WO2013027735A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2013027735A1
WO2013027735A1 PCT/JP2012/071098 JP2012071098W WO2013027735A1 WO 2013027735 A1 WO2013027735 A1 WO 2013027735A1 JP 2012071098 W JP2012071098 W JP 2012071098W WO 2013027735 A1 WO2013027735 A1 WO 2013027735A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
oxide
organic
organic electroluminescent
Prior art date
Application number
PCT/JP2012/071098
Other languages
French (fr)
Japanese (ja)
Inventor
洋一 有元
森井 克行
威夫 赤塚
宗弘 長谷川
剛 呉屋
隼 郷田
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011251506A external-priority patent/JP5930670B2/en
Priority claimed from JP2012163024A external-priority patent/JP6262933B2/en
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority claimed from JP2012182413A external-priority patent/JP6262935B2/en
Publication of WO2013027735A1 publication Critical patent/WO2013027735A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Definitions

  • the present invention relates to an organic electroluminescent device. More specifically, the present invention relates to an organic electroluminescent element that can be used as a display device such as a display unit of an electronic device, a lighting device, or the like.
  • An organic electroluminescent element (organic EL element) is expected as a new light emitting element applicable to a display device or illumination.
  • An organic EL element has a structure in which one or a plurality of organic compounds containing a light-emitting organic compound is sandwiched between an anode and a cathode, and holes injected from the anode and electrons injected from the cathode are recombined. The light-emitting organic compound is excited using the energy of time to obtain light emission.
  • An organic EL element is a current-driven element, and various element structures have been improved in order to more efficiently utilize a flowing current.
  • the structure of the organic EL element most fundamentally studied is a three-layer structure proposed by Adachi et al. (See Non-Patent Document 1), a hole transport layer between the anode and the cathode, The light emitting layer and the electron transport layer are sandwiched in this order. Since this proposal, organic EL elements have been based on a three-layer structure, and many studies have been conducted with the aim of improving performance such as efficiency and lifetime by sharing more roles. This basic idea stems from the fact that the injected electrons have a high energy at that time (in the electrode). Therefore, the organic EL element is generally easily deteriorated by oxygen or water, and strict sealing is indispensable in order to prevent these intrusions.
  • the cause of the deterioration is that the materials that can be used as the cathode are limited to those with a small work function, such as alkali metals and alkali metal compounds, due to the ease of electron injection into the organic compounds, and the organic compounds used It is easy to react with oxygen and water.
  • the organic EL element is superior to other light emitting elements, but at the same time, the features such as low cost and flexibility are impaired.
  • the basic structure of a HOILED element is a hole-injecting metal oxide layer and an electron-injecting metal made between an anode and an organic compound layer and between a cathode and an organic compound layer, respectively. It consists of an oxide layer.
  • the hole injecting metal oxide layer is made of vanadium oxide or molybdenum oxide
  • the electron injecting oxide layer is made of titanium oxide.
  • Patent Document 2 reports that the efficiency is improved by a method of forming a cesium compound layer as a hole blocking metal compound layer on a titanium oxide layer which is an electron injecting metal oxide layer. This fact can also be said to be evidence that the electron injection performance is insufficient.
  • a HOILED element using a cesium compound layer is known to have a short driving life although it has excellent initial characteristics. From the above, in order to realize a highly efficient and long-lived HOILED element, it is necessary to improve the electron injection property so as not to impair the atmospheric stability.
  • Non-Patent Document 3 describes the emission characteristics of blue, red, and green polymers in an element using zirconium oxide as an electron injecting metal oxide layer. Only the light emission starting voltage is high and the efficiency is low. As described above, the reported HOILED elements (particularly blue light emitting elements) have high driving voltage and low efficiency, and are not practically sufficient.
  • the HOILED element is still not sufficient in terms of characteristics such as luminance, light emission efficiency, and driving life as compared with the conventional organic EL element.
  • the organic electroluminescent element is thin, and when used as a display device, it is possible to display with high brightness and high definition compared with the liquid crystal and plasma display devices which are currently mainstream, compared with the liquid crystal display device. In addition, it has excellent features such as a wide viewing angle, so it is expected that it will be used as a display for TVs and mobile phones in the future. Improvement in the characteristics of HOILED elements that can dramatically reduce the structure has been rapidly demanded.
  • the present invention has been made in view of the above-described present situation, and an object thereof is to provide an organic-inorganic hybrid organic electroluminescent element that is excellent in luminance, luminous efficiency, and driving life.
  • the present inventor has made various studies on the configuration and materials used for the organic electroluminescent device.
  • the organic electroluminescent device having a structure in which a plurality of layers are laminated between the anode and the cathode
  • the organic electroluminescent device is provided between the anode and the cathode. It has one or more organic compound layers, and further includes a layer containing a plurality of metal species between the anode and the organic compound layer and / or between the cathode and the organic compound layer, and the plurality of metal species
  • an organic electroluminescent device having high luminance, high luminous efficiency, and long driving life can be obtained by having at least one of the metal oxides as a structure, and the present invention has been achieved. .
  • the present invention is an organic electroluminescent device having a structure in which a plurality of layers are laminated between an anode and a cathode, and the organic electroluminescent device has one or more layers between the anode and the cathode.
  • the organic electroluminescent element of the present invention includes an anode, a cathode, one or more organic compound layers, and a plurality of metal species, and at least one of the plurality of metal species is a metal oxide (hereinafter, Also referred to as a multiple metal species-containing layer).
  • the organic electroluminescent device of the present invention includes a plurality of metal species, and a layer in which at least one of the plurality of metal species is a metal oxide is provided between the anode and the organic compound layer and / or between the cathode and the organic compound layer.
  • the organic electroluminescent element of the present invention includes an anode, a cathode, one or more organic compound layers, and a plurality of metal species, and at least one of the plurality of metal species is a metal oxide. Other layers may be provided between these layers.
  • the multiple metal species-containing layer is preferably any of a mixed metal oxide layer, a laminated metal oxide layer, or a layer including a structure having a metal species on the metal oxide layer.
  • the organic electroluminescent element of the present invention is more excellent in luminous efficiency and driving life of the element.
  • a mixed metal oxide layer, a stacked metal oxide layer, and a layer including a structure having a metal species on the metal oxide layer will be described in order.
  • the mixed metal oxide layer used in the present invention is a semiconductor or insulator thin film in which two or more kinds of metal elements are mixed with each other from the atomic level to the submicron level to form an oxide film.
  • the mixed metal oxide included in the mixed metal oxide layer is (1) one in which two or more kinds of metal elements each form an oxide, and these two or more kinds of oxides are mixed, (2) described later. Any of one metal oxide having two or more kinds of metal elements as constituent elements, such as barium titanate, or a mixture of these may be used.
  • the metal elements forming the mixed metal oxide layer include magnesium, calcium, strontium, barium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, cobalt, nickel, copper, It is preferably selected from the group consisting of zinc, cadmium, aluminum and silicon. That is, the mixed metal oxide contained in the mixed metal oxide thin film layer preferably contains an oxide of at least two kinds of metal elements selected from these metal elements.
  • the combination is not particularly limited, but the first metal element selected from magnesium, calcium, strontium, barium, zirconium, hafnium, niobium, tantalum, chromium, manganese, nickel, aluminum, silicon And a combination of a second metal element selected from titanium, vanadium, molybdenum, tungsten, iron, cobalt, copper, zinc, and cadmium.
  • the first metal element selected from magnesium, calcium, strontium, barium, zirconium, hafnium, niobium, tantalum, chromium, manganese, nickel, aluminum, silicon
  • a second metal element selected from titanium, vanadium, molybdenum, tungsten, iron, cobalt, copper, zinc, and cadmium.
  • the mixed metal oxide thin film As an example of the mixed metal oxide thin film (layer), Applied Physics Letters, 83, 2010 (2003). Describes an oxide thin film in which zinc and magnesium are mixed at an atomic level. Journal of Physics D: Applied Physics, 42 (2009) 065421. Describes an oxide thin film in which cadmium and zinc are mixed at an atomic level. Further, a thin film of barium titanate, strontium titanate or the like also corresponds to the mixed metal oxide thin film layer of the present invention. As described above, the mixed metal oxide layer of the present invention desirably contains magnesium element.
  • the degree of mixing is preferably mixed at an atomic level, but the effect of the present invention can be obtained even when a segregation portion at a submicron level is formed.
  • the number of metal atoms is 1 atomic% with respect to the total number of metal atoms contained in the mixed metal oxide layer even if the ratio of each metal element is the lowest.
  • it is preferably 10 atomic% or more. More preferably, it is 20 atomic% or more.
  • the mixed metal oxide layer can have a thickness of about 1 nm to several ⁇ m, but is preferably about 1 nm to 100 nm for an organic electroluminescent device that can be driven at a low voltage.
  • the film thickness of the mixed metal oxide layer can be measured by a stylus profilometer or spectroscopic ellipsometry.
  • the mixed metal oxide layer may be formed by applying a metal oxide solution or dispersion and drying, or applying a solution or dispersion of a metal compound that is not an oxide, and applying the solution or dispersion.
  • the metal compound in the solution may be oxidized to form a metal oxide, and the coating solution may be dried. In this case, the operation of oxidizing the metal compound and the operation of drying the coating solution may be performed separately or simultaneously.
  • a method for forming the mixed metal oxide layer is not particularly limited, and a known method can be used as appropriate, but a sol-gel method, a spray pyrolysis (SPD) method, an atomic layer deposition (ALD) method, chemical vapor deposition (CVD) method.
  • the laminated metal oxide layer used in the present invention is a semiconductor or insulator laminated thin film in which two or more kinds of metal oxide films are laminated.
  • a metal element which comprises a metal oxide the 1 type (s) or 2 or more types of the same element as the metal element which forms the mixed metal oxide layer mentioned above can be used.
  • at least one of the layers constituting the laminated metal oxide layer is selected from the group consisting of magnesium oxide, aluminum oxide, zirconium oxide, hafnium oxide, silicon oxide, titanium oxide, and zinc oxide.
  • the layer in contact with the organic compound layer is preferably magnesium oxide, aluminum oxide, zirconium oxide, hafnium oxide, silicon oxide, titanium oxide, zinc oxide. It is desirable to include a metal oxide selected from the group consisting of
  • Examples of laminated metal oxide layers include titanium oxide / zinc oxide, titanium oxide / magnesium oxide, titanium oxide / zirconium oxide, titanium oxide / aluminum oxide, titanium oxide / hafnium oxide, titanium oxide / silicon oxide, and zinc oxide / oxide.
  • a two-layer structure such as magnesium, zinc oxide / zirconium oxide, zinc oxide / hafnium oxide, zinc oxide / silicon oxide, titanium oxide / zinc oxide / magnesium oxide, titanium oxide / zinc oxide / zirconium oxide, titanium oxide / oxidation
  • Examples include a three-layer structure of zinc / aluminum oxide, titanium oxide / zinc oxide / hafnium oxide, titanium oxide / zinc oxide / silicon oxide, and the like.
  • the layer closest to the cathode among the plurality of laminated metal oxide layers is titanium, vanadium, molybdenum, tungsten, iron , Cobalt, copper, zinc, cadmium oxide layer
  • the layer closest to the organic compound layer is magnesium, calcium, strontium, barium, zirconium, hafnium, niobium, tantalum, chromium, manganese
  • a layer of an oxide of nickel, aluminum, or silicon is preferable.
  • each thin film constituting the laminated metal oxide layer can be allowed to be about 1 nm to several ⁇ m, but is preferably about 1 nm to 100 nm in order to obtain an organic electroluminescent device that can be driven at a low voltage.
  • the film thickness of each thin film constituting the laminated metal oxide layer can be measured by a stylus type step meter or spectroscopic ellipsometry.
  • the structure having a metal species on the metal oxide layer is sufficient if the metal species exists on the metal oxide layer.
  • the metal oxide layer may be entirely covered by the metal seed layer, or a part of the metal oxide layer may not be covered by the metal seed layer, and the metal seed may be formed on the metal oxide layer. It may be scattered. Moreover, as long as the structure which has a metal seed
  • the metal species may be a simple substance or a metal compound.
  • the layer including a structure having a metal species on the metal oxide layer is a layer having a magnesium compound layer between the metal oxide layer and the organic compound layer, or has a work function of 4.0 eV. It is preferable that the following metal simple substance or its oxide is a layer having a structure sandwiched between two layers of metal oxide. These layers will be described in order below.
  • the metal element that forms the metal oxide layer is One or more of the same elements as the metal elements forming the mixed metal oxide layer described above can be used.
  • the metal oxide layer may be a single layer or a plurality of layers.
  • the magnesium compound layer is a layer containing at least one magnesium compound.
  • magnesium compound examples include magnesium oxide, magnesium carbonate, magnesium acetate, magnesium hydroxide, magnesium sulfate, magnesium nitrate, magnesium fluoride, magnesium chloride, odor Magnesium iodide, magnesium iodide, magnesium acetylacetonate, etc. are mentioned.
  • the magnesium compound layer may be a simple substance, a mixture thereof, or a compound other than these. Note that in the case where there are a plurality of metal oxide layers, a magnesium compound layer may be provided between at least one of the metal oxide layers and the organic compound layer.
  • a metal having a work function of 4.0 eV or less or a layer having a structure in which an oxide thereof is sandwiched between two layers of metal oxide a single metal having a work function of 4.0 eV or less, or an oxide thereof is also referred to as a metal species having a work function of 4.0 eV or less, or a single metal having a work function of 4.0 eV or less, or A layer having a structure in which an oxide is sandwiched between two layers of metal oxide is also referred to as a laminated metal compound layer.
  • the laminated metal compound layer has a structure in which a metal species having a work function of 4.0 eV or less is sandwiched between two layers of metal oxide.
  • the layer is sandwiched between two layers of metal oxide.
  • a structure in which two layers of oxide are not in direct contact may be formed, and a sea island structure in which a metal species having a work function of 4.0 eV or less is scattered on one layer of metal oxide is formed.
  • the metal oxide there are a portion covered with a metal species having a work function of 4.0 eV or less and a portion not covered on one layer of the metal oxide.
  • There may be a structure such as a portion not covered with the following metal species 4.0eV are in contact two layers of metal oxides. Therefore, as long as a metal species having a work function of 4.0 eV or less exists between the two layers of the metal oxide, this corresponds to a structure sandwiched between the two layers of the metal oxide.
  • the metal compound having a work function of 4.0 eV or less is not in direct contact with the organic compound layer side, and is difficult to be deteriorated at the interface, while changing to an oxide in the metal oxide.
  • the new electronic level that occurs is to act as an interpolated level of the surrounding metal oxide.
  • the presence of a metal species having a work function of 4.0 eV or less between the two layers of metal oxide makes the organic electroluminescent device have high luminance.
  • an organic electroluminescent element becomes the thing excellent in the drive life by having the laminated metal compound layer by which the metal seed
  • the metal species having a work function of 4.0 eV or less may form a layer covering the entire metal oxide layer or may have a sea-island structure. It is preferable that 50% or more of the area is covered with a metal species having a work function of 4.0 eV or less. With such a ratio, the organic electroluminescent element is excellent in luminance. More preferably, 80% or more of the area of the metal oxide layer is covered with a metal species having a work function of 4.0 eV or less. Further, in a portion covered with a metal species having a work function of 4.0 eV or less, the thickness of the metal species layer having a work function of 4.0 eV or less is preferably 5 nm or less.
  • the thickness of the metal seed layer having a work function of 4.0 eV or less can be determined by measuring at the time of film formation with a crystal thickness meter using a value estimated from the measurement with a stylus type step gauge of the thick film.
  • metal element forming the metal oxide or sulfide layer one or more of the same elements as the metal element forming the mixed metal oxide layer described above can be used.
  • the metal elements forming the two layers of metal oxide may be the same element or different.
  • At least one of the two metal oxide layers sandwiching a metal species having a work function of 4.0 eV or less is any of metal elements selected from the group consisting of magnesium, aluminum, zirconium, hafnium, silicon, titanium, and zinc. It is preferable to contain such an oxide. More preferably, it contains any metal oxide selected from the group consisting of magnesium oxide, aluminum oxide, zirconium oxide, hafnium oxide, silicon oxide, titanium oxide, and zinc oxide.
  • the organic electroluminescence device electrons supplied from the cathode enter LUMO of the light emitting layer, and when the LUMO electrons move to HOMO (recombine with holes), the energy difference between LUMO and HOMO is emitted as light. Emits light.
  • the metal compound layer laminated metal compound layer
  • the metal compound layer It is necessary that the energy level of the conduction band is close to the LUMO energy level of the organic layer.
  • the range of selection of the organic compound forming the organic layer can be widened by using a metal compound layer having a conduction band energy level as high as possible. Since oxides of the above metal elements have high energy levels in the conduction band, when a metal compound layer formed using these metal elements is used as the electron transport layer, electrons from the cathode to the light emitting layer are used.
  • the organic electroluminescence device can be made excellent in luminous efficiency, and the range of selection of the organic compound forming the organic layer can be expanded. This is the same in the case of the mixed metal oxide layer, the laminated metal oxide layer, and the layer having a magnesium compound layer between the metal oxide layer and the organic compound layer. In the case of containing an oxide of a metal element having a high energy level in the conduction band as described above, the same effect as described above can be obtained by using these layers as an electron transport layer.
  • the layer on the side having the organic compound layer preferably contains any of the above-mentioned preferred elements. It is more preferable that a product is included. With such a structure, electrons can be more smoothly transferred from the metal compound layer to the organic layer. Further, it is more preferable that both of the two layers of metal oxide sandwiching a metal species having a work function of 4.0 eV or less include an oxide of any of the above metal elements, and both of the two layers of metal oxide are It is particularly preferable that any one of the above metal oxides is included.
  • the metal oxide layer may consist of only one layer or a plurality of layers. That is, each of the metal oxide layers sandwiching a metal species having a work function of 4.0 eV or less may be composed of one metal oxide layer or a plurality of metal oxide layers. Examples of combinations of metal oxide layers sandwiching a metal species having a work function of 4.0 eV or less in the laminated metal compound layer included in the organic electroluminescent element of the present invention include titanium oxide / zinc oxide, titanium oxide / magnesium oxide.
  • the combination of the metal oxide layers is the above two layers, a metal species having a work function of 4.0 eV or less is sandwiched between the two layers to form the laminated metal compound layer of the present invention.
  • a metal species having a work function of 4.0 eV or less is sandwiched between any two of the three layers, so that the laminated metal compound layer of the present invention It is formed.
  • the metal elements forming the metal oxide layer described above it is preferable to use these elements because the energy level of the conduction band of the laminated metal compound layer can be made higher.
  • the metal oxide layer can have a thickness of 1 nm to 10 ⁇ m, but is preferably 1 nm to 100 nm for an organic electroluminescent device that can be driven at a low voltage. More preferably, it is 1 nm to 10 nm.
  • the thicknesses of the metal oxide layer and the laminated metal oxide layer can be measured by a stylus profilometer or spectroscopic ellipsometry.
  • the metal having a work function of 4.0 eV or less is preferably an alkali metal and / or an alkaline earth metal.
  • the alkali metal include Li, Na, K, Rb, and Cs.
  • the alkaline earth metal include Mg, Ca, Sr, and Ba, and one or more of these can be used.
  • the metal having a work function of 4.0 eV or less is at least one selected from metals having a work function of 3.0 eV or more.
  • Mg is more preferable.
  • the presence of a metal species having a work function of 4.0 eV or less between two layers of an oxide of a metal element can increase the luminance of light emission of the organic electroluminescent element.
  • a metal element oxide having a high energy level in the above-described conduction band a single metal having a work function of 4.0 eV or less or the oxide is sandwiched between oxide layers of these metal elements.
  • the energy level of the conduction band of the entire laminated metal compound layer is also high, and it can be suitably used as an electron transport layer disposed between the cathode and the light emitting layer.
  • the present invention has a multilayer metal compound layer having a structure in which an alkali metal and / or alkaline earth metal is sandwiched between an oxide or sulfide layer of a metal element having a high energy level in the conduction band described above.
  • This organic electroluminescent element is superior in driving life.
  • the organic electroluminescent element of the present invention contains a simple substance of a metal having a work function of 4.0 eV or less, or at least one of its oxides may be either a simple substance or an oxide, Two or three types may be used.
  • an oxide may be deposited on the metal oxide layer in advance, and in the process of depositing a metal species having a work function of 4.0 eV or less, it becomes an oxide. Also good.
  • a method for depositing (or forming a layer of) a metal species having a work function of 4.0 eV or less on the metal oxide layer a method similar to the method for forming the metal oxide layer described later is used. Can do.
  • a coating film is formed.
  • a method of removing a solvent by heating and converting a metal organic compound salt having a work function of 4.0 eV or less into a metal oxide having a work function of 4.0 eV or less can be used.
  • a solvent capable of dissolving a metal organic compound salt having a work function of 4.0 eV or less is appropriately selected from solvents that can be used when an organic compound layer described later is formed by coating. Can be used.
  • a method for applying a solution of a metal organic compound salt having a work function of 4.0 eV or less a method similar to that for forming an organic compound layer described later by application can be used. After applying a solution of a metal organic compound salt with a work function of 4.0 eV or less, the heating temperature is as long as the solvent is volatilized and the metal organic compound salt with a work function of 4.0 eV or less becomes an oxide.
  • it can be set appropriately, it is preferably 200 to 450 ° C.
  • the multiple metal species-containing layer of the present invention includes (1) a mixed metal oxide layer, (2) a laminated metal oxide layer, and (3) a magnesium compound between the metal oxide layer and the organic compound layer.
  • a layer having a layer There are four preferred forms: a layer having a layer, (4) a simple substance of a metal having a work function of 4.0 eV or less, or a layer having a structure in which an oxide is sandwiched between two layers of metal oxide
  • these four are not clearly distinguished, for example, when the multiple metal species-containing layer falls under both (2) and (3) or when falls under both (3) and (4) There is also.
  • the organic electroluminescent element including the multiple metal species-containing layer corresponding to two or more of the above four forms is also included in the present invention.
  • the metal oxide contained in the multiple metal species-containing layer of the present invention may be a single oxide containing one kind of metal element or a complex oxide containing two or more kinds.
  • the metal oxide layer may be composed of one kind of metal oxide or may contain two or more kinds of metal oxides.
  • the metal oxide layer is preferably composed of a single oxide containing one kind of metal element.
  • an object having a sheet resistance lower than 100 ⁇ / ⁇ is classified as a conductor, and an object having a sheet resistance higher than 100 ⁇ / ⁇ is classified as a semiconductor or an insulator. Therefore, ITO (tin-doped indium oxide), ATO (antimony-doped indium oxide), IZO (indium-doped zinc oxide), AZO (aluminum-doped zinc oxide), FTO (fluorine-doped indium oxide), etc., known as transparent electrodes Since the thin film has high conductivity and is not included in the category of a semiconductor or an insulator, the thin film does not correspond to one layer constituting the multiple metal species-containing layer in the present invention.
  • the method for producing the metal oxide contained in the multiple metal species-containing layer is not particularly limited, and a normal method for forming each layer constituting the organic electroluminescent element can be appropriately used. Examples include vapor deposition, sol-gel, spray pyrolysis (SPD), atomic layer deposition (ALD), and chemical vapor deposition (CVD). These methods are preferably selected according to the characteristics of the material of the metal oxide layer, and the manufacturing method may be different for each layer.
  • a plurality of metal species-containing layers may be provided between the anode and the organic compound layer, between the cathode and the organic compound layer, or both. It is preferable to have a multiple metal species-containing layer between the compound layer. In this case, the multiple metal species-containing layer functions as an electron transport layer. Since the multiple metal species-containing layer can efficiently perform such electron transfer, an organic electroluminescent device having these layers between the cathode and the organic compound layer is superior in luminous efficiency. Become.
  • the electron transport layer may consist of only the multiple metal species-containing layer, and uses the multiple metal species-containing layer and the organic electron transport layer at the same time. Also good.
  • the order of stacking the multiple metal species-containing layer and the organic electron transport layer is not particularly limited, and the multiple metal species-containing layer and the organic electron Each transport layer may be a single layer or two or more layers. Specific examples of the organic compound forming the organic electron transport layer will be described later.
  • the organic compound layer of the organic electroluminescent device of the present invention is a layer formed of an organic compound or a plurality of layers formed of an organic compound, and one of the layers is a light emitting layer. It is what is. That is, the organic compound layer is either a light-emitting layer formed of an organic compound or a layer in which a light-emitting layer formed of an organic compound and another layer formed of an organic compound are stacked.
  • the other layer formed of the organic compound may be one layer or two or more layers. Further, the order in which the light emitting layer and other layers are laminated is not particularly limited. However, in the case where the multiple metal species-containing layer is provided between the cathode and the organic compound layer, the multiple metal species-containing layer and the organic compound layer It is preferable that the light emitting layer is in contact.
  • the other layer formed of the organic compound is preferably a hole transport layer or an electron transport layer. That is, when the organic compound layer is composed of a plurality of layers, it is preferable to have a hole transport layer and / or an electron transport layer as other layers other than the light emitting layer. Thus, it is one of the preferred embodiments of the organic electroluminescent device of the present invention that the organic electroluminescent device has a hole transport layer and / or an electron transport layer as an independent layer different from the light emitting layer. is there. When the organic electroluminescent element of the present invention has a hole transport layer as an independent layer, it has a hole transport layer between the light emitting layer and the anode.
  • the mixed metal oxide layer, the laminated metal oxide layer, or the layer containing a structure having a metal species on the metal oxide layer is between the cathode and the organic compound layer.
  • a layer which functions as an electron carrying layer in an organic compound layer In this case, a layer functioning as an electron transport layer is provided between the cathode and the light emitting layer.
  • any of the layers possessed as an essential component of the organic electroluminescent device of the present invention functions as these layers. It will also serve as.
  • an organic low molecular weight material As the organic compound forming the organic compound layer, an organic low molecular weight material, an organometallic complex, a high molecular weight material, or the like can be used as appropriate, and these can be used in combination as necessary. At least one of the compounds is selected from luminescent materials.
  • the organic low molecular weight material means a material that is not a polymer material (polymer), and does not necessarily mean an organic compound having a low molecular weight.
  • polymer light-emitting material examples include polyacetylene compounds such as trans-type polyacetylene, cis-type polyacetylene, poly (di-phenylacetylene) (PDPA), poly (alkyl, phenylacetylene) (PAPA); -Phenvinylene) (PPV), poly (2,5-dialkoxy-para-phenylenevinylene) (RO-PPV), cyano-substituted-poly (para-phenvinylene) (CN-PPV), poly (2-dimethyl) Polyparaphenylene vinylene compounds such as octylsilyl-para-phenylene vinylene) (DMOS-PPV), poly (2-methoxy, 5- (2′-ethylhexoxy) -para-phenylene vinylene) (MEH-PPV); poly (3-alkylthiophene) (PAT), poly (oxypropylene) ) Polythiophene compounds such as triol (POP);
  • Examples of the low-molecular light-emitting material include a tricoordinate iridium complex having 2,2′-bipyridine-4,4′-dicarboxylic acid as a ligand, and factory (2-phenylpyridine) iridium (Ir (Ppy) 3 ), 8-hydroxyquinoline aluminum (Alq 3 ), tris (4-methyl-8 quinolinolate) aluminum (III) (Almq 3 ), 8-hydroxyquinoline zinc (Znq 2 ), (1,10-phenanthroline) ) -Tris- (4,4,4-trifluoro-1- (2-thienyl) -butane-1,3-dionate) europium (III) (Eu (TTA) 3 (phen)), 2, 3 , 7 , 8, 12, 13, 17, 18-octaethyl-21H, 23H-porphine
  • Various metal complexes such as platinum (II); distyrylbenzene (D B), benzene
  • the hole transport organic material used as the hole transport layer includes various p-type polymer materials and various p-type low molecular materials. They can be used alone or in combination.
  • the p-type polymer material include polyarylamine, fluorene-arylamine copolymer, fluorene-bithiophene copolymer, poly (N-vinylcarbazole), polyvinylpyrene, polyvinylanthracene, polythiophene, Examples thereof include polyalkylthiophene, polyhexylthiophene, poly (p-phenylene vinylene), polytinylene vinylene, pyrene formaldehyde resin, ethylcarbazole formaldehyde resin, and derivatives thereof.
  • polythiophene examples include poly (3,4-ethylenedioxythiophene / styrene sulfonic acid) (PEDOT / PSS).
  • Examples of the p-type low molecular weight material include 1,1-bis (4-di-para-triaminophenyl) cyclohexane, 1,1′-bis (4-di-para-tolylaminophenyl)- Arylcycloalkane compounds such as 4-phenyl-cyclohexane; 4,4 ′, 4 ′′ -trimethyltriphenylamine, N, N, N ′, N′-tetraphenyl-1,1′-biphenyl-4, 4′-diamine, N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine (TPD1), N, N′-diphenyl-N , N′-bis (4-methoxyphenyl) -1,1′-biphenyl-4,4′-diamine (TPD2), N, N, N ′, N′-tetrakis (4-
  • the multiple metal species-containing layer as an electron transport layer, but when the electron transport layer is formed of an organic compound, the material is usually used as a material for the electron transport layer. Any low molecular weight compound that can be used can be used, and these may be used in combination. These low molecular weight compounds can also be used to form a layer formed of an organic compound when the layer formed of an organic compound and the laminated metal compound layer described above are simultaneously used as an electron transport layer.
  • Quinoline derivatives such as (2- (3- (9-carbazolyl) phenyl) quinoline (mCQ)), pyrimidines such as 2-phenyl-4,6-bis (3,5-dipyridylphenyl) pyrimidine (BPyPPM) Derivatives, pyrazine derivatives, phenanthroline derivatives such as bathophenanthroline (BPhen), 2,4-bis (4-biphenyl) -6- (4 ′-(2-pyridinyl) -4-biphenyl)-[1,3,5 Triazine derivatives such as triazine (MPT), 3-phenyl-4- (1′-naphthyl) -5-phenyl-1,2,4-triazol Triazole derivatives such as (TAZ), oxazole derivatives, oxadiazole derivatives such as 2- (4-biphenylyl) -5- (4-tert-butylphenyl-1,3,4-oxadia
  • Organic silane derivatives, and the like typified by silole derivatives can be used alone or in combination of two or more thereof.
  • a metal complex such as Alq 3 and a pyridine derivative such as TmPyPhB are preferable.
  • the average thickness of the light emitting layer is not particularly limited, but is preferably 10 to 150 nm. More preferably, it is 20 to 100 nm.
  • the average thickness of these layers is not particularly limited, but is preferably 10 to 150 nm. More preferably, it is 20 to 100 nm.
  • the average thicknesses of the light emitting layer, the hole transport layer, and the electron transport layer can be measured at the time of film formation using a crystal oscillator thickness meter.
  • the method for forming the organic compound layer is not particularly limited, and various methods can be used as appropriate in accordance with the characteristics of the material. However, when it can be applied as a solution, a spin coating method, a casting method, a micro gravure coating method, Film formation using various coating methods such as gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing, flexographic printing, offset printing, and inkjet printing can do. Among these, the spin coat method and the slit coat method are preferable because the film thickness can be more easily controlled. When it is not applied or when the solvent solubility is low, a vacuum deposition method, an ESDUS (Evaporative Spray Deposition ultra-dilute Solution) method, or the like can be cited as a suitable example.
  • ESDUS Electronic Spray Deposition ultra-dilute Solution
  • examples of the solvent used for dissolving the organic compound include nitric acid, sulfuric acid, ammonia, hydrogen peroxide, water, carbon disulfide, and carbon tetrachloride.
  • Inorganic solvents such as ethylene carbonate, ketone solvents such as methyl ethyl ketone (MEK), acetone, diethyl ketone, methyl isobutyl ketone (MIBK), methyl isopropyl ketone (MIPK), cyclohexanone, methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol (DEG), alcohol solvents such as glycerin, diethyl ether, diisopropyl ether, 1,2-dimethoxyethane (DME), 1,4-dioxane, tetrahydrofuran (THF), tetrahydropyran (THP), aniso , Ether solvents such as diethylene glycol dimethyl ether (diglyme), diethylene glycol ethyl ether (carbitol), cellosolve solvents such as methyl cellosolve, ethyl cellosolve, phenyl
  • a nonpolar solvent for example, an aromatic hydrocarbon solvent such as xylene, toluene, cyclohexylbenzene, dihydrobenzofuran, trimethylbenzene, tetramethylbenzene, pyridine, pyrazine, furan,
  • aromatic heterocyclic compound solvents such as pyrrole, thiophene, and methylpyrrolidone
  • aliphatic hydrocarbon solvents such as hexane, pentane, heptane, and cyclohexane.
  • anode and cathode of the organic electroluminescent device of the present invention ordinary conductive materials used as the anode and cathode of the organic electroluminescent device can be used as appropriate, but at least one of them can be used for light extraction. Is preferably transparent. Examples of normal transparent conductive materials include ITO (tin doped indium oxide), ATO (antimony doped indium oxide), IZO (indium doped zinc oxide), AZO (aluminum doped zinc oxide), FTO (fluorine doped indium oxide), etc. Is raised. Examples of the opaque conductive material include calcium, magnesium, aluminum, tin, indium, copper, silver, gold, and alloys thereof. These may be used alone or in combination of two or more.
  • the average thickness of the anode is not particularly limited, but is preferably 10 to 500 nm. More preferably, it is 100 to 200 nm.
  • the average thickness of the anode can be measured by a stylus profilometer or spectroscopic ellipsometry.
  • the average thickness of the cathode is not particularly limited, but is preferably 10 to 1000 nm. More preferably, it is 30 to 150 nm.
  • the average thickness of the cathode can be measured at the time of film formation with a crystal oscillator thickness meter.
  • the organic electroluminescent element of the present invention is a HOILED element, it is preferable to have a hole injection layer between the organic compound (light emitting layer or hole transport layer) layer and the anode.
  • the material used for the hole injection layer include molybdenum oxide, tungsten oxide, vanadium oxide, and rhenium oxide, with molybdenum oxide being most preferred.
  • the thickness of the hole injection layer is preferably 1 nm to 20 nm. More preferably, it is 5 nm to 10 nm. The thickness of the hole injection layer can be measured at the time of film formation with a crystal oscillator thickness meter.
  • the cathode, anode, and hole injection layer are formed by sputtering, vacuum deposition, sol-gel, spray pyrolysis (SPD), atomic layer deposition (ALD), vapor deposition, liquid deposition, etc. Can be formed. Metal foil bonding can also be used to form the anode and cathode.
  • the hole injection layer is preferably formed using a vacuum vapor deposition method which is a vapor deposition method. According to the vapor deposition method, the hole injection layer can be formed cleanly and in good contact with the anode without damaging the surface of the organic compound layer. As a result, the effect of the organic electroluminescence device of the present invention is further improved. It will be remarkable.
  • an electron injection layer, a hole blocking layer, an electron device layer and the like may be included as necessary.
  • materials usually used for forming these layers can be used, and the layers can be formed by a method usually used for forming these layers.
  • the electroluminescent element of the present invention may be sealed if necessary.
  • a normal method can be used as appropriate.
  • a method of adhering a sealing container in an inert gas, a method of forming a sealing film directly on the organic EL element, or the like can be given.
  • a method of enclosing a moisture absorbing material may be used in combination.
  • the electroluminescent element of the present invention can emit light by applying a voltage (usually 15 volts or less) between the anode and the cathode. Normally, a DC voltage is applied, but an AC component may be included.
  • the organic electroluminescent element of the present invention may be one in which each layer constituting the organic electroluminescent element is laminated on a substrate. When each layer is laminated on the substrate, it is preferable that each layer is formed on the electrode formed on the substrate.
  • the organic electroluminescent element of the present invention may be a top emission type that extracts light to the side opposite to the side where the substrate is present, or a bottom emission type that extracts light to the side where the substrate is present. May be.
  • resin materials such as polyethylene terephthalate, polyethylene naphthalate, polypropylene, cycloolefin polymer, polyamide, polyethersulfone, polymethyl methacrylate, polycarbonate, polyarylate, quartz glass, soda glass, etc.
  • a glass material etc. are mentioned, These 1 type (s) or 2 or more types can be used.
  • an opaque substrate can be used.
  • an oxide film is formed on the surface of a ceramic substrate such as alumina or a metal substrate such as stainless steel.
  • a substrate made of a resin material or the like can also be used.
  • the average thickness of the substrate is preferably 0.1 to 30 mm. More preferably, it is 0.1 to 10 mm.
  • the average thickness of the substrate can be measured with a digital multimeter or a caliper.
  • the electroluminescent element of the present invention can change the luminescent color by appropriately selecting the material of the organic compound layer, and can also obtain a desired luminescent color by using a color filter or the like in combination. Therefore, it can be suitably used as a light emitting part of a display device or a lighting device.
  • a display device including the organic electroluminescent element of the present invention and an illumination device including the organic electroluminescent element of the present invention are also one aspect of the present invention.
  • the organic electroluminescent device of the present invention is a HOILED device having the above-described configuration and usable without sealing, and is a useful organic electroluminescent device that exhibits high luminous efficiency and has a long driving life. It can be suitably used as a display device or a lighting device.
  • 1 is a cross-sectional view of an embodiment of an organic electroluminescent device according to the present invention having a HOILED structure.
  • 3 is a graph showing voltage-luminance characteristics of organic electroluminescent elements prepared in Examples 1 to 3 and Comparative Examples 1 and 2.
  • 3 is a graph showing current density-power efficiency characteristics of organic electroluminescent elements prepared in Examples 1 to 3 and Comparative Examples 1 and 2.
  • 6 is a graph showing voltage-luminance characteristics of organic electroluminescent elements prepared in Example 4 and Comparative Examples 3 to 4.
  • 6 is a graph showing voltage-luminance characteristics of organic electroluminescent elements prepared in Example 5 and Comparative Example 5.
  • 6 is a graph showing voltage-luminance characteristics of organic electroluminescent elements prepared in Example 6 and Comparative Example 6.
  • 6 is a graph showing voltage-luminance characteristics of organic electroluminescent elements prepared in Example 7 and Comparative Examples 7 to 8.
  • 6 is a graph showing current density-current efficiency characteristics of organic electroluminescent elements prepared in Example 7 and Comparative Example 8. It is a graph which shows the lifetime characteristic of the organic electroluminescent element created in Example 8 and Comparative Example 9.
  • 6 is a graph showing voltage-luminance characteristics of organic electroluminescent elements prepared in Example 9, Comparative Example 10 and Comparative Example 12.
  • 4 is a graph showing current density-power efficiency characteristics of organic electroluminescent elements prepared in Example 9, Comparative Example 10 and Comparative Example 12.
  • 6 is a graph showing voltage-luminance characteristics of organic electroluminescent elements prepared in Example 10, Comparative Example 11 and Comparative Example 12.
  • 6 is a graph showing current density-power efficiency characteristics of organic electroluminescent elements prepared in Example 10, Comparative Example 11 and Comparative Example 12. It is a graph which shows the lifetime characteristic of the organic electroluminescent element created in Example 9 and Comparative Example 13.
  • 6 is a graph showing voltage-luminance characteristics of organic electroluminescent elements fabricated in Example 11 and Comparative Examples 14 to 15.
  • 6 is a graph showing voltage-current efficiency characteristics of organic electroluminescence elements fabricated in Example 11 and Comparative Examples 14 to 15.
  • 6 is a graph showing lifetime characteristics of organic electroluminescent elements produced in Example 11 and Comparative Examples 14 to 15.
  • the thicknesses of the multiple metal species-containing layer, the organic compound layer, the hole injecting metal oxide layer, and the anode were all measured at the time of film formation with a crystal resonator thickness meter.
  • aqueous solution prepared by dissolving ammonium carbonate (240.4 mg, 0.8 mmol) in 0.75 ml of distilled water, and the mixture was further stirred at room temperature for 20 minutes under a nitrogen flow to complete devolatilization. This was heated and stirred at 115 ° C. for 17 hours under reflux, and bromobenzene (39.3 mg, 0.25 mmol) was added for end-capping, followed by stirring for 1 hour, and phenylboronic acid (30.5 mg, 0.25 mmol) was further added. added.
  • the blue light emitting polymer (3) represented by these was obtained.
  • the weight average molecular weight in terms of polystyrene as determined by gel permeation chromatography (tetrahydrofuran solvent) was 71,000.
  • Examples of the organic electroluminescence device of the present invention and comparative examples will be described below.
  • 1. an organic electroluminescent device having a mixed metal oxide layer; 2. an organic electroluminescent device having a laminated metal oxide layer; 3. an organic electroluminescent device having a layer having a magnesium compound layer between the metal oxide layer and the organic compound layer;
  • the work function is 4.0 eV or less, a single metal or an organic electroluminescent element having a structure in which an oxide is sandwiched between two layers of metal oxide is described. This does not mean that the embodiment described below corresponds to only one of these four.
  • Example of organic electroluminescent device having mixed metal oxide layer, comparative example> (Creation of organic electroluminescence device) (Comparative Example 1)
  • a commercially available transparent glass substrate with an ITO electrode layer having an average thickness of 0.7 mm was prepared. At this time, an ITO electrode patterned to have a width of 2 mm was used. This substrate was subjected to ultrasonic cleaning in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. The substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes. [2] This substrate was placed on a hot plate, and heated to 400 ° C.
  • a blue light emitting polymer solution was dropped on the substrate and rotated at 1600 rpm for 30 seconds to form an organic compound layer having a thickness of about 100 nm. This was moved into a glove box in an argon atmosphere, and heated at 200 ° C. for 1 hour using a hot plate to remove the residual solvent in the organic compound layer.
  • the substrate formed up to the organic compound layer was fixed to a substrate holder of a vacuum deposition apparatus. Molybdenum trioxide was placed in an alumina crucible and set in the first vapor deposition source. At the same time, gold was put in an alumina crucible and set in the second vapor deposition source.
  • the pressure was reduced to about 1 ⁇ 10 ⁇ 4 Pa, and molybdenum trioxide was deposited to a thickness of 10 nm.
  • a vapor deposition surface was formed into a strip shape having a width of 2 mm using a stainless steel vapor deposition mask. That is, the light emitting area of the produced organic electroluminescent element was 4 mm 2 .
  • Comparative Example 2 Examples 1 to 3
  • a substrate with an oxide thin film layer was prepared using the solution shown in Table 1 instead of the 0.1 mol / L ethanol solution of magnesium acetate tetrahydrate.
  • Organic electroluminescent elements were respectively prepared.
  • the organic electroluminescent elements of Examples 1 to 3 using the mixed oxide thin film according to the present invention have a lower voltage than the organic electroluminescent elements of Comparative Examples 1 to 2 using the single composition oxide thin film. It is clear that light is emitted. Further, from FIG. 3, the organic electroluminescent elements of Examples 1 to 3 using the mixed metal oxide thin film of the present invention have higher power than the organic electroluminescent elements of Comparative Examples 1 to 2 using the single metal oxide thin film. It is clear that it shows efficiency.
  • Example 4 A commercially available transparent glass substrate with an ITO electrode layer having an average thickness of 0.7 mm was prepared. At this time, an ITO electrode patterned to have a width of 2 mm was used. This substrate was subjected to ultrasonic cleaning in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. This substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes. [2] This substrate was placed on a hot plate, and heated to 400 ° C. with the electrode extraction part covered with another glass plate.
  • a mixed ethanol solution of 0.0125 mol / L of bis (2,4-pentanedionato) zinc and 0.0375 mol / L of tetrakis (2,4-pentandionato) zirconium is sprayed onto a heated substrate using a reagent spray. did. This process was repeated 10 times at 30 second intervals. After spraying, after heating for 10 minutes at that temperature, the hot plate was turned off and naturally dissipated to room temperature to obtain a substrate with a mixed metal oxide thin film layer. [3] Next, 1 mL of a 1.2 wt% tetrahydrofuran solution of the blue light-emitting polymer (3) prepared in Synthesis Example 1 was prepared.
  • the prepared substrate with a mixed metal oxide thin film layer was set on a spin coater.
  • a blue light emitting polymer solution was dropped on the substrate and rotated at 1600 rpm for 30 seconds to form an organic compound layer having a thickness of about 100 nm. This was moved into a glove box in an argon atmosphere, and heated at 200 ° C. for 1 hour using a hot plate to remove the residual solvent in the organic compound layer.
  • the substrate formed up to the organic compound layer was fixed to a substrate holder of a vacuum deposition apparatus. Molybdenum trioxide was placed in an alumina crucible and set in the first vapor deposition source. At the same time, gold was put in an alumina crucible and set in the second vapor deposition source.
  • the pressure was reduced to about 1 ⁇ 10 ⁇ 4 Pa, and molybdenum trioxide was deposited to a thickness of 10 nm.
  • a vapor deposition surface was formed into a strip shape having a width of 2 mm using a stainless steel vapor deposition mask. That is, the light emitting area of the produced organic electroluminescent element was 4 mm 2 .
  • FIG. 4 shows voltage-luminance characteristics when a DC voltage of ⁇ 4 V to 15 V is applied to the organic electroluminescent elements prepared in Example 4 and Comparative Examples 3 to 4 in an argon atmosphere. Note that the reading of BM-7 was about 20 cd / m 2 when the device was not emitting light due to external light or the like. From FIG. 4, the organic electroluminescent device of Example 4 using the mixed metal oxide thin film of the present invention emits light from a voltage lower than that of the organic electroluminescent devices of Comparative Examples 3 and 4 using a single metal oxide thin film. It is clear to do.
  • Example 5 A commercially available transparent glass substrate with an ITO electrode layer having an average thickness of 0.7 mm was prepared. At this time, an ITO electrode patterned to have a width of 2 mm was used. This substrate was subjected to ultrasonic cleaning in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. This substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes. [2] This substrate was placed on a hot plate, and heated to 400 ° C. with the electrode extraction part covered with another glass plate.
  • a mixed ethanol solution of titanium tetraisopropoxide 0.0375 mol / L and magnesium acetate 0.0125 mol / L was sprayed onto a heated substrate using a reagent spray. This process was repeated 10 times at 30 second intervals. After spraying, after heating for 10 minutes at that temperature, the hot plate was turned off and naturally dissipated to room temperature to obtain a substrate with a mixed metal oxide thin film layer.
  • 1 mL of a 1.2 wt% tetrahydrofuran solution of the blue light-emitting polymer (3) prepared in Synthesis Example 1 was prepared. The prepared substrate with a mixed metal oxide thin film layer was set on a spin coater.
  • a blue light emitting polymer solution was dropped on the substrate and rotated at 1600 rpm for 30 seconds to form an organic compound layer having a thickness of about 100 nm. This was moved into a glove box in an argon atmosphere, and heated at 200 ° C. for 1 hour using a hot plate to remove the residual solvent in the organic compound layer.
  • the substrate formed up to the organic compound layer was fixed to a substrate holder of a vacuum deposition apparatus. Molybdenum trioxide was placed in an alumina crucible and set in the first vapor deposition source. At the same time, gold was put in an alumina crucible and set in the second vapor deposition source.
  • the pressure was reduced to about 1 ⁇ 10 ⁇ 4 Pa, and molybdenum trioxide was deposited to a thickness of 10 nm.
  • a vapor deposition surface was formed into a strip shape having a width of 2 mm using a stainless steel vapor deposition mask. That is, the light emitting area of the produced organic electroluminescent element was 4 mm 2 .
  • Example 5 (Comparative Example 5) In the step [2] of Example 5, a titanium tetraisopropoxide 0.050 mol / L ethanol solution was used instead of a titanium tetraisopropoxide 0.0375 mol / L, magnesium acetate 0.0125 mol / L mixed ethanol solution.
  • FIG. 5 shows the voltage-luminance characteristics of the organic electroluminescent devices prepared in Example 5 and Comparative Example 5 when a DC voltage of ⁇ 4 V to 15 V is applied in an argon atmosphere. Note that the reading of BM-7 was about 20 cd / m 2 when the device was not emitting light due to external light or the like. From FIG. 5, the organic electroluminescent device of Example 5 using the mixed metal oxide thin film of the present invention emits light from a voltage lower than that of the organic electroluminescent device of Comparative Example 5 using a single metal oxide thin film. Is clear.
  • Example 6 A commercially available transparent glass substrate with an ITO electrode layer having an average thickness of 0.7 mm was prepared. At this time, an ITO electrode patterned to have a width of 2 mm was used. This substrate was subjected to ultrasonic cleaning in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. This substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes. [2] This substrate was placed on a hot plate, and heated to 400 ° C. with the electrode extraction part covered with another glass plate.
  • a mixed ethanol solution of tris (2,4-pentanedionato) aluminum 0.0375 mol / L and magnesium acetate 0.0125 mol / L was sprayed onto a heated substrate using a reagent spray. This process was repeated 10 times at 30 second intervals. After spraying, after heating for 10 minutes at that temperature, the hot plate was turned off and naturally dissipated to room temperature to obtain a substrate with a mixed metal oxide thin film layer. [3] Next, 1 mL of a 1.2 wt% tetrahydrofuran solution of the blue light-emitting polymer (3) prepared in Synthesis Example 1 was prepared. The prepared substrate with a mixed metal oxide thin film layer was set on a spin coater.
  • a blue light emitting polymer solution was dropped on the substrate and rotated at 1600 rpm for 30 seconds to form an organic compound layer having a thickness of about 100 nm. This was moved into a glove box in an argon atmosphere, and heated at 200 ° C. for 1 hour using a hot plate to remove the residual solvent in the organic compound layer.
  • the substrate formed up to the organic compound layer was fixed to a substrate holder of a vacuum deposition apparatus. Molybdenum trioxide was placed in an alumina crucible and set in the first vapor deposition source. At the same time, gold was put in an alumina crucible and set in the second vapor deposition source.
  • the pressure was reduced to about 1 ⁇ 10 ⁇ 4 Pa, and molybdenum trioxide was deposited to a thickness of 10 nm.
  • a vapor deposition surface was formed into a strip shape having a width of 2 mm using a stainless steel vapor deposition mask. That is, the light emitting area of the produced organic electroluminescent element was 4 mm 2 .
  • FIG. 6 shows voltage-luminance characteristics of the organic electroluminescent devices prepared in Example 6 and Comparative Example 6 when a DC voltage of ⁇ 4 V to 15 V is applied in an argon atmosphere. Note that the reading of BM-7 was about 20 cd / m 2 when the device was not emitting light due to external light or the like. From FIG. 6, the organic electroluminescent device of Example 6 using the mixed metal oxide thin film of the present invention emits light from a voltage lower than that of the organic electroluminescent device of Comparative Example 6 using a single metal oxide thin film. Is clear.
  • Example of organic electroluminescent device having laminated metal oxide layer, comparative example> (Creation of organic electroluminescence device) (Example 7) [1] A commercially available transparent glass substrate with an ITO electrode layer having an average thickness of 0.7 mm was prepared. At this time, an ITO electrode patterned to have a width of 2 mm was used. This substrate was subjected to ultrasonic cleaning in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. This substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes.
  • This substrate was fixed to a substrate holder of a Miratron sputtering apparatus having a titanium metal target. After reducing the pressure to about 1 ⁇ 10 ⁇ 4 Pa, sputtering was performed in a state where argon and oxygen were introduced to form a titanium oxide layer having a thickness of about 10 nm. At this time, a metal mask was used together so that titanium oxide was not formed on a part of the ITO electrode for electrode extraction. [3] This substrate was fixed to a substrate holder of a Miratron sputtering apparatus having a zinc metal target.
  • Example 8 A commercially available transparent glass substrate with an ITO electrode layer having an average thickness of 0.7 mm was prepared. At this time, an ITO electrode patterned to have a width of 2 mm was used. This substrate was subjected to ultrasonic cleaning in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. This substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes. [2] This substrate was fixed to a substrate holder of a Miratron sputtering apparatus having a zinc metal target.
  • sputtering was performed in a state where argon and oxygen were introduced to form a zinc oxide layer having a thickness of about 2 nm.
  • a metal mask was used in combination so that a portion of the ITO electrode was not deposited with zinc oxide for electrode extraction.
  • a mixed solution of magnesium acetate in 1% water-ethanol (1: 3 by volume) was prepared.
  • the substrate prepared in step [2] was washed again in the same manner as in step [1].
  • the cleaned substrate with a zinc oxide thin film was set on a spin coater.
  • a magnesium acetate solution was dropped on the substrate and rotated at 1300 rpm for 60 seconds.
  • the magnesium oxide layer was formed by baking this for 2 hours with the hotplate set to 400 degreeC in air
  • 1 mL of a 1.2 wt% tetrahydrofuran solution of the blue light-emitting polymer (3) prepared in Synthesis Example 1 was prepared.
  • the prepared substrate with an oxide thin film layer was set on a spin coater.
  • a blue light emitting polymer solution was dropped on the substrate and rotated at 1600 rpm for 30 seconds to form an organic compound layer having a thickness of about 100 nm. This was moved into a glove box in an argon atmosphere, and heated at 200 ° C. for 1 hour using a hot plate to remove the residual solvent in the organic compound layer.
  • FIG. 7 shows the voltage-luminance characteristics and current density-current efficiency characteristics of the organic electroluminescent devices prepared in Example 7 and Comparative Examples 7-8 when a DC voltage of ⁇ 4 V to 15 V is applied in an argon atmosphere.
  • the organic electroluminescent device of Example 7 using the laminated oxide thin film of the present invention emits light from a lower voltage than the organic electroluminescent devices of Comparative Examples 7 to 8 using a single layer oxide thin film. It is clear. Further, from FIG.
  • the organic electroluminescent device of Example 7 using the laminated oxide thin film of the present invention shows higher current efficiency than the organic electroluminescent device of Comparative Example 8 using a single layer oxide thin film. Is clear. However, as is clear from FIG. 7, the organic electroluminescence device of Comparative Example 7 did not emit light at all in the measured voltage range, so that the current efficiency was not measurable, and is omitted from the plot of FIG.
  • FIG. 9 shows the lifetime characteristics of the organic electroluminescent elements prepared in Example 8 and Comparative Example 9. From FIG. 9, the organic electroluminescent element of Example 8 using the laminated oxide thin film of the present invention has a longer lifetime than the organic electroluminescent element of Comparative Example 9 having a single-layer oxide thin film and a cesium compound layer. I understand.
  • Example 9 A commercially available transparent glass substrate with an ITO electrode layer having an average thickness of 0.7 mm was prepared. At this time, an ITO electrode patterned to have a width of 2 mm was used. This substrate was subjected to ultrasonic cleaning in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. This substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes.
  • This substrate was fixed to a substrate holder of a Miratron sputtering apparatus having a zinc metal target. After reducing the pressure to about 1 ⁇ 10 ⁇ 4 Pa, sputtering was performed in a state where argon and oxygen were introduced to form a zinc oxide layer having a thickness of about 2 nm. At this time, a metal mask was used in combination so that a portion of the ITO electrode was not deposited with zinc oxide for electrode extraction. [3] A mixed solution of magnesium acetate in 1% water-ethanol (volume ratio 1: 3 (atomic ratio)) was prepared. The substrate prepared in step [2] was washed again in the same manner as in step [1]. The cleaned substrate with a zinc oxide thin film was set on a spin coater.
  • a magnesium acetate solution was dropped on the substrate and rotated at 1300 rpm for 60 seconds.
  • the magnesium oxide layer was formed by baking this for 2 hours with the hotplate set to 400 degreeC in air
  • 1 mL of a 1.2 wt% tetrahydrofuran solution of the blue light-emitting polymer (3) prepared in Synthesis Example 1 was prepared.
  • the prepared substrate with an oxide thin film layer was set on a spin coater.
  • a blue light emitting polymer solution was dropped on the substrate and rotated at 1600 rpm for 30 seconds to form an organic compound layer having a thickness of about 100 nm. This was moved into a glove box in an argon atmosphere, and heated at 200 ° C.
  • the substrate formed up to the organic compound layer was fixed to a substrate holder of a vacuum deposition apparatus. Molybdenum trioxide was placed in an alumina crucible and set in the first vapor deposition source. At the same time, gold was put in an alumina crucible and set in the second vapor deposition source. The inside of the vacuum deposition apparatus was depressurized to about 1 ⁇ 10 ⁇ 4 Pa, and molybdenum trioxide was deposited to a thickness of 10 nm.
  • Example 10 An organic electroluminescent element having a magnesium compound layer on a titanium oxide thin film layer was prepared in the same manner except that a titanium metal target was used instead of the zinc metal target in the step [2] of Example 9.
  • Example 9 (Measurement of light emission characteristics of organic electroluminescence device) Voltage application to the device and current measurement were performed using a “2400 type source meter” manufactured by Keithley. Luminance was measured with “BM-7” manufactured by Topcon Corporation.
  • the organic electroluminescence devices prepared in Example 9, Comparative Example 10 and Comparative Example 12 are shown with voltage-luminance characteristics and current density-power efficiency characteristics when a DC voltage of ⁇ 4 V to 15 V is applied in an argon atmosphere. 10 and FIG. 11 respectively. From FIG. 10, the organic electroluminescent element of Example 9 using the laminated structure of the oxide film and magnesium compound film of the present invention is the organic electroluminescent element of Comparative Example 10 and Comparative Example 12 using a single layer oxide thin film.
  • the organic electroluminescence device of Example 9 using the laminated structure of the oxide film and the magnesium compound film of the present invention is the organic electroluminescence of Comparative Example 10 and Comparative Example 12 using a single layer oxide thin film. It is clear that the power efficiency is higher than that of the device.
  • the organic electroluminescence devices prepared in Example 10, Comparative Example 11 and Comparative Example 12 were subjected to voltage-luminance characteristics, current density-power efficiency when a DC voltage of ⁇ 4 V to 15 V was applied in an argon atmosphere. The characteristics are shown in FIGS. 12 and 13, respectively. From FIG.
  • the organic electroluminescent element of Example 10 using the laminated structure of the oxide film and magnesium compound film of the present invention is the organic electroluminescent element of Comparative Example 11 and Comparative Example 12 using a single layer oxide thin film. It is clear that light is emitted from a voltage lower than that of.
  • the organic electroluminescence device of Example 10 using the laminated structure of the oxide film and the magnesium compound film of the present invention is the organic electroluminescence of Comparative Example 11 and Comparative Example 12 using a single layer oxide thin film. It is clear that the power efficiency is higher than that of the device.
  • FIG. 14 shows the lifetime characteristics of the organic electroluminescent elements prepared in Example 9 and Comparative Example 13. From FIG.
  • the organic electroluminescent element of Example 9 using the laminated structure of the oxide film and the magnesium compound film of the present invention is an organic electroluminescent element of Comparative Example 13 having a single-layer oxide thin film and a cesium compound layer. It can be seen that the lifetime is longer.
  • This substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes.
  • This substrate was fixed again to the substrate holder of the Miratron sputtering apparatus having a zinc metal target. After reducing the pressure to about 1 ⁇ 10 ⁇ 4 Pa, sputtering was performed in a state where argon and oxygen were introduced to form a zinc oxide layer having a thickness of about 2 nm. At this time, a metal mask was used in combination so that a part of the ITO electrode was not formed with zinc oxide for electrode extraction.
  • This substrate was fixed to a substrate holder of a vapor deposition apparatus having a resistance heating vapor deposition source.
  • a hole transporting material in this, and it is also possible to form a layer in which a light emitting polymer material is first formed and a hole transporting material is formed thereon.
  • An organic compound layer was formed by layer deposition. Lamination can be achieved by repeating this. First, F8BT was dissolved in xylene to prepare a liquid material (1.0% solution). Next, this liquid material was spin-coated at 1000 rpm for 100 seconds to supply it onto the laminated metal oxide layer 3 to form a liquid film. The liquid film was dried by heating to 100 ° C. on a hot plate to volatilize xylene as a solvent to form an organic compound layer. The formed film thickness was 45 nm.
  • a molybdenum oxide layer was formed as a hole-injecting metal oxide layer 5 on the organic compound layer 4 by a vacuum deposition method.
  • the thickness of the hole injecting metal oxide layer 5 was 10 nm.
  • a gold layer was formed on the hole-injecting metal oxide layer 5 as the anode 6 by vacuum deposition.
  • the thickness of the anode 6 was 40 nm.
  • FIG. 15 shows the voltage-luminance characteristics and voltage-current efficiency characteristics of the organic electroluminescent elements prepared in Example 11 and Comparative Examples 14 to 15 when a DC voltage of ⁇ 4 V to 15 V is applied in an argon atmosphere. 16 respectively.
  • the organic electroluminescent device of Example 11 using the laminated metal compound thin film of the present invention has a lower voltage than the organic electroluminescent device of Comparative Example 14 using a single layer oxide thin film. It was confirmed that light was emitted.
  • the threshold voltage was the same as that of Comparative Example 15, it was revealed that the organic electroluminescent element of Example 11 was superior in terms of luminance. Further, as apparent from FIG. 16, the organic electroluminescent device of Example 11 using the laminated metal compound thin film of the present invention is compared with the organic electroluminescent devices of Comparative Examples 14 to 15 using a single layer oxide thin film. It was confirmed that high current efficiency was exhibited.
  • FIG. 17 shows the lifetime characteristics of the organic electroluminescent elements prepared in Example 11 and Comparative Examples 14 and 15. As can be seen from FIG.
  • the organic electroluminescent device of Example 11 using the laminated metal compound thin film of the present invention is the organic of Comparative Example 15 in which a metal having a work function of 4.0 eV or less is in direct contact with the organic compound layer. It was confirmed that the lifetime was significantly longer than that of the electroluminescent device. Moreover, compared with the organic electroluminescent element which has the single layer oxide thin film of the comparative example 14, it is thought that a brightness
  • Substrate 2 Cathode 3: Laminated metal compound layer 4: Organic compound layer 5: Hole-injecting metal oxide layer 6: Anode

Abstract

Provided is an organic-inorganic hybrid organic electroluminescent element which has excellent brightness, luminous efficiency, and drive life. The organic electroluminescent element comprises a structure in which a plurality of layers are stacked between a positive pole and negative pole, characterized in that the organic electroluminescent element has one or a plurality of organic compound layers between the positive pole and negative pole and also has a layer including a plurality of metal species between the positive pole and the organic compound layer(s) and/or between the negative pole and the organic compound layer(s), and at least one of the plurality of metal species is a metal oxide.

Description

有機電界発光素子Organic electroluminescence device
本発明は、有機電界発光素子に関する。より詳しくは、電子機器の表示部等の表示装置や照明装置等としての利用可能な有機電界発光素子に関する。 The present invention relates to an organic electroluminescent device. More specifically, the present invention relates to an organic electroluminescent element that can be used as a display device such as a display unit of an electronic device, a lighting device, or the like.
表示用デバイスや照明に適用できる新しい発光素子として有機電界発光素子(有機EL素子)が期待されている。
有機EL素子は陽極と陰極との間に発光性有機化合物を含む1種または複数種の有機化合物を挟んだ構造を持ち、陽極から注入されたホールと陰極から注入された電子が、再結合する時のエネルギーを利用して発光性有機化合物を励起させ、発光を得るものである。有機EL素子は電流駆動型の素子であり、流れる電流をより効率的に活用するため、素子構造が種々改良されている。
An organic electroluminescent element (organic EL element) is expected as a new light emitting element applicable to a display device or illumination.
An organic EL element has a structure in which one or a plurality of organic compounds containing a light-emitting organic compound is sandwiched between an anode and a cathode, and holes injected from the anode and electrons injected from the cathode are recombined. The light-emitting organic compound is excited using the energy of time to obtain light emission. An organic EL element is a current-driven element, and various element structures have been improved in order to more efficiently utilize a flowing current.
最も基本的で数多く検討されている有機EL素子の構造は、安達らによって提案された3層構造のものであり(非特許文献1参照。)、陽極と陰極との間に正孔輸送層、発光層、電子輸送層をこの順で挟んだ構造をとっている。この提案以降、有機EL素子は3層構造を基本とし、より役割を分担することで、効率、寿命等の性能向上を目指して数多くの研究がなされている。この基本的な考えは、注入される電子はその時点で(電極中において)高いエネルギーを有していることに起因している。
それ故、有機EL素子は一般的に酸素や水によって劣化しやすく、これらの侵入を防ぐために厳密な封止が不可欠であった。劣化の原因としては、有機化合物への電子注入の容易さから、陰極として用いることができる材料がアルカリ金属やアルカリ金属化合物等、仕事関数の小さなものに限られていることや、使われる有機化合物自体が酸素・水と反応しやすいことが挙げられる。厳密な封止を施すことにより、有機EL素子は他の発光素子と比べて優位となったが、同時に安価、フレキシブルといった特長を損なうものであった。
The structure of the organic EL element most fundamentally studied is a three-layer structure proposed by Adachi et al. (See Non-Patent Document 1), a hole transport layer between the anode and the cathode, The light emitting layer and the electron transport layer are sandwiched in this order. Since this proposal, organic EL elements have been based on a three-layer structure, and many studies have been conducted with the aim of improving performance such as efficiency and lifetime by sharing more roles. This basic idea stems from the fact that the injected electrons have a high energy at that time (in the electrode).
Therefore, the organic EL element is generally easily deteriorated by oxygen or water, and strict sealing is indispensable in order to prevent these intrusions. The cause of the deterioration is that the materials that can be used as the cathode are limited to those with a small work function, such as alkali metals and alkali metal compounds, due to the ease of electron injection into the organic compounds, and the organic compounds used It is easy to react with oxygen and water. By applying strict sealing, the organic EL element is superior to other light emitting elements, but at the same time, the features such as low cost and flexibility are impaired.
本発明者に含まれる森井らは上記状況を鑑み、そして来たるべきフィルム素子を想定して、原理的に封止することなしに用いることができる発光素子を研究そして提案している(特許文献2参照。)。この素子では正孔輸送層、電子輸送層を無機酸化物に変えることで、陰極として導電性酸化物電極であるFTOやITO、陽極として金を使用することが可能になった。結果、アルカリ金属やアルカリ金属化合物等、仕事関数の小さな金属を用いる必要がなくなり、厳密な封止無しで発光させることが可能になった。すなわち、従来の有機EL素子とは全く異なる、有機無機ハイブリッド型の電界発光素子(HOILED素子)となった。 In view of the above situation, Morii et al. Included in the present inventor have studied and proposed a light-emitting element that can be used without being sealed in principle, assuming an upcoming film element (Patent Document) 2). In this element, by changing the hole transport layer and the electron transport layer to inorganic oxides, it became possible to use FTO or ITO, which are conductive oxide electrodes, as the cathode, and gold as the anode. As a result, it is not necessary to use a metal having a small work function such as an alkali metal or an alkali metal compound, and it is possible to emit light without strict sealing. That is, an organic-inorganic hybrid electroluminescent element (HOILED element) that is completely different from the conventional organic EL element is obtained.
HOILED素子の基本構造は、特許文献1に記載されているように、陽極と有機化合物層との間および陰極と有機化合物層の間にそれぞれ、正孔注入性金属酸化物層と電子注入製金属酸化物層を介挿してなる。好ましくは、正孔注入性金属酸化物層は酸化バナジウムまたは酸化モリブデンから成り、電子注入性酸化物層は酸化チタンから成る。
このうち、電子注入性金属酸化物層については種々検討がなされ、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、酸化ハフニウム等を用いた素子でも発光が確認されている(非特許文献2、3、4参照。)。しかしながら、いずれも電子注入能は十分ではなく、その結果、効率そして寿命も実用的には不十分であった。
As described in Patent Document 1, the basic structure of a HOILED element is a hole-injecting metal oxide layer and an electron-injecting metal made between an anode and an organic compound layer and between a cathode and an organic compound layer, respectively. It consists of an oxide layer. Preferably, the hole injecting metal oxide layer is made of vanadium oxide or molybdenum oxide, and the electron injecting oxide layer is made of titanium oxide.
Among these, various studies have been made on the electron-injecting metal oxide layer, and light emission has been confirmed even in elements using zinc oxide, zirconium oxide, magnesium oxide, hafnium oxide, and the like (see Non-Patent Documents 2, 3, and 4). .) However, none of them has sufficient electron injection ability, and as a result, efficiency and lifetime are practically insufficient.
また、電子注入性金属酸化物層と有機化合物層の間に正孔阻止性金属化合物層を設けることも検討されている。特許文献2には、電子注入性金属酸化物層である酸化チタン層の上に、正孔阻止性金属化合物層としてセシウム化合物層を形成する方法により、効率が向上したと報告されている。この事実も電子注入性能が不十分であるという証拠であるともいえる。結果、予想通り、セシウム化合物層を用いたHOILED素子は、初期特性は優れているものの駆動寿命が短いことが問題点として知られている。以上のことから、高効率でかつ長寿命のHOILED素子を実現するには、大気安定性が損なわれないように、電子注入性を向上させる必要がある。 In addition, providing a hole blocking metal compound layer between the electron injecting metal oxide layer and the organic compound layer has been studied. Patent Document 2 reports that the efficiency is improved by a method of forming a cesium compound layer as a hole blocking metal compound layer on a titanium oxide layer which is an electron injecting metal oxide layer. This fact can also be said to be evidence that the electron injection performance is insufficient. As a result, as expected, a HOILED element using a cesium compound layer is known to have a short driving life although it has excellent initial characteristics. From the above, in order to realize a highly efficient and long-lived HOILED element, it is necessary to improve the electron injection property so as not to impair the atmospheric stability.
有機化合物層としては緑色発光を示すポリ(9,9-ジオクチルフルオレン-alt-ベンゾチアジアゾール)が主に検討されてきた。他の発光色を検討した例としては、非特許文献3に電子注入性金属酸化物層として酸化ジルコニウムを用いた素子で青色、赤色、緑色ポリマーの発光特性について書かれているが、緑色以外は発光開始電圧が高く、効率が低いものしか得られていない。このように、報告されているHOILED素子(特に青色発光素子)は駆動電圧が高く、効率が低いもので、実用的に十分とはいえない状況であった。 As the organic compound layer, poly (9,9-dioctylfluorene-alt-benzothiadiazole) that emits green light has been mainly studied. As an example of examining other emission colors, Non-Patent Document 3 describes the emission characteristics of blue, red, and green polymers in an element using zirconium oxide as an electron injecting metal oxide layer. Only the light emission starting voltage is high and the efficiency is low. As described above, the reported HOILED elements (particularly blue light emitting elements) have high driving voltage and low efficiency, and are not practically sufficient.
特開2007-53286号公報JP 2007-53286 A 特開2009-70954号公報JP 2009-70954 A
上記のように、有機EL素子について種々の検討がなされ、封止することなしに用いることができるHOILED素子についても、素子の構成や各層を構成する材料について種々の検討がなされている。しかしながら、HOILED素子は従来の有機EL素子に比べ、輝度、発光効率や駆動寿命等の特性の点で未だ充分とはいえないものである。元来、有機電界発光素子は薄く、表示装置として用いた場合には、現在主流となっている液晶やプラズマの表示装置に比べ、高輝度、高精細な表示が可能となり、液晶表示装置に比べて視野角も広い等の優れた特徴を有しているため、今後テレビや携帯電話のディスプレイ等としての利用の拡大が見込まれ、さらに、昨今のフレキシブルデバイスへの機運の高まりもあり、封止構造を劇的に軽減できるHOILED素子の特性向上は急激に求められてきている。 As described above, various studies have been made on organic EL devices, and various studies have been conducted on the HOILED devices that can be used without sealing, as well as the constitution of the devices and the materials constituting each layer. However, the HOILED element is still not sufficient in terms of characteristics such as luminance, light emission efficiency, and driving life as compared with the conventional organic EL element. Originally, the organic electroluminescent element is thin, and when used as a display device, it is possible to display with high brightness and high definition compared with the liquid crystal and plasma display devices which are currently mainstream, compared with the liquid crystal display device. In addition, it has excellent features such as a wide viewing angle, so it is expected that it will be used as a display for TVs and mobile phones in the future. Improvement in the characteristics of HOILED elements that can dramatically reduce the structure has been rapidly demanded.
本発明は、上記現状に鑑みてなされたものであり、輝度、発光効率や駆動寿命に優れる有機無機ハイブリッド型の有機電界発光素子を提供することを目的とする。 The present invention has been made in view of the above-described present situation, and an object thereof is to provide an organic-inorganic hybrid organic electroluminescent element that is excellent in luminance, luminous efficiency, and driving life.
本発明者は、有機電界発光素子の構成や用いる材料について種々検討したところ、陽極と陰極との間に複数の層が積層された構造を有する有機電界発光素子において、陽極と陰極との間に1層又は複数層の有機化合物層を有し、更に陽極と有機化合物層との間及び/又は陰極と有機化合物層との間に複数の金属種を含む層を有し、該複数の金属種の少なくとも一つが金属酸化物である構造を有するものとすると、輝度が高く、高い発光効率を示し、かつ駆動寿命の長い有機電界発光素子が得られることを見出し、本発明に到達したものである。 The present inventor has made various studies on the configuration and materials used for the organic electroluminescent device. As a result, in the organic electroluminescent device having a structure in which a plurality of layers are laminated between the anode and the cathode, the organic electroluminescent device is provided between the anode and the cathode. It has one or more organic compound layers, and further includes a layer containing a plurality of metal species between the anode and the organic compound layer and / or between the cathode and the organic compound layer, and the plurality of metal species It has been found that an organic electroluminescent device having high luminance, high luminous efficiency, and long driving life can be obtained by having at least one of the metal oxides as a structure, and the present invention has been achieved. .
すなわち本発明は、陽極と陰極との間に複数の層が積層された構造を有する有機電界発光素子であって、上記有機電界発光素子は、陽極と陰極との間に1層又は複数層の有機化合物層を有し、更に上記陽極と有機化合物層との間及び/又は陰極と有機化合物層との間に複数の金属種を含む層を有し、該複数の金属種の少なくとも一つは、金属酸化物であることを特徴とする有機電界発光素子である。
以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
That is, the present invention is an organic electroluminescent device having a structure in which a plurality of layers are laminated between an anode and a cathode, and the organic electroluminescent device has one or more layers between the anode and the cathode. An organic compound layer, and a layer containing a plurality of metal species between the anode and the organic compound layer and / or between the cathode and the organic compound layer, wherein at least one of the plurality of metal species is An organic electroluminescent element characterized by being a metal oxide.
The present invention is described in detail below.
A combination of two or more preferred embodiments of the present invention described below is also a preferred embodiment of the present invention.
本発明の有機電界発光素子は、陽極、陰極、1層又は複数層の有機化合物層、複数の金属種を含み、該複数の金属種の少なくとも一つが金属酸化物である層(以下においては、複数金属種含有層ともいう)を有する。
本発明の有機電界発光素子は、複数の金属種を含み、該複数の金属種の少なくとも一つが金属酸化物である層を陽極と有機化合物層との間及び/又は陰極と有機化合物層との間に有することで、発光のために必要な陰極や陽極からの電子や正孔の移動を円滑にすすめることができるため、優れた発光効率を示すことができ、その結果として駆動寿命も長いものである。
本発明の有機電界発光素子は、陽極、陰極、1層又は複数層の有機化合物層、及び、複数の金属種を含み、該複数の金属種の少なくとも一つが金属酸化物である層を有する限り、これらの各層の間にその他の層を有していてもよい。
The organic electroluminescent element of the present invention includes an anode, a cathode, one or more organic compound layers, and a plurality of metal species, and at least one of the plurality of metal species is a metal oxide (hereinafter, Also referred to as a multiple metal species-containing layer).
The organic electroluminescent device of the present invention includes a plurality of metal species, and a layer in which at least one of the plurality of metal species is a metal oxide is provided between the anode and the organic compound layer and / or between the cathode and the organic compound layer. By having it in between, the movement of electrons and holes from the cathode and anode necessary for light emission can be promoted smoothly, so that excellent light emission efficiency can be shown, and as a result, the driving life is also long. is there.
The organic electroluminescent element of the present invention includes an anode, a cathode, one or more organic compound layers, and a plurality of metal species, and at least one of the plurality of metal species is a metal oxide. Other layers may be provided between these layers.
上記複数金属種含有層は、混合金属酸化物層、積層金属酸化物層、又は、金属酸化物層上に金属種を有する構造を含む層のいずれかであることが好ましい。複数金属種含有層がこれらのいずれかであることで、本発明の有機電界発光素子がより発光効率、及び、素子の駆動寿命に優れたものとなる。
以下においては、混合金属酸化物層、積層金属酸化物層、及び、金属酸化物層上に金属種を有する構造を含む層について順に説明する。
The multiple metal species-containing layer is preferably any of a mixed metal oxide layer, a laminated metal oxide layer, or a layer including a structure having a metal species on the metal oxide layer. When the multiple metal species-containing layer is any one of these, the organic electroluminescent element of the present invention is more excellent in luminous efficiency and driving life of the element.
Hereinafter, a mixed metal oxide layer, a stacked metal oxide layer, and a layer including a structure having a metal species on the metal oxide layer will be described in order.
<混合金属酸化物層>
本発明で用いられる混合金属酸化物層とは、二種類以上の金属元素が原子レベルからサブミクロンレベルで互いに混ざり合って酸化物膜を構成した半導体または絶縁体薄膜である。混合金属酸化物層に含まれる混合金属酸化物は、(1)二種以上の金属元素がそれぞれに酸化物を形成し、それら二種以上の酸化物が混合されたもの、(2)後述するチタン酸バリウム等のように、二種類以上の金属元素を構成元素とする1つの金属酸化物、のいずれのものであってもよく、これらが混合されたものであってもよい。
<Mixed metal oxide layer>
The mixed metal oxide layer used in the present invention is a semiconductor or insulator thin film in which two or more kinds of metal elements are mixed with each other from the atomic level to the submicron level to form an oxide film. The mixed metal oxide included in the mixed metal oxide layer is (1) one in which two or more kinds of metal elements each form an oxide, and these two or more kinds of oxides are mixed, (2) described later. Any of one metal oxide having two or more kinds of metal elements as constituent elements, such as barium titanate, or a mixture of these may be used.
上記混合金属酸化物層を形成する金属元素としては、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、カドミウム、アルミニウム、ケイ素からなる群から選ばれることが好ましい。
すなわち、上記混合金属酸化物薄膜層に含まれる混合金属酸化物は、これらの金属元素から選択される少なくとも2種類の金属元素の酸化物を含むことが好ましい。金属元素を2種類含む場合、その組合せは特に制限されないが、マグネシウム、カルシウム、ストロンチウム、バリウム、ジルコニウム、ハフニウム、ニオブ、タンタル、クロム、マンガン、ニッケル、アルミニウム、ケイ素から選択される第1の金属元素と、チタン、バナジウム、モリブデン、タングステン、鉄、コバルト、銅、亜鉛、カドミウムから選択される第2の金属元素との組合せが好ましい。
The metal elements forming the mixed metal oxide layer include magnesium, calcium, strontium, barium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, cobalt, nickel, copper, It is preferably selected from the group consisting of zinc, cadmium, aluminum and silicon.
That is, the mixed metal oxide contained in the mixed metal oxide thin film layer preferably contains an oxide of at least two kinds of metal elements selected from these metal elements. When two kinds of metal elements are included, the combination is not particularly limited, but the first metal element selected from magnesium, calcium, strontium, barium, zirconium, hafnium, niobium, tantalum, chromium, manganese, nickel, aluminum, silicon And a combination of a second metal element selected from titanium, vanadium, molybdenum, tungsten, iron, cobalt, copper, zinc, and cadmium.
上記混合金属酸化物薄膜(層)の例として、Applied Physics Letters, 83, 2010 (2003).には、亜鉛とマグネシウムが原子レベルで混合した酸化物薄膜について記載されている。Journal of Physics D: Appled Physics, 42 (2009) 065421.には、カドミウムと亜鉛が原子レベルで混合した酸化物薄膜について記載されている。また、チタン酸バリウム、チタン酸ストロンチウム等の薄膜も本発明の混合金属酸化物薄膜層に該当する。上記のとおり、本発明の混合金属酸化物層としては、マグネシウム元素を含むことが望ましい。 As an example of the mixed metal oxide thin film (layer), Applied Physics Letters, 83, 2010 (2003). Describes an oxide thin film in which zinc and magnesium are mixed at an atomic level. Journal of Physics D: Applied Physics, 42 (2009) 065421. Describes an oxide thin film in which cadmium and zinc are mixed at an atomic level. Further, a thin film of barium titanate, strontium titanate or the like also corresponds to the mixed metal oxide thin film layer of the present invention. As described above, the mixed metal oxide layer of the present invention desirably contains magnesium element.
上記混合金属酸化物薄膜層において、混合の程度は、原子レベルで混ざっていることが好ましいが、サブミクロンレベルの偏析部分を形成していても本発明の効果が得られる。 In the mixed metal oxide thin film layer, the degree of mixing is preferably mixed at an atomic level, but the effect of the present invention can be obtained even when a segregation portion at a submicron level is formed.
上記混合金属酸化物層に含まれる金属元素の混合比率としては、各金属元素の割合が最も低いものでも、混合金属酸化物層に含まれる金属原子の総数に対して金属原子数が1原子%以上であることが好ましく、10原子%以上であることがより好ましい。
更に好ましくは、20原子%以上である。
As the mixing ratio of the metal elements contained in the mixed metal oxide layer, the number of metal atoms is 1 atomic% with respect to the total number of metal atoms contained in the mixed metal oxide layer even if the ratio of each metal element is the lowest. Preferably, it is preferably 10 atomic% or more.
More preferably, it is 20 atomic% or more.
上記混合金属酸化物層の膜厚は、1nm~数μm程度まで許容できるが、低電圧で駆動できる有機電界発光素子とするためには1nm~100nm程度が好ましい。
混合金属酸化物層の膜厚は、触針式段差計、分光エリプソメトリーにより測定することができる。
The mixed metal oxide layer can have a thickness of about 1 nm to several μm, but is preferably about 1 nm to 100 nm for an organic electroluminescent device that can be driven at a low voltage.
The film thickness of the mixed metal oxide layer can be measured by a stylus profilometer or spectroscopic ellipsometry.
上記混合金属酸化物層は、金属酸化物の溶液又は分散液を塗布して乾燥させることにより形成してもよく、酸化物ではない金属化合物の溶液又は分散液を塗布し、塗布した溶液又は分散液中の金属化合物を酸化させて金属酸化物とし、塗布液を乾燥させて形成してもよい。この場合、金属化合物を酸化させる操作と塗布液を乾燥させる操作とは別々に行ってもよく、同時に行ってもよい。
混合金属酸化物層の作成方法としては特に限定されず、公知の方法を適宜用いることができるが、ゾルゲル法、スプレー熱分解(SPD)法、原子層堆積(ALD)法、化学気相成長(CVD)法などが挙げられる。
The mixed metal oxide layer may be formed by applying a metal oxide solution or dispersion and drying, or applying a solution or dispersion of a metal compound that is not an oxide, and applying the solution or dispersion. The metal compound in the solution may be oxidized to form a metal oxide, and the coating solution may be dried. In this case, the operation of oxidizing the metal compound and the operation of drying the coating solution may be performed separately or simultaneously.
A method for forming the mixed metal oxide layer is not particularly limited, and a known method can be used as appropriate, but a sol-gel method, a spray pyrolysis (SPD) method, an atomic layer deposition (ALD) method, chemical vapor deposition ( CVD) method.
<積層金属酸化物層>
本発明で用いられる積層金属酸化物層とは、二種類以上の金属酸化物膜を積層した半導体または絶縁体積層薄膜である。
金属酸化物を構成する金属元素としては、上述した混合金属酸化物層を形成する金属元素と同様の元素の1種又は2種以上を用いることができる。これらの金属元素の酸化物の中でも、積層金属酸化物層を構成する層の少なくとも一つが、酸化マグネシウム、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、酸化ケイ素、酸化チタン、酸化亜鉛からなる群から選ばれる金属酸化物を含むことが望ましく、前記積層金属酸化物層を構成する層のうち、有機化合物層と接する層が、酸化マグネシウム、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、酸化ケイ素、酸化チタン、酸化亜鉛からなる群から選ばれる金属酸化物を含むことが望ましい。
<Laminated metal oxide layer>
The laminated metal oxide layer used in the present invention is a semiconductor or insulator laminated thin film in which two or more kinds of metal oxide films are laminated.
As a metal element which comprises a metal oxide, the 1 type (s) or 2 or more types of the same element as the metal element which forms the mixed metal oxide layer mentioned above can be used. Among these metal element oxides, at least one of the layers constituting the laminated metal oxide layer is selected from the group consisting of magnesium oxide, aluminum oxide, zirconium oxide, hafnium oxide, silicon oxide, titanium oxide, and zinc oxide. Among the layers constituting the laminated metal oxide layer, the layer in contact with the organic compound layer is preferably magnesium oxide, aluminum oxide, zirconium oxide, hafnium oxide, silicon oxide, titanium oxide, zinc oxide. It is desirable to include a metal oxide selected from the group consisting of
積層金属酸化物層の例としては、酸化チタン/酸化亜鉛、酸化チタン/酸化マグネシウム、酸化チタン/酸化ジルコニウム、酸化チタン/酸化アルミニウム、酸化チタン/酸化ハフニウム、酸化チタン/酸化ケイ素、酸化亜鉛/酸化マグネシウム、酸化亜鉛/酸化ジルコニウム、酸化亜鉛/酸化ハフニウム、酸化亜鉛/酸化ケイ素などの二層構造の場合や、酸化チタン/酸化亜鉛/酸化マグネシウム、酸化チタン/酸化亜鉛/酸化ジルコニウム、酸化チタン/酸化亜鉛/酸化アルミニウム、酸化チタン/酸化亜鉛/酸化ハフニウム、酸化チタン/酸化亜鉛/酸化ケイ素などの三層構造の場合等が挙げられる。 Examples of laminated metal oxide layers include titanium oxide / zinc oxide, titanium oxide / magnesium oxide, titanium oxide / zirconium oxide, titanium oxide / aluminum oxide, titanium oxide / hafnium oxide, titanium oxide / silicon oxide, and zinc oxide / oxide. In the case of a two-layer structure such as magnesium, zinc oxide / zirconium oxide, zinc oxide / hafnium oxide, zinc oxide / silicon oxide, titanium oxide / zinc oxide / magnesium oxide, titanium oxide / zinc oxide / zirconium oxide, titanium oxide / oxidation Examples include a three-layer structure of zinc / aluminum oxide, titanium oxide / zinc oxide / hafnium oxide, titanium oxide / zinc oxide / silicon oxide, and the like.
上記積層金属酸化物層が陰極と有機化合物層の間に形成される場合、積層される複数の金属酸化物層のうち、陰極に最も近い側の層が、チタン、バナジウム、モリブデン、タングステン、鉄、コバルト、銅、亜鉛、カドミウムのいずれかの酸化物の層であり、有機化合物層に最も近い側の層が、マグネシウム、カルシウム、ストロンチウム、バリウム、ジルコニウム、ハフニウム、ニオブ、タンタル、クロム、マンガン、ニッケル、アルミニウム、ケイ素のいずれかの酸化物の層であることが好ましい。このような層の構成であることで、陰極から有機化合物への電子注入と、有機化合物から流れてくるホールのブロッキングが両立され、高い輝度と効率が実現できる。 When the laminated metal oxide layer is formed between the cathode and the organic compound layer, the layer closest to the cathode among the plurality of laminated metal oxide layers is titanium, vanadium, molybdenum, tungsten, iron , Cobalt, copper, zinc, cadmium oxide layer, the layer closest to the organic compound layer is magnesium, calcium, strontium, barium, zirconium, hafnium, niobium, tantalum, chromium, manganese, A layer of an oxide of nickel, aluminum, or silicon is preferable. With such a layer structure, electron injection from the cathode to the organic compound and blocking of holes flowing from the organic compound are compatible, and high luminance and efficiency can be realized.
上記積層金属酸化物層を構成する各薄膜の膜厚は、1nm~数μm程度まで許容できるが、低電圧で駆動できる有機電界発光素子とするためには1nm~100nm程度が好ましい。
積層金属酸化物層を構成する各薄膜の膜厚は、触針式段差計、分光エリプソメトリーにより測定することができる。
The thickness of each thin film constituting the laminated metal oxide layer can be allowed to be about 1 nm to several μm, but is preferably about 1 nm to 100 nm in order to obtain an organic electroluminescent device that can be driven at a low voltage.
The film thickness of each thin film constituting the laminated metal oxide layer can be measured by a stylus type step meter or spectroscopic ellipsometry.
<金属酸化物層上に金属種を有する構造を含む層>
金属酸化物層上に金属種を有する構造を含む層において、金属酸化物層上に金属種を有する構造とは、金属酸化物層上に金属種が存在していればよく、金属酸化物層の全体が金属種の層によって覆われていてもよく、金属酸化物層の一部に金属種の層によって覆われていない部分があってもよく、また、金属酸化物層上に金属種が点在しているものであってもよい。また、金属酸化物層上に金属種を有する構造が含まれる限り、更に他の層を含んでいてもよく、金属種が2つの金属酸化物層に挟まれた構造のものであってもよい。
また金属種は、単体であってもよく、金属化合物であってもよい。
<Layer including structure having metal species on metal oxide layer>
In a layer including a structure having a metal species on the metal oxide layer, the structure having a metal species on the metal oxide layer is sufficient if the metal species exists on the metal oxide layer. The metal oxide layer may be entirely covered by the metal seed layer, or a part of the metal oxide layer may not be covered by the metal seed layer, and the metal seed may be formed on the metal oxide layer. It may be scattered. Moreover, as long as the structure which has a metal seed | species on a metal oxide layer is included, another layer may be further included and the thing of the structure where the metal seed | species was pinched | interposed into two metal oxide layers may be sufficient. .
The metal species may be a simple substance or a metal compound.
本発明において、金属酸化物層上に金属種を有する構造を含む層は、金属酸化物層と有機化合物層との間にマグネシウム化合物層を有する層であるか、又は、仕事関数が4.0eV以下の金属の単体、又は、その酸化物が、金属酸化物の2つの層に挟まれた構造を有する層であることが好ましい。これらの層について、以下に順に説明する。 In the present invention, the layer including a structure having a metal species on the metal oxide layer is a layer having a magnesium compound layer between the metal oxide layer and the organic compound layer, or has a work function of 4.0 eV. It is preferable that the following metal simple substance or its oxide is a layer having a structure sandwiched between two layers of metal oxide. These layers will be described in order below.
<金属酸化物層と有機化合物層との間にマグネシウム化合物層を有する層>
上記金属酸化物層上に金属種を有する構造を含む層が、金属酸化物層と有機化合物層との間にマグネシウム化合物層を有する層である場合、金属酸化物層を形成する金属元素としては、上述した混合金属酸化物層を形成する金属元素と同様の元素の1種又は2種以上を用いることができる。また、金属酸化物層は、1層であってもよく、複数の層からなるものであってもよい。
マグネシウム化合物層は、少なくとも一種以上のマグネシウム化合物を含む層であり、マグネシウム化合物の例としては酸化マグネシウム、炭酸マグネシウム、酢酸マグネシウム、水酸化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、フッ化マグネシウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、マグネシウムアセチルアセトナート等が挙げられる。前記マグネシウム化合物層は単体であっても、これらの混合物であっても良く、これら以外の化合物が混在していても良い。なお、金属酸化物層が複数存在する場合は、少なくとも1つの前記金属酸化物層と前記有機化合物層との間にマグネシウム化合物層を有していればよい。
<Layer having a magnesium compound layer between a metal oxide layer and an organic compound layer>
When the layer containing a structure having a metal species on the metal oxide layer is a layer having a magnesium compound layer between the metal oxide layer and the organic compound layer, the metal element that forms the metal oxide layer is One or more of the same elements as the metal elements forming the mixed metal oxide layer described above can be used. The metal oxide layer may be a single layer or a plurality of layers.
The magnesium compound layer is a layer containing at least one magnesium compound. Examples of the magnesium compound include magnesium oxide, magnesium carbonate, magnesium acetate, magnesium hydroxide, magnesium sulfate, magnesium nitrate, magnesium fluoride, magnesium chloride, odor Magnesium iodide, magnesium iodide, magnesium acetylacetonate, etc. are mentioned. The magnesium compound layer may be a simple substance, a mixture thereof, or a compound other than these. Note that in the case where there are a plurality of metal oxide layers, a magnesium compound layer may be provided between at least one of the metal oxide layers and the organic compound layer.
<仕事関数が4.0eV以下の金属の単体、又は、その酸化物が、金属酸化物の2つの層に挟まれた構造を有する層>
以下においては、仕事関数が4.0eV以下の金属の単体、又は、その酸化物を仕事関数が4.0eV以下の金属種ともいい、仕事関数が4.0eV以下の金属の単体、又は、その酸化物が、金属酸化物の2つの層に挟まれた構造を有する層を積層金属化合物層ともいう。
<A metal having a work function of 4.0 eV or less or a layer having a structure in which an oxide thereof is sandwiched between two layers of metal oxide>
In the following, a single metal having a work function of 4.0 eV or less, or an oxide thereof is also referred to as a metal species having a work function of 4.0 eV or less, or a single metal having a work function of 4.0 eV or less, or A layer having a structure in which an oxide is sandwiched between two layers of metal oxide is also referred to as a laminated metal compound layer.
上記積層金属化合物層は、仕事関数が4.0eV以下の金属種が、金属酸化物の2つの層に挟まれた構造を有するものであるが、ここで、金属酸化物の2つの層に挟まれた構造とは、金属酸化物の2つの層の間に、仕事関数が4.0eV以下の金属種によって形成される層があり、当該層によって金属酸化物の2つの層が隔てられ、金属酸化物の2つの層が直接には接触していない構造であってもよく、金属酸化物の一方の層上に仕事関数が4.0eV以下の金属種が点在した海島構造を形成している場合のように、金属酸化物の一方の層上に仕事関数が4.0eV以下の金属種で覆われている箇所と覆われていない箇所とがあり、このような金属酸化物の一方の層がもう一方の金属酸化物の層で覆われているような構造、すなわち、仕事関数が4.0eV以下の金属種で覆われていない箇所では金属酸化物の2つの層が接触しているような構造であってもよい。したがって、金属酸化物の2つの層の間に仕事関数が4.0eV以下の金属種が存在する限り、金属酸化物の2つの層に挟まれた構造に該当する。重要なことは、有機化合物層側には仕事関数が4.0eV以下の金属種は直接は接しておらず、界面での劣化を受けづらい一方、金属酸化物内で酸化物に変化することで生じる新規な電子準位が、周りの金属酸化物の補間準位として働くことである。
このように、金属酸化物の2つの層の間に仕事関数が4.0eV以下の金属種が存在することで、有機電界発光素子が高い輝度を有するものとなる。また、金属酸化物の2つの層の間に仕事関数が4.0eV以下の金属種が挟まれた積層金属化合物層を有することで、有機電界発光素子が駆動寿命に優れたものとなる。
The laminated metal compound layer has a structure in which a metal species having a work function of 4.0 eV or less is sandwiched between two layers of metal oxide. Here, the layer is sandwiched between two layers of metal oxide. In this structure, there is a layer formed by a metal species having a work function of 4.0 eV or less between two layers of metal oxide, and the two layers of metal oxide are separated by the layer. A structure in which two layers of oxide are not in direct contact may be formed, and a sea island structure in which a metal species having a work function of 4.0 eV or less is scattered on one layer of metal oxide is formed. As in the case of the metal oxide, there are a portion covered with a metal species having a work function of 4.0 eV or less and a portion not covered on one layer of the metal oxide. A structure in which one layer is covered with another metal oxide layer, i.e. There may be a structure such as a portion not covered with the following metal species 4.0eV are in contact two layers of metal oxides. Therefore, as long as a metal species having a work function of 4.0 eV or less exists between the two layers of the metal oxide, this corresponds to a structure sandwiched between the two layers of the metal oxide. What is important is that the metal compound having a work function of 4.0 eV or less is not in direct contact with the organic compound layer side, and is difficult to be deteriorated at the interface, while changing to an oxide in the metal oxide. The new electronic level that occurs is to act as an interpolated level of the surrounding metal oxide.
Thus, the presence of a metal species having a work function of 4.0 eV or less between the two layers of metal oxide makes the organic electroluminescent device have high luminance. Moreover, an organic electroluminescent element becomes the thing excellent in the drive life by having the laminated metal compound layer by which the metal seed | species whose work function is 4.0 eV or less was pinched | interposed between two layers of metal oxide.
上記のとおり、仕事関数が4.0eV以下の金属種は、金属酸化物の層の全体を覆う層を形成していてもよく、海島構造のものであってもよいが、金属酸化物の層の面積の50%以上が、仕事関数が4.0eV以下の金属種によって覆われていることが好ましい。このような割合であると、有機電界発光素子が輝度に優れたものとなる。より好ましくは、金属酸化物の層の面積の80%以上が、仕事関数が4.0eV以下の金属種によって覆われていることである。
また、仕事関数が4.0eV以下の金属種によって覆われている部分において、仕事関数が4.0eV以下の金属種の層の厚みは、5nm以下であることが好ましい。より好ましくは、1nm以下である。
仕事関数が4.0eV以下の金属種の層の厚みは、厚膜の触針式段差計による測定から見積もった値を用いた水晶振動子膜厚計により成膜時に測定することで決定できる。
As described above, the metal species having a work function of 4.0 eV or less may form a layer covering the entire metal oxide layer or may have a sea-island structure. It is preferable that 50% or more of the area is covered with a metal species having a work function of 4.0 eV or less. With such a ratio, the organic electroluminescent element is excellent in luminance. More preferably, 80% or more of the area of the metal oxide layer is covered with a metal species having a work function of 4.0 eV or less.
Further, in a portion covered with a metal species having a work function of 4.0 eV or less, the thickness of the metal species layer having a work function of 4.0 eV or less is preferably 5 nm or less. More preferably, it is 1 nm or less.
The thickness of the metal seed layer having a work function of 4.0 eV or less can be determined by measuring at the time of film formation with a crystal thickness meter using a value estimated from the measurement with a stylus type step gauge of the thick film.
上記金属酸化物又は硫化物の層を形成する金属元素としては、上述した混合金属酸化物層を形成する金属元素と同様の元素の1種又は2種以上を用いることができる。
金属酸化物の2つの層を形成する金属元素は同一の元素であってもよく、異なっていてもよい。
As the metal element forming the metal oxide or sulfide layer, one or more of the same elements as the metal element forming the mixed metal oxide layer described above can be used.
The metal elements forming the two layers of metal oxide may be the same element or different.
上記仕事関数が4.0eV以下の金属種を挟む金属酸化物の2つの層のうち、少なくとも一方は、マグネシウム、アルミニウム、ジルコニウム、ハフニウム、ケイ素、チタン、亜鉛からなる群から選ばれる金属元素のいずれかの酸化物を含むことが好ましい。より好ましくは、酸化マグネシウム、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、酸化ケイ素、酸化チタン、酸化亜鉛からなる群から選ばれる金属酸化物のいずれかを含むことである。
有機電界発光素子では、陰極から供給された電子は発光層のLUMOに入り、このLUMOの電子がHOMOに移る(正孔と再結合する)際に、LUMOとHOMOとのエネルギー差を光として放出し発光する。この発光のためには、陰極から発光層への電子の移動を円滑にすすめる必要があるため、陰極と発光層との間に金属化合物層(積層金属化合物層)が存在する場合、金属化合物層の伝導帯のエネルギー準位が有機層のLUMOのエネルギー準位に近いことが必要となる。ここで、なるべく金属化合物層の伝導帯のエネルギー準位が高いものを用いることで、有機層を形成する有機化合物の選択の幅も広げることができる。上記のような金属元素の酸化物は伝導帯のエネルギー準位が高いものであるため、これらの金属元素を用いて形成した金属化合物層を電子輸送層として用いると、陰極から発光層への電子の移動を円滑にすすめることができ、有機電界発光素子を発光効率に優れたものとすることができ、また有機層を形成する有機化合物の選択の幅も広げることができる。
これは、上述した混合金属酸化物層、積層金属酸化物層、及び、金属酸化物層と有機化合物層との間にマグネシウム化合物層を有する層の場合でも同様であり、これらの層が、上記のような伝導帯のエネルギー準位が高い金属元素の酸化物を含むものである場合、これらの層を電子輸送層として用いることで上記と同様の効果を得ることができる。
At least one of the two metal oxide layers sandwiching a metal species having a work function of 4.0 eV or less is any of metal elements selected from the group consisting of magnesium, aluminum, zirconium, hafnium, silicon, titanium, and zinc. It is preferable to contain such an oxide. More preferably, it contains any metal oxide selected from the group consisting of magnesium oxide, aluminum oxide, zirconium oxide, hafnium oxide, silicon oxide, titanium oxide, and zinc oxide.
In the organic electroluminescence device, electrons supplied from the cathode enter LUMO of the light emitting layer, and when the LUMO electrons move to HOMO (recombine with holes), the energy difference between LUMO and HOMO is emitted as light. Emits light. For this light emission, it is necessary to smoothly move the electrons from the cathode to the light emitting layer. Therefore, when a metal compound layer (laminated metal compound layer) exists between the cathode and the light emitting layer, the metal compound layer It is necessary that the energy level of the conduction band is close to the LUMO energy level of the organic layer. Here, the range of selection of the organic compound forming the organic layer can be widened by using a metal compound layer having a conduction band energy level as high as possible. Since oxides of the above metal elements have high energy levels in the conduction band, when a metal compound layer formed using these metal elements is used as the electron transport layer, electrons from the cathode to the light emitting layer are used. The organic electroluminescence device can be made excellent in luminous efficiency, and the range of selection of the organic compound forming the organic layer can be expanded.
This is the same in the case of the mixed metal oxide layer, the laminated metal oxide layer, and the layer having a magnesium compound layer between the metal oxide layer and the organic compound layer. In the case of containing an oxide of a metal element having a high energy level in the conduction band as described above, the same effect as described above can be obtained by using these layers as an electron transport layer.
また仕事関数が4.0eV以下の金属種を挟む金属酸化物の2つの層のうち、有機化合物層がある側の層が上記好ましい元素のいずれかを含むことが好ましく、これらの金属元素の酸化物を含むことがより好ましい。このような構造であることにより、金属化合物層から有機層への電子の移動をより円滑に行うことができる。
また、仕事関数が4.0eV以下の金属種を挟む金属酸化物の2つの層の両方が上記金属元素のいずれかの酸化物を含むことが更に好ましく、金属酸化物の2つの層の両方が上記金属酸化物のいずれかを含むことが特に好ましい。
Of the two layers of metal oxide sandwiching a metal species having a work function of 4.0 eV or less, the layer on the side having the organic compound layer preferably contains any of the above-mentioned preferred elements. It is more preferable that a product is included. With such a structure, electrons can be more smoothly transferred from the metal compound layer to the organic layer.
Further, it is more preferable that both of the two layers of metal oxide sandwiching a metal species having a work function of 4.0 eV or less include an oxide of any of the above metal elements, and both of the two layers of metal oxide are It is particularly preferable that any one of the above metal oxides is included.
上記金属酸化物の層は、1層のみからなってもよく、複数の層からなってもよい。すなわち、仕事関数が4.0eV以下の金属種を挟む金属酸化物の層は、それぞれ1層の金属酸化物の層からなってもよく、複数の金属酸化物の層からなってもよい。
本発明の有機電界発光素子が含む積層金属化合物層において、仕事関数が4.0eV以下の金属種を挟む金属酸化物の層の組み合わせの例としては、酸化チタン/酸化亜鉛、酸化チタン/酸化マグネシウム、酸化チタン/酸化ジルコニウム、酸化チタン/酸化アルミニウム、酸化チタン/酸化ハフニウム、酸化チタン/酸化ケイ素、酸化亜鉛/酸化マグネシウム、酸化亜鉛/酸化ジルコニウム、酸化亜鉛/酸化ハフニウム、酸化亜鉛/酸化ケイ素等のような二層のものや、酸化チタン/酸化亜鉛/酸化マグネシウム、酸化チタン/酸化亜鉛/酸化ジルコニウム、酸化チタン/酸化亜鉛/酸化アルミニウム、酸化チタン/酸化亜鉛/酸化ハフニウム、酸化チタン/酸化亜鉛/酸化ケイ素等のような三層のものが挙げられる。
金属酸化物の層の組み合わせが上記二層のものの場合、これら二層の間に仕事関数が4.0eV以下の金属種が挟まれて本発明の積層金属化合物層が形成される。金属酸化物の層の組み合わせが上記三層のものの場合、三層のうちのいずれかの二層の間に仕事関数が4.0eV以下の金属種が挟まれて本発明の積層金属化合物層が形成される。
上述した金属酸化物の層を形成する金属元素の中でも、これらのものを用いることで、積層金属化合物層の伝導帯のエネルギー準位をより高いものとすることができるため好ましい。
The metal oxide layer may consist of only one layer or a plurality of layers. That is, each of the metal oxide layers sandwiching a metal species having a work function of 4.0 eV or less may be composed of one metal oxide layer or a plurality of metal oxide layers.
Examples of combinations of metal oxide layers sandwiching a metal species having a work function of 4.0 eV or less in the laminated metal compound layer included in the organic electroluminescent element of the present invention include titanium oxide / zinc oxide, titanium oxide / magnesium oxide. , Titanium oxide / zirconium oxide, titanium oxide / aluminum oxide, titanium oxide / hafnium oxide, titanium oxide / silicon oxide, zinc oxide / magnesium oxide, zinc oxide / zirconium oxide, zinc oxide / hafnium oxide, zinc oxide / silicon oxide, etc. Such as two layers, titanium oxide / zinc oxide / magnesium oxide, titanium oxide / zinc oxide / zirconium oxide, titanium oxide / zinc oxide / aluminum oxide, titanium oxide / zinc oxide / hafnium oxide, titanium oxide / zinc oxide / The thing of three layers like a silicon oxide etc. is mentioned.
When the combination of the metal oxide layers is the above two layers, a metal species having a work function of 4.0 eV or less is sandwiched between the two layers to form the laminated metal compound layer of the present invention. When the combination of the metal oxide layers is the above three layers, a metal species having a work function of 4.0 eV or less is sandwiched between any two of the three layers, so that the laminated metal compound layer of the present invention It is formed.
Among the metal elements forming the metal oxide layer described above, it is preferable to use these elements because the energy level of the conduction band of the laminated metal compound layer can be made higher.
上記金属酸化物の層の厚みは、1nm~10μmまで許容できるが、低電圧で駆動できる有機電界発光素子とするためには1nm~100nmが好ましい。より好ましくは、1nm~10nmである。
金属酸化物の層、積層金属酸化物層の厚みは、触針式段差計、分光エリプソメトリーにより測定することができる。
The metal oxide layer can have a thickness of 1 nm to 10 μm, but is preferably 1 nm to 100 nm for an organic electroluminescent device that can be driven at a low voltage. More preferably, it is 1 nm to 10 nm.
The thicknesses of the metal oxide layer and the laminated metal oxide layer can be measured by a stylus profilometer or spectroscopic ellipsometry.
上記仕事関数が4.0eV以下の金属は、アルカリ金属及び/又はアルカリ土類金属であることが好ましい。アルカリ金属としては、Li、Na、K、Rb、Cs等、アルカリ土類金属としては、Mg、Ca、Sr、Ba等が挙げられ、これらの1種又は2種以上を用いることができる。
これらの中でも、仕事関数が4.0eV以下の金属が、仕事関数が3.0eV以上の金属から選択される少なくとも1種であることは、本発明の好適な実施形態の1つである。これらの中でも、Mgがより好ましい。
上述したように、金属元素の酸化物の2つの層の間に仕事関数が4.0eV以下の金属種が存在することで、有機電界発光素子の発光の輝度を大きくすることができる。また、上述した伝導帯のエネルギー準位の高い金属元素の酸化物を用いる場合、仕事関数が4.0eV以下の金属の単体又は、その酸化物をこれらの金属元素の酸化物の層で挟んだ積層金属化合物層全体としての伝導帯のエネルギー準位も高いものとなり、陰極と発光層との間に配置する電子輸送層として好適に用いることができるものとなる。更に、上述した伝導帯のエネルギー準位の高い金属元素の酸化物や硫化物の層の間にアルカリ金属及び/又はアルカリ土類金属が挟まれた構造の積層金属化合物層を有すると、本発明の有機電界発光素子が駆動寿命により優れたものとなる。
The metal having a work function of 4.0 eV or less is preferably an alkali metal and / or an alkaline earth metal. Examples of the alkali metal include Li, Na, K, Rb, and Cs. Examples of the alkaline earth metal include Mg, Ca, Sr, and Ba, and one or more of these can be used.
Among these, it is one of the preferred embodiments of the present invention that the metal having a work function of 4.0 eV or less is at least one selected from metals having a work function of 3.0 eV or more. Among these, Mg is more preferable.
As described above, the presence of a metal species having a work function of 4.0 eV or less between two layers of an oxide of a metal element can increase the luminance of light emission of the organic electroluminescent element. In addition, in the case of using a metal element oxide having a high energy level in the above-described conduction band, a single metal having a work function of 4.0 eV or less or the oxide is sandwiched between oxide layers of these metal elements. The energy level of the conduction band of the entire laminated metal compound layer is also high, and it can be suitably used as an electron transport layer disposed between the cathode and the light emitting layer. Furthermore, the present invention has a multilayer metal compound layer having a structure in which an alkali metal and / or alkaline earth metal is sandwiched between an oxide or sulfide layer of a metal element having a high energy level in the conduction band described above. This organic electroluminescent element is superior in driving life.
本発明の有機電界発光素子が含む仕事関数が4.0eV以下の金属の単体、又は、その酸化物のうち少なくとも1種は、単体、又は、酸化物のいずれか1種であってもよく、2種又は3種であってもよい。また、酸化物である場合、予め酸化物であるものを金属酸化物の層の上に付着させてもよく、仕事関数が4.0eV以下の金属種を付着させる過程において、酸化物となってもよい。 The organic electroluminescent element of the present invention contains a simple substance of a metal having a work function of 4.0 eV or less, or at least one of its oxides may be either a simple substance or an oxide, Two or three types may be used. In the case of an oxide, an oxide may be deposited on the metal oxide layer in advance, and in the process of depositing a metal species having a work function of 4.0 eV or less, it becomes an oxide. Also good.
金属酸化物の層の上に、仕事関数が4.0eV以下の金属種を付着させる(又は層を形成する)方法としては、後述する金属酸化物の層の作製方法と同様の方法を用いることができる。
また別の方法として、仕事関数が4.0eV以下の金属の有機化合物塩を溶媒に溶解して得られた溶液を金属酸化物又は硫化物の層の上に塗布して塗膜を形成した後、加熱して溶媒を除去するとともに仕事関数が4.0eV以下の金属の有機化合物塩を仕事関数が4.0eV以下の金属の酸化物とする方法も用いることができる。この場合、溶媒は、後述する有機化合物層を塗布により形成する場合に用いることができる溶媒の中から、仕事関数が4.0eV以下の金属の有機化合物塩を溶解することができる溶媒を適宜選択して用いることができる。また、仕事関数が4.0eV以下の金属の有機化合物塩の溶液を塗布する方法としては、後述する有機化合物層を塗布により形成する場合と同様の方法を用いることができる。
仕事関数が4.0eV以下の金属の有機化合物塩の溶液を塗布した後、加熱する温度としては、溶媒が揮発し、仕事関数が4.0eV以下の金属の有機化合物塩が酸化物となる限り適宜設定することができるが、200~450℃が好ましい。
As a method for depositing (or forming a layer of) a metal species having a work function of 4.0 eV or less on the metal oxide layer, a method similar to the method for forming the metal oxide layer described later is used. Can do.
As another method, after a solution obtained by dissolving a metal organic compound salt having a work function of 4.0 eV or less in a solvent is applied on a metal oxide or sulfide layer, a coating film is formed. In addition, a method of removing a solvent by heating and converting a metal organic compound salt having a work function of 4.0 eV or less into a metal oxide having a work function of 4.0 eV or less can be used. In this case, as a solvent, a solvent capable of dissolving a metal organic compound salt having a work function of 4.0 eV or less is appropriately selected from solvents that can be used when an organic compound layer described later is formed by coating. Can be used. In addition, as a method for applying a solution of a metal organic compound salt having a work function of 4.0 eV or less, a method similar to that for forming an organic compound layer described later by application can be used.
After applying a solution of a metal organic compound salt with a work function of 4.0 eV or less, the heating temperature is as long as the solvent is volatilized and the metal organic compound salt with a work function of 4.0 eV or less becomes an oxide. Although it can be set appropriately, it is preferably 200 to 450 ° C.
上記のとおり、本発明の複数金属種含有層には、(1)混合金属酸化物層、(2)積層金属酸化物層、(3)金属酸化物層と有機化合物層との間にマグネシウム化合物層を有する層、(4)仕事関数が4.0eV以下の金属の単体、又は、その酸化物が、金属酸化物の2つの層に挟まれた構造を有する層、の4つの好ましい形態があるが、これら4つは明確に区別されるものではなく、例えば、複数金属種含有層が(2)と(3)の両方に該当する場合や(3)と(4)の両方に該当する場合もある。このような上記4つの形態の2つ以上に該当する複数金属種含有層を含む有機電界発光素子も当然、本発明に含まれる。 As described above, the multiple metal species-containing layer of the present invention includes (1) a mixed metal oxide layer, (2) a laminated metal oxide layer, and (3) a magnesium compound between the metal oxide layer and the organic compound layer. There are four preferred forms: a layer having a layer, (4) a simple substance of a metal having a work function of 4.0 eV or less, or a layer having a structure in which an oxide is sandwiched between two layers of metal oxide However, these four are not clearly distinguished, for example, when the multiple metal species-containing layer falls under both (2) and (3) or when falls under both (3) and (4) There is also. Naturally, the organic electroluminescent element including the multiple metal species-containing layer corresponding to two or more of the above four forms is also included in the present invention.
本発明の複数金属種含有層に含まれる金属酸化物は、金属元素を1種含む単一酸化物であってもよく、2種以上含む複合酸化物であってもよい。また、金属酸化物の層は、1種類の金属酸化物からなるものであってもよく、2種以上の金属酸化物を含むものであってもよい。上記金属酸化物の層は、金属元素を1種含む単一酸化物によって構成されることが好ましい。 The metal oxide contained in the multiple metal species-containing layer of the present invention may be a single oxide containing one kind of metal element or a complex oxide containing two or more kinds. The metal oxide layer may be composed of one kind of metal oxide or may contain two or more kinds of metal oxides. The metal oxide layer is preferably composed of a single oxide containing one kind of metal element.
なお、本発明においては、シート抵抗が100Ω/□より低い物は導電体、シート抵抗が100Ω/□より高い物は半導体または絶縁体として分類される。従って、透明電極として知られているITO(錫ドープ酸化インジウム)、ATO(アンチモンドープ酸化インジウム)、IZO(インジウムドープ酸化亜鉛)、AZO(アルミニウムドープ酸化亜鉛)、FTO(フッ素ドープ酸化インジウム)等の薄膜は、導電性が高く半導体または絶縁体の範疇に含まれないことから、本発明における複数金属種含有層を構成する一層に該当しない。 In the present invention, an object having a sheet resistance lower than 100Ω / □ is classified as a conductor, and an object having a sheet resistance higher than 100Ω / □ is classified as a semiconductor or an insulator. Therefore, ITO (tin-doped indium oxide), ATO (antimony-doped indium oxide), IZO (indium-doped zinc oxide), AZO (aluminum-doped zinc oxide), FTO (fluorine-doped indium oxide), etc., known as transparent electrodes Since the thin film has high conductivity and is not included in the category of a semiconductor or an insulator, the thin film does not correspond to one layer constituting the multiple metal species-containing layer in the present invention.
上記複数金属種含有層に含まれる金属酸化物の作製方法としては特に限定されず、有機電界発光素子を構成する各層を形成するための通常の方法を適宜用いることができるが、スパッタ法、真空蒸着法、ゾルゲル法、スプレー熱分解(SPD)法、原子層堆積(ALD)法、化学気相成長(CVD)法等が例として挙げられる。これらの方法は金属酸化物の層の材料の特性に応じて選択するのが好ましく、層ごとに作製方法が異なっていても良い。 The method for producing the metal oxide contained in the multiple metal species-containing layer is not particularly limited, and a normal method for forming each layer constituting the organic electroluminescent element can be appropriately used. Examples include vapor deposition, sol-gel, spray pyrolysis (SPD), atomic layer deposition (ALD), and chemical vapor deposition (CVD). These methods are preferably selected according to the characteristics of the material of the metal oxide layer, and the manufacturing method may be different for each layer.
本発明の有機電界発光素子においては、陽極と有機化合物層との間、陰極と有機化合物層との間のいずれか又は両方に複数金属種含有層を有していればよいが、陰極と有機化合物層との間に複数金属種含有層を有することが好ましい。この場合、複数金属種含有層は、電子輸送層として機能することになる。複数金属種含有層は、このような電子の受け渡しを効率的に行うことができるため、陰極と有機化合物層との間にこれらの層を有する有機電界発光素子は、発光効率により優れたものとなる。 In the organic electroluminescent device of the present invention, a plurality of metal species-containing layers may be provided between the anode and the organic compound layer, between the cathode and the organic compound layer, or both. It is preferable to have a multiple metal species-containing layer between the compound layer. In this case, the multiple metal species-containing layer functions as an electron transport layer. Since the multiple metal species-containing layer can efficiently perform such electron transfer, an organic electroluminescent device having these layers between the cathode and the organic compound layer is superior in luminous efficiency. Become.
上記複数金属種含有層が電子輸送層として機能する場合、電子輸送層は、複数金属種含有層のみからなってもよく、複数金属種含有層と有機電子輸送層とを同時に用いるものであってもよい。複数金属種含有層と有機電子輸送層とを同時に用いるものである場合、複数金属種含有層と有機電子輸送層との積層の順番は特に制限されず、また、複数金属種含有層と有機電子輸送層とは、それぞれ1層であってもよく、2層以上であってもよい。
有機電子輸送層を形成する有機化合物の具体例については、後述する。
When the multiple metal species-containing layer functions as an electron transport layer, the electron transport layer may consist of only the multiple metal species-containing layer, and uses the multiple metal species-containing layer and the organic electron transport layer at the same time. Also good. When the multiple metal species-containing layer and the organic electron transport layer are used simultaneously, the order of stacking the multiple metal species-containing layer and the organic electron transport layer is not particularly limited, and the multiple metal species-containing layer and the organic electron Each transport layer may be a single layer or two or more layers.
Specific examples of the organic compound forming the organic electron transport layer will be described later.
以下においては、有機電界発光素子を構成するその他の層や電極について記載する。 Below, it describes about the other layer and electrode which comprise an organic electroluminescent element.
本発明の有機電界発光素子が有する有機化合物層は有機化合物によって形成される1つの層又は有機化合物によって形成される複数の層が積層されたものであって、その中の1つの層が発光層であるものである。すなわち、有機化合物層とは、有機化合物によって形成される発光層、又は、有機化合物によって形成される発光層と有機化合物によって形成されるその他の層とが積層されたもの、のいずれかである。有機化合物によって形成されるその他の層は、1層であってもよく2層以上であってもよい。また、発光層とその他の層の積層される順番は特に制限されないが、陰極と有機化合物層との間に上記複数金属種含有層を有する場合には、複数金属種含有層と有機化合物層の発光層とが接していることが好ましい。 The organic compound layer of the organic electroluminescent device of the present invention is a layer formed of an organic compound or a plurality of layers formed of an organic compound, and one of the layers is a light emitting layer. It is what is. That is, the organic compound layer is either a light-emitting layer formed of an organic compound or a layer in which a light-emitting layer formed of an organic compound and another layer formed of an organic compound are stacked. The other layer formed of the organic compound may be one layer or two or more layers. Further, the order in which the light emitting layer and other layers are laminated is not particularly limited. However, in the case where the multiple metal species-containing layer is provided between the cathode and the organic compound layer, the multiple metal species-containing layer and the organic compound layer It is preferable that the light emitting layer is in contact.
上記有機化合物によって形成されるその他の層は、正孔輸送層又は電子輸送層であることが好ましい。すなわち、有機化合物層が複数の層からなるものである場合、発光層以外のその他の層として、正孔輸送層及び/又は電子輸送層を有することが好ましい。このように、有機電界発光素子が、発光層とは異なる独立した層として正孔輸送層及び/又は電子輸送層を有することは、本発明の有機電界発光素子の好適な実施形態の1つである。
本発明の有機電界発光素子が正孔輸送層を独立した層として有する場合、発光層と陽極との間に正孔輸送層を有することになる。
本発明の有機電界発光素子が陰極と有機化合物層との間に上記混合金属酸化物層、積層金属酸化物層、又は、金属酸化物層上に金属種を有する構造を含む層が電子輸送層のいずれかを有さない場合、有機化合物層の中に電子輸送層として機能する層を有することが好ましい。この場合、陰極と発光層との間に電子輸送層として機能する層を有することになる。
本発明の有機電界発光素子が独立した層として正孔輸送層や電子輸送層を有さない場合、本発明の有機電界発光素子の必須の構成として有する層のいずれかが、これらの層の機能を兼ねることになる。
The other layer formed of the organic compound is preferably a hole transport layer or an electron transport layer. That is, when the organic compound layer is composed of a plurality of layers, it is preferable to have a hole transport layer and / or an electron transport layer as other layers other than the light emitting layer. Thus, it is one of the preferred embodiments of the organic electroluminescent device of the present invention that the organic electroluminescent device has a hole transport layer and / or an electron transport layer as an independent layer different from the light emitting layer. is there.
When the organic electroluminescent element of the present invention has a hole transport layer as an independent layer, it has a hole transport layer between the light emitting layer and the anode.
In the organic electroluminescent device of the present invention, the mixed metal oxide layer, the laminated metal oxide layer, or the layer containing a structure having a metal species on the metal oxide layer is between the cathode and the organic compound layer. When it does not have any of these, it is preferable to have a layer which functions as an electron carrying layer in an organic compound layer. In this case, a layer functioning as an electron transport layer is provided between the cathode and the light emitting layer.
When the organic electroluminescent device of the present invention does not have a hole transport layer or an electron transport layer as an independent layer, any of the layers possessed as an essential component of the organic electroluminescent device of the present invention functions as these layers. It will also serve as.
上記有機化合物層を形成する有機化合物としては、有機低分子材料、有機金属錯体、高分子材料などを適宜用いることができ、更に必要に応じてそれらを組み合わせて用いることができるが、含まれる有機化合物の少なくとも一種類は発光材料から選ばれる。
なお、本発明において有機低分子材料とは、高分子材料(重合体)ではない材料を意味し、分子量が低い有機化合物を必ずしも意味するものではない。
As the organic compound forming the organic compound layer, an organic low molecular weight material, an organometallic complex, a high molecular weight material, or the like can be used as appropriate, and these can be used in combination as necessary. At least one of the compounds is selected from luminescent materials.
In the present invention, the organic low molecular weight material means a material that is not a polymer material (polymer), and does not necessarily mean an organic compound having a low molecular weight.
上記高分子の発光材料としては、例えば、トランス型ポリアセチレン、シス型ポリアセチレン、ポリ(ジ-フェニルアセチレン)(PDPA)、ポリ(アルキル,フェニルアセチレン)(PAPA)のようなポリアセチレン系化合物;ポリ(パラ-フェンビニレン)(PPV)、ポリ(2,5-ジアルコキシ-パラ-フェニレンビニレン)(RO-PPV)、シアノ-置換-ポリ(パラ-フェンビニレン)(CN-PPV)、ポリ(2-ジメチルオクチルシリル-パラ-フェニレンビニレン)(DMOS-PPV)、ポリ(2-メトキシ,5-(2’-エチルヘキソキシ)-パラ-フェニレンビニレン)(MEH-PPV)のようなポリパラフェニレンビニレン系化合物;ポリ(3-アルキルチオフェン)(PAT)、ポリ(オキシプロピレン)トリオール(POPT)のようなポリチオフェン系化合物;ポリ(9,9-ジアルキルフルオレン)(PDAF)、ポリ(ジオクチルフルオレン-アルト-ベンゾチアジアゾール)(F8BT)、α,ω-ビス[N,N’-ジ(メチルフェニル)アミノフェニル]-ポリ[9,9-ビス(2-エチルヘキシル)フルオレン-2,7-ジル](PF2/6am4)、ポリ(9,9-ジオクチル-2,7-ジビニレンフルオレニル-オルト-コ(アントラセン-9,10-ジイル))のようなポリフルオレン系化合物;ポリ(パラ-フェニレン)(PPP)、ポリ(1,5-ジアルコキシ-パラ-フェニレン)(RO-PPP)のようなポリパラフェニレン系化合物;ポリ(N-ビニルカルバゾール)(PVK)のようなポリカルバゾール系化合物;ポリ(メチルフェニルシラン)(PMPS)、ポリ(ナフチルフェニルシラン)(PNPS)、ポリ(ビフェニリルフェニルシラン)(PBPS)のようなポリシラン系化合物;更には特願2010-230995号、特願2011-6457号に記載のホウ素化合物系高分子材料等が挙げられる。 Examples of the polymer light-emitting material include polyacetylene compounds such as trans-type polyacetylene, cis-type polyacetylene, poly (di-phenylacetylene) (PDPA), poly (alkyl, phenylacetylene) (PAPA); -Phenvinylene) (PPV), poly (2,5-dialkoxy-para-phenylenevinylene) (RO-PPV), cyano-substituted-poly (para-phenvinylene) (CN-PPV), poly (2-dimethyl) Polyparaphenylene vinylene compounds such as octylsilyl-para-phenylene vinylene) (DMOS-PPV), poly (2-methoxy, 5- (2′-ethylhexoxy) -para-phenylene vinylene) (MEH-PPV); poly (3-alkylthiophene) (PAT), poly (oxypropylene) ) Polythiophene compounds such as triol (POP); poly (9,9-dialkylfluorene) (PDAF), poly (dioctylfluorene-alt-benzothiadiazole) (F8BT), α, ω-bis [N, N′- Di (methylphenyl) aminophenyl] -poly [9,9-bis (2-ethylhexyl) fluorene-2,7-zyl] (PF2 / 6am4), poly (9,9-dioctyl-2,7-divinylenefull Polyfluorene compounds such as oleenyl-ortho-co (anthracene-9,10-diyl)); poly (para-phenylene) (PPP), poly (1,5-dialkoxy-para-phenylene) (RO— Polyparaphenylene compounds such as PPP); polycarbazole compounds such as poly (N-vinylcarbazole) (PVK) Polysilane compounds such as poly (methylphenylsilane) (PMPS), poly (naphthylphenylsilane) (PNPS), poly (biphenylylphenylsilane) (PBPS); and Japanese Patent Application No. 2010-230995 Examples thereof include boron compound polymer materials described in 2011-6457.
上記低分子の発光材料としては、例えば、配位子に2,2’-ビピリジン-4,4’-ジカルボン酸を持つ、3配位のイリジウム錯体、ファクトリス(2-フェニルピリジン)イリジウム(Ir(ppy))、8-ヒドロキシキノリン アルミニウム(Alq)、トリス(4-メチル-8キノリノレート) アルミニウム(III)(Almq)、8-ヒドロキシキノリン 亜鉛(Znq)、(1,10-フェナントロリン)-トリス-(4,4,4-トリフルオロ-1-(2-チエニル)-ブタン-1,3-ジオネート)ユーロピウム(III)(Eu(TTA)(phen))、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィン プラチナム(II)のような各種金属錯体;ジスチリルベンゼン(DSB)、ジアミノジスチリルベンゼン(DADSB)のようなベンゼン系化合物;ナフタレン、ナイルレッドのようなナフタレン系化合物;フェナントレンのようなフェナントレン系化合物;クリセン、6-ニトロクリセンのようなクリセン系化合物;ペリレン、N,N’-ビス(2,5-ジ-t-ブチルフェニル)-3,4,9,10-ペリレン-ジ-カルボキシイミド(BPPC)のようなペリレン系化合物;コロネンのようなコロネン系化合物;アントラセン、ビススチリルアントラセンのようなアントラセン系化合物;ピレンのようなピレン系化合物;4-(ジ-シアノメチレン)-2-メチル-6-(パラ-ジメチルアミノスチリル)-4H-ピラン(DCM)のようなピラン系化合物;アクリジンのようなアクリジン系化合物;スチルベンのようなスチルベン系化合物;2,5-ジベンゾオキサゾールチオフェンのようなチオフェン系化合物;ベンゾオキサゾールのようなベンゾオキサゾール系化合物;ベンゾイミダゾールのようなベンゾイミダゾール系化合物;2,2’-(パラ-フェニレンジビニレン)-ビスベンゾチアゾールのようなベンゾチアゾール系化合物;ビスチリル(1,4-ジフェニル-1,3-ブタジエン)、テトラフェニルブタジエンのようなブタジエン系化合物;ナフタルイミドのようなナフタルイミド系化合物;クマリンのようなクマリン系化合物;ペリノンのようなペリノン系化合物;オキサジアゾールのようなオキサジアゾール系化合物;アルダジン系化合物;1,2,3,4,5-ペンタフェニル-1,3-シクロペンタジエン(PPCP)のようなシクロペンタジエン系化合物;キナクリドン、キナクリドンレッドのようなキナクリドン系化合物;ピロロピリジン、チアジアゾロピリジンのようなピリジン系化合物;2,2’,7,7’-テトラフェニル-9,9’-スピロビフルオレンのようなスピロ化合物;フタロシアニン(HPc)、銅フタロシアニンのような金属または無金属のフタロシアニン系化合物;更には特開2009-155325号公報および特願2010-230995号、特願2011-6458号に記載のホウ素化合物材料等が挙げられる。 Examples of the low-molecular light-emitting material include a tricoordinate iridium complex having 2,2′-bipyridine-4,4′-dicarboxylic acid as a ligand, and factory (2-phenylpyridine) iridium (Ir (Ppy) 3 ), 8-hydroxyquinoline aluminum (Alq 3 ), tris (4-methyl-8 quinolinolate) aluminum (III) (Almq 3 ), 8-hydroxyquinoline zinc (Znq 2 ), (1,10-phenanthroline) ) -Tris- (4,4,4-trifluoro-1- (2-thienyl) -butane-1,3-dionate) europium (III) (Eu (TTA) 3 (phen)), 2, 3 , 7 , 8, 12, 13, 17, 18-octaethyl-21H, 23H-porphine Various metal complexes such as platinum (II); distyrylbenzene (D B), benzene compounds such as diaminodistyrylbenzene (DADSB); naphthalene compounds such as naphthalene and nile red; phenanthrene compounds such as phenanthrene; chrysene compounds such as chrysene and 6-nitrochrysene; Perylene compounds such as N, N′-bis (2,5-di-t-butylphenyl) -3,4,9,10-perylene-di-carboximide (BPPC); coronene compounds such as coronene Anthracene compounds such as anthracene and bisstyrylanthracene; pyrene compounds such as pyrene; 4- (di-cyanomethylene) -2-methyl-6- (para-dimethylaminostyryl) -4H-pyran (DCM) ) Pyran compounds such as acridine; acridine compounds such as acridine; Stilbene compounds such as rubene; thiophene compounds such as 2,5-dibenzoxazole thiophene; benzoxazole compounds such as benzoxazole; benzimidazole compounds such as benzimidazole; 2,2 ′-(para- Benzodiazole compounds such as phenylenedivinylene) -bisbenzothiazole; butadiene compounds such as bistyryl (1,4-diphenyl-1,3-butadiene) and tetraphenylbutadiene; naphthalimide compounds such as naphthalimide A coumarin compound such as coumarin; a perinone compound such as perinone; an oxadiazole compound such as oxadiazole; an aldazine compound; 1,2,3,4,5-pentaphenyl-1,3- Cyclopentadiene (PPCP Cyclopentadiene compounds such as quinacridone, quinacridone compounds such as quinacridone red; pyridine compounds such as pyrrolopyridine and thiadiazolopyridine; 2,2 ′, 7,7′-tetraphenyl-9,9 ′ -Spiro compounds such as spirobifluorene; metal or metal-free phthalocyanine compounds such as phthalocyanine (H 2 Pc) and copper phthalocyanine; and Japanese Patent Application Laid-Open No. 2009-155325 and Japanese Patent Application No. 2010-230995 Examples include boron compound materials described in 2011-6458.
上記有機化合物層が発光層の他に正孔輸送層を有する場合、正孔輸送層として用いる正孔輸送性有機材料には、各種p型の高分子材料や、各種p型の低分子材料を単独または組み合わせて用いることができる。
p型の高分子材料(有機ポリマー)としては、例えば、ポリアリールアミン、フルオレン-アリールアミン共重合体、フルオレン-ビチオフェン共重合体、ポリ(N-ビニルカルバゾール)、ポリビニルピレン、ポリビニルアントラセン、ポリチオフェン、ポリアルキルチオフェン、ポリヘキシルチオフェン、ポリ(p-フェニレンビニレン)、ポリチニレンビニレン、ピレンホルムアルデヒド樹脂、エチルカルバゾールホルムアルデヒド樹脂またはその誘導体等が挙げられる。
またこれらの化合物は、他の化合物との混合物として用いることもできる。一例として、ポリチオフェンを含有する混合物としては、ポリ(3,4-エチレンジオキシチオフェン/スチレンスルホン酸)(PEDOT/PSS)等が挙げられる。
When the organic compound layer has a hole transport layer in addition to the light emitting layer, the hole transport organic material used as the hole transport layer includes various p-type polymer materials and various p-type low molecular materials. They can be used alone or in combination.
Examples of the p-type polymer material (organic polymer) include polyarylamine, fluorene-arylamine copolymer, fluorene-bithiophene copolymer, poly (N-vinylcarbazole), polyvinylpyrene, polyvinylanthracene, polythiophene, Examples thereof include polyalkylthiophene, polyhexylthiophene, poly (p-phenylene vinylene), polytinylene vinylene, pyrene formaldehyde resin, ethylcarbazole formaldehyde resin, and derivatives thereof.
These compounds can also be used as a mixture with other compounds. As an example, examples of the mixture containing polythiophene include poly (3,4-ethylenedioxythiophene / styrene sulfonic acid) (PEDOT / PSS).
上記p型の低分子材料としては、例えば、1,1-ビス(4-ジ-パラ-トリアミノフェニル)シクロへキサン、1,1’-ビス(4-ジ-パラ-トリルアミノフェニル)-4-フェニル-シクロヘキサンのようなアリールシクロアルカン系化合物;4,4’,4’’-トリメチルトリフェニルアミン、N,N,N’,N’-テトラフェニル-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン(TPD1)、N,N’-ジフェニル-N,N’-ビス(4-メトキシフェニル)-1,1’-ビフェニル-4,4’-ジアミン(TPD2)、N,N,N’,N’-テトラキス(4-メトキシフェニル)-1,1’-ビフェニル-4,4’-ジアミン(TPD3)、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン(α-NPD)、TPTEのようなアリールアミン系化合物;N,N,N’,N’-テトラフェニル-パラ-フェニレンジアミン、N,N,N’,N’-テトラ(パラ-トリル)-パラ-フェニレンジアミン、N,N,N’,N’-テトラ(メタ-トリル)-メタ-フェニレンジアミン(PDA)のようなフェニレンジアミン系化合物;カルバゾール、N-イソプロピルカルバゾール、N-フェニルカルバゾールのようなカルバゾール系化合物;スチルベン、4-ジ-パラ-トリルアミノスチルベンのようなスチルベン系化合物;OZのようなオキサゾール系化合物;トリフェニルメタン、m-MTDATAのようなトリフェニルメタン系化合物;1-フェニル-3-(パラ-ジメチルアミノフェニル)ピラゾリンのようなピラゾリン系化合物;ベンジン(シクロヘキサジエン)系化合物、トリアゾールのようなトリアゾール系化合物;イミダゾールのようなイミダゾール系化合物、1,3,4-オキサジアゾール、2,5-ジ(4-ジメチルアミノフェニル)-1,3,4,-オキサジアゾールのようなオキサジアゾール系化合物;アントラセン、9-(4-ジエチルアミノスチリル)アントラセンのようなアントラセン系化合物;フルオレノン、2,4,7,-トリニトロ-9-フルオレノン、2,7-ビス(2-ヒドロキシ-3-(2-クロロフェニルカルバモイル)-1-ナフチルアゾ)フルオレノンのようなフルオレノン系化合物;ポリアニリンのようなアニリン系化合物;シラン系化合物;1,4-ジチオケト-3,6-ジフェニル-ピロロ-(3,4-c)ピロロピロールのようなピロール系化合物;フローレンのようなフローレン系化合物;ポルフィリン、金属テトラフェニルポルフィリンのようなポルフィリン系化合物;キナクリドンのようなキナクリドン系化合物;フタロシアニン、銅フタロシアニン、テトラ(t-ブチル)銅フタロシアニン、鉄フタロシアニンのような金属または無金属のフタロシアニン系化合物;銅ナフタロシアニン、バナジルナフタロシアニン、モノクロロガリウムナフタロシアニンのような金属または無金属のナフタロシアニン系化合物;N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン、N,N,N’,N’-テトラフェニルベンジジンのようなベンジジン系化合物等が挙げられる。 Examples of the p-type low molecular weight material include 1,1-bis (4-di-para-triaminophenyl) cyclohexane, 1,1′-bis (4-di-para-tolylaminophenyl)- Arylcycloalkane compounds such as 4-phenyl-cyclohexane; 4,4 ′, 4 ″ -trimethyltriphenylamine, N, N, N ′, N′-tetraphenyl-1,1′-biphenyl-4, 4′-diamine, N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine (TPD1), N, N′-diphenyl-N , N′-bis (4-methoxyphenyl) -1,1′-biphenyl-4,4′-diamine (TPD2), N, N, N ′, N′-tetrakis (4-methoxyphenyl) -1,1 '-Biphenyl-4,4'-diamine (TPD3), N N′-di (1-naphthyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine (α-NPD), arylamine compounds such as TPTE; N, N, N ', N'-tetraphenyl-para-phenylenediamine, N, N, N', N'-tetra (para-tolyl) -para-phenylenediamine, N, N, N ', N'-tetra (meta-tolyl) ) -Phenylenediamine compounds such as meta-phenylenediamine (PDA); Carbazole compounds such as carbazole, N-isopropylcarbazole and N-phenylcarbazole; Stilbenes such as stilbene and 4-di-para-tolylaminostilbene system compound; oxazole-based compounds such as O x Z; triphenylmethane, triphenylmethane compounds such as m-MTDATA; 1-full Pyrazoline compounds such as nyl-3- (para-dimethylaminophenyl) pyrazoline; benzine (cyclohexadiene) compounds, triazole compounds such as triazole; imidazole compounds such as imidazole, 1,3,4-oxa Oxadiazole compounds such as diazole, 2,5-di (4-dimethylaminophenyl) -1,3,4, -oxadiazole; anthracene, anthracene such as 9- (4-diethylaminostyryl) anthracene Fluorenone compounds such as fluorenone, 2,4,7, -trinitro-9-fluorenone, 2,7-bis (2-hydroxy-3- (2-chlorophenylcarbamoyl) -1-naphthylazo) fluorenone; polyaniline Aniline compounds such as silane Compound: 1,4-dithioketo-3,6-diphenyl-pyrrolo- (3,4-c) pyrrolopyrrole compound such as pyrrolopyrrole; fluorene compound such as fluorene; porphyrin, metal tetraphenylporphyrin and the like Porphyrin compounds; quinacridone compounds such as quinacridone; metal or metal-free phthalocyanine compounds such as phthalocyanine, copper phthalocyanine, tetra (t-butyl) copper phthalocyanine, iron phthalocyanine; copper naphthalocyanine, vanadyl naphthalocyanine, monochlorogallium Metallic or metal-free naphthalocyanine compounds such as naphthalocyanine; N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine, N, N, N ′, N′-tetraphenyl Benzidine like benzidine Thing, and the like.
本発明の有機電界発光素子では、上記複数金属種含有層を電子輸送層として用いることが好ましいが、有機化合物で電子輸送層を形成する場合、その材料としては、電子輸送層の材料として通常用いることができるいずれの低分子化合物も用いることができ、これらを混合して用いてもよい。これらの低分子化合物は、上述した、有機化合物で形成される層と積層金属化合物層とを同時に電子輸送層として用いる場合の有機化合物で形成される層の形成にも用いることができる。
電子輸送層の材料として用いることができる低分子化合物の例としては、トリス-1,3,5-(3’-(ピリジン-3’’-イル)フェニル)ベンゼン(TmPyPhB)のようなピリジン誘導体、(2-(3-(9-カルバゾリル)フェニル)キノリン(mCQ))のようなキノリン誘導体、2-フェニル-4,6-ビス(3,5-ジピリジルフェニル)ピリミジン(BPyPPM)のようなピリミジン誘導体、ピラジン誘導体、バソフェナントロリン(BPhen)のようなフェナントロリン誘導体、2,4-ビス(4-ビフェニル)-6-(4’-(2-ピリジニル)-4-ビフェニル)-[1,3,5]トリアジン(MPT)のようなトリアジン誘導体、3-フェニル-4-(1’-ナフチル)-5-フェニル-1,2,4-トリアゾール(TAZ)のようなトリアゾール誘導体、オキサゾール誘導体、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル-1,3,4-オキサジアゾール)(PBD)のようなオキサジアゾール誘導体、2,2’,2’’-(1,3,5-ベントリイル)-トリス(1-フェニル-1-H-ベンズイミダゾール)(TPBI)のようなイミダゾール誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(Zn(BTZ))、トリス(8-ヒドロキシキノリナト)アルミニウム(Alq)などに代表される各種金属錯体、2,5-ビス(6’-(2’,2’’-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)等のシロール誘導体に代表される有機シラン誘導体等が挙げられ、これらの1種又は2種以上を用いることができる。
これらの中でも、Alqのような金属錯体、TmPyPhBのようなピリジン誘導体が好ましい。
In the organic electroluminescent element of the present invention, it is preferable to use the multiple metal species-containing layer as an electron transport layer, but when the electron transport layer is formed of an organic compound, the material is usually used as a material for the electron transport layer. Any low molecular weight compound that can be used can be used, and these may be used in combination. These low molecular weight compounds can also be used to form a layer formed of an organic compound when the layer formed of an organic compound and the laminated metal compound layer described above are simultaneously used as an electron transport layer.
Examples of low molecular weight compounds that can be used as a material for the electron transport layer include pyridine derivatives such as tris-1,3,5- (3 ′-(pyridin-3 ″ -yl) phenyl) benzene (TmPyPhB). , Quinoline derivatives such as (2- (3- (9-carbazolyl) phenyl) quinoline (mCQ)), pyrimidines such as 2-phenyl-4,6-bis (3,5-dipyridylphenyl) pyrimidine (BPyPPM) Derivatives, pyrazine derivatives, phenanthroline derivatives such as bathophenanthroline (BPhen), 2,4-bis (4-biphenyl) -6- (4 ′-(2-pyridinyl) -4-biphenyl)-[1,3,5 Triazine derivatives such as triazine (MPT), 3-phenyl-4- (1′-naphthyl) -5-phenyl-1,2,4-triazol Triazole derivatives such as (TAZ), oxazole derivatives, oxadiazole derivatives such as 2- (4-biphenylyl) -5- (4-tert-butylphenyl-1,3,4-oxadiazole) (PBD) , 2,2 ′, 2 ″-(1,3,5-bentriyl) -tris (1-phenyl-1-H-benzimidazole) (TPBI), aromatic ring tetras such as naphthalene and perylene Various metal complexes represented by carboxylic anhydride, bis [2- (2-hydroxyphenyl) benzothiazolate] zinc (Zn (BTZ) 2 ), tris (8-hydroxyquinolinato) aluminum (Alq 3 ), 5-bis (6 ′-(2 ′, 2 ″ -bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy), etc. Organic silane derivatives, and the like typified by silole derivatives, can be used alone or in combination of two or more thereof.
Among these, a metal complex such as Alq 3 and a pyridine derivative such as TmPyPhB are preferable.
上記有機化合物層のうち、発光層の平均厚さは、特に限定されないが、10~150nmであることが好ましい。より好ましくは、20~100nmである。
また、有機化合物層が正孔輸送層や電子輸送層を有する場合、これらの層の平均厚さは、特に限定されないが、10~150nmであることが好ましい。より好ましくは、20~100nmである。
発光層、正孔輸送層や電子輸送層の平均厚さは、水晶振動子膜厚計により成膜時に測定することができる。
Among the organic compound layers, the average thickness of the light emitting layer is not particularly limited, but is preferably 10 to 150 nm. More preferably, it is 20 to 100 nm.
When the organic compound layer has a hole transport layer or an electron transport layer, the average thickness of these layers is not particularly limited, but is preferably 10 to 150 nm. More preferably, it is 20 to 100 nm.
The average thicknesses of the light emitting layer, the hole transport layer, and the electron transport layer can be measured at the time of film formation using a crystal oscillator thickness meter.
上記有機化合物層の成膜方法は特に限定されず、材料の特性に合わせて種々の方法を適宜用いることができるが、溶液にして塗布できる場合はスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法等の各種塗布法を用いて成膜することができる。このうち、膜厚をより制御しやすいという点でスピンコート法やスリットコート法が好ましい。塗布しない場合や溶媒溶解性が低い場合は真空蒸着法や、ESDUS(Evaporative Spray Deposition from Ultra-dilute Solution)法などが好適な例として挙げられる。 The method for forming the organic compound layer is not particularly limited, and various methods can be used as appropriate in accordance with the characteristics of the material. However, when it can be applied as a solution, a spin coating method, a casting method, a micro gravure coating method, Film formation using various coating methods such as gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing, flexographic printing, offset printing, and inkjet printing can do. Among these, the spin coat method and the slit coat method are preferable because the film thickness can be more easily controlled. When it is not applied or when the solvent solubility is low, a vacuum deposition method, an ESDUS (Evaporative Spray Deposition ultra-dilute Solution) method, or the like can be cited as a suitable example.
上記有機化合物層を、有機化合物溶液を塗布して形成する場合、有機化合物を溶解するために用いる溶媒としては、例えば、硝酸、硫酸、アンモニア、過酸化水素、水、二硫化炭素、四塩化炭素、エチレンカーボネイト等の無機溶媒や、メチルエチルケトン(MEK)、アセトン、ジエチルケトン、メチルイソブチルケトン(MIBK)、メチルイソプロピルケトン(MIPK)、シクロヘキサノン等のケトン系溶媒、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール(DEG)、グリセリン等のアルコール系溶媒、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン(DME)、1,4-ジオキサン、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、アニソール、ジエチレングリコールジメチルエーテル(ジグリム)、ジエチレングリコールエチルエーテル(カルビトール)等のエーテル系溶媒、メチルセロソルブ、エチルセロソルブ、フェニルセロソルブ等のセロソルブ系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒、トルエン、キシレン、ベンゼン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、メチルピロリドン等の芳香族複素環化合物系溶媒、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)等のアミド系溶媒、クロロベンゼン、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化合物系溶媒、酢酸エチル、酢酸メチル、ギ酸エチル等のエステル系溶媒、ジメチルスルホキシド(DMSO)、スルホラン等の硫黄化合物系溶媒、アセトニトリル、プロピオニトリル、アクリロニトリル等のニトリル系溶媒、ギ酸、酢酸、トリクロロ酢酸、トリフルオロ酢酸等の有機酸系溶媒のような各種有機溶媒、または、これらを含む混合溶媒等が挙げられる。
これらの中でも、溶媒としては、非極性溶媒が好適であり、例えば、キシレン、トルエン、シクロヘキシルベンゼン、ジハイドロベンゾフラン、トリメチルベンゼン、テトラメチルベンゼン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、メチルピロリドン等の芳香族複素環化合物系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒等が挙げられ、これらを単独または混合して用いることができる。
When the organic compound layer is formed by applying an organic compound solution, examples of the solvent used for dissolving the organic compound include nitric acid, sulfuric acid, ammonia, hydrogen peroxide, water, carbon disulfide, and carbon tetrachloride. , Inorganic solvents such as ethylene carbonate, ketone solvents such as methyl ethyl ketone (MEK), acetone, diethyl ketone, methyl isobutyl ketone (MIBK), methyl isopropyl ketone (MIPK), cyclohexanone, methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol (DEG), alcohol solvents such as glycerin, diethyl ether, diisopropyl ether, 1,2-dimethoxyethane (DME), 1,4-dioxane, tetrahydrofuran (THF), tetrahydropyran (THP), aniso , Ether solvents such as diethylene glycol dimethyl ether (diglyme), diethylene glycol ethyl ether (carbitol), cellosolve solvents such as methyl cellosolve, ethyl cellosolve, phenyl cellosolve, aliphatic hydrocarbon solvents such as hexane, pentane, heptane, cyclohexane Aromatic hydrocarbon solvents such as toluene, xylene and benzene, aromatic heterocyclic solvents such as pyridine, pyrazine, furan, pyrrole, thiophene and methylpyrrolidone, N, N-dimethylformamide (DMF), N, N An amide solvent such as dimethylacetamide (DMA), a halogen compound solvent such as chlorobenzene, dichloromethane, chloroform, 1,2-dichloroethane, an ester solvent such as ethyl acetate, methyl acetate, ethyl formate, Various organic solvents such as methyl sulfoxide (DMSO), sulfur compound solvents such as sulfolane, nitrile solvents such as acetonitrile, propionitrile, acrylonitrile, organic acid solvents such as formic acid, acetic acid, trichloroacetic acid, trifluoroacetic acid, Or the mixed solvent containing these etc. are mentioned.
Among these, as the solvent, a nonpolar solvent is suitable, for example, an aromatic hydrocarbon solvent such as xylene, toluene, cyclohexylbenzene, dihydrobenzofuran, trimethylbenzene, tetramethylbenzene, pyridine, pyrazine, furan, Examples include aromatic heterocyclic compound solvents such as pyrrole, thiophene, and methylpyrrolidone, and aliphatic hydrocarbon solvents such as hexane, pentane, heptane, and cyclohexane. These can be used alone or in combination.
本発明の有機電界発光素子が有する陽極および陰極としては、有機電界発光素子が有する陽極および陰極として用いられる通常の導電性材料を適宜用いることができるが、光の取り出しのために少なくともいずれか一方は透明であることが好ましい。通常の透明導電性材料の例としてはITO(錫ドープ酸化インジウム)、ATO(アンチモンドープ酸化インジウム)、IZO(インジウムドープ酸化亜鉛)、AZO(アルミニウムドープ酸化亜鉛)、FTO(フッ素ドープ酸化インジウム)などが上げられる。不透明な導電性材料の例としては、カルシウム、マグネシウム、アルミニウム、錫、インジウム、銅、銀、金やこれらの合金などが挙げられる。これらは1種を用いてもよく、2種以上を積層して用いてもよい。 As the anode and cathode of the organic electroluminescent device of the present invention, ordinary conductive materials used as the anode and cathode of the organic electroluminescent device can be used as appropriate, but at least one of them can be used for light extraction. Is preferably transparent. Examples of normal transparent conductive materials include ITO (tin doped indium oxide), ATO (antimony doped indium oxide), IZO (indium doped zinc oxide), AZO (aluminum doped zinc oxide), FTO (fluorine doped indium oxide), etc. Is raised. Examples of the opaque conductive material include calcium, magnesium, aluminum, tin, indium, copper, silver, gold, and alloys thereof. These may be used alone or in combination of two or more.
上記陽極の平均厚さは、特に制限されないが、10~500nmであることが好ましい。より好ましくは、100~200nmである。陽極の平均厚さは、触針式段差計、分光エリプソメトリーにより測定することができる。
上記陰極の平均厚さは、特に限定されないが、10~1000nmであることが好ましい。より好ましくは、30~150nmである。
陰極の平均厚さは、水晶振動子膜厚計により成膜時に測定することができる。
The average thickness of the anode is not particularly limited, but is preferably 10 to 500 nm. More preferably, it is 100 to 200 nm. The average thickness of the anode can be measured by a stylus profilometer or spectroscopic ellipsometry.
The average thickness of the cathode is not particularly limited, but is preferably 10 to 1000 nm. More preferably, it is 30 to 150 nm.
The average thickness of the cathode can be measured at the time of film formation with a crystal oscillator thickness meter.
本発明の有機電界発光素子はHOILED素子であるため、有機化合物(発光層または正孔輸送層)層と陽極の間に正孔注入層を有することが好ましい。正孔注入層に用いる材料の例としては、酸化モリブデン、酸化タングステン、酸化バナジウム、酸化レニウムなどが挙げられるが、酸化モリブデンが最も好ましい。
正孔注入層の厚みは、1nm~20nmであることが好ましい。より好ましくは、5nm~10nmである。
正孔注入層の厚みは、水晶振動子膜厚計により成膜時に測定することができる。
Since the organic electroluminescent element of the present invention is a HOILED element, it is preferable to have a hole injection layer between the organic compound (light emitting layer or hole transport layer) layer and the anode. Examples of the material used for the hole injection layer include molybdenum oxide, tungsten oxide, vanadium oxide, and rhenium oxide, with molybdenum oxide being most preferred.
The thickness of the hole injection layer is preferably 1 nm to 20 nm. More preferably, it is 5 nm to 10 nm.
The thickness of the hole injection layer can be measured at the time of film formation with a crystal oscillator thickness meter.
上記陰極、陽極、正孔注入層は、スパッタ法、真空蒸着法、ゾルゲル法、スプレー熱分解(SPD)法、原子層堆積(ALD)法、気相成膜法、液相成膜法等により形成することができる。陽極、陰極の形成には、金属箔の接合も用いることができる。
これらの中でも、正孔注入層は、気相成膜法である真空蒸着法を用いて形成するのが好ましい。気相成膜法によれば、有機化合物層の表面を壊すことなく清浄にかつ陽極と接触よく正孔注入層を形成することができ、その結果、本発明の有機電界発光素子の効果がより顕著なものとなる。
The cathode, anode, and hole injection layer are formed by sputtering, vacuum deposition, sol-gel, spray pyrolysis (SPD), atomic layer deposition (ALD), vapor deposition, liquid deposition, etc. Can be formed. Metal foil bonding can also be used to form the anode and cathode.
Among these, the hole injection layer is preferably formed using a vacuum vapor deposition method which is a vapor deposition method. According to the vapor deposition method, the hole injection layer can be formed cleanly and in good contact with the anode without damaging the surface of the organic compound layer. As a result, the effect of the organic electroluminescence device of the present invention is further improved. It will be remarkable.
本発明の有機電界発光素子の特性をさらに向上させる等の理由から、必要に応じて例えば電子注入層、正孔阻止層、電子素子層などを有していてもよい。これらの層を形成するための材料としては、これらの層を形成するために通常用いられる材料を用い、また、これらの層を形成するために通常用いられる方法により層を形成することができる。 For the purpose of further improving the characteristics of the organic electroluminescence device of the present invention, for example, an electron injection layer, a hole blocking layer, an electron device layer and the like may be included as necessary. As a material for forming these layers, materials usually used for forming these layers can be used, and the layers can be formed by a method usually used for forming these layers.
本発明の電界発光素子は、必要であれば封止を施しても良い。封止工程としては、通常の方法を適宜使用できる。例えば、不活性ガス中で封止容器を接着する方法や、有機EL素子の上に直接封止膜を形成する方法などが挙げられる。これらに加えて、水分吸収材を封入する方法を併用してもよい。 The electroluminescent element of the present invention may be sealed if necessary. As the sealing step, a normal method can be used as appropriate. For example, a method of adhering a sealing container in an inert gas, a method of forming a sealing film directly on the organic EL element, or the like can be given. In addition to these, a method of enclosing a moisture absorbing material may be used in combination.
本発明の電界発光素子は、陽極と陰極との間に電圧(通常は15ボルト以下)を印加することによって発光させることができる。通常は直流電圧を印加するが、交流成分が含まれていても良い。 The electroluminescent element of the present invention can emit light by applying a voltage (usually 15 volts or less) between the anode and the cathode. Normally, a DC voltage is applied, but an AC component may be included.
本発明の有機電界発光素子は、基板上に有機電界発光素子を構成する各層が積層されたものであってもよい。基板上に各層が積層されたものである場合、基板上に形成された電極上に、各層が形成されたものであることが好ましい。この場合、本発明の有機電界発光素子は、基板がある側とは反対側に光を取り出すトップエミッション型のものであってもよく、基板がある側に光を取り出すボトムエミッション型のものであってもよい。 The organic electroluminescent element of the present invention may be one in which each layer constituting the organic electroluminescent element is laminated on a substrate. When each layer is laminated on the substrate, it is preferable that each layer is formed on the electrode formed on the substrate. In this case, the organic electroluminescent element of the present invention may be a top emission type that extracts light to the side opposite to the side where the substrate is present, or a bottom emission type that extracts light to the side where the substrate is present. May be.
上記基板の材料としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリエーテルサルフォン、ポリメチルメタクリレート、ポリカーボネート、ポリアリレートのような樹脂材料や、石英ガラス、ソーダガラスのようなガラス材料等が挙げられ、これらの1種又は2種以上を用いることができる。
また、トップエミッション型の場合には、不透明基板も用いることができ、例えば、アルミナのようなセラミックス材料で構成された基板、ステンレス鋼のような金属基板の表面に酸化膜(絶縁膜)を形成したもの、樹脂材料で構成された基板等も用いることができる。
As the material of the substrate, resin materials such as polyethylene terephthalate, polyethylene naphthalate, polypropylene, cycloolefin polymer, polyamide, polyethersulfone, polymethyl methacrylate, polycarbonate, polyarylate, quartz glass, soda glass, etc. A glass material etc. are mentioned, These 1 type (s) or 2 or more types can be used.
In the case of the top emission type, an opaque substrate can be used. For example, an oxide film (insulating film) is formed on the surface of a ceramic substrate such as alumina or a metal substrate such as stainless steel. A substrate made of a resin material or the like can also be used.
上記基板の平均厚さは、0.1~30mmであることが好ましい。より好ましくは、0.1~10mmである。
基板の平均厚さはデジタルマルチメーター、ノギスにより測定することができる。
The average thickness of the substrate is preferably 0.1 to 30 mm. More preferably, it is 0.1 to 10 mm.
The average thickness of the substrate can be measured with a digital multimeter or a caliper.
本発明の電界発光素子は、有機化合物層の材料を適宜選択することによって発光色を変化させることができるし、カラーフィルター等を併用して所望の発光色を得ることもできる。そのため、表示装置の発光部位や照明装置として好適に用いることができる。
このような、本発明の有機電界発光素子を備えることを特徴とする表示装置や、本発明の有機電界発光素子を備えることを特徴とする照明装置もまた、本発明の1つである。
The electroluminescent element of the present invention can change the luminescent color by appropriately selecting the material of the organic compound layer, and can also obtain a desired luminescent color by using a color filter or the like in combination. Therefore, it can be suitably used as a light emitting part of a display device or a lighting device.
Such a display device including the organic electroluminescent element of the present invention and an illumination device including the organic electroluminescent element of the present invention are also one aspect of the present invention.
本発明の有機電界発光素子は、上述の構成よりなり、封止することなしに用いることができるHOILED素子であって、高い発光効率を示し、かつ駆動寿命も長い有用な有機電界発光素子であり、表示装置や照明装置として好適に用いることができるものである。 The organic electroluminescent device of the present invention is a HOILED device having the above-described configuration and usable without sealing, and is a useful organic electroluminescent device that exhibits high luminous efficiency and has a long driving life. It can be suitably used as a display device or a lighting device.
HOILED構造を有した、本発明による有機電界発光素子の一実施形態の断面図である。1 is a cross-sectional view of an embodiment of an organic electroluminescent device according to the present invention having a HOILED structure. 実施例1~3および比較例1~2で作成した有機電界発光素子の、電圧-輝度特性を示すグラフである。3 is a graph showing voltage-luminance characteristics of organic electroluminescent elements prepared in Examples 1 to 3 and Comparative Examples 1 and 2. 実施例1~3および比較例1~2で作成した有機電界発光素子の、電流密度-電力効率特性を示すグラフである。3 is a graph showing current density-power efficiency characteristics of organic electroluminescent elements prepared in Examples 1 to 3 and Comparative Examples 1 and 2. 実施例4および比較例3~4で作成した有機電界発光素子の、電圧-輝度特性を示すグラフである。6 is a graph showing voltage-luminance characteristics of organic electroluminescent elements prepared in Example 4 and Comparative Examples 3 to 4. 実施例5および比較例5で作成した有機電界発光素子の、電圧-輝度特性を示すグラフである。6 is a graph showing voltage-luminance characteristics of organic electroluminescent elements prepared in Example 5 and Comparative Example 5. 実施例6および比較例6で作成した有機電界発光素子の、電圧-輝度特性を示すグラフである。6 is a graph showing voltage-luminance characteristics of organic electroluminescent elements prepared in Example 6 and Comparative Example 6. 実施例7および比較例7~8で作成した有機電界発光素子の、電圧-輝度特性を示すグラフである。6 is a graph showing voltage-luminance characteristics of organic electroluminescent elements prepared in Example 7 and Comparative Examples 7 to 8. 実施例7および比較例8で作成した有機電界発光素子の、電流密度-電流効率特性を示すグラフである。6 is a graph showing current density-current efficiency characteristics of organic electroluminescent elements prepared in Example 7 and Comparative Example 8. 実施例8および比較例9で作成した有機電界発光素子の、寿命特性を示すグラフである。It is a graph which shows the lifetime characteristic of the organic electroluminescent element created in Example 8 and Comparative Example 9. 実施例9、比較例10および比較例12で作成した有機電界発光素子の、電圧-輝度特性を示すグラフである。6 is a graph showing voltage-luminance characteristics of organic electroluminescent elements prepared in Example 9, Comparative Example 10 and Comparative Example 12. 実施例9、比較例10および比較例12で作成した有機電界発光素子の、電流密度-電力効率特性を示すグラフである。4 is a graph showing current density-power efficiency characteristics of organic electroluminescent elements prepared in Example 9, Comparative Example 10 and Comparative Example 12. 実施例10、比較例11および比較例12で作成した有機電界発光素子の、電圧-輝度特性を示すグラフである。6 is a graph showing voltage-luminance characteristics of organic electroluminescent elements prepared in Example 10, Comparative Example 11 and Comparative Example 12. 実施例10、比較例11および比較例12で作成した有機電界発光素子の、電流密度-電力効率特性を示すグラフである。6 is a graph showing current density-power efficiency characteristics of organic electroluminescent elements prepared in Example 10, Comparative Example 11 and Comparative Example 12. 実施例9および比較例13で作成した有機電界発光素子の、寿命特性を示すグラフである。It is a graph which shows the lifetime characteristic of the organic electroluminescent element created in Example 9 and Comparative Example 13. 実施例11および比較例14~15で作製した有機電界発光素子の、電圧-輝度特性を示すグラフである。6 is a graph showing voltage-luminance characteristics of organic electroluminescent elements fabricated in Example 11 and Comparative Examples 14 to 15. 実施例11および比較例14~15で作製した有機電界発光素子の、電圧-電流効率特性を示すグラフである。6 is a graph showing voltage-current efficiency characteristics of organic electroluminescence elements fabricated in Example 11 and Comparative Examples 14 to 15. 実施例11および比較例14~15で作製した有機電界発光素子の、寿命特性を示すグラフである。6 is a graph showing lifetime characteristics of organic electroluminescent elements produced in Example 11 and Comparative Examples 14 to 15.
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を、「%」は「質量%」を意味するものとする。 The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples. Unless otherwise specified, “part” means “part by weight” and “%” means “mass%”.
以下の実施例において、複数金属種含有層、有機化合物層、正孔注入性金属酸化物層、及び、陽極の厚みは、全て水晶振動子膜厚計により成膜時に測定した。 In the following examples, the thicknesses of the multiple metal species-containing layer, the organic compound layer, the hole injecting metal oxide layer, and the anode were all measured at the time of film formation with a crystal resonator thickness meter.
(発光ポリマーの合成)
(合成例1)
窒素雰囲気下、1-ブロモ-3,5-ビス(トリフルオロメチル)ベンゼン(14.8g,50.3mmol)にジエチルエーテル200mlを加え-78℃に冷却し、ここへノルマルブチルリチウムヘキサン溶液(1.65M,30.9ml,50.9mmol)を滴下し、-78℃で1時間攪拌した。ここへ塩化亜鉛のジエチルエーテル溶液(1M,24.3ml,24.3mmol)を攪拌しながら滴下した。滴下終了後、室温で1時間攪拌した。そこへ5-ブロモ-2-(4-ブロモ-2-ジブロモボリルフェニル)ピリジン(5.6g,11.6mmol)を含むトルエン溶液(200mL)を加え、85℃で15時間加熱攪拌した。室温まで冷却し、反応溶液を氷水に加え、クロロホルムで抽出した。有機相を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させ濾過した。濾液をロータリーエバポレーターで濃縮した後、シリカゲルクロマトグラフィー(ヘキサン:ジクロロメタン=1:2)で精製することにより、下記式(1);
(Synthesis of luminescent polymer)
(Synthesis Example 1)
Under a nitrogen atmosphere, 200 ml of diethyl ether was added to 1-bromo-3,5-bis (trifluoromethyl) benzene (14.8 g, 50.3 mmol), cooled to −78 ° C., and then a normal butyl lithium hexane solution (1 .65M, 30.9 ml, 50.9 mmol) was added dropwise and stirred at −78 ° C. for 1 hour. A solution of zinc chloride in diethyl ether (1M, 24.3 ml, 24.3 mmol) was added dropwise thereto with stirring. After completion of dropping, the mixture was stirred at room temperature for 1 hour. Thereto was added a toluene solution (200 mL) containing 5-bromo-2- (4-bromo-2-dibromoborylphenyl) pyridine (5.6 g, 11.6 mmol), and the mixture was heated and stirred at 85 ° C. for 15 hours. After cooling to room temperature, the reaction solution was added to ice water and extracted with chloroform. The organic phase was washed with saturated brine, dried over sodium sulfate and filtered. The filtrate was concentrated with a rotary evaporator and then purified by silica gel chromatography (hexane: dichloromethane = 1: 2) to obtain the following formula (1);
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
で表されるホウ素含有化合物(1)を収率69%で得た。
得られたホウ素含有化合物(1)(187.2mg,0.25mmol)、下記式(2)で表されるフルオレン化合物(140.2mg,0.251mmol)、テトラキストリフェニルホスフィンパラジウム(2.9mg,0.0025mmol)をトルエン3mlに溶解させ、窒素フロー下、室温で10分間攪拌した。
Was obtained in a yield of 69%.
The obtained boron-containing compound (1) (187.2 mg, 0.25 mmol), a fluorene compound represented by the following formula (2) (140.2 mg, 0.251 mmol), tetrakistriphenylphosphine palladium (2.9 mg, 0.0025 mmol) was dissolved in 3 ml of toluene and stirred at room temperature for 10 minutes under a nitrogen flow.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
ここへ、炭酸アンモニウム塩(240.4mg,0.8mmol)を蒸留水0.75mlに溶解させて調整した水溶液を加え、窒素フロー下、室温でさらに20分間攪拌し、脱揮を完了させた。これを115℃で17時間還流加熱攪拌し、末端封止のため、ブロモベンゼン(39.3mg,0.25mmol)を加え1時間攪拌し、さらにフェニルボロン酸(30.5mg,0.25mmol)を加えた。室温まで放冷し、トルエン溶液を塩酸で1回、純水で2回分液洗浄し、有機層を数ml程度まで濃縮した。濃縮液を300mlのメタノール中へ滴下させそのまま10分攪拌し、得られた沈殿を濾取した。同様の精製過程を合計3回繰り返し、固体を減圧乾燥させることで、下記式(3); To this was added an aqueous solution prepared by dissolving ammonium carbonate (240.4 mg, 0.8 mmol) in 0.75 ml of distilled water, and the mixture was further stirred at room temperature for 20 minutes under a nitrogen flow to complete devolatilization. This was heated and stirred at 115 ° C. for 17 hours under reflux, and bromobenzene (39.3 mg, 0.25 mmol) was added for end-capping, followed by stirring for 1 hour, and phenylboronic acid (30.5 mg, 0.25 mmol) was further added. added. The solution was allowed to cool to room temperature, and the toluene solution was separated and washed once with hydrochloric acid and twice with pure water, and the organic layer was concentrated to about several ml. The concentrated solution was dropped into 300 ml of methanol and stirred for 10 minutes as it was, and the resulting precipitate was collected by filtration. By repeating the same purification process three times in total and drying the solid under reduced pressure, the following formula (3);
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
で表される青色発光ポリマー(3)を得た。ゲル浸透クロマトグラフィー(テトラヒドロフラン溶媒)によるポリスチレン換算重量平均分子量は71,000であった。 The blue light emitting polymer (3) represented by these was obtained. The weight average molecular weight in terms of polystyrene as determined by gel permeation chromatography (tetrahydrofuran solvent) was 71,000.
以下に本発明の有機電界発光素子の実施例、比較例を記載する。なお、以下においては、便宜上、1.混合金属酸化物層を有する有機電界発光素子、2.積層金属酸化物層を有する有機電界発光素子、3.金属酸化物層と有機化合物層との間にマグネシウム化合物層を有する層を有する有機電界発光素子、4.仕事関数が4.0eV以下の金属の単体、又は、その酸化物が、金属酸化物の2つの層に挟まれた構造を有する層を有する有機電界発光素子、の4つに分けて記載するが、これは、以下に示す実施例がこれら4つのいずれか1つのみに該当することを意味するものではない。 Examples of the organic electroluminescence device of the present invention and comparative examples will be described below. In the following, for convenience, 1. 1. an organic electroluminescent device having a mixed metal oxide layer; 2. an organic electroluminescent device having a laminated metal oxide layer; 3. an organic electroluminescent device having a layer having a magnesium compound layer between the metal oxide layer and the organic compound layer; Although the work function is 4.0 eV or less, a single metal or an organic electroluminescent element having a structure in which an oxide is sandwiched between two layers of metal oxide is described. This does not mean that the embodiment described below corresponds to only one of these four.
<1.混合金属酸化物層を有する有機電界発光素子の実施例、比較例>
(有機電界発光素子の作成)
(比較例1)
[1]市販されている平均厚さ0.7mmのITO電極層付き透明ガラス基板を用意した。この時、基板のITO電極は幅2mmにパターニングされているものを用いた。この基板をアセトン中、イソプロパノール中でそれぞれ10分間超音波洗浄後、イソプロパノール中で5分間煮沸した。この基板をイソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分間行った。
[2]この基板をホットプレートに乗せ、電極取り出し部分を別のガラス板で覆った状態で400℃に加熱した。酢酸マグネシウム四水和物の0.1mol/Lエタノール溶液を、試薬スプレーを用いて加熱された基板上に噴霧した。この工程を30秒間隔で10回繰り返した。噴霧終了後、その温度で10分間過熱した後、ホットプレートの電源を切って常温まで自然放熱し、単一金属酸化物薄膜層付き基板とした。
[3]次に、合成例1で作成した青色発光ポリマー(3)の1.2重量%テトラヒドロフラン溶液を1mL作成した。作成した酸化物薄膜層付き基板をスピンコーターにセットした。この基板上に青色発光ポリマーの溶液を滴下し、毎分1600回転で30秒間回転させることにより、膜厚約100nmの有機化合物層を形成した。これをアルゴン雰囲気のグローブボックス中に移動し、ホットプレートを用いて200℃で1時間加熱して有機化合物層中の残溶媒を除去した。
[4]有機化合物層まで形成した基板を真空蒸着装置の基板ホルダーに固定した。三酸化モリブデンをアルミナルツボに入れて第1の蒸着源にセットした。同時に、金をアルミナルツボに入れて第2の蒸着源にセットした。約1×10-4Paまで減圧し、三酸化モリブデンを膜厚10nmになるように蒸着した。次に、金を膜厚20nmになるように蒸着し、有機電界発光素子(Mg:Zn=4:0(原子数比))を作成した。このとき、ステンレス製の蒸着マスクを用いて蒸着面が幅2mmの帯状になるようにした。すなわち、作成した有機電界発光素子の発光面積は、4mmとした。
<1. Example of organic electroluminescent device having mixed metal oxide layer, comparative example>
(Creation of organic electroluminescence device)
(Comparative Example 1)
[1] A commercially available transparent glass substrate with an ITO electrode layer having an average thickness of 0.7 mm was prepared. At this time, an ITO electrode patterned to have a width of 2 mm was used. This substrate was subjected to ultrasonic cleaning in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. The substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes.
[2] This substrate was placed on a hot plate, and heated to 400 ° C. with the electrode extraction part covered with another glass plate. A 0.1 mol / L ethanol solution of magnesium acetate tetrahydrate was sprayed onto a heated substrate using a reagent spray. This process was repeated 10 times at 30 second intervals. After spraying, after heating for 10 minutes at that temperature, the hot plate was turned off and naturally radiated to room temperature to obtain a substrate with a single metal oxide thin film layer.
[3] Next, 1 mL of a 1.2 wt% tetrahydrofuran solution of the blue light-emitting polymer (3) prepared in Synthesis Example 1 was prepared. The prepared substrate with an oxide thin film layer was set on a spin coater. A blue light emitting polymer solution was dropped on the substrate and rotated at 1600 rpm for 30 seconds to form an organic compound layer having a thickness of about 100 nm. This was moved into a glove box in an argon atmosphere, and heated at 200 ° C. for 1 hour using a hot plate to remove the residual solvent in the organic compound layer.
[4] The substrate formed up to the organic compound layer was fixed to a substrate holder of a vacuum deposition apparatus. Molybdenum trioxide was placed in an alumina crucible and set in the first vapor deposition source. At the same time, gold was put in an alumina crucible and set in the second vapor deposition source. The pressure was reduced to about 1 × 10 −4 Pa, and molybdenum trioxide was deposited to a thickness of 10 nm. Next, gold was vapor-deposited so as to have a film thickness of 20 nm, and an organic electroluminescent element (Mg: Zn = 4: 0 (atomic ratio)) was created. At this time, a vapor deposition surface was formed into a strip shape having a width of 2 mm using a stainless steel vapor deposition mask. That is, the light emitting area of the produced organic electroluminescent element was 4 mm 2 .
(比較例2、実施例1~3)
比較例1の工程[2]において、酢酸マグネシウム四水和物の0.1mol/Lエタノール溶液の代わりに表1に記載の溶液を用いて酸化物薄膜層付き基板を作成した以外は同様にして、有機電界発光素子をそれぞれ作成した。
(Comparative Example 2, Examples 1 to 3)
In the same manner as in Step [2] of Comparative Example 1, except that a substrate with an oxide thin film layer was prepared using the solution shown in Table 1 instead of the 0.1 mol / L ethanol solution of magnesium acetate tetrahydrate. Organic electroluminescent elements were respectively prepared.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(有機電界発光素子の発光特性測定)
ケースレー社製の「2400型ソースメーター」により、素子への電圧印加と、電流測定を行った。トプコン社製の「BM-7」により、発光輝度を測定した。実施例1~3、および比較例1~2で作成した有機電界発光素子を、アルゴン雰囲気下で-4V~15Vまでの直流電圧を印加した時の電圧-輝度特性、電流密度-電力効率特性を図2、図3にそれぞれ示す。なお、外光などの影響で、デバイスが発光していないときのBM-7の読み値は約20cd/mであった。
図2から、本発明の混合酸化物薄膜を用いた実施例1~3の有機電界発光素子は単一組成酸化物薄膜を用いた比較例1~2の有機電界発光素子に比べて低い電圧から発光することが明らかである。
さらに図3から本発明の混合金属酸化物薄膜を用いた実施例1~3の有機電界発光素子は単一金属酸化物薄膜を用いた比較例1~2の有機電界発光素子に比べて高い電力効率を示すことが明らかである。
(Measurement of light emission characteristics of organic electroluminescence device)
Voltage application to the device and current measurement were performed using a “2400 type source meter” manufactured by Keithley. Luminance was measured with “BM-7” manufactured by Topcon Corporation. The organic electroluminescence devices prepared in Examples 1 to 3 and Comparative Examples 1 to 2 have voltage-luminance characteristics and current density-power efficiency characteristics when a DC voltage of −4 V to 15 V is applied in an argon atmosphere. It shows in FIG. 2, FIG. 3, respectively. Note that the reading of BM-7 was about 20 cd / m 2 when the device was not emitting light due to external light or the like.
From FIG. 2, the organic electroluminescent elements of Examples 1 to 3 using the mixed oxide thin film according to the present invention have a lower voltage than the organic electroluminescent elements of Comparative Examples 1 to 2 using the single composition oxide thin film. It is clear that light is emitted.
Further, from FIG. 3, the organic electroluminescent elements of Examples 1 to 3 using the mixed metal oxide thin film of the present invention have higher power than the organic electroluminescent elements of Comparative Examples 1 to 2 using the single metal oxide thin film. It is clear that it shows efficiency.
(実施例4)
[1]市販されている平均厚さ0.7mmのITO電極層付き透明ガラス基板を用意した。この時、基板のITO電極は幅2mmにパターニングされているものを用いた。この基板をアセトン中、イソプロパノール中でそれぞれ10分間超音波洗浄後、イソプロパノール中で5分間煮沸した。この基板をイソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分行った。
[2]この基板をホットプレートに乗せ、電極取り出し部分を別のガラス板で覆った状態で400℃に加熱した。ビス(2,4-ペンタンジオナト)亜鉛0.0125mol/L、テトラキス(2,4-ペンタンジオナト)ジルコニウム0.0375mol/L混合エタノール溶液を、試薬スプレーを用いて加熱された基板上に噴霧した。この工程を30秒間隔で10回繰り返した。噴霧終了後、その温度で10分間過熱した後、ホットプレートの電源を切って常温まで自然放熱し、混合金属酸化物薄膜層付き基板とした。
[3]次に、合成例1で作成した青色発光ポリマー(3)の1.2重量%テトラヒドロフラン溶液を1mL作成した。作成した混合金属酸化物薄膜層付き基板をスピンコーターにセットした。この基板上に青色発光ポリマーの溶液を滴下し、毎分1600回転で30秒間回転させることにより、膜厚約100nmの有機化合物層を形成した。これをアルゴン雰囲気のグローブボックス中に移動し、ホットプレートを用いて200℃で1時間加熱して有機化合物層中の残溶媒を除去した。
[4]有機化合物層まで形成した基板を真空蒸着装置の基板ホルダーに固定した。三酸化モリブデンをアルミナルツボに入れて第1の蒸着源にセットした。同時に、金をアルミナルツボに入れて第2の蒸着源にセットした。約1×10-4Paまで減圧し、三酸化モリブデンを膜厚10nmになるように蒸着した。次に、金を膜厚20nmになるように蒸着し、有機電界発光素子(Zn:Zr=1:3(原子数比))を作成した。このとき、ステンレス製の蒸着マスクを用いて蒸着面が幅2mmの帯状になるようにした。すなわち、作成した有機電界発光素子の発光面積は、4mmとした。
(Example 4)
[1] A commercially available transparent glass substrate with an ITO electrode layer having an average thickness of 0.7 mm was prepared. At this time, an ITO electrode patterned to have a width of 2 mm was used. This substrate was subjected to ultrasonic cleaning in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. This substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes.
[2] This substrate was placed on a hot plate, and heated to 400 ° C. with the electrode extraction part covered with another glass plate. A mixed ethanol solution of 0.0125 mol / L of bis (2,4-pentanedionato) zinc and 0.0375 mol / L of tetrakis (2,4-pentandionato) zirconium is sprayed onto a heated substrate using a reagent spray. did. This process was repeated 10 times at 30 second intervals. After spraying, after heating for 10 minutes at that temperature, the hot plate was turned off and naturally dissipated to room temperature to obtain a substrate with a mixed metal oxide thin film layer.
[3] Next, 1 mL of a 1.2 wt% tetrahydrofuran solution of the blue light-emitting polymer (3) prepared in Synthesis Example 1 was prepared. The prepared substrate with a mixed metal oxide thin film layer was set on a spin coater. A blue light emitting polymer solution was dropped on the substrate and rotated at 1600 rpm for 30 seconds to form an organic compound layer having a thickness of about 100 nm. This was moved into a glove box in an argon atmosphere, and heated at 200 ° C. for 1 hour using a hot plate to remove the residual solvent in the organic compound layer.
[4] The substrate formed up to the organic compound layer was fixed to a substrate holder of a vacuum deposition apparatus. Molybdenum trioxide was placed in an alumina crucible and set in the first vapor deposition source. At the same time, gold was put in an alumina crucible and set in the second vapor deposition source. The pressure was reduced to about 1 × 10 −4 Pa, and molybdenum trioxide was deposited to a thickness of 10 nm. Next, gold was vapor-deposited so as to have a film thickness of 20 nm, and an organic electroluminescent element (Zn: Zr = 1: 3 (atomic ratio)) was produced. At this time, a vapor deposition surface was formed into a strip shape having a width of 2 mm using a stainless steel vapor deposition mask. That is, the light emitting area of the produced organic electroluminescent element was 4 mm 2 .
(比較例3)
実施例4の工程[2]において、ビス(2,4-ペンタンジオナト)亜鉛0.0125mol/L、テトラキス(2,4-ペンタンジオナト)ジルコニウム0.0375mol/L混合エタノール溶液の代わりにビス(2,4-ペンタンジオナト)亜鉛0.050mol/Lエタノール溶液を用いて単一金属酸化物薄膜層付き基板を作成した以外は同様にして、有機電界発光素子(Zn:Zr=4:0(原子数比))を作成した。
(Comparative Example 3)
In step [2] of Example 4, bis (2,4-pentanedionato) zinc 0.0125 mol / L, tetrakis (2,4-pentandionato) zirconium 0.0375 mol / L mixed ethanol solution instead of bis An organic electroluminescent device (Zn: Zr = 4: 0) was prepared in the same manner except that a substrate with a single metal oxide thin film layer was prepared using an ethanol solution of (2,4-pentanedionato) zinc 0.050 mol / L. (Atom ratio)).
(比較例4)
実施例4の工程[2]において、ビス(2,4-ペンタンジオナト)亜鉛0.0125mol/L、テトラキス(2,4-ペンタンジオナト)ジルコニウム0.0375mol/L混合エタノール溶液の代わりにテトラキス(2,4-ペンタンジオナト)ジルコニウム0.050mol/Lエタノール溶液を用いて単一金属酸化物薄膜層付き基板を作成した以外は同様にして、有機電界発光素子(Zn:Zr=0:4(原子数比))を作成した。
(Comparative Example 4)
In Step [2] of Example 4, tetrakis (2,4-pentanedionato) zinc 0.0125 mol / L, tetrakis (2,4-pentanedionato) zirconium 0.0375 mol / L in place of the mixed ethanol solution An organic electroluminescent device (Zn: Zr = 0: 4) was prepared in the same manner except that a substrate with a single metal oxide thin film layer was prepared using an ethanol solution of (2,4-pentanedionato) zirconium 0.050 mol / L. (Atom ratio)).
(有機電界発光素子の発光特性測定)
ケースレー社製の「2400型ソースメーター」により、素子への電圧印加と、電流測定を行った。トプコン社製の「BM-7」により、発光輝度を測定した。実施例4、および比較例3~4で作成した有機電界発光素子に、アルゴン雰囲気下で-4V~15Vまでの直流電圧を印加した時の電圧-輝度特性を図4に示す。なお、外光などの影響で、デバイスが発光していないときのBM-7の読み値は約20cd/mであった。
図4から、本発明の混合金属酸化物薄膜を用いた実施例4の有機電界発光素子は単一金属酸化物薄膜を用いた比較例3、4の有機電界発光素子に比べて低い電圧から発光することが明らかである。
(Measurement of light emission characteristics of organic electroluminescence device)
Voltage application to the device and current measurement were performed using a “2400 type source meter” manufactured by Keithley. Luminance was measured with “BM-7” manufactured by Topcon Corporation. FIG. 4 shows voltage-luminance characteristics when a DC voltage of −4 V to 15 V is applied to the organic electroluminescent elements prepared in Example 4 and Comparative Examples 3 to 4 in an argon atmosphere. Note that the reading of BM-7 was about 20 cd / m 2 when the device was not emitting light due to external light or the like.
From FIG. 4, the organic electroluminescent device of Example 4 using the mixed metal oxide thin film of the present invention emits light from a voltage lower than that of the organic electroluminescent devices of Comparative Examples 3 and 4 using a single metal oxide thin film. It is clear to do.
(実施例5)
[1]市販されている平均厚さ0.7mmのITO電極層付き透明ガラス基板を用意した。この時、基板のITO電極は幅2mmにパターニングされているものを用いた。この基板をアセトン中、イソプロパノール中でそれぞれ10分間超音波洗浄後、イソプロパノール中で5分間煮沸した。この基板をイソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分行った。
[2]この基板をホットプレートに乗せ、電極取り出し部分を別のガラス板で覆った状態で400℃に加熱した。チタンテトライソプロポキシド0.0375mol/L、酢酸マグネシウム0.0125mol/L混合エタノール溶液を、試薬スプレーを用いて加熱された基板上に噴霧した。この工程を30秒間隔で10回繰り返した。噴霧終了後、その温度で10分間過熱した後、ホットプレートの電源を切って常温まで自然放熱し、混合金属酸化物薄膜層付き基板とした。
[3]次に、合成例1で作成した青色発光ポリマー(3)の1.2重量%テトラヒドロフラン溶液を1mL作成した。作成した混合金属酸化物薄膜層付き基板をスピンコーターにセットした。この基板上に青色発光ポリマーの溶液を滴下し、毎分1600回転で30秒間回転させることにより、膜厚約100nmの有機化合物層を形成した。これをアルゴン雰囲気のグローブボックス中に移動し、ホットプレートを用いて200℃で1時間加熱して有機化合物層中の残溶媒を除去した。
[4]有機化合物層まで形成した基板を真空蒸着装置の基板ホルダーに固定した。三酸化モリブデンをアルミナルツボに入れて第1の蒸着源にセットした。同時に、金をアルミナルツボに入れて第2の蒸着源にセットした。約1×10-4Paまで減圧し、三酸化モリブデンを膜厚10nmになるように蒸着した。次に、金を膜厚20nmになるように蒸着し、有機電界発光素子(Ti:Mg=3:1(原子数比))を作成した。このとき、ステンレス製の蒸着マスクを用いて蒸着面が幅2mmの帯状になるようにした。すなわち、作成した有機電界発光素子の発光面積は、4mmとした。
(Example 5)
[1] A commercially available transparent glass substrate with an ITO electrode layer having an average thickness of 0.7 mm was prepared. At this time, an ITO electrode patterned to have a width of 2 mm was used. This substrate was subjected to ultrasonic cleaning in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. This substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes.
[2] This substrate was placed on a hot plate, and heated to 400 ° C. with the electrode extraction part covered with another glass plate. A mixed ethanol solution of titanium tetraisopropoxide 0.0375 mol / L and magnesium acetate 0.0125 mol / L was sprayed onto a heated substrate using a reagent spray. This process was repeated 10 times at 30 second intervals. After spraying, after heating for 10 minutes at that temperature, the hot plate was turned off and naturally dissipated to room temperature to obtain a substrate with a mixed metal oxide thin film layer.
[3] Next, 1 mL of a 1.2 wt% tetrahydrofuran solution of the blue light-emitting polymer (3) prepared in Synthesis Example 1 was prepared. The prepared substrate with a mixed metal oxide thin film layer was set on a spin coater. A blue light emitting polymer solution was dropped on the substrate and rotated at 1600 rpm for 30 seconds to form an organic compound layer having a thickness of about 100 nm. This was moved into a glove box in an argon atmosphere, and heated at 200 ° C. for 1 hour using a hot plate to remove the residual solvent in the organic compound layer.
[4] The substrate formed up to the organic compound layer was fixed to a substrate holder of a vacuum deposition apparatus. Molybdenum trioxide was placed in an alumina crucible and set in the first vapor deposition source. At the same time, gold was put in an alumina crucible and set in the second vapor deposition source. The pressure was reduced to about 1 × 10 −4 Pa, and molybdenum trioxide was deposited to a thickness of 10 nm. Next, gold was vapor-deposited to a film thickness of 20 nm to prepare an organic electroluminescent element (Ti: Mg = 3: 1 (atomic ratio)). At this time, a vapor deposition surface was formed into a strip shape having a width of 2 mm using a stainless steel vapor deposition mask. That is, the light emitting area of the produced organic electroluminescent element was 4 mm 2 .
(比較例5)
実施例5の工程[2]において、チタンテトライソプロポキシド0.0375mol/L、酢酸マグネシウム0.0125mol/L混合エタノール溶液の代わりにチタンテトライソプロポキシド0.050mol/Lエタノール溶液を用いて単一金属酸化物薄膜層付き基板を作成した以外は同様にして、有機電界発光素子(Ti:Mg=4:0(原子数比))を作成した。
(Comparative Example 5)
In the step [2] of Example 5, a titanium tetraisopropoxide 0.050 mol / L ethanol solution was used instead of a titanium tetraisopropoxide 0.0375 mol / L, magnesium acetate 0.0125 mol / L mixed ethanol solution. An organic electroluminescent element (Ti: Mg = 4: 0 (atomic ratio)) was prepared in the same manner except that a substrate with a single metal oxide thin film layer was prepared.
(有機電界発光素子の発光特性測定)
ケースレー社製の「2400型ソースメーター」により、素子への電圧印加と、電流測定を行った。トプコン社製の「BM-7」により、発光輝度を測定した。実施例5、および比較例5で作成した有機電界発光素子を、アルゴン雰囲気下で-4V~15Vまでの直流電圧を印加した時の電圧-輝度特性を図5に示す。なお、外光などの影響で、デバイスが発光していないときのBM-7の読み値は約20cd/mであった。
図5から、本発明の混合金属酸化物薄膜を用いた実施例5の有機電界発光素子は単一金属酸化物薄膜を用いた比較例5の有機電界発光素子に比べて低い電圧から発光することが明らかである。
(Measurement of light emission characteristics of organic electroluminescence device)
Voltage application to the device and current measurement were performed using a “2400 type source meter” manufactured by Keithley. Luminance was measured with “BM-7” manufactured by Topcon Corporation. FIG. 5 shows the voltage-luminance characteristics of the organic electroluminescent devices prepared in Example 5 and Comparative Example 5 when a DC voltage of −4 V to 15 V is applied in an argon atmosphere. Note that the reading of BM-7 was about 20 cd / m 2 when the device was not emitting light due to external light or the like.
From FIG. 5, the organic electroluminescent device of Example 5 using the mixed metal oxide thin film of the present invention emits light from a voltage lower than that of the organic electroluminescent device of Comparative Example 5 using a single metal oxide thin film. Is clear.
(実施例6)
[1]市販されている平均厚さ0.7mmのITO電極層付き透明ガラス基板を用意した。この時、基板のITO電極は幅2mmにパターニングされているものを用いた。この基板をアセトン中、イソプロパノール中でそれぞれ10分間超音波洗浄後、イソプロパノール中で5分間煮沸した。この基板をイソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分行った。
[2]この基板をホットプレートに乗せ、電極取り出し部分を別のガラス板で覆った状態で400℃に加熱した。トリス(2,4-ペンタンジオナト)アルミニウム0.0375mol/L、酢酸マグネシウム0.0125mol/L混合エタノール溶液を、試薬スプレーを用いて加熱された基板上に噴霧した。この工程を30秒間隔で10回繰り返した。噴霧終了後、その温度で10分間過熱した後、ホットプレートの電源を切って常温まで自然放熱し、混合金属酸化物薄膜層付き基板とした。
[3]次に、合成例1で作成した青色発光ポリマー(3)の1.2重量%テトラヒドロフラン溶液を1mL作成した。作成した混合金属酸化物薄膜層付き基板をスピンコーターにセットした。この基板上に青色発光ポリマーの溶液を滴下し、毎分1600回転で30秒間回転させることにより、膜厚約100nmの有機化合物層を形成した。これをアルゴン雰囲気のグローブボックス中に移動し、ホットプレートを用いて200℃で1時間加熱して有機化合物層中の残溶媒を除去した。
[4]有機化合物層まで形成した基板を真空蒸着装置の基板ホルダーに固定した。三酸化モリブデンをアルミナルツボに入れて第1の蒸着源にセットした。同時に、金をアルミナルツボに入れて第2の蒸着源にセットした。約1×10-4Paまで減圧し、三酸化モリブデンを膜厚10nmになるように蒸着した。次に、金を膜厚20nmになるように蒸着し、有機電界発光素子(Al:Mg=3:1(原子数比))を作成した。このとき、ステンレス製の蒸着マスクを用いて蒸着面が幅2mmの帯状になるようにした。すなわち、作成した有機電界発光素子の発光面積は、4mmとした。
(Example 6)
[1] A commercially available transparent glass substrate with an ITO electrode layer having an average thickness of 0.7 mm was prepared. At this time, an ITO electrode patterned to have a width of 2 mm was used. This substrate was subjected to ultrasonic cleaning in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. This substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes.
[2] This substrate was placed on a hot plate, and heated to 400 ° C. with the electrode extraction part covered with another glass plate. A mixed ethanol solution of tris (2,4-pentanedionato) aluminum 0.0375 mol / L and magnesium acetate 0.0125 mol / L was sprayed onto a heated substrate using a reagent spray. This process was repeated 10 times at 30 second intervals. After spraying, after heating for 10 minutes at that temperature, the hot plate was turned off and naturally dissipated to room temperature to obtain a substrate with a mixed metal oxide thin film layer.
[3] Next, 1 mL of a 1.2 wt% tetrahydrofuran solution of the blue light-emitting polymer (3) prepared in Synthesis Example 1 was prepared. The prepared substrate with a mixed metal oxide thin film layer was set on a spin coater. A blue light emitting polymer solution was dropped on the substrate and rotated at 1600 rpm for 30 seconds to form an organic compound layer having a thickness of about 100 nm. This was moved into a glove box in an argon atmosphere, and heated at 200 ° C. for 1 hour using a hot plate to remove the residual solvent in the organic compound layer.
[4] The substrate formed up to the organic compound layer was fixed to a substrate holder of a vacuum deposition apparatus. Molybdenum trioxide was placed in an alumina crucible and set in the first vapor deposition source. At the same time, gold was put in an alumina crucible and set in the second vapor deposition source. The pressure was reduced to about 1 × 10 −4 Pa, and molybdenum trioxide was deposited to a thickness of 10 nm. Next, gold was vapor-deposited so as to have a film thickness of 20 nm to prepare an organic electroluminescent element (Al: Mg = 3: 1 (atomic ratio)). At this time, a vapor deposition surface was formed into a strip shape having a width of 2 mm using a stainless steel vapor deposition mask. That is, the light emitting area of the produced organic electroluminescent element was 4 mm 2 .
(比較例6)
実施例6の工程[2]において、トリス(2,4-ペンタンジオナト)アルミニウム0.0375mol/L、酢酸マグネシウム0.0125mol/L混合エタノール溶液の代わりにトリス(2,4-ペンタンジオナト)アルミニウム0.050mol/Lエタノール溶液を用いて単一金属酸化物薄膜層付き基板を作成した以外は同様にして、有機電界発光素子(Al:Mg=4:0(原子数比))を作成した。
(Comparative Example 6)
In step [2] of Example 6, tris (2,4-pentanedionato) aluminum 0.0375 mol / L, magnesium acetate 0.0125 mol / L mixed ethanol solution instead of tris (2,4-pentanedionato) An organic electroluminescent device (Al: Mg = 4: 0 (atomic ratio)) was prepared in the same manner except that a substrate with a single metal oxide thin film layer was prepared using an aluminum 0.050 mol / L ethanol solution. .
(有機電界発光素子の発光特性測定)
ケースレー社製の「2400型ソースメーター」により、素子への電圧印加と、電流測定を行った。トプコン社製の「BM-7」により、発光輝度を測定した。実施例6、および比較例6で作成した有機電界発光素子を、アルゴン雰囲気下で-4V~15Vまでの直流電圧を印加した時の電圧-輝度特性を図6に示す。なお、外光などの影響で、デバイスが発光していないときのBM-7の読み値は約20cd/mであった。
図6から、本発明の混合金属酸化物薄膜を用いた実施例6の有機電界発光素子は単一金属酸化物薄膜を用いた比較例6の有機電界発光素子に比べて低い電圧から発光することが明らかである。
(Measurement of light emission characteristics of organic electroluminescence device)
Voltage application to the device and current measurement were performed using a “2400 type source meter” manufactured by Keithley. Luminance was measured with “BM-7” manufactured by Topcon Corporation. FIG. 6 shows voltage-luminance characteristics of the organic electroluminescent devices prepared in Example 6 and Comparative Example 6 when a DC voltage of −4 V to 15 V is applied in an argon atmosphere. Note that the reading of BM-7 was about 20 cd / m 2 when the device was not emitting light due to external light or the like.
From FIG. 6, the organic electroluminescent device of Example 6 using the mixed metal oxide thin film of the present invention emits light from a voltage lower than that of the organic electroluminescent device of Comparative Example 6 using a single metal oxide thin film. Is clear.
<2.積層金属酸化物層を有する有機電界発光素子の実施例、比較例>
(有機電界発光素子の作成)
(実施例7)
[1]市販されている平均厚さ0.7mmのITO電極層付き透明ガラス基板を用意した。この時、基板のITO電極は幅2mmにパターニングされているものを用いた。この基板をアセトン中、イソプロパノール中でそれぞれ10分間超音波洗浄後、イソプロパノール中で5分間煮沸した。この基板をイソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分行った。
[2]この基板を、チタン金属ターゲットを持つミラトロンスパッタ装置の基板ホルダーに固定した。約1×10-4Paまで減圧した後、アルゴンと酸素を導入した状態でスパッタし、膜厚約10nmの酸化チタン層を作成した。この時にメタルマスクを併用して、電極取り出しのためITO電極の一部は酸化チタンが成膜されないようにした。
[3]この基板を、亜鉛金属ターゲットを持つミラトロンスパッタ装置の基板ホルダーに固定した。約1×10-4Paまで減圧した後、アルゴンと酸素を導入した状態でスパッタし、膜厚約1nmの酸化亜鉛層を作成した。この時にメタルマスクを併用して、電極取り出しのためITO電極の一部は酸化亜鉛が成膜されないようにした。
[4]次に、合成例1で作成した青色発光ポリマー(3)の1.2重量%テトラヒドロフラン溶液を1mL作成した。作成した酸化物薄膜層付き基板をスピンコーターにセットした。この基板上に青色発光ポリマーの溶液を滴下し、毎分1600回転で30秒間回転させることにより、膜厚約100nmの有機化合物層を形成した。これをアルゴン雰囲気のグローブボックス中に移動し、ホットプレートを用いて200℃で1時間加熱して有機化合物層中の残溶媒を除去した。
[5]有機化合物層まで形成した基板を真空蒸着装置の基板ホルダーに固定した。三酸化モリブデンをアルミナルツボに入れて第1の蒸着源にセットした。同時に、金をアルミナルツボに入れて第2の蒸着源にセットした。真空蒸着装置内を約1×10-4Paまで減圧し、三酸化モリブデンを膜厚10nmになるように蒸着した。次に、金を膜厚20nmになるように蒸着し、有機電界発光素子(Mg:Zn=4:0(原子数比))を作成した。このとき、ステンレス製の蒸着マスクを用いて蒸着面が幅2mmの帯状になるようにした。すなわち、作成した有機電界発光素子の発光面積は、4mmとした。
<2. Example of organic electroluminescent device having laminated metal oxide layer, comparative example>
(Creation of organic electroluminescence device)
(Example 7)
[1] A commercially available transparent glass substrate with an ITO electrode layer having an average thickness of 0.7 mm was prepared. At this time, an ITO electrode patterned to have a width of 2 mm was used. This substrate was subjected to ultrasonic cleaning in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. This substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes.
[2] This substrate was fixed to a substrate holder of a Miratron sputtering apparatus having a titanium metal target. After reducing the pressure to about 1 × 10 −4 Pa, sputtering was performed in a state where argon and oxygen were introduced to form a titanium oxide layer having a thickness of about 10 nm. At this time, a metal mask was used together so that titanium oxide was not formed on a part of the ITO electrode for electrode extraction.
[3] This substrate was fixed to a substrate holder of a Miratron sputtering apparatus having a zinc metal target. After reducing the pressure to about 1 × 10 −4 Pa, sputtering was performed in a state where argon and oxygen were introduced to form a zinc oxide layer having a thickness of about 1 nm. At this time, a metal mask was used in combination so that a portion of the ITO electrode was not deposited with zinc oxide for electrode extraction.
[4] Next, 1 mL of a 1.2 wt% tetrahydrofuran solution of the blue light-emitting polymer (3) prepared in Synthesis Example 1 was prepared. The prepared substrate with an oxide thin film layer was set on a spin coater. A blue light emitting polymer solution was dropped on the substrate and rotated at 1600 rpm for 30 seconds to form an organic compound layer having a thickness of about 100 nm. This was moved into a glove box in an argon atmosphere, and heated at 200 ° C. for 1 hour using a hot plate to remove the residual solvent in the organic compound layer.
[5] The substrate formed up to the organic compound layer was fixed to a substrate holder of a vacuum deposition apparatus. Molybdenum trioxide was placed in an alumina crucible and set in the first vapor deposition source. At the same time, gold was put in an alumina crucible and set in the second vapor deposition source. The inside of the vacuum deposition apparatus was depressurized to about 1 × 10 −4 Pa, and molybdenum trioxide was deposited to a thickness of 10 nm. Next, gold was vapor-deposited so as to have a film thickness of 20 nm, and an organic electroluminescent element (Mg: Zn = 4: 0 (atomic ratio)) was created. At this time, a vapor deposition surface was formed into a strip shape having a width of 2 mm using a stainless steel vapor deposition mask. That is, the light emitting area of the produced organic electroluminescent element was 4 mm 2 .
(比較例7)
実施例7の工程[3]を省略した以外は同様にして、酸化物薄膜層として酸化チタン単層を持つ有機電界発光素子を作成した。
(Comparative Example 7)
An organic electroluminescent device having a titanium oxide single layer as an oxide thin film layer was produced in the same manner except that Step [3] in Example 7 was omitted.
(比較例8)
実施例7の工程[2]を省略したのと、工程[3]で酸化亜鉛の膜厚を2nmとした以外は同様にして、酸化物薄膜層として酸化亜鉛単層を持つ有機電界発光素子を作成した。
(Comparative Example 8)
An organic electroluminescent device having a zinc oxide single layer as an oxide thin film layer was obtained in the same manner except that step [2] in Example 7 was omitted and the thickness of zinc oxide was changed to 2 nm in step [3]. Created.
(実施例8)
[1]市販されている平均厚さ0.7mmのITO電極層付き透明ガラス基板を用意した。この時、基板のITO電極は幅2mmにパターニングされているものを用いた。この基板をアセトン中、イソプロパノール中でそれぞれ10分間超音波洗浄後、イソプロパノール中で5分間煮沸した。この基板をイソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分行った。
[2]この基板を、亜鉛金属ターゲットを持つミラトロンスパッタ装置の基板ホルダーに固定した。約1×10-4Paまで減圧した後、アルゴンと酸素を導入した状態でスパッタし、膜厚約2nmの酸化亜鉛層を作成した。この時にメタルマスクを併用して、電極取り出しのためITO電極の一部は酸化亜鉛が成膜されないようにした。
[3]酢酸マグネシウムの1%水-エタノール(体積比で1:3)混合溶液を作成した。工程[2]で作成した基板を、工程[1]と同様にして再度洗浄した。洗浄した酸化亜鉛薄膜付き基板をスピンコーターにセットした。この基板上に酢酸マグネシウム溶液を滴下し、毎分1300回転で60秒間回転させた。これを大気中、400℃にセットしたホットプレートで2時間焼成することにより、酸化マグネシウム層を形成した。
[4]次に、合成例1で作成した青色発光ポリマー(3)の1.2重量%テトラヒドロフラン溶液を1mL作成した。作成した酸化物薄膜層付き基板をスピンコーターにセットした。この基板上に青色発光ポリマーの溶液を滴下し、毎分1600回転で30秒間回転させることにより、膜厚約100nmの有機化合物層を形成した。これをアルゴン雰囲気のグローブボックス中に移動し、ホットプレートを用いて200℃で1時間加熱して有機化合物層中の残溶媒を除去した。
[5]有機化合物層まで形成した基板を真空蒸着装置の基板ホルダーに固定した。三酸化モリブデンをアルミナルツボに入れて第1の蒸着源にセットした。同時に、金をアルミナルツボに入れて第2の蒸着源にセットした。真空蒸着装置内を約1×10-4Paまで減圧し、三酸化モリブデンを膜厚10nmになるように蒸着した。次に、金を膜厚20nmになるように蒸着し、有機電界発光素子(Mg:Zn=4:0(原子数比))を作成した。このとき、ステンレス製の蒸着マスクを用いて蒸着面が幅2mmの帯状になるようにした。すなわち、作成した有機電界発光素子の発光面積は、4mmとした。
(Example 8)
[1] A commercially available transparent glass substrate with an ITO electrode layer having an average thickness of 0.7 mm was prepared. At this time, an ITO electrode patterned to have a width of 2 mm was used. This substrate was subjected to ultrasonic cleaning in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. This substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes.
[2] This substrate was fixed to a substrate holder of a Miratron sputtering apparatus having a zinc metal target. After reducing the pressure to about 1 × 10 −4 Pa, sputtering was performed in a state where argon and oxygen were introduced to form a zinc oxide layer having a thickness of about 2 nm. At this time, a metal mask was used in combination so that a portion of the ITO electrode was not deposited with zinc oxide for electrode extraction.
[3] A mixed solution of magnesium acetate in 1% water-ethanol (1: 3 by volume) was prepared. The substrate prepared in step [2] was washed again in the same manner as in step [1]. The cleaned substrate with a zinc oxide thin film was set on a spin coater. A magnesium acetate solution was dropped on the substrate and rotated at 1300 rpm for 60 seconds. The magnesium oxide layer was formed by baking this for 2 hours with the hotplate set to 400 degreeC in air | atmosphere.
[4] Next, 1 mL of a 1.2 wt% tetrahydrofuran solution of the blue light-emitting polymer (3) prepared in Synthesis Example 1 was prepared. The prepared substrate with an oxide thin film layer was set on a spin coater. A blue light emitting polymer solution was dropped on the substrate and rotated at 1600 rpm for 30 seconds to form an organic compound layer having a thickness of about 100 nm. This was moved into a glove box in an argon atmosphere, and heated at 200 ° C. for 1 hour using a hot plate to remove the residual solvent in the organic compound layer.
[5] The substrate formed up to the organic compound layer was fixed to a substrate holder of a vacuum deposition apparatus. Molybdenum trioxide was placed in an alumina crucible and set in the first vapor deposition source. At the same time, gold was put in an alumina crucible and set in the second vapor deposition source. The inside of the vacuum deposition apparatus was depressurized to about 1 × 10 −4 Pa, and molybdenum trioxide was deposited to a thickness of 10 nm. Next, gold was vapor-deposited so as to have a film thickness of 20 nm, and an organic electroluminescent element (Mg: Zn = 4: 0 (atomic ratio)) was created. At this time, a vapor deposition surface was formed into a strip shape having a width of 2 mm using a stainless steel vapor deposition mask. That is, the light emitting area of the produced organic electroluminescent element was 4 mm 2 .
(比較例9)
実施例8の工程[3]の代わりに次の工程[3’]を行った以外は同様にして、酸化亜鉛薄膜層の上にセシウム化合物層を持つ有機電界発光素子を作成した。
[3’]酸化物薄膜層まで形成した基板を真空蒸着装置の基板ホルダーに固定した。炭酸セシウムをアルミナルツボに入れて蒸着源にセットした。真空蒸着装置内を約1×10-4Paまで減圧し、炭酸セシウムを膜厚3nmになるように蒸着した。この基板を大気中で12時間放置し、セシウム化合物層を形成した。
(Comparative Example 9)
An organic electroluminescence device having a cesium compound layer on a zinc oxide thin film layer was prepared in the same manner except that the next step [3 ′] was performed instead of the step [3] in Example 8.
[3 ′] The substrate formed up to the oxide thin film layer was fixed to a substrate holder of a vacuum deposition apparatus. Cesium carbonate was placed in an alumina crucible and set in a vapor deposition source. The inside of the vacuum deposition apparatus was depressurized to about 1 × 10 −4 Pa, and cesium carbonate was deposited to a thickness of 3 nm. This substrate was left in the atmosphere for 12 hours to form a cesium compound layer.
(作成した有機電界発光素子)
実施例7、8、比較例7~9で作成した有機電界発光素子の構成をまとめると、次表の通りである。
(Created organic electroluminescence device)
The configurations of the organic electroluminescent elements prepared in Examples 7 and 8 and Comparative Examples 7 to 9 are summarized in the following table.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(有機電界発光素子の発光特性測定)
ケースレー社製の「2400型ソースメーター」により、素子への電圧印加と、電流測定を行った。トプコン社製の「BM-7」により、発光輝度を測定した。実施例7および比較例7~8で作成した有機電界発光素子を、アルゴン雰囲気下で-4V~15Vまでの直流電圧を印加した時の電圧-輝度特性、電流密度-電流効率特性を図7、図8にそれぞれ示す。
図7から、本発明の積層酸化物薄膜を用いた実施例7の有機電界発光素子は、単層酸化物薄膜を用いた比較例7~8の有機電界発光素子に比べて低い電圧から発光することが明らかである。
さらに図8から、本発明の積層酸化物薄膜を用いた実施例7の有機電界発光素子は、単層酸化物薄膜を用いた比較例8の有機電界発光素子に比べて高い電流効率を示すことが明らかである。ただし、図7から明らかなように比較例7の有機電界発光素子は測定した電圧範囲において全く発光しなかったため、電流効率としては測定不能であり、図8のプロットからは省略してある。
(Measurement of light emission characteristics of organic electroluminescence device)
Voltage application to the device and current measurement were performed using a “2400 type source meter” manufactured by Keithley. Luminance was measured with “BM-7” manufactured by Topcon Corporation. FIG. 7 shows the voltage-luminance characteristics and current density-current efficiency characteristics of the organic electroluminescent devices prepared in Example 7 and Comparative Examples 7-8 when a DC voltage of −4 V to 15 V is applied in an argon atmosphere. Each is shown in FIG.
From FIG. 7, the organic electroluminescent device of Example 7 using the laminated oxide thin film of the present invention emits light from a lower voltage than the organic electroluminescent devices of Comparative Examples 7 to 8 using a single layer oxide thin film. It is clear.
Further, from FIG. 8, the organic electroluminescent device of Example 7 using the laminated oxide thin film of the present invention shows higher current efficiency than the organic electroluminescent device of Comparative Example 8 using a single layer oxide thin film. Is clear. However, as is clear from FIG. 7, the organic electroluminescence device of Comparative Example 7 did not emit light at all in the measured voltage range, so that the current efficiency was not measurable, and is omitted from the plot of FIG.
(有機電界発光素子の寿命特性測定)
システム技研社製の「有機EL寿命測定装置」により、素子への電圧印加と、相対輝度測定を行った。この装置では素子に一定電流が流れるように電圧を自動的に調整しながら、フォトダイオードによる相対輝度測定が行える。測定開始時の輝度が100cd/mになるように素子ごとに電流値を設定した。実施例8および比較例9で作成した有機電界発光素子の寿命特性を図9に示す。
図9から、本発明の積層酸化物薄膜を用いた実施例8の有機電界発光素子は、単層酸化物薄膜とセシウム化合物層を持つ比較例9の有機電界発光素子に比べて寿命が長いことが分かる。
(Measurement of lifetime characteristics of organic electroluminescent devices)
Application of voltage to the element and measurement of relative luminance were performed using an “organic EL lifetime measuring device” manufactured by System Giken. This device can measure relative luminance by a photodiode while automatically adjusting the voltage so that a constant current flows through the element. The current value was set for each element so that the luminance at the start of measurement was 100 cd / m 2 . FIG. 9 shows the lifetime characteristics of the organic electroluminescent elements prepared in Example 8 and Comparative Example 9.
From FIG. 9, the organic electroluminescent element of Example 8 using the laminated oxide thin film of the present invention has a longer lifetime than the organic electroluminescent element of Comparative Example 9 having a single-layer oxide thin film and a cesium compound layer. I understand.
<3.金属酸化物層と有機化合物層との間にマグネシウム化合物層を有する層を有する有機電界発光素子の実施例、比較例>
(有機電界発光素子の作成)
(実施例9)
[1]市販されている平均厚さ0.7mmのITO電極層付き透明ガラス基板を用意した。この時、基板のITO電極は幅2mmにパターニングされているものを用いた。この基板をアセトン中、イソプロパノール中でそれぞれ10分間超音波洗浄後、イソプロパノール中で5分間煮沸した。この基板をイソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分行った。
[2]この基板を、亜鉛金属ターゲットを持つミラトロンスパッタ装置の基板ホルダーに固定した。約1×10-4Paまで減圧した後、アルゴンと酸素を導入した状態でスパッタし、膜厚約2nmの酸化亜鉛層を作成した。この時にメタルマスクを併用して、電極取り出しのためITO電極の一部は酸化亜鉛が成膜されないようにした。
[3]酢酸マグネシウムの1%水-エタノール(体積比で1:3(原子数比))混合溶液を作成した。工程[2]で作成した基板を、工程[1]と同様にして再度洗浄した。洗浄した酸化亜鉛薄膜付き基板をスピンコーターにセットした。この基板上に酢酸マグネシウム溶液を滴下し、毎分1300回転で60秒間回転させた。これを大気中、400℃にセットしたホットプレートで2時間焼成することにより、酸化マグネシウム層を形成した。
[4]次に、合成例1で作成した青色発光ポリマー(3)の1.2重量%テトラヒドロフラン溶液を1mL作成した。作成した酸化物薄膜層付き基板をスピンコーターにセットした。この基板上に青色発光ポリマーの溶液を滴下し、毎分1600回転で30秒間回転させることにより、膜厚約100nmの有機化合物層を形成した。これをアルゴン雰囲気のグローブボックス中に移動し、ホットプレートを用いて200℃で1時間加熱して有機化合物層中の残溶媒を除去した。
[5]有機化合物層まで形成した基板を真空蒸着装置の基板ホルダーに固定した。三酸化モリブデンをアルミナルツボに入れて第1の蒸着源にセットした。同時に、金をアルミナルツボに入れて第2の蒸着源にセットした。真空蒸着装置内を約1×10-4Paまで減圧し、三酸化モリブデンを膜厚10nmになるように蒸着した。次に、金を膜厚20nmになるように蒸着し、有機電界発光素子(Mg:Zn=4:0(原子数比))を作成した。このとき、ステンレス製の蒸着マスクを用いて蒸着面が幅2mmの帯状になるようにした。すなわち、作成した有機電界発光素子の発光面積は、4mmとした。
<3. Examples of organic electroluminescent elements having a layer having a magnesium compound layer between a metal oxide layer and an organic compound layer, comparative examples>
(Creation of organic electroluminescence device)
Example 9
[1] A commercially available transparent glass substrate with an ITO electrode layer having an average thickness of 0.7 mm was prepared. At this time, an ITO electrode patterned to have a width of 2 mm was used. This substrate was subjected to ultrasonic cleaning in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. This substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes.
[2] This substrate was fixed to a substrate holder of a Miratron sputtering apparatus having a zinc metal target. After reducing the pressure to about 1 × 10 −4 Pa, sputtering was performed in a state where argon and oxygen were introduced to form a zinc oxide layer having a thickness of about 2 nm. At this time, a metal mask was used in combination so that a portion of the ITO electrode was not deposited with zinc oxide for electrode extraction.
[3] A mixed solution of magnesium acetate in 1% water-ethanol (volume ratio 1: 3 (atomic ratio)) was prepared. The substrate prepared in step [2] was washed again in the same manner as in step [1]. The cleaned substrate with a zinc oxide thin film was set on a spin coater. A magnesium acetate solution was dropped on the substrate and rotated at 1300 rpm for 60 seconds. The magnesium oxide layer was formed by baking this for 2 hours with the hotplate set to 400 degreeC in air | atmosphere.
[4] Next, 1 mL of a 1.2 wt% tetrahydrofuran solution of the blue light-emitting polymer (3) prepared in Synthesis Example 1 was prepared. The prepared substrate with an oxide thin film layer was set on a spin coater. A blue light emitting polymer solution was dropped on the substrate and rotated at 1600 rpm for 30 seconds to form an organic compound layer having a thickness of about 100 nm. This was moved into a glove box in an argon atmosphere, and heated at 200 ° C. for 1 hour using a hot plate to remove the residual solvent in the organic compound layer.
[5] The substrate formed up to the organic compound layer was fixed to a substrate holder of a vacuum deposition apparatus. Molybdenum trioxide was placed in an alumina crucible and set in the first vapor deposition source. At the same time, gold was put in an alumina crucible and set in the second vapor deposition source. The inside of the vacuum deposition apparatus was depressurized to about 1 × 10 −4 Pa, and molybdenum trioxide was deposited to a thickness of 10 nm. Next, gold was vapor-deposited so as to have a film thickness of 20 nm, and an organic electroluminescent element (Mg: Zn = 4: 0 (atomic ratio)) was created. At this time, a vapor deposition surface was formed into a strip shape having a width of 2 mm using a stainless steel vapor deposition mask. That is, the light emitting area of the produced organic electroluminescent element was 4 mm 2 .
(実施例10)
実施例9の工程[2]において亜鉛金属ターゲットの代わりにチタン金属ターゲットを使用した以外は同様にして、酸化チタン薄膜層の上にマグネシウム化合物層を持つ有機電界発光素子を作成した。
(Example 10)
An organic electroluminescent element having a magnesium compound layer on a titanium oxide thin film layer was prepared in the same manner except that a titanium metal target was used instead of the zinc metal target in the step [2] of Example 9.
(比較例10)
実施例9の工程[3]を省略した以外は同様にして、酸化物薄膜層として酸化亜鉛単層を持つ有機電界発光素子を作成した。
(Comparative Example 10)
An organic electroluminescent element having a zinc oxide single layer as an oxide thin film layer was produced in the same manner except that the step [3] in Example 9 was omitted.
(比較例11)
実施例10の工程[3]を省略した以外は同様にして、酸化物薄膜層として酸化チタン単層を持つ有機電界発光素子を作成した。
(Comparative Example 11)
An organic electroluminescence device having a titanium oxide single layer as an oxide thin film layer was produced in the same manner except that the step [3] in Example 10 was omitted.
(比較例12)
実施例9の工程[2]を省略した以外は同様にして、酸化物薄膜層として酸化マグネシウム単層を持つ有機電界発光素子を作成した。
(Comparative Example 12)
An organic electroluminescent element having a magnesium oxide single layer as an oxide thin film layer was produced in the same manner except that Step [2] in Example 9 was omitted.
(比較例13)
実施例9の工程[3]の代わりに次の工程[3’]を行った以外は同様にして、酸化亜鉛薄膜層の上にセシウム化合物層を持つ有機電界発光素子を作成した。
[3’]酸化物薄膜層まで形成した基板を真空蒸着装置の基板ホルダーに固定した。炭酸セシウムをアルミナルツボに入れて蒸着源にセットした。真空蒸着装置内を約1×10-4Paまで減圧し、炭酸セシウムを膜厚3nmになるように蒸着した。この基板を大気中で12時間放置し、セシウム化合物層を形成した。
(Comparative Example 13)
An organic electroluminescence device having a cesium compound layer on a zinc oxide thin film layer was prepared in the same manner except that the next step [3 ′] was performed instead of the step [3] in Example 9.
[3 ′] The substrate formed up to the oxide thin film layer was fixed to a substrate holder of a vacuum deposition apparatus. Cesium carbonate was placed in an alumina crucible and set in a vapor deposition source. The inside of the vacuum deposition apparatus was depressurized to about 1 × 10 −4 Pa, and cesium carbonate was deposited to a thickness of 3 nm. This substrate was left in the atmosphere for 12 hours to form a cesium compound layer.
(作成した有機電界発光素子)
実施例9~10、比較例10~13で作成した有機電界発光素子の構成をまとめると、次表の通りである。
Figure JPOXMLDOC01-appb-T000006
(Created organic electroluminescence device)
The configurations of the organic electroluminescent devices prepared in Examples 9 to 10 and Comparative Examples 10 to 13 are summarized as shown in the following table.
Figure JPOXMLDOC01-appb-T000006
(有機電界発光素子の発光特性測定)
ケースレー社製の「2400型ソースメーター」により、素子への電圧印加と、電流測定を行った。トプコン社製の「BM-7」により、発光輝度を測定した。実施例9、比較例10および比較例12で作成した有機電界発光素子を、アルゴン雰囲気下で-4V~15Vまでの直流電圧を印加した時の電圧-輝度特性、電流密度-電力効率特性を図10および図11にそれぞれ示す。
図10から、本発明の酸化物膜とマグネシウム化合物膜の積層構造を用いた実施例9の有機電界発光素子は、単層酸化物薄膜を用いた比較例10および比較例12の有機電界発光素子に比べて低い電圧から発光することが明らかである。
さらに図11から、本発明の酸化物膜とマグネシウム化合物膜の積層構造を用いた実施例9の有機電界発光素子は、単層酸化物薄膜を用いた比較例10および比較例12の有機電界発光素子に比べて高い電力効率を示すことが明らかである。
次に、実施例10、比較例11および比較例12で作成した有機電界発光素子を、アルゴン雰囲気下で-4V~15Vまでの直流電圧を印加した時の電圧-輝度特性、電流密度-電力効率特性を図12および図13にそれぞれ示す。
図12から、本発明の酸化物膜とマグネシウム化合物膜の積層構造を用いた実施例10の有機電界発光素子は、単層酸化物薄膜を用いた比較例11および比較例12の有機電界発光素子に比べて低い電圧から発光することが明らかである。
さらに図13から、本発明の酸化物膜とマグネシウム化合物膜の積層構造を用いた実施例10の有機電界発光素子は、単層酸化物薄膜を用いた比較例11および比較例12の有機電界発光素子に比べて高い電力効率を示すことが明らかである。
(Measurement of light emission characteristics of organic electroluminescence device)
Voltage application to the device and current measurement were performed using a “2400 type source meter” manufactured by Keithley. Luminance was measured with “BM-7” manufactured by Topcon Corporation. The organic electroluminescence devices prepared in Example 9, Comparative Example 10 and Comparative Example 12 are shown with voltage-luminance characteristics and current density-power efficiency characteristics when a DC voltage of −4 V to 15 V is applied in an argon atmosphere. 10 and FIG. 11 respectively.
From FIG. 10, the organic electroluminescent element of Example 9 using the laminated structure of the oxide film and magnesium compound film of the present invention is the organic electroluminescent element of Comparative Example 10 and Comparative Example 12 using a single layer oxide thin film. It is clear that light is emitted from a voltage lower than that of.
Further, from FIG. 11, the organic electroluminescence device of Example 9 using the laminated structure of the oxide film and the magnesium compound film of the present invention is the organic electroluminescence of Comparative Example 10 and Comparative Example 12 using a single layer oxide thin film. It is clear that the power efficiency is higher than that of the device.
Next, the organic electroluminescence devices prepared in Example 10, Comparative Example 11 and Comparative Example 12 were subjected to voltage-luminance characteristics, current density-power efficiency when a DC voltage of −4 V to 15 V was applied in an argon atmosphere. The characteristics are shown in FIGS. 12 and 13, respectively.
From FIG. 12, the organic electroluminescent element of Example 10 using the laminated structure of the oxide film and magnesium compound film of the present invention is the organic electroluminescent element of Comparative Example 11 and Comparative Example 12 using a single layer oxide thin film. It is clear that light is emitted from a voltage lower than that of.
Further, from FIG. 13, the organic electroluminescence device of Example 10 using the laminated structure of the oxide film and the magnesium compound film of the present invention is the organic electroluminescence of Comparative Example 11 and Comparative Example 12 using a single layer oxide thin film. It is clear that the power efficiency is higher than that of the device.
(有機電界発光素子の寿命特性測定)
システム技研社製の「有機EL寿命測定装置」により、素子への電圧印加と、相対輝度測定を行った。この装置では素子に一定電流が流れるように電圧を自動的に調整しながら、フォトダイオードによる相対輝度測定が行える。測定開始時の輝度が100cd/mになるように素子ごとに電流値を設定した。実施例9および比較例13で作成した有機電界発光素子の寿命特性を図14に示す。
図14から、本発明の酸化物膜とマグネシウム化合物膜の積層構造を用いた実施例9の有機電界発光素子は、単層酸化物薄膜とセシウム化合物層を持つ比較例13の有機電界発光素子に比べて寿命が長いことが分かる。
(Measurement of lifetime characteristics of organic electroluminescent devices)
Application of voltage to the element and measurement of relative luminance were performed using an “organic EL lifetime measuring device” manufactured by System Giken. This device can measure relative luminance by a photodiode while automatically adjusting the voltage so that a constant current flows through the element. The current value was set for each element so that the luminance at the start of measurement was 100 cd / m 2 . FIG. 14 shows the lifetime characteristics of the organic electroluminescent elements prepared in Example 9 and Comparative Example 13.
From FIG. 14, the organic electroluminescent element of Example 9 using the laminated structure of the oxide film and the magnesium compound film of the present invention is an organic electroluminescent element of Comparative Example 13 having a single-layer oxide thin film and a cesium compound layer. It can be seen that the lifetime is longer.
<4.仕事関数が4.0eV以下の金属の単体、又は、その酸化物が、金属酸化物の2つの層に挟まれた構造を有する層を有する有機電界発光素子の実施例、比較例>
(有機電界発光素子の作製)
(実施例11)
[1]市販されている平均厚さ0.7mmのITO電極層付き透明ガラス基板を用意した。この時、基板のITO電極は幅2mmにパターニングされているものを用いた。ITO電極は陰極2として用いられる。この基板をアセトン中、イソプロパノール中でそれぞれ10分間超音波洗浄後、イソプロパノール中で5分間煮沸した。この基板をイソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分行った。
[2]この基板を、亜鉛金属ターゲットを持つミラトロンスパッタ装置の基板ホルダーに再度固定した。約1×10-4Paまで減圧した後、アルゴンと酸素を導入した状態でスパッタし、膜厚約2nmの酸化亜鉛層を作成した。この時にメタルマスクを併用して、電極取り出しのため、ITO電極の一部は酸化亜鉛が製膜されないようにした。
[3]この基板を、抵抗加熱蒸着源を有する蒸着装置の基板ホルダーに固定した。約1×10-4Paまで減圧した後、膜厚約0.5nmのマグネシウム層を作製した。この時にメタルマスクを併用して、[2]と同様、電極取り出しのためITO電極の一部は金属マグネシウムが製膜されないようにした。
[4]この基板を、亜鉛金属ターゲットを持つミラトロンスパッタ装置の基板ホルダーに再度固定した。約1×10-4Paまで減圧した後、アルゴンと酸素を導入した状態でスパッタし、膜厚約2nmの酸化亜鉛層を作製した。この時にメタルマスクを併用して、[2]と同様、電極取り出しのためITO電極の一部は酸化亜鉛が製膜されないようにした。この[2]~[4]の一連の製膜工程は大気に暴露することなく真空下で一貫作製した。この[2]~[4]で形成された薄膜を積層金属化合物層3として用いた。
[5]次に、有機化合物層4として発光性の高分子材料であるポリ(ジオクチルフルオレン-アルト-ベンゾチアジアゾール)(F8BT)を以下の方法により形成した。
なお、この中に正孔輸送性材料を混ぜることも可能だし、先に発光性高分子材料を形成しておき、その上に正孔輸送材料を形成する積層も可能であるが、ここでは単層製膜により有機化合物層を形成した。積層はこれを繰り返すことによって実現できる。
まず、F8BTをキシレンに溶解して液状材料(1.0%溶液)を調製した。次に、この液状材料を1000rpmで100秒間スピンコートすることにより、積層金属酸化物層3上に供給して、液状被膜を形成した。液状被膜をホットプレートにて100℃に加熱することにより乾燥して溶媒であるキシレンを揮発させ、有機化合物層を形成した。製膜された膜厚は45nmであった。
[6]次に、有機化合物層4の上に、正孔注入性金属酸化物層5として酸化モリブデン層を真空蒸着法により形成した。正孔注入性金属酸化物層5の厚みは10nmであった。
[7]最後に、最終工程として正孔注入性金属酸化物層5上に陽極6として真空蒸着法により金の層を形成した。陽極6の厚みは40nmであった。
<4. Examples of organic electroluminescent elements having a structure in which a metal having a work function of 4.0 eV or less, or an oxide thereof is sandwiched between two layers of metal oxide, and comparative examples>
(Production of organic electroluminescence device)
(Example 11)
[1] A commercially available transparent glass substrate with an ITO electrode layer having an average thickness of 0.7 mm was prepared. At this time, an ITO electrode patterned to have a width of 2 mm was used. The ITO electrode is used as the cathode 2. This substrate was subjected to ultrasonic cleaning in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. This substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes.
[2] This substrate was fixed again to the substrate holder of the Miratron sputtering apparatus having a zinc metal target. After reducing the pressure to about 1 × 10 −4 Pa, sputtering was performed in a state where argon and oxygen were introduced to form a zinc oxide layer having a thickness of about 2 nm. At this time, a metal mask was used in combination so that a part of the ITO electrode was not formed with zinc oxide for electrode extraction.
[3] This substrate was fixed to a substrate holder of a vapor deposition apparatus having a resistance heating vapor deposition source. After reducing the pressure to about 1 × 10 −4 Pa, a magnesium layer having a thickness of about 0.5 nm was produced. At this time, a metal mask was used in combination, and in the same way as [2], a part of the ITO electrode was made not to be formed of magnesium metal for electrode extraction.
[4] This substrate was fixed again to the substrate holder of the Miratron sputtering apparatus having a zinc metal target. After reducing the pressure to about 1 × 10 −4 Pa, sputtering was performed with argon and oxygen introduced, and a zinc oxide layer having a thickness of about 2 nm was produced. At this time, a metal mask was used in combination, and as in [2], a part of the ITO electrode was not formed with zinc oxide for electrode extraction. The series of film forming steps [2] to [4] were consistently produced under vacuum without exposure to the atmosphere. The thin film formed in [2] to [4] was used as the laminated metal compound layer 3.
[5] Next, poly (dioctylfluorene-alt-benzothiadiazole) (F8BT), which is a light-emitting polymer material, was formed as the organic compound layer 4 by the following method.
It is also possible to mix a hole transporting material in this, and it is also possible to form a layer in which a light emitting polymer material is first formed and a hole transporting material is formed thereon. An organic compound layer was formed by layer deposition. Lamination can be achieved by repeating this.
First, F8BT was dissolved in xylene to prepare a liquid material (1.0% solution). Next, this liquid material was spin-coated at 1000 rpm for 100 seconds to supply it onto the laminated metal oxide layer 3 to form a liquid film. The liquid film was dried by heating to 100 ° C. on a hot plate to volatilize xylene as a solvent to form an organic compound layer. The formed film thickness was 45 nm.
[6] Next, a molybdenum oxide layer was formed as a hole-injecting metal oxide layer 5 on the organic compound layer 4 by a vacuum deposition method. The thickness of the hole injecting metal oxide layer 5 was 10 nm.
[7] Finally, as a final step, a gold layer was formed on the hole-injecting metal oxide layer 5 as the anode 6 by vacuum deposition. The thickness of the anode 6 was 40 nm.
(比較例14)
実施例11の工程[3]を省略した以外は同様にして、積層酸化物薄膜層として酸化亜鉛単層を持つ有機電界発光素子を作製した。
(Comparative Example 14)
An organic electroluminescent element having a zinc oxide single layer as a laminated oxide thin film layer was produced in the same manner except that Step [3] in Example 11 was omitted.
(比較例15)
実施例11の工程[2]の酸化亜鉛層の膜厚を4nmとし、工程[4]を省略した以外は同様にして、積層酸化物薄膜層として酸化亜鉛/マグネシウムを持つ有機電界発光素子を作製した。
(Comparative Example 15)
An organic electroluminescent device having zinc oxide / magnesium as a laminated oxide thin film layer was prepared in the same manner except that the thickness of the zinc oxide layer in step [2] of Example 11 was 4 nm and step [4] was omitted. did.
(有機電界発光素子の発光特性測定)
ケースレー社製の「2400型ソースメーター」により、素子への電圧印加と、電流測定を行った。トプコン社製の「BM-7」により、発光輝度を測定した。実施例11および比較例14~15で作成した有機電界発光素子を、アルゴン雰囲気下で-4V~15Vまでの直流電圧を印加した時の電圧-輝度特性、電圧-電流効率特性を図15、図16にそれぞれ示す。
図15から明らかなように、本発明の積層金属化合物薄膜を用いた実施例11の有機電界発光素子は、単層酸化物薄膜を用いた比較例14の有機電界発光素子に比べて低い電圧から発光することが確認された。比較例15と閾値電圧は同等であるが、実施例11の有機電界発光素子は、輝度の観点で優っていることが明らかとなった。
更に図16から明らかなように、本発明の積層金属化合物薄膜を用いた実施例11の有機電界発光素子は、単層酸化物薄膜を用いた比較例14~15の有機電界発光素子に比べて高い電流効率を示すことが確認された。
(Measurement of light emission characteristics of organic electroluminescence device)
Voltage application to the device and current measurement were performed using a “2400 type source meter” manufactured by Keithley. Luminance was measured with “BM-7” manufactured by Topcon Corporation. FIG. 15 shows the voltage-luminance characteristics and voltage-current efficiency characteristics of the organic electroluminescent elements prepared in Example 11 and Comparative Examples 14 to 15 when a DC voltage of −4 V to 15 V is applied in an argon atmosphere. 16 respectively.
As is clear from FIG. 15, the organic electroluminescent device of Example 11 using the laminated metal compound thin film of the present invention has a lower voltage than the organic electroluminescent device of Comparative Example 14 using a single layer oxide thin film. It was confirmed that light was emitted. Although the threshold voltage was the same as that of Comparative Example 15, it was revealed that the organic electroluminescent element of Example 11 was superior in terms of luminance.
Further, as apparent from FIG. 16, the organic electroluminescent device of Example 11 using the laminated metal compound thin film of the present invention is compared with the organic electroluminescent devices of Comparative Examples 14 to 15 using a single layer oxide thin film. It was confirmed that high current efficiency was exhibited.
(有機電界発光素子の寿命特性測定)
システム技研社製の「有機EL寿命測定装置」により、素子への電圧印加と、相対輝度測定を行った。この装置では素子に一定電流が流れるように電圧を自動的に調整しながら、フォトダイオードによる相対輝度測定が行える。測定開始時の輝度が100cd/mになるように素子ごとに電流値を設定した。実施例11、並びに、比較例14および15で作製した有機電界発光素子の寿命特性を図17に示す。
図17からわかるように、本発明の積層金属化合物薄膜を用いた実施例11の有機電界発光素子は、有機化合物層に仕事関数が4.0eV以下の金属が直接接している比較例15の有機電界発光素子に比べて著しく寿命が長いことが確認された。また、比較例14の単層酸化物薄膜を有する有機電界発光素子に比べて、輝度上昇は小さく、過去の結果から推察するに、キャリアバランスが良好であることを示していると考えられる。このことから、さらに長時間の駆動においてより高い耐久性が期待できる。
以上のことから、本発明の根幹である低仕事関数金属を金属酸化物等にはさむ構造は、素子特性に良好な結果をもたらすことが証明された。
(Measurement of lifetime characteristics of organic electroluminescent devices)
Application of voltage to the element and measurement of relative luminance were performed using an “organic EL lifetime measuring device” manufactured by System Giken. This device can measure relative luminance by a photodiode while automatically adjusting the voltage so that a constant current flows through the element. The current value was set for each element so that the luminance at the start of measurement was 100 cd / m 2 . FIG. 17 shows the lifetime characteristics of the organic electroluminescent elements prepared in Example 11 and Comparative Examples 14 and 15.
As can be seen from FIG. 17, the organic electroluminescent device of Example 11 using the laminated metal compound thin film of the present invention is the organic of Comparative Example 15 in which a metal having a work function of 4.0 eV or less is in direct contact with the organic compound layer. It was confirmed that the lifetime was significantly longer than that of the electroluminescent device. Moreover, compared with the organic electroluminescent element which has the single layer oxide thin film of the comparative example 14, it is thought that a brightness | luminance raise is small and it has shown that the carrier balance is favorable, as guessed from the past result. For this reason, higher durability can be expected in driving for a longer time.
From the above, it has been proved that the structure in which the low work function metal, which is the basis of the present invention, is sandwiched between metal oxides and the like has good results in device characteristics.
1:基板
2:陰極
3:積層金属化合物層
4:有機化合物層
5:正孔注入性金属酸化物層
6:陽極
 
1: Substrate 2: Cathode 3: Laminated metal compound layer 4: Organic compound layer 5: Hole-injecting metal oxide layer 6: Anode

Claims (6)

  1. 陽極と陰極との間に複数の層が積層された構造を有する有機電界発光素子であって、
    該有機電界発光素子は、陽極と陰極との間に1層又は複数層の有機化合物層を有し、更に該陽極と有機化合物層との間及び/又は陰極と有機化合物層との間に複数の金属種を含む層を有し、該複数の金属種の少なくとも一つは、金属酸化物である
    ことを特徴とする有機電界発光素子。
    An organic electroluminescent device having a structure in which a plurality of layers are laminated between an anode and a cathode,
    The organic electroluminescent element has one or more organic compound layers between the anode and the cathode, and further includes a plurality of layers between the anode and the organic compound layer and / or between the cathode and the organic compound layer. An organic electroluminescent device comprising a layer containing a metal species, wherein at least one of the plurality of metal species is a metal oxide.
  2. 前記複数の金属種を含む層は、混合金属酸化物層、積層金属酸化物層、又は、金属酸化物層上に金属種を有する構造を含む層のいずれかであることを特徴とする請求項1に記載の有機電界発光素子。 The layer containing a plurality of metal species is any one of a mixed metal oxide layer, a laminated metal oxide layer, or a layer containing a structure having a metal species on the metal oxide layer. 2. The organic electroluminescent element according to 1.
  3. 前記金属酸化物層上に金属種を有する構造を含む層は、金属酸化物層と前記有機化合物層との間にマグネシウム化合物層を有する層であることを特徴とする請求項2に記載の有機電界発光素子。 The organic layer according to claim 2, wherein the layer including a structure having a metal species on the metal oxide layer is a layer having a magnesium compound layer between the metal oxide layer and the organic compound layer. Electroluminescent device.
  4. 前記金属酸化物層上に金属種を有する構造を含む層は、仕事関数が4.0eV以下の金属の単体、又は、その酸化物が、金属酸化物の2つの層に挟まれた構造を有する層であることを特徴とする請求項2に記載の有機電界発光素子。 The layer including a structure having a metal species on the metal oxide layer has a structure in which a single metal having a work function of 4.0 eV or less or an oxide thereof is sandwiched between two layers of metal oxide. The organic electroluminescent element according to claim 2, wherein the organic electroluminescent element is a layer.
  5. 請求項1~4のいずれかに記載の有機電界発光素子を備えることを特徴とする表示装置。 A display device comprising the organic electroluminescent element according to any one of claims 1 to 4.
  6. 請求項1~4のいずれかに記載の有機電界発光素子を備えることを特徴とする照明装置。 An illumination device comprising the organic electroluminescent element according to any one of claims 1 to 4.
PCT/JP2012/071098 2011-08-24 2012-08-21 Organic electroluminescent element WO2013027735A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2011-182426 2011-08-24
JP2011-182457 2011-08-24
JP2011182426 2011-08-24
JP2011-182157 2011-08-24
JP2011182157 2011-08-24
JP2011182457 2011-08-24
JP2011251506A JP5930670B2 (en) 2011-08-24 2011-11-17 Organic electroluminescence device
JP2011-251506 2011-11-17
JP2012-163024 2012-07-23
JP2012163024A JP6262933B2 (en) 2011-08-24 2012-07-23 Organic electroluminescence device
JP2012-182413 2012-08-21
JP2012182413A JP6262935B2 (en) 2011-08-24 2012-08-21 Organic electroluminescence device

Publications (1)

Publication Number Publication Date
WO2013027735A1 true WO2013027735A1 (en) 2013-02-28

Family

ID=47746474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071098 WO2013027735A1 (en) 2011-08-24 2012-08-21 Organic electroluminescent element

Country Status (1)

Country Link
WO (1) WO2013027735A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101775991B1 (en) 2014-09-17 2017-09-07 이화여자대학교 산학협력단 Boron-containing organic semiconductor compound and producing method of the same
WO2021029004A1 (en) * 2019-08-13 2021-02-18 シャープ株式会社 Light emitting element and light emitting device
WO2021029007A1 (en) * 2019-08-13 2021-02-18 シャープ株式会社 Light-emitting element and light-emitting device
WO2021084599A1 (en) * 2019-10-29 2021-05-06 シャープ株式会社 Light emitting element, light emitting device and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171951A (en) * 2002-11-20 2004-06-17 Dainippon Printing Co Ltd Anode for organic semiconductor device
JP2006287078A (en) * 2005-04-04 2006-10-19 Sony Corp Organic electroluminescence element
JP2010033973A (en) * 2008-07-30 2010-02-12 Panasonic Electric Works Co Ltd Organic electroluminescent element
JP2010092741A (en) * 2008-10-08 2010-04-22 Panasonic Electric Works Co Ltd Organic electroluminescent element
JP2010103460A (en) * 2008-03-26 2010-05-06 Toppan Printing Co Ltd Organic electroluminescence element, method for manufacturing organic electroluminescence element, and display unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171951A (en) * 2002-11-20 2004-06-17 Dainippon Printing Co Ltd Anode for organic semiconductor device
JP2006287078A (en) * 2005-04-04 2006-10-19 Sony Corp Organic electroluminescence element
JP2010103460A (en) * 2008-03-26 2010-05-06 Toppan Printing Co Ltd Organic electroluminescence element, method for manufacturing organic electroluminescence element, and display unit
JP2010033973A (en) * 2008-07-30 2010-02-12 Panasonic Electric Works Co Ltd Organic electroluminescent element
JP2010092741A (en) * 2008-10-08 2010-04-22 Panasonic Electric Works Co Ltd Organic electroluminescent element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101775991B1 (en) 2014-09-17 2017-09-07 이화여자대학교 산학협력단 Boron-containing organic semiconductor compound and producing method of the same
WO2021029004A1 (en) * 2019-08-13 2021-02-18 シャープ株式会社 Light emitting element and light emitting device
WO2021029007A1 (en) * 2019-08-13 2021-02-18 シャープ株式会社 Light-emitting element and light-emitting device
WO2021084599A1 (en) * 2019-10-29 2021-05-06 シャープ株式会社 Light emitting element, light emitting device and display device

Similar Documents

Publication Publication Date Title
KR102113369B1 (en) Organic electroluminescence element
JP2003077674A (en) Organic electroluminescent element
WO2013157451A1 (en) Organic electroluminescent element and method for manufacturing same
JP6852172B2 (en) Organic electroluminescent device
WO2013027735A1 (en) Organic electroluminescent element
KR102171425B1 (en) Organic electroluminescent element and method for manufacturing same
JP6226533B2 (en) Organic electroluminescence device
JP6262935B2 (en) Organic electroluminescence device
JP6037894B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT, ITS MANUFACTURING METHOD, AND DISPLAY DEVICE
JP2018113149A (en) Conductive film, electrode, organic electroluminescent element, display device, lighting device, and thin-film solar cell
JP2014154715A (en) Organic electroluminescent element, display device and method of manufacturing organic electroluminescent element
JP2014154714A (en) Organic electroluminescent element, display device and method of manufacturing organic electroluminescent element
JP2017098036A (en) Organic electroluminescent element, display device, and lighting system
JP7231436B2 (en) organic electroluminescent element
JP6262933B2 (en) Organic electroluminescence device
JP7108493B2 (en) Organic thin film and organic thin film manufacturing method, organic electroluminescence element and its manufacturing method, display device, lighting device, organic thin film solar cell, thin film transistor
JP2018093080A (en) Organic electroluminescent element, method of manufacturing the same, display device, and lighting device
JP5930670B2 (en) Organic electroluminescence device
JP2016174100A (en) Organic electroluminescent element
JP2014017419A (en) Organic electroluminescent element
JP6105299B2 (en) Composition for organic electroluminescence device and organic electroluminescence device
JP2015115405A (en) Polymer for organic electroluminescent light-emitting element, and organic electroluminescent element
JP2014036052A (en) Organic electroluminescent element
JP7251740B2 (en) organic electroluminescent element
JP6212261B2 (en) Organic electroluminescence device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826239

Country of ref document: EP

Kind code of ref document: A1