第1制御信号Sa1が放射線装置28に供給されるようにしているが、エラー通知Sbに基づく切替信号出力部118からの切替信号Scの入力に基づいて、制御信号の信号経路をエラー処理部116の制御信号演算部120側に切り替えて、該制御信号演算部120からの第2制御信号Sa2が放射線装置28に供給されるようにする。さらに、エラー処理期間Tbの経過に基づく切替信号出力部118からの切替信号Scの入力に基づいて、制御信号の信号経路を再び照射線量制御部104の制御信号生成部108側に切り替える。 When the system is activated, the switching unit 110 sets the signal path of the control signal to the control signal generation unit 108 side of the irradiation dose control unit 104, and the first control signal Sa1 from the control signal generation unit 108 is sent to the radiation apparatus 28. The signal path of the control signal is switched to the control signal calculation unit 120 side of the error processing unit 116 based on the input of the switching signal Sc from the switching signal output unit 118 based on the error notification Sb. The second control signal Sa2 from the control signal calculation unit 120 is supplied to the radiation device 28. Further, based on the input of the switching signal Sc from the switching signal output unit 118 based on the passage of the error processing period Tb, the signal path of the control signal is switched again to the control signal generation unit 108 side of the irradiation dose control unit 104.
 一方、制御信号演算部120は、エラー処理期間Tbにおける各フレーム毎の第2制御信号Sa2を演算してフレーム単位に出力する。第2制御信号Sa2も上述した第1制御信号Sa1と同様の信号形態を有する。 Meanwhile, the control signal calculation unit 120 calculates the second control signal Sa2 for each frame in the error processing period Tb and outputs the second control signal Sa2 for each frame. The second control signal Sa2 has the same signal form as the first control signal Sa1 described above.
 ここで、制御信号演算部120での演算方式の一例を示すと、エラー通知Sbがあった後の1回目の放射線撮影における第2制御信号Sa2の信号値V1は、例えば以下の4通りが挙げられる。 Here, as an example of a calculation method in the control signal calculation unit 120, the signal value V1 of the second control signal Sa2 in the first radiography after the error notification Sb is given is, for example, the following four types. It is done.
(1) 信号値V1を基準信号値Vo以下とする。 (1) The signal value V1 is set to be equal to or less than the reference signal value Vo.
(2) 信号値V1を下限信号値Vminに設定する。 (2) Set the signal value V1 to the lower limit signal value Vmin.
(3) 信号値V1を、基準信号値Vo以下であって、且つ、濃淡値の差分ΔDに応じた値に設定する。 (3) The signal value V1 is set to a value that is equal to or less than the reference signal value Vo and that corresponds to the difference ΔD of the gray value.
(4) 濃淡値の差分ΔDが規定値Dc付近以上、第2規定値Dd未満の場合に、信号値V1を下限信号値Vmin×定数Ka(0<Ka<1.0)に設定し、濃淡値の差分ΔDが第2規定値Dd以下の場合に、信号値V1を下限信号値Vminに設定する。 (4) When the difference ΔD between the gray levels is greater than or equal to the specified value Dc and less than the second specified value Dd, the signal value V1 is set to the lower limit signal value Vmin × constant Ka (0 <Ka <1.0). When the value difference ΔD is equal to or smaller than the second specified value Dd, the signal value V1 is set to the lower limit signal value Vmin.
 また、エラー処理期間Tbにおける2回目以降の放射線撮影における第2制御信号Sa2の信号値Vjは、以下のように求めることができる。 Further, the signal value Vj of the second control signal Sa2 in the second and subsequent radiation imaging in the error processing period Tb can be obtained as follows.
 すなわち、エラー通知Sb直前の放射線撮影のために生成された信号値をVa、エラー処理期間Tbのフレーム数をF、エラー処理期間Tbにおける2回目以降の放射線撮影の回数をj(j=2、3、・・・)としたとき、下記演算式(A)及び(B)にて信号値Vjを求めることができる。
   信号値Vj=V1+ΔV×(j-1)  ……(A)
   ΔV=(Va-V1)/F   ………………(B)
That is, Va is the signal value generated for the radiography immediately before the error notification Sb, F is the number of frames in the error processing period Tb, and j (j = 2, 3,..., The signal value Vj can be obtained by the following arithmetic expressions (A) and (B).
Signal value Vj = V1 + ΔV × (j−1) (A)
ΔV = (Va−V1) / F (B)
 これにより、エラー処理部116は、エラー通知Sbを受けて1回目の放射線撮影を行った後、現在設定されているフレームレートで放射線撮影を行う毎に、照射線量を徐々に上昇させて放射線撮影を行うように制御することとなる。そして、エラー処理期間Tbが経過した時点では、ほぼエラー通知Sb直前の信号値Vaに戻り、通常動作にスムーズに移行させることができる。 As a result, the error processing unit 116 receives the error notification Sb, performs the first radiography, and then gradually increases the irradiation dose every time radiography is performed at the currently set frame rate. It will be controlled to perform. When the error processing period Tb elapses, the signal value Va almost returns immediately before the error notification Sb, and the normal operation can be smoothly performed.
 ここで、放射線画像撮影システム10の処理動作を図5及び図6のフローチャート及び図7のタイムチャートも参照しながら説明する。 Here, the processing operation of the radiographic imaging system 10 will be described with reference to the flowcharts of FIGS. 5 and 6 and the time chart of FIG.
 先ず、図5のステップS1において、システム制御部14は、通常時の撮影回数のカウンタkに初期値(=1)を格納する。 First, in step S1 of FIG. 5, the system control unit 14 stores an initial value (= 1) in the counter k of the number of times of shooting at normal times.
 ステップS2において、照射線量制御部104の制御信号生成部108は、信号値Vを基準信号値Voにする。基準信号値Voとして例えば0が用いられる。 In step S2, the control signal generation unit 108 of the irradiation dose control unit 104 sets the signal value V to the reference signal value Vo. For example, 0 is used as the reference signal value Vo.
 ステップS3において、システム制御部14は、前回の放射線撮影の開始時点から最新のフレームレートに相当する時間が経過したか否かを判別する。カウンタkの値が初期値である場合あるいは前回の放射線撮影の開始時点から最新のフレームレートに相当する時間が経過した段階で次のステップS4に進み、制御信号生成部108は、現在の信号値Vを最新の信号値Vaとして例えばレジスタに保存する。 In step S3, the system control unit 14 determines whether a time corresponding to the latest frame rate has elapsed since the start of the previous radiation imaging. When the value of the counter k is an initial value or when the time corresponding to the latest frame rate has elapsed since the start of the previous radiation imaging, the process proceeds to the next step S4, and the control signal generator 108 determines the current signal value. For example, V is stored in a register as the latest signal value Va.
 ステップS5において、制御信号生成部108は、現在の信号値Vを切替部110を介して放射線装置28に出力する。放射線装置28の線源制御部36は、照射線量制御部104からの信号値Vに基づいて、放射線源34の管電圧、管電流、撮影時間等を変更して、該放射線源34から出力される照射線量を新たな照射線量に設定する。 In step S5, the control signal generation unit 108 outputs the current signal value V to the radiation device 28 via the switching unit 110. The radiation source control unit 36 of the radiation apparatus 28 changes the tube voltage, tube current, imaging time, etc. of the radiation source 34 based on the signal value V from the irradiation dose control unit 104, and outputs the radiation source 34. Set the new exposure dose.
 ステップS6において、システム制御部14は、k回目の放射線撮影の開始時点にて、放射線装置28に曝射開始信号Sdを出力する。放射線装置28の線源制御部36は、システム制御部14からの曝射開始信号Sdの入力に基づいて放射線源34を制御して、該放射線源34から設定されている照射線量の放射線を照射させる。 In step S6, the system control unit 14 outputs an exposure start signal Sd to the radiation device 28 at the start of the k-th radiation imaging. The radiation source control unit 36 of the radiation apparatus 28 controls the radiation source 34 based on the input of the exposure start signal Sd from the system control unit 14, and irradiates the radiation with the irradiation dose set from the radiation source 34. Let
 ステップS7において、システム制御部14は、検出装置制御部32を介して、放射線検出装置30に、放射線装置28に対して曝射開始を行ったことを示す曝射通知Seを出力する。 In step S <b> 7, the system control unit 14 outputs an exposure notification Se indicating that the radiation device 28 has started exposure to the radiation detection device 30 via the detection device control unit 32.
 ステップS8において、放射線検出装置30は、曝射通知Seの入力に基づいて、電荷蓄積と電荷読出を行う。すなわち、被写体24を透過した放射線26がシンチレータにより可視光に一旦変換され、各画素50において、可視光が光電変換されて、光量に応じた量の電荷が蓄積される。そして、読出期間の開始時点で同期信号(例えば垂直同期信号)が出力され、検出装置制御部32に入力される。検出装置制御部32は、同期信号の入力に基づいて、放射線画像情報の受け取りタイミングを、放射線検出装置30からの放射線画像情報の出力タイミングと同期させる。 In step S8, the radiation detection apparatus 30 performs charge accumulation and charge reading based on the input of the exposure notification Se. That is, the radiation 26 that has passed through the subject 24 is once converted into visible light by the scintillator, and the visible light is photoelectrically converted in each pixel 50 to accumulate an amount of electric charge corresponding to the amount of light. Then, a synchronization signal (for example, a vertical synchronization signal) is output at the start of the reading period and input to the detection device control unit 32. The detection device controller 32 synchronizes the reception timing of the radiation image information with the output timing of the radiation image information from the radiation detection device 30 based on the input of the synchronization signal.
 続く読出期間において、放射線検出装置30は、現在設定されている読出制御情報(プログレッシブモード、インターレースモード、ビニングモードを示す情報)に従って電荷の読み出しを行い、画像メモリ82を用いて、例えばFIFO方式で放射線画像情報を出力する。放射線検出装置30からの放射線画像情報は、検出装置制御部32を介してシステム制御部14に供給される。 In the subsequent readout period, the radiation detection apparatus 30 reads out charges in accordance with currently set readout control information (information indicating progressive mode, interlace mode, and binning mode), and uses the image memory 82, for example, in a FIFO manner. Outputs radiation image information. Radiation image information from the radiation detection device 30 is supplied to the system control unit 14 via the detection device control unit 32.
 ステップS9において、濃淡値取得部102は、放射線画像情報のうち、関心領域の濃淡値Da(例えば関心領域に含まれる全画素の画素値(QL値)の平均値)を演算して、濃淡値記憶部100に記憶する。 In step S <b> 9, the gray value acquisition unit 102 calculates the gray value Da of the region of interest (for example, the average value of the pixel values (QL values) of all the pixels included in the region of interest) in the radiographic image information. Store in the storage unit 100.
 ステップS10において、システム制御部14は、供給された放射線画像情報をコンソール16に転送する。コンソール16は、転送された放射線画像情報をフレームメモリに記憶すると共に、k回目の放射線撮影による放射線画像、すなわち、通常動作期間におけるkフレーム目の放射線画像としてモニタ18に表示する。 In step S10, the system control unit 14 transfers the supplied radiation image information to the console 16. The console 16 stores the transferred radiation image information in the frame memory, and displays it on the monitor 18 as a radiation image obtained by the k-th radiation imaging, that is, a radiation image of the k-th frame in the normal operation period.
 ステップS11において、濃淡差分取得部112は、2回の放射線照射に基づく関心領域の濃淡値Daの差分ΔDを取得する。例えば濃淡値記憶部100に記憶された最新の濃淡値(今回の放射線撮影に基づく濃淡値)をDa1、最新の1つ前の濃淡値(前回の放射線撮影に基づく濃淡値)をDa2としたとき、差分ΔD=Da1-Da2を演算する。 In step S11, the light / dark difference obtaining unit 112 obtains the light / dark value Da difference ΔD of the region of interest based on the two times of radiation irradiation. For example, when the latest density value (the density value based on the current radiography) stored in the density value storage unit 100 is Da1, and the latest previous density value (the density value based on the previous radiography) is Da2. The difference ΔD = Da1−Da2 is calculated.
 ステップS12において、濃淡値Da1が濃淡値Da2よりも規定値Dc付近以上低いか否かを判別する。この判別は、差分ΔDが負であって、且つ、絶対値|ΔD|≧Dcであるかどうかで行われる。 In step S12, it is determined whether or not the gray value Da1 is lower than the gray value Da2 by the vicinity of the specified value Dc. This determination is made based on whether or not the difference ΔD is negative and the absolute value | ΔD | ≧ Dc.
 差分ΔDが正、あるいは、絶対値|ΔD|<Dcの場合は、ステップS13に進み、照射線量制御部104の制御信号生成部108は、今回の濃淡値Daと基準値Dbとの差分dを演算する。すなわち、差分d=Da-Dbを演算する。 When the difference ΔD is positive or the absolute value | ΔD | <Dc, the process proceeds to step S13, and the control signal generation unit 108 of the irradiation dose control unit 104 sets the difference d between the current gray value Da and the reference value Db. Calculate. That is, the difference d = Da−Db is calculated.
 ステップS14において、制御信号生成部108は、差分d<0であるか否かを判別する。差分dが負であれば、ステップS15に進み、信号値Vを差分dに応じて増加させる。反対に差分dが正であれば、ステップS16に進み、信号値Vを差分dに応じて低下させる。 In step S14, the control signal generation unit 108 determines whether or not the difference d <0. If the difference d is negative, the process proceeds to step S15, and the signal value V is increased according to the difference d. On the contrary, if the difference d is positive, the process proceeds to step S16, and the signal value V is decreased according to the difference d.
 ステップS17において、カウンタkの値を+1更新する。 In step S17, the value of the counter k is updated by +1.
 ステップS18において、システム制御部14は、システムの終了要求があるか否かを判別する。システムの終了要求がなければ、ステップS3に戻り、ステップS3以降の処理を繰り返す。ステップS12において、濃淡値Da1が濃淡値Da2よりも規定値Dc付近以上低いと判別されるまでは、ステップS3~ステップS18の動作が繰り返され、モニタ18には設定されたフレームレートでの放射線画像の動画が表示されることになる。 In step S18, the system control unit 14 determines whether or not there is a system termination request. If there is no system termination request, the process returns to step S3, and the processes after step S3 are repeated. Until it is determined in step S12 that the gray value Da1 is lower than the gray value Da2 by the vicinity of the specified value Dc, the operations in steps S3 to S18 are repeated, and the radiation image at the set frame rate is displayed on the monitor 18. Will be displayed.
 そして、上述のステップS12において、濃淡値Da1が濃淡値Da2よりも規定値Dc付近以上低いと判別された場合は、図6のステップS19に進み、切替信号出力部118は、切替部110に切替信号Scを出力する。これによって、制御信号の信号経路がエラー処理部116の制御信号演算部120側に切り替わる。 When it is determined in step S12 that the gray value Da1 is lower than the gray value Da2 by the vicinity of the specified value Dc, the process proceeds to step S19 in FIG. 6 and the switching signal output unit 118 switches to the switching unit 110. The signal Sc is output. As a result, the signal path of the control signal is switched to the control signal calculation unit 120 side of the error processing unit 116.
 ステップS20において、システム制御部14は、エラー処理時の撮影回数のカウンタjに初期値(=1)を格納する。 In step S20, the system control unit 14 stores an initial value (= 1) in the counter j of the number of times of photographing at the time of error processing.
 ステップS21において、システム制御部14は、前回の放射線撮影の開始時点から最新のフレームレートに相当する時間が経過したか否かを判別する。前回の放射線撮影の開始時点から前記時間が経過した段階で次のステップS22に進み、エラー処理期間Tbに入って1回目の放射線撮影であるかどうか、すなわち、カウンタjの値が初期値であるか否かを判別する。 In step S21, the system control unit 14 determines whether or not a time corresponding to the latest frame rate has elapsed since the start of the previous radiation imaging. When the time has elapsed since the start of the previous radiation imaging, the process proceeds to the next step S22, and whether or not the first radiation imaging is entered in the error processing period Tb, that is, the value of the counter j is an initial value. It is determined whether or not.
 カウンタjの値が初期値であれば、次のステップS23に進み、制御信号演算部120は、1回目の放射線撮影における第2制御信号Sa2の信号値V1を演算する。演算方式は、上述した(1)~(4)のいずれかを選択することができる。 If the value of the counter j is the initial value, the process proceeds to the next step S23, and the control signal calculation unit 120 calculates the signal value V1 of the second control signal Sa2 in the first radiation imaging. As the calculation method, any one of (1) to (4) described above can be selected.
 ステップS24において、制御信号演算部120は、信号値V1を切替部110を介して放射線装置28に出力する。放射線装置28の線源制御部36は、エラー処理部116からの信号値V1に基づいて、放射線源34の管電圧、管電流、撮影時間等を変更して、該放射線源34から出力される照射線量を新たな照射線量に設定する。 In step S24, the control signal calculation unit 120 outputs the signal value V1 to the radiation device 28 via the switching unit 110. The radiation source control unit 36 of the radiation apparatus 28 changes the tube voltage, tube current, imaging time, etc. of the radiation source 34 based on the signal value V1 from the error processing unit 116 and outputs the radiation source 34 from the radiation source 34. Set the exposure dose to a new exposure dose.
 一方、カウンタjの値が初期値以外であれば、ステップS25に進み、制御信号演算部120は、2回目以降の放射線撮影における第2制御信号Sa2の信号値Vjを上述した演算式(A)及び(B)に基づいて演算する。 On the other hand, if the value of the counter j is other than the initial value, the process proceeds to step S25, and the control signal calculation unit 120 calculates the signal value Vj of the second control signal Sa2 in the second and subsequent radiographs from the above-described calculation formula (A). And (B).
 ステップS26において、制御信号演算部120は、信号値Vjを切替部110を介して放射線装置28に出力する。放射線装置28の線源制御部36は、エラー処理部116からの信号値Vjに基づいて照射線量を設定する。 In step S26, the control signal calculation unit 120 outputs the signal value Vj to the radiation device 28 via the switching unit 110. The radiation source control unit 36 of the radiation apparatus 28 sets the irradiation dose based on the signal value Vj from the error processing unit 116.
 ステップS24での処理あるいはステップS26での処理が終了した段階で、次のステップS27に進み、システム制御部14は、j回目の放射線撮影の開始時点にて、放射線装置28に曝射開始信号Sdを出力する。放射線装置28の線源制御部36は、システム制御部14からの曝射開始信号Sdの入力に基づいて放射線源34を制御して、該放射線源34から設定されている照射線量の放射線を照射させる。 When the process in step S24 or the process in step S26 is completed, the process proceeds to the next step S27, and the system control unit 14 sends an exposure start signal Sd to the radiation apparatus 28 at the start of the j-th radiation imaging. Is output. The radiation source control unit 36 of the radiation apparatus 28 controls the radiation source 34 based on the input of the exposure start signal Sd from the system control unit 14, and irradiates the radiation with the irradiation dose set from the radiation source 34. Let
 ステップS28において、システム制御部14は、検出装置制御部32を介して、放射線検出装置30に、放射線装置28に対して曝射開始を行ったことを示す曝射通知Seを出力する。 In step S28, the system control unit 14 outputs an exposure notification Se indicating that the radiation device 28 has started exposure to the radiation detection device 30 via the detection device control unit 32.
 ステップS29において、放射線検出装置30は、曝射通知Seの入力に基づいて、電荷蓄積と電荷読出を行う。この動作は、上述したステップS8での動作と同様であるので、ここではその重複説明を省略する。 In step S29, the radiation detection apparatus 30 performs charge accumulation and charge readout based on the input of the exposure notification Se. Since this operation is the same as the operation in step S8 described above, a duplicate description thereof is omitted here.
 ステップS30において、システム制御部14は、供給された放射線画像情報をコンソール16に転送する。コンソール16は、転送された放射線画像情報をフレームメモリに記憶すると共に、j回目の放射線撮影による放射線画像、すなわち、エラー処理期間におけるjフレーム目の放射線画像としてモニタ18に表示する。 In step S30, the system control unit 14 transfers the supplied radiation image information to the console 16. The console 16 stores the transferred radiation image information in the frame memory and displays it on the monitor 18 as a radiation image obtained by the j-th radiation imaging, that is, a radiation image of the jth frame in the error processing period.
 ステップS31において、カウンタjの値を+1更新する。 In step S31, the value of the counter j is updated by +1.
 ステップS32において、切替信号出力部118は、エラー処理期間Tbが経過したか否かを判別する。エラー処理期間Tbが経過していなければ、ステップS21に戻り、該ステップS21以降の処理を繰り返す。 In step S32, the switching signal output unit 118 determines whether or not the error processing period Tb has elapsed. If the error processing period Tb has not elapsed, the process returns to step S21, and the processes after step S21 are repeated.
 エラー処理期間Tbが経過した段階で、次のステップS33に進み、切替信号出力部118は、切替部110に切替信号Scを出力する。これによって、制御信号の信号経路が再び照射線量制御部104の制御信号生成部108側に切り替わる。 When the error processing period Tb has elapsed, the process proceeds to the next step S33, and the switching signal output unit 118 outputs the switching signal Sc to the switching unit 110. As a result, the signal path of the control signal is switched again to the control signal generation unit 108 side of the irradiation dose control unit 104.
 その後、図5のステップS3に戻り、該ステップS3以降の処理を繰り返す。 Thereafter, the process returns to step S3 in FIG. 5 and the processes after step S3 are repeated.
 そして、上述のステップS18において、システムの終了要求があると判別された段階で、この放射線画像撮影システム10での処理が終了する。 Then, in the above-described step S18, when it is determined that there is a system termination request, the processing in the radiation image capturing system 10 is terminated.
 図7の例で示すと、通常動作期間Taにおける例えばN+1回目の放射線撮影の開始時点tn+1において、放射線撮影が行われることで、システム制御部14にN+1回目の放射線撮影による放射線画像情報D(N+1)が供給される。システム制御部14は、供給された放射線画像情報D(N+1)をコンソール16に転送し、Nフレーム目の放射線画像としてモニタ18に表示させる。また、システム制御部14は、前回(N回目)の濃淡値と今回(N+1回目)の濃淡値の差分ΔDを演算する。差分ΔD(便宜的に「-2」で示している)が規定値(例えば「-50」)付近以上低下した値でないため、そのまま通常動作を継続し、システム制御部14は、関心領域の濃淡値Daと基準値Dbとの差分に応じた第1制御信号Sa1の信号値Vを演算して放射線装置28に出力する。放射線装置28は、次のN+2回目の放射線撮影ために、放射線源34の照射線量を、信号値V(便宜的に「+2」で示している)に応じた量に設定する。 In the example of FIG. 7, for example, radiation imaging is performed at the start time tn + 1 of the (N + 1) th radiation imaging in the normal operation period Ta, so that the radiation image information D (N + 1) obtained by the N + 1th radiation imaging is transmitted to the system control unit 14. ) Is supplied. The system control unit 14 transfers the supplied radiation image information D (N + 1) to the console 16 and displays it on the monitor 18 as a radiation image of the Nth frame. In addition, the system control unit 14 calculates a difference ΔD between the previous (Nth) gray value and the current (N + 1) gray value. Since the difference ΔD (indicated by “−2” for convenience) is not a value that has decreased by more than a predetermined value (for example, “−50”), the normal operation is continued and the system control unit 14 changes the density of the region of interest. The signal value V of the first control signal Sa1 corresponding to the difference between the value Da and the reference value Db is calculated and output to the radiation device 28. The radiation device 28 sets the irradiation dose of the radiation source 34 to an amount corresponding to the signal value V (for convenience, indicated by “+2”) for the next N + 2th radiography.
 同様にして、N+2回目の放射線撮影、N+3回目の放射線撮影が順次行われ、放射線装置28は、次のN+4回目の放射線撮影ために、放射線源34の照射線量を、信号値V(便宜的に「-1」で示している)に応じた量に設定する。 Similarly, N + 2th radiography and N + 3th radiography are sequentially performed, and the radiation apparatus 28 determines the radiation dose of the radiation source 34 as a signal value V (for convenience) for the next N + 4th radiography. The amount is set according to “−1”.
 そして、N+4回目の放射線撮影で得られた関心領域の濃淡値Daが例えばほぼ0で、濃淡値Daと基準値Dbとの差分に応じた第1制御信号Sa1の信号値Vが例えば最大値(便宜的に「Vmax」と示している)となった場合、通常であれば、この最大値Vmaxが放射線装置28に出力され、最大の照射線量に設定される。その結果、次のN+5回目の放射線撮影では、最大の照射線量に設定された放射線26が被写体24に照射されることになる。 Then, the gray value Da of the region of interest obtained by the N + 4th radiography is approximately 0, for example, and the signal value V of the first control signal Sa1 corresponding to the difference between the gray value Da and the reference value Db is, for example, the maximum value ( For convenience, the maximum value Vmax is output to the radiation device 28 and set to the maximum irradiation dose. As a result, in the next N + 5th radiography, the subject 24 is irradiated with the radiation 26 set to the maximum irradiation dose.
 これを回避するために、本実施の形態では、システム制御部14は、前回(N+3回目)の濃淡値と今回(N+4回目)の濃淡値の差分ΔDを演算する。差分ΔD(便宜的に「-128」で示している)が規定値(例えば「-50」)付近以上低下した値であるため、エラー処理部116での動作に移行し、システム制御部14は、エラー処理期間Tbにおける1回目の放射線撮影の第2制御信号Sa2の信号値V1を演算して放射線装置28に出力する。放射線装置28は、エラー処理期間Tbにおける1回目の放射線撮影ために、放射線源34の照射線量を、信号値V1(例えば下限信号値「Vmin」)に応じた量に設定する。その結果、エラー処理期間Tbにおける1回目の放射線撮影では、最小の照射線量に設定された放射線26が被写体24に照射されることになり、被写体24に対する被曝の負担を低減することができる。 In order to avoid this, in the present embodiment, the system control unit 14 calculates a difference ΔD between the previous (N + 3) gray value and the current (N + 4) gray value. Since the difference ΔD (denoted by “−128” for convenience) is a value that has decreased by more than a specified value (for example, “−50”), the operation of the error processing unit 116 is started, and the system control unit 14 Then, the signal value V1 of the second control signal Sa2 of the first radiation imaging in the error processing period Tb is calculated and output to the radiation device 28. The radiation device 28 sets the irradiation dose of the radiation source 34 to an amount corresponding to the signal value V1 (for example, the lower limit signal value “Vmin”) for the first radiation imaging in the error processing period Tb. As a result, in the first radiography in the error processing period Tb, the radiation 26 set to the minimum irradiation dose is irradiated to the subject 24, and the burden of exposure on the subject 24 can be reduced.
 エラー処理期間Tbにおける2回目以降の放射線撮影では、ステップS25及びステップS26での処理によって、放射線撮影毎に、徐々に照射線量が増加していき、エラー処理期間Tbが経過した時点では、エラー処理期間Tbの開始直前における照射線量で放射線撮影が行われ、スムーズに通常動作に移行することになる。 In the second and subsequent radiation imaging in the error processing period Tb, the irradiation dose gradually increases for each radiation imaging by the processing in step S25 and step S26, and error processing is performed when the error processing period Tb elapses. Radiation imaging is performed with the irradiation dose immediately before the start of the period Tb, and the normal operation is smoothly performed.
 このように、本実施の形態に係る放射線画像撮影システム10においては、自動輝度制御を用いたシステムにおいて、例えばシステムや放射線照射の制御系に異常が発生した場合に、被写体24(患者等)が高い照射エネルギーで被曝することを防止することができ、異常が発生した後のリスクを低減することができる。 As described above, in the radiographic imaging system 10 according to the present exemplary embodiment, in the system using automatic luminance control, for example, when an abnormality occurs in the system or the radiation irradiation control system, the subject 24 (patient or the like) Exposure to high irradiation energy can be prevented, and the risk after an abnormality has occurred can be reduced.
 放射線画像撮影システム10において、その他の好ましい態様を示すと、エラー処理期間Tbの開始の際に、システム制御部14から放射線装置28の自動コリメータ部38に照射領域を狭くする指示を出力するようにしてもよい。例えばエラー処理期間Tbの開始直前における照射領域の1/4~1/10の範囲で狭くする。この割合は、撮影部位等に応じて予めシミュレーションや実験等で設定しておく。これにより、被写体24への曝射にかかる負担をさらに軽減することができる。 In the radiographic imaging system 10, another preferable mode is shown. At the start of the error processing period Tb, an instruction to narrow the irradiation area is output from the system control unit 14 to the automatic collimator unit 38 of the radiation apparatus 28. May be. For example, it is narrowed within a range of ¼ to 1/10 of the irradiation region immediately before the start of the error processing period Tb. This ratio is set in advance by simulation or experiment according to the imaging region or the like. Thereby, the burden concerning the exposure to the subject 24 can be further reduced.
 また、エラー処理期間Tbの開始の際に、システム制御部14から検出装置制御部32を介して放射線検出装置30にチャージアンプ66のゲインを高める指示を出力してもよい。これにより、感度が向上し、照射エネルギーが低く設定されても、通常と同じ濃淡の幅を有する放射線画像情報を得ることができる。これは、エラー処理期間Tbに表示される低い照射エネルギーの動画であっても観察や診断に有効利用できることが期待できる。 Also, at the start of the error processing period Tb, an instruction to increase the gain of the charge amplifier 66 may be output from the system control unit 14 to the radiation detection device 30 via the detection device control unit 32. Thereby, even if sensitivity improves and irradiation energy is set low, the radiographic image information which has the same width of light and shade as usual can be obtained. It can be expected that this can be effectively used for observation and diagnosis even for a moving image of low irradiation energy displayed in the error processing period Tb.
 また、エラー処理期間Tbの開始の際に、放射線検出装置30での読出モードを例えばインターレースモードに設定するようにしてもよい。放射線検出装置30での電荷読出に係る信号処理系の負担を軽減することができ、再びエラーが発生するというリスクを低減することができる。 Further, at the start of the error processing period Tb, the reading mode in the radiation detection apparatus 30 may be set to, for example, an interlace mode. The burden on the signal processing system related to charge readout in the radiation detection apparatus 30 can be reduced, and the risk that an error will occur again can be reduced.
 なお、本発明に係る放射線画像撮影システムは、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。 Of course, the radiographic imaging system according to the present invention is not limited to the above-described embodiment, and various configurations can be adopted without departing from the gist of the present invention.
 例えば、放射線検出器40は、図8及び図9に示す変形例に係る放射線検出器600であってもよい。なお、図8は、変形例に係る放射線検出器600の3つの画素部分の構成を概略的に示した断面模式図である。 For example, the radiation detector 40 may be the radiation detector 600 according to the modification shown in FIGS. FIG. 8 is a schematic cross-sectional view schematically showing the configuration of three pixel portions of the radiation detector 600 according to the modification.
 放射線検出器600は、図8に示すように、絶縁性の基板602上に、信号出力部604、センサ部606(光電変換部)、及びシンチレータ608が順次積層しており、信号出力部604及びセンサ部606により画素部が構成されている。画素部は、基板602上に行列状に複数配列されており、各画素部における信号出力部604とセンサ部606とが重なりを有するように構成されている。 As shown in FIG. 8, the radiation detector 600 includes a signal output unit 604, a sensor unit 606 (photoelectric conversion unit), and a scintillator 608 sequentially stacked on an insulating substrate 602. A pixel unit is configured by the sensor unit 606. A plurality of pixel portions are arranged in a matrix on the substrate 602, and the signal output portion 604 and the sensor portion 606 in each pixel portion are configured to overlap each other.
 シンチレータ608は、センサ部606上に透明絶縁膜610を介して形成されており、上方(基板602が位置する側とは反対側)から入射してくる放射線26を光に変換して発光する蛍光体を成膜したものである。シンチレータ608が発する光の波長域は、可視光域(波長360nm~830nm)であることが好ましく、この放射線検出器600によってモノクロ撮像を可能とするためには、緑色の波長域を含んでいることがより好ましい。 The scintillator 608 is formed on the sensor unit 606 with a transparent insulating film 610 interposed therebetween. The scintillator 608 converts the radiation 26 incident from above (the side opposite to the side where the substrate 602 is located) into light and emits light. The body is formed into a film. The wavelength range of light emitted by the scintillator 608 is preferably the visible light range (wavelength 360 nm to 830 nm), and in order to enable monochrome imaging by the radiation detector 600, the wavelength range of green is included. Is more preferable.
 シンチレータ608に用いる蛍光体としては、具体的には、放射線26としてX線を用いて撮像する場合、ヨウ化セシウム(CsI)を含むものが好ましく、X線照射時の発光スペクトルが420nm~700nmにあるCsI(Tl)(タリウムが添加されたヨウ化セシウム)を用いることが特に好ましい。なお、CsI(Tl)の可視光域における発光ピーク波長は565nmである。 Specifically, the phosphor used in the scintillator 608 preferably contains cesium iodide (CsI) when imaging using X-rays as the radiation 26, and the emission spectrum upon X-ray irradiation is 420 nm to 700 nm. It is particularly preferred to use some CsI (Tl) (cesium iodide with thallium added). Note that the emission peak wavelength of CsI (Tl) in the visible light region is 565 nm.
 シンチレータ608は、例えば、蒸着基体に柱状結晶構造のCsI(Tl)を蒸着して形成してもよい。このように蒸着によってシンチレータ608を形成する場合、蒸着基体は、X線の透過率、コストの面からAlがよく使用されるがこれに限定されるものではない。なお、シンチレータ608としてGOSを用いる場合、蒸着基体を用いずにTFTアクティブマトリクス基板の表面にGOSを塗布することにより、シンチレータ608を形成してもよい。また、樹脂ベースにGOSを塗布しシンチレータ608を形成した後、該シンチレータ608をTFTアクティブマトリクス基板に貼り合わせてもよい。これにより、万が一、GOSの塗布が失敗してもTFTアクティブマトリクス基板を温存することができる。 The scintillator 608 may be formed, for example, by vapor-depositing CsI (Tl) having a columnar crystal structure on a vapor deposition base. When the scintillator 608 is formed by vapor deposition as described above, Al is often used as the vapor deposition substrate from the viewpoint of X-ray transmittance and cost, but is not limited thereto. Note that in the case where GOS is used as the scintillator 608, the scintillator 608 may be formed by applying GOS to the surface of the TFT active matrix substrate without using a vapor deposition substrate. Alternatively, after the GOS is applied to the resin base to form the scintillator 608, the scintillator 608 may be bonded to the TFT active matrix substrate. As a result, the TFT active matrix substrate can be preserved even if GOS application fails.
 センサ部606は、上部電極612、下部電極614、及び上部電極612と下部電極614の間に配置された光電変換膜616を有している。 The sensor unit 606 includes an upper electrode 612, a lower electrode 614, and a photoelectric conversion film 616 disposed between the upper electrode 612 and the lower electrode 614.
 上部電極612は、シンチレータ608により生じた光を光電変換膜616に入射させる必要があるため、少なくともシンチレータ608の発光波長に対して透明な導電性材料で構成することが好ましく、具体的には、可視光に対する透過率が高く、抵抗値が小さい透明導電性酸化物(TCO;Transparent Conducting Oxide)を用いることが好ましい。なお、上部電極612としてAu等の金属薄膜を用いることもできるが、透過率を90%以上得ようとすると抵抗値が増大し易いため、TCOの方が好ましい。例えば、ITO、IZO、AZO、FTO、SnO2、TiO2、ZnO2等を好ましく用いることができ、プロセス簡易性、低抵抗性、透明性の観点からはITOが最も好ましい。なお、上部電極612は、全画素部で共通の一枚構成としてもよく、画素部毎に分割してもよい。 Since the upper electrode 612 needs to make the light generated by the scintillator 608 incident on the photoelectric conversion film 616, it is preferable that the upper electrode 612 is made of a conductive material that is transparent at least with respect to the emission wavelength of the scintillator 608. It is preferable to use a transparent conductive oxide (TCO) having a high transmittance for visible light and a low resistance value. Note that although a metal thin film such as Au can be used as the upper electrode 612, a resistance value tends to increase when the transmittance of 90% or more is obtained, so that the TCO is preferable. For example, ITO, IZO, AZO, FTO, SnO 2 , TiO 2 , ZnO 2 and the like can be preferably used, and ITO is most preferable from the viewpoint of process simplicity, low resistance, and transparency. Note that the upper electrode 612 may have a single configuration common to all the pixel portions, or may be divided for each pixel portion.
 光電変換膜616は、有機光導電体(OPC:Organic Photo Conductors)を含み、シンチレータ608から発せられた光を吸収し、吸収した光に応じた電荷を発生する。有機光導電体(有機光電変換材料)を含む光電変換膜616であれば、可視光域にシャープな吸収スペクトルを持ち、シンチレータ608による発光以外の電磁波が光電変換膜616によって吸収されることが殆どなく、放射線26が光電変換膜616で吸収されることによって発生するノイズを効果的に抑制することができる。なお、光電変換膜616は、有機光導電体に代えてアモルファスシリコンを含むように構成してもよい。この場合、幅広い吸収スペクトルを持ち、シンチレータ608による発光を効率的に吸収することができる。 The photoelectric conversion film 616 includes an organic photoconductor (OPC: Organic Photo Conductors), absorbs light emitted from the scintillator 608, and generates a charge corresponding to the absorbed light. If the photoelectric conversion film 616 includes an organic photoconductor (organic photoelectric conversion material), the photoelectric conversion film 616 has a sharp absorption spectrum in the visible light region, and electromagnetic waves other than light emitted by the scintillator 608 are almost absorbed by the photoelectric conversion film 616. In addition, noise generated when the radiation 26 is absorbed by the photoelectric conversion film 616 can be effectively suppressed. Note that the photoelectric conversion film 616 may be configured to include amorphous silicon instead of the organic photoconductor. In this case, it has a wide absorption spectrum and can efficiently absorb light emitted by the scintillator 608.
 光電変換膜616を構成する有機光導電体は、シンチレータ608で発光した光を最も効率よく吸収するために、そのピーク波長が、シンチレータ608の発光ピーク波長と近いほど好ましい。有機光導電体の吸収ピーク波長とシンチレータ608の発光ピーク波長とが一致することが理想的であるが、双方の差が小さければシンチレータ608から発せられた光を十分に吸収することが可能である。具体的には、有機光導電体の吸収ピーク波長と、シンチレータ608の放射線26に対する発光ピーク波長との差が、10nm以内であることが好ましく、5nm以内であることがより好ましい。 The organic photoconductor constituting the photoelectric conversion film 616 preferably has a peak wavelength closer to the emission peak wavelength of the scintillator 608 in order to absorb light emitted by the scintillator 608 most efficiently. Ideally, the absorption peak wavelength of the organic photoconductor coincides with the emission peak wavelength of the scintillator 608. However, if the difference between the two is small, the light emitted from the scintillator 608 can be sufficiently absorbed. . Specifically, the difference between the absorption peak wavelength of the organic photoconductor and the emission peak wavelength of the scintillator 608 with respect to the radiation 26 is preferably within 10 nm, and more preferably within 5 nm.
 このような条件を満たすことが可能な有機光導電体としては、例えばキナクリドン系有機化合物及びフタロシアニン系有機化合物が挙げられる。例えばキナクリドンの可視域における吸収ピーク波長は560nmであるため、有機光導電体としてキナクリドンを用い、シンチレータ608の材料としてCsI(Tl)を用いれば、上記ピーク波長の差を5nm以内にすることが可能となり、光電変換膜616で発生する電荷量をほぼ最大にすることができる。 Examples of organic photoconductors that can satisfy such conditions include quinacridone organic compounds and phthalocyanine organic compounds. For example, since the absorption peak wavelength in the visible region of quinacridone is 560 nm, if quinacridone is used as the organic photoconductor and CsI (Tl) is used as the material of the scintillator 608, the difference between the peak wavelengths can be within 5 nm. Thus, the amount of charge generated in the photoelectric conversion film 616 can be substantially maximized.
 センサ部606は、電磁波を吸収する部位、光電変換部位、電子輸送部位、正孔輸送部位、電子ブロッキング部位、正孔ブロッキング部位、結晶化防止部位、電極、及び層間接触改良部位等の積み重ね、もしくは混合により形成される有機層を含んで構成される。前記有機層は、有機p型化合物(有機p型半導体)又は有機n型化合物(有機n型半導体)を含有することが好ましい。 The sensor unit 606 is a stack of a part that absorbs electromagnetic waves, a photoelectric conversion part, an electron transport part, a hole transport part, an electron blocking part, a hole blocking part, a crystallization prevention part, an electrode, an interlayer contact improvement part, or the like. An organic layer formed by mixing is included. The organic layer preferably contains an organic p-type compound (organic p-type semiconductor) or an organic n-type compound (organic n-type semiconductor).
 有機p型半導体は、主に正孔輸送性有機化合物に代表されるドナー性有機半導体(化合物)であり、電子を供与しやすい性質がある有機化合物をいう。さらに詳しくは2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物をいう。従って、ドナー性有機化合物としては、電子供与性のある有機化合物であればいずれの有機化合物も使用可能である。 An organic p-type semiconductor is a donor organic semiconductor (compound) typified by a hole-transporting organic compound and refers to an organic compound having a property of easily donating electrons. More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound.
 有機n型半導体は、主に電子輸送性有機化合物に代表されるアクセプター性有機半導体(化合物)であり、電子を受容しやすい性質がある有機化合物をいう。さらに詳しくは2つの有機化合物を接触させて用いたときに電子親和力の大きい方の有機化合物をいう。従って、アクセプター性有機化合物は、電子受容性のある有機化合物であればいずれの有機化合物も使用可能である。 Organic n-type semiconductors are acceptor organic semiconductors (compounds) typified mainly by electron-transporting organic compounds and refer to organic compounds that have the property of easily accepting electrons. More specifically, the organic compound having the higher electron affinity when two organic compounds are used in contact with each other. Therefore, any organic compound can be used as the acceptor organic compound as long as it is an electron-accepting organic compound.
 この有機p型半導体及び有機n型半導体として適用可能な材料、及び光電変換膜616の構成については、特開2009-32854号公報において詳細に説明されているため説明を省略する。なお、光電変換膜616は、さらにフラーレンもしくはカーボンナノチューブを含有させて形成してもよい。 Since the materials applicable as the organic p-type semiconductor and organic n-type semiconductor and the configuration of the photoelectric conversion film 616 are described in detail in Japanese Patent Application Laid-Open No. 2009-32854, description thereof is omitted. Note that the photoelectric conversion film 616 may be formed by further containing fullerenes or carbon nanotubes.
 光電変換膜616の厚みは、シンチレータ608からの光を吸収する点では膜厚は大きいほど好ましいが、ある程度以上厚くなると光電変換膜616の両端から印加されるバイアス電圧により光電変換膜616に発生する電界の強度が低下して電荷が収集できなくなるため、30nm以上300nm以下が好ましく、より好ましくは、50nm以上250nm以下、特に好ましくは80nm以上200nm以下にするのがよい。 The thickness of the photoelectric conversion film 616 is preferably as large as possible in terms of absorbing light from the scintillator 608. However, when the thickness is larger than a certain level, the photoelectric conversion film 616 is generated in the photoelectric conversion film 616 by a bias voltage applied from both ends of the photoelectric conversion film 616. Since electric field strength is reduced and charges cannot be collected, the thickness is preferably 30 nm to 300 nm, more preferably 50 nm to 250 nm, and particularly preferably 80 nm to 200 nm.
 光電変換膜616は、全画素部で共通の一枚構成であるが、画素部毎に分割してもよい。下部電極614は、画素部毎に分割された薄膜とする。但し、下部電極614は、全画素部で共通の一枚構成であってもよい。下部電極614は、透明又は不透明の導電性材料で構成することができ、アルミニウム、銀等を好適に用いることができる。なお、下部電極614の厚みは、例えば、30nm以上300nm以下とすることができる。 The photoelectric conversion film 616 has a single configuration common to all pixel portions, but may be divided for each pixel portion. The lower electrode 614 is a thin film divided for each pixel portion. However, the lower electrode 614 may have a single configuration common to all the pixel portions. The lower electrode 614 can be made of a transparent or opaque conductive material, and aluminum, silver, or the like can be preferably used. The thickness of the lower electrode 614 can be, for example, 30 nm or more and 300 nm or less.
 センサ部606では、上部電極612と下部電極614の間に所定のバイアス電圧を印加することで、光電変換膜616で発生した電荷(正孔、電子)のうちの一方を上部電極612に移動させ、他方を下部電極614に移動させることができる。本変形例に係る放射線検出器600では、上部電極612に配線が接続され、この配線を介してバイアス電圧が上部電極612に印加されるものとする。また、バイアス電圧は、光電変換膜616で発生した電子が上部電極612に移動し、正孔が下部電極614に移動するように極性が決められているものとするが、この極性は逆であっても良い。 In the sensor unit 606, by applying a predetermined bias voltage between the upper electrode 612 and the lower electrode 614, one of charges (holes, electrons) generated in the photoelectric conversion film 616 is moved to the upper electrode 612. The other can be moved to the lower electrode 614. In the radiation detector 600 according to this modification, a wiring is connected to the upper electrode 612, and a bias voltage is applied to the upper electrode 612 via the wiring. In addition, the polarity of the bias voltage is determined so that electrons generated in the photoelectric conversion film 616 move to the upper electrode 612 and holes move to the lower electrode 614, but this polarity is opposite. May be.
 各画素部を構成するセンサ部606は、少なくとも下部電極614、光電変換膜616、及び上部電極612を含んでいればよいが、暗電流の増加を抑制するため、電子ブロッキング膜618及び正孔ブロッキング膜620の少なくともいずれかを設けることが好ましく、両方を設けることがより好ましい。 The sensor unit 606 constituting each pixel unit only needs to include at least the lower electrode 614, the photoelectric conversion film 616, and the upper electrode 612. In order to suppress an increase in dark current, the electron blocking film 618 and the hole blocking are included. It is preferable to provide at least one of the films 620, and it is more preferable to provide both.
 電子ブロッキング膜618は、下部電極614と光電変換膜616との間に設けることができ、下部電極614と上部電極612間にバイアス電圧を印加したときに、下部電極614から光電変換膜616に電子が注入されて暗電流が増加してしまうのを抑制することができる。 The electron blocking film 618 can be provided between the lower electrode 614 and the photoelectric conversion film 616. When a bias voltage is applied between the lower electrode 614 and the upper electrode 612, electrons are transferred from the lower electrode 614 to the photoelectric conversion film 616. It is possible to suppress the dark current from increasing due to the injection of.
 電子ブロッキング膜618には、電子供与性有機材料を用いることができる。実際に電子ブロッキング膜618に用いる材料は、隣接する電極の材料及び隣接する光電変換膜616の材料等に応じて選択すればよく、隣接する電極の材料の仕事関数(Wf)より1.3eV以上電子親和力(Ea)が大きく、且つ、隣接する光電変換膜616の材料のイオン化ポテンシャル(Ip)と同等のIpもしくはそれより小さいIpを持つものが好ましい。この電子供与性有機材料として適用可能な材料については、特開2009-32854号公報において詳細に説明されているため説明を省略する。 An electron donating organic material can be used for the electron blocking film 618. The material actually used for the electron blocking film 618 may be selected according to the material of the adjacent electrode, the material of the adjacent photoelectric conversion film 616, and the like, and 1.3 eV or more from the work function (Wf) of the material of the adjacent electrode. Those having a large electron affinity (Ea) and an Ip equivalent to or smaller than the ionization potential (Ip) of the material of the adjacent photoelectric conversion film 616 are preferable. Since the material applicable as the electron donating organic material is described in detail in Japanese Patent Application Laid-Open No. 2009-32854, description thereof is omitted.
 電子ブロッキング膜618の厚みは、暗電流抑制効果を確実に発揮させると共に、センサ部606の光電変換効率の低下を防ぐため、10nm以上200nm以下が好ましく、さらに好ましくは30nm以上150nm以下、特に好ましくは50nm以上100nm以下にするのがよい。 The thickness of the electron blocking film 618 is preferably 10 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, and particularly preferably, in order to surely exhibit the dark current suppressing effect and prevent a decrease in photoelectric conversion efficiency of the sensor unit 606. It is good to set it to 50 nm or more and 100 nm or less.
 正孔ブロッキング膜620は、光電変換膜616と上部電極612との間に設けることができ、下部電極614と上部電極612間にバイアス電圧を印加したときに、上部電極612から光電変換膜616に正孔が注入されて暗電流が増加してしまうのを抑制することができる。 The hole blocking film 620 can be provided between the photoelectric conversion film 616 and the upper electrode 612. When a bias voltage is applied between the lower electrode 614 and the upper electrode 612, the hole blocking film 620 is applied from the upper electrode 612 to the photoelectric conversion film 616. It is possible to suppress the increase in dark current due to the injection of holes.
 正孔ブロッキング膜620には、電子受容性有機材料を用いることができる。正孔ブロッキング膜620の厚みは、暗電流抑制効果を確実に発揮させると共に、センサ部606の光電変換効率の低下を防ぐため、10nm以上200nm以下が好ましく、さらに好ましくは30nm以上150nm以下、特に好ましくは50nm以上100nm以下にするのがよい。 An electron-accepting organic material can be used for the hole blocking film 620. The thickness of the hole blocking film 620 is preferably 10 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, and particularly preferably, in order to reliably exhibit the dark current suppressing effect and prevent a decrease in photoelectric conversion efficiency of the sensor unit 606. Is preferably 50 nm to 100 nm.
 実際に正孔ブロッキング膜620に用いる材料は、隣接する電極の材料及び隣接する光電変換膜616の材料等に応じて選択すればよく、隣接する電極の材料の仕事関数(Wf)より1.3eV以上イオン化ポテンシャル(Ip)が大きく、且つ、隣接する光電変換膜616の材料の電子親和力(Ea)と同等のEaもしくはそれより大きいEaを持つものが好ましい。この電子受容性有機材料として適用可能な材料については、特開2009-32854号公報において詳細に説明されているため説明を省略する。 The material actually used for the hole blocking film 620 may be selected according to the material of the adjacent electrode, the material of the adjacent photoelectric conversion film 616, and the like, and 1.3 eV from the work function (Wf) of the material of the adjacent electrode. As described above, it is preferable that the ionization potential (Ip) is large and the Ea is equal to or larger than the electron affinity (Ea) of the material of the adjacent photoelectric conversion film 616. Since the material applicable as the electron-accepting organic material is described in detail in Japanese Patent Application Laid-Open No. 2009-32854, description thereof is omitted.
 なお、光電変換膜616で発生した電荷のうち、正孔が上部電極612に移動し、電子が下部電極614に移動するようにバイアス電圧を設定する場合には、電子ブロッキング膜618と正孔ブロッキング膜620の位置を逆にすればよい。また、電子ブロッキング膜618と正孔ブロッキング膜620は両方設けなくてもよく、いずれかを設けておけば、ある程度の暗電流抑制効果を得ることができる。 Note that, among the charges generated in the photoelectric conversion film 616, when a bias voltage is set so that holes move to the upper electrode 612 and electrons move to the lower electrode 614, the electron blocking film 618 and the hole blocking are set. The position of the film 620 may be reversed. Further, it is not necessary to provide both the electron blocking film 618 and the hole blocking film 620. If either one is provided, a certain dark current suppressing effect can be obtained.
 図9に示すように、信号出力部604は、各画素部の下部電極614に対応して基板602の表面に設けられており、下部電極614に移動した電荷を蓄積する蓄積容量622と、前記蓄積容量622に蓄積された電荷を電気信号に変換して出力するTFT624とを有している。蓄積容量622及びTFT624の形成された領域は、平面視において下部電極614と重なる部分を有しており、このような構成とすることで、各画素部における信号出力部604とセンサ部606とが厚さ方向で重なりを有することとなる。蓄積容量622及びTFT624を下部電極614によって完全に覆うように信号出力部604を形成すれば、放射線検出器600(画素部)の平面積を最小にすることができる。 As shown in FIG. 9, the signal output unit 604 is provided on the surface of the substrate 602 corresponding to the lower electrode 614 of each pixel unit, and the storage capacitor 622 that accumulates the electric charge moved to the lower electrode 614, The TFT 624 converts the electric charge accumulated in the accumulation capacitor 622 into an electric signal and outputs the electric signal. The region where the storage capacitor 622 and the TFT 624 are formed has a portion that overlaps with the lower electrode 614 in plan view. With such a structure, the signal output unit 604 and the sensor unit 606 in each pixel unit are connected to each other. There will be overlap in the thickness direction. If the signal output unit 604 is formed so as to completely cover the storage capacitor 622 and the TFT 624 with the lower electrode 614, the plane area of the radiation detector 600 (pixel unit) can be minimized.
 蓄積容量622は、基板602と下部電極614との間に設けられた絶縁膜626を貫通して形成された導電性材料の配線を介して対応する下部電極614と電気的に接続されている。これにより、下部電極614で捕集された電荷を蓄積容量622に移動させることができる。 The storage capacitor 622 is electrically connected to the corresponding lower electrode 614 through a wiring made of a conductive material that penetrates an insulating film 626 provided between the substrate 602 and the lower electrode 614. Thereby, the charge collected by the lower electrode 614 can be moved to the storage capacitor 622.
 TFT624は、ゲート電極628、ゲート絶縁膜630、及び活性層(チャネル層)632が積層され、さらに、活性層632上にソース電極634とドレイン電極636が所定の間隔を開けて形成されている。活性層632は、例えば、アモルファスシリコンや非晶質酸化物、有機半導体材料、カーボンナノチューブ等により形成することができる。なお、活性層632を構成する材料は、これらに限定されるものではない。 In the TFT 624, a gate electrode 628, a gate insulating film 630, and an active layer (channel layer) 632 are stacked, and a source electrode 634 and a drain electrode 636 are formed on the active layer 632 with a predetermined interval. The active layer 632 can be formed of, for example, amorphous silicon, amorphous oxide, organic semiconductor material, carbon nanotube, or the like. Note that the material forming the active layer 632 is not limited thereto.
 活性層632を構成可能な非晶質酸化物としては、In、Ga及びZnのうちの少なくとも1つを含む酸化物(例えばIn-O系)が好ましく、In、Ga及びZnのうちの少なくとも2つを含む酸化物(例えばIn-Zn-O系、In-Ga-O系、Ga-Zn-O系)がより好ましく、In、Ga及びZnを含む酸化物が特に好ましい。In-Ga-Zn-O系非晶質酸化物としては、結晶状態における組成がInGaO3(ZnO)m(mは6未満の自然数)で表される非晶質酸化物が好ましく、特に、InGaZnO4がより好ましい。なお、活性層632を構成可能な非晶質酸化物は、これらに限定されるものではない。 The amorphous oxide that can form the active layer 632 is preferably an oxide containing at least one of In, Ga, and Zn (for example, In—O-based), and at least two of In, Ga, and Zn. Oxides containing one (eg, In—Zn—O, In—Ga—O, and Ga—Zn—O) are more preferred, and oxides containing In, Ga, and Zn are particularly preferred. As the In—Ga—Zn—O-based amorphous oxide, an amorphous oxide whose composition in a crystalline state is represented by InGaO 3 (ZnO) m (m is a natural number less than 6) is preferable, and InGaZnO is particularly preferable. 4 is more preferable. Note that the amorphous oxide that can form the active layer 632 is not limited thereto.
 活性層632を構成可能な有機半導体材料としては、フタロシアニン化合物や、ペンタセン、バナジルフタロシアニン等を挙げることができるがこれらに限定されるものではない。なお、フタロシアニン化合物の構成については、特開2009-212389号公報に詳細に記載されているため説明を省略する。 Examples of the organic semiconductor material that can form the active layer 632 include, but are not limited to, phthalocyanine compounds, pentacene, vanadyl phthalocyanine, and the like. The configuration of the phthalocyanine compound is described in detail in Japanese Patent Application Laid-Open No. 2009-212389, so that the description thereof is omitted.
 TFT624の活性層632を非晶質酸化物や有機半導体材料、カーボンナノチューブで形成したものとすれば、X線等の放射線26を吸収せず、あるいは吸収したとしても極めて微量に留まるため、信号出力部604におけるノイズの発生を効果的に抑制することができる。 If the active layer 632 of the TFT 624 is formed of an amorphous oxide, an organic semiconductor material, or a carbon nanotube, the radiation 26 such as X-rays is not absorbed, or even if it is absorbed, a very small amount remains. Generation of noise in the unit 604 can be effectively suppressed.
 また、活性層632をカーボンナノチューブで形成した場合、TFT624のスイッチング速度を高速化することができ、また、可視光域での光の吸収度合の低いTFT624を形成できる。なお、カーボンナノチューブで活性層632を形成する場合、活性層632に極微量の金属性不純物が混入するだけで、TFT624の性能は著しく低下するため、遠心分離等により極めて高純度のカーボンナノチューブを分離・抽出して形成する必要がある。 Further, when the active layer 632 is formed of carbon nanotubes, the switching speed of the TFT 624 can be increased, and a TFT 624 having a low light absorption in the visible light region can be formed. In addition, when the active layer 632 is formed of carbon nanotubes, the performance of the TFT 624 is remarkably deteriorated only by mixing a very small amount of metallic impurities into the active layer 632, so that extremely high purity carbon nanotubes are separated by centrifugation or the like.・ It needs to be extracted and formed.
 ここで、上述した非晶質酸化物、有機半導体材料、カーボンナノチューブや、有機光導電体は、いずれも低温での成膜が可能である。従って、基板602としては、半導体基板、石英基板、及びガラス基板等の耐熱性の高い基板に限定されず、プラスチック等の可撓性基板、アラミド、バイオナノファイバを用いることもできる。具体的には、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリクロロトリフルオロエチレン等の可撓性基板を用いることができる。このようなプラスチック製の可撓性基板を用いれば、軽量化を図ることもでき、例えば持ち運び等に有利となる。 Here, any of the above-described amorphous oxide, organic semiconductor material, carbon nanotube, and organic photoconductor can be formed at a low temperature. Therefore, the substrate 602 is not limited to a substrate having high heat resistance such as a semiconductor substrate, a quartz substrate, and a glass substrate, and a flexible substrate such as plastic, aramid, or bionanofiber can also be used. Specifically, flexible substrates such as polyesters such as polyethylene terephthalate, polybutylene phthalate, polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, polychlorotrifluoroethylene, etc. Can be used. If such a plastic flexible substrate is used, it is possible to reduce the weight, which is advantageous for carrying around, for example.
 また、有機光導電体から光電変換膜616を形成し、有機半導体材料からTFT624を形成することにより、プラスチック製の可撓性基板(基板602)に対して光電変換膜616及びTFT624を低温成膜することが可能となると共に、放射線検出器600全体の薄型化及び軽量化を図ることができる。これにより、放射線検出器600を収容する放射線検出装置30の薄型化及び軽量化も可能となり、病院外の使用における利便性が向上する。しかも、光電変換部のベース材を、一般的なガラスとは異なる可撓性を有する材質で構成するので、装置の持ち運び時や使用時の耐損傷性等を向上させることもできる。 In addition, the photoelectric conversion film 616 is formed from an organic photoconductor, and the TFT 624 is formed from an organic semiconductor material, whereby the photoelectric conversion film 616 and the TFT 624 are formed at a low temperature on a plastic flexible substrate (substrate 602). It is possible to reduce the thickness and weight of the radiation detector 600 as a whole. Thereby, the radiation detection apparatus 30 that accommodates the radiation detector 600 can be made thinner and lighter, and convenience in use outside the hospital is improved. In addition, since the base material of the photoelectric conversion portion is made of a material having flexibility different from that of general glass, it is possible to improve damage resistance when the device is carried or used.
 また、基板602には、絶縁性を確保するための絶縁層、水分や酸素の透過を防止するためのガスバリア層、平坦性あるいは電極等との密着性を向上するためのアンダーコート層等を設けてもよい。 In addition, the substrate 602 is provided with an insulating layer for ensuring insulation, a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving flatness or adhesion to electrodes, and the like. May be.
 アラミドは、200度以上の高温プロセスを適用できるために、透明電極材料を高温硬化させて低抵抗化でき、また、ハンダのリフロー工程を含むドライバICの自動実装にも対応できる。また、アラミドは、ITO(Indium Tin Oxide)やガラス基板と熱膨張係数が近いため、製造後の反りが少なく、割れにくい。また、アラミドは、ガラス基板等と比べて薄く基板を形成できる。なお、超薄型ガラス基板とアラミドを積層して基板602を形成してもよい。 Since aramid can be applied to a high-temperature process of 200 ° C. or higher, the transparent electrode material can be cured at a high temperature to lower its resistance, and can also be used for automatic mounting of a driver IC including a solder reflow process. Moreover, since aramid has a thermal expansion coefficient close to that of ITO (Indium Tin Oxide) or a glass substrate, warping after manufacturing is small and it is difficult to crack. In addition, aramid can form a substrate thinner than a glass substrate or the like. Note that the substrate 602 may be formed by stacking an ultrathin glass substrate and an aramid.
 バイオナノファイバは、バクテリア(酢酸菌、Acetobacter Xylinum)が産出するセルロースミクロフィブリル束(バクテリアセルロース)と透明樹脂との複合したものである。セルロースミクロフィブリル束は、幅50nmと可視光波長に対して1/10のサイズで、且つ、高強度、高弾性、低熱膨である。バクテリアセルロースにアクリル樹脂、エポキシ樹脂等の透明樹脂を含浸・硬化させることで、繊維を60-70%も含有しながら、波長500nmで約90%の光透過率を示すバイオナノファイバが得られる。バイオナノファイバは、シリコン結晶に匹敵する低い熱膨張係数(3-7ppm)を有し、鋼鉄並の強度(460MPa)、高弾性(30GPa)で、且つ、フレキシブルであることから、ガラス基板等と比べて薄く基板602を形成できる。 Bionanofiber is a composite of a cellulose microfibril bundle (bacterial cellulose) produced by bacteria (acetobacterium Xylinum) and a transparent resin. The cellulose microfibril bundle has a width of 50 nm and a size of 1/10 of the visible light wavelength, and has high strength, high elasticity, and low thermal expansion. By impregnating and curing a transparent resin such as acrylic resin or epoxy resin into bacterial cellulose, a bio-nanofiber having a light transmittance of about 90% at a wavelength of 500 nm can be obtained while containing 60-70% of the fiber. Bionanofiber has a low coefficient of thermal expansion (3-7ppm) comparable to silicon crystals, and is as strong as steel (460MPa), highly elastic (30GPa), and flexible. Compared to glass substrates, etc. Thus, a thin substrate 602 can be formed.
 本変形例では、基板602上に、信号出力部604、センサ部606、透明絶縁膜610を順に形成し、当該基板602上に光吸収性の低い接着樹脂等を用いてシンチレータ608を貼り付けることにより放射線検出器600を形成している。 In this modification, a signal output unit 604, a sensor unit 606, and a transparent insulating film 610 are sequentially formed on a substrate 602, and a scintillator 608 is attached to the substrate 602 using an adhesive resin having low light absorption. Thus, the radiation detector 600 is formed.
 上述した変形例に係る放射線検出器600では、光電変換膜616を有機光導電体により構成すると共にTFT624の活性層632を有機半導体材料で構成しているので、光電変換膜616及び信号出力部604で放射線26が吸収されることはほとんどない。これにより、放射線26に対する感度の低下を抑えることができる。 In the radiation detector 600 according to the above-described modification, the photoelectric conversion film 616 is made of an organic photoconductor, and the active layer 632 of the TFT 624 is made of an organic semiconductor material. Therefore, the photoelectric conversion film 616 and the signal output unit 604 are used. Therefore, the radiation 26 is hardly absorbed. Thereby, the fall of the sensitivity with respect to the radiation 26 can be suppressed.
 TFT624の活性層632を構成する有機半導体材料や光電変換膜616を構成する有機光導電体は、いずれも低温での成膜が可能である。このため、基板602を放射線26の吸収が少ないプラスチック樹脂、アラミド、バイオナノファイバで形成することができる。これにより、放射線26に対する感度の低下を一層抑えることができる。 Both the organic semiconductor material constituting the active layer 632 of the TFT 624 and the organic photoconductor constituting the photoelectric conversion film 616 can be formed at a low temperature. Therefore, the substrate 602 can be formed of a plastic resin, aramid, or bionanofiber that absorbs less radiation 26. Thereby, the fall of the sensitivity with respect to the radiation 26 can be suppressed further.
 また、例えば、放射線検出器600を筐体内の照射面の部分に貼り付け、基板602を剛性の高いプラスチック樹脂やアラミド、バイオナノファイバで形成した場合、放射線検出器600自体の剛性を高くすることができるため、筐体の照射面の部分を薄く形成することができる。また、基板602を剛性の高いプラスチック樹脂やアラミド、バイオナノファイバで形成した場合、放射線検出器600自体が可撓性を有するため、照射面に衝撃が加わった場合でも放射線検出器600が破損しづらい。 Further, for example, when the radiation detector 600 is attached to a portion of the irradiation surface in the housing and the substrate 602 is formed of a highly rigid plastic resin, aramid, or bionanofiber, the rigidity of the radiation detector 600 itself may be increased. Therefore, the irradiation surface portion of the housing can be formed thin. In addition, when the substrate 602 is formed of a highly rigid plastic resin, aramid, or bionanofiber, the radiation detector 600 itself has flexibility, so that even when an impact is applied to the irradiated surface, the radiation detector 600 is not easily damaged. .
 上述した放射線検出器600を下記のように構成してもよい。 The radiation detector 600 described above may be configured as follows.
 (1)光電変換膜616を有機光電変換材料で構成し、CMOSセンサを用いたTFT層638を構成してもよい。この場合、光電変換膜616のみが有機系材料からなるので、CMOSセンサを含むTFT層638は可撓性を有しなくてもよい。 (1) The photoelectric conversion film 616 may be formed of an organic photoelectric conversion material, and the TFT layer 638 using a CMOS sensor may be formed. In this case, since only the photoelectric conversion film 616 is made of an organic material, the TFT layer 638 including the CMOS sensor may not have flexibility.
 (2)光電変換膜616を有機光電変換材料で構成すると共に、有機材料からなるTFT624を備えたCMOS回路によって、可撓性を有するTFT層638を実現してもよい。この場合、CMOS回路で用いられるp型有機半導体の材料としてペンタセンを採用すると共に、n型有機半導体の材料としてフッ化銅フタロシアニン(F16CuPc)を採用すればよい。これにより、より小さな曲げ半径にすることが可能な可撓性を有するTFT層638を実現することができる。また、このようにTFT層638を構成することにより、ゲート絶縁膜を大幅に薄くすることができ、駆動電圧を低下させることも可能となる。さらに、ゲート絶縁膜、半導体、各電極を室温又は100℃以下で作製することができる。さらにまた、可撓性を有する基板602上にCMOS回路を直接作製することもできる。しかも、有機材料からなるTFT624は、スケーリング則に沿った製造プロセスにより微細化することが可能となる。なお、基板602は、薄厚のポリイミド基板上にポリイミド前駆体をスピンコート法で塗布して加熱すれば、ポリイミド前駆体がポリイミドに変化するので、凹凸のない平坦な基板を実現することができる。 (2) The photoelectric conversion film 616 may be formed of an organic photoelectric conversion material, and the flexible TFT layer 638 may be realized by a CMOS circuit including a TFT 624 made of an organic material. In this case, pentacene may be adopted as the material of the p-type organic semiconductor used in the CMOS circuit, and copper fluoride phthalocyanine (F 16 CuPc) may be adopted as the material of the n-type organic semiconductor. Thus, a flexible TFT layer 638 that can have a smaller bending radius can be realized. In addition, by configuring the TFT layer 638 in this way, the gate insulating film can be significantly reduced, and the driving voltage can be lowered. Furthermore, the gate insulating film, the semiconductor, and each electrode can be manufactured at room temperature or 100 ° C. or lower. Furthermore, a CMOS circuit can be directly formed over the flexible substrate 602. Moreover, the TFT 624 made of an organic material can be miniaturized by a manufacturing process in accordance with a scaling law. Note that when the polyimide precursor is applied to a thin polyimide substrate by a spin coat method and heated, the polyimide precursor is changed to polyimide, so that a flat substrate without unevenness can be realized.
 (3)ミクロンオーダの複数のデバイスブロックを基板602上の指定位置に配置する自己整合配置技術(Fluidic Self-Assembly法)を適用して、結晶Siからなる光電変換膜616及びTFT624を、樹脂基板からなる基板602上に配置してもよい。この場合、ミクロンオーダの微小デバイスブロックとしての光電変換膜616及びTFT624を他の基板に予め作製した後に該基板から切り離し、液体中で、前記光電変換膜616及びTFT624をターゲット基板としての基板602上に散布して統計的に配置する。基板602には、デバイスブロックに適合させるための加工が予め施されており、デバイスブロックを選択的に基板602に配置することができる。従って、最適な材料で作られた最適なデバイスブロック(光電変換膜616及びTFT624)を最適な基板(半導体基板、石英基板、及びガラス基板等)上に集積化させることができ、また、結晶でない基板(プラスチック等の可撓性基板)に最適なデバイスブロック(光電変換膜616及びTFT624)を集積化することも可能となる。 (3) Applying a self-alignment placement technique (Fluidic Self-Assembly method) that places a plurality of micron-order device blocks at specified positions on a substrate 602, a photoelectric conversion film 616 and a TFT 624 made of crystalline Si are formed on a resin substrate You may arrange | position on the board | substrate 602 which consists of. In this case, the photoelectric conversion film 616 and TFT 624 as micro device blocks of micron order are fabricated in advance on another substrate and then separated from the substrate, and the photoelectric conversion film 616 and TFT 624 in the liquid are placed on the substrate 602 as the target substrate. Sprinkle on and place statistically. The substrate 602 is processed in advance to be adapted to the device block, and the device block can be selectively placed on the substrate 602. Therefore, an optimal device block (photoelectric conversion film 616 and TFT 624) made of an optimal material can be integrated on an optimal substrate (semiconductor substrate, quartz substrate, glass substrate, etc.), and is not a crystal. It is also possible to integrate device blocks (photoelectric conversion film 616 and TFT 624) optimum for a substrate (flexible substrate such as plastic).
 上述した変形例に係る放射線検出器600は、シンチレータ608から発光された光を放射線源34が位置する側とは反対側に位置するセンサ部606(光電変換膜616)で電荷に変換して放射線画像を読み取る、いわゆる裏面読取方式(PSS(Penetration Side Sampling)方式)として構成されているが、この構成に限定されない。 In the radiation detector 600 according to the above-described modification, the light emitted from the scintillator 608 is converted into charges by the sensor unit 606 (photoelectric conversion film 616) located on the side opposite to the side where the radiation source 34 is located. Although it is configured as a so-called back side scanning method (PSS (Penetration Side Sampling) method) for reading an image, it is not limited to this configuration.
 例えば、放射線検出器は、いわゆる表面読取方式(ISS(Irradiation Side Sampling)方式)として構成してもよい。この場合、放射線26の照射方向に沿って、基板602、信号出力部604、センサ部606、シンチレータ608がこの順に積層され、シンチレータ608から発光された光を放射線源34が位置する側のセンサ部606で電荷に変換して放射線画像を読み取る。そして、通常、シンチレータ608は、放射線26の照射面側が背面側よりも強く発光するため、表面読取方式で構成した放射線検出器では、裏面読取方式で構成された放射線検出器と比較して、シンチレータ608で発光された光が光電変換膜616に到達するまでの距離を短縮させることができる。これにより、該光の拡散・減衰を抑えることができるので、放射線画像の分解能を高めることができる。 For example, the radiation detector may be configured as a so-called surface reading method (ISS (Irradiation Side Sampling) method). In this case, the substrate 602, the signal output unit 604, the sensor unit 606, and the scintillator 608 are laminated in this order along the irradiation direction of the radiation 26, and the light emitted from the scintillator 608 is sensor unit on the side where the radiation source 34 is located. At 606, the radiation image is read after being converted into electric charges. In general, the scintillator 608 emits light more strongly on the irradiation surface side of the radiation 26 than on the back surface side. Therefore, in the radiation detector configured by the front surface reading method, the scintillator is compared with the radiation detector configured by the back surface reading method. The distance until the light emitted in 608 reaches the photoelectric conversion film 616 can be shortened. Thereby, since the diffusion / attenuation of the light can be suppressed, the resolution of the radiation image can be increased.

Claims (12)

  1.  放射線源(34)を有する放射線装置(28)と、前記放射線源(34)から照射される照射線量を制御する照射線量制御部(104)と、被写体(24)を透過した前記放射線源(34)からの放射線(26)を放射線画像情報に変換する放射線検出装置(30)と、を有する放射線画像撮影装置(12)と、
     前記放射線画像撮影装置(12)を、設定されたフレームレートで放射線撮影を実行するように制御するシステム制御部(14)とを有し、
     前記照射線量制御部(104)は、
     前記放射線画像情報の濃淡値が基準値よりも低い場合に次回の放射線の照射線量を増大させ、前記濃淡値が前記基準値よりも高い場合に次回の放射線の照射線量を減少させるように制御し、
     前記システム制御部(14)は、
     前記濃淡値が予想される結果と異なった結果になった場合に、前記照射線量制御部(104)を制御して、次回の放射線の照射線量を増大させずに、少なくとも1回の放射線撮影を行うように制御するエラー処理部(116)を有することを特徴とする放射線画像撮影システム。
    A radiation device (28) having a radiation source (34), an irradiation dose control unit (104) for controlling an irradiation dose irradiated from the radiation source (34), and the radiation source (34) transmitted through the subject (24) A radiation detection device (30) for converting radiation (26) from
    A system control unit (14) for controlling the radiographic imaging device (12) to perform radiographic imaging at a set frame rate;
    The irradiation dose control unit (104)
    When the gray value of the radiation image information is lower than a reference value, the next radiation dose is increased, and when the gray value is higher than the reference value, the next radiation dose is controlled to be decreased. ,
    The system control unit (14)
    When the gray value is different from an expected result, the irradiation dose control unit (104) is controlled to perform at least one radiography without increasing the next radiation irradiation dose. A radiographic imaging system comprising an error processing unit (116) that is controlled to perform.
  2.  請求項1記載の放射線画像撮影システムにおいて、
     前記システム制御部(14)は、
     少なくとも2回の放射線撮影に基づく放射線画像情報の濃淡値の差分を取得する濃淡差分取得部(112)と、
     前記濃淡値の差分が規定値付近以上変化した場合に、前記濃淡値が予想される結果と異なった結果になったものとしてエラー通知を行うエラー通知部(114)とを有することを特徴とする放射線画像撮影システム。
    In the radiographic imaging system of Claim 1,
    The system control unit (14)
    A density difference acquisition unit (112) that acquires a difference in density values of radiation image information based on at least two times of radiography;
    And an error notification unit (114) for notifying an error that the gray value is different from an expected result when a difference in gray value changes by more than a predetermined value. Radiation imaging system.
  3.  請求項2記載の放射線画像撮影システムにおいて、
     前記エラー処理部(116)は、
     前記エラー通知が行われた場合に、前記照射線量制御部(104)を制御して、次回の放射線の照射線量を増大させずに、減少させて少なくとも1回の放射線撮影を行うように制御することを特徴とする放射線画像撮影システム。
    The radiographic imaging system according to claim 2,
    The error processing unit (116)
    When the error notification is performed, the irradiation dose control unit (104) is controlled so as to decrease at least one radiation imaging without increasing the next radiation irradiation dose. A radiographic imaging system characterized by that.
  4.  請求項2又は3記載の放射線画像撮影システムにおいて、
     前記エラー通知部(114)は、
     今回の放射線撮影に基づく放射線画像情報の濃淡値が、前回の放射線撮影に基づく放射線画像情報の濃淡値よりも前記規定値付近以上低い場合に、前記エラー通知を行うことを特徴とする放射線画像撮影システム。
    In the radiographic imaging system of Claim 2 or 3,
    The error notification unit (114)
    Radiation image capturing, wherein the error notification is performed when the gray value of the radiation image information based on the current radiography is lower than the specified value by more than the gray value of the radiation image information based on the previous radiography system.
  5.  請求項2~4のいずれか1項に記載の放射線画像撮影システムにおいて、
     前記照射線量制御部(104)は、
     照射線量の上限値に対応した上限信号値Vmaxと照射線量の下限値に対応した下限信号値Vminをダイナミックレンジとし、前記基準値に対応する基準信号値をVoとし、前記濃淡値と前記基準値との比較に基づく照射線量を制御するための信号値をVとする制御信号を前記放射線装置(28)に出力することによって、前記放射線源(34)からの放射線(26)の照射線量を制御することを特徴とする放射線画像撮影システム。
    The radiographic imaging system according to any one of claims 2 to 4,
    The irradiation dose control unit (104)
    The upper limit signal value Vmax corresponding to the upper limit value of the irradiation dose and the lower limit signal value Vmin corresponding to the lower limit value of the irradiation dose are set as the dynamic range, the reference signal value corresponding to the reference value is set as Vo, and the gray value and the reference value are set. The radiation dose of the radiation (26) from the radiation source (34) is controlled by outputting to the radiation device (28) a control signal in which the signal value for controlling the radiation dose based on the comparison with V is V. A radiographic imaging system characterized by:
  6.  請求項5記載の放射線画像撮影システムにおいて、
     前記エラー通知が行われた場合に、前記照射線量制御部(104)は、前記エラー処理部(116)からの指示に基づいて、前記信号値Vを、前記基準信号値Vo以下に設定することを特徴とする放射線画像撮影システム。
    In the radiographic imaging system of Claim 5,
    When the error notification is performed, the irradiation dose control unit (104) sets the signal value V to be equal to or less than the reference signal value Vo based on an instruction from the error processing unit (116). A radiographic imaging system characterized by
  7.  請求項5記載の放射線画像撮影システムにおいて、
     前記エラー通知が行われた場合に、前記照射線量制御部(104)は、前記エラー処理部(116)からの指示に基づいて、前記信号値Vを、前記基準信号値Vo以下であって、且つ、前記濃淡値の差分に応じた値に設定することを特徴とする放射線画像撮影システム。
    In the radiographic imaging system of Claim 5,
    When the error notification is performed, the irradiation dose control unit (104), based on an instruction from the error processing unit (116), the signal value V is less than the reference signal value Vo, And the radiographic imaging system characterized by setting to the value according to the difference of the said light and shade value.
  8.  請求項7記載の放射線画像撮影システムにおいて、
     前記照射線量制御部(104)は、
     前記濃淡値の差分が前記規定値付近以上、第2規定値未満の場合に、前記信号値Vを前記下限信号値Vmin×定数Ka(0<Ka<1.0)に設定し、
     前記濃淡値の差分が前記第2規定値以下の場合に、前記信号値Vを前記下限信号値Vminに設定することを特徴とする放射線画像撮影システム。
    In the radiographic imaging system of Claim 7,
    The irradiation dose control unit (104)
    When the difference between the gray values is not less than the specified value and less than the second specified value, the signal value V is set to the lower limit signal value Vmin × constant Ka (0 <Ka <1.0),
    The radiographic imaging system, wherein the signal value V is set to the lower limit signal value Vmin when the difference between the gray values is equal to or less than the second specified value.
  9.  請求項1~8のいずれか1項に記載の放射線画像撮影システムにおいて、
     前記1回の放射線撮影は、前記設定されたフレームレートで行われることを特徴とする放射線画像撮影システム。
    The radiographic imaging system according to any one of claims 1 to 8,
    The radiographic imaging system according to claim 1, wherein the one radiographic imaging is performed at the set frame rate.
  10.  請求項1~9のいずれか1項に記載の放射線画像撮影システムにおいて、
     前記エラー処理部(116)は、
     前記1回の放射線撮影を行った後、前記フレームレートで放射線撮影を行う毎に、放射線の照射線量を徐々に上昇させて放射線撮影を行うように制御することを特徴とする放射線画像撮影システム。
    The radiographic imaging system according to any one of claims 1 to 9,
    The error processing unit (116)
    A radiographic imaging system, wherein after performing the radiographic imaging once, the radiographic imaging system performs control so that the radiographic imaging is performed by gradually increasing the radiation dose every time radiographic imaging is performed at the frame rate.
  11.  放射線源(34)を有する放射線装置(28)と、前記放射線源(34)から照射される照射線量を制御する照射線量制御部(104)と、被写体(24)を透過した前記放射線源(34)からの放射線(26)を放射線画像情報に変換する放射線検出装置(30)と、を有する放射線画像撮影装置(12)を用いて、設定されたフレームレートで放射線撮影を実行する放射線画像撮影方法において、
     前記照射線量制御部(104)は、前記放射線画像情報の濃淡値が基準値よりも低い場合に次回の放射線の照射線量を増大させ、前記濃淡値が前記基準値よりも高い場合に次回の放射線の照射線量を減少させるように制御し、
     前記濃淡値が予想される結果と異なった結果になった場合に、前記照射線量制御部(104)を制御して、次回の放射線の照射線量を増大させずに、少なくとも1回の放射線撮影を行うように制御するステップを有することを特徴とする放射線画像撮影方法。
    A radiation device (28) having a radiation source (34), an irradiation dose control unit (104) for controlling an irradiation dose irradiated from the radiation source (34), and the radiation source (34) transmitted through the subject (24) Radiation imaging method for performing radiation imaging at a set frame rate using a radiation image capturing device (12) having a radiation detection device (30) that converts radiation (26) from In
    The irradiation dose control unit (104) increases the irradiation dose of the next radiation when the grayscale value of the radiation image information is lower than a reference value, and the next radiation when the grayscale value is higher than the reference value. Control to reduce the irradiation dose of
    When the gray value is different from an expected result, the irradiation dose control unit (104) is controlled to perform at least one radiography without increasing the next radiation irradiation dose. The radiographic imaging method characterized by having the step controlled to perform.
  12.  放射線源(34)を有する放射線装置(28)と、前記放射線源(34)から照射される照射線量を制御する照射線量制御部(104)と、被写体(24)を透過した前記放射線源(34)からの放射線(26)を放射線画像情報に変換する放射線検出装置(30)と、を有する放射線画像撮影装置(12)を用いて、設定されたフレームレートで放射線撮影を実行する放射線画像撮影システムのエラー処理方法において、
     前記照射線量制御部(104)は、前記放射線画像情報の濃淡値が基準値よりも低い場合に次回の放射線の照射線量を増大させ、前記濃淡値が前記基準値よりも高い場合に次回の放射線の照射線量を減少させるように制御し、
     前記濃淡値が予想される結果と異なった結果になった場合に、前記照射線量制御部(104)を制御して、次回の放射線の照射線量を増大させずに、少なくとも1回の放射線撮影を行うように制御することを特徴とする放射線画像撮影システムのエラー処理方法。
    A radiation device (28) having a radiation source (34), an irradiation dose control unit (104) for controlling an irradiation dose irradiated from the radiation source (34), and the radiation source (34) transmitted through the subject (24) Radiation imaging system that performs radiation imaging at a set frame rate using a radiation image capturing device (12) having a radiation detection device (30) that converts radiation (26) from In the error handling method of
    The irradiation dose control unit (104) increases the irradiation dose of the next radiation when the grayscale value of the radiation image information is lower than a reference value, and the next radiation when the grayscale value is higher than the reference value. Control to reduce the irradiation dose of
    When the gray value is different from an expected result, the irradiation dose control unit (104) is controlled to perform at least one radiography without increasing the next radiation irradiation dose. An error processing method of a radiographic imaging system, characterized by performing control so as to be performed.
PCT/JP2012/071385 2011-08-25 2012-08-24 Radiographic imaging system, radiographic imaging method and radiographic imaging system error-processing method WO2013027816A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011183716 2011-08-25
JP2011-183716 2011-08-25

Publications (1)

Publication Number Publication Date
WO2013027816A1 true WO2013027816A1 (en) 2013-02-28

Family

ID=47746551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071385 WO2013027816A1 (en) 2011-08-25 2012-08-24 Radiographic imaging system, radiographic imaging method and radiographic imaging system error-processing method

Country Status (1)

Country Link
WO (1) WO2013027816A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016028020A1 (en) * 2014-08-22 2016-02-25 Samsung Electronics Co., Ltd. X-ray apparatus and method of controlling x-ray apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192319A (en) * 1991-11-15 1993-08-03 Toshiba Corp X-ray diagnostic device
JP2008125610A (en) * 2006-11-17 2008-06-05 Shimadzu Corp Radiographic x-ray equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192319A (en) * 1991-11-15 1993-08-03 Toshiba Corp X-ray diagnostic device
JP2008125610A (en) * 2006-11-17 2008-06-05 Shimadzu Corp Radiographic x-ray equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016028020A1 (en) * 2014-08-22 2016-02-25 Samsung Electronics Co., Ltd. X-ray apparatus and method of controlling x-ray apparatus
US10390781B2 (en) 2014-08-22 2019-08-27 Samsung Electronics Co., Ltd. X-ray apparatus and method of controlling X-ray apparatus

Similar Documents

Publication Publication Date Title
US9258464B2 (en) Radiation video processing device, radiation video capturing device, radiation video capturing system, radiation video processing method and program storage medium
US8829455B2 (en) Radiographic imaging device
US9513379B2 (en) Radiographic image capture device, system, program storage medium and method
JP5893036B2 (en) Radiographic imaging system and radiographic imaging method
JP5620249B2 (en) Radiation imaging system
US8550709B2 (en) Imaging area specifying apparatus, radiographic system, imaging area specifying method, radiographic apparatus, and imaging table
US9050051B2 (en) Radiographic imaging device and computer readable medium
US9671506B2 (en) Radiographic image detection device, radiographic image detection method, and computer-readable storage medium
WO2013065645A1 (en) Radiological imaging device, program and radiological imaging method
WO2011152419A1 (en) Radiographic system
JP2013096759A (en) Radiation detection apparatus and radiation image photographing system
JP2011212427A (en) Radiation imaging system
WO2013031667A1 (en) Radiation imaging system and radiation imaging method
US20130083897A1 (en) Radiographic image detecting device, radiographic image detecting method, and computer-readable storage medium
WO2013027816A1 (en) Radiographic imaging system, radiographic imaging method and radiographic imaging system error-processing method
JP2011203237A (en) Radiographic apparatus
WO2013031666A1 (en) Radiation imaging system and radiation imaging method
WO2013027817A1 (en) Radiography system and radiography method
WO2012023311A1 (en) Radiation detecting panel
WO2013062052A1 (en) Radiographic display system, radiographic display device, radiographic imaging device, program, radiograph display method, and recording medium
JP2012107887A (en) Radiographic device
JP5608533B2 (en) Radiation imaging equipment
JP5638372B2 (en) Radiation imaging equipment
WO2011136244A1 (en) Radiation imaging device
JP2013135453A (en) Radiation image photographing device, program and radiation image photographing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP