WO2013027541A1 - Thermally cationically polymerizable composition, anisotropic conductive adhesive film, connected structure and manufacturing process therefor - Google Patents

Thermally cationically polymerizable composition, anisotropic conductive adhesive film, connected structure and manufacturing process therefor Download PDF

Info

Publication number
WO2013027541A1
WO2013027541A1 PCT/JP2012/069288 JP2012069288W WO2013027541A1 WO 2013027541 A1 WO2013027541 A1 WO 2013027541A1 JP 2012069288 W JP2012069288 W JP 2012069288W WO 2013027541 A1 WO2013027541 A1 WO 2013027541A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerizable composition
anisotropic conductive
group
electronic component
adhesive film
Prior art date
Application number
PCT/JP2012/069288
Other languages
French (fr)
Japanese (ja)
Inventor
将大 伊藤
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201280040755.3A priority Critical patent/CN103748167B/en
Priority to KR1020147004230A priority patent/KR20140058567A/en
Publication of WO2013027541A1 publication Critical patent/WO2013027541A1/en
Priority to HK14105466.8A priority patent/HK1192271A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G85/00General processes for preparing compounds provided for in this subclass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/55Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin

Definitions

  • the present invention relates to a thermally cationic polymerizable composition useful for an adhesive insulating resin composition that is a main component of an anisotropic conductive adhesive.
  • An anisotropic conductive adhesive obtained by dispersing conductive particles in an insulating resin composition when an electronic component is mounted on a circuit board is widely used in the form of a paste or a film.
  • an insulating resin composition which is a main component of such an anisotropic conductive adhesive there is no inhibition of polymerization by oxygen compared to a radical polymerizable composition mainly composed of an acrylate monomer, and it has a good potential for heat.
  • a thermal cationic polymerizable composition containing a thermal cationic polymerization initiator which has advantages such as providing a cationic polymer having a low curing shrinkage rate (Non-patent Document 1).
  • an electronic component is connected to a glass substrate or a circuit board using an insulating adhesive film or an anisotropic conductive adhesive film using the thermal cationic polymerizable composition of Non-Patent Document 1
  • an alkali glass substrate is used as the glass substrate.
  • the adhesive interface In some cases, problems such as the occurrence of floating at the surface, a decrease in adhesive strength, and a decrease in the efficiency of capturing conductive particles between opposing connection terminals when anisotropic conductive connection is made with an anisotropic conductive adhesive film may occur. .
  • An object of the present invention is to solve the above-described problems of the prior art, and an insulating adhesive film or an anisotropic conductive adhesive film using a thermal cationic polymerizable composition containing a thermal cationic polymerization initiator.
  • the present inventor searches for the cause of the inhibition of the thermal cation polymerization at the connection interface on the assumption that the occurrence of the above-mentioned problem may be caused by the fact that the thermal cation polymerization is inhibited at the connection interface.
  • the surface of the alkali glass substrate or the polyimide passivation film has an anion site capable of capturing the cationic active species of the thermal cationic polymerization, so that the thermal cationic polymerization at the adhesive interface is inhibited, and as a result, the thermal cationic polymerizable composition
  • the curing of the adhesive layer becomes insufficient, causing problems such as the occurrence of floating at the bonding interface, a decrease in adhesion strength, and a decrease in the efficiency of capturing conductive particles between opposing connection terminals during anisotropic conductive connection.
  • the present inventor has found that these problems can be solved by blending a specific organic boron compound into the thermal cationic polymerizable composition, and has completed
  • the present invention provides a thermally cationically polymerizable composition
  • a thermally cationically polymerizable composition comprising an organic boron compound selected from a borate ester of formula (1) or a bis (alkanediolato) diboron of formula (2).
  • an organic boron compound selected from a borate ester of formula (1) or a bis (alkanediolato) diboron of formula (2).
  • distributing electroconductive particle to this thermal cation polymeric composition is provided.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, alkyl group, aryl group, aralkyl group, vinyl group or glycidyl group, and R 1 and R 2 are Together, they may form a ring.
  • R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , and R 21 are each independently a hydrogen atom, an alkyl group, or an aryl group , An aralkyl group, a vinyl group, or a glycidyl group, and n and m are 0 or 1, respectively.
  • the present invention provides a method for manufacturing a connection structure in which the terminals of the first electronic component and the terminals of the second electronic component are anisotropically conductively connected.
  • C a pressing bonder for the second electronic component.
  • a manufacturing method having a step of anisotropically conductively connecting the terminal of the first electronic component and the terminal of the second electronic component by heating with the pressing bonder or other heating means while applying pressure, and the manufacturing A connection structure manufactured by the method is provided.
  • the thermal cationic polymerizable composition of the present invention contains an organoboron compound selected from a borate ester of formula (1) or bis (alkanediolato) diboron of formula (2). For this reason, polymerization inhibition of the thermal cationic polymerizable composition is suppressed. As a result, the occurrence of floating at the adhesive interface and the decrease in adhesive strength are suppressed, and between the connecting terminals facing each other when anisotropic conductive connection is made with an anisotropic conductive adhesive film prepared by further blending conductive particles. It is possible to suppress a decrease in the conductive particle trapping efficiency.
  • the thermal cationic polymerizable composition of the present invention is characterized by containing an organoboron compound selected from a borate ester of the following formula (1) or a bis (alkanediolato) diboron of the formula (2).
  • the binder component contains a curing component other than such an organic boron compound, for example, a cationic polymerizable compound, a thermal cationic polymerization initiator, a film-forming resin, and the like.
  • the thermal cation polymerization at the adhesive interface of the thermal cation polymerizable composition can sufficiently proceed.
  • organoboron compound which is a Lewis acid, caps (captures) an anionic site at the adhesive interface that can inhibit the polymerization of the thermal cationic polymerizable composition.
  • the organic boron compound of the formula (1) is called a boric acid triester compound, and the compound of the formula (2) is called an alkanediolato diboron compound.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a vinyl group or a glycidyl group, and R 1 and R 2 Together may form a ring.
  • the alkyl group includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, an n-pentyl group, an isopentyl group, and a neopentyl group.
  • T-pentyl group n-hexyl group, isohexyl group, s-hexyl group, t-hexyl group and the like.
  • the aryl group include a phenyl group, a toluyl group, a xylyl group, a mesityl group, a cumyl group, and a naphthyl group.
  • the aralkyl group include a benzyl group and a phenylethyl group.
  • boric acid triester compounds of the formula (1) are boric acid tri (n-alkyl) esters having a C 3-30 alkyl group or boric acid triphenyl ester from the viewpoint of storage stability. be able to.
  • boric acid tri (n-alkyl) esters having a long-chain alkyl group having 5 to 20 carbon atoms, such as an n-octadecyl group are preferred.
  • R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , and R 21 are each independently a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a vinyl group or a glycidyl group, and n and m are each 0 or 1.
  • the alkyl group, aryl group, and aralkyl group are as described for R 1 , R 2, or R 3 . These substituents may be substituted with a hydroxyl group, halogen or the like.
  • alkanediolatodiboron compounds of the formula (2) include bis (1,3,3-trimethyl-1,3-propanediolato) diboron of the following formula (2a), bis (2 , 2-dimethyl-1,3-propanediolato) diboron and bis (2,3-dimethyl-2,3-butanediolato) diboron of the formula (2c). These compounds are commercially available compounds (Tokyo Chemical Industry Co., Ltd.).
  • the content of the organic boron compound in the thermal cationic polymerizable composition of the present invention depends on the type of the organic boron compound, but if it is too small, the adhesive strength of the polymer of the thermal cationic polymerizable composition and the conductive particle capturing efficiency May be insufficient, and it may be impossible to sufficiently suppress the occurrence of floating at the adhesive interface. If the amount is too large, the film formability of the thermal cationic polymerizable composition may be reduced. Therefore, the amount is preferably 0.05 to 10 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the binder component.
  • Examples of the cationic polymerizable compound that is one of the binder components constituting the thermal cationic polymerizable composition of the present invention include epoxy compounds, oxetane compounds, vinyl ether compounds, cyclic sulfide compounds, cyclic amine compounds, and organosilicon cyclic compounds. It is done. Among these, an epoxy compound can be preferably used from the viewpoint of balance between curability and storage stability.
  • the epoxy compound is a monomer, oligomer or polymer containing one or more epoxy groups or glycidyl groups in the molecule, and is a liquid or solid bisphenol A type epoxy compound, bisphenol F type epoxy compound, alicyclic epoxy compound Etc. can be used.
  • the thermal cationic polymerization initiator which is one of the binder components constituting the thermal cationic polymerizable composition of the present invention, generates an acid capable of cationic polymerization of the cationic polymerizable compound by heat.
  • What is used as a cationic polymerization initiator can be selected suitably, and can be used.
  • known iodonium salts, sulfonium salts, phosphonium salts, ferrocenes, and the like can be used, and aromatic sulfonium salts that exhibit good potential with respect to temperature can be preferably used.
  • thermal cationic polymerization initiator examples include diphenyliodonium hexafluoroantimonate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroborate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoro Borate.
  • SP-150, SP-170, CP-66, CP-77 manufactured by ADEKA Corporation; CI-2855, CI-2939 manufactured by Nippon Soda Co., Ltd .; Sun-Aid SI-60 manufactured by Sanshin Chemical Industry Co., Ltd. SI-80; CYRACURE-UVI-6990, UVI-6974, etc. manufactured by Union Carbide Corporation.
  • thermal cationic polymerization initiator in the thermal cationic polymerizable composition can be appropriately set according to the purpose, but if it is too small, the curing rate is lowered and sufficient curing characteristics cannot be obtained. If it is too much, film formation will be poor and it may be impossible to use it as an anisotropic conductive adhesive film. Therefore, it is preferably 5 parts per 100 parts by mass of the thermal cationic polymerizable compound. -30 mass parts, more preferably 5-20 mass parts.
  • the film-forming resin that is one of the binder components constituting the thermal cationic polymerizable composition of the present invention is a component that contributes to film formation of the thermal cationic polymerizable composition.
  • a film-forming resin used for a known anisotropic conductive adhesive film (ACF) or insulating adhesive film (NCF) can be applied, for example, a phenoxy resin,
  • An epoxy resin, an unsaturated polyester resin, a saturated polyester resin, a urethane resin, a butadiene resin, a polyimide resin, a polyamide resin, a polyolefin resin, and the like can be given, and two or more of these can be used in combination.
  • a phenoxy resin can be preferably used from the viewpoints of film formability, processability, and connection reliability.
  • the amount is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass with respect to 100 parts by mass of the thermally cationic polymerizable compound.
  • the thermal cationic polymerizable composition of the present invention preferably contains a silane coupling agent as one of the binder components in order to improve the adhesion strength to the adherend surface.
  • a silane coupling agent include an epoxy silane coupling agent and an acrylic silane coupling agent.
  • These silane coupling agents are alkoxysilane derivatives having 1 to 3 lower alkoxy groups in the molecule, and groups having reactivity in the molecule with respect to the functional groups of the thermocationically polymerizable compound, such as vinyl groups , Styryl group, acryloyloxy group, methacryloyloxy group, epoxy group, amino group, mercapto group and the like.
  • the amount is preferably 1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable compound.
  • conductive particles blended in a known anisotropic conductive adhesive can be blended in order to function as an anisotropic conductive adhesive.
  • examples thereof include metal particles such as nickel, cobalt, silver, copper, gold and palladium having a particle diameter of 1 to 50 ⁇ m, and metal-coated resin particles. Two or more kinds of these conductive particles can be used in combination.
  • the amount in the thermal cationic polymerizable composition of the present invention is preferably 1 to 50 parts by mass, more preferably 1 to 30 parts by mass with respect to 100 parts by mass of the binder component.
  • the thermal cationic polymerizable composition of the present invention can contain a filler, an antioxidant, a softening agent, a colorant (pigment, dye), an organic solvent, an ion catcher agent, and the like as necessary.
  • the thermal cationic polymerizable composition of the present invention includes a thermal cationic polymerizable compound, a heat It can be prepared by uniformly mixing a binder component such as a cationic polymerization initiator, a film-forming resin, and a silane coupling agent, and further conductive particles and other additives by a conventional method.
  • a binder component such as a cationic polymerization initiator, a film-forming resin, and a silane coupling agent
  • the thermal cationic polymerizable composition of the present invention described above can be usually used as an insulating adhesive film having a thickness of 10 to 50 ⁇ m by forming it into a film by a conventional method.
  • conductive particles When conductive particles are blended, it can be preferably used as an anisotropic conductive adhesive film.
  • Such an anisotropic conductive adhesive film can be preferably used in a manufacturing method of a connection structure formed by anisotropic conductive connection between a terminal of a first electronic component and a terminal of a second electronic component.
  • a manufacturing method includes the following steps (A), (B), and (C).
  • Step (A) First, the anisotropic conductive adhesive film of the present invention is temporarily attached on the terminal of the first electronic component.
  • the first electronic component include a glass circuit board, a rigid circuit board, and a flexible circuit board.
  • metal pads, bumps, etc. such as copper, nickel, gold
  • Conventionally known operations can be applied to the temporary sticking operation of the anisotropic conductive adhesive film.
  • a pressure bonder having a hard head made of metal or ceramic, or an elastic head such as rubber, and the press bonder or other heating means (for example, a surface plate equipped with a heating device) to such an extent that it is not superposed if necessary. It may be pressed while heating.
  • the second electronic component is temporarily placed on the anisotropic conductive adhesive film so that the terminal faces the corresponding terminal of the first electronic component.
  • the second electronic component include a flexible circuit board and an IC chip.
  • these terminals include metal pads such as copper, nickel, gold, and solder, and bumps.
  • the temporary placement operation There is no particular limitation on the temporary placement operation, and it can be performed by a conventionally known method.
  • An anisotropic conductive adhesive composition was prepared by uniformly mixing the ingredients shown in Table 1.
  • the composition was coated on a 50 ⁇ m-thick release polyethylene terephthalate film that had been subjected to a surface peeling treatment using a bar coater, and heated in an oven heated to 70 ° C., whereby an anisotropic conductive adhesive was obtained.
  • the composition was an anisotropic conductive adhesive film having a thickness of 20 ⁇ m.
  • a release polyester film (cover film) was laminated on the surface where the anisotropic conductive adhesive film was exposed to obtain a laminate.
  • the peeled polyester film (cover film) on one side of the anisotropic conductive adhesive film sandwiched between the peeled polyester films is peeled off, and the exposed anisotropic conductive adhesive film is heated on a 1.1 mm thick alkali glass substrate.
  • a pressure bonder temporary bonding was performed under the conditions of a heating temperature of 70 ° C., a pressure of 0.5 MPa, and 2 seconds.
  • the peeled polyester film on the surface of the temporarily attached anisotropic conductive adhesive film is peeled off, and an IC chip (1.8 mm ⁇ 20 mm ⁇ 0.5 mm (t ); Gold-plated bumps 30 ⁇ m ⁇ 85 ⁇ m ⁇ 15 ⁇ m (h)) are placed such that the bump-forming surface is on the side of the anisotropic conductive adhesive film, and a 50 ⁇ m thick Teflon (registered trademark) film is placed thereon, Using a heat and pressure bonder from above, heat and pressure were applied under the conditions of 170 ° C., 60 MPa, and 5 seconds. Thereby, the connection structure of the structure where the IC chip was anisotropically conductively connected to the alkali glass substrate by the anisotropic conductive adhesive film was obtained.
  • connection structure was subjected to appearance (floating) evaluation, adhesion strength measurement, and conductive particle capturing efficiency measurement as described below. The obtained results are shown in Table 1.
  • the adhesion strength of the IC chip of the connection structure was measured under the condition of a tool speed of 0.2 mm / sec using an adhesion strength tester (die shear tester SERIES 4000, manufactured by DAGE).
  • the adhesive strength is desirably 30 kg or more.
  • connection structures of Examples 1 to 18 using the anisotropic conductive adhesive film in which the specific organoboron compound was blended with the thermal cationic polymerizable composition Examples 1, 2, and 9 were related to appearance evaluation.
  • the connection structures of B were evaluated as B, but the connection structures of the remaining Examples 3 to 8 and 10 to 18 were all evaluated as A.
  • the adhesive strength was 30 kg or more, which was a preferable result.
  • the conductive particle capturing efficiency was more than 17%, which was a favorable result.
  • boric acid tolalkyl esters such as boric acid tri-n-butyl ester or tri-n-octadecyl ester and alkanediolato diboron compounds such as formulas (2b) and (2c) were used. In this case, it was found that the same preferable results as in Examples 1 to 14 were obtained.
  • the thermal cationic polymerizable composition of the present invention containing a thermal cationic polymerization initiator such as an aromatic sulfonium salt contains a specific organic boron compound, and therefore has a circuit board or an electron having an alkali surface that inhibits cationic polymerization. It is useful as an insulating resin composition as a main component of NCF or ACF used for mounting components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Epoxy Resins (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Adhesive Tapes (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

In connecting an electronic component to a glass substrate or a circuit board using a non-conductive adhesive film or an anisotropic conductive adhesive film, both films using a thermally cationically polymerizable composition that contains a thermal cationic polymerization initiator, the present invention minimizes the lifting in the adhesive interface and inhibits the bond strength from lowering remarkably. Further, in anisotropic conductive connection using an anisotropic conductive adhesive film, the present invention prevents lowering in the efficiency of conductive-particle capture between facing connecting terminals. This thermally cationically polymerizable composition contains an organoboron compound selected from among specific boric acid esters and bis(alkanediolato)diborons. This anisotropic conductive adhesive film can be obtained by dispersing conductive particles in the thermally cationically polymerizable composition and then forming the resulting composition into a film.

Description

熱カチオン重合性組成物、異方性導電接着フィルム、接続構造体及びその製造方法Thermally cationic polymerizable composition, anisotropic conductive adhesive film, connection structure, and method for producing the same
 本発明は、異方性導電接着剤の主要成分である接着性の絶縁性樹脂組成物に有用な熱カチオン重合性組成物に関する。 The present invention relates to a thermally cationic polymerizable composition useful for an adhesive insulating resin composition that is a main component of an anisotropic conductive adhesive.
 回路基板に電子部品を実装する際に、絶縁性樹脂組成物に導電粒子を分散させて得た異方性導電接着剤がペーストやフィルムの形態で広く使用されている。このような異方性導電接着剤の主要成分である絶縁性樹脂組成物として、アクリレートモノマーを主成分とするラジカル重合性組成物に比べ、酸素による重合阻害がなく、熱に対して良好な潜在性を示し、硬化収縮率が低いカチオン重合物を与える等の利点を有する熱カチオン重合開始剤を含有する熱カチオン重合性組成物が知られている(非特許文献1)。 An anisotropic conductive adhesive obtained by dispersing conductive particles in an insulating resin composition when an electronic component is mounted on a circuit board is widely used in the form of a paste or a film. As an insulating resin composition which is a main component of such an anisotropic conductive adhesive, there is no inhibition of polymerization by oxygen compared to a radical polymerizable composition mainly composed of an acrylate monomer, and it has a good potential for heat. There is known a thermal cationic polymerizable composition containing a thermal cationic polymerization initiator, which has advantages such as providing a cationic polymer having a low curing shrinkage rate (Non-patent Document 1).
 しかしながら、非特許文献1の熱カチオン重合性組成物を利用した絶縁性接着フィルムや異方性導電接着フィルムを用いてガラス基板や回路基板に電子部品を接続する際、ガラス基板としてアルカリガラス基板を使用した場合や回路基板としてポリイミドパッシベーション膜が接続端子の周囲に形成された回路基板を使用した場合、あるいは接続端子の周囲にポリイミドパッシベーション膜が形成された電子部品を使用した場合には、接着界面での浮きの発生、接着強度の低下、また、異方性導電接着フィルムで異方性導電接続した際の対向する接続端子間における導電粒子捕捉効率の低下、という問題が発生する場合があった。 However, when an electronic component is connected to a glass substrate or a circuit board using an insulating adhesive film or an anisotropic conductive adhesive film using the thermal cationic polymerizable composition of Non-Patent Document 1, an alkali glass substrate is used as the glass substrate. When using a circuit board with a polyimide passivation film formed around the connection terminal as a circuit board, or when using an electronic component with a polyimide passivation film formed around the connection terminal, the adhesive interface In some cases, problems such as the occurrence of floating at the surface, a decrease in adhesive strength, and a decrease in the efficiency of capturing conductive particles between opposing connection terminals when anisotropic conductive connection is made with an anisotropic conductive adhesive film may occur. .
 本発明の目的は、以上の従来の技術の課題を解決しようとするものであり、熱カチオン重合開始剤を含有する熱カチオン重合性組成物を利用した絶縁性接着フィルムや異方性導電接着フィルムを用いて、ガラス基板や回路基板に電子部品を接続する際に、ガラス基板としてアルカリガラス基板を使用した場合や回路基板としてポリイミドパッシベーション膜が接続端子の周囲に形成された回路基板を使用した場合であっても、あるいは接続端子の周囲にポリイミドパッシベーション膜が形成された電子部品を使用した場合であっても、接着界面での浮きの発生が抑制され、接着強度の著しい低下がなく、しかも異方性導電接続の際の対向する接続端子間における導電粒子捕捉効率を低下させないことである。 An object of the present invention is to solve the above-described problems of the prior art, and an insulating adhesive film or an anisotropic conductive adhesive film using a thermal cationic polymerizable composition containing a thermal cationic polymerization initiator. When connecting an electronic component to a glass substrate or circuit board using an alkali glass substrate as a glass substrate or a circuit substrate having a polyimide passivation film formed around a connection terminal as a circuit substrate Even when an electronic component having a polyimide passivation film formed around the connection terminal is used, the occurrence of floating at the adhesive interface is suppressed, and the adhesive strength is not significantly reduced. This is to prevent the conductive particle capturing efficiency between the connecting terminals facing each other during the isotropic conductive connection from being lowered.
 本発明者は、前述した問題の発生が、接続界面において熱カチオン重合が阻害されているということに原因があるのではないかという仮定のもと、接続界面における熱カチオン重合の阻害原因を探求したところ、アルカリガラス基板やポリイミドパッシベーション膜の表面が、熱カチオン重合のカチオン活性種を捕捉し得るアニオンサイトを有するため、接着界面における熱カチオン重合が阻害され、その結果、熱カチオン重合性組成物の硬化が不十分となり、接着界面での浮きの発生、接着強度の低下、異方性導電接続の際の対向する接続端子間における導電粒子捕捉効率の低下、といった問題が生ずることを見出した。また、本発明者は、熱カチオン重合性組成物に特定の有機ホウ素化合物を配合することによりそれらの問題が解決できることを見出し、本発明を完成させるに至った。 The present inventor searches for the cause of the inhibition of the thermal cation polymerization at the connection interface on the assumption that the occurrence of the above-mentioned problem may be caused by the fact that the thermal cation polymerization is inhibited at the connection interface. As a result, the surface of the alkali glass substrate or the polyimide passivation film has an anion site capable of capturing the cationic active species of the thermal cationic polymerization, so that the thermal cationic polymerization at the adhesive interface is inhibited, and as a result, the thermal cationic polymerizable composition It has been found that the curing of the adhesive layer becomes insufficient, causing problems such as the occurrence of floating at the bonding interface, a decrease in adhesion strength, and a decrease in the efficiency of capturing conductive particles between opposing connection terminals during anisotropic conductive connection. In addition, the present inventor has found that these problems can be solved by blending a specific organic boron compound into the thermal cationic polymerizable composition, and has completed the present invention.
 即ち、本発明は、式(1)のホウ酸エステル又は式(2)のビス(アルカンジオラト)ジボロンから選択される有機ホウ素化合物を含有することを特徴とする熱カチオン重合性組成物を提供する。また、この熱カチオン重合性組成物に、導電粒子を分散させてなる異方性導電接着フィルムを提供する。 That is, the present invention provides a thermally cationically polymerizable composition comprising an organic boron compound selected from a borate ester of formula (1) or a bis (alkanediolato) diboron of formula (2). To do. Moreover, the anisotropic conductive adhesive film formed by disperse | distributing electroconductive particle to this thermal cation polymeric composition is provided.
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 式(1)及び式(2)中、R、R及びRはそれぞれ独立的に水素原子、アルキル基、アリール基、アラルキル基、ビニル基又はグリシジル基であり、R及びRは一緒になって環を形成してもよい。R10、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20、及びR21は、それぞれ独立的に水素原子、アルキル基、アリール基、アラルキル基、ビニル基又はグリシジル基であり、n及びmはそれぞれ0又は1である。 In formula (1) and formula (2), R 1 , R 2 and R 3 are each independently a hydrogen atom, alkyl group, aryl group, aralkyl group, vinyl group or glycidyl group, and R 1 and R 2 are Together, they may form a ring. R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , and R 21 are each independently a hydrogen atom, an alkyl group, or an aryl group , An aralkyl group, a vinyl group, or a glycidyl group, and n and m are 0 or 1, respectively.
 また、本発明は、第1電子部品の端子と第2電子部品の端子とが異方性導電接続されてなる接続構造体の製造方法において、
 (A)第1電子部品の端子上に上述の異方性導電接着フィルムを仮貼りする工程、
 (B)異方性導電接着フィルム上に第2電子部品を、その端子が第1電子部品の対応する端子と対向するように仮配置する工程、及び
 (C)第2電子部品を押圧ボンダーを用いて加圧しながら、当該押圧ボンダーもしくは他の加熱手段で加熱することにより、第1電子部品の端子と第2電子部品の端子とを異方性導電接続する工程
を有する製造方法、並びにこの製造方法により製造された接続構造体を提供する。
Further, the present invention provides a method for manufacturing a connection structure in which the terminals of the first electronic component and the terminals of the second electronic component are anisotropically conductively connected.
(A) a step of temporarily attaching the above-mentioned anisotropic conductive adhesive film on the terminal of the first electronic component;
(B) a step of temporarily arranging the second electronic component on the anisotropic conductive adhesive film such that the terminal faces the corresponding terminal of the first electronic component; and (C) a pressing bonder for the second electronic component. A manufacturing method having a step of anisotropically conductively connecting the terminal of the first electronic component and the terminal of the second electronic component by heating with the pressing bonder or other heating means while applying pressure, and the manufacturing A connection structure manufactured by the method is provided.
 本発明の熱カチオン重合性組成物は、式(1)のホウ酸エステル又は式(2)のビス(アルカンジオラト)ジボロンから選択される有機ホウ素化合物を含有する。このため、熱カチオン重合性組成物の重合阻害が抑制される。その結果、接着界面での浮きの発生や接着強度の低下が抑制され、しかも、導電粒子を更に配合して作成した異方性導電接着フィルムで異方性導電接続した際の対向する接続端子間における導電粒子捕捉効率の低下を抑制することができる。 The thermal cationic polymerizable composition of the present invention contains an organoboron compound selected from a borate ester of formula (1) or bis (alkanediolato) diboron of formula (2). For this reason, polymerization inhibition of the thermal cationic polymerizable composition is suppressed. As a result, the occurrence of floating at the adhesive interface and the decrease in adhesive strength are suppressed, and between the connecting terminals facing each other when anisotropic conductive connection is made with an anisotropic conductive adhesive film prepared by further blending conductive particles. It is possible to suppress a decrease in the conductive particle trapping efficiency.
 本発明の熱カチオン重合性組成物は、以下に示す式(1)のホウ酸エステル又は式(2)のビス(アルカンジオラト)ジボロンから選択される有機ホウ素化合物を含有することを特徴としており、通常、バインダ成分として、このような有機ホウ素化合物以外の硬化成分、例えば、カチオン重合性化合物、熱カチオン重合開始剤、成膜用樹脂等を含有している。 The thermal cationic polymerizable composition of the present invention is characterized by containing an organoboron compound selected from a borate ester of the following formula (1) or a bis (alkanediolato) diboron of the formula (2). Usually, the binder component contains a curing component other than such an organic boron compound, for example, a cationic polymerizable compound, a thermal cationic polymerization initiator, a film-forming resin, and the like.
 このような有機ホウ素化合物を熱カチオン重合性組成物に配合することにより熱カチオン重合性組成物の接着界面での熱カチオン重合を十分に進行させることができる。その理由は、明確ではないが、ルイス酸である有機ホウ素化合物が、熱カチオン重合性組成物の重合を阻害し得る接着界面のアニオンサイトをキャップ(捕捉)するためであると考えられる。 By blending such an organic boron compound into the thermal cation polymerizable composition, the thermal cation polymerization at the adhesive interface of the thermal cation polymerizable composition can sufficiently proceed. The reason for this is not clear, but it is thought that the organoboron compound, which is a Lewis acid, caps (captures) an anionic site at the adhesive interface that can inhibit the polymerization of the thermal cationic polymerizable composition.
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
 式(1)の有機ホウ素化合物は、ホウ酸トリエステル化合物と称されており、式(2)の化合物は、アルカンジオラト(alkanediolato)ジボロン化合物と称されている。 The organic boron compound of the formula (1) is called a boric acid triester compound, and the compound of the formula (2) is called an alkanediolato diboron compound.
 式(1)のホウ酸トリエステル化合物中、R、R及びRはそれぞれ独立的に水素原子、アルキル基、アリール基、アラルキル基、ビニル基又はグリシジル基であり、R及びRは一緒になって環を形成してもよい。ここで、アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、n-ヘキシル基、イソヘキシル基、s-ヘキシル基、t-ヘキシル基等が挙げられる。アリール基としては、フェニル基、トルイル基、キシリル基、メシチル基、クミル基、ナフチル基等が挙げられる。アラルキル基としてはベンジル基、フェニルエチル基等が挙げられる。R及びRが一緒になって環を形成する場合、R及びRはポリメチレン基である。これらの置換基は、水酸基、ハロゲン等で置換されていてもよい。 In the boric acid triester compound of the formula (1), R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a vinyl group or a glycidyl group, and R 1 and R 2 Together may form a ring. Here, the alkyl group includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, an n-pentyl group, an isopentyl group, and a neopentyl group. T-pentyl group, n-hexyl group, isohexyl group, s-hexyl group, t-hexyl group and the like. Examples of the aryl group include a phenyl group, a toluyl group, a xylyl group, a mesityl group, a cumyl group, and a naphthyl group. Examples of the aralkyl group include a benzyl group and a phenylethyl group. When R 1 and R 2 together form a ring, R 1 and R 2 are polymethylene groups. These substituents may be substituted with a hydroxyl group, halogen or the like.
 特に好ましい式(1)のホウ酸トリエステル化合物としては、貯蔵安定性の点から炭素数が3~30のアルキル基を有するホウ酸トリ(n-アルキル)エステル、又はホウ酸トリフェニルエステルを挙げることができる。中でも、炭素数5~20の長鎖のアルキル基、例えば、n-オクタデシル基等を有するホウ酸トリ(n-アルキル)エステルが好ましい。 Particularly preferred boric acid triester compounds of the formula (1) are boric acid tri (n-alkyl) esters having a C 3-30 alkyl group or boric acid triphenyl ester from the viewpoint of storage stability. be able to. Of these, boric acid tri (n-alkyl) esters having a long-chain alkyl group having 5 to 20 carbon atoms, such as an n-octadecyl group, are preferred.
 また、式(2)のアルカンジオラトジボロン化合物中、R10、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20、及びR21は、それぞれ独立的に水素原子、アルキル基、アリール基、アラルキル基、ビニル基又はグリシジル基であり、n及びmはそれぞれ0又は1である。ここで、アルキル基、アリール基、アラルキル基としては、R、R又はRで説明したとおりである。これらの置換基は、水酸基、ハロゲン等で置換されていてもよい。 In the alkanediolato diboron compound of the formula (2), R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , and R 21 Are each independently a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a vinyl group or a glycidyl group, and n and m are each 0 or 1. Here, the alkyl group, aryl group, and aralkyl group are as described for R 1 , R 2, or R 3 . These substituents may be substituted with a hydroxyl group, halogen or the like.
 特に好ましい式(2)のアルカンジオラトジボロン化合物としては、以下の式(2a)のビス(1,3,3-トリメチル-1,3-プロパンジオラト)ジボロン、式(2b)のビス(2,2-ジメチル-1,3-プロパンジオラト)ジボロン、式(2c)のビス(2,3-ジメチル-2,3-ブタンジオラト)ジボロンを挙げることができる。これらの化合物は、市場で入手得可能な化合物である(東京化成工業(株))。 Particularly preferred alkanediolatodiboron compounds of the formula (2) include bis (1,3,3-trimethyl-1,3-propanediolato) diboron of the following formula (2a), bis (2 , 2-dimethyl-1,3-propanediolato) diboron and bis (2,3-dimethyl-2,3-butanediolato) diboron of the formula (2c). These compounds are commercially available compounds (Tokyo Chemical Industry Co., Ltd.).
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
 本発明の熱カチオン重合性組成物における有機ホウ素化合物の含有量は、有機ホウ素化合物の種類にもよるが、少なすぎると、熱カチオン重合性組成物の重合物の接着強度と導電粒子捕捉効率とが不十分となることが懸念され、また、接着界面に浮きの発生を十分に抑制できなくなることが懸念され、多すぎると、熱カチオン重合性組成物の成膜性が低下することが懸念されるので、バインダ成分100質量部に対し、好ましくは0.05~10質量部、より好ましくは0.5~10質量部である。 The content of the organic boron compound in the thermal cationic polymerizable composition of the present invention depends on the type of the organic boron compound, but if it is too small, the adhesive strength of the polymer of the thermal cationic polymerizable composition and the conductive particle capturing efficiency May be insufficient, and it may be impossible to sufficiently suppress the occurrence of floating at the adhesive interface. If the amount is too large, the film formability of the thermal cationic polymerizable composition may be reduced. Therefore, the amount is preferably 0.05 to 10 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the binder component.
 本発明の熱カチオン重合性組成物を構成するバインダ成分の一つであるカチオン重合性化合物としては、エポキシ化合物、オキセタン化合物、ビニルエーテル化合物、環状スルフィド化合物、環状アミン化合物、有機ケイ素環状化合物等が挙げられる。中でも、硬化性と保存安定性とのバランスの点からエポキシ化合物を好ましく使用することができる。 Examples of the cationic polymerizable compound that is one of the binder components constituting the thermal cationic polymerizable composition of the present invention include epoxy compounds, oxetane compounds, vinyl ether compounds, cyclic sulfide compounds, cyclic amine compounds, and organosilicon cyclic compounds. It is done. Among these, an epoxy compound can be preferably used from the viewpoint of balance between curability and storage stability.
 エポキシ化合物としては、分子中に1個以上のエポキシ基又はグリシジル基を含有するモノマー、オリゴマー又はポリマーであり、液状又は固体状のビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、脂環式エポキシ化合物等を使用することができる。 The epoxy compound is a monomer, oligomer or polymer containing one or more epoxy groups or glycidyl groups in the molecule, and is a liquid or solid bisphenol A type epoxy compound, bisphenol F type epoxy compound, alicyclic epoxy compound Etc. can be used.
 本発明の熱カチオン重合性組成物を構成するバインダ成分の一つである熱カチオン重合開始剤は、熱により、カチオン重合性化合物をカチオン重合させ得る酸を発生するものであり、エポキシ化合物の熱カチオン重合開始剤として使用されているものを適宜選択して使用することができる。例えば、公知のヨードニウム塩、スルホニウム塩、ホスホニウム塩、フェロセン類等を用いることができ、温度に対して良好な潜在性を示す芳香族スルホニウム塩を好ましく使用することができる。熱カチオン重合開始剤の好ましい例としては、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロボレート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロボレートが挙げられる。具体的には、株式会社ADEKA製SP-150、SP-170、CP-66、CP-77;日本曹達株式会社製CI-2855、CI-2639;三新化学工業株式会社製サンエイドSI-60、SI-80;ユニオンカーバイド株式会社製のCYRACURE-UVI-6990、UVI-6974等が挙げられる。 The thermal cationic polymerization initiator, which is one of the binder components constituting the thermal cationic polymerizable composition of the present invention, generates an acid capable of cationic polymerization of the cationic polymerizable compound by heat. What is used as a cationic polymerization initiator can be selected suitably, and can be used. For example, known iodonium salts, sulfonium salts, phosphonium salts, ferrocenes, and the like can be used, and aromatic sulfonium salts that exhibit good potential with respect to temperature can be preferably used. Preferred examples of the thermal cationic polymerization initiator include diphenyliodonium hexafluoroantimonate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroborate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoro Borate. Specifically, SP-150, SP-170, CP-66, CP-77 manufactured by ADEKA Corporation; CI-2855, CI-2939 manufactured by Nippon Soda Co., Ltd .; Sun-Aid SI-60 manufactured by Sanshin Chemical Industry Co., Ltd. SI-80; CYRACURE-UVI-6990, UVI-6974, etc. manufactured by Union Carbide Corporation.
 このような熱カチオン重合開始剤の熱カチオン重合性組成物中の含有量は、目的に応じて適宜設定することができるが、少なすぎると硬化速度が低下して十分な硬化特性が得られなくなることが懸念され、多すぎるとフィルム形成不良となって異方性導電接着フィルムとして好適に使用することができなくなることが懸念されるので、熱カチオン重合性化合物100質量部に対し、好ましくは5~30質量部、より好ましくは5~20質量部である。 The content of such a thermal cationic polymerization initiator in the thermal cationic polymerizable composition can be appropriately set according to the purpose, but if it is too small, the curing rate is lowered and sufficient curing characteristics cannot be obtained. If it is too much, film formation will be poor and it may be impossible to use it as an anisotropic conductive adhesive film. Therefore, it is preferably 5 parts per 100 parts by mass of the thermal cationic polymerizable compound. -30 mass parts, more preferably 5-20 mass parts.
 本発明の熱カチオン重合性組成物を構成するバインダ成分の一つである成膜用樹脂は、熱カチオン重合性組成物のフィルム化に寄与する成分である。このような成膜用樹脂としては、公知の異方性導電接着フィルム(ACF)や絶縁性接着フィルム(NCF)に用いられている成膜用樹脂を適用することができ、例えば、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂等を挙げることができ、これらの2種以上を併用することができる。これらの中でも、成膜性、加工性、接続信頼性の観点から、フェノキシ樹脂を好ましく使用することができる。 The film-forming resin that is one of the binder components constituting the thermal cationic polymerizable composition of the present invention is a component that contributes to film formation of the thermal cationic polymerizable composition. As such a film-forming resin, a film-forming resin used for a known anisotropic conductive adhesive film (ACF) or insulating adhesive film (NCF) can be applied, for example, a phenoxy resin, An epoxy resin, an unsaturated polyester resin, a saturated polyester resin, a urethane resin, a butadiene resin, a polyimide resin, a polyamide resin, a polyolefin resin, and the like can be given, and two or more of these can be used in combination. Among these, a phenoxy resin can be preferably used from the viewpoints of film formability, processability, and connection reliability.
 本発明の熱カチオン重合性組成物における成膜用樹脂の含有量は、少なすぎるとフィルム形成能が低下することが懸念され、多すぎると有機溶媒への溶解性が低下してフィルム調整が困難となることが懸念されるので、熱カチオン重合性化合物100質量部に対し、好ましくは20~80質量部、より好ましくは30~70質量部である。 If the content of the film-forming resin in the thermal cation polymerizable composition of the present invention is too small, there is a concern that the film-forming ability is lowered, and if it is too much, the solubility in an organic solvent is lowered and film adjustment is difficult. Therefore, the amount is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass with respect to 100 parts by mass of the thermally cationic polymerizable compound.
 本発明の熱カチオン重合性組成物は、被接着面に対する密着強度を向上させるために、バインダ成分の一つとしてシランカップリング剤を含有することが好ましい。シランカップリング剤としては、エポキシ系シランカップリング剤、アクリル系シランカップリング剤等を挙げることができる。これらのシランカップリング剤は、分子中に1~3の低級アルコキシ基を有するアルコキシシラン誘導体であり、分子中に熱カチオン重合性化合物の官能基に対して反応性を有する基、例えば、ビニル基、スチリル基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、アミノ基、メルカプト基等を有していてもよい。 The thermal cationic polymerizable composition of the present invention preferably contains a silane coupling agent as one of the binder components in order to improve the adhesion strength to the adherend surface. Examples of the silane coupling agent include an epoxy silane coupling agent and an acrylic silane coupling agent. These silane coupling agents are alkoxysilane derivatives having 1 to 3 lower alkoxy groups in the molecule, and groups having reactivity in the molecule with respect to the functional groups of the thermocationically polymerizable compound, such as vinyl groups , Styryl group, acryloyloxy group, methacryloyloxy group, epoxy group, amino group, mercapto group and the like.
 シランカップリング剤の熱カチオン重合性組成物における含有量は、少なすぎると基材への接着性が低下することが懸念され、多すぎると硬化特性が低下することが懸念されるので、熱カチオン重合性化合物100質量部に対し、好ましくは1~20質量部、より好ましくは1~10質量部である。 If the content of the silane coupling agent in the thermal cation polymerizable composition is too small, there is a concern that the adhesiveness to the substrate will be reduced, and if it is too much, there is a concern that the curing properties will be reduced. The amount is preferably 1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable compound.
 本発明の熱カチオン重合性組成物には、異方性導電接着剤として機能させるために、公知の異方性導電接着剤に配合されている導電粒子を配合することができる。例えば粒径1~50μmのニッケル、コバルト、銀、銅、金、パラジウムなどの金属粒子、金属被覆樹脂粒子などが挙げられる。これらの導電粒子は、2種以上を併用することができる。 In the thermally cationic polymerizable composition of the present invention, conductive particles blended in a known anisotropic conductive adhesive can be blended in order to function as an anisotropic conductive adhesive. Examples thereof include metal particles such as nickel, cobalt, silver, copper, gold and palladium having a particle diameter of 1 to 50 μm, and metal-coated resin particles. Two or more kinds of these conductive particles can be used in combination.
 本発明の熱カチオン重合性組成物に導電粒子を配合する場合、熱カチオン重合性組成物中のその配合量は、少なすぎても多すぎても異方性導電接続を実現し難くなることが懸念されるので、好ましくは、バインダ成分100質量部に対し、好ましくは1~50質量部、より好ましくは1~30質量部である。 When blending conductive particles in the thermal cationic polymerizable composition of the present invention, it is difficult to achieve anisotropic conductive connection if the blended amount in the thermal cationic polymerizable composition is too small or too large. Since there is a concern, the amount is preferably 1 to 50 parts by mass, more preferably 1 to 30 parts by mass with respect to 100 parts by mass of the binder component.
 本発明の熱カチオン重合性組成物は、必要に応じて充填剤、酸化防止剤、軟化剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などを配合することができる。 The thermal cationic polymerizable composition of the present invention can contain a filler, an antioxidant, a softening agent, a colorant (pigment, dye), an organic solvent, an ion catcher agent, and the like as necessary.
 本発明の熱カチオン重合性組成物は、式(1)のホウ酸エステル又は式(2)のビス(アルカンジオラト)ジボロンから選択される有機ホウ素化合物に加えて、熱カチオン重合性化合物、熱カチオン重合開始剤、成膜用樹脂、シランカップリング剤等のバインダ成分、更に、導電粒子、その他の添加剤を常法により均一に混合することにより調製することができる。 In addition to the organic boron compound selected from the boric acid ester of the formula (1) or the bis (alkanediolato) diboron of the formula (2), the thermal cationic polymerizable composition of the present invention includes a thermal cationic polymerizable compound, a heat It can be prepared by uniformly mixing a binder component such as a cationic polymerization initiator, a film-forming resin, and a silane coupling agent, and further conductive particles and other additives by a conventional method.
 以上説明した本発明の熱カチオン重合性組成物は、常法によりフィルム状に成形することにより、通常、10~50μm厚の絶縁接着フィルムとして使用することができる。導電粒子が配合されている場合には、異方性導電接着フィルムとして好ましく使用することができる。 The thermal cationic polymerizable composition of the present invention described above can be usually used as an insulating adhesive film having a thickness of 10 to 50 μm by forming it into a film by a conventional method. When conductive particles are blended, it can be preferably used as an anisotropic conductive adhesive film.
 このような異方性導電接着フィルムは、第1電子部品の端子と第2電子部品の端子とを異方性導電接続してなる接続構造体の製造方法に好ましく使用することができる。このような製造方法は、以下の工程(A)、(B)及び(C)を有する。 Such an anisotropic conductive adhesive film can be preferably used in a manufacturing method of a connection structure formed by anisotropic conductive connection between a terminal of a first electronic component and a terminal of a second electronic component. Such a manufacturing method includes the following steps (A), (B), and (C).
 工程(A)
 先ず、第1電子部品の端子上に本発明の異方性導電接着フィルムを仮貼りする。ここで、第1電子部品としては、ガラス回路基板、リジッド回路基板、フレキシブル回路基板等が挙げられる。また、それらの端子としては、銅、ニッケル、金、半田などの金属パッドやバンプ等が挙げられる。異方性導電接着フィルムの仮貼り操作は、従来公知の操作を適用することができる。例えば、金属やセラミック製の硬質ヘッドやゴムなどの弾性ヘッドを有する加圧ボンダーで、必要に応じて本重合しない程度に当該押圧ボンダー又は他の加熱手段(例えば、加熱装置を備えた定盤)で加熱しながら押圧すればよい。
Step (A)
First, the anisotropic conductive adhesive film of the present invention is temporarily attached on the terminal of the first electronic component. Here, examples of the first electronic component include a glass circuit board, a rigid circuit board, and a flexible circuit board. Moreover, as these terminals, metal pads, bumps, etc., such as copper, nickel, gold | metal | money, solder, are mentioned. Conventionally known operations can be applied to the temporary sticking operation of the anisotropic conductive adhesive film. For example, a pressure bonder having a hard head made of metal or ceramic, or an elastic head such as rubber, and the press bonder or other heating means (for example, a surface plate equipped with a heating device) to such an extent that it is not superposed if necessary. It may be pressed while heating.
 工程(B)
 次に、異方性導電接着フィルム上に第2電子部品を、その端子が第1電子部品の対応する端子と対向するように仮配置する。ここで、第2電子部品としては、フレキシブル回路基板やICチップ等が挙げられる。それらの端子としては、銅、ニッケル、金、半田などの金属パッドやバンプ等が挙げられる。仮配置の操作にも特に制限はなく、従来公知の手法により行うことができる。
Process (B)
Next, the second electronic component is temporarily placed on the anisotropic conductive adhesive film so that the terminal faces the corresponding terminal of the first electronic component. Here, examples of the second electronic component include a flexible circuit board and an IC chip. Examples of these terminals include metal pads such as copper, nickel, gold, and solder, and bumps. There is no particular limitation on the temporary placement operation, and it can be performed by a conventionally known method.
 工程(C)
 次に、第2電子部品を押圧ボンダーを用いて加圧しながら、当該押圧ボンダーもしくは他の加熱手段で加熱することにより、第1電子部品の端子と第2電子部品の端子とを異方性導電接続する。これにより、第1電子部品の端子と第2電子部品の端子とが本発明の異方性導電接着フィルムを介して異方性導電接続された接続構造体を得ることができる。
Process (C)
Next, while pressing the second electronic component using a press bonder, the terminal of the first electronic component and the terminal of the second electronic component are anisotropically conductive by heating with the press bonder or other heating means. Connecting. Thereby, the connection structure body in which the terminal of the 1st electronic component and the terminal of the 2nd electronic component were anisotropically conductive-connected through the anisotropic conductive adhesive film of this invention can be obtained.
 以下、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described.
  実施例1~18、比較例1~3
 表1に記載の配合成分を均一に混合することにより異方性導電接着剤組成物を調製した。この組成物を、表面剥離処理が施された50μm厚の剥離ポリエチレンテレフタレートフィルム上に、バーコーターを用いて塗布し、70℃に加熱されたオーブン中で加熱することにより、異方性導電接着剤組成物を20μm厚の異方性導電接着フィルムとした。更に、異方性導電接着フィルムが露出した面上に剥離ポリエステルフィルム(カバーフィルム)をラミネートさせ、積層体を得た。
Examples 1 to 18 and Comparative Examples 1 to 3
An anisotropic conductive adhesive composition was prepared by uniformly mixing the ingredients shown in Table 1. The composition was coated on a 50 μm-thick release polyethylene terephthalate film that had been subjected to a surface peeling treatment using a bar coater, and heated in an oven heated to 70 ° C., whereby an anisotropic conductive adhesive was obtained. The composition was an anisotropic conductive adhesive film having a thickness of 20 μm. Furthermore, a release polyester film (cover film) was laminated on the surface where the anisotropic conductive adhesive film was exposed to obtain a laminate.
 両面が剥離ポリエステルフィルムで挟持された異方性導電接着フィルムの片面の剥離ポリエステルフィルム(カバーフィルム)を剥がし、露出した異方性導電接着フィルムを、1.1mm厚のアルカリガラス基板に、加熱加圧ボンダーを用いて、加熱温度70℃、圧力0.5MPa、2秒という条件で仮貼りした。 The peeled polyester film (cover film) on one side of the anisotropic conductive adhesive film sandwiched between the peeled polyester films is peeled off, and the exposed anisotropic conductive adhesive film is heated on a 1.1 mm thick alkali glass substrate. Using a pressure bonder, temporary bonding was performed under the conditions of a heating temperature of 70 ° C., a pressure of 0.5 MPa, and 2 seconds.
 仮貼りされた異方性導電接着フィルムの表面の剥離ポリエステルフィルムを剥がし、露出した異方性導電接着フィルム上に、金メッキバンプが形成されたICチップ(1.8mm×20mm×0.5mm(t);金メッキバンプ30μm×85μm×15μm(h))を、そのバンプ形成面が異方性導電接着フィルム側となるように載せ、更にその上に50μm厚のテフロン(登録商標)フィルムを載せ、その上から加熱加圧ボンダーを用いて、170℃、60MPa、5秒という条件で、加熱加圧した。これにより、アルカリガラス基板にICチップが異方性導電接着フィルムで異方性導電接続された構造の接続構造体を得た。 The peeled polyester film on the surface of the temporarily attached anisotropic conductive adhesive film is peeled off, and an IC chip (1.8 mm × 20 mm × 0.5 mm (t ); Gold-plated bumps 30 μm × 85 μm × 15 μm (h)) are placed such that the bump-forming surface is on the side of the anisotropic conductive adhesive film, and a 50 μm thick Teflon (registered trademark) film is placed thereon, Using a heat and pressure bonder from above, heat and pressure were applied under the conditions of 170 ° C., 60 MPa, and 5 seconds. Thereby, the connection structure of the structure where the IC chip was anisotropically conductively connected to the alkali glass substrate by the anisotropic conductive adhesive film was obtained.
 得られた接続構造体について、以下に説明するように、外観(浮き)評価、接着強度測定、導電粒子捕捉効率測定を行った。得られた結果を表1に示す。 The obtained connection structure was subjected to appearance (floating) evaluation, adhesion strength measurement, and conductive particle capturing efficiency measurement as described below. The obtained results are shown in Table 1.
<外観(浮き)評価>
 接続構造体のアルカリガラス側から接着後界面を目視観察し、浮きの発生の程度を以下の基準で評価した。A又はB評価であることが望まれる。
<Appearance (floating) evaluation>
The interface after adhesion was visually observed from the alkali glass side of the connection structure, and the degree of occurrence of float was evaluated according to the following criteria. An A or B rating is desired.
 ランク 内容
  A: 浮きの存在が観察されない場合
  B: 接続構造体の一部で浮きの発生が観察される場合
  C: 接続構造体の全面において浮きが観察される場合
Rank Contents A: When the presence of floating is not observed B: When the occurrence of floating is observed in part of the connection structure C: When floating is observed over the entire surface of the connection structure
<接着強度測定>
 接続構造体のICチップを、接着強度試験機(ダイシェアテスターSERIES4000、DAGE製)を用いて、ツールスピード0.2mm/秒という条件で接着強度を測定した。接着強度は30kg以上であることが望まれる。
<Measurement of adhesive strength>
The adhesion strength of the IC chip of the connection structure was measured under the condition of a tool speed of 0.2 mm / sec using an adhesion strength tester (die shear tester SERIES 4000, manufactured by DAGE). The adhesive strength is desirably 30 kg or more.
<導電粒子捕捉効率測定>
 圧着したICチップのバンプ(バンプ一個当たりの表面積=2550μm)上に存在する導電粒子数を顕微鏡にてカウントし、その平均値を粒子捕捉数とし、その粒子捕捉数を、異方性導電接続前の異方性導電接着フィルムの2550μm当たりに存在する全導電粒子数で除した価を導電粒子捕捉効率とした。この数値は少なくとも17%、好ましくは20%以上であることがのぞまれる。
<Measurement of conductive particle capture efficiency>
The number of conductive particles present on the bumps of the pressure-bonded IC chip (surface area per bump = 2550 μm 2 ) is counted with a microscope, the average value is taken as the number of captured particles, and the number of captured particles is determined by anisotropic conductive connection. The value divided by the total number of conductive particles present per 2550 μm 2 of the previous anisotropic conductive adhesive film was defined as the conductive particle capturing efficiency. This figure is at least 17%, preferably 20% or more.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 特定の有機ホウ素化合物を含有していない異方性導電接着フィルムを用いた比較例1の接続構造体の場合、表1からわかるように、接着界面全体に浮きが発生しており、外観評価はC評価であった。また、接着強度も22.1kgと30kgを大きく下回ってしまった。導電粒子捕捉効率も16.5%であり、20%を大きく下回ってしまった。熱カチオン重合開始剤を使用していない比較例2及び比較例3の場合には、そもそも樹脂組成物が重合しなかった。 In the case of the connection structure of Comparative Example 1 using an anisotropic conductive adhesive film that does not contain a specific organoboron compound, as can be seen from Table 1, the entire adhesive interface is lifted, and the appearance evaluation is It was C evaluation. Also, the adhesive strength was significantly lower than 22.1 kg and 30 kg. The conductive particle capture efficiency was also 16.5%, which was much lower than 20%. In the case of Comparative Example 2 and Comparative Example 3 in which no thermal cationic polymerization initiator was used, the resin composition did not polymerize in the first place.
 それに対し、熱カチオン重合性組成物に特定の有機ホウ素化合物を配合した異方性導電接着フィルムを用いた実施例1~18の接続構造体の場合、外観評価に関し、実施例1、2及び9の接続構造体はB評価であったが、残りの実施例3~8、10~18の接続構造体はいずれもA評価であった。また、いずれの実施例の場合も接着強度が30kg以上あり、好ましい結果であった。導電粒子捕捉効率も17%を超えており、好ましい結果であった。 On the other hand, in the case of the connection structures of Examples 1 to 18 using the anisotropic conductive adhesive film in which the specific organoboron compound was blended with the thermal cationic polymerizable composition, Examples 1, 2, and 9 were related to appearance evaluation. The connection structures of B were evaluated as B, but the connection structures of the remaining Examples 3 to 8 and 10 to 18 were all evaluated as A. In any of the examples, the adhesive strength was 30 kg or more, which was a preferable result. The conductive particle capturing efficiency was more than 17%, which was a favorable result.
 なお、実施例1~8の結果から、ホウ酸トリ-n-ヘキシルエステルの場合、バインダ成分(カチオン重合性化合物、熱カチオン重合開始剤、成膜用樹脂及びシランカップリング剤)100質量部に対し、0.5~10質量部を配合すると接着界面から“浮き”の発生を無くすことができたことがわかる。また、浮きの発生を無くすと、接着強度を80kg以上にできることがわかった。 From the results of Examples 1 to 8, in the case of boric acid tri-n-hexyl ester, the binder component (cationic polymerizable compound, thermal cationic polymerization initiator, film-forming resin and silane coupling agent) was added to 100 parts by mass. On the other hand, it can be seen that when 0.5 to 10 parts by mass was blended, the occurrence of “floating” from the adhesion interface could be eliminated. It was also found that the adhesive strength could be increased to 80 kg or more by eliminating the occurrence of floating.
 実施例9~14の結果から、ホウ酸トリフェニルエステルの場合、バインダ成分(カチオン重合性化合物、熱カチオン重合開始剤、成膜用樹脂及びシランカップリング剤)100質量部に対し、0.2~3質量部を配合すると、接着界面から“浮き”の発生を無くすことができ、接着強度も80kg以上にできることがわかった。 From the results of Examples 9 to 14, in the case of boric acid triphenyl ester, 0.2 parts per 100 parts by weight of binder components (cationic polymerizable compound, thermal cationic polymerization initiator, film forming resin and silane coupling agent). It was found that the addition of ˜3 parts by mass can eliminate the occurrence of “floating” from the adhesive interface and the adhesive strength can be 80 kg or more.
 実施例15~18の結果から、ホウ酸トリ-n-ブチルエステル又はトリ-n-オクタデシルエステル等のホウ酸トルアルキルエステルや、式(2b)及び(2c)等のアルカンジオラトジボロン化合物を使用した場合にも、実施例1~14と同様の好ましい結果を与えることがわかった。 From the results of Examples 15-18, boric acid tolalkyl esters such as boric acid tri-n-butyl ester or tri-n-octadecyl ester and alkanediolato diboron compounds such as formulas (2b) and (2c) were used. In this case, it was found that the same preferable results as in Examples 1 to 14 were obtained.
 芳香族スルホニウム塩等の熱カチオン重合開始剤を含有する本発明の熱カチオン重合性組成物は、特定の有機ホウ素化合物を含有するため、カチオン重合を阻害するようなアルカリ表面を有する回路基板や電子部品の実装の際に使用するNCFやACFの主要成分の絶縁性樹脂組成物として有用である。 The thermal cationic polymerizable composition of the present invention containing a thermal cationic polymerization initiator such as an aromatic sulfonium salt contains a specific organic boron compound, and therefore has a circuit board or an electron having an alkali surface that inhibits cationic polymerization. It is useful as an insulating resin composition as a main component of NCF or ACF used for mounting components.

Claims (8)

  1.  式(1)のホウ酸エステル又は式(2)のビス(アルカンジオラト)ジボロンから選択される有機ホウ素化合物を含有することを特徴とする熱カチオン重合性組成物。
    Figure JPOXMLDOC01-appb-I000001
    (式(1)及び式(2)中、R、R及びRはそれぞれ独立的に水素原子、アルキル基、アリール基、アラルキル基、ビニル基又はグリシジル基であり、R及びRは一緒になって環を形成してもよい。R10、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20、及びR21は、それぞれ独立的に水素原子、アルキル基、アリール基、アラルキル基、ビニル基又はグリシジル基であり、n及びmはそれぞれ0又は1である。)
    A thermal cationic polymerizable composition comprising an organoboron compound selected from a borate ester of formula (1) or a bis (alkanediolato) diboron of formula (2).
    Figure JPOXMLDOC01-appb-I000001
    (In Formula (1) and Formula (2), R 1 , R 2 and R 3 are each independently a hydrogen atom, alkyl group, aryl group, aralkyl group, vinyl group or glycidyl group, and R 1 and R 2 Together may form a ring, R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , and R 21 are And each independently represents a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a vinyl group or a glycidyl group, and n and m are each 0 or 1.)
  2.  該有機ホウ素化合物が、炭素数3~30のアルキル基を有するホウ酸トリ(n-アルキル)エステル又はホウ酸トリフェニルエステルである請求項1記載の熱カチオン重合性組成物。 The thermal cationic polymerizable composition according to claim 1, wherein the organoboron compound is a boric acid tri (n-alkyl) ester or boric acid triphenyl ester having an alkyl group having 3 to 30 carbon atoms.
  3.  該有機ホウ素化合物が、式(2a)のビス(1,3,3-トリメチル-1,3-プロパンジオラト)ジボロン、式(2b)のビス(2,2-ジメチル-1,3-プロパンジオラト)ジボロン又は式(2c)のビス(2,3-ジメチル-2,3-ブタンジオラト)ジボロンである請求項1記載の熱カチオン重合性組成物。
    Figure JPOXMLDOC01-appb-I000002
    The organoboron compound is bis (1,3,3-trimethyl-1,3-propanediolato) diboron of formula (2a), bis (2,2-dimethyl-1,3-propanediol) of formula (2b) 2. The cationically polymerizable composition according to claim 1, which is lato) diboron or bis (2,3-dimethyl-2,3-butanediolato) diboron of the formula (2c).
    Figure JPOXMLDOC01-appb-I000002
  4.  熱カチオン重合性組成物がバインダ成分を含有しており、該有機ホウ素化合物のバインダ成分に対する配合量が、バインダ成分100質量部に対し、0.05~10質量部である請求項1~3のいずれかに記載の熱カチオン重合性組成物。 The thermal cationic polymerizable composition contains a binder component, and the amount of the organoboron compound to the binder component is 0.05 to 10 parts by mass with respect to 100 parts by mass of the binder component. The thermal cationic polymerizable composition according to any one of the above.
  5.  該熱カチオン重合開始剤が、芳香族スルホニウム塩である請求項1~4のいずれかに記載の熱カチオン重合性組成物。 The thermal cationic polymerizable composition according to any one of claims 1 to 4, wherein the thermal cationic polymerization initiator is an aromatic sulfonium salt.
  6.  請求項1~5のいずれかに記載の熱カチオン重合性組成物に、導電粒子が分散してなる異方性導電接着フィルム。 An anisotropic conductive adhesive film obtained by dispersing conductive particles in the thermal cationic polymerizable composition according to any one of claims 1 to 5.
  7.  第1電子部品の端子と第2電子部品の端子とが異方性導電接続されてなる接続構造体の製造方法において、
     (A)第1電子部品の端子上に請求項6記載の異方性導電接着フィルムを仮貼りする工程、
     (B)異方性導電接着フィルム上に第2電子部品を、その端子が第1電子部品の対応する端子と対向するように仮配置する工程、及び
     (C)第2電子部品を押圧ボンダーを用いて加圧しながら、当該押圧ボンダーもしくは他の加熱手段で加熱することにより、第1電子部品の端子と第2電子部品の端子とを異方性導電接続する工程
    を有する製造方法。
    In the manufacturing method of the connection structure in which the terminal of the first electronic component and the terminal of the second electronic component are anisotropically conductively connected,
    (A) a step of temporarily adhering the anisotropic conductive adhesive film according to claim 6 on the terminal of the first electronic component;
    (B) a step of temporarily arranging the second electronic component on the anisotropic conductive adhesive film such that the terminal faces the corresponding terminal of the first electronic component; and (C) a pressing bonder for the second electronic component. The manufacturing method which has the process of anisotropically conductively connecting the terminal of a 1st electronic component, and the terminal of a 2nd electronic component by heating with the said press bonder or another heating means, pressurizing using.
  8.  請求項7記載の製造方法により製造された接続構造体。 A connection structure manufactured by the manufacturing method according to claim 7.
PCT/JP2012/069288 2011-08-22 2012-07-30 Thermally cationically polymerizable composition, anisotropic conductive adhesive film, connected structure and manufacturing process therefor WO2013027541A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280040755.3A CN103748167B (en) 2011-08-22 2012-07-30 The bonding film of hot cationically polymerizable composition, anisotropic conductive, connection structural bodies and manufacture method thereof
KR1020147004230A KR20140058567A (en) 2011-08-22 2012-07-30 Thermally cationically polymerizable composition, anisotropic conductive adhesive film, connected structure and manufacturing process therefor
HK14105466.8A HK1192271A1 (en) 2011-08-22 2014-06-11 Thermally cationically polymerizable composition, anisotropic conductive adhesive film, connected structure and manufacturing process therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011180628A JP5811688B2 (en) 2011-08-22 2011-08-22 Thermally cationic polymerizable composition, anisotropic conductive adhesive film, connection structure, and method for producing the same
JP2011-180628 2011-08-22

Publications (1)

Publication Number Publication Date
WO2013027541A1 true WO2013027541A1 (en) 2013-02-28

Family

ID=47746292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069288 WO2013027541A1 (en) 2011-08-22 2012-07-30 Thermally cationically polymerizable composition, anisotropic conductive adhesive film, connected structure and manufacturing process therefor

Country Status (5)

Country Link
JP (1) JP5811688B2 (en)
KR (1) KR20140058567A (en)
CN (1) CN103748167B (en)
HK (1) HK1192271A1 (en)
WO (1) WO2013027541A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043066A1 (en) * 2014-09-16 2016-03-24 デクセリアルズ株式会社 Anisotropic conductive adhesive and method for producing connection structure
WO2016136461A1 (en) * 2015-02-23 2016-09-01 デクセリアルズ株式会社 Multilayer adhesive film and connection structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721732B1 (en) * 2014-07-25 2017-04-10 삼성에스디아이 주식회사 Adhesive composition, anisotropic conductive film and the semiconductor device using thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100563A (en) * 1997-09-29 1999-04-13 Hitachi Chem Co Ltd Non-conductive resin paste and semiconductor device
JP2004277458A (en) * 2003-03-12 2004-10-07 Nagase Chemtex Corp One package type epoxy resin composition and one package type epoxy resin adhesive
WO2010035459A1 (en) * 2008-09-25 2010-04-01 積水化学工業株式会社 Episulfide compound, episulfide compound-containing mixture, method for producing episulfide compound-containing mixture, curable composition and connection structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3882374B2 (en) * 1999-02-12 2007-02-14 味の素株式会社 Conductive resin composition
EP1291390A4 (en) * 2000-05-29 2004-08-25 Ajinomoto Kk Conductive resin composition
CN101959922B (en) * 2008-02-28 2013-08-07 积水化学工业株式会社 Curable epoxy composition, anisotropic conductive material and connection structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100563A (en) * 1997-09-29 1999-04-13 Hitachi Chem Co Ltd Non-conductive resin paste and semiconductor device
JP2004277458A (en) * 2003-03-12 2004-10-07 Nagase Chemtex Corp One package type epoxy resin composition and one package type epoxy resin adhesive
WO2010035459A1 (en) * 2008-09-25 2010-04-01 積水化学工業株式会社 Episulfide compound, episulfide compound-containing mixture, method for producing episulfide compound-containing mixture, curable composition and connection structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043066A1 (en) * 2014-09-16 2016-03-24 デクセリアルズ株式会社 Anisotropic conductive adhesive and method for producing connection structure
WO2016136461A1 (en) * 2015-02-23 2016-09-01 デクセリアルズ株式会社 Multilayer adhesive film and connection structure
CN107207923A (en) * 2015-02-23 2017-09-26 迪睿合株式会社 Multi-layer bonded film and connection structural bodies
CN107207923B (en) * 2015-02-23 2020-09-04 迪睿合株式会社 Multilayer adhesive film and connection structure

Also Published As

Publication number Publication date
HK1192271A1 (en) 2014-08-15
JP5811688B2 (en) 2015-11-11
CN103748167A (en) 2014-04-23
KR20140058567A (en) 2014-05-14
CN103748167B (en) 2016-06-15
JP2013043898A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
JP6372543B2 (en) Anisotropic conductive film and manufacturing method thereof
JP4984099B2 (en) Manufacturing method of semiconductor device
KR100559153B1 (en) Method for connecting electrodes, surface-treated wiring board and adhesive film used in the method, and electrodes-connected structure
JP6977839B2 (en) Adhesive composition
KR102320303B1 (en) Resin composition, laminate, semiconductor wafer with resin composition layer, substrate for mounting semiconductor with resin composition layer, and semiconductor device
JP5934528B2 (en) CIRCUIT CONNECTION MATERIAL, AND METHOD FOR MANUFACTURING MOUNTING BODY USING THE SAME
JP2011111557A (en) Adhesive composition, circuit connecting material, connector and connection method of circuit member, and semiconductor device
JP5811688B2 (en) Thermally cationic polymerizable composition, anisotropic conductive adhesive film, connection structure, and method for producing the same
JP6041463B2 (en) Epoxy resin composition, method for producing joined body using the same, and joined body
WO2013157378A1 (en) Circuit connection material, and manufacturing method for assembly using same
TW202313896A (en) Adhesive composition for circuit connection, and structure
JP6218354B2 (en) Insulating material, multilayer film manufacturing method, laminate manufacturing method, connection structure, and connection structure manufacturing method
TWI627639B (en) Electrical connecting material and manufacturing method thereof, and connecting body
JP6181825B2 (en) Anisotropic conductive film and method of manufacturing mounting body using the same
JP2013018833A (en) Connection member for connecting circuit member, method for manufacturing circuit member connection structure, and circuit member connection structure
KR102413834B1 (en) Reworkable conductive adhesive and solar cell module
JPWO2018181536A1 (en) Adhesive composition and structure
TW201720895A (en) Adhesive composition and structure
TW201635312A (en) Anisotropic conductive film, connection method, and joined structure
WO2014156685A1 (en) Anisotropic conductive film
CN117355591A (en) Adhesive composition, adhesive film, connection structure, and method for producing connection structure
JP2012160615A (en) Method for manufacturing connected structure
CN118291047A (en) Adhesive composition for circuit connection and structure
JP2012160610A (en) Method for manufacturing connected structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147004230

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825908

Country of ref document: EP

Kind code of ref document: A1