WO2013027640A1 - Acrylate-based composition - Google Patents

Acrylate-based composition Download PDF

Info

Publication number
WO2013027640A1
WO2013027640A1 PCT/JP2012/070763 JP2012070763W WO2013027640A1 WO 2013027640 A1 WO2013027640 A1 WO 2013027640A1 JP 2012070763 W JP2012070763 W JP 2012070763W WO 2013027640 A1 WO2013027640 A1 WO 2013027640A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
group
component
acrylate
mass
Prior art date
Application number
PCT/JP2012/070763
Other languages
French (fr)
Japanese (ja)
Inventor
猛 岩崎
大地 小川
勇人 山崎
寛 小幡
智明 武部
東洋藏 藤岡
友良 村上
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020147004158A priority Critical patent/KR20140051958A/en
Priority to CN201280040391.9A priority patent/CN103732640A/en
Publication of WO2013027640A1 publication Critical patent/WO2013027640A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • C08F290/048Polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a composition containing an acrylate compound, and more particularly to a composition suitably used as a raw material for a sealing material, an optical material and the like, and a cured product thereof.
  • optical semiconductor devices each having a light-emitting element with an LED (light-emitting diode) chip having a pn bond formed by a semiconductor layer grown on a crystal substrate and using this junction region as a light-emitting layer Widely used in display devices and display devices.
  • this optical semiconductor device include a visible light emitting device and a high-temperature operating electronic device using a gallium nitride compound semiconductor such as GaN, GaAlN, InGaN, and InAlGaN. Recently, blue light emitting diodes and ultraviolet light emitting diodes are used. Development is progressing in this field.
  • An optical semiconductor device including an LED chip as a light emitting element includes an LED chip mounted on a light emitting surface side of a lead frame, and electrically connecting the LED chip and the lead frame by wire bonding. It is sealed with a resin that also functions as a lens.
  • White LEDs have attracted attention as a new light source and are used for lighting applications and the like.
  • White LED is a type in which YAG phosphor is coated on a GaN bare chip, and GaN blue light emission and yellow light emission of GaN are mixed to emit white light, and red, green and blue chips are packaged in one package to emit white light.
  • a method for combining a plurality of phosphor materials using an ultraviolet LED chip as a light source has been developed for improving the color tone. Furthermore, in order to use LED for illumination use etc., improving its durability is calculated
  • an epoxy resin is used as a sealing material used when sealing a light emitting element such as an LED (light emitting diode) chip.
  • an epoxy resin is used due to factors such as good transparency and workability.
  • most epoxy resins for sealing LEDs are composed of bisphenol A glycidyl ether and methylhexahydrophthalic anhydride, an amine-based or phosphorus-based curing accelerator.
  • these components generate carbonyl groups by absorption of ultraviolet light, they have the disadvantage of absorbing visible light and turning yellow.
  • Silicone resins are widely used to improve yellowing due to ultraviolet light and brightness reduction.
  • the silicone resin has a problem that the light extraction efficiency is low because the refractive index is low, and the adhesion with the lead frame and the reflecting material is poor because the polarity is low.
  • soldering by a reflow soldering method is performed. In the reflow furnace, since it is exposed to heat at 260 ° C. for about 10 seconds, the conventional epoxy resin or silicone resin may be deformed or cracked by heat.
  • Patent Document 1 proposes a transparent sealing material for an optical semiconductor that provides a cured product that is stable against ultraviolet rays and heat, hardly causes yellowing, and has excellent adhesion. ing.
  • cured material may be inferior to adhesiveness with the surrounding base materials (reflecting material resin or a metal frame).
  • the present inventors have found in Patent Document 2 that the adhesiveness to the substrate can be improved by a composition containing a specific (meth) acrylate compound and a radical polymerization initiator.
  • a cured product obtained by curing the composition disclosed in Patent Document 2 is subjected to a thermal shock test performed as a reliability evaluation in the field of optical semiconductors (exposing a semiconductor repeatedly in an environment of extremely low temperature and high temperature alternately). In the test), there may be a problem that the gold wire connecting the light emitting element and the lead frame is broken, and the reliability is not sufficiently satisfied.
  • optical semiconductors emit light from minute light emitting elements, the spread of light is small compared to fluorescent lamps, and there is a need to scatter emitted light as much as possible in applications such as lighting.
  • the transparent cured product disclosed in 2 cannot satisfy this requirement.
  • the present invention has been made in view of the above circumstances, and is a composition that is suitably used as a raw material for a sealing material, and breaks a gold wire in a thermal shock test while maintaining a conventional level regarding heat resistance and adhesion.
  • An object of the present invention is to provide a composition that gives a cured product that does not cause defects and can simultaneously scatter light emitted from an optical semiconductor.
  • the present invention provides the following 1 to 8. 1.
  • a composition comprising an initiator and (E) silica-based fine particles having an average particle diameter of 0.1 to 500 ⁇ m, or silica-based fibers having an average fiber diameter
  • the component (A) is an alkyl (meth) acrylate having an alkyl group having 12 or more carbon atoms selected from hydrogenated polybutadiene di (meth) acrylate and hydrogenated polyisoprene (meth) acrylate, and / or the number average molecular weight 400 2.
  • the component (C) includes a hydroxyl group, an epoxy group, a glycidyl ether group, a tetrahydrofurfuryl group, an isocyanate group, a carboxyl group, an alkoxysilyl group, a phosphate ester group, a lactone group, an oxetane group, a tetrahydropyranyl group, and an amino group.
  • the amount of component (A) is 10 to 90% by mass, the amount of component (B) is 5 to 89.5% by mass, (C
  • the amount of the component (D) is 0.5 to 50% by mass, and the amount of the component (D) is 0.01 to 10 with respect to a total of 100 parts by mass of the component (A), the component (B) and the component (C).
  • the sealing material according to 7 above which is for an optical semiconductor or a light receiving element.
  • composition suitably used as a raw material for a sealing material and the like, while maintaining the conventional level with respect to heat resistance and adhesiveness, no disconnection failure of a gold wire in a thermal shock test occurs. Also provided is a composition that provides a cured product that can simultaneously scatter light emitted from an optical semiconductor.
  • composition of the present invention is selected from (A) (meth) acrylate-modified silicone oil, alkyl (meth) acrylate having an alkyl group having 12 or more carbon atoms, and polyalkylene glycol (meth) acrylate having a number average molecular weight of 400 or more.
  • (meth) acrylate compounds (B) (meth) acrylate compounds in which an alicyclic hydrocarbon group having 6 or more carbon atoms is ester-bonded, (C) (meth) acrylic acid or (meth) acrylate having a polar group A compound, (D) a radical polymerization initiator, and (E) silica-based fine particles having an average particle diameter of 0.1 to 500 ⁇ m, or silica-based fibers having an average fiber diameter and a fiber length of 0.1 to 500 ⁇ m.
  • (meth) acrylate refers to acrylate and / or methacrylate. The same applies to other similar terms.
  • the component (A) used in the present invention is a (meth) acrylate-modified silicone oil, an alkyl (meth) acrylate having an alkyl group having 12 or more carbon atoms (hereinafter also referred to as “long-chain alkyl (meth) acrylate”) and a number average It is one or more (meth) acrylate compounds selected from polyalkylene glycol (meth) acrylates having a molecular weight of 400 or more.
  • the (meth) acrylate-modified silicone oil of component (A) is a compound having an acryl group and / or a methacryl group at the end and containing a dialkylpolysiloxane in the skeleton.
  • the (meth) acrylate-modified silicone oil of component (A) is a modified product of dimethylpolysiloxane in many cases, but the alkyl in the dialkylpolysiloxane skeleton is replaced with a methyl group or an alkyl group other than a methyl group. All or some of the groups may be substituted. Examples of the alkyl group other than the methyl group include an ethyl group and a propyl group.
  • polydialkylsiloxane having an acryloxyalkyl terminal or a methacryloxyalkyl terminal can be used.
  • (3-acryloxy-2-hydroxypropyl) -terminated polydimethylsiloxane and acryloxy-terminated ethylene oxide dimethylsiloxane-ethylene oxide ABA block copolymer are preferably used because of transparency after curing.
  • the long-chain alkyl (meth) acrylate as the component (A) is a (meth) acrylate containing an alkyl group having 12 or more carbon atoms.
  • the alkyl group having 12 or more carbon atoms include dodecyl group, lauryl group, tetradecyl group, hexadecyl group, octadecyl group (including stearyl group), eicosyl group, triacontyl group and tetracontyl group.
  • the alkyl group having 12 or more carbon atoms may be an alkyl group derived from a hydride of a polymer such as polybutadiene or polyisoprene. Excellent adhesion can be obtained by using a long-chain alkyl (meth) acrylate.
  • the long-chain alkyl (meth) acrylate include hydrogenated polybutadiene such as hydrogenated polybutadiene di (meth) acrylate and hydrogenated polyisoprene (meth) acrylate, and acrylic or methacrylic compounds having a hydrogenated polyisoprene skeleton, or Examples include stearyl methacrylate.
  • hydrogenated polybutadiene di (meth) acrylate and hydrogenated polyisoprene di (meth) acrylate are preferable in terms of adhesion.
  • the polyalkylene glycol (meth) acrylate having a number average molecular weight of 400 or more as the component (A) is polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate, ethoxylated trimethylol. Examples thereof include propane tri (meth) acrylate and ethoxylated pentaerythritol tetra (meth) acrylate.
  • a polyalkylene glycol (meth) acrylate having a number average molecular weight of 400 or more excellent toughness and adhesion can be obtained.
  • the maximum value of the number average molecular weight is not particularly limited, but a number average molecular weight of 10,000 or less is preferable from the viewpoint of compatibility with the component (B).
  • At least one selected from the (meth) acrylate-modified silicone oils at least one selected from the long-chain alkyl (meth) acrylates, or the number average molecular weight of 400 or more.
  • At least one selected from polyalkylene glycol (meth) acrylates of the above, or the above-mentioned (meth) acrylate-modified silicone oil, long-chain alkyl (meth) acrylate, and polyalkylene glycol having a number average molecular weight of 400 or more You may choose and combine suitably from (meth) acrylate.
  • a long-chain alkyl (meth) acrylate selected from hydrogenated polybutadiene di (meth) acrylate and hydrogenated polyisoprene di (meth) acrylate, and / or a polyalkylene glycol (meth) acrylate having a number average molecular weight of 400 or more is preferable. .
  • the content of the component (A) in the composition of the present invention is usually 10 to 90% by mass, preferably 15 to 80% by mass, based on the sum of the components (A), (B) and (C). is there.
  • the adhesiveness and toughness which were excellent by making (A) component 10 mass% or more are obtained.
  • the component (B) used in the present invention is a (meth) acrylate compound in which an alicyclic hydrocarbon group having 6 or more carbon atoms is ester-bonded.
  • the alicyclic hydrocarbon group having 6 or more carbon atoms in the component (B) includes a cyclohexyl group, 2-decahydronaphthyl group, adamantyl group, 1-methyladamantyl group, 2-methyladamantyl group, biadamantyl group, dimethyladamantyl group Group, norbornyl group, 1-methyl-norbornyl group, 5,6-dimethyl-norbornyl group, isobornyl group, tetracyclo [4.4.0.1 2,5 .
  • the (meth) acrylate compound of the component (B) the (meth) acrylate having the alicyclic hydrocarbon group, for example, cyclohexyl (meth) acrylate, 1-adamantyl (meth) acrylate, norbornyl (meth) acrylate, Isobonyl (meth) acrylate, dicyclopentanyl (meth) acrylate, etc. are mentioned.
  • the component (B) one type of the (meth) acrylate compound may be used, or two or more types may be used in combination.
  • excellent heat resistance can be obtained by using an alicyclic hydrocarbon group having 6 or more carbon atoms.
  • the ester substituent is an alicyclic hydrocarbon group and does not contain aromatics, it is difficult to cause deterioration due to ultraviolet rays.
  • the content of the component (B) in the composition of the present invention is usually 5 to 89.5% by mass, preferably 10 to 80% by mass, based on the sum of the components (A), (B) and (C). %.
  • the content of the component (B) in the composition of the present invention is usually 5 to 89.5% by mass, preferably 10 to 80% by mass, based on the sum of the components (A), (B) and (C). %.
  • the component (C) used in the present invention is (meth) acrylic acid or a (meth) acrylate compound having a polar group. Since the component (C) has polarity, it forms a hydrogen bond with a metal surface having polarity in the same manner, thereby improving adhesion. Further, the wettability is improved by the presence of the polar group.
  • an alkylene glycol group may be concerned with adhesion
  • Examples of (meth) acrylate compounds having polar groups include (meth) acrylate compounds in which polar groups containing atoms other than carbon and hydrogen are ester-bonded.
  • Examples of polar groups include hydroxyl groups, epoxy groups, glycidyl ether groups, tetrahydro groups. Examples include a furfuryl group, an isocyanate group, a carboxyl group, an alkoxysilyl group, a phosphate ester group, a lactone group, an oxetane group, a tetrahydropyranyl group, and an amino group.
  • At least one selected from the (meth) acrylic acid or at least one selected from the (meth) acrylate compounds having the polar group may be used. Or you may select and combine suitably from the said (meth) acrylic acid and the (meth) acrylate compound which has a polar group.
  • the content of component (C) in the composition of the present invention is usually 0.5 to 50% by mass, preferably 1 to 40% by mass, based on the total of component (A), component (B) and component (C). %.
  • component (C) is 0.5% by mass or more, excellent adhesion to a resin material or a metal material that comes into contact with the encapsulant when the optical semiconductor is encapsulated is exhibited.
  • C By making content of a component into 50 mass% or less, a balance with another component becomes favorable.
  • ketone peroxides such as methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, acetylacetone peroxide, cyclohexanone peroxide, methylcyclohexanone peroxide, 1,1,3 , 3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, hydroperoxides such as t-butyl hydroperoxide, diisobutyryl peroxide, bis-3,5,5-trimethylhexanol peroxide, lauroyl peroxide, Diacyl peroxides such as benzoyl peroxide and m-toluyl benzoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-bi (T-butylperoxy) hexane, 1,3-bis (t-
  • a radical photopolymerization initiator can also be used as the component (D).
  • photo radical polymerization initiators include Irgacure 651 (Irgacure 651), Irgacure 184 (Irgacure 184), Darocur 1173 (DAROCUR1173), Irgacure 2959 (Irgacure 2959), Irgacure 127 (Irgacure 127), Irgacure 127 g Irgacure 379 (Irgacure 379), Darocur TPO (DAROCUR TPO), Irgacure 819 (Irgacure 819), Irgacure 784 (Irgacure 784) (above, BASF Japan Ltd., trademark), etc. are mentioned.
  • the radical polymerization initiator of component (D) may be used alone or in combination of two or more.
  • the content of the component (D) in the composition of the present invention is usually 0.01 to 10 parts by mass, preferably 100 parts by mass with respect to a total of 100 parts by mass of the components (A), (B) and (C), preferably 0.1 to 5.0 parts by mass.
  • silica-based fine particles or silica-based fibers In the present invention, silica-based fine particles having an average particle diameter of 0.1 to 500 ⁇ m or silica-based fibers having an average fiber diameter and fiber length of 0.1 to 500 ⁇ m are used as the component (E).
  • the silica-based fine particles or silica-based fibers of the component (E) are fine particles mainly composed of silicon dioxide, and the shape thereof is not limited, such as spherical, fibrous, rod-like, plate-like, and irregular shapes. .
  • silica-based fine particles or silica-based fibers are generally silica powder, silica beads, (true) spherical silica, fused silica, fused spherical silica, crystalline silica, glass powder, glass beads, glass filler, What is called glass fiber, milled glass fiber, talc, whisker or the like can be used.
  • silica soda lime glass, low alkali glass, borosilicate glass, sodium borosilicate glass, aluminoborosilicate glass, quartz glass, E glass, T glass, C glass, S What is called by name, such as glass and AR glass, is mentioned.
  • silica-based fine particles or silica-based fibers of the component (E) may be performed, and examples of the surface treatment include alkylation treatment, trimethylsilylation treatment, silicone treatment, and treatment with a coupling agent.
  • the treatment with the coupling agent include amino silane treatment, (meth) acryl silane treatment, vinyl silane treatment, and the like, among which (meth) acryl silane treatment is preferable.
  • These silica-based fine particles or silica-based fibers may be used alone or in combination of two or more. Further, silica-based fine particles and silica-based fibers may be used in combination.
  • the average particle diameter of the silica-based fine particles (E) or the average fiber diameter and fiber length of the silica-based fibers is 0.1 to 500 ⁇ m. If the average particle diameter of the silica-based fine particles of component (E) or the average fiber diameter and fiber length of silica-based fibers are within this range, sedimentation in the composition liquid of component (E) can be suppressed. When the average particle diameter of the silica-based fine particles of component (E), or the average fiber diameter and fiber length of the silica-based fibers exceeds 500 ⁇ m, precipitation of the acrylate composition in the liquid is accelerated, and transfer molding and compression molding are performed. When producing a cured product, the gate of the mold may be blocked.
  • the average particle diameter of the silica-based fine particles of the component (E) or the average fiber diameter and fiber length of the silica-based fibers is less than 0.1 ⁇ m, it is difficult to disperse the aggregate of the component (E).
  • an organic surface treatment is applied to impart dispersibility to the system composition, discoloration due to heat of the cured product may be promoted.
  • the viscosity increase due to thixotropy is likely to occur, and as an effect of the present invention, if an attempt is made to add a sufficient amount of the component (E) to suppress the occurrence of defective disconnection of the gold wire in the thermal shock test, The liquid may not flow.
  • the average particle diameter of the silica-based fine particles of component (E) or the average fiber diameter and fiber length of the silica-based fibers is small, light emission from the optical semiconductor element is likely to be scattered, and if large, the straightness of light emission is increased. be able to.
  • the average particle diameter of the silica-based fine particles of component (E), or the average fiber diameter and fiber length of the silica-based fibers is preferably 0.2 to 200 ⁇ m, more preferably 0.5 to 100 ⁇ m. is there.
  • the average particle size of fine particles refers to a number average value obtained by observing particles using an electron microscope and measuring the particle size of 100 primary particles.
  • the particle diameter is the diameter of the primary particle when the shape of the particle is spherical, and is the average value of the major axis and the minor axis of the primary particle when the particle has a shape other than the spherical shape.
  • the silica-based fine particles or silica-based fibers of the component (E) can be suitably used for the composition of the present invention because the refractive index is close to the cured product of the acrylate-based composition. If the refractive index difference between the silica-based fine particles of component (E) or silica-based fibers and the cured resin is large, the transparency of the cured product is impaired and the amount of light emitted from the optical semiconductor element is reduced. Conversely, a transparent cured product can be obtained if the refractive index of the silica-based fine particles or silica fibers of the component (E) and the cured resin are matched in the entire visible light region.
  • the content of the component (E) in the composition of the present invention is 5 to 500 parts by mass, preferably 10 to 100 parts by mass with respect to 100 parts by mass in total of the components (A), (B) and (C). 400 parts by mass, more preferably 20 to 200 parts by mass.
  • the content of the component (E) is less than 5 parts by mass, the effect in the present invention cannot be obtained, and when it exceeds 500 parts by mass, the fluidity of the composition is lowered and the liquid state cannot be maintained.
  • the toughness of the cured product may decrease.
  • the composition of the present invention may contain inorganic particles and phosphors as the component (F) as needed, as long as the effects of the present invention are not impaired.
  • inorganic particles can be used. Specific examples thereof include silica particles (excluding (E) component) such as quartz, silicic anhydride, fused silica and crystalline silica, alumina, zirconia, titanium oxide and the like. Can be mentioned.
  • silica particles excluding (E) component
  • inorganic particles and the like that are used or proposed as fillers for conventional sealing materials such as epoxy resins.
  • the inorganic particles may be appropriately subjected to a surface treatment, for example, the same surface treatment as that exemplified for the component (E).
  • YAG fluorescent substance, silicate fluorescent substance, etc. can be used as fluorescent substance for white LED.
  • Component (F) inorganic particles and phosphors may be used singly or in combination of two or more. The content thereof is usually 1 to 100 parts by mass, preferably 10 to 50 parts by mass with respect to 100 parts by mass in total of the components (A), (B) and (C).
  • composition of the present invention one or more other (meth) acrylate compounds [(meth) acrylate compounds other than the components (A) to (C)] are added as the component (G) for imparting strength.
  • Component (meth) acrylate compounds include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol (meth) acrylate, 1,6-hexanediol di (meth) Acrylate, 1,9-nonanediol di (meth) acrylate, neopentyldiol di (meth) acrylate, polyethylene glycol di (meth) acrylate having a number average molecular weight of less than 400, polypropylene glycol di (meth) acrylate, methoxypolyethylene methacrylate, etc.
  • Component (meth) acrylate compounds may be used alone or in combination of two or more.
  • the content is usually 100 parts by mass or less, preferably 50 parts by mass or less, with respect to 100 parts by mass in total of the component (A), the component (B) and the component (C).
  • antioxidants for example, phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, vitamin antioxidants, lactone antioxidants, amine antioxidants, and the like.
  • phenolic antioxidants examples include Irganox 1010 (Irganox 1010), Irganox 1076 (Irganox 1076), Irganox 1330 (Irganox 1330), Irganox 3114 (Irganox 3114), Irganox 3125 (Irganox 3125), Irganox 3190 (Irganox 3190), Irganox 3190 (Trademark), BHT, Cyanox 1790 (Cyanox 1790, Cyanamid Co., Ltd.), and commercializers such as Sumilizer GA-80 (Sumitizer GA-80, Sumitomo Chemical Co., Ltd.).
  • Examples of phosphorus antioxidants include Irgafos 168 (Irgafos 168), Irgafos 12 (Irgafos 12), Irgafos 38 (trade name, BASF Japan Ltd.), Adekastab 329K (ADKSTAB329K), Adekastab PEP36 (ADPSTAB) PEP-8 (ADKSTAB PEP-8) (above, ADEKA Corporation, trademark), Sardstab P-EPQ (Clariant, trademark), Weston 618 (Weston 618), Weston 619G (Weston 619G), Weston-624 Examples include commercial products such as (Weston-624) (general electric company, trademark).
  • sulfur-based antioxidant examples include DSTP (Yoshitomi), DLTP (Yoshitomi), DLTOIB, DMTP (Yoshitomi) (above, API Corporation, trademark), Seenox 412S (Sipro Kasei Corporation, trademark), Cyanox 1212. (Commercially available from Cyanamid Co., Ltd.) and commercializers such as Sumilizer TP-D (Sumilizer TP-D, Sumitomo Chemical Co., Ltd.).
  • vitamin antioxidants examples include tocopherol, Irganox E201 (Irganox E201, BASF Japan Ltd., trademark, compound name; 2,5,7,8-tetramethyl-2 (4 ′, 8 ′, 12′-trimethyltridecyl) ) Coumarone-6-ol) and other commercial products.
  • lactone antioxidant those described in JP-A-7-233160 and JP-A-7-247278 can be used. Further, there is HP-136 (BASF Japan Ltd., trademark, compound name; 5,7-di-t-butyl-3- (3,4-dimethylphenyl) -3H-benzofuran-2-one).
  • amine-based antioxidants examples include commercially available products such as Irgas Tab FS042 (BASF Japan Ltd., trademark), GENOX EP (Crampton Corporation, trademark, compound name: dialkyl-N-methylamine oxide).
  • antioxidants may be used alone or in combination of two or more.
  • the content is usually 0.005 to 5 parts by mass, preferably 0.02 to 2 parts by mass with respect to 100 parts by mass in total of the components (A), (B) and (C).
  • the light stabilizer those generally known can be used, but a hindered amine light stabilizer is preferred.
  • the product names include ADK STAB LA-52, LA-57, LA-62, LA-63, LA-67, LA-68, LA-77, LA-82, LA- from Adeka Co., Ltd. 87, LA-94, Tinuvin 123, 144, 440, 662 from CSC, Chimassorb 2020, 119, 944, Hostavin N30 from Hoechst, Cyasorb UV-3346, UV-3526 from Cytec, Uval 299 from GLC And SanduvorPR-31 manufactured by Clariant.
  • These light stabilizers may be used alone or in combination of two or more.
  • the content is usually 0.005 to 5 parts by mass, preferably 0.01 to 2 parts by mass with respect to 100 parts by mass in total of the components (A), (B) and (C).
  • the composition of the present invention gives a cured product by heat treatment at a temperature higher than the temperature at which radicals are generated from the component (D) (in the case of a photoradical polymerization initiator, by irradiation with light).
  • the curing conditions may be appropriately adopted in consideration of the decomposition characteristics of the initiator. For example, methods such as compression molding, liquid transfer molding, liquid injection molding, and coating can be used in addition to curing by potting. Moreover, the hardening method of the photocurable resin using a UV light source can also be used. You may pre-polymerize the composition of this invention before hardening.
  • a cured product obtained by curing the composition of the present invention is preferably used as a sealing material.
  • sealing material examples include a sealing material for an optical semiconductor and a sealing material for a light receiving element.
  • the element to be sealed include a light emitting diode (LED) chip, a semiconductor laser, a photodiode, a photo interrupter, a photo coupler, A phototransistor, an electroluminescent element, a CCD, a solar cell, and the like can be given.
  • LED light emitting diode
  • Total luminous flux Blue LED light emitting element (B2424DCI0 made by GeneLite) is bonded to the lead frame with a die bond material in a surface mount LED package (KD-V93B95-B made by Kyocera Corporation), and the lead of the light emitting element and the counter electrode
  • the acrylate composition obtained in the example and the comparative example is filled in the reflector of the light emitting device in which the frame is connected with a gold wire (diameter 30 ⁇ m), and nitrogen is flown at 100 ° C. for 2 hours and further at 130 ° C. for 2 hours. And cured in an oven.
  • a MCPD-3700 manufactured by Otsuka Electronics Co., Ltd. the sample was made to emit light by applying 150 mA in an integrating sphere, and the total luminous flux was measured.
  • the light-emitting device is -40 ° C, 5 minutes, room temperature, 30 seconds in a refrigerant, 110 ° C, 5 minutes, room temperature, 30 seconds in a heat medium. After performing the exposure cycle 1000 times, the ratio of the LED which did not light up by electricity supply was confirmed.
  • Example 1 As component (A), hydrogenated polyisoprene acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name SPIDA) 50 parts by mass, as component (B), 1-adamantyl methacrylate (manufactured by Idemitsu Kosan Co., Ltd., adamantate M- 104) 40 parts by mass, (C) component as glycidyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 10 parts by mass, (D) component as 1,1-bis (t-hexylperoxy) cyclohexane 1 part by mass, ( E) As a component, 67 parts by weight of a glass filler (manufactured by Nippon Frit Co., Ltd., CF0093-20C: average particle size 39 ⁇ m), and as an antioxidant, Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical Co., Ltd., compound name: 3) , 9-
  • the composition was poured into a cell made by sandwiching a Teflon (registered trademark) spacer having a thickness of 1 mm between two steel plates and an aluminum plate having a thickness of 0.3 mm between the steel plates and the spacers, and was 150 times in an oven. After heating at 0 ° C. for 1 hour, a semi-transparent 1 mm thick plate-like test piece was obtained by cooling to room temperature. Moreover, the test sample for a total luminous flux measurement and a thermal shock test was produced by the method as described in said (2) and (3). The evaluation results of the obtained cured product are shown in Table 1.
  • Example 2 A composition and a cured product were obtained in the same manner as in Example 1 except that spherical silica (manufactured by Admatechs, trade name Admafine SO-E5, average particle size 1.6 ⁇ m) was used as the component (E). It was. The evaluation results of the obtained cured product are shown in Table 1.
  • spherical silica manufactured by Admatechs, trade name Admafine SO-E5, average particle size 1.6 ⁇ m
  • Comparative Example 1 A composition and a cured product were obtained in the same manner as in Example 1 except that the component (E) was not used. The evaluation results of the obtained cured product are shown in Table 1. In the thermal shock test, LED non-lighting occurred with high probability.
  • Comparative Example 2 Implemented except that 3 parts by mass of (F) fumed silica (manufactured by Nippon Aerosil Co., Ltd., trade name AEROSIL R-202, average particle size 0.014 ⁇ m) was used instead of the component (E) used in Example 1.
  • a composition and a cured product were obtained in the same manner as in Example 1.
  • the evaluation results of the obtained cured product are shown in Table 1. Since the content of the silica fine particles used in the component (F) is small, LED unlighting occurred with high probability in the thermal shock test.
  • Comparative Example 3 A composition was prepared in the same manner as in Comparative Example 2 except that 5 parts by mass of the component (F) used in Comparative Example 2 was used. The amount of silica fine particles having a small average particle diameter was increased from that in Comparative Example 2, and the thixo Due to the property, the mixture stopped flowing, and a cured product of the composition could not be obtained. Therefore, it can be seen that the occurrence of defects in the thermal shock test cannot be suppressed even when fumed silica having a particle size of 5 parts by mass or more and 0.014 ⁇ m is used.
  • Comparative Example 4 instead of the component (E) used in Example 1, 10 parts by mass of titanium oxide fine particles (manufactured by Ishihara Sangyo Co., Ltd., trade name Typaque PC-3, average particle size 0.21 ⁇ m) was used as the component (F). Except for the above, a composition and a cured product were obtained in the same manner as in Example 1. The obtained cured product was white and did not transmit any light. The evaluation results are shown in Table 1.
  • a cured product capable of scattering light emitted from an optical semiconductor at the same time without causing a disconnection failure of a gold wire in a thermal shock test while maintaining a conventional level of heat resistance and adhesion is provided.
  • a composition is provided.
  • the composition of the present invention is suitably used as a raw material for sealing materials such as light emitting elements and light receiving elements in optical semiconductor devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Sealing Material Composition (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention is a composition which comprises (A) one or more compounds selected from (meth)acrylate-modified silicone oils, long-chain-alkyl (meth)acrylates, and polyalkylene glycol (meth)acrylates, (B) a (meth)acrylate compound including an alicyclic hydrocarbon group bonded through an ester linkage, (C) (meth)acrylic acid or a (meth)acrylate compound having a polar group, (D) a free-radical polymerization initiator, and (E) fine silica-based particles having an average particle diameter of 0.1-500 µm or silica-based fibers having an average fiber diameter and a fiber length of 0.1-500 µm each, the content of component (E) being 5-500 parts by mass per 100 parts by mass of the sum of components (A), (B), and (C). This composition is suitable for use as a raw material for encapsulants. The composition gives a cured object which, in a thermal shock test, prevents the gold wires from developing a breakage failure and which can scatter the light emitted by the optical semiconductor, while retaining heat resistance and adhesion on the conventional levels.

Description

アクリレート系組成物Acrylate composition
 本発明はアクリレート系化合物を含有する組成物に関し、さらに詳しくは、封止材や光学材料等の原料として好適に用いられる組成物およびその硬化物に関する。 The present invention relates to a composition containing an acrylate compound, and more particularly to a composition suitably used as a raw material for a sealing material, an optical material and the like, and a cured product thereof.
 結晶基板の上に成長させた半導体層でp-n結合を形成して、この接合域を発光層とするLED(発光ダイオード)チップを発光素子として備えた光半導体装置(半導体発光装置)が各種ディスプレイ装置、表示用機器などに広く利用されている。
 この光半導体装置の例としては、例えば、GaN、GaAlN、InGaNおよびInAlGaN等の窒化ガリウム系化合物半導体を用いた可視光発光デバイスや高温動作電子デバイスがあり、最近では、青色発光ダイオード、紫外発光ダイオードの分野で開発が進んでいる。
 LEDチップを発光素子として備える光半導体装置は、リードフレームの発光面側にLEDチップを搭載して、LEDチップとリードフレームとをワイヤボンディングにより電気的に接続して、さらに、発光素子の保護およびレンズ機能を兼ねた樹脂により封止されている。
Various types of optical semiconductor devices (semiconductor light-emitting devices) each having a light-emitting element with an LED (light-emitting diode) chip having a pn bond formed by a semiconductor layer grown on a crystal substrate and using this junction region as a light-emitting layer Widely used in display devices and display devices.
Examples of this optical semiconductor device include a visible light emitting device and a high-temperature operating electronic device using a gallium nitride compound semiconductor such as GaN, GaAlN, InGaN, and InAlGaN. Recently, blue light emitting diodes and ultraviolet light emitting diodes are used. Development is progressing in this field.
An optical semiconductor device including an LED chip as a light emitting element includes an LED chip mounted on a light emitting surface side of a lead frame, and electrically connecting the LED chip and the lead frame by wire bonding. It is sealed with a resin that also functions as a lens.
 近年、新たな光源として白色LEDが注目されており、照明用途等に利用されている。白色LEDはGaNのベアチップにYAG蛍光体を塗布し、GaNの青色発光と蛍光体の黄色発光を混色して白色発光させるタイプと赤・緑・青の3チップを1パッケージ化して白色発光させるタイプが実用化されている。また、近年、色合いの改良から紫外LEDチップを光源にして、複数の蛍光体材料を組み合わせる方法も開発されている。さらに、照明用途等にLEDを用いるためには、その耐久性を改良することが求められている。 In recent years, white LEDs have attracted attention as a new light source and are used for lighting applications and the like. White LED is a type in which YAG phosphor is coated on a GaN bare chip, and GaN blue light emission and yellow light emission of GaN are mixed to emit white light, and red, green and blue chips are packaged in one package to emit white light. Has been put to practical use. In recent years, a method for combining a plurality of phosphor materials using an ultraviolet LED chip as a light source has been developed for improving the color tone. Furthermore, in order to use LED for illumination use etc., improving its durability is calculated | required.
 一方、LED(発光ダイオード)チップ等の発光素子を封止する際に用いられる封止材としては、透明性や加工性が良いこと等の要因から、エポキシ樹脂が利用されている。一般にLED封止用のエポキシ樹脂はビスフェノールAグリシジルエーテルとメチルヘキサヒドロ無水フタル酸、アミン系もしくはリン系等の硬化促進剤からなるものが殆どである。しかし、これらの成分は紫外光の吸収によりカルボニル基を生成するため、可視光を吸収して黄変するといった欠点があった。 On the other hand, as a sealing material used when sealing a light emitting element such as an LED (light emitting diode) chip, an epoxy resin is used due to factors such as good transparency and workability. In general, most epoxy resins for sealing LEDs are composed of bisphenol A glycidyl ether and methylhexahydrophthalic anhydride, an amine-based or phosphorus-based curing accelerator. However, since these components generate carbonyl groups by absorption of ultraviolet light, they have the disadvantage of absorbing visible light and turning yellow.
 紫外光による黄変や輝度の低下を改良するために、シリコーン樹脂が広く用いられている。しかし、シリコーン樹脂は屈折率が低いため光の取り出し効率が低いことや、極性が低いためリードフレームや反射材との密着性に劣るという問題がある。
 また、表面実装タイプのLEDにおいては、リフローはんだ方式によるはんだ付けが行われる。リフロー炉内では、260℃の熱に約10秒間曝されるため、従来のエポキシ樹脂やシリコーン樹脂では熱による変形、割れが発生することがある。
Silicone resins are widely used to improve yellowing due to ultraviolet light and brightness reduction. However, the silicone resin has a problem that the light extraction efficiency is low because the refractive index is low, and the adhesion with the lead frame and the reflecting material is poor because the polarity is low.
Further, in a surface mount type LED, soldering by a reflow soldering method is performed. In the reflow furnace, since it is exposed to heat at 260 ° C. for about 10 seconds, the conventional epoxy resin or silicone resin may be deformed or cracked by heat.
 これに対して、特許文献1には、紫外線や熱に対して安定で黄変が発生しにくく、かつ、密着性にも優れた硬化物を与える光半導体用の透明封止材料などが提案されている。しかしながら、この硬化物は周りの基材(反射材樹脂や金属フレーム)との密着性に劣る場合がある。
 さらに、本発明者らは、特許文献2において、特定の(メタ)アクリレート化合物及びラジカル重合開始剤を含有する組成物により、前記の基材との密着性を改善できることを見出している。
On the other hand, Patent Document 1 proposes a transparent sealing material for an optical semiconductor that provides a cured product that is stable against ultraviolet rays and heat, hardly causes yellowing, and has excellent adhesion. ing. However, this hardened | cured material may be inferior to adhesiveness with the surrounding base materials (reflecting material resin or a metal frame).
Furthermore, the present inventors have found in Patent Document 2 that the adhesiveness to the substrate can be improved by a composition containing a specific (meth) acrylate compound and a radical polymerization initiator.
国際公開第2007/129536号International Publication No. 2007/129536 国際公開第2011/16356号International Publication No. 2011/16356
 しかしながら、特許文献2に開示された組成物を硬化して得られる硬化物は、光半導体分野で信頼性評価として行われる熱衝撃試験(極低温と高温の環境下に交互に、繰り返し半導体を曝す試験)において、発光素子とリードフレームを結ぶ金ワイヤーが断線する不具合が発生する場合があり、信頼性が十分満足できるものではない。また、光半導体は、微小な発光素子からの発光であるために蛍光灯などと比較して光の拡がりが小さく、照明等の用途では発光した光をできるだけ散乱させる要求が存在するが、特許文献2に開示された透明の硬化物ではこの要求を満たすことができない。 However, a cured product obtained by curing the composition disclosed in Patent Document 2 is subjected to a thermal shock test performed as a reliability evaluation in the field of optical semiconductors (exposing a semiconductor repeatedly in an environment of extremely low temperature and high temperature alternately). In the test), there may be a problem that the gold wire connecting the light emitting element and the lead frame is broken, and the reliability is not sufficiently satisfied. In addition, since optical semiconductors emit light from minute light emitting elements, the spread of light is small compared to fluorescent lamps, and there is a need to scatter emitted light as much as possible in applications such as lighting. The transparent cured product disclosed in 2 cannot satisfy this requirement.
 本発明は上記事情に鑑みなされたもので、封止材の原料として好適に用いられる組成物であって、耐熱性や密着性に関して従来の水準を維持しながら、熱衝撃試験における金ワイヤーの断線不良が発生せず、同時に光半導体からの発光を散乱させることができる硬化物を与える組成物を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and is a composition that is suitably used as a raw material for a sealing material, and breaks a gold wire in a thermal shock test while maintaining a conventional level regarding heat resistance and adhesion. An object of the present invention is to provide a composition that gives a cured product that does not cause defects and can simultaneously scatter light emitted from an optical semiconductor.
 本発明者らは鋭意研究を重ねた結果、特定のアクリレート系化合物を含有する組成物によって前記課題が解決することを見出した。本発明はかかる知見に基づいて完成したものである。
 すなわち本発明は、下記1~8を提供するものである。
1.(A)(メタ)アクリレート変性シリコーンオイル、炭素数12以上のアルキル基を有するアルキル(メタ)アクリレートおよび数平均分子量400以上のポリアルキレングリコール(メタ)アクリレートから選ばれる1種以上の(メタ)アクリレート化合物、(B)炭素数6以上の脂環式炭化水素基がエステル結合した(メタ)アクリレート化合物、(C)(メタ)アクリル酸又は極性基を有する(メタ)アクリレート化合物、(D)ラジカル重合開始剤、ならびに(E)平均粒径が0.1~500μmのシリカ系微粒子、又は平均繊維径及び繊維長が0.1~500μmのシリカ系繊維を含む組成物であって、(E)成分の含有量が、(A)成分、(B)成分および(C)成分の合計100質量部に対して5~500質量部であることを特徴とする組成物。
2.前記(A)成分が水素化ポリブタジエンジ(メタ)アクリレートおよび水素化ポリイソプレンジ(メタ)アクリレートから選ばれる炭素数12以上のアルキル基を有するアルキル(メタ)アクリレート、および/または前記数平均分子量400以上のポリアルキレングリコール(メタ)アクリレートである前記1に記載の組成物。
3.前記(B)成分がアダマンチル基、ノルボルニル基、イソボルニル基、ジシクロペンタニル基およびシクロヘキシル基から選ばれる1種以上の脂環式炭化水素基がエステル結合した(メタ)アクリレート化合物である前記1又は2に記載の組成物。
4.前記(C)成分が、水酸基、エポキシ基、グリシジルエーテル基、テトラヒドロフルフリル基、イソシアネート基、カルボキシル基、アルコキシシリル基、リン酸エステル基、ラクトン基、オキセタン基、テトラヒドロピラニル基およびアミノ基から選ばれる極性基を有する(メタ)アクリレート化合物である前記1~3のいずれかに記載の組成物。
5.(A)成分、(B)成分および(C)成分の合計を基準として、(A)成分の量が10~90質量%、(B)成分の量が5~89.5質量%、(C)成分の量が0.5~50質量%であり、(A)成分、(B)成分および(C)成分の合計100質量部に対して、(D)成分の量が0.01~10質量部である前記1~4のいずれかに記載の組成物。
6.前記1~5のいずれかに記載の組成物を硬化して得られる硬化物。
7.前記6に記載の硬化物を用いた封止材。
8.光半導体用または受光素子用である前記7に記載の封止材。
As a result of intensive studies, the present inventors have found that the above problem can be solved by a composition containing a specific acrylate compound. The present invention has been completed based on such findings.
That is, the present invention provides the following 1 to 8.
1. (A) One or more (meth) acrylates selected from (meth) acrylate-modified silicone oil, alkyl (meth) acrylate having an alkyl group having 12 or more carbon atoms, and polyalkylene glycol (meth) acrylate having a number average molecular weight of 400 or more Compound, (B) (meth) acrylate compound in which an alicyclic hydrocarbon group having 6 or more carbon atoms is ester-bonded, (C) (meth) acrylic acid or (meth) acrylate compound having a polar group, (D) radical polymerization A composition comprising an initiator and (E) silica-based fine particles having an average particle diameter of 0.1 to 500 μm, or silica-based fibers having an average fiber diameter and a fiber length of 0.1 to 500 μm, the component (E) The content of is 5 to 500 parts by mass with respect to 100 parts by mass in total of the components (A), (B) and (C). Composition.
2. The component (A) is an alkyl (meth) acrylate having an alkyl group having 12 or more carbon atoms selected from hydrogenated polybutadiene di (meth) acrylate and hydrogenated polyisoprene (meth) acrylate, and / or the number average molecular weight 400 2. The composition according to 1 above, which is the above polyalkylene glycol (meth) acrylate.
3. The 1 or above, wherein the component (B) is a (meth) acrylate compound in which one or more alicyclic hydrocarbon groups selected from an adamantyl group, norbornyl group, isobornyl group, dicyclopentanyl group, and cyclohexyl group are ester-bonded 2. The composition according to 2.
4). The component (C) includes a hydroxyl group, an epoxy group, a glycidyl ether group, a tetrahydrofurfuryl group, an isocyanate group, a carboxyl group, an alkoxysilyl group, a phosphate ester group, a lactone group, an oxetane group, a tetrahydropyranyl group, and an amino group. 4. The composition according to any one of 1 to 3, which is a (meth) acrylate compound having a selected polar group.
5. Based on the sum of component (A), component (B) and component (C), the amount of component (A) is 10 to 90% by mass, the amount of component (B) is 5 to 89.5% by mass, (C The amount of the component (D) is 0.5 to 50% by mass, and the amount of the component (D) is 0.01 to 10 with respect to a total of 100 parts by mass of the component (A), the component (B) and the component (C). 5. The composition according to any one of 1 to 4 above, which is part by mass.
6). 6. A cured product obtained by curing the composition according to any one of 1 to 5 above.
7). 7. A sealing material using the cured product as described in 6 above.
8). 8. The sealing material according to 7 above, which is for an optical semiconductor or a light receiving element.
 本発明によれば、封止材等の原料として好適に用いられる組成物であって、耐熱性や密着性に関して従来の水準を維持しながら、熱衝撃試験における金ワイヤーの断線不良が発生せず、同時に光半導体からの発光を散乱させることができる硬化物を与える組成物が提供される。 According to the present invention, it is a composition suitably used as a raw material for a sealing material and the like, while maintaining the conventional level with respect to heat resistance and adhesiveness, no disconnection failure of a gold wire in a thermal shock test occurs. Also provided is a composition that provides a cured product that can simultaneously scatter light emitted from an optical semiconductor.
 本発明の組成物は、(A)(メタ)アクリレート変性シリコーンオイル、炭素数12以上のアルキル基を有するアルキル(メタ)アクリレートおよび数平均分子量400以上のポリアルキレングリコール(メタ)アクリレートから選ばれる1種以上の(メタ)アクリレート化合物、(B)炭素数6以上の脂環式炭化水素基がエステル結合した(メタ)アクリレート化合物、(C)(メタ)アクリル酸又は極性基を有する(メタ)アクリレート化合物、(D)ラジカル重合開始剤、ならびに(E)平均粒径が0.1~500μmのシリカ系微粒子、又は平均繊維径及び繊維長が0.1~500μmのシリカ系繊維を含むものである。なお、本発明において、(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを指す。他の類似用語も同様である。 The composition of the present invention is selected from (A) (meth) acrylate-modified silicone oil, alkyl (meth) acrylate having an alkyl group having 12 or more carbon atoms, and polyalkylene glycol (meth) acrylate having a number average molecular weight of 400 or more. Kinds or more of (meth) acrylate compounds, (B) (meth) acrylate compounds in which an alicyclic hydrocarbon group having 6 or more carbon atoms is ester-bonded, (C) (meth) acrylic acid or (meth) acrylate having a polar group A compound, (D) a radical polymerization initiator, and (E) silica-based fine particles having an average particle diameter of 0.1 to 500 μm, or silica-based fibers having an average fiber diameter and a fiber length of 0.1 to 500 μm. In the present invention, (meth) acrylate refers to acrylate and / or methacrylate. The same applies to other similar terms.
〔(A)(メタ)アクリレート化合物〕
 本発明に用いる(A)成分は、(メタ)アクリレート変性シリコーンオイル、炭素数12以上のアルキル基を有するアルキル(メタ)アクリレート(以下、「長鎖アルキル(メタ)アクリレート」ともいう)および数平均分子量400以上のポリアルキレングリコール(メタ)アクリレートから選ばれる1種以上の(メタ)アクリレート化合物である。
 (A)成分の(メタ)アクリレート変性シリコーンオイルは、アクリル基および/またはメタクリル基を末端に有し、ジアルキルポリシロキサンを骨格に含む化合物である。
 この(A)成分の(メタ)アクリレート変性シリコーンオイルは、多くの場合ジメチルポリシロキサンの変性物であるが、メチル基に代えてフェニル基やメチル基以外のアルキル基によりジアルキルポリシロキサン骨格中のアルキル基の全部、あるいは一部が置換されていても良い。
 メチル基以外のアルキル基としてはエチル基、プロピル基などが挙げられる。このようなものとして具体的には、信越化学工業株式会社製のX-24-8201、X-22-174DX、X-22-2426、X-22-2404、X-22-164A、X-22-164C、東レ・ダウコーニング株式会社のBY16-152D、BY16-152、BY16-152Cなどが挙げられる。
[(A) (meth) acrylate compound]
The component (A) used in the present invention is a (meth) acrylate-modified silicone oil, an alkyl (meth) acrylate having an alkyl group having 12 or more carbon atoms (hereinafter also referred to as “long-chain alkyl (meth) acrylate”) and a number average It is one or more (meth) acrylate compounds selected from polyalkylene glycol (meth) acrylates having a molecular weight of 400 or more.
The (meth) acrylate-modified silicone oil of component (A) is a compound having an acryl group and / or a methacryl group at the end and containing a dialkylpolysiloxane in the skeleton.
The (meth) acrylate-modified silicone oil of component (A) is a modified product of dimethylpolysiloxane in many cases, but the alkyl in the dialkylpolysiloxane skeleton is replaced with a methyl group or an alkyl group other than a methyl group. All or some of the groups may be substituted.
Examples of the alkyl group other than the methyl group include an ethyl group and a propyl group. Specifically, X-24-8201, X-22-174DX, X-22-2426, X-22-2404, X-22-164A, X-22 manufactured by Shin-Etsu Chemical Co., Ltd. -164C, BY16-152D, BY16-152, BY16-152C manufactured by Toray Dow Corning Co., Ltd.
 また、(A)成分の(メタ)アクリレート変性シリコーンオイルとして、アクリロキシアルキル末端やメタクリロキシアルキル末端を持つポリジアルキルシロキサンを用いることができ、具体的には、メタクリロキシプロピル末端ポリジメチルシロキサン、(3-アクリロキシ-2-ヒドロキシプロピル)末端ポリジメチルシロキサン、アクリロキシ末端エチレンオキシドジメチルシロキサン-エチレンオキシドABAブロック共重合体、メタクリロキシプロピル末端分岐ポリジメチルシロキサンなどが挙げられる。
 これらの中では、硬化後の透明性から、(3-アクリロキシ-2-ヒドロキシプロピル)末端ポリジメチルシロキサンおよびアクリロキシ末端エチレンオキシドジメチルシロキサン-エチレンオキシドABAブロック共重合体が好適に用いられる。
In addition, as the (A) component (meth) acrylate-modified silicone oil, polydialkylsiloxane having an acryloxyalkyl terminal or a methacryloxyalkyl terminal can be used. Specifically, a methacryloxypropyl-terminated polydimethylsiloxane, ( 3-acryloxy-2-hydroxypropyl) -terminated polydimethylsiloxane, acryloxy-terminated ethylene oxide dimethylsiloxane-ethylene oxide ABA block copolymer, methacryloxypropyl-terminated branched polydimethylsiloxane, and the like.
Among these, (3-acryloxy-2-hydroxypropyl) -terminated polydimethylsiloxane and acryloxy-terminated ethylene oxide dimethylsiloxane-ethylene oxide ABA block copolymer are preferably used because of transparency after curing.
 (A)成分の長鎖アルキル(メタ)アクリレートは、炭素数12以上のアルキル基を含有する(メタ)アクリレートである。炭素数12以上のアルキル基としては、例えば、ドデシル基、ラウリル基、テトラデシル基、ヘキサデシル基、オクタデシル基(ステアリル基を含む)、エイコシル基、トリアコンチル基およびテトラコンチル基などが挙げられる。
 また、炭素数12以上のアルキル基は、ポリブタジエンやポリイソプレン等の重合体の水素化物に由来するアルキル基であってもよい。長鎖アルキル(メタ)アクリレートを用いることにより優れた密着性が得られる。
The long-chain alkyl (meth) acrylate as the component (A) is a (meth) acrylate containing an alkyl group having 12 or more carbon atoms. Examples of the alkyl group having 12 or more carbon atoms include dodecyl group, lauryl group, tetradecyl group, hexadecyl group, octadecyl group (including stearyl group), eicosyl group, triacontyl group and tetracontyl group.
The alkyl group having 12 or more carbon atoms may be an alkyl group derived from a hydride of a polymer such as polybutadiene or polyisoprene. Excellent adhesion can be obtained by using a long-chain alkyl (meth) acrylate.
 長鎖アルキル(メタ)アクリレートの具体例としては、水素化ポリブタジエンジ(メタ)アクリレート、水素化ポリイソプレンジ(メタ)アクリレート等の水素化ポリブタジエンや水素化ポリイソプレン骨格を有するアクリルまたはメタクリル化合物、あるいはステアリルメタクリレートなどが挙げられる。
 これらの中では、密着性の点で、水素化ポリブタジエンジ(メタ)アクリレート、水素化ポリイソプレンジ(メタ)アクリレートが好ましい。
Specific examples of the long-chain alkyl (meth) acrylate include hydrogenated polybutadiene such as hydrogenated polybutadiene di (meth) acrylate and hydrogenated polyisoprene (meth) acrylate, and acrylic or methacrylic compounds having a hydrogenated polyisoprene skeleton, or Examples include stearyl methacrylate.
Among these, hydrogenated polybutadiene di (meth) acrylate and hydrogenated polyisoprene di (meth) acrylate are preferable in terms of adhesion.
 (A)成分の数平均分子量400以上のポリアルキレングリコール(メタ)アクリレートとしては、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、エトシキ化ペンタエリストールテトラ(メタ)アクリレートなどが挙げられる。
 数平均分子量400以上のポリアルキレングリコール(メタ)アクリレートを用いることにより優れた靭性や密着性が得られる。数平均分子量の最大値は特に限定されないが、(B)成分との相溶性の観点から、数平均分子量10000以下のものが好ましい。
The polyalkylene glycol (meth) acrylate having a number average molecular weight of 400 or more as the component (A) is polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate, ethoxylated trimethylol. Examples thereof include propane tri (meth) acrylate and ethoxylated pentaerythritol tetra (meth) acrylate.
By using a polyalkylene glycol (meth) acrylate having a number average molecular weight of 400 or more, excellent toughness and adhesion can be obtained. The maximum value of the number average molecular weight is not particularly limited, but a number average molecular weight of 10,000 or less is preferable from the viewpoint of compatibility with the component (B).
 本発明においては、(A)成分として、前記(メタ)アクリレート変性シリコーンオイルの中から選ばれる少なくとも一種、前記長鎖アルキル(メタ)アクリレートの中から選ばれる少なくとも一種、又は前記数平均分子量400以上のポリアルキレングリコール(メタ)アクリレートの中から選ばれる少なくとも一種を用いても良いし、あるいは前記の(メタ)アクリレート変性シリコーンオイル、長鎖アルキル(メタ)アクリレートおよび数平均分子量400以上のポリアルキレングリコール(メタ)アクリレートの中から適当に選び組み合わせてもよい。中でも、水素化ポリブタジエンジ(メタ)アクリレートおよび水素化ポリイソプレンジ(メタ)アクリレートから選ばれる長鎖アルキル(メタ)アクリレート、および/または前記数平均分子量400以上のポリアルキレングリコール(メタ)アクリレートが好ましい。 In the present invention, as the component (A), at least one selected from the (meth) acrylate-modified silicone oils, at least one selected from the long-chain alkyl (meth) acrylates, or the number average molecular weight of 400 or more. At least one selected from polyalkylene glycol (meth) acrylates of the above, or the above-mentioned (meth) acrylate-modified silicone oil, long-chain alkyl (meth) acrylate, and polyalkylene glycol having a number average molecular weight of 400 or more You may choose and combine suitably from (meth) acrylate. Among these, a long-chain alkyl (meth) acrylate selected from hydrogenated polybutadiene di (meth) acrylate and hydrogenated polyisoprene di (meth) acrylate, and / or a polyalkylene glycol (meth) acrylate having a number average molecular weight of 400 or more is preferable. .
 本発明の組成物における(A)成分の含有量は、(A)成分、(B)成分および(C)成分の合計を基準として、通常10~90質量%、好ましくは15~80質量%である。(A)成分を10質量%以上にすることで優れた密着性や靭性が得られる。(A)成分の含有量を90質量%以下にすることで、他の成分とのバランスが良好となる。 The content of the component (A) in the composition of the present invention is usually 10 to 90% by mass, preferably 15 to 80% by mass, based on the sum of the components (A), (B) and (C). is there. The adhesiveness and toughness which were excellent by making (A) component 10 mass% or more are obtained. (A) By making content of a component into 90 mass% or less, a balance with another component becomes favorable.
〔(B)(メタ)アクリレート化合物〕
 本発明に用いる(B)成分は、炭素数6以上の脂環式炭化水素基がエステル結合した(メタ)アクリレート化合物である。
 (B)成分における炭素数6以上の脂環式炭化水素基としては、シクロヘキシル基、2-デカヒドロナフチル基、アダマンチル基、1-メチルアダマンチル基、2-メチルアダマンチル基、ビアダマンチル基、ジメチルアダマンチル基、ノルボルニル基、1-メチル-ノルボルニル基、5,6-ジメチル-ノルボルニル基、イソボニル基、テトラシクロ[4.4.0.12,5.17,10]ドデシル基、9-メチル-テトラシクロ[4.4.0.12,5.17,10]ドデシル基、ボルニル基、ジシクロペンタニル基などが挙げられる。これらの中で、耐熱性の観点から、アダマンチル基、ノルボルニル基、イソボルニル基、ジシクロペンタニル基およびシクロヘキシル基が好ましく、アダマンチル基がより好ましく、1-アダマンチル基が更に好ましい。
[(B) (meth) acrylate compound]
The component (B) used in the present invention is a (meth) acrylate compound in which an alicyclic hydrocarbon group having 6 or more carbon atoms is ester-bonded.
The alicyclic hydrocarbon group having 6 or more carbon atoms in the component (B) includes a cyclohexyl group, 2-decahydronaphthyl group, adamantyl group, 1-methyladamantyl group, 2-methyladamantyl group, biadamantyl group, dimethyladamantyl group Group, norbornyl group, 1-methyl-norbornyl group, 5,6-dimethyl-norbornyl group, isobornyl group, tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecyl group, 9-methyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecyl group, bornyl group, dicyclopentanyl group and the like. Among these, from the viewpoint of heat resistance, an adamantyl group, norbornyl group, isobornyl group, dicyclopentanyl group and cyclohexyl group are preferable, an adamantyl group is more preferable, and a 1-adamantyl group is more preferable.
 (B)成分の前記(メタ)アクリレート化合物としては、前記の脂環式炭化水素基を持つ(メタ)アクリレート、例えばシクロヘキシル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、イソボニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートなどが挙げられる。本発明においては、(B)成分として、前記(メタ)アクリレート化合物を一種用いてもよく、二種以上を組み合わせて用いてもよい。
 本発明においては脂環式炭化水素基の炭素数が6以上のものを用いることにより優れた耐熱性が得られる。また、エステル置換基が脂環式炭化水素基であり、芳香族等を含有しないので紫外線による劣化を引き起こしにくい。
As the (meth) acrylate compound of the component (B), the (meth) acrylate having the alicyclic hydrocarbon group, for example, cyclohexyl (meth) acrylate, 1-adamantyl (meth) acrylate, norbornyl (meth) acrylate, Isobonyl (meth) acrylate, dicyclopentanyl (meth) acrylate, etc. are mentioned. In the present invention, as the component (B), one type of the (meth) acrylate compound may be used, or two or more types may be used in combination.
In the present invention, excellent heat resistance can be obtained by using an alicyclic hydrocarbon group having 6 or more carbon atoms. Further, since the ester substituent is an alicyclic hydrocarbon group and does not contain aromatics, it is difficult to cause deterioration due to ultraviolet rays.
 本発明の組成物における(B)成分の含有量は、(A)成分、(B)成分および(C)成分の合計を基準として、通常5~89.5質量%、好ましくは10~80質量%である。(B)成分を5質量%以上にすることで優れた剛性、耐熱性、透明性が得られる。(B)成分の含有量を89.5質量%以下にすることで、他の成分とのバランスが良好となる。 The content of the component (B) in the composition of the present invention is usually 5 to 89.5% by mass, preferably 10 to 80% by mass, based on the sum of the components (A), (B) and (C). %. By setting the component (B) to 5% by mass or more, excellent rigidity, heat resistance, and transparency can be obtained. (B) By making content of a component into 89.5 mass% or less, a balance with another component becomes favorable.
〔(C)(メタ)アクリレート化合物〕
 本発明に用いる(C)成分は、(メタ)アクリル酸又は極性基を有する(メタ)アクリレート化合物である。
 (C)成分は極性を有するため、同じように極性を有する金属表面等と水素結合等を形成し、密着性が向上する。また極性基の存在によりぬれ性が向上する。なお、アルキレングリコール基が密着性付与に関与する場合もあり得るが、アルキレングリコール(メタ)アクリレートは(C)成分には含まれないものとする。
[(C) (Meth) acrylate compound]
The component (C) used in the present invention is (meth) acrylic acid or a (meth) acrylate compound having a polar group.
Since the component (C) has polarity, it forms a hydrogen bond with a metal surface having polarity in the same manner, thereby improving adhesion. Further, the wettability is improved by the presence of the polar group. In addition, although an alkylene glycol group may be concerned with adhesion | attachment provision, alkylene glycol (meth) acrylate shall not be contained in (C) component.
 極性基を有する(メタ)アクリレート化合物としては、炭素、水素以外の原子を含む極性基がエステル結合する(メタ)アクリレート化合物が挙げられ、極性基としては、水酸基、エポキシ基、グリシジルエーテル基、テトラヒドロフルフリル基、イソシアネート基、カルボキシル基、アルコキシシリル基、リン酸エステル基、ラクトン基、オキセタン基、テトラヒドロピラニル基、アミノ基等などが挙げられる。 Examples of (meth) acrylate compounds having polar groups include (meth) acrylate compounds in which polar groups containing atoms other than carbon and hydrogen are ester-bonded. Examples of polar groups include hydroxyl groups, epoxy groups, glycidyl ether groups, tetrahydro groups. Examples include a furfuryl group, an isocyanate group, a carboxyl group, an alkoxysilyl group, a phosphate ester group, a lactone group, an oxetane group, a tetrahydropyranyl group, and an amino group.
 このようなものとして具体的には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート(日本化成株式会社製、商品名4-HBA)、シクロヘキサンジメタノールモノ(メタ)アクリレート(日本化成株式会社製、商品名CHMMA)、グリシジル(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル(日本化成株式会社製、商品名4-HBAGE)、テトラヒドロフルフリル(メタ)アクリレート、2-イソシアナトエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、2-(メタ)アクリロイロキシエチルホスフェート、ジ(2-(メタ)アクリロイロキシエチル)ホスフェート、日本化薬株式会社のKAYAMER PM-21、γ-ブチルラクトン(メタ)アクリレート、(メタ)アクリル酸(3-メチルー3-オキセタニル)、(メタ)アクリル酸(3-エチルー3-オキセタニル)、テトラヒドロフルフリル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレートなどが挙げられる。 Specifically, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate (Nippon Kasei Co., Ltd.) Product name 4-HBA), cyclohexanedimethanol mono (meth) acrylate (manufactured by Nippon Kasei Co., Ltd., product name CHMMA), glycidyl (meth) acrylate, 4-hydroxybutyl acrylate glycidyl ether (manufactured by Nippon Kasei Co., Ltd., product) Name 4-HBAGE), tetrahydrofurfuryl (meth) acrylate, 2-isocyanatoethyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 3- (meta) a Liloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3- (meth) acryloxypropylmethyldiethoxysilane, 2- (meth) acryl Leuoxyethyl phosphate, di (2- (meth) acryloyloxyethyl) phosphate, KAYAMER PM-21 from Nippon Kayaku Co., Ltd., γ-butyllactone (meth) acrylate, (meth) acrylic acid (3-methyl-3- Oxetanyl), (meth) acrylic acid (3-ethyl-3-oxetanyl), tetrahydrofurfuryl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, and the like.
 本発明においては、(C)成分として、前記(メタ)アクリル酸の中から選ばれる少なくとも一種、又は前記極性基を有する(メタ)アクリレート化合物の中から選ばれる少なくとも一種を用いても良いし、あるいは、前記(メタ)アクリル酸および極性基を有する(メタ)アクリレート化合物の中から適当に選び組み合わせてもよい。 In the present invention, as the component (C), at least one selected from the (meth) acrylic acid or at least one selected from the (meth) acrylate compounds having the polar group may be used. Or you may select and combine suitably from the said (meth) acrylic acid and the (meth) acrylate compound which has a polar group.
 本発明の組成物における(C)成分の含有量は、(A)成分、(B)成分および(C)成分の合計を基準として、通常0.5~50質量%、好ましくは1~40質量%である。(C)成分を0.5質量%以上にすることで、光半導体の封止の際等において封止材と接触する樹脂材料や金属材料に対して優れた密着性を示す。(C)成分の含有量を50質量%以下にすることで、他の成分とのバランスが良好となる。 The content of component (C) in the composition of the present invention is usually 0.5 to 50% by mass, preferably 1 to 40% by mass, based on the total of component (A), component (B) and component (C). %. When the component (C) is 0.5% by mass or more, excellent adhesion to a resin material or a metal material that comes into contact with the encapsulant when the optical semiconductor is encapsulated is exhibited. (C) By making content of a component into 50 mass% or less, a balance with another component becomes favorable.
〔(D)ラジカル重合開始剤〕
 本発明に用いる(D)成分のラジカル重合開始剤としては、メチルエチルケトンパーオキサイド、メチルイソブチルケトンパーオキサイド、アセチルアセトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイドなどのケトンパーオキサイド類、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイドなどのハイドロパーオキサイド類、ジイソブチリルパーオキサイド、ビス-3,5,5-トリメチルヘキサノールパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、m-トルイルベンゾイルパーオキサイドなどのジアシルパーオキサイド類、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルペルオキシ)ヘキサン、1,3-ビス(t-ブチルペルオキシイソプロピル)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルペルオキシ)ヘキセンなどのジアルキルパーオキサイド類、1,1-ビス(t-ブチルペルオキシ-3,5,5-トリメチル)シクロヘキサン、1,1-ビス(t-ブチルペルオキシ)シクロヘキサン、1,1-ビス(t-ヘキシルペルオキシ)シクロヘキサン、2,2-ビス(t-ブチルペルオキシ)ブタンなどのパーオキシケタール類、1,1,3,3-テトラメチルブチルペルオキシネオジカーボネート、α-クミルペルオキシネオジカーボネート、t-ブチルペルオキシネオジカーボネート、t-ヘキシルペルオキシピバレート、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルペルオキシ-2-エチルヘキサノエート、t-アミルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシイソブチレート、ジ-t-ブチルペルオキシヘキサヒドロテレフタレート、1,1,3,3-テトラメチルブチルペルオキシ-3,5,5-トリメチルヘキサネート、t-アミルペルオキシ3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシアセテート、t-ブチルペルオキシベンゾエート、ジブチルペルオキシトリメチルアジペートなどのアルキルパーエステル類、ジ-3-メトキシブチルペルオキシジカーボネート、ジ-2-エチルヘキシルペルオキシジカーボネート、ビス(1,1-ブチルシクロヘキサオキシジカーボネート)、ジイソプロピルオキシジカーボネート、t-アミルペルオキシイソプロピルカーボネート、t-ブチルペルオキシイソプロピルカーボネート、t-ブチルペルオキシ-2-エチルヘキシルカーボネート、1,6-ビス(t-ブチルペルオキシカルボキシ)ヘキサンなどのパーオキシカーボネート類などが挙げられる。
[(D) radical polymerization initiator]
As the radical polymerization initiator of the component (D) used in the present invention, ketone peroxides such as methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, acetylacetone peroxide, cyclohexanone peroxide, methylcyclohexanone peroxide, 1,1,3 , 3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, hydroperoxides such as t-butyl hydroperoxide, diisobutyryl peroxide, bis-3,5,5-trimethylhexanol peroxide, lauroyl peroxide, Diacyl peroxides such as benzoyl peroxide and m-toluyl benzoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-bi (T-butylperoxy) hexane, 1,3-bis (t-butylperoxyisopropyl) hexane, t-butylcumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-bis (t Dialkyl peroxides such as -butylperoxy) hexene, 1,1-bis (t-butylperoxy-3,5,5-trimethyl) cyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, 1,1- Peroxyketals such as bis (t-hexylperoxy) cyclohexane and 2,2-bis (t-butylperoxy) butane, 1,1,3,3-tetramethylbutylperoxyneodicarbonate, α-cumylperoxyneodicarbonate , T-butyl peroxyneodicarbonate, t-hexyl peroxy Cipivalate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexa Noate, t-butylperoxyisobutyrate, di-t-butylperoxyhexahydroterephthalate, 1,1,3,3-tetramethylbutylperoxy-3,5,5-trimethylhexanate, t-amylperoxy3, Alkyl peresters such as 5,5-trimethylhexanoate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxyacetate, t-butylperoxybenzoate, dibutylperoxytrimethyladipate, di- 3-methoxybutyl peroxy Dicarbonate, di-2-ethylhexylperoxydicarbonate, bis (1,1-butylcyclohexaoxydicarbonate), diisopropyloxydicarbonate, t-amylperoxyisopropylcarbonate, t-butylperoxyisopropylcarbonate, t-butylperoxy- And peroxycarbonates such as 2-ethylhexyl carbonate and 1,6-bis (t-butylperoxycarboxy) hexane.
 (D)成分として光ラジカル重合開始剤も用いることが可能である。光ラジカル重合開始剤としては、イルガキュア651(Irgacure651)、イルガキュア184(Irgacure184)、ダロキュア1173(DAROCUR1173)、イルガキュア2959(Irgacure2959)、イルガキュア127(Irgacure127)、イルガキュア907(Irgacure907)、イルガキュア369(Irgacure369)、イルガキュア379(Irgacure379)、ダロキュアTPO(DAROCUR TPO)、イルガキュア819(Irgacure819)、イルガキュア784(Irgacure784)(以上、BASFジャパン株式会社、商標)などが挙げられる。
 (D)成分のラジカル重合開始剤は、単独で使用してもよく、または二種以上を組み合わせて用いてもよい。
A radical photopolymerization initiator can also be used as the component (D). Examples of photo radical polymerization initiators include Irgacure 651 (Irgacure 651), Irgacure 184 (Irgacure 184), Darocur 1173 (DAROCUR1173), Irgacure 2959 (Irgacure 2959), Irgacure 127 (Irgacure 127), Irgacure 127 g Irgacure 379 (Irgacure 379), Darocur TPO (DAROCUR TPO), Irgacure 819 (Irgacure 819), Irgacure 784 (Irgacure 784) (above, BASF Japan Ltd., trademark), etc. are mentioned.
The radical polymerization initiator of component (D) may be used alone or in combination of two or more.
 本発明の組成物における(D)成分の含有量は、(A)成分、(B)成分および(C)成分の合計100質量部に対して、通常、0.01~10質量部、好ましくは0.1~5.0質量部である。 The content of the component (D) in the composition of the present invention is usually 0.01 to 10 parts by mass, preferably 100 parts by mass with respect to a total of 100 parts by mass of the components (A), (B) and (C), preferably 0.1 to 5.0 parts by mass.
〔(E)シリカ系微粒子又はシリカ系繊維〕
 本発明では、(E)成分として平均粒径が0.1~500μmのシリカ系微粒子、又は平均繊維径及び繊維長が0.1~500μmのシリカ系繊維を用いる。
 (E)成分のシリカ系微粒子又はシリカ系繊維は、二酸化ケイ素を主成分とする微小粒子であり、球状、繊維状、棒状、板状、不定形等、その形状については限定されるものではない。
[(E) Silica-based fine particles or silica-based fibers]
In the present invention, silica-based fine particles having an average particle diameter of 0.1 to 500 μm or silica-based fibers having an average fiber diameter and fiber length of 0.1 to 500 μm are used as the component (E).
The silica-based fine particles or silica-based fibers of the component (E) are fine particles mainly composed of silicon dioxide, and the shape thereof is not limited, such as spherical, fibrous, rod-like, plate-like, and irregular shapes. .
 (E)成分のシリカ系微粒子又はシリカ系繊維としては、一般的にシリカパウダー、シリカビーズ、(真)球状シリカ、溶融シリカ、溶融球状シリカ、結晶性シリカ、ガラスパウダー、ガラスビーズ、ガラスフィラー、ガラスファイバー、ミルドガラスファイバー、タルク、ウイスカー等と呼ばれるものを使用することができる。
 それらの材質としては、一般的にシリカと呼ばれるものの他、ソーダ石灰ガラス、低アルカリガラス、ホウケイ酸ガラス、ホウケイ酸ナトリウムガラス、アルミノホウケイ酸ガラス、石英ガラス、Eガラス、Tガラス、Cガラス、Sガラス、ARガラス等の名称で呼ばれるものなどが挙げられる。
(E) Component silica-based fine particles or silica-based fibers are generally silica powder, silica beads, (true) spherical silica, fused silica, fused spherical silica, crystalline silica, glass powder, glass beads, glass filler, What is called glass fiber, milled glass fiber, talc, whisker or the like can be used.
In addition to what is generally called silica, soda lime glass, low alkali glass, borosilicate glass, sodium borosilicate glass, aluminoborosilicate glass, quartz glass, E glass, T glass, C glass, S What is called by name, such as glass and AR glass, is mentioned.
 また、(E)成分のシリカ系微粒子又はシリカ系繊維の表面処理を行ってもよく、表面処理としては、アルキル化処理、トリメチルシリル化処理、シリコーン処理、カップリング剤による処理などが挙げられる。カップリング剤による処理としては、アミノシラン処理、(メタ)アクリルシラン処理、ビニルシラン処理などが挙げられ、中でも、(メタ)アクリルシラン処理が好ましい。
 これらのシリカ系微粒子又はシリカ系繊維を単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、シリカ系微粒子及びシリカ系繊維を組み合わせて用いてもよい。
In addition, surface treatment of the silica-based fine particles or silica-based fibers of the component (E) may be performed, and examples of the surface treatment include alkylation treatment, trimethylsilylation treatment, silicone treatment, and treatment with a coupling agent. Examples of the treatment with the coupling agent include amino silane treatment, (meth) acryl silane treatment, vinyl silane treatment, and the like, among which (meth) acryl silane treatment is preferable.
These silica-based fine particles or silica-based fibers may be used alone or in combination of two or more. Further, silica-based fine particles and silica-based fibers may be used in combination.
 (E)成分のシリカ系微粒子の平均粒径、又はシリカ系繊維の平均繊維径及び繊維長は、0.1~500μmである。(E)成分のシリカ系微粒子の平均粒径、又はシリカ系繊維の平均繊維径及び繊維長がこの範囲にあれば、(E)成分の組成物液体中での沈降を抑制することができる。(E)成分のシリカ系微粒子の平均粒径、又はシリカ系繊維の平均繊維径及び繊維長が500μmを超えると、アクリレート組成物の液体中での沈降が早くなり、また、トランスファー成形、圧縮成形で硬化物を作製する際に、金型のゲートの閉塞を招く恐れがある。一方、(E)成分のシリカ系微粒子の平均粒径、又はシリカ系繊維の平均繊維径及び繊維長が0.1μm未満であると、(E)成分の凝集体を分散させることが難しく、アクリレート系組成物への分散性付与のために有機的な表面処理を行うと硬化物の熱による変色を促進してしまう場合がある。また、チクソトロピーによる粘度上昇が生じやすくなり、本発明の効果として、熱衝撃試験での金ワイヤーの断線不良の発生を抑制するために充分な量の(E)成分を配合しようとすると組成物の液体が流動しなくなる場合がある。
 また、(E)成分のシリカ系微粒子の平均粒径、又はシリカ系繊維の平均繊維径及び繊維長が小さいと光半導体素子からの発光を散乱しやすくなり、大きいと、発光の直進性を高めることができる。
 以上の観点から、(E)成分のシリカ系微粒子の平均粒径、又はシリカ系繊維の平均繊維径及び繊維長としては、好ましくは0.2~200μm、さらには好ましくは0.5~100μmである。
 本発明において、微粒子の平均粒径とは、電子顕微鏡を用いて粒子を観察し、一次粒子100個の粒径を計測した数平均値を示す。ここで、粒径は、粒子の形状が球状の場合には、その一次粒子の直径であり、球形以外の形状を有する粒子の場合には、一次粒子の長径と短径の平均値とする。
The average particle diameter of the silica-based fine particles (E) or the average fiber diameter and fiber length of the silica-based fibers is 0.1 to 500 μm. If the average particle diameter of the silica-based fine particles of component (E) or the average fiber diameter and fiber length of silica-based fibers are within this range, sedimentation in the composition liquid of component (E) can be suppressed. When the average particle diameter of the silica-based fine particles of component (E), or the average fiber diameter and fiber length of the silica-based fibers exceeds 500 μm, precipitation of the acrylate composition in the liquid is accelerated, and transfer molding and compression molding are performed. When producing a cured product, the gate of the mold may be blocked. On the other hand, when the average particle diameter of the silica-based fine particles of the component (E) or the average fiber diameter and fiber length of the silica-based fibers is less than 0.1 μm, it is difficult to disperse the aggregate of the component (E). When an organic surface treatment is applied to impart dispersibility to the system composition, discoloration due to heat of the cured product may be promoted. In addition, the viscosity increase due to thixotropy is likely to occur, and as an effect of the present invention, if an attempt is made to add a sufficient amount of the component (E) to suppress the occurrence of defective disconnection of the gold wire in the thermal shock test, The liquid may not flow.
Further, if the average particle diameter of the silica-based fine particles of component (E) or the average fiber diameter and fiber length of the silica-based fibers is small, light emission from the optical semiconductor element is likely to be scattered, and if large, the straightness of light emission is increased. be able to.
From the above viewpoint, the average particle diameter of the silica-based fine particles of component (E), or the average fiber diameter and fiber length of the silica-based fibers is preferably 0.2 to 200 μm, more preferably 0.5 to 100 μm. is there.
In the present invention, the average particle size of fine particles refers to a number average value obtained by observing particles using an electron microscope and measuring the particle size of 100 primary particles. Here, the particle diameter is the diameter of the primary particle when the shape of the particle is spherical, and is the average value of the major axis and the minor axis of the primary particle when the particle has a shape other than the spherical shape.
 (E)成分のシリカ系微粒子、又はシリカ系繊維は、アクリレート系組成物の硬化物と屈折率が近いことから、本発明の組成物に好適に使用できる。(E)成分のシリカ系微粒子、又はシリカ系繊維と硬化樹脂との屈折率差が大きいと硬化物の透明性が損なわれ、光半導体素子からの発光量を低下させてしまう。逆に(E)成分のシリカ系微粒子又はシリカ系繊維と硬化樹脂との屈折率を全可視光領域で一致させれば、透明な硬化物を得ることができる。 The silica-based fine particles or silica-based fibers of the component (E) can be suitably used for the composition of the present invention because the refractive index is close to the cured product of the acrylate-based composition. If the refractive index difference between the silica-based fine particles of component (E) or silica-based fibers and the cured resin is large, the transparency of the cured product is impaired and the amount of light emitted from the optical semiconductor element is reduced. Conversely, a transparent cured product can be obtained if the refractive index of the silica-based fine particles or silica fibers of the component (E) and the cured resin are matched in the entire visible light region.
 本発明の組成物における(E)成分の含有量は、(A)成分、(B)成分および(C)成分の合計100質量部に対して、5~500質量部であり、好ましくは10~400質量部、さらに好ましくは20~200質量部である。(E)成分の含有量が5質量部未満であると、本発明における効果が得られず、500質量部を超えると、組成物の流動性が低下し、液体の状態を維持できなくなったり、硬化物の靭性が低下したりする場合がある。 The content of the component (E) in the composition of the present invention is 5 to 500 parts by mass, preferably 10 to 100 parts by mass with respect to 100 parts by mass in total of the components (A), (B) and (C). 400 parts by mass, more preferably 20 to 200 parts by mass. When the content of the component (E) is less than 5 parts by mass, the effect in the present invention cannot be obtained, and when it exceeds 500 parts by mass, the fluidity of the composition is lowered and the liquid state cannot be maintained. The toughness of the cured product may decrease.
 本発明の組成物は、前記(A)~(E)成分の他に、必要に応じて(F)成分として無機粒子や蛍光体を、本発明の効果を阻害しない範囲で含んでもよい。
 無機粒子としては各種のものが使用でき、その具体例としては、石英、無水ケイ酸、溶融シリカおよび結晶性シリカ等のシリカ粒子((E)成分を除く)、アルミナ、ジルコニア並びに酸化チタンなどが挙げられる。また、これらの他にエポキシ樹脂等の従来の封止材の充填材として使用あるいは提案されている無機粒子等などが挙げられる。無機粒子に対して適宜表面処理をしてもよく、例えば、(E)成分で例示したものと同様の表面処理が挙げられる。
 また、白色LED用の蛍光体として、YAG蛍光体、シリケート蛍光体等を使用できる。
 (F)成分の無機粒子や蛍光体は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。その含有量は、(A)成分、(B)成分および(C)成分の合計100質量部に対して、通常、1~100質量部、好ましくは10~50質量部である。
In addition to the components (A) to (E), the composition of the present invention may contain inorganic particles and phosphors as the component (F) as needed, as long as the effects of the present invention are not impaired.
Various kinds of inorganic particles can be used. Specific examples thereof include silica particles (excluding (E) component) such as quartz, silicic anhydride, fused silica and crystalline silica, alumina, zirconia, titanium oxide and the like. Can be mentioned. In addition to these, inorganic particles and the like that are used or proposed as fillers for conventional sealing materials such as epoxy resins. The inorganic particles may be appropriately subjected to a surface treatment, for example, the same surface treatment as that exemplified for the component (E).
Moreover, YAG fluorescent substance, silicate fluorescent substance, etc. can be used as fluorescent substance for white LED.
Component (F) inorganic particles and phosphors may be used singly or in combination of two or more. The content thereof is usually 1 to 100 parts by mass, preferably 10 to 50 parts by mass with respect to 100 parts by mass in total of the components (A), (B) and (C).
 本発明の組成物においては、強度の付与のために、(G)成分として、その他の(メタ)アクリレート化合物〔(A)~(C)成分以外の(メタ)アクリレート化合物〕を1種以上加えてもよい。(G)成分の(メタ)アクリレート化合物としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオール(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルジオールジ(メタ)アクリレート、数平均分子量400未満のポリエチレングリコールジ(メタ)アクリレートやポリプロピレングリコールジ(メタ)アクリレート、メトキシポリエチレンメタクリレートなどのアルコキシポリアルキレングリコール(メタ)アクリレート、エチレンオキシド変性ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド変性ビスフェノールAジ(メタ)アクリレート、エピクロルヒドリン変性ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド変性グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリス(アクリロイロキシエチル)イソシアヌレート、メトキシポリエチレングリコール(メタ)アクリレートなどが挙げられる。 In the composition of the present invention, one or more other (meth) acrylate compounds [(meth) acrylate compounds other than the components (A) to (C)] are added as the component (G) for imparting strength. May be. (G) Component (meth) acrylate compounds include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol (meth) acrylate, 1,6-hexanediol di (meth) Acrylate, 1,9-nonanediol di (meth) acrylate, neopentyldiol di (meth) acrylate, polyethylene glycol di (meth) acrylate having a number average molecular weight of less than 400, polypropylene glycol di (meth) acrylate, methoxypolyethylene methacrylate, etc. Alkoxypolyalkylene glycol (meth) acrylate, ethylene oxide modified bisphenol A di (meth) acrylate, propylene oxide modified bisphenol A di (meth) acrylate, epichlorohydride Modified bisphenol A di (meth) acrylate, propylene oxide modified glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tris (acrylic) Leuoxyethyl) isocyanurate, methoxypolyethylene glycol (meth) acrylate, and the like.
 (G)成分の(メタ)アクリレート化合物は単独で用いてもよく、二種以上を組み合わせて用いてもよい。その含有量は、(A)成分、(B)成分および(C)成分の合計100質量部に対して、通常、100質量部以下、好ましくは50質量部以下である。 (G) Component (meth) acrylate compounds may be used alone or in combination of two or more. The content is usually 100 parts by mass or less, preferably 50 parts by mass or less, with respect to 100 parts by mass in total of the component (A), the component (B) and the component (C).
 本発明の組成物においては、さらに公知の酸化防止剤や光安定剤、紫外線吸収剤、滑り剤、可塑剤、帯電防止剤、着色剤、離型剤、難燃剤、滑剤等を使用することができる。酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、ビタミン系酸化防止剤、ラクトン系酸化防止剤、アミン系酸化防止剤などが挙げられる。 In the composition of the present invention, further known antioxidants, light stabilizers, ultraviolet absorbers, slip agents, plasticizers, antistatic agents, colorants, mold release agents, flame retardants, lubricants, and the like may be used. it can. Examples of the antioxidant include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, vitamin antioxidants, lactone antioxidants, amine antioxidants, and the like.
 フェノール系酸化防止剤としてはイルガノクス1010(Irganox1010)、イルガノクス1076(Irganox1076)、イルガノクス1330(Irganox1330)、イルガノクス3114(Irganox3114)、イルガノクス3125(Irganox3125)、イルガノクス3790(Irganox3790)(以上、BASFジャパン株式会社、商標)、BHT、シアノクス1790(Cyanox1790、サイアナミド社、商標)、スミライザーGA-80(SumilizerGA-80、住友化学株式会社、商標)などの市販品などが挙げられる。 Examples of phenolic antioxidants include Irganox 1010 (Irganox 1010), Irganox 1076 (Irganox 1076), Irganox 1330 (Irganox 1330), Irganox 3114 (Irganox 3114), Irganox 3125 (Irganox 3125), Irganox 3190 (Irganox 3190), Irganox 3190 (Trademark), BHT, Cyanox 1790 (Cyanox 1790, Cyanamid Co., Ltd.), and commercializers such as Sumilizer GA-80 (Sumitizer GA-80, Sumitomo Chemical Co., Ltd.).
 リン系酸化防止剤としては、イルガフォス168(Irgafos168)、イルガフォス12(Irgafos12)、イルガフォス38(Irgafos38)(以上、BASFジャパン株式会社、商標)、アデカスタブ329K(ADKSTAB329K)、アデカスタブPEP36(ADKSTAB PEP36)、アデカスタブPEP-8(ADKSTAB PEP-8)(以上、株式会社ADEKA、商標)、Sardstab P-EPQ(クラリアント社、商標)、ウエストン618(Weston 618)、ウエストン619G(Weston 619G)、ウエストン-624(Weston-624)(以上、ゼネラル・エレクトリック社、商標)などの市販品などが挙げられる。 Examples of phosphorus antioxidants include Irgafos 168 (Irgafos 168), Irgafos 12 (Irgafos 12), Irgafos 38 (trade name, BASF Japan Ltd.), Adekastab 329K (ADKSTAB329K), Adekastab PEP36 (ADPSTAB) PEP-8 (ADKSTAB PEP-8) (above, ADEKA Corporation, trademark), Sardstab P-EPQ (Clariant, trademark), Weston 618 (Weston 618), Weston 619G (Weston 619G), Weston-624 Examples include commercial products such as (Weston-624) (general electric company, trademark).
 イオウ系酸化防止剤としては、例えばDSTP(ヨシトミ)、DLTP(ヨシトミ)、DLTOIB、DMTP(ヨシトミ)(以上、株式会社エーピーアイコーポレーション、商標)、Seenox 412S(シプロ化成株式会社、商標)、Cyanox 1212(サイアナミド社、商標)、スミライザーTP-D(SumilizerTP-D、住友化学株式会社、商標)などの市販品などが挙げられる。 Examples of the sulfur-based antioxidant include DSTP (Yoshitomi), DLTP (Yoshitomi), DLTOIB, DMTP (Yoshitomi) (above, API Corporation, trademark), Seenox 412S (Sipro Kasei Corporation, trademark), Cyanox 1212. (Commercially available from Cyanamid Co., Ltd.) and commercializers such as Sumilizer TP-D (Sumilizer TP-D, Sumitomo Chemical Co., Ltd.).
 ビタミン系酸化防止剤としては、トコフェロール、イルガノクスE201(IrganoxE201、BASFジャパン株式会社、商標、化合物名;2,5,7,8-テトラメチル-2(4’,8’,12’-トリメチルトリデシル)クマロン-6-オール)などの市販品がある。 Examples of vitamin antioxidants include tocopherol, Irganox E201 (Irganox E201, BASF Japan Ltd., trademark, compound name; 2,5,7,8-tetramethyl-2 (4 ′, 8 ′, 12′-trimethyltridecyl) ) Coumarone-6-ol) and other commercial products.
 ラクトン系酸化防止剤としては、特開平7-233160号公報、特開平7-247278号公報に記載されているものを使用できる。また、HP-136(BASFジャパン株式会社、商標、化合物名;5,7-ジ-t-ブチル-3-(3,4-ジメチルフェニル)-3H-ベンゾフラン-2-オン)などがある。 As the lactone antioxidant, those described in JP-A-7-233160 and JP-A-7-247278 can be used. Further, there is HP-136 (BASF Japan Ltd., trademark, compound name; 5,7-di-t-butyl-3- (3,4-dimethylphenyl) -3H-benzofuran-2-one).
 アミン系酸化防止剤としては、イルガスタブFS042(BASFジャパン株式会社、商標)、GENOX EP(クロンプトン社、商標、化合物名;ジアルキル-N-メチルアミンオキサイド)などの市販品などが挙げられる。 Examples of amine-based antioxidants include commercially available products such as Irgas Tab FS042 (BASF Japan Ltd., trademark), GENOX EP (Crampton Corporation, trademark, compound name: dialkyl-N-methylamine oxide).
 これらの酸化防止剤は単独で用いてもよく、二種以上を組み合わせて用いてもよい。その含有量は、(A)成分、(B)成分および(C)成分の合計100質量部に対して、通常、0.005~5質量部、好ましくは0.02~2質量部である。 These antioxidants may be used alone or in combination of two or more. The content is usually 0.005 to 5 parts by mass, preferably 0.02 to 2 parts by mass with respect to 100 parts by mass in total of the components (A), (B) and (C).
 光安定剤としては通常知られているものが使用できるが、好ましくは、ヒンダードアミン系光安定剤である。具体的には、商品名として、株式会社ADEKA製のADK STAB LA-52、LA-57、LA-62、LA-63、LA-67、LA-68、LA-77、LA-82、LA-87、LA-94、CSC社製のTinuvin123、144、440、662、Chimassorb2020、119、944、ヘキスト社製のHostavin N30、Cytec社製の Cyasorb UV-3346、UV-3526、GLC社製のUval 299、クラリアント社製のSanduvorPR-31等などが挙げられる。 As the light stabilizer, those generally known can be used, but a hindered amine light stabilizer is preferred. Specifically, the product names include ADK STAB LA-52, LA-57, LA-62, LA-63, LA-67, LA-68, LA-77, LA-82, LA- from Adeka Co., Ltd. 87, LA-94, Tinuvin 123, 144, 440, 662 from CSC, Chimassorb 2020, 119, 944, Hostavin N30 from Hoechst, Cyasorb UV-3346, UV-3526 from Cytec, Uval 299 from GLC And SanduvorPR-31 manufactured by Clariant.
 これらの光安定剤は単独で用いてもよく、二種以上を組み合わせて用いてもよい。その含有量は、(A)成分、(B)成分および(C)成分の合計100質量部に対して、通常、0.005~5質量部、好ましくは0.01~2質量部である。 These light stabilizers may be used alone or in combination of two or more. The content is usually 0.005 to 5 parts by mass, preferably 0.01 to 2 parts by mass with respect to 100 parts by mass in total of the components (A), (B) and (C).
 本発明の組成物は、(D)成分からラジカルが発生する温度以上に加熱処理することにより(光ラジカル重合開始剤の場合は、光を照射することにより)硬化物を与える。硬化条件は開始剤の分解特性を勘案し、適宜採用すればよい。例えば、ポッティングによる硬化の他、圧縮成形、液状トランスファー成形、液状射出成形、コーティング等の方法が可能である。またUV光源を用いる光硬化樹脂の硬化方法も用いることができる。本発明の組成物を硬化前に予備重合を行ってもよい。
 本発明の組成物を硬化して得られる硬化物は封止材として好ましく用いられる。
 封止材としては光半導体用封止材や受光素子用封止材が挙げられ、封止される素子としては、例えば発光ダイオード(LED)チップ、半導体レーザー、フォトダイオード、フォトインタラプタ、フォトカプラ、フォトトランジスタ、エレクトロルミネッセンス素子、CCD、太陽電池などが挙げられる。
The composition of the present invention gives a cured product by heat treatment at a temperature higher than the temperature at which radicals are generated from the component (D) (in the case of a photoradical polymerization initiator, by irradiation with light). The curing conditions may be appropriately adopted in consideration of the decomposition characteristics of the initiator. For example, methods such as compression molding, liquid transfer molding, liquid injection molding, and coating can be used in addition to curing by potting. Moreover, the hardening method of the photocurable resin using a UV light source can also be used. You may pre-polymerize the composition of this invention before hardening.
A cured product obtained by curing the composition of the present invention is preferably used as a sealing material.
Examples of the sealing material include a sealing material for an optical semiconductor and a sealing material for a light receiving element. Examples of the element to be sealed include a light emitting diode (LED) chip, a semiconductor laser, a photodiode, a photo interrupter, a photo coupler, A phototransistor, an electroluminescent element, a CCD, a solar cell, and the like can be given.
 次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
 なお、各実施例および比較例において得られた硬化物の物性評価方法は以下のとおりである。また数平均分子量はNMRにより測定した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
In addition, the physical-property evaluation method of the hardened | cured material obtained in each Example and the comparative example is as follows. The number average molecular weight was measured by NMR.
(1)全光線透過率
 試料として厚み1mmの試験片を用いてJIS K7105に準拠して測定した。測定装置はHGM-2DP(スガ試験機株式会社)を用いた。150℃の恒温槽に試験片を168時間置き、その前後の全光線透過率を測定した。
(1) Total light transmittance It measured based on JISK7105 using the test piece of thickness 1mm as a sample. The measuring device used was HGM-2DP (Suga Test Instruments Co., Ltd.). The test piece was placed in a thermostat at 150 ° C. for 168 hours, and the total light transmittance before and after the test piece was measured.
(2)全光束量
 表面実装型LEDパッケージ(京セラ株式会社製KD-V93B95-B)内に青色LED発光素子(GeneLite製B2424DCI0)をダイボンド材でリードフレームに接着し、発光素子と対電極のリードフレームを金線(直径30μm)で接続した発光装置のリフレクター内部に、実施例および比較例で得られたアクリレート組成物を充填し、100℃で2時間、さらに130℃で2時間、窒素をフローさせたオーブン中で熱硬化した。
 この試料を、大塚電子株式会社製MCPD-3700を用いて、積分球内で150mA通電して発光させ、全光束量を測定した。
(2) Total luminous flux Blue LED light emitting element (B2424DCI0 made by GeneLite) is bonded to the lead frame with a die bond material in a surface mount LED package (KD-V93B95-B made by Kyocera Corporation), and the lead of the light emitting element and the counter electrode The acrylate composition obtained in the example and the comparative example is filled in the reflector of the light emitting device in which the frame is connected with a gold wire (diameter 30 μm), and nitrogen is flown at 100 ° C. for 2 hours and further at 130 ° C. for 2 hours. And cured in an oven.
Using a MCPD-3700 manufactured by Otsuka Electronics Co., Ltd., the sample was made to emit light by applying 150 mA in an integrating sphere, and the total luminous flux was measured.
(3)熱衝撃試験
 表面実装型LEDパッケージ(株式会社エノモト製、FLASH LED 6PIN OP1)内に赤色LED発光素子(knowledgeon製OPA6610)をダイボンド材でリードフレームに接着し、発光素子と対電極のリードフレームを金線(直径30μm)で接続した発光装置のリフレクター内部に、実施例および比較例で得られたアクリレート組成物を充填し、100℃で2時間、さらに130℃で2時間、窒素をフローさせたオーブン中で熱硬化した。硬化後、通電によって全てのLEDが点灯することを確認した。
 液槽冷熱衝撃装置(エスペック株式会社TSB-21)を用いて、発光装置を、冷媒中-40℃、5分、室温、30秒、熱媒中110℃、5分、室温、30秒の環境に曝すサイクルを1000回行ったのち、通電によって不点灯を生じているLEDの比率を確認した。
(3) Thermal shock test A red LED light-emitting element (OPA 6610 made by knowledgeon) is bonded to a lead frame with a die-bonding material in a surface-mounted LED package (FLASH LED 6PIN OP1 made by Enomoto Co., Ltd.), and the lead of the light-emitting element and the counter electrode The acrylate composition obtained in the example and the comparative example is filled in the reflector of the light emitting device in which the frame is connected with a gold wire (diameter 30 μm), and nitrogen is flown at 100 ° C. for 2 hours and further at 130 ° C. for 2 hours. And cured in an oven. After curing, it was confirmed that all LEDs were lit by energization.
Using a liquid tank thermal shock device (Espec Corp. TSB-21), the light-emitting device is -40 ° C, 5 minutes, room temperature, 30 seconds in a refrigerant, 110 ° C, 5 minutes, room temperature, 30 seconds in a heat medium. After performing the exposure cycle 1000 times, the ratio of the LED which did not light up by electricity supply was confirmed.
実施例1
 (A)成分として、水素化ポリイソプレンジアクリレート(大阪有機化学工業株式会社製、商品名SPIDA)50質量部、(B)成分として、1-アダマンチルメタクリレート(出光興産株式会社製、アダマンテートM-104)40質量部、(C)成分として、グリシジルメタクリレート(和光純薬工業株式会社製)10質量部、(D)成分として、1,1-ビス(t-ヘキシルペルオキシ)シクロヘキサン1質量部、(E)成分として、ガラスフィラー(日本フリット株式会社製、CF0093-20C:平均粒径39μm)67質量部、酸化防止剤として、スミライザーGA-80(商品名、住友化学株式会社製、化合物名:3,9-ビス[1,1-ジメチル-2-{β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン)0.5質量部とスミライザーTP-D(商品名、住友化学株式会社製、化合物名:ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート))0.5質量部を使用し、株式会社シンキー製、自転・公転ミキサー(商品名あわとり練太郎)を用いて混合して組成物を得た。
 この組成物を2枚の鋼板の間に1mm厚みのテフロン(登録商標)製スペーサーと、鋼板とスペーサーの間に厚み0.3mmのアルミ板を挟みこんで作成したセルに流し込み、オーブンにて150℃で1時間加熱を行った後、室温に冷却することで半透明な厚み1mmの板状試験片を得た。また前記(2)、(3)に記載の方法で、全光束量測定、熱衝撃試験用の試験サンプルを作製した。得られた硬化物の評価結果を表1に示す。
Example 1
As component (A), hydrogenated polyisoprene acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name SPIDA) 50 parts by mass, as component (B), 1-adamantyl methacrylate (manufactured by Idemitsu Kosan Co., Ltd., adamantate M- 104) 40 parts by mass, (C) component as glycidyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 10 parts by mass, (D) component as 1,1-bis (t-hexylperoxy) cyclohexane 1 part by mass, ( E) As a component, 67 parts by weight of a glass filler (manufactured by Nippon Frit Co., Ltd., CF0093-20C: average particle size 39 μm), and as an antioxidant, Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical Co., Ltd., compound name: 3) , 9-bis [1,1-dimethyl-2- {β- (3-tert-butyl-4-hydroxy-5-methylphenyl) propyl (Lopionyloxy} ethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane) 0.5 parts by mass and Sumilizer TP-D (trade name, manufactured by Sumitomo Chemical Co., Ltd., compound name: pentaerythritol tetrakis ( 3-lauryl thiopropionate))) 0.5 parts by weight were mixed using a rotation / revolution mixer (trade name: Awatori Nentaro) manufactured by Shinky Co., Ltd. to obtain a composition.
The composition was poured into a cell made by sandwiching a Teflon (registered trademark) spacer having a thickness of 1 mm between two steel plates and an aluminum plate having a thickness of 0.3 mm between the steel plates and the spacers, and was 150 times in an oven. After heating at 0 ° C. for 1 hour, a semi-transparent 1 mm thick plate-like test piece was obtained by cooling to room temperature. Moreover, the test sample for a total luminous flux measurement and a thermal shock test was produced by the method as described in said (2) and (3). The evaluation results of the obtained cured product are shown in Table 1.
実施例2
 (E)成分として、球状シリカ(株式会社アドマテックス製、商品名アドマファインSO-E5、平均粒径1.6μm)を用いた以外は実施例1と同様にして組成物、および硬化物を得た。得られた硬化物の評価結果を表1に示す。
Example 2
A composition and a cured product were obtained in the same manner as in Example 1 except that spherical silica (manufactured by Admatechs, trade name Admafine SO-E5, average particle size 1.6 μm) was used as the component (E). It was. The evaluation results of the obtained cured product are shown in Table 1.
実施例3
 (E)成分として、ミルドガラスファイバー(オーウェンススコーニング社製、商品名REV-7、平均サイズ=13μm(繊維径)×70μm(繊維長)、アクリルシラン表面処理あり)を用いた以外は実施例1と同様にして組成物、および硬化物を得た。得られた硬化物の評価結果を表1に示す。
Example 3
Example except that milled glass fiber (manufactured by Owens Corning, trade name REV-7, average size = 13 μm (fiber diameter) × 70 μm (fiber length), with acrylic silane surface treatment) is used as component (E) In the same manner as in No. 1, a composition and a cured product were obtained. The evaluation results of the obtained cured product are shown in Table 1.
実施例4
 (E)成分として、ミルドガラスファイバー(オーウェンススコーニング社製、商品名REV-4、平均サイズ=13μm(繊維径)×70μm(繊維長)、表面処理なし)を用いた以外は実施例1と同様にして組成物、および硬化物を得た。得られた硬化物の評価結果を表1に示す。
Example 4
(E) Example 1 except that milled glass fiber (trade name REV-4, manufactured by Owens Corning Co., Ltd., average size = 13 μm (fiber diameter) × 70 μm (fiber length), no surface treatment) was used as the component (E) Similarly, a composition and a cured product were obtained. The evaluation results of the obtained cured product are shown in Table 1.
実施例5
 (E)成分として、ミルドガラスファイバー(オーウェンススコーニング社製、商品名REV-7、平均サイズ=13μm(繊維径)×70μm(繊維長)、アクリルシラン表面処理あり)を67質量部、(F)成分として、ヒュームドシリカ(日本アエロジル製、商品名AEROSIL R-202、平均粒径0.014μm)3質量部を用いた以外は実施例1と同様にして組成物、および硬化物を得た。得られた硬化物の評価結果を表1に示す。
Example 5
As component (E), 67 parts by mass of milled glass fiber (trade name REV-7, manufactured by Owens Corning Co., Ltd., average size = 13 μm (fiber diameter) × 70 μm (fiber length), with acrylsilane surface treatment), (F ) A composition and a cured product were obtained in the same manner as in Example 1 except that 3 parts by mass of fumed silica (manufactured by Nippon Aerosil Co., Ltd., trade name: AEROSIL R-202, average particle size: 0.014 μm) was used as the component. . The evaluation results of the obtained cured product are shown in Table 1.
比較例1
 (E)成分を用いなかった以外は実施例1と同様にして組成物、および硬化物を得た。得られた硬化物の評価結果を表1に示す。熱衝撃試験において高い確率でLEDの不点灯が発生した。
Comparative Example 1
A composition and a cured product were obtained in the same manner as in Example 1 except that the component (E) was not used. The evaluation results of the obtained cured product are shown in Table 1. In the thermal shock test, LED non-lighting occurred with high probability.
比較例2
 実施例1で用いた(E)成分に代えて、(F)ヒュームドシリカ(日本アエロジル株式会社製、商品名AEROSIL R-202、平均粒径0.014μm)3質量部を用いた以外は実施例1と同様にして組成物、および硬化物を得た。得られた硬化物の評価結果を表1に示す。(F)成分で用いたシリカ微粒子の含有量が少ないため、熱衝撃試験において高い確率でLEDの不点灯が発生した。
Comparative Example 2
Implemented except that 3 parts by mass of (F) fumed silica (manufactured by Nippon Aerosil Co., Ltd., trade name AEROSIL R-202, average particle size 0.014 μm) was used instead of the component (E) used in Example 1. A composition and a cured product were obtained in the same manner as in Example 1. The evaluation results of the obtained cured product are shown in Table 1. Since the content of the silica fine particles used in the component (F) is small, LED unlighting occurred with high probability in the thermal shock test.
比較例3
 比較例2で使用した(F)成分を5質量部用いた以外は比較例2と同様にして組成物を作製したが、平均粒径が小さいシリカ微粒子を比較例2より増量したために、そのチクソ性により混合物が流動しなくなり、組成物の硬化物を得ることはできなかった。よって5質量部以上の粒径が0.014μmのヒュームドシリカを用いても熱衝撃試験での不良発生を抑制することができないことが分かる。
Comparative Example 3
A composition was prepared in the same manner as in Comparative Example 2 except that 5 parts by mass of the component (F) used in Comparative Example 2 was used. The amount of silica fine particles having a small average particle diameter was increased from that in Comparative Example 2, and the thixo Due to the property, the mixture stopped flowing, and a cured product of the composition could not be obtained. Therefore, it can be seen that the occurrence of defects in the thermal shock test cannot be suppressed even when fumed silica having a particle size of 5 parts by mass or more and 0.014 μm is used.
比較例4
 実施例1で用いた(E)成分に代えて、(F)成分として、酸化チタン微粒子(石原産業株式会社製、商品名タイペーク PC-3、平均粒径0.21μm)10質量部を用いた以外は実施例1と同様にして組成物、および硬化物を得た。得られた硬化物は白色であり、光の透過はまったくなかった。評価結果を表1に示す。
Comparative Example 4
Instead of the component (E) used in Example 1, 10 parts by mass of titanium oxide fine particles (manufactured by Ishihara Sangyo Co., Ltd., trade name Typaque PC-3, average particle size 0.21 μm) was used as the component (F). Except for the above, a composition and a cured product were obtained in the same manner as in Example 1. The obtained cured product was white and did not transmit any light. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~5は、(E)成分のない比較例1に対して、全光線透過率の低下は見られるものの、LED発光素子からの全光束量はまったく低下しておらず、発光を拡散させて損失なく取り出していることを示している。また、熱エージングによる全光線透過率の低下が見られず、そして熱衝撃試験での不良発生を完全に抑制したことを示している。
 比較例2及び3は、微粒子のサイズが小さいために、その含有量を増やすことができず、熱衝撃試験での不良発生を抑制することができないことを示している。
 比較例4では、シリカ系微粒子ではない微粒子として、酸化チタン微粒子を用いたところ、白色の硬化物となり、LEDからの発光がまったく取り出せなかったことを示している。
In Examples 1 to 5, although a decrease in the total light transmittance was observed with respect to Comparative Example 1 having no component (E), the total luminous flux from the LED light emitting element was not decreased at all, and the light emission was diffused. It shows that it is taken out without loss. In addition, no decrease in the total light transmittance due to thermal aging was observed, indicating that the occurrence of defects in the thermal shock test was completely suppressed.
In Comparative Examples 2 and 3, since the size of the fine particles is small, the content thereof cannot be increased, and it is indicated that the occurrence of defects in the thermal shock test cannot be suppressed.
In Comparative Example 4, when titanium oxide fine particles were used as fine particles that were not silica-based fine particles, a white cured product was obtained, indicating that light emission from the LED could not be extracted at all.
 本発明によれば、耐熱性や密着性に関して従来の水準を維持しながら、熱衝撃試験における金ワイヤーの断線不良が発生せず、同時に光半導体からの発光を散乱させることができる硬化物を与える組成物が提供される。本発明の組成物は光半導体装置における発光素子や受光素子などの封止材の原料として好適に用いられる。 According to the present invention, a cured product capable of scattering light emitted from an optical semiconductor at the same time without causing a disconnection failure of a gold wire in a thermal shock test while maintaining a conventional level of heat resistance and adhesion is provided. A composition is provided. The composition of the present invention is suitably used as a raw material for sealing materials such as light emitting elements and light receiving elements in optical semiconductor devices.

Claims (8)

  1.  (A)(メタ)アクリレート変性シリコーンオイル、炭素数12以上のアルキル基を有するアルキル(メタ)アクリレートおよび数平均分子量400以上のポリアルキレングリコール(メタ)アクリレートから選ばれる1種以上の(メタ)アクリレート化合物、(B)炭素数6以上の脂環式炭化水素基がエステル結合した(メタ)アクリレート化合物、(C)(メタ)アクリル酸又は極性基を有する(メタ)アクリレート化合物、(D)ラジカル重合開始剤、ならびに(E)平均粒径が0.1~500μmのシリカ系微粒子、又は平均繊維径及び繊維長が0.1~500μmのシリカ系繊維を含む組成物であって、(E)成分の含有量が、(A)成分、(B)成分および(C)成分の合計100質量部に対して5~500質量部であることを特徴とする組成物。 (A) One or more (meth) acrylates selected from (meth) acrylate-modified silicone oil, alkyl (meth) acrylate having an alkyl group having 12 or more carbon atoms, and polyalkylene glycol (meth) acrylate having a number average molecular weight of 400 or more Compound, (B) (meth) acrylate compound in which an alicyclic hydrocarbon group having 6 or more carbon atoms is ester-bonded, (C) (meth) acrylic acid or (meth) acrylate compound having a polar group, (D) radical polymerization A composition comprising an initiator and (E) silica-based fine particles having an average particle diameter of 0.1 to 500 μm, or silica-based fibers having an average fiber diameter and a fiber length of 0.1 to 500 μm, the component (E) The content of is 5 to 500 parts by mass with respect to 100 parts by mass in total of the components (A), (B) and (C). Characteristic composition.
  2.  前記(A)成分が水素化ポリブタジエンジ(メタ)アクリレートおよび水素化ポリイソプレンジ(メタ)アクリレートから選ばれる炭素数12以上のアルキル基を有するアルキル(メタ)アクリレート、および/または前記数平均分子量400以上のポリアルキレングリコール(メタ)アクリレートである請求項1に記載の組成物。 The component (A) is an alkyl (meth) acrylate having an alkyl group having 12 or more carbon atoms selected from hydrogenated polybutadiene di (meth) acrylate and hydrogenated polyisoprene (meth) acrylate, and / or the number average molecular weight 400 The composition according to claim 1, which is a polyalkylene glycol (meth) acrylate as described above.
  3.  前記(B)成分がアダマンチル基、ノルボルニル基、イソボルニル基、ジシクロペンタニル基およびシクロヘキシル基から選ばれる1種以上の脂環式炭化水素基がエステル結合した(メタ)アクリレート化合物である請求項1又は2に記載の組成物。 2. The component (B) is a (meth) acrylate compound in which one or more alicyclic hydrocarbon groups selected from an adamantyl group, norbornyl group, isobornyl group, dicyclopentanyl group and cyclohexyl group are ester-bonded. Or the composition of 2.
  4.  前記(C)成分が、水酸基、エポキシ基、グリシジルエーテル基、テトラヒドロフルフリル基、イソシアネート基、カルボキシル基、アルコキシシリル基、リン酸エステル基、ラクトン基、オキセタン基、テトラヒドロピラニル基およびアミノ基から選ばれる極性基を有する(メタ)アクリレート化合物である請求項1~3のいずれかに記載の組成物。 The component (C) includes a hydroxyl group, an epoxy group, a glycidyl ether group, a tetrahydrofurfuryl group, an isocyanate group, a carboxyl group, an alkoxysilyl group, a phosphate ester group, a lactone group, an oxetane group, a tetrahydropyranyl group, and an amino group. The composition according to any one of claims 1 to 3, which is a (meth) acrylate compound having a selected polar group.
  5.  (A)成分、(B)成分および(C)成分の合計を基準として、(A)成分の量が10~90質量%、(B)成分の量が5~89.5質量%、(C)成分の量が0.5~50質量%であり、(A)成分、(B)成分および(C)成分の合計100質量部に対して、(D)成分の量が0.01~10質量部である請求項1~4のいずれかに記載の組成物。 Based on the sum of component (A), component (B) and component (C), the amount of component (A) is 10 to 90% by mass, the amount of component (B) is 5 to 89.5% by mass, (C The amount of the component (D) is 0.5 to 50% by mass, and the amount of the component (D) is 0.01 to 10 with respect to a total of 100 parts by mass of the component (A), the component (B) and the component (C). The composition according to any one of claims 1 to 4, which is part by mass.
  6.  請求項1~5のいずれかに記載の組成物を硬化して得られる硬化物。 A cured product obtained by curing the composition according to any one of claims 1 to 5.
  7.  請求項6に記載の硬化物を用いた封止材。 A sealing material using the cured product according to claim 6.
  8.  光半導体用または受光素子用である請求項7に記載の封止材。 The sealing material according to claim 7, which is for an optical semiconductor or a light receiving element.
PCT/JP2012/070763 2011-08-19 2012-08-15 Acrylate-based composition WO2013027640A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147004158A KR20140051958A (en) 2011-08-19 2012-08-15 Acrylate-based composition
CN201280040391.9A CN103732640A (en) 2011-08-19 2012-08-15 Acrylate-based composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011179723 2011-08-19
JP2011-179723 2011-08-19

Publications (1)

Publication Number Publication Date
WO2013027640A1 true WO2013027640A1 (en) 2013-02-28

Family

ID=47746385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070763 WO2013027640A1 (en) 2011-08-19 2012-08-15 Acrylate-based composition

Country Status (5)

Country Link
JP (1) JPWO2013027640A1 (en)
KR (1) KR20140051958A (en)
CN (1) CN103732640A (en)
TW (1) TW201329150A (en)
WO (1) WO2013027640A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089922A (en) * 2013-11-06 2015-05-11 出光興産株式会社 Reflection material composition and optical semiconductor light-emission device using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210012514A (en) 2019-07-25 2021-02-03 엘지이노텍 주식회사 Optical resin and lighting device having thereof
JP7401334B2 (en) * 2020-02-06 2023-12-19 ハリマ化成株式会社 Release agent and method for producing resin molded product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093672A (en) * 2004-08-26 2006-04-06 Toshiba Corp Semiconductor light emitting device
JP2006179804A (en) * 2004-12-24 2006-07-06 Sharp Corp Optical semiconductor device and electronic equipment
JP2007281250A (en) * 2006-04-07 2007-10-25 Toshiba Corp Semiconductor light emitting apparatus
WO2011016356A1 (en) * 2009-08-04 2011-02-10 出光興産株式会社 Acrylate composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093672A (en) * 2004-08-26 2006-04-06 Toshiba Corp Semiconductor light emitting device
JP2006179804A (en) * 2004-12-24 2006-07-06 Sharp Corp Optical semiconductor device and electronic equipment
JP2007281250A (en) * 2006-04-07 2007-10-25 Toshiba Corp Semiconductor light emitting apparatus
WO2011016356A1 (en) * 2009-08-04 2011-02-10 出光興産株式会社 Acrylate composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089922A (en) * 2013-11-06 2015-05-11 出光興産株式会社 Reflection material composition and optical semiconductor light-emission device using same

Also Published As

Publication number Publication date
KR20140051958A (en) 2014-05-02
JPWO2013027640A1 (en) 2015-03-19
CN103732640A (en) 2014-04-16
TW201329150A (en) 2013-07-16

Similar Documents

Publication Publication Date Title
JP5798033B2 (en) Acrylate composition
US7868109B2 (en) Curable resin composition
JP5775525B2 (en) (Meth) acrylate composition
JP5250949B2 (en) Light emitting element module
US7446159B1 (en) Curable resin composition
KR101365834B1 (en) Optical semiconductor encapsulating material
EP2042528B1 (en) Curable resin composition
JP5080114B2 (en) Reflective material for optical semiconductors
JP5767552B2 (en) Semiconductor light emitting device and manufacturing method thereof
WO2013027640A1 (en) Acrylate-based composition
JP2008243892A (en) Reflector for optical semiconductor
JP2010189471A (en) Hardening resin composition, sealant comprising hardened material obtained thereby, and filler
JP2014095038A (en) Composition for reflection material and optical semiconductor light emitting device using the same
WO2014054256A1 (en) Composition for reflective material, and optical semiconductor light-emitting device produced using same
TW201336872A (en) Curable composition, sealing material for semiconductor light emitting device using the curable composition and semiconductor light emitting device
JP6247902B2 (en) Composition for reflector and optical semiconductor light emitting device using the same
WO2016072458A1 (en) Resin composition, resin film, resin cured product, electronic component, and method for manufacturing electronic component
JP2007314765A (en) Curing resin composition and optical member using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013529980

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20147004158

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825791

Country of ref document: EP

Kind code of ref document: A1