WO2013026341A1 - 横向磁通多相磁阻电机 - Google Patents

横向磁通多相磁阻电机 Download PDF

Info

Publication number
WO2013026341A1
WO2013026341A1 PCT/CN2012/079146 CN2012079146W WO2013026341A1 WO 2013026341 A1 WO2013026341 A1 WO 2013026341A1 CN 2012079146 W CN2012079146 W CN 2012079146W WO 2013026341 A1 WO2013026341 A1 WO 2013026341A1
Authority
WO
WIPO (PCT)
Prior art keywords
core segment
core
armature
permanent magnets
rotor
Prior art date
Application number
PCT/CN2012/079146
Other languages
English (en)
French (fr)
Inventor
寇宝泉
谢大纲
吴太箭
周一恒
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to US14/129,380 priority Critical patent/US9362786B2/en
Publication of WO2013026341A1 publication Critical patent/WO2013026341A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
    • H02K21/44Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with armature windings wound upon the magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/12Transversal flux machines

Definitions

  • the invention relates to a reluctance motor, in particular to a multiphase reluctance motor.
  • the structure of a traditional multiphase permanent magnet synchronous motor is shown in Figure 1.
  • the armature winding of the motor is a distributed winding, and the number of coils required for forming the winding is large, the winding end portions of the windings cross each other, the winding end is long, the copper consumption is large, the winding insulation is complicated, and the manufacturing cost is high. Since there is magnetic coupling between the phase and the phase, this aspect will affect the current control accuracy due to the mutual inductance; on the other hand, the magnetic flux passing through the magnetic flux generated by the energization of each phase winding will make the stator iron longer. The consumption is large, which limits the further improvement of the efficiency of the motor.
  • the permanent magnet is located on the rotor, the structural strength and allowable temperature rise of the rotor are limited, which restricts the application field of the motor.
  • the invention solves the problem that the magnetic coupling between the phase and the phase existing in the conventional multi-phase permanent magnet synchronous motor affects the control precision of the current, and the proposed Transverse flux multiphase reluctance motor.
  • a transverse flux multiphase reluctance machine comprising: a stator and a rotor; an air gap is left between the stator and the rotor; the rotor is composed of a rotor frame 4 and a plurality of rotor teeth 5; the plurality of rotor teeth 5 are evenly The rotor frame 4 and the rotor teeth 5 are integrally formed; the stator is composed of a casing 1 and m phase armature units, and m is the number of phases of the reluctance motor.
  • the casing 1 adopts a cylindrical casing; the m phase armature units are sequentially arranged in the casing 1 in the axial direction, and each phase armature unit is sequentially shifted by 360° in the circumferential direction.
  • each phase armature unit is composed of a unit armature core, an armature coil 2 and 2n permanent magnets 3; said n is a positive integer; said unit armature core is made of a first iron
  • the core segment 6, the second core segment 7 and the third core segment 8 are formed, and the three core segments each have a circular core segment and the outer diameters are the same; the three core segments are axially Tightly arranged in a cylindrical casing 1, the central axes of the three core segments are on the same axis; in the first core segment 6 and the third The inner diameter of the second core segment 7 between the core segments 8 is larger than the inner diameter of the first core segment 6 and the inner diameter of the third core segment 8; the first core segment 6 and the third core segment 8 The inner diameter is the same; the armature coil 2 is a circular armature coil, and the armature coil 2 is embedded between the first core segment 6, the second core segment 7, and the third core segment 8.
  • the 2n permanent magnets 3 are each a radial magnetized or parallel magnetized tile-shaped permanent magnet; the 2n permanent magnets 3 are divided into 2 groups; the set of permanent magnets 3 are along the circumference The direction is fixedly arranged on the inner surface of the first core segment 6 in order according to the N pole and the S pole; the other set of permanent magnets 3 are sequentially arranged in the third core segment in the circumferential direction according to the S pole and the N pole.
  • the permanent magnet 3 mounted on the first core segment 6 and the permanent magnet 3 mounted on the third core segment 8 are symmetrically arranged along the axis of the second core segment 7.
  • a transverse flux multiphase reluctance machine comprising: a stator and a rotor; an air gap is left between the stator and the rotor; the rotor is composed of a rotor frame 4 and a plurality of rotor teeth 5; the plurality of rotor teeth 5 are evenly The rotor frame 4 and the rotor teeth 5 are integrally formed; the stator is composed of a casing 1 and m phase armature units, and m is the number of phases of the reluctance motor.
  • the casing 1 adopts a cylindrical casing; the m phase armature units are sequentially arranged in the casing 1 in the axial direction, and each phase armature unit is sequentially shifted by 360° in the circumferential direction.
  • each phase armature unit is composed of a unit armature core, an armature coil 2 and 2n permanent magnets 3; said n is a positive integer; said unit armature core is made of a first iron
  • the core segment 6, the second core segment 7 and the third core segment 8 are formed, and the three core segments each have a circular core segment and the outer diameters are the same, and the three core segments are axially Tightly arranged in a cylindrical casing 1, the central axes of the three core segments are on the same axis; in the first core segment 6 and the third The inner diameter of the second core segment 7 between the core segments 8 is larger than the inner diameter of the first core segment 6 and the inner diameter of the third core segment 8; the first core segment 6 and the third core segment 8 The inner diameter is the same; the armature coil 2 is a circular armature coil, and the armature coil 2 is embedded between the first core segment 6, the second core segment 7, and the third core segment 8.
  • the inner circumferential surface of the first core segment 6 and the inner circumferential surface of the third core segment 8 are respectively uniformly provided with a plurality of axial permanent magnet slots in the circumferential direction; the first core segment 6
  • the number of permanent magnet slots is the same as that of the third core segment 8;
  • the 2n permanent magnets 3 are all radially magnetized or parallel magnetized tile-shaped permanent magnets;
  • the 2n permanent magnets 3 are divided into 2 groups.
  • the set of permanent magnets 3 are respectively fixedly disposed in each permanent magnet slot of the first core segment 6; the other set of permanent magnets 3 are respectively fixedly disposed in each permanent magnet slot of the third core segment 8
  • the plurality of permanent magnets 3 mounted on the first core segment 6 have the same magnetization direction, both pointing in the direction of the center of the circle or away from the center of the circle;
  • the plurality of permanent magnets 3 on the core segment 8 have the same magnetization direction, both pointing in the direction of the center of the circle or away from the center of the circle;
  • the permanent magnet 3 mounted on the first core segment 6 is mounted on the third core
  • the permanent magnets 3 on the segment 8 are arranged symmetrically along the axis of the second core segment 7 and have opposite polarities; the pole pitch ⁇ between each adjacent two permanent magnets 3 arranged in the circumferential direction on the same core segment
  • the relationship between m and the tooth pitch ⁇ p of the rotor teeth 5 arranged in the circumferential direction satisfies the
  • a transverse flux multiphase reluctance machine comprising: a stator and a rotor; an air gap is left between the stator and the rotor; the rotor is composed of a rotor frame 4 and a plurality of rotor teeth 5; the plurality of rotor teeth 5 are evenly The rotor frame 4 and the rotor teeth 5 are integrally formed; the stator is composed of a casing 1 and m phase armature units, and m is the number of phases of the reluctance motor.
  • the casing 1 adopts a cylindrical casing; the m phase armature units are sequentially arranged in the casing 1 in the axial direction, and each phase armature unit is sequentially shifted by 360° in the circumferential direction.
  • each phase armature unit is composed of a unit armature core, an armature coil 2 and 2n permanent magnets 3; said n is a positive integer; said unit armature core is made of a first iron
  • the core segment 6, the second core segment 7 and the third core segment 8 are formed, and the three core segments each have a circular core segment and the outer diameters are the same, and the three core segments are axially Tightly arranged in a cylindrical casing 1, the central axes of the three core segments are on the same axis; in the first core segment 6 and the third The inner diameter of the second core segment 7 between the core segments 8 is larger than the inner diameter of the first core segment 6 and the inner diameter of the third core segment 8; the first core segment 6 and the third core segment 8 The inner diameter is the same; the armature coil 2 is a circular armature coil, and the armature coil 2 is embedded between the first core segment 6, the second core segment 7, and the third core segment 8.
  • the inner circumferential surface of the first core segment 6 and the inner circumferential surface of the third core segment 8 are respectively uniformly provided with a plurality of axial permanent magnet slots in the circumferential direction; the first core segment 6
  • the number of permanent magnet slots of the third core segment 8 is the same; the permanent magnet slots of the first core segment 6 and the opening positions of the permanent magnet slots of the third core segment 8 are rotated by a half pitch ⁇ in the circumferential direction.
  • the 2n permanent magnets 3 are each a radial magnetized or parallel magnetized tile-shaped permanent magnet; the 2n permanent magnets 3 are equally divided into two groups; the set of permanent magnets 3 are respectively fixed Provided in each permanent magnet slot of the first core segment 6; the other set of permanent magnets 3 are respectively fixedly disposed in each permanent magnet slot of the third core segment 8;
  • the plurality of permanent magnets 3 disposed on the first core segment 6 have the same magnetization direction, both pointing in the direction of the center of the circle or away from the center of the circle; and the plurality of permanent magnets 3 mounted on the third core segment 8
  • the magnetization directions are the same, both pointing in the direction of the center of the circle or away from the center of the circle; the permanent magnets 3 mounted on the first core segment 6 have the same polarity as the permanent magnets 3 mounted on the third core segment 8.
  • a transverse flux multiphase reluctance machine comprising: a stator and a rotor; an air gap is left between the stator and the rotor; the rotor is composed of a rotor frame 4 and a plurality of rotor teeth 5; the plurality of rotor teeth 5 are evenly The rotor frame 4 and the rotor teeth 5 are integrally formed; the stator is composed of a casing 1 and m phase armature units, and m is the number of phases of the reluctance motor.
  • the casing 1 adopts a cylindrical casing; the m phase armature units are sequentially arranged in the casing 1 in the axial direction, and each phase armature unit is sequentially shifted by 360° in the circumferential direction.
  • each phase armature unit is composed of a unit armature core, an armature coil 2 and 2n permanent magnets 3; the n is a positive integer; each of the unit armature cores is n
  • Each of the iron cores is composed of a first core segment 6, a second core segment 7 and a third core segment 8 closely arranged in the casing 1
  • the surface is evenly disposed with n axial grooves of the same shape in the circumferential direction, the groove bottom of the axial groove is a circular arc shape, and the groove walls on both sides are flat with each other
  • the number of the axial grooves is the same as the number of the large poles of the iron core in each unit armature core, and the n large cores belonging to the same unit armature core are sequentially inserted in the circumferential direction.
  • each of the core poles is in close contact with the bottom surface and the side surface of the axial groove; the first core segment 6 and the third core segment 8 have the same radial height, and the second core segment 7
  • the radial height is smaller than the radial height of the first core segment 6, and the air gap side of each of the large poles of the core forms a groove belonging to the groove of the n cores in the same unit armature core
  • the axial position is the same;
  • the armature coil 2 is a circular armature coil, and the armature coil 2 is embedded in a groove in the n core poles belonging to the same unit armature core.
  • a transverse flux multiphase reluctance machine comprising: a stator and a rotor; an air gap is left between the stator and the rotor; the rotor is composed of a rotor frame 4 and a plurality of rotor teeth 5; the plurality of rotor teeth 5 are evenly The rotor frame 4 and the rotor teeth 5 are integrally formed; the stator is composed of a casing 1 and m phase armature units, and m is the number of phases of the reluctance motor.
  • the casing 1 adopts a cylindrical casing; the m phase armature units are sequentially arranged in the casing 1 in the axial direction, and each phase armature unit is sequentially shifted by 360° in the circumferential direction.
  • each phase armature unit is composed of a unit armature core, an armature coil 2 and 2n permanent magnets 3; the n is an even number;
  • the unit armature core is made of a first core
  • the segment 61, the second core segment 71 and the third core segment 81 are arranged in the axial direction and closely arranged in the cylindrical casing 1 in the axial direction, the three rings
  • the central axis of the core segments is on the same axis, and the outer diameter is the same, the second iron between the first core segment 6 and the third core segment 8
  • the inner diameter of the segment 7 is larger than the inner diameter of the first core segment 6, the first core segment 6 is the same as the inner diameter of the third core segment 8;
  • the armature coil 2 is a circular armature coil, the electric
  • the pivot coil 2 is embedded in an annular space formed between the first core segment 6, the second core segment 7 and the third core segment 8;
  • the 2n permanent magnets 3 are each shaped by a tangentially
  • a transverse flux multiphase reluctance machine comprising: a stator and a rotor; an air gap is left between the stator and the rotor; the rotor is composed of a rotor frame 4 and a plurality of rotor teeth 5; the plurality of rotor teeth 5 are evenly The rotor frame 4 and the rotor teeth 5 are integrally formed; the stator is composed of a casing 1 and m phase armature units, and m is the number of phases of the reluctance motor.
  • each phase armature unit is composed of a unit armature core, an armature coil 2 and a plurality of permanent magnets 3;
  • the unit armature core is composed of a plurality of iron core poles;
  • Each of the core poles is closely arranged by a first core segment 6, a second core segment 7 and a third core segment 8, and the inner surface of the casing 1 is uniformly provided with a plurality of identical shapes.
  • the groove bottom of the axial groove is a circular arc shape; the number of the axial groove is a single The number of large poles in the armature core is the same; the large poles belonging to the same unit armature core are respectively embedded in one axial slot, and each core has a large pole and an axial slot.
  • the bottom surface is in close contact with the side surface; the second core segment 7 is disposed between the first core segment 6 and the third core segment 8, and the radial direction of the first core segment 6 and the third core segment 8
  • the height is the same, the radial height of the second core segment 7 is smaller than the radial height of the first core segment 6, and the air gap side of each large pole of the core forms a groove belonging to the same unit armature core
  • the axial positions of the grooves in the plurality of core poles are the same;
  • the armature coil 2 is a circular armature coil, and the armature coil 2 is embedded in the same unit armature core a plurality of cores in the recesses;
  • the plurality of permanent magnets 3 each adopt a tangentially magnetized flat-plate permanent magnet; a circumferential center of the first core segment 6 in each of the core poles Embedding a permanent magnet 3, a permanent magnet 3 is embedded in the circumferential center of the third core segment 8 in each of the
  • a transverse flux multiphase reluctance machine comprising: a stator and a rotor; an air gap is left between the stator and the rotor; the rotor is composed of a rotor frame 4 and a plurality of rotor teeth 5; the plurality of rotor teeth 5 are evenly The rotor frame 4 and the rotor teeth 5 are integrally formed; the stator is composed of a casing 1 and m phase armature units, and m is the number of phases of the reluctance motor.
  • the casing 1 adopts a cylindrical casing; the m phase armature units are sequentially arranged in the casing 1 in the axial direction, and each phase armature unit is sequentially shifted by 360° in the circumferential direction.
  • each phase armature unit is composed of a unit armature core, an armature coil 2 and 2n permanent magnets 3; said n is a positive integer; said unit armature core is made of a first iron
  • the core segment 6, the second core segment 7 and the third core segment 8 are formed, and the three core segments each have a circular core segment and the outer diameters are the same; the three core segments are axially Tightly arranged in a cylindrical casing 1, the central axes of the three core segments are on the same axis; in the first core segment 6 and the third The inner diameter of the second core segment 7 between the core segments 8 is larger than the inner diameter of the first core segment 6 and the inner diameter of the third core segment 8; the first core segment 6 and the third core segment 8 The inner diameter is the same; the armature coil 2 is a circular armature coil, and the armature coil 2 is embedded between the first core segment 6, the second core segment 7, and the third core segment 8.
  • the 2n permanent magnets 3 are each a radial magnetized or parallel magnetized tile-shaped permanent magnet; the 2n permanent magnets 3 are divided into 2 groups; the set of permanent magnets 3 are along the circumference The direction is fixedly arranged on the inner surface of the first core segment 6 in order according to the N pole and the S pole; the other set of permanent magnets 3 are sequentially arranged in the third core segment in the circumferential direction according to the S pole and the N pole.
  • the permanent magnet 3 mounted on the first core segment 6 and the permanent magnet 3 mounted on the third core segment 8 are symmetrically arranged along the axis of the second core segment 7.
  • a transverse flux multiphase reluctance machine comprising: a stator and a rotor; an air gap is left between the stator and the rotor; the rotor is composed of a rotor frame 4 and a plurality of rotor teeth 5; the plurality of rotor teeth 5 are evenly The rotor frame 4 and the rotor teeth 5 are integrally formed; the stator is composed of a casing 1 and m phase armature units, and m is the number of phases of the reluctance motor.
  • the casing 1 adopts a cylindrical casing; the m phase armature units are sequentially arranged in the casing 1 in the axial direction, and each phase armature unit is sequentially shifted by 360° in the circumferential direction.
  • each phase armature unit is composed of a unit armature core, an armature coil 2 and 2n permanent magnets 3; said n is a positive integer; said unit armature core is made of a first iron
  • the core segment 6, the second core segment 7 and the third core segment 8 are formed, and the three core segments each have a circular core segment and the outer diameters are the same, and the three core segments are axially Tightly arranged in a cylindrical casing 1, the central axes of the three core segments are on the same axis; in the first core segment 6 and the third The inner diameter of the second core segment 7 between the core segments 8 is larger than the inner diameter of the first core segment 6 and the inner diameter of the third core segment 8; the first core segment 6 and the third core segment 8 The inner diameter is the same; the armature coil 2 is a circular armature coil, and the armature coil 2 is embedded between the first core segment 6, the second core segment 7, and the third core segment 8.
  • the inner circumferential surface of the first core segment 6 and the inner circumferential surface of the third core segment 8 are respectively uniformly provided with a plurality of axial permanent magnet slots in the circumferential direction; the first core segment 6
  • the number of permanent magnet slots is the same as that of the third core segment 8;
  • the 2n permanent magnets 3 are all radially magnetized or parallel magnetized tile-shaped permanent magnets;
  • the 2n permanent magnets 3 are divided into 2 groups.
  • the set of permanent magnets 3 are respectively fixedly disposed in each permanent magnet slot of the first core segment 6; the other set of permanent magnets 3 are respectively fixedly disposed in each permanent magnet slot of the third core segment 8
  • the plurality of permanent magnets 3 mounted on the first core segment 6 have the same magnetization direction, both pointing in the direction of the center of the circle or away from the center of the circle;
  • the plurality of permanent magnets 3 on the core segment 8 have the same magnetization direction, both pointing in the direction of the center of the circle or away from the center of the circle;
  • the permanent magnet 3 mounted on the first core segment 6 is mounted on the third core
  • the permanent magnets 3 on the segment 8 are arranged symmetrically along the axis of the second core segment 7 and have opposite polarities; the pole pitch ⁇ between each adjacent two permanent magnets 3 arranged in the circumferential direction on the same core segment
  • the relationship between m and the tooth pitch ⁇ p of the rotor teeth 5 arranged in the circumferential direction satisfies the
  • a transverse flux multiphase reluctance motor comprising: a stator and a rotor; an air gap is left between the stator and the rotor; the rotor is composed of a rotor frame 4 and a plurality of rotor teeth 5; the plurality of rotor teeth 5 are evenly The rotor frame 4 and the rotor teeth 5 are integrally formed; the stator is composed of a casing 1 and m phase armature units, and m is the number of phases of the reluctance motor.
  • the casing 1 adopts a cylindrical casing; the m phase armature units are sequentially arranged in the casing 1 in the axial direction, and each phase armature unit is sequentially shifted by 360° in the circumferential direction.
  • each phase armature unit is composed of a unit armature core, an armature coil 2 and 2n permanent magnets 3; said n is a positive integer; said unit armature core is made of a first iron
  • the core segment 6, the second core segment 7 and the third core segment 8 are formed, and the three core segments each have a circular core segment and the outer diameters are the same, and the three core segments are axially Tightly arranged in a cylindrical casing 1 in which the central axes of the three core segments are located on the same axis; in the first core segment 6 and The inner diameter of the second core segment 7 between the core segments 8 is larger than the inner diameter of the first core segment 6 and the inner diameter of the third core segment 8; the first core segment 6 and the third core segment 8 The inner diameter is the same; the armature coil 2 is a circular armature coil, and the armature coil 2 is embedded between the first core segment 6, the second core segment 7, and the third core segment 8.
  • the inner circumferential surface of the first core segment 6 and the inner circumferential surface of the third core segment 8 are respectively uniformly provided with a plurality of axial permanent magnet slots in the circumferential direction; the first core segment 6
  • the number of permanent magnet slots of the third core segment 8 is the same; the permanent magnet slots of the first core segment 6 and the opening positions of the permanent magnet slots of the third core segment 8 are rotated by a half pitch ⁇ in the circumferential direction.
  • the 2n permanent magnets 3 are each a radial magnetized or parallel magnetized tile-shaped permanent magnet; the 2n permanent magnets 3 are equally divided into two groups; the set of permanent magnets 3 are respectively fixed Provided in each permanent magnet slot of the first core segment 6; the other set of permanent magnets 3 are respectively fixedly disposed in each permanent magnet slot of the third core segment 8;
  • the plurality of permanent magnets 3 disposed on the first core segment 6 have the same magnetization direction, both pointing in the direction of the center of the circle or away from the center of the circle; and the plurality of permanent magnets 3 mounted on the third core segment 8
  • the magnetization directions are the same, both pointing in the direction of the center of the circle or away from the center of the circle; the permanent magnets 3 mounted on the first core segment 6 have the same polarity as the permanent magnets 3 mounted on the third core segment 8.
  • a transverse flux multiphase reluctance motor comprising: a stator and a rotor; an air gap is left between the stator and the rotor; the rotor is composed of a rotor frame 4 and a plurality of rotor teeth 5; the plurality of rotor teeth 5 are evenly The rotor frame 4 and the rotor teeth 5 are integrally formed; the stator is composed of a casing 1 and m phase armature units, and m is the number of phases of the reluctance motor.
  • the casing 1 adopts a cylindrical casing; the m phase armature units are sequentially arranged in the casing 1 in the axial direction, and each phase armature unit is sequentially shifted by 360° in the circumferential direction.
  • each phase armature unit is composed of a unit armature core, an armature coil 2 and 2n permanent magnets 3; the n is a positive integer; each of the unit armature cores is n
  • Each of the iron cores is composed of a first core segment 6, a second core segment 7 and a third core segment 8 closely arranged in the casing 1
  • the surface is evenly disposed with n axial grooves of the same shape in the circumferential direction, the groove bottom of the axial groove is a circular arc shape, and the groove walls on both sides are mutually
  • the number of the axial grooves is the same as the number of the large poles of the iron core in each unit armature core, and the n large cores belonging to the same unit armature core are sequentially inserted in the circumferential direction.
  • each of the core poles is in close contact with the bottom surface and the side surface of the axial groove; the first core segment 6 and the third core segment 8 have the same radial height, and the second core segment 7
  • the radial height is smaller than the radial height of the first core segment 6, and the air gap side of each of the large poles of the core forms a groove belonging to the groove of the n cores in the same unit armature core
  • the axial position is the same;
  • the armature coil 2 is a circular armature coil, and the armature coil 2 is embedded in a groove in the n core poles belonging to the same unit armature core.
  • the 2n permanent magnets 3 are all radially magnetized or parallel magnetized tile-shaped permanent magnets; the 2n permanent magnets 3 are respectively fixed in the first core segments 6 of the n core poles On the surface and on the inner surface of the third core segment 8; the two permanent magnets located at the same pole of the same core have opposite magnetization directions, circumferentially adjacent
  • a transverse flux multiphase reluctance machine comprising: a stator and a rotor; an air gap is left between the stator and the rotor; the rotor is composed of a rotor frame 4 and a plurality of rotor teeth 5; the plurality of rotor teeth 5 are evenly The rotor frame 4 and the rotor teeth 5 are integrally formed; the stator is composed of a casing 1 and m phase armature units, and m is the number of phases of the reluctance motor.
  • the casing 1 adopts a cylindrical casing; the m phase armature units are sequentially arranged in the casing 1 in the axial direction, and each phase armature unit is sequentially shifted by 360° in the circumferential direction.
  • each phase armature unit is composed of a unit armature core, an armature coil 2 and 2n permanent magnets 3; the n is an even number;
  • the unit armature core is made of a first core
  • the segment 61, the second core segment 71 and the third core segment 81 are arranged in the axial direction and closely arranged in the cylindrical casing 1 in the axial direction, the three rings
  • the central axis of the core segments is on the same axis, and the outer diameter is the same, the second iron between the first core segment 6 and the third core segment 8
  • the inner diameter of the segment 7 is larger than the inner diameter of the first core segment 6, the first core segment 6 is the same as the inner diameter of the third core segment 8;
  • the armature coil 2 is a circular armature coil, the electricity
  • the pivot coil 2 is embedded in an annular space formed between the first core segment 6, the second core segment 7 and the third core segment 8;
  • the 2n permanent magnets 3 are each shaped by a tangentially
  • a transverse flux multiphase reluctance motor comprising: a stator and a rotor; an air gap is left between the stator and the rotor; the rotor is composed of a rotor frame 4 and a plurality of rotor teeth 5; the plurality of rotor teeth 5 are evenly The rotor frame 4 and the rotor teeth 5 are integrally formed; the stator is composed of a casing 1 and m phase armature units, and m is the number of phases of the reluctance motor.
  • each phase armature unit is composed of a unit armature core, an armature coil 2 and a plurality of permanent magnets 3;
  • the unit armature core is composed of a plurality of iron core poles;
  • Each of the core poles is closely arranged by a first core segment 6, a second core segment 7 and a third core segment 8, and the inner surface of the casing 1 is uniformly provided with a plurality of identical shapes.
  • the groove bottom of the axial groove is a circular arc shape; the number of the axial groove is a single The number of large poles in the core of the element armature is the same; the large poles of the iron cores belonging to the same unit armature core are respectively embedded in an axial groove, and the core of each core is in the axial direction.
  • the bottom surface of the groove is in close contact with the side surface; the second core segment 7 is disposed between the first core segment 6 and the third core segment 8, the diameter of the first core segment 6 and the third core segment 8
  • the height of the second core segments 7 is smaller than the radial height of the first core segments 6, and the air gap side of each of the large poles of the core forms a groove belonging to the same unit armature iron
  • the axial positions of the grooves in the plurality of iron cores in the core are the same;
  • the armature coil 2 is a circular armature coil, and the armature coil 2 is embedded in the same unit armature core a plurality of cores in the recesses;
  • the plurality of permanent magnets 3 each adopt a tangentially magnetized flat-plate permanent magnet; a circumferential direction of the first core segment 6 in each of the large poles A permanent magnet 3 is embedded in the center, and a permanent magnet 3 is embedded in the circumferential center of the third core segment 8 in each of the large pole
  • the invention adopts a special armature structure to form a transverse magnetic flux structure multi-phase reluctance motor, which eliminates the mutual inductance between the phases, improves the motor current, the electromagnetic torque control precision and the dynamic characteristics of the system; the armature coil 2
  • the number is small, the processing technology is simple, the cost is low, and the copper consumption is small and the efficiency is high; the motor described in the application has simple design, easy torque increase, and modularization.
  • due to the permanent magnet 3 It is located on the stator, which improves the reliability and safety of the motor and expands its application field.
  • FIG. 1 is a schematic structural view of a conventional multi-phase permanent magnet synchronous motor
  • FIG. 2 is a detailed embodiment 1
  • FIG. 3 is a schematic view of the A-A portion of FIG. 2
  • FIG. 4 is a detailed description of the first embodiment
  • FIG. 5 is a longitudinal sectional view of the one-phase armature unit of the transverse magnetic flux multi-phase reluctance motor according to the second embodiment
  • FIG. 6 is B-B of FIG. FIG.
  • FIG. 7 is a right side view of the one-phase armature unit of the transverse magnetic flux multi-phase reluctance motor according to the second embodiment;
  • FIG. 8 is a detailed description of the third embodiment.
  • FIG. 9 is a right side view of the one-phase armature unit of the transverse magnetic flux multi-phase reluctance motor according to the third embodiment;
  • FIG. 10 is a third embodiment of the present invention.
  • Said FIG. 11 is a longitudinal sectional view of a one-phase armature unit of a transverse magnetic flux multi-phase reluctance motor according to a fourth embodiment;
  • FIG. 12 is a C-C of FIG. FIG.
  • FIG. 13 is a right side view of the one-phase armature unit of the transverse magnetic flux multi-phase reluctance motor according to the fourth embodiment;
  • FIG. 14 is a detailed description of the fifth embodiment.
  • FIG. 15 is a schematic view of a D-D portion of FIG. 12;
  • FIG. 17 is a left side view of the one-phase armature unit of the transverse magnetic flux multi-phase reluctance motor according to the fifth embodiment;
  • FIG. 18 is a fifth embodiment of the present invention. Said FIG.
  • FIG. 19 is a longitudinal cross-sectional view showing a one-phase armature unit of a transverse magnetic flux multi-phase reluctance motor according to a sixth embodiment
  • FIG. 20 is a left side view of the one-phase armature unit of the transverse magnetic flux multi-phase reluctance motor
  • FIG. Figure 16 is a right side view of the one-phase armature unit of the transverse magnetic flux multi-phase reluctance motor according to the sixth embodiment
  • FIG. 22 is a detailed description of the sixth embodiment.
  • a transverse magnetic flux multiphase reluctance motor according to the present embodiment will be described with reference to FIG. 2, FIG. 3 and FIG. 4, which is characterized in that it consists of a stator and a rotor; between the stator and the rotor An air gap is left; the rotor is composed of a rotor frame 4 and a plurality of rotor teeth 5; the plurality of rotor teeth 5 are evenly disposed on the outer circumferential surface of the rotor frame 4; the rotor frame 4 and the rotor teeth 5 are integrated
  • the stator is composed of a casing 1 and m phase armature units, m is the number of phases of the reluctance motor, m ⁇ 3; the casing 1 is a cylindrical casing; the m phase armatures The units are sequentially arranged in the casing 1 in the axial direction, and each of the phase armature units is sequentially shifted by 360
  • the unit armature core is composed of a first core segment 6, a second core segment 7, and a third core segment 8, the three
  • the iron core segments adopt a circular core segment and the outer diameters are the same; the three core segments are closely arranged in the cylinder in the axial direction.
  • the central axes of the three core segments are on the same axis; the inner diameter of the second core segments 7 between the first core segments 6 and the third core segments 8 is larger than the first The inner diameter of the core segment 6 and the inner diameter of the third core segment 8; the first core segment 6 and the third core segment 8 have the same inner diameter; the armature coil 2 uses a circular armature coil, The armature coil 2 is embedded in an annular space formed between the first core segment 6, the second core segment 7 and the third core segment 8; the 2n permanent magnets 3 are all radially magnetized or Parallel magnetized tile-shaped permanent magnets; the 2n permanent magnets 3 are equally divided into two groups; the group of permanent magnets 3 are sequentially arranged in the first core segment 6 in the circumferential direction according to the N pole and the S pole.
  • the other set of permanent magnets 3 are sequentially arranged in the circumferential direction along the S pole and the N pole in order on the inner surface of the third core segment 8; the mounting on the first core segment 6
  • the permanent magnet 3 and the permanent magnet 3 mounted on the third core segment 8 are arranged symmetrically along the axis of the second core segment 7 and have opposite polarities;
  • the transverse magnetic flux multi-phase reluctance motor of the present embodiment is composed of a stator and a rotor; an air gap is left between the stator and the rotor; It is composed of a rotor frame 4 and a plurality of rotor teeth 5; the plurality of rotor teeth 5 are evenly disposed on the outer circumferential surface of the rotor frame 4; the rotor frame 4 and the rotor teeth 5 are of an integral structure;
  • the stator is provided by the casing 1 and m phase armature units, m is the number of phases of the reluctance motor, m ⁇ 3;
  • the casing 1 is a cylindrical casing; the m phase armature units are arranged in the axial direction In the casing 1, the each phase armature unit is sequentially shifted by 360°/m electrical angle in the circumferential direction; the each phase armature arma
  • the unit armature core is composed of a first core segment 6, a second core segment 7 and a third core segment 8, the three core segments are round
  • the annular core segments have the same outer diameter, and the three core segments are closely arranged in the axial direction in the cylindrical casing 1 in sequence.
  • the central axes of the three core segments are on the same axis; the inner diameter of the second core segment 7 between the first core segment 6 and the third core segment 8 is greater than the inner diameter of the first core segment 6 and The inner diameter of the three core segments 8; the first core segment 6 is the same as the inner diameter of the third core segment 8; the armature coil 2 is a circular armature coil, and the armature coil 2 is embedded
  • the annular space formed between the first core segment 6, the second core segment 7 and the third core segment 8; the inner circumferential surface of the first core segment 6 and the inner circumference of the third core segment 8 a plurality of axial permanent magnet slots are uniformly opened in the circumferential direction; the first core segment 6 and the third core segment 8 have the same number of permanent magnet slots; and the 2n permanent magnets 3 are radially charged.
  • the 2n permanent magnets 3 are equally divided into two groups; the set of permanent magnets 3 are respectively fixedly disposed in each permanent magnet slot of the first core segment 6; The other set of permanent magnets 3 are respectively fixedly disposed in each permanent magnet slot of the third core segment 8; the plurality of permanent magnets 3 mounted on the first core segment 6
  • the magnetization directions are the same, both pointing in the direction of the center of the circle or away from the center of the circle; the magnetization directions of the plurality of permanent magnets 3 mounted on the third core segment 8 are the same, pointing in the direction of the center of the circle or away from the center of the circle;
  • the permanent magnet 3 mounted on the first core segment 6 and the permanent magnet 3 mounted on the third core segment 8 are symmetrically arranged along the axis of the second core segment 7 and have opposite polarities;
  • the transverse flux multiphase reluctance motor of the present embodiment is composed of a stator and a rotor; an air gap is left between the stator and the rotor; a rotor is illustrated in conjunction with FIG. 8 to FIG.
  • the stator is provided by the casing 1 and m phase armature units, m is the number of phases of the reluctance motor, m ⁇ 3;
  • the casing 1 is a cylindrical casing;
  • the m phase armature units are arranged in the axial direction In the casing 1, the each phase armature unit is sequentially shifted by 360°/m electrical angle in the circumferential direction;
  • the each phase armature unit is composed of a unit armature core, an armature coil 2 and 2n permanent magnets.
  • the unit armature core is composed of a first core segment 6, a second core segment 7 and a third core segment 8, the three core segments are round
  • the annular core segments have the same outer diameter, and the three core segments are closely arranged in the axial direction in the cylindrical casing 1 in sequence.
  • the central axes of the three core segments are on the same axis; the inner diameter of the second core segment 7 between the first core segment 6 and the third core segment 8 is greater than the inner diameter of the first core segment 6 and The inner diameter of the third core segment 8; the first core segment 6 is the same as the inner diameter of the third core segment 8; the armature coil 2 is a circular armature coil, and the armature coil 2 is embedded In the annular space formed between the first core segment 6, the second core segment 7 and the third core segment 8; the inner circumferential surface of the first core segment 6 and the inner portion of the third core segment 8 The circumferential surface is uniformly provided with a plurality of axial permanent magnet slots in the circumferential direction; the first core segment 6 and the third core segment 8 have the same number of permanent magnet slots; the permanent magnet of the first core segment 6 The opening positions of the permanent magnet grooves of the groove and the third core segment 8 are rotated by a half pitch ⁇ p /2 in the circumferential direction; the 2n permanent magnets 3 are
  • the 2n permanent magnets 3 are equally divided into two groups; the set of permanent magnets 3 are respectively fixedly disposed in each permanent magnet slot of the first core segment 6; A set of permanent magnets 3 are respectively fixedly disposed in each of the permanent magnet slots of the third core segment 8; the plurality of permanent magnets 3 mounted on the first core segment 6 have the same magnetization direction, all pointing The direction of the center of the circle or away from the center of the circle; the plurality of permanent magnets 3 mounted on the third core segment 8 have the same magnetization direction, both pointing in the direction of the center of the circle or away from the center of the circle; The permanent magnet 3 on the segment 6 has the same polarity as the permanent magnet 3 mounted on the third core segment 8; the pole between each adjacent two permanent magnets 3 arranged in the circumferential direction on the same core segment
  • the transverse magnetic flux multi-phase reluctance motor of the present embodiment is composed of a stator and a rotor; an air gap is left between the stator and the rotor; the rotor is described with reference to FIG. 11 to FIG.
  • the stator is provided by the casing 1 and m phase armature units, m is the number of phases of the reluctance motor, m ⁇ 3;
  • the casing 1 is a cylindrical casing;
  • the m phase armature units are arranged in the axial direction In the casing 1, the each phase armature unit is sequentially shifted by 360°/m electrical angle in the circumferential direction;
  • the each phase armature unit is composed of a unit armature core, an armature coil 2 and 2n permanent magnets.
  • the n is a positive integer
  • the armature core of each unit is composed of n iron cores
  • each of the iron cores is composed of a first core segment 6 and a second iron
  • the core segment 7 and a third core segment 8 are closely arranged, and the inner surface of the casing 1 is evenly arranged in the circumferential direction.
  • n axial grooves having the same shape, the groove bottom of the axial groove is a circular arc shape, and the groove walls on both sides are parallel to each other;
  • the number of the axial grooves is the same as that of the iron core in each unit armature core The number of the same is the same, and the n large cores belonging to the same unit armature core are sequentially embedded in the axial groove in the circumferential direction, and each of the iron cores is in close contact with the bottom surface and the side surface of the axial groove.
  • the radial height of the first core segment 6 and the third core segment 8 are the same, the radial height of the second core segment 7 is smaller than the radial height of the first core segment 6, and the gas of each core is extremely large.
  • a gap is formed on the gap side, and the axial positions of the grooves in the n core cores belonging to the same unit armature core are the same; the armature coil 2 adopts a circular armature coil, and the electric The pivot coil 2 is embedded in a recess in the n core poles belonging to the same unit armature core; the 2n permanent magnets 3 are radially magnetized or parallel magnetized.
  • the 2n permanent magnets 3 are respectively fixed on the inner surface of the first core segment 6 of the n core poles and the inner surface of the third core segment 8
  • the magnetization directions of the two permanent magnets located on the same pole core are opposite, and the magnetization directions of the circumferentially adjacent permanent magnets are also opposite; the pole distances ⁇ m between the circumferentially adjacent permanent magnets 3 are arranged in the circumferential direction
  • a transverse magnetic flux multi-phase reluctance motor of the present embodiment is composed of a stator and a rotor; an air gap is left between the stator and the rotor; It is composed of a rotor frame 4 and a plurality of rotor teeth 5; the plurality of rotor teeth 5 are evenly disposed on the outer circumferential surface of the rotor frame 4; the rotor frame 4 and the rotor teeth 5 are of an integral structure;
  • the stator is provided by the casing 1 and m phase armature units, m is the number of phases of the reluctance motor, m ⁇ 3;
  • the casing 1 is a cylindrical casing; the m phase armature units are arranged in the axial direction In the casing 1, the each phase armature unit is sequentially shifted by 360°/m electrical angle in the circumferential direction; the each phase armature unit is
  • the unit armature core is composed of a first core segment 61, a second core segment 71 and a third core segment 81, the three annular core segments along The axial direction is closely arranged in the cylindrical casing 1 , and the central axes of the three toroidal core segments are in the same
  • the inner diameter of the second core segment 7 between the first core segment 6 and the third core segment 8 is larger than the inner diameter of the first core segment 6, the first core segment 6 is the same as the inner diameter of the third core segment 8
  • the armature coil 2 is a circular armature coil, and the armature coil 2 is embedded in the first core segment 6, the second core segment 7 and the The annular space formed between the three core segments 8;
  • the 2n permanent magnets 3 are tangentially magnetized flat permanent magnets;
  • the 2n permanent magnets 3 are divided into two groups, one of which is n permanent magnets are evenly distributed circumferentially embedded in the first core segment 6 in the unit
  • a transverse magnetic flux multi-phase reluctance motor is composed of a stator and a rotor; an air gap is left between the stator and the rotor; It is composed of a rotor frame 4 and a plurality of rotor teeth 5; the plurality of rotor teeth 5 are evenly disposed on the outer circumferential surface of the rotor frame 4; the rotor frame 4 and the rotor teeth 5 are of an integral structure; the stator is provided by the casing 1 and m phase armature units, m is the number of phases of the reluctance motor, m ⁇ 3; the casing 1 is a cylindrical casing; the m phase armature units are arranged in the axial direction In the casing 1, the each phase armature unit is sequentially shifted by 360°/m electrical angle in the circumferential direction; the each phase armature unit
  • the unit armature core is composed of a plurality of iron core poles; each of the core cores is composed of a first core segment 6, a second core segment 7 and a third core
  • the segments 8 are closely arranged, and the inner surface of the casing 1 is uniformly provided with a plurality of radial radiations of the same shape.
  • An axial groove, the groove bottom of the axial groove is a circular arc shape; the number of the axial grooves is the same as the number of large poles in a unit armature core; belonging to the same unit armature iron
  • the plurality of cores of the core are respectively embedded in an axial groove, and each of the core poles is in close contact with the bottom surface and the side surface of the axial groove; the second core segment 7 is provided with the first core segment Between 6 and the third core segment 8, the first core segment 6 and the third core segment 8 have the same radial height, and the second core segment 7 has a radial height smaller than the first core segment.
  • the radial height of 6 forms a groove on the air gap side of each large pole of the iron core, and the axial positions of the grooves in the plurality of iron cores belonging to the same unit armature core are the same;
  • the pivot coil 2 is a circular armature coil, and the armature coil 2 is embedded in a recess of a plurality of iron cores belonging to the same unit armature core;
  • the plurality of permanent magnets 3 are a tangentially magnetized flat-plate permanent magnet; a circumferential center of the first core segment 6 in each of the large poles of the core is embedded with a permanent magnet 3, each core being large
  • Embodiment 8 This embodiment differs from the specific embodiment in one, two, three, four, five or six in that the rotor frame 4 Use a magnetic rotor frame or a non-magnetic material rotor frame. Other compositions and connections are the same as in the first, second, third, fourth, fifth or sixth embodiment.
  • This embodiment differs from the specific embodiment in one, two, three, four, five or six in that the first core segment 6
  • the second core segment 7 and the third core segment 8 are of a split structure or a one-piece structure.
  • Other compositions and connections are the same as in the first, second, third, fourth or fifth embodiment.
  • This embodiment differs from the fifth or sixth embodiment in that the permanent magnet 3
  • the side tangential thickness of the casing is greater than or equal to the air gap side tangential thickness of the permanent magnet 3.
  • Other compositions and connections are the same as in the fourth or fifth embodiment.
  • This embodiment differs from the specific embodiment in four or six
  • the iron core is formed by laminating silicon steel sheets, and the lamination direction is tangential.
  • Other compositions and connections are the same as in the third or fifth embodiment.
  • All the tile-shaped permanent magnets in the present invention are radial magnetization or parallel magnetization, wherein radial magnetization means that the magnetization direction of the permanent magnet is along the radial direction, and parallel magnetization refers to the center of the tile-shaped permanent magnet.
  • the magnetization direction of the point is along its radial direction, and the remaining magnetization direction is parallel to the magnetization direction of the radius direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种横向磁通多相磁阻电机,由定子和转子组成。定子由机壳(1)和m个相电枢单元组成,m个相电枢单元沿轴向依次排列在机壳(1)内,每个相电枢单元沿圆周方向依次错开360°/m电角度。每个相电枢单元由单元电枢铁芯、电枢线圈(2)和多个永磁体(3)组成,单元电枢铁芯由第一圆环形铁芯段(6)、第二圆环形铁芯段(7)和第三圆环形铁芯段(8)构成。电枢线圈(2)嵌放在第一至第三圆环形铁芯段(6,7,8)之间形成的环形空间内。永磁体(3)沿圆周方向按照N极与S极依次相间固定排列在第一和第三圆环形铁芯段(6,8)的内表面上。同一圆环形铁芯段上每相邻两块永磁体(3)之间的极距τm与沿圆周方向排布的转子齿(5)的齿距τp之间满足2τmp。该电机消除了相间互感,提高了电机电流、电磁转矩控制精度和系统的动态特性,并且由于永磁体(3)位于定子上,提高了电机的可靠性与安全性。

Description

横向磁通多相磁阻电机 技术领域
本发明涉及一种磁阻电机,具体涉及一种多相磁阻电机。
背景技术
传统的多相永磁同步电机的结构,如图 1 所示;该电机的电枢绕组为分布绕组,组成绕组所需要的线圈数量多,绕组的各相绕组端部相互交叉,绕组端部长,铜耗大;绕组绝缘复杂,制造成本高。 由于相与相之间都存在磁耦合,这一方面会因互感的存在影响电流的控制精度;另一方面也会因每一相绕组通电产生的磁通所经过的磁路较长而使定子铁耗较大,从而限制了电机效率的进一步提高。同时,由于永磁体位于转子上,使转子的结构强度与允许温升受到限制,制约了电机的应用领域。
技术问题
本发明为了解决 传统多相永磁同步电机存在的 相与相之间存在磁耦合,影响电流的控制精度的问题,而提出的 横向磁通多相磁阻电机。
技术解决方案
横向磁通多相磁阻电机 ,它由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和 2n 个永磁体 3 组成;所述 n 为正整数;所述单元电枢铁芯由第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 构成,所述三个铁芯段均采用圆环形铁芯段且外径均相同;所述三个铁芯段沿轴向依次紧密排列在圆筒形的机壳 1 内,所述三个铁芯段的中心轴线位于同一轴线上;位于第一铁芯段 6 和第三铁芯段 8 之间的第二铁芯段 7 的内径大于第一铁芯段 6 的内径和第三铁芯段 8 的内径;所述第一铁芯段 6 与第三铁芯段 8 的内径相同;所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 之间形成的环形空间内;所述 2n 个永磁体 3 均采用径向充磁或平行充磁的瓦片形永磁体;所述 2n 个永磁体 3 均分为 2 组;所述一组永磁体 3 沿圆周方向按照 N 极与 S 极依次相间固定排列在第一铁芯段 6 的内表面上;所述另一组永磁体 3 沿圆周方向按照 S 极与 N 极依次相间固定排列在第三铁芯段 8 的内表面上;所述装设在第一铁芯段 6 上的永磁体 3 与装设在第三铁芯段 8 上 的永磁体 3 沿第二铁芯段 7 剖面对称 轴对称排列,并且极性相反; 装设在同一铁芯段上沿圆周方向每相邻两块永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 2τmp
横向磁通多相磁阻电机 ,它由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和 2n 个永磁体 3 组成;所述 n 为正整数;所述单元电枢铁芯由第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 构成,所述三个铁芯段均采用圆环形铁芯段且外径均相同,所述三个铁芯段沿轴向依次紧密排列在圆筒形的机壳 1 内,所述三个铁芯段的中心轴线位于同一轴线上;位于第一铁芯段 6 和第三铁芯段 8 之间的第二铁芯段 7 的内径大于第一铁芯段 6 的内径和第三铁芯段 8 的内径;所述第一铁芯段 6 与第三铁芯段 8 的内径相同;所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 之间形成的环形空间内;所述第一铁芯段 6 的内圆周面和第三铁芯段 8 的内圆周面分别沿圆周方向均匀开设有多个轴向永磁体槽;所述第一铁芯段 6 和第三铁芯段 8 的永磁体槽数量相同;所述 2n 个永磁体 3 均采用径向充磁或平行充磁的瓦片形永磁体;所述 2n 个永磁体 3 均分为 2 组;所述一组永磁体 3 分别固定设置在第一铁芯段 6 的每个永磁体槽内;所述另一组永磁体 3 分别固定设置在第三铁芯段 8 的每个永磁体槽内;所述装设在第一铁芯段 6 上的多个永磁体 3 的充磁方向相同,均为指向圆心方向或背离圆心方向;所述装设在第三铁芯段 8 上的多个永磁体 3 的充磁方向相同,均为指向圆心方向或背离圆心方向;所述装设在第一铁芯段 6 上的永磁体 3 与装设在第三铁芯段 8 上的永磁体 3 沿第二铁芯段 7 剖面对称 轴对称排列,并且极性相反; 装设在同一铁芯段上沿圆周方向每相邻两块永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 τmp
横向磁通多相磁阻电机 ,它由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和 2n 个永磁体 3 组成;所述 n 为正整数;所述单元电枢铁芯由第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 构成,所述三个铁芯段均采用圆环形铁芯段且外径均相同,所述三个铁芯段沿轴向依次紧密排列在圆筒形的机壳 1 内,所述三个铁芯段的中心轴线位于同一轴线上;位于第一铁芯段 6 和第三铁芯段 8 之间的第二铁芯段 7 的内径大于第一铁芯段 6 的内径和第三铁芯段 8 的内径;所述第一铁芯段 6 与第三铁芯段 8 的内径相同;所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 之间形成的环形空间内;所述第一铁芯段 6 的内圆周面和第三铁芯段 8 的内圆周面分别沿圆周方向均匀开设有多个轴向永磁体槽;所述第一铁芯段 6 和第三铁芯段 8 的永磁体槽数量相同;所述第一铁芯段 6 的永磁体槽和第三铁芯段 8 的永磁体槽的开设位置沿圆周方向旋转相差半个 齿距 τp/2 ; 所述 2n 个永磁体 3 均采用径向充磁或平行充磁的瓦片形永磁体;所述 2n 个永磁体 3 均分为 2 组;所述一组永磁体 3 分别固定设置在第一铁芯段 6 的每个永磁体槽内;所述另一组永磁体 3 分别固定设置在第三铁芯段 8 的每个永磁体槽内;所述装设在第一铁芯段 6 上的多个永磁体 3 的充磁方向相同,均为指向圆心方向或背离圆心方向;所述装设在第三铁芯段 8 上的多个永磁体 3 的充磁方向相同,均为指向圆心方向或背离圆心方向;所述装设在第一铁芯段 6 上的永磁体 3 与装设在第三铁芯段 8 上的永磁体 3 的极性相同; 装设在同一铁芯段上沿圆周方向每相邻两块永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 τmp
横向磁通多相磁阻电机 ,它由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和 2n 个永磁体 3 组成;所述 n 为正整数;所述每个单元电枢铁芯由 n 个铁芯大极组成;所述每个铁芯大极均由一个第一铁芯段 6 、一个第二铁芯段 7 和一个第三铁芯段 8 紧密排列 构成,所述机壳 1 内表面沿圆周方向均匀设置有 n 个形状相同的轴向槽,所述轴向槽的槽底为圆弧形,两侧槽壁相互平行;所述轴向槽的数量与每个单元电枢铁芯中的铁芯大极的数量相同,并且属于同一个单元电枢铁芯中的 n 个铁芯大极沿圆周方向依次嵌放在轴向槽内,每个铁芯大极与所在轴向槽的底面与侧面紧密接触;第一铁芯段 6 和第三铁芯段 8 的径向高度相同,第二铁芯段 7 的径向高度小于 第一铁芯段 6 的径向高度,每个铁芯大极的气隙侧形成一个凹槽,属于同一个单元电枢铁芯中的 n 个铁芯大极中的凹槽的轴向位置相同;所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在属于同一个单元电枢铁芯中的 n 个铁芯大极中的凹槽内;所述 2n 个永磁体 3 均采用径向充磁或平行充磁的瓦片形永磁体;所述 2n 个永磁体 3 分别固定在 n 个 铁芯大极的第一铁芯段 6 的内表面上和 第三铁芯段 8 的 内表面上 ;位于同一个铁芯大极的的两块永磁体的充磁方向相反,周向相邻的永磁体的充磁方向也相反; 周向相邻的永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 2τmp
横向磁通多相磁阻电机 ,它由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和 2n 个永磁体 3 组成;所述 n 为偶数;所述单元电枢铁芯由第一铁芯段 61 、第二铁芯段 71 和第三铁芯段 81 构成,所述三个圆环形铁芯段沿轴向依次紧密排列在圆筒形的机壳 1 内,所述三个圆环形铁芯段的中心轴线位于同一轴线上,并且外径相同,位于第一铁芯段 6 和第三铁芯段 8 之间的第二铁芯段 7 的内径大于第一铁芯段 6 的内径, 所述第一铁芯段 6 与第三铁芯段 8 的内径相同;所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 之间形成的环形空间内;所述 2n 个永磁体 3 均采用切向充磁的平板形永磁体;所述 2n 个永磁体 3 均分为两组,其中一组内的 n 个永磁体沿圆周均匀分布嵌入在单元电枢铁芯中的第一铁芯段 6 内,并且所述 n 个永磁体呈径向辐射状排列;另一组内的 n 个永磁体沿圆周均匀分布嵌入在单元电枢铁芯中的第三铁芯段 8 内,并且所述 n 个永磁体呈径向辐射状排列,每个永磁体均与机壳 1 紧密接触; 所述第一铁芯段 6 和第 三铁芯段 8 和每个永磁体的轴向长度相等;嵌入有多个永磁体的 第一铁芯段 6 和第 三铁芯段 8 的结构相同, 周向相邻的永磁体充磁方向相反,轴向相邻的永磁体的充磁方向相反; 周向相邻的两块永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 2τmp
横向磁通多相磁阻电机 ,它由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和多个永磁体 3 组成;所述单元电枢铁芯由若干个铁芯大极组成;所述每个铁芯大极分别由一个第一铁芯段 6 、一个第二铁芯段 7 和一个第三铁芯段 8 紧密排列 构成,所述机壳 1 内表面均匀设置有若干个形状相同的径向辐射状的轴向槽,所述轴向槽的槽底为圆弧形;所述轴向槽的数量与一个单元电枢铁芯内的铁芯大极的数量相同;属于同一个单元电枢铁芯的若干个铁芯大极分别嵌装在一个轴向槽内,每个铁芯大极与所在轴向槽的底面与侧面紧密接触;所述第二铁芯段 7 设置 第一铁芯段 6 和第三铁芯段 8 之间 ,所述第一铁芯段 6 和第三铁芯段 8 的径向高度相同,所述 第二铁芯段 7 的径向高度小于 第一铁芯段 6 的径向高度, 每个铁芯大极的气隙侧形成一个凹槽,属于同一个单元电枢铁芯中的若干个铁芯大极中的凹槽的轴向位置相同 ; 所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在属于同一个单元电枢铁芯中的若干个铁芯大极中的凹槽内;所述多个永磁体 3 均采用切向充磁的平板形永磁体;每个铁芯大极中的第一铁芯段 6 的周向中心嵌入一块永磁体 3 ,每个铁芯大极中的第三铁芯段 8 的周向中心嵌入一块永磁体 3 ;周向相邻的永磁体的充磁方向相反;轴向相邻的永磁体的充磁方向相反 周方相邻的永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 2τmp
横向磁通多相磁阻电机 ,它由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和 2n 个永磁体 3 组成;所述 n 为正整数;所述单元电枢铁芯由第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 构成,所述三个铁芯段均采用圆环形铁芯段且外径均相同;所述三个铁芯段沿轴向依次紧密排列在圆筒形的机壳 1 内,所述三个铁芯段的中心轴线位于同一轴线上;位于第一铁芯段 6 和第三铁芯段 8 之间的第二铁芯段 7 的内径大于第一铁芯段 6 的内径和第三铁芯段 8 的内径;所述第一铁芯段 6 与第三铁芯段 8 的内径相同;所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 之间形成的环形空间内;所述 2n 个永磁体 3 均采用径向充磁或平行充磁的瓦片形永磁体;所述 2n 个永磁体 3 均分为 2 组;所述一组永磁体 3 沿圆周方向按照 N 极与 S 极依次相间固定排列在第一铁芯段 6 的内表面上;所述另一组永磁体 3 沿圆周方向按照 S 极与 N 极依次相间固定排列在第三铁芯段 8 的内表面上;所述装设在第一铁芯段 6 上的永磁体 3 与装设在第三铁芯段 8 上 的永磁体 3 沿第二铁芯段 7 剖面对称 轴对称排列,并且极性相反; 装设在同一铁芯段上沿圆周方向每相邻两块永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 2τmp
横向磁通多相磁阻电机,它由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和 2n 个永磁体 3 组成;所述 n 为正整数;所述单元电枢铁芯由第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 构成,所述三个铁芯段均采用圆环形铁芯段且外径均相同,所述三个铁芯段沿轴向依次紧密排列在圆筒形的机壳 1 内,所述三个铁芯段的中心轴线位于同一轴线上;位于第一铁芯段 6 和第三铁芯段 8 之间的第二铁芯段 7 的内径大于第一铁芯段 6 的内径和第三铁芯段 8 的内径;所述第一铁芯段 6 与第三铁芯段 8 的内径相同;所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 之间形成的环形空间内;所述第一铁芯段 6 的内圆周面和第三铁芯段 8 的内圆周面分别沿圆周方向均匀开设有多个轴向永磁体槽;所述第一铁芯段 6 和第三铁芯段 8 的永磁体槽数量相同;所述 2n 个永磁体 3 均采用径向充磁或平行充磁的瓦片形永磁体;所述 2n 个永磁体 3 均分为 2 组;所述一组永磁体 3 分别固定设置在第一铁芯段 6 的每个永磁体槽内;所述另一组永磁体 3 分别固定设置在第三铁芯段 8 的每个永磁体槽内;所述装设在第一铁芯段 6 上的多个永磁体 3 的充磁方向相同,均为指向圆心方向或背离圆心方向;所述装设在第三铁芯段 8 上的多个永磁体 3 的充磁方向相同,均为指向圆心方向或背离圆心方向;所述装设在第一铁芯段 6 上的永磁体 3 与装设在第三铁芯段 8 上的永磁体 3 沿第二铁芯段 7 剖面对称 轴对称排列,并且极性相反; 装设在同一铁芯段上沿圆周方向每相邻两块永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 τmp
横向磁通多相磁阻电机 , 它 由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和 2n 个永磁体 3 组成;所述 n 为正整数;所述单元电枢铁芯由第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 构成,所述三个铁芯段均采用圆环形铁芯段且外径均相同,所述三个铁芯段沿轴向依次紧密排列在圆筒形的机壳 1 内,所述三个铁芯段的中心轴线位于同一轴线上;位于第一铁芯段 6 和第三铁芯段 8 之间的第二铁芯段 7 的内径大于第一铁芯段 6 的内径和第三铁芯段 8 的内径;所述第一铁芯段 6 与第三铁芯段 8 的内径相同;所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 之间形成的环形空间内;所述第一铁芯段 6 的内圆周面和第三铁芯段 8 的内圆周面分别沿圆周方向均匀开设有多个轴向永磁体槽;所述第一铁芯段 6 和第三铁芯段 8 的永磁体槽数量相同;所述第一铁芯段 6 的永磁体槽和第三铁芯段 8 的永磁体槽的开设位置沿圆周方向旋转相差半个 齿距 τp/2 ; 所述 2n 个永磁体 3 均采用径向充磁或平行充磁的瓦片形永磁体;所述 2n 个永磁体 3 均分为 2 组;所述一组永磁体 3 分别固定设置在第一铁芯段 6 的每个永磁体槽内;所述另一组永磁体 3 分别固定设置在第三铁芯段 8 的每个永磁体槽内;所述装设在第一铁芯段 6 上的多个永磁体 3 的充磁方向相同,均为指向圆心方向或背离圆心方向;所述装设在第三铁芯段 8 上的多个永磁体 3 的充磁方向相同,均为指向圆心方向或背离圆心方向;所述装设在第一铁芯段 6 上的永磁体 3 与装设在第三铁芯段 8 上的永磁体 3 的极性相同; 装设在同一铁芯段上沿圆周方向每相邻两块永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 τmp
横向磁通多相磁阻电机 , 它 由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和 2n 个永磁体 3 组成;所述 n 为正整数;所述每个单元电枢铁芯由 n 个铁芯大极组成;所述每个铁芯大极均由一个第一铁芯段 6 、一个第二铁芯段 7 和一个第三铁芯段 8 紧密排列 构成,所述机壳 1 内表面沿圆周方向均匀设置有 n 个形状相同的轴向槽,所述轴向槽的槽底为圆弧形,两侧槽壁相互平行;所述轴向槽的数量与每个单元电枢铁芯中的铁芯大极的数量相同,并且属于同一个单元电枢铁芯中的 n 个铁芯大极沿圆周方向依次嵌放在轴向槽内,每个铁芯大极与所在轴向槽的底面与侧面紧密接触;第一铁芯段 6 和第三铁芯段 8 的径向高度相同,第二铁芯段 7 的径向高度小于 第一铁芯段 6 的径向高度,每个铁芯大极的气隙侧形成一个凹槽,属于同一个单元电枢铁芯中的 n 个铁芯大极中的凹槽的轴向位置相同;所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在属于同一个单元电枢铁芯中的 n 个铁芯大极中的凹槽内;所述 2n 个永磁体 3 均采用径向充磁或平行充磁的瓦片形永磁体;所述 2n 个永磁体 3 分别固定在 n 个 铁芯大极的第一铁芯段 6 的内表面上和 第三铁芯段 8 的 内表面上 ;位于同一个铁芯大极的的两块永磁体的充磁方向相反,周向相邻的永磁体的充磁方向也相反; 周向相邻的永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 2τmp
横向磁通多相磁阻电机 ,它由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和 2n 个永磁体 3 组成;所述 n 为偶数;所述单元电枢铁芯由第一铁芯段 61 、第二铁芯段 71 和第三铁芯段 81 构成,所述三个圆环形铁芯段沿轴向依次紧密排列在圆筒形的机壳 1 内,所述三个圆环形铁芯段的中心轴线位于同一轴线上,并且外径相同,位于第一铁芯段 6 和第三铁芯段 8 之间的第二铁芯段 7 的内径大于第一铁芯段 6 的内径,所述第一铁芯段 6 与第三铁芯段 8 的内径相同;所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 之间形成的环形空间内;所述 2n 个永磁体 3 均采用切向充磁的平板形永磁体;所述 2n 个永磁体 3 均分为两组,其中一组内的 n 个永磁体沿圆周均匀分布嵌入在单元电枢铁芯中的第一铁芯段 6 内,并且所述 n 个永磁体呈径向辐射状排列;另一组内的 n 个永磁体沿圆周均匀分布嵌入在单元电枢铁芯中的第三铁芯段 8 内,并且所述 n 个永磁体呈径向辐射状排列,每个永磁体均与机壳 1 紧密接触;所述第一铁芯段 6 和第 三铁芯段 8 和每个永磁体的轴向长度相等;嵌入有多个永磁体的 第一铁芯段 6 和第 三铁芯段 8 的结构相同, 周向相邻的永磁体充磁方向相反,轴向相邻的永磁体的充磁方向相反; 周向相邻的两块永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 2τmp
横向磁通多相磁阻电机 , 它 由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和多个永磁体 3 组成;所述单元电枢铁芯由若干个铁芯大极组成;所述每个铁芯大极分别由一个第一铁芯段 6 、一个第二铁芯段 7 和一个第三铁芯段 8 紧密排列 构成,所述机壳 1 内表面均匀设置有若干个形状相同的径向辐射状的轴向槽,所述轴向槽的槽底为圆弧形;所述轴向槽的数量与一个单元电枢铁芯内的铁芯大极的数量相同;属于同一个单元电枢铁芯的若干个铁芯大极分别嵌装在一个轴向槽内,每个铁芯大极与所在轴向槽的底面与侧面紧密接触;所述第二铁芯段 7 设置 第一铁芯段 6 和第三铁芯段 8 之间 ,所述第一铁芯段 6 和第三铁芯段 8 的径向高度相同,所述 第二铁芯段 7 的径向高度小于 第一铁芯段 6 的径向高度, 每个铁芯大极的气隙侧形成一个凹槽,属于同一个单元电枢铁芯中的若干个铁芯大极中的凹槽的轴向位置相同 ; 所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在属于同一个单元电枢铁芯中的若干个铁芯大极中的凹槽内;所述多个永磁体 3 均采用切向充磁的平板形永磁体;每个铁芯大极中的第一铁芯段 6 的周向中心嵌入一块永磁体 3 ,每个铁芯大极中的第三铁芯段 8 的周向中心嵌入一块永磁体 3 ;周向相邻的永磁体的充磁方向相反;轴向相邻的永磁体的充磁方向相反; 周方相邻的永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 2τmp
有益效果
本发明通过采用特殊的电枢结构,构成一种横向磁通结构多相磁阻电机,消除了相间互感,提高了电机电流、电磁转矩控制精度和系统的 动态特性 ;电枢线圈 2 的数量少,加工工艺简单、成本低,且铜耗小、效率高;本申请所述电机设计简单,转矩增加容易,可实现模块化。同时,由于永磁体 3 位于定子上,从而提高了电机的可靠性与安全性,拓展了其应用领域。
附图说明
图 1 为 传统的多相永磁同步电机的结构示意图;图 2 为具体实施方式一所述 横向磁通多相磁阻电机一相电枢单元的纵剖视图;图 3 为图 2 的 A-A 部示意图;图 4 为 具体实施方式一所述 横向磁通多相磁阻电机一相电枢单元的右视图;图 5 为 具体实施方式二所述 横向磁通多相磁阻电机一相电枢单元的纵剖视图;图 6 为图 5 的 B-B 部示意图;图 7 为 具体实施方式二所述 横向磁通多相磁阻电机一相电枢单元的右视图;图 8 为 具体实施方式三所述 横向磁通多相磁阻电机一相电枢单元的纵剖视图;图 9 为 具体实施方式三所述 横向磁通多相磁阻电机一相电枢单元的右视图;图 10 为 具体实施方式三所述 横向磁通多相磁阻电机一相电枢单元的左视图;图 11 为 具体实施方式四所述 横向磁通多相磁阻电机一相电枢单元的纵剖视图;图 12 为图 9 的 C-C 部示意图;图 13 为 具体实施方式四所述 横向磁通多相磁阻电机一相电枢单元的右视图;图 14 为 具体实施方式五所述 横向磁通多相磁阻电机一相电枢单元的纵剖视图;图 15 为图 12 的 D-D 部示意图;图 16 为 具体实施方式五所述 横向磁通多相磁阻电机一相电枢单元的右视图;图 17 为 具体实施方式五所述 横向磁通多相磁阻电机一相电枢单元的左视图;图 18 为 具体实施方式五所述 横向磁通多相磁阻电机一相电枢单元另一结构形式的左视图;图 19 为 具体实施方式六所述 横向磁通多相磁阻电机一相电枢单元的纵剖视图;图 20 为图 16 的 E-E 部示意图;图 21 为 具体实施方式六所述 横向磁通多相磁阻电机一相电枢单元的右视图;图 22 为 具体实施方式六所述 横向磁通多相磁阻电机一相电枢单元的左视图。
本发明的实施方式
具体实施方式一:结合图 2 、图 3 、图 4 说明本实施方式,本实施方式所述横向磁通多相磁阻电机 ,其特征在于 它 由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和 2n 个永磁体 3 组成;所述 n 为正整数;所述单元电枢铁芯由第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 构成,所述三个铁芯段均采用圆环形铁芯段且外径均相同;所述三个铁芯段沿轴向依次紧密排列在圆筒形的机壳 1 内,所述三个铁芯段的中心轴线位于同一轴线上;位于第一铁芯段 6 和第三铁芯段 8 之间的第二铁芯段 7 的内径大于第一铁芯段 6 的内径和第三铁芯段 8 的内径;所述第一铁芯段 6 与第三铁芯段 8 的内径相同;所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 之间形成的环形空间内;所述 2n 个永磁体 3 均采用径向充磁或平行充磁的瓦片形永磁体;所述 2n 个永磁体 3 均分为 2 组;所述一组永磁体 3 沿圆周方向按照 N 极与 S 极依次相间固定排列在第一铁芯段 6 的内表面上;所述另一组永磁体 3 沿圆周方向按照 S 极与 N 极依次相间固定排列在第三铁芯段 8 的内表面上;所述装设在第一铁芯段 6 上的永磁体 3 与装设在第三铁芯段 8 上 的永磁体 3 沿第二铁芯段 7 剖面对称 轴对称排列,并且极性相反; 装设在同一铁芯段上沿圆周方向每相邻两块永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 2τmp
具体实施方式二:结合图 5 至图 7 说明本实施方式,本实施方式所述横向磁通多相磁阻电机 , 它 由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和 2n 个永磁体 3 组成;所述 n 为正整数;所述单元电枢铁芯由第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 构成,所述三个铁芯段均采用圆环形铁芯段且外径均相同,所述三个铁芯段沿轴向依次紧密排列在圆筒形的机壳 1 内,所述三个铁芯段的中心轴线位于同一轴线上;位于第一铁芯段 6 和第三铁芯段 8 之间的第二铁芯段 7 的内径大于第一铁芯段 6 的内径和第三铁芯段 8 的内径;所述第一铁芯段 6 与第三铁芯段 8 的内径相同;所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 之间形成的环形空间内;所述第一铁芯段 6 的内圆周面和第三铁芯段 8 的内圆周面分别沿圆周方向均匀开设有多个轴向永磁体槽;所述第一铁芯段 6 和第三铁芯段 8 的永磁体槽数量相同;所述 2n 个永磁体 3 均采用径向充磁或平行充磁的瓦片形永磁体;所述 2n 个永磁体 3 均分为 2 组;所述一组永磁体 3 分别固定设置在第一铁芯段 6 的每个永磁体槽内;所述另一组永磁体 3 分别固定设置在第三铁芯段 8 的每个永磁体槽内;所述装设在第一铁芯段 6 上的多个永磁体 3 的充磁方向相同,均为指向圆心方向或背离圆心方向;所述装设在第三铁芯段 8 上的多个永磁体 3 的充磁方向相同,均为指向圆心方向或背离圆心方向;所述装设在第一铁芯段 6 上的永磁体 3 与装设在第三铁芯段 8 上的永磁体 3 沿第二铁芯段 7 剖面对称 轴对称排列,并且极性相反; 装设在同一铁芯段上沿圆周方向每相邻两块永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 τmp
具体实施方式三:结合图 8 至图 10 说明本实施方式,本实施方式所述横向磁通多相磁阻电机 , 它 由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和 2n 个永磁体 3 组成;所述 n 为正整数;所述单元电枢铁芯由第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 构成,所述三个铁芯段均采用圆环形铁芯段且外径均相同,所述三个铁芯段沿轴向依次紧密排列在圆筒形的机壳 1 内,所述三个铁芯段的中心轴线位于同一轴线上;位于第一铁芯段 6 和第三铁芯段 8 之间的第二铁芯段 7 的内径大于第一铁芯段 6 的内径和第三铁芯段 8 的内径;所述第一铁芯段 6 与第三铁芯段 8 的内径相同;所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 之间形成的环形空间内;所述第一铁芯段 6 的内圆周面和第三铁芯段 8 的内圆周面分别沿圆周方向均匀开设有多个轴向永磁体槽;所述第一铁芯段 6 和第三铁芯段 8 的永磁体槽数量相同;所述第一铁芯段 6 的永磁体槽和第三铁芯段 8 的永磁体槽的开设位置沿圆周方向旋转相差半个 齿距 τp/2 ; 所述 2n 个永磁体 3 均采用径向充磁或平行充磁的瓦片形永磁体;所述 2n 个永磁体 3 均分为 2 组;所述一组永磁体 3 分别固定设置在第一铁芯段 6 的每个永磁体槽内;所述另一组永磁体 3 分别固定设置在第三铁芯段 8 的每个永磁体槽内;所述装设在第一铁芯段 6 上的多个永磁体 3 的充磁方向相同,均为指向圆心方向或背离圆心方向;所述装设在第三铁芯段 8 上的多个永磁体 3 的充磁方向相同,均为指向圆心方向或背离圆心方向;所述装设在第一铁芯段 6 上的永磁体 3 与装设在第三铁芯段 8 上的永磁体 3 的极性相同; 装设在同一铁芯段上沿圆周方向每相邻两块永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 τmp
具体实施方式四:结合图 11 至图 13 说明本实施方式,本实施方式所述横向磁通多相磁阻电机 , 它 由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和 2n 个永磁体 3 组成;所述 n 为正整数;所述每个单元电枢铁芯由 n 个铁芯大极组成;所述每个铁芯大极均由一个第一铁芯段 6 、一个第二铁芯段 7 和一个第三铁芯段 8 紧密排列 构成,所述机壳 1 内表面沿圆周方向均匀设置有 n 个形状相同的轴向槽,所述轴向槽的槽底为圆弧形,两侧槽壁相互平行;所述轴向槽的数量与每个单元电枢铁芯中的铁芯大极的数量相同,并且属于同一个单元电枢铁芯中的 n 个铁芯大极沿圆周方向依次嵌放在轴向槽内,每个铁芯大极与所在轴向槽的底面与侧面紧密接触;第一铁芯段 6 和第三铁芯段 8 的径向高度相同,第二铁芯段 7 的径向高度小于 第一铁芯段 6 的径向高度,每个铁芯大极的气隙侧形成一个凹槽,属于同一个单元电枢铁芯中的 n 个铁芯大极中的凹槽的轴向位置相同;所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在属于同一个单元电枢铁芯中的 n 个铁芯大极中的凹槽内;所述 2n 个永磁体 3 均采用径向充磁或平行充磁的瓦片形永磁体;所述 2n 个永磁体 3 分别固定在 n 个 铁芯大极的第一铁芯段 6 的内表面上和 第三铁芯段 8 的 内表面上 ;位于同一个铁芯大极的的两块永磁体的充磁方向相反,周向相邻的永磁体的充磁方向也相反; 周向相邻的永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 2τmp
具体实施方式五:结合图 14 至图 18 说明本实施方式,本实施方式所述横向磁通多相磁阻电机 , 它 由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和 2n 个永磁体 3 组成;所述 n 为偶数;所述单元电枢铁芯由第一铁芯段 61 、第二铁芯段 71 和第三铁芯段 81 构成,所述三个圆环形铁芯段沿轴向依次紧密排列在圆筒形的机壳 1 内,所述三个圆环形铁芯段的中心轴线位于同一轴线上,并且外径相同,位于第一铁芯段 6 和第三铁芯段 8 之间的第二铁芯段 7 的内径大于第一铁芯段 6 的内径,所述第一铁芯段 6 与第三铁芯段 8 的内径相同;所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 之间形成的环形空间内;所述 2n 个永磁体 3 均采用切向充磁的平板形永磁体;所述 2n 个永磁体 3 均分为两组,其中一组内的 n 个永磁体沿圆周均匀分布嵌入在单元电枢铁芯中的第一铁芯段 6 内,并且所述 n 个永磁体呈径向辐射状排列;另一组内的 n 个永磁体沿圆周均匀分布嵌入在单元电枢铁芯中的第三铁芯段 8 内,并且所述 n 个永磁体呈径向辐射状排列,每个永磁体均与机壳 1 紧密接触;所述第一铁芯段 6 和第 三铁芯段 8 和每个永磁体的轴向长度相等;嵌入有多个永磁体的 第一铁芯段 6 和第 三铁芯段 8 的结构相同, 周向相邻的永磁体充磁方向相反,轴向相邻的永磁体的充磁方向相反; 周向相邻的两块永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 2τmp
具体实施方式六:结合图 19 至图 22 说明本实施方式,本实施方式所述横向磁通多相磁阻电机 , 它 由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 4 和多个转子齿 5 组成;所述多个转子齿 5 均匀地设置在转子架 4 的外圆周面上;所述转子架 4 和转子齿 5 为一体式结构;定子由机壳 1 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 1 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 1 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 2 和多个永磁体 3 组成;所述单元电枢铁芯由若干个铁芯大极组成;所述每个铁芯大极分别由一个第一铁芯段 6 、一个第二铁芯段 7 和一个第三铁芯段 8 紧密排列 构成,所述机壳 1 内表面均匀设置有若干个形状相同的径向辐射状的轴向槽,所述轴向槽的槽底为圆弧形;所述轴向槽的数量与一个单元电枢铁芯内的铁芯大极的数量相同;属于同一个单元电枢铁芯的若干个铁芯大极分别嵌装在一个轴向槽内,每个铁芯大极与所在轴向槽的底面与侧面紧密接触;所述第二铁芯段 7 设置 第一铁芯段 6 和第三铁芯段 8 之间 ,所述第一铁芯段 6 和第三铁芯段 8 的径向高度相同,所述 第二铁芯段 7 的径向高度小于 第一铁芯段 6 的径向高度, 每个铁芯大极的气隙侧形成一个凹槽,属于同一个单元电枢铁芯中的若干个铁芯大极中的凹槽的轴向位置相同 ; 所述电枢线圈 2 采用圆环形电枢线圈,所述电枢线圈 2 嵌放在属于同一个单元电枢铁芯中的若干个铁芯大极中的凹槽内;所述多个永磁体 3 均采用切向充磁的平板形永磁体;每个铁芯大极中的第一铁芯段 6 的周向中心嵌入一块永磁体 3 ,每个铁芯大极中的第三铁芯段 8 的周向中心嵌入一块永磁体 3 ;周向相邻的永磁体的充磁方向相反;轴向相邻的永磁体的充磁方向相反; 周方相邻的永磁体 3 之间的极距 τm 与沿圆周方向排布的转子齿 5 的齿距 τp 之间满足关系 2τmp
具体实施方式七:本实施方式与具体实施方式一、二、三、四、五或六的不同点在于所述 转子齿 5 采用高导磁材料转子齿。 其它组成和连接方式与具体实施方式一、二、三、四、五或六相同。
具体实施方式八:本实施方式与具体实施方式一、二、三、四、五或六不同点在于 所述转子架 4 采用磁性转子架或非磁性材料转子架。 其它组成和连接方式与具体实施方式一、二、三、四、五或六相同。
具体实施方式九:本实施方式与具体实施方式一、二、三、四、五或六不同点在于所述 第一铁芯段 6 、第二铁芯段 7 和第三铁芯段 8 为分体式结构或一体式结构。 其它组成和连接方式与具体实施方式一、二、三、四或五相同。
具体实施方式十:本实施方式与具体实施方式五或六不同点在于 所述永磁体 3 的机壳侧切向厚度大于等于永磁体 3 的气隙侧切向厚度。 其它组成和连接方式与具体实施方式四或五相同。
具体实施方式十一:本实施方式与具体实施方式四或六不同点在于 所述铁心大极由硅钢片叠压而成,叠片方向为切向。 其它组成和连接方式与具体实施方式三或五相同。
本发明中所述所有瓦片形永磁体为径向充磁或平行充磁,其中径向充磁是指永磁体的充磁方向沿半径方向,平行充磁是指瓦片形永磁体的中心点处充磁方向沿其半径方向,其余处的充磁方向与该半径方向的充磁方向相平行。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明所提交的权利要求书确定的专利保护范围。

Claims (10)

  1. 横向磁通多相磁阻电机 ,其特征在于它 由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 (4) 和多个转子齿 (5) 组成;所述多个转子齿 (5) 均匀地设置在转子架 (4) 的外圆周面上;所述转子架 (4) 和转子齿 (5) 为一体式结构;定子由机壳 (1) 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 (1) 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 (1) 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 (2) 和 2n 个永磁体 (3) 组成;所述 n 为正整数;所述单元电枢铁芯由第一铁芯段 (6) 、第二铁芯段 (7) 和第三铁芯段 (8) 构成,所述三个铁芯段均采用圆环形铁芯段且外径均相同;所述三个铁芯段沿轴向依次紧密排列在圆筒形的机壳 (1) 内,所述三个铁芯段的中心轴线位于同一轴线上;位于第一铁芯段 (6) 和第三铁芯段 (8) 之间的第二铁芯段 (7) 的内径大于第一铁芯段 (6) 的内径和第三铁芯段 (8) 的内径;所述第一铁芯段 (6) 与第三铁芯段 (8) 的内径相同;所述电枢线圈 (2) 采用圆环形电枢线圈,所述电枢线圈 (2) 嵌放在第一铁芯段 (6) 、第二铁芯段 (7) 和第三铁芯段 (8) 之间形成的环形空间内;所述 2n 个永磁体 (3) 均采用径向充磁或平行充磁的瓦片形永磁体;所述 2n 个永磁体 (3) 均分为 2 组;所述一组永磁体 (3) 沿圆周方向按照 N 极与 S 极依次相间固定排列在第一铁芯段 (6) 的内表面上;所述另一组永磁体 (3) 沿圆周方向按照 S 极与 N 极依次相间固定排列在第三铁芯段 (8) 的内表面上;所述装设在第一铁芯段 (6) 上的永磁体 (3) 与装设在第三铁芯段 (8) 上的永磁体 (3) 沿第二铁芯段 (7) 剖面对称轴对称排列,并且极性相反;装设在同一铁芯段上沿圆周方向每相邻两块永磁体 (3) 之间的极距 τm 与沿圆周方向排布的转子齿 (5) 的齿距 τp 之间满足关系 2τmp
  2. 横向磁通多相磁阻电机 ,其特征在于它 由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 (4) 和多个转子齿 (5) 组成;所述多个转子齿 (5) 均匀地设置在转子架 (4) 的外圆周面上;所述转子架 (4) 和转子齿 (5) 为一体式结构;定子由机壳 (1) 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 (1) 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 (1) 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 (2) 和 2n 个永磁体 (3) 组成;所述 n 为正整数;所述单元电枢铁芯由第一铁芯段 (6) 、第二铁芯段 (7) 和第三铁芯段 (8) 构成,所述三个铁芯段均采用圆环形铁芯段且外径均相同,所述三个铁芯段沿轴向依次紧密排列在圆筒形的机壳 (1) 内,所述三个铁芯段的中心轴线位于同一轴线上;位于第一铁芯段 (6) 和第三铁芯段 (8) 之间的第二铁芯段 (7) 的内径大于第一铁芯段 (6) 的内径和第三铁芯段 (8) 的内径;所述第一铁芯段 (6) 与第三铁芯段 (8) 的内径相同;所述电枢线圈 (2) 采用圆环形电枢线圈,所述电枢线圈 (2) 嵌放在第一铁芯段 (6) 、第二铁芯段 (7) 和第三铁芯段 (8) 之间形成的环形空间内;所述第一铁芯段 (6) 的内圆周面和第三铁芯段 (8) 的内圆周面分别沿圆周方向均匀开设有多个轴向永磁体槽;所述第一铁芯段 (6) 和第三铁芯段 (8) 的永磁体槽数量相同;所述 2n 个永磁体 (3) 均采用径向充磁或平行充磁的瓦片形永磁体;所述 2n 个永磁体 (3) 均分为 2 组;所述一组永磁体 (3) 分别固定设置在第一铁芯段 (6) 的每个永磁体槽内;所述另一组永磁体 (3) 分别固定设置在第三铁芯段 (8) 的每个永磁体槽内;所述装设在第一铁芯段 (6) 上的多个永磁体 (3) 的充磁方向相同,均为指向圆心方向或背离圆心方向;所述装设在第三铁芯段 (8) 上的多个永磁体 (3) 的充磁方向相同,均为指向圆心方向或背离圆心方向;所述装设在第一铁芯段 (6) 上的永磁体 (3) 与装设在第三铁芯段 (8) 上的永磁体 (3) 沿第二铁芯段 (7) 剖面对称轴对称排列,并且极性相反;装设在同一铁芯段上沿圆周方向每相邻两块永磁体 (3) 之间的极距 τm 与沿圆周方向排布的转子齿 (5) 的齿距 τp 之间满足关系 τmp
  3. 横向磁通多相磁阻电机 ,其特征在于它 由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 (4) 和多个转子齿 (5) 组成;所述多个转子齿 (5) 均匀地设置在转子架 (4) 的外圆周面上;所述转子架 (4) 和转子齿 (5) 为一体式结构;定子由机壳 (1) 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 (1) 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 (1) 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 (2) 和 2n 个永磁体 (3) 组成;所述 n 为正整数;所述单元电枢铁芯由第一铁芯段 (6) 、第二铁芯段 (7) 和第三铁芯段 (8) 构成,所述三个铁芯段均采用圆环形铁芯段且外径均相同,所述三个铁芯段沿轴向依次紧密排列在圆筒形的机壳 (1) 内,所述三个铁芯段的中心轴线位于同一轴线上;位于第一铁芯段 (6) 和第三铁芯段 (8) 之间的第二铁芯段 (7) 的内径大于第一铁芯段 (6) 的内径和第三铁芯段 (8) 的内径;所述第一铁芯段 (6) 与第三铁芯段 (8) 的内径相同;所述电枢线圈 (2) 采用圆环形电枢线圈,所述电枢线圈 (2) 嵌放在第一铁芯段 (6) 、第二铁芯段 (7) 和第三铁芯段 (8) 之间形成的环形空间内;所述第一铁芯段 (6) 的内圆周面和第三铁芯段 (8) 的内圆周面分别沿圆周方向均匀开设有多个轴向永磁体槽;所述第一铁芯段 (6) 和第三铁芯段 (8) 的永磁体槽数量相同;所述第一铁芯段 (6) 的永磁体槽和第三铁芯段 (8) 的永磁体槽的开设位置沿圆周方向旋转相差半个齿距 τp/2 ;所述 2n 个永磁体 (3) 均采用径向充磁或平行充磁的瓦片形永磁体;所述 2n 个永磁体 (3) 均分为 2 组;所述一组永磁体 (3) 分别固定设置在第一铁芯段 (6) 的每个永磁体槽内;所述另一组永磁体 (3) 分别固定设置在第三铁芯段 (8) 的每个永磁体槽内;所述装设在第一铁芯段 (6) 上的多个永磁体 (3) 的充磁方向相同,均为指向圆心方向或背离圆心方向;所述装设在第三铁芯段 (8) 上的多个永磁体 (3) 的充磁方向相同,均为指向圆心方向或背离圆心方向;所述装设在第一铁芯段 (6) 上的永磁体 (3) 与装设在第三铁芯段 (8) 上的永磁体 (3) 的极性相同;装设在同一铁芯段上沿圆周方向每相邻两块永磁体 (3) 之间的极距 τm 与沿圆周方向排布的转子齿 (5) 的齿距 τp 之间满足关系 τmp
  4. 横向磁通多相磁阻电机 ,其特征在于它 由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 (4) 和多个转子齿 (5) 组成;所述多个转子齿 (5) 均匀地设置在转子架 (4) 的外圆周面上;所述转子架 (4) 和转子齿 (5) 为一体式结构;定子由机壳 (1) 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 (1) 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 (1) 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 (2) 和 2n 个永磁体 (3) 组成;所述 n 为正整数;所述每个单元电枢铁芯由 n 个铁芯大极组成;所述每个铁芯大极均由一个第一铁芯段 (6) 、一个第二铁芯段 (7) 和一个第三铁芯段 (8) 紧密排列构成,所述机壳 (1) 内表面沿圆周方向均匀设置有 n 个形状相同的轴向槽,所述轴向槽的槽底为圆弧形,两侧槽壁相互平行;所述轴向槽的数量与每个单元电枢铁芯中的铁芯大极的数量相同,并且属于同一个单元电枢铁芯中的 n 个铁芯大极沿圆周方向依次嵌放在轴向槽内,每个铁芯大极与所在轴向槽的底面与侧面紧密接触;第一铁芯段 (6) 和第三铁芯段 (8) 的径向高度相同,第二铁芯段 (7) 的径向高度小于第一铁芯段 (6) 的径向高度,每个铁芯大极的气隙侧形成一个凹槽,属于同一个单元电枢铁芯中的 n 个铁芯大极中的凹槽的轴向位置相同;所述电枢线圈 (2) 采用圆环形电枢线圈,所述电枢线圈 (2) 嵌放在属于同一个单元电枢铁芯中的 n 个铁芯大极中的凹槽内;所述 2n 个永磁体 (3) 均采用径向充磁或平行充磁的瓦片形永磁体;所述 2n 个永磁体 (3) 分别固定在 n 个铁芯大极的第一铁芯段 (6) 的内表面上和第三铁芯段 (8) 的内表面上;位于同一个铁芯大极的的两块永磁体的充磁方向相反,周向相邻的永磁体的充磁方向也相反;周向相邻的永磁体 (3) 之间的极距 τm 与沿圆周方向排布的转子齿 (5) 的齿距 τp 之间满足关系 2τmp
  5. 横向磁通多相磁阻电机 ,其特征在于它 由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 (4) 和多个转子齿 (5) 组成;所述多个转子齿 (5) 均匀地设置在转子架 (4) 的外圆周面上;所述转子架 (4) 和转子齿 (5) 为一体式结构;定子由机壳 (1) 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 (1) 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 (1) 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 (2) 和 2n 个永磁体 (3) 组成;所述 n 为偶数;所述单元电枢铁芯由第一铁芯段 (6) 、第二铁芯段 (7) 和第三铁芯段 (8) 构成,所述三个圆环形铁芯段沿轴向依次紧密排列在圆筒形的机壳 (1) 内,所述三个圆环形铁芯段的中心轴线位于同一轴线上,并且外径相同,位于第一铁芯段 (6) 和第三铁芯段 (8) 之间的第二铁芯段 (7) 的内径大于第一铁芯段 (6) 的内径,所述第一铁芯段 (6) 与第三铁芯段 (8) 的内径相同;所述电枢线圈 (2) 采用圆环形电枢线圈,所述电枢线圈 (2) 嵌放在第一铁芯段 (6) 、第二铁芯段 (7) 和第三铁芯段 (8) 之间形成的环形空间内;所述 2n 个永磁体 (3) 均采用切向充磁的平板形永磁体;所述 2n 个永磁体 (3) 均分为两组,其中一组内的 n 个永磁体沿圆周均匀分布嵌入在单元电枢铁芯中的第一铁芯段 (6) 内,并且所述 n 个永磁体呈径向辐射状排列;另一组内的 n 个永磁体沿圆周均匀分布嵌入在单元电枢铁芯中的第三铁芯段 (8) 内,并且所述 n 个永磁体呈径向辐射状排列,每个永磁体均与机壳 (1) 紧密接触;所述第一铁芯段 (6) 和第三铁芯段 (8) 和每个永磁体的轴向长度相等;嵌入有多个永磁体的第一铁芯段 (6) 和第三铁芯段 (8) 的结构相同,周向相邻的永磁体充磁方向相反,轴向相邻的永磁体的充磁方向相反;周向相邻的两块永磁体 (3) 之间的极距 τm 与沿圆周方向排布的转子齿 (5) 的齿距 τp 之间满足关系 2τmp
  6. 横向磁通多相磁阻电机 ,其特征在于它 由定子和转子组成;所述定子与转子之间留有气隙;转子由转子架 (4) 和多个转子齿 (5) 组成;所述多个转子齿 (5) 均匀地设置在转子架 (4) 的外圆周面上;所述转子架 (4) 和转子齿 (5) 为一体式结构;定子由机壳 (1) 和 m 个相电枢单元组成, m 为所述磁阻电机的相数, m ≥ 3 ;所述机壳 (1) 采用圆筒形机壳;所述 m 个相电枢单元沿轴向依次排列在机壳 (1) 内,所述每个相电枢单元沿圆周方向依次错开 360°/m 电角度;所述每个相电枢单元由单元电枢铁芯、电枢线圈 (2) 和多个永磁体 (3) 组成;所述单元电枢铁芯由若干个铁芯大极组成;所述每个铁芯大极分别由一个第一铁芯段 (6) 、一个第二铁芯段 (7) 和一个第三铁芯段 (8) 紧密排列构成,所述机壳 (1) 内表面均匀设置有若干个形状相同的径向辐射状的轴向槽,所述轴向槽的槽底为圆弧形;所述轴向槽的数量与一个单元电枢铁芯内的铁芯大极的数量相同;属于同一个单元电枢铁芯的若干个铁芯大极分别嵌装在一个轴向槽内,每个铁芯大极与所在轴向槽的底面与侧面紧密接触;所述第二铁芯段 (7) 设置第一铁芯段 (6) 和第三铁芯段 (8) 之间,所述第一铁芯段 (6) 和第三铁芯段 (8) 的径向高度相同,所述第二铁芯段 (7) 的径向高度小于第一铁芯段 (6) 的径向高度,每个铁芯大极的气隙侧形成一个凹槽,属于同一个单元电枢铁芯中的若干个铁芯大极中的凹槽的轴向位置相同;所述电枢线圈 (2) 采用圆环形电枢线圈,所述电枢线圈 (2) 嵌放在属于同一个单元电枢铁芯中的若干个铁芯大极中的凹槽内;所述多个永磁体 (3) 均采用切向充磁的平板形永磁体;每个铁芯大极中的第一铁芯段 (6) 的周向中心嵌入一块永磁体 (3) ,每个铁芯大极中的第三铁芯段 (8) 的周向中心嵌入一块永磁体 (3) ;周向相邻的永磁体的充磁方向相反;轴向相邻的永磁体的充磁方向相反;周方相邻的永磁体 (3) 之间的极距 τm 与沿圆周方向排布的转子齿 (5) 的齿距 τp 之间满足关系 2τmp
  7. 根据权利要求 1 、 2 、 3 、 4 、 5 或 6 所述的 横向磁通多相磁阻电机 ,其特征在于所述 转子齿 (5) 采用高导磁材料转子齿。
  8. 根据权利要求 1 、 2 、 3 、 4 、 5 或 6 所述的 横向磁通多相磁阻电机 ,其特征在于所述 第一铁芯段 (6) 、第二铁芯段 (7) 和第三铁芯段 (8) 为分体式结构或一体式结构。
  9. 根据权利要求 5 或 6 所述的横向磁通多相磁阻电机,其特征在于所述永磁体 (3) 的机壳侧切向厚度大于等于永磁体 (3) 的气隙侧切向厚度。
  10. 根据权利要求 4 或 6 所述的横向磁通多相磁阻电机,其特征在于所述铁心大极由硅钢片叠压而成,叠片方向为切向。
PCT/CN2012/079146 2011-08-25 2012-07-25 横向磁通多相磁阻电机 WO2013026341A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/129,380 US9362786B2 (en) 2011-08-25 2012-07-25 Poly-phase reluctance electric motor with transverse magnetic flux

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011102470050A CN102290945B (zh) 2011-08-25 2011-08-25 横向磁通多相磁阻电机
CN201110247005.0 2011-08-25

Publications (1)

Publication Number Publication Date
WO2013026341A1 true WO2013026341A1 (zh) 2013-02-28

Family

ID=45337117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079146 WO2013026341A1 (zh) 2011-08-25 2012-07-25 横向磁通多相磁阻电机

Country Status (3)

Country Link
US (1) US9362786B2 (zh)
CN (1) CN102290945B (zh)
WO (1) WO2013026341A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290945B (zh) * 2011-08-25 2013-08-28 哈尔滨工业大学 横向磁通多相磁阻电机
RU2526846C2 (ru) * 2012-06-09 2014-08-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Бесщеточная электрическая машина
JP6390099B2 (ja) * 2013-12-25 2018-09-19 シンフォニアテクノロジー株式会社 回転型パルスモータ
US10075051B2 (en) * 2015-03-16 2018-09-11 Foster-Miller, Inc. Series-wound heteropolar inductor motor
RU168789U1 (ru) * 2016-07-27 2017-02-21 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Электрическая машина с постоянными магнитами
CN110034649B (zh) * 2019-01-23 2023-10-27 河北工业大学 一种轴向磁场磁通切换式横向磁通永磁电机
CN110261268B (zh) * 2019-06-24 2022-02-18 重庆邮电大学 一种金属颗粒的在线监测装置及其装配方法
CN111262358A (zh) * 2020-02-17 2020-06-09 南京航空航天大学 一种低转矩脉动磁通反向电机
CN111969823B (zh) * 2020-08-12 2022-10-04 南京航空航天大学 径向-轴向气隙式三相盘式横向磁通永磁电机
WO2023025480A1 (de) * 2021-08-23 2023-03-02 Almak Vertrieb Gmbh Elektrischer antrieb
EP4297255A1 (de) * 2022-06-20 2023-12-27 Siemens Healthcare GmbH Bürstenloses antriebssystem für eine drehanodenanordnung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2566525Y (zh) * 2002-06-25 2003-08-13 江建中 永磁屏蔽横向磁场开关磁阻电机
CN1697288A (zh) * 2005-05-27 2005-11-16 南京航空航天大学 无轴承交替极薄片电机
CN101577449A (zh) * 2009-03-18 2009-11-11 东南大学 磁通切换型横向磁通永磁风力发电机
CN101694955A (zh) * 2009-10-15 2010-04-14 北京邮电大学 横向磁通永磁电机及其定子制造方法
CN102290945A (zh) * 2011-08-25 2011-12-21 哈尔滨工业大学 横向磁通多相磁阻电机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952068B2 (en) * 2000-12-18 2005-10-04 Otis Elevator Company Fabricated components of transverse flux electric motors
DE102006013590A1 (de) * 2006-03-22 2007-09-27 Siemens Ag Elektrische Maschine insbesondere ein Generator
DE102006027819A1 (de) * 2006-06-16 2007-12-20 Siemens Ag Ringspulenmotor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2566525Y (zh) * 2002-06-25 2003-08-13 江建中 永磁屏蔽横向磁场开关磁阻电机
CN1697288A (zh) * 2005-05-27 2005-11-16 南京航空航天大学 无轴承交替极薄片电机
CN101577449A (zh) * 2009-03-18 2009-11-11 东南大学 磁通切换型横向磁通永磁风力发电机
CN101694955A (zh) * 2009-10-15 2010-04-14 北京邮电大学 横向磁通永磁电机及其定子制造方法
CN102290945A (zh) * 2011-08-25 2011-12-21 哈尔滨工业大学 横向磁通多相磁阻电机

Also Published As

Publication number Publication date
US20140125157A1 (en) 2014-05-08
US9362786B2 (en) 2016-06-07
CN102290945B (zh) 2013-08-28
CN102290945A (zh) 2011-12-21

Similar Documents

Publication Publication Date Title
WO2013026341A1 (zh) 横向磁通多相磁阻电机
US9362789B2 (en) Magnetic field-modulated transverse flux multiphase permanent magnet motor
US8994243B2 (en) Transverse and/or commutated flux systems having multidirectional laminations
CN109510345B (zh) 转子结构、异步起动同步磁阻电机及压缩机
CN103715945B (zh) 一种12/14无轴承永磁偏置开关磁阻电机
CN101552535B (zh) 圆筒型磁通反向直线电机
CN101552534B (zh) 横向磁通圆筒型永磁直线同步电机
CN101895180B (zh) 三相交流永磁电动机
CN105846624A (zh) 一种双定子无轴承磁通切换永磁电机
CN103222165B (zh) 三相永磁伺服电动机
CN105656228B (zh) 一种横向磁通永磁电机
CN110086308B (zh) 六相聚磁式内外无源转子横向磁通永磁电机
CN104935095A (zh) 一种u形定子混合励磁开关磁阻电机
CN101582626B (zh) 并联磁路圆筒型永磁直线同步电机
CN108809030B (zh) 一种外绕组控制的两自由度无轴承开关磁阻电机
Uppalapati et al. A flux focusing ferrite magnetic gear
CN102497081B (zh) 磁场调制式圆筒型横向磁通直线电机
CN105978270A (zh) 一种定子分区式双凸极永磁无刷电机
KR101682408B1 (ko) 전기 모터
US20220069681A1 (en) Method for winding a heavy gauge toroidal coil of an electric machine
CN107769510A (zh) 一种定子嵌有u型永磁体的混合式步进电机
CN101741216B (zh) 相间电磁解耦圆筒形永磁同步直线电机
CN210350986U (zh) 一种双转子永磁同步磁阻电机
WO2012119307A1 (zh) 一种三相永磁伺服电动机
CN105576869B (zh) 一种表面镶嵌式自起动永磁同步电动机转子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825885

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14129380

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825885

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12825885

Country of ref document: EP

Kind code of ref document: A1