WO2013024696A1 - ヨウ素129の分析方法及び装置 - Google Patents

ヨウ素129の分析方法及び装置 Download PDF

Info

Publication number
WO2013024696A1
WO2013024696A1 PCT/JP2012/069420 JP2012069420W WO2013024696A1 WO 2013024696 A1 WO2013024696 A1 WO 2013024696A1 JP 2012069420 W JP2012069420 W JP 2012069420W WO 2013024696 A1 WO2013024696 A1 WO 2013024696A1
Authority
WO
WIPO (PCT)
Prior art keywords
iodine
analysis
gas
analyzing
sample
Prior art date
Application number
PCT/JP2012/069420
Other languages
English (en)
French (fr)
Inventor
川端 克彦
鈴木 淳司
仁 国香
Original Assignee
株式会社 イアス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 イアス filed Critical 株式会社 イアス
Publication of WO2013024696A1 publication Critical patent/WO2013024696A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0431Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples
    • H01J49/0445Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples with means for introducing as a spray, a jet or an aerosol
    • H01J49/045Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples with means for introducing as a spray, a jet or an aerosol with means for using a nebulising gas, i.e. pneumatically assisted
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/105Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation, Inductively Coupled Plasma [ICP]

Definitions

  • the present invention relates to a method for analyzing iodine 129 in an analytical sample by determining an isotope ratio of iodine 129 / iodine 127 using an inductively coupled plasma mass spectrometer, and the analysis is performed even when the amount of iodine 129 is very small. Provide a method that is possible.
  • Iodine 129 ( 129 I) has a long half-life of 15.7 million years, and is known to accumulate in the thyroid when taken into the human body. For this reason, it is important to grasp the outflow situation of iodine 129 to the environment in the vicinity of facilities where iodine 129 may be discharged into the environment, such as a nuclear fuel reprocessing facility. For example, in soil around the reprocessing facility, iodine 129 having a relatively high concentration of 129 I / 127 I isotope ratio of 10 ⁇ 6 level is detected.
  • ICP-MS inductively coupled plasma mass spectrometer
  • Patent Document 1 describes a method for increasing the detection sensitivity of iodine 129 by setting the reaction cell and setting parameters. According to this method, it is possible to measure iodine 129 having a relatively low concentration of 129 I / 127 I isotope ratio of 10 ⁇ 8 level.
  • the concentration in the general environment ( 129 I / 127 I It is required that a trace amount of iodine at a level closer to 10 ⁇ 14 level) can be analyzed.
  • a large amount of iodine 127 (about 10 mg / ml is required) contained in the soil together with the trace amount of iodine 129 is simultaneously introduced into the ICP-MS.
  • an object of the present invention is to provide a method capable of analyzing with high sensitivity even an analytical sample containing a trace amount of iodine 129, for example, at the 10 ⁇ 10 level.
  • iodine 129 that determines the isotope ratio of iodine 129 / iodine 127 is determined by ionizing an analysis sample with inductively coupled plasma, selectively focusing the ions with an ion lens, and performing mass spectrometry.
  • the analysis method relates to a method of adding hydrogen gas or nitrogen gas together with argon gas as a carrier gas when ionizing in plasma.
  • the vaporized or atomized analysis sample is ionized in plasma, and the ionized sample is subjected to mass analysis. And it has the characteristics in the point which adds hydrogen gas or nitrogen gas with argon gas especially in the case of ionization. According to the analysis method of the present invention, even when a trace amount of iodine 129 contained in a large amount of iodine 127 (for example, 10 mg / mL) is analyzed, analysis can be performed with good sensitivity with high linearity of a calibration curve.
  • iodine 127 and iodine 129 in the analysis sample can be sufficiently ionized by adding hydrogen gas or nitrogen gas.
  • hydrogen gas or nitrogen gas is added, iodine 127 and iodine 129 can be sufficiently ionized.
  • an analysis sample collected from soil or the like can be analyzed.
  • the analysis sample can be extracted from soil or the like with an acid or alkali solution, or a sample obtained by burning a soil sample and once vaporizing highly volatile iodine can be used in a gaseous state.
  • the vaporized iodine can be used after being collected by activated carbon or the like and leached in an acid or alkali to form a liquid. Since the method of burning a soil sample requires high-temperature heating at about 800 ° C. or higher, a method of extracting with an acid or alkali solution is simple.
  • the alkaline solution an organic alkaline solution is suitable. If it is an organic solution, it can decompose organic iodine contained in the soil and extract iodine.
  • TMAH tetramethylammonium hydroxide
  • the sample collected from soil or the like is in the form of liquid extracted from acid or alkali, it is atomized with a nebulizer and then mass analyzed.
  • the addition of hydrogen gas or nitrogen gas is preferably performed after atomizing the liquid sample with a nebulizer. This is because if hydrogen gas or nitrogen gas is added before nebulization by the nebulizer, the atomization efficiency changes depending on the amount of addition, and it becomes difficult to bring the analysis sample into a suitable measurement state.
  • the gaseous analysis sample can be directly introduced into the ICP-MS.
  • Hydrogen gas or nitrogen gas is preferably added at 30 to 100 mL / min. If it is less than 30 mL / min, the ionization of iodine 129 tends not to proceed sufficiently, and if it exceeds 100 mL / min, the sensitivity of the mass analyzer tends to decrease. In consideration of a decrease in detection sensitivity due to the generation of IH 2 , the additive gas is more preferably nitrogen gas.
  • ions selectively focused by an ion lens are introduced into a reaction cell for mass spectrometry, and the detection sensitivity is relatively low with respect to iodine 127 by setting the reaction cell parameters.
  • iodine 129 it is preferable to perform mass spectrometry in a relatively high state. Iodine analysis without IH 2 interference can be realized, and the deterioration of the detector can be suppressed even if iodine 127 is continuously measured.
  • the analysis apparatus to be used includes an inductively coupled plasma generator for converting an analysis sample into plasma, a sampling cone and a skimmer cone for inhaling the plasma analysis sample, and positive ions in the inhaled analysis sample.
  • an analyzer including an ion lens that selectively converges, a mass filter that selects focused positive ions, and a detector that detects positive ions
  • the ion lens includes three or more electrodes, and further Analysis of iodine 129 having one electrode having a sharp tip toward the skimmer cone on the skimmer cone side and a reaction cell for removing interference of ions interfering with the analysis between the ion lens and the mass filter An apparatus is preferred.
  • ion lenses such as E-lens have been used in the analysis of iodine 129, and the background increased due to impurities (Na, K, etc.) contained in the sampling cone and skimmer cone. In view of this problem, it has been important to remove impurities-derived ions and reduce the background. In contrast, in the apparatus of the present invention, ions derived from impurities cannot be removed as in the case of conventional ion lenses. On the other hand, ions that can selectively converge ions derived from analysis samples and improve analysis sensitivity. A lens is used.
  • the analysis sensitivity is improved as in the present invention. This is because it has been found that a microanalysis of iodine 129 can be performed more accurately by adopting an ion lens that can be improved.
  • E lenses E-lens
  • Conventionally used E lenses (E-lens) and the like have a structure in which an ion lens is arranged so as to wrap around a shielding plate in order to prevent light in the vacuum ultraviolet region from reaching the mass analyzer. . Since the kinetic energy of the impurity ions generated from the sampling cone or skimmer cone is lower than the kinetic energy of ions in the analysis sample ionized by the plasma, when a positive voltage is applied to this ion lens, the impurity ions are converted into the ion lens. Can be played and the background is reduced.
  • the ion lens of the analyzer of the present invention includes three or more electrodes, and further includes one electrode having a sharp tip toward the skimmer cone on the skimmer cone side.
  • a negative potential is applied to the electrodes of the ion lens, and the potential of each electrode is set to the potential of the adjacent electrode.
  • the potential of each electrode is set to the potential of the adjacent electrode.
  • iodine 129 which is a positive ion is efficiently converged.
  • a negative voltage of about ⁇ 100 to ⁇ 300 V is applied to one electrode (extraction lens) having a sharp tip toward the skimmer cone, and the other three or more sheets are applied. It is preferable to apply a negative voltage closer to positive than the extraction lens to the electrode.
  • the positive ions are accelerated and the positive ions can be prevented from being attracted to the extraction lens.
  • Three or more electrodes are preferably applied with an equal voltage to odd-numbered electrodes (excluding the extraction lens) from the skimmer cone side. Further, it is preferable to apply a negative voltage closer to positive than the odd-numbered electrodes to the even-numbered electrodes from the suction side of the analysis sample. For example, when four electrodes are provided in addition to the extraction lens, equal voltages are applied to the first and third electrodes from the suction side of the analysis sample. It is preferable to apply a negative voltage closer to positive than the first electrode to the second electrode and to apply a negative voltage closer to positive than the third electrode to the fourth electrode.
  • an analysis sample having a trace amount of iodine 129 (eg, 10 ⁇ 10 level) can be analyzed with good sensitivity by an inductively coupled plasma mass spectrometer (ICP-MS).
  • ICP-MS inductively coupled plasma mass spectrometer
  • Example 1 The analysis was performed using the iodine 129 analyzer shown in FIG. 10 g of the soil to be measured was put into 100 ml of 5% TMAH, and stirred at room temperature to extract iodine and used as an analysis sample.
  • This analysis sample was introduced into the nebulizer 200 at 0.2 mL / min, atomized with 1 L / min of argon gas, and then N 2 gas was added at a flow rate of 50 mL / min.
  • the analysis sample to which N 2 gas was added was introduced into an inductively coupled plasma generator (ICP) 300 using argon gas and ionized, and then introduced into an inductively coupled plasma mass spectrometer (ICP-MS) 500.
  • ICP inductively coupled plasma generator
  • ICP-MS inductively coupled plasma mass spectrometer
  • the analysis sample converted into plasma is sucked from the sampling cone 510, and positive ions are selectively converged by the ion lens 520.
  • the ion lens 520 includes four electrodes 522, 523, 524, and 525, and one electrode having a sharp tip toward the skimmer cone 511 on the suction side of the analysis sample ( A drawer lens) 521 is provided.
  • a potential of ⁇ 100 to ⁇ 300 was applied to the extraction lens 521.
  • the four electrodes are a first lens 522, a second lens 523, a third lens 524, and a focus lens 525 in this order from the inhalation side of the analysis sample.
  • a potential of ⁇ 30 to ⁇ 60 V was applied to the second lens, ⁇ 100 to ⁇ 150 V to the third lens, and ⁇ 10 to ⁇ 50 V to the focus lens.
  • FIG. 3 shows the results of a calibration curve prepared by changing the concentration of iodine 127 for Example 1 described above.
  • FIG. 4 shows the results of a calibration curve prepared by changing the concentration of iodine 129 while keeping the content of iodine 127 constant at 1 mg / ml.
  • Example 1 As a result, in the analysis method of Example 1 in which N 2 gas was added, a calibration curve of iodine 127 having high linearity could be obtained from FIG. FIG. 4 also shows that the calibration curve for iodine 127/129 has high linearity, and iodine 129 at the 10 ⁇ 9 level can also be analyzed. Further, for Example 1, a calibration curve was prepared by changing the concentration of iodine 129 while keeping the content of iodine 127 constant at 10 mg / ml. As in the above, the linearity was high and the level of 10 ⁇ 9 level was high. It has been shown that iodine 129 can also be analyzed.
  • Example 2 Analysis was performed in the same manner as in Example 1 except that H 2 gas was used instead of N 2 gas. H 2 gas was added at a flow rate of 65 mL / min. Other analysis conditions were the same as in Example 1.
  • FIG. 5 shows the results of a calibration curve prepared for Example 2 by changing the concentration of iodine 129 while keeping the content of iodine 127 constant at 1 mg / ml.
  • FIG. 5 shows that the analytical method of Example 2 to which H 2 gas was added can also obtain a highly linear iodine 127 calibration curve, and can also analyze 10 ⁇ 9 level iodine 129. .
  • the background was higher in Example 2 (FIG. 5) to which H 2 gas was added. From the above, it is considered that N 2 gas is more suitable as the additive gas.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本発明は、10-10レベルのように微量なヨウ素129が含まれる分析試料も、高感度に分析可能な方法を提供する。本発明は、分析試料を誘導結合プラズマによりイオン化し、当該イオンをイオンレンズで選択的に収束させて、質量分析することにより、ヨウ素129/ヨウ素127の同位体比を決定するヨウ素129の分析方法において、イオン化の際、キャリアガスであるアルゴンガスとともに、水素ガス又は窒素ガスを添加する分析方法に関する。

Description

ヨウ素129の分析方法及び装置
 本発明は、誘導結合プラズマ質量分析装置を用いてヨウ素129/ヨウ素127の同位体比を決定することにより、分析試料中のヨウ素129を分析する方法に関し、ヨウ素129が微量である場合にも分析可能である方法を提供する。
 ヨウ素129(129I)は、半減期が1570万年と長く、人体に取り込まれた場合は甲状腺に蓄積することが知られている。このため、核燃料の再処理施設等、ヨウ素129が環境中に排出される恐れのある設備周辺において、環境に対するヨウ素129の流出状況を把握することが重要とされている。例えば、再処理施設周辺における土壌においては、129I/127Iの同位体比が10-6レベルという比較的高濃度のヨウ素129が検出されている。
 かかるヨウ素129の分析方法では、周囲環境の土壌等を分析対象として、誘導結合プラズマ質量分析装置(以下、ICP-MSという。)にて、測定対象であるヨウ素129の濃度を、天然に多く存在するヨウ素127(127I)との同位体比より決定する方法が知られている。これらICP-MSによるヨウ素129の分析では、ヨウ素129の同重体であるキセノンの干渉が問題となる。このキセノンの干渉を除去する方法として、ICP-MSのマスフィルタ手前にリアクションセルを設け、酸素ガスをリアクションセルに導入する方法が用いられる。しかしながら、リアクションセルを用いた場合、特許文献1に記載されているように、ヨウ素127に水素が結合したIH等による干渉が問題となる。かかる問題を解決すべく、特許文献1には、リアクションセルの構造及びパラメータ設定によりヨウ素129の検出感度を高める方法が記載されている。この方法によれば、129I/127Iの同位体比が10-8レベルという比較的低濃度のヨウ素129も測定可能となる。
特開2008-134135号公報
 上記方法により、ヨウ素129が比較的低濃度である場合も分析可能になるものの、ヨウ素129の環境への流出状況をより正確に把握するには、一般的な環境における濃度(129I/127Iの同位体比が10-14レベル)により近いレベルの微量なヨウ素も分析可能なことが求められる。かかる微量なヨウ素129を分析するには、微量のヨウ素129と共に土壌中に含まれる大量のヨウ素127(約10mg/ml程度が必要)も、同時にICP-MSに導入されることとなる。
 かかる大量のヨウ素127が含まれる試料を分析する場合には、特許文献1のように、リアクションセルのパラメータ設定でヨウ素129の検出感度を高めても、ヨウ素127の量が多くなると質量分析器の感度低下を生じ、検量線が曲がってしまうことで正確な分析が困難となる。そこで本発明は、例えば10-10レベルのように微量のヨウ素129を含む分析試料も、高感度に分析できる方法の提供を目的とする。
 上記課題を解決すべく本発明者等は鋭意検討したところ、リアクションセルを備える分析試料を質量分析する前段階において、ヨウ素のプラズマ化を充分に進行させた場合、検量線が湾曲する問題を低減できることを見出し、本発明に想到した。すなわち、本発明は、分析試料を誘導結合プラズマによりイオン化し、当該イオンをイオンレンズで選択的に収束させて、質量分析することにより、ヨウ素129/ヨウ素127の同位体比を決定するヨウ素129の分析方法において、プラズマ中でイオン化する際、キャリアガスであるアルゴンガスとともに、水素ガス又は窒素ガスを添加する方法に関する。
 本発明の分析方法は、通常、誘導結合プラズマ質量分析装置で試料を分析する場合と同様に、気化又は霧化された分析試料をプラズマ中でイオン化し、イオン化したサンプルを質量分析する。そして、特に、イオン化の際、アルゴンガスとともに水素ガス又は窒素ガスを添加する点に特徴を有する。本発明の分析方法によれば、大量のヨウ素127(例えば、10mg/mL)中に含まれる、微量のヨウ素129を分析する場合にも、検量線の直線性が高い良好な感度で分析できる。これは、水素ガス又は窒素ガスの添加により、分析試料中のヨウ素127及びヨウ素129が充分にイオン化できるためと考えられる。具体的には、ヨウ素129が微量、且つ、ヨウ素127が大量に存在する場合、ヨウ素127及びヨウ素129をイオン化するために多くの電子が必要となるが、イオン化に要する電子がプラズマ中で不足する傾向になると考えられる。このような状況において、水素ガス又は窒素ガスを添加すると、ヨウ素127及びヨウ素129を充分にイオン化することが可能になる。
 これは、水素(15.43eV)や窒素(15.58eV)のイオン化ポテンシャルが、アルゴン(15.76eV)のイオン化ポテンシャルよりも低く、水素や窒素がイオン化されやすいことによると考えられる。このため、従来のようにアルゴンガスのみを用いる場合と同量のエネルギーをプラズマに供給したとしても、アルゴンよりイオン化されやすい水素や窒素によって、放出される電子量が増加し、ヨウ素127及びヨウ素129の充分なイオン化が可能になったと考えられる。尚、一般には、キャリアガスとしてアルゴンに代えて窒素を用いることもあるが、本発明のようにヨウ素129を分析するには、アルゴンガスの適用が好ましい。窒素を用いた場合、窒素プラズマに水分が入るとNOが生成されるが、NOのイオン化ポテンシャルは9.26eVとヨウ素よりも低く、ヨウ素を充分にイオン化できないためである。
 以下、本発明の分析方法について詳細に説明する。本発明の方法では、土壌等から採取した分析試料を分析できる。分析試料は、土壌等から酸又はアルカリ溶液で抽出できる他、土壌試料を燃焼させて揮発性の高いヨウ素を一旦気化させたものを気体状のまま用いることもできる。気化させたヨウ素は、活性炭等で捕集して、酸又はアルカリに浸出させて、液体状としてから用いることもできる。土壌試料を燃焼させる方法は、約800℃以上での高温加熱を要するため、酸又はアルカリ溶液で抽出する方法が簡便である。アルカリ溶液としては、有機系のアルカリ溶液が好適である。有機系溶液であると、土壌中に含まれる有機系ヨウ素を分解しヨウ素を抽出できる。有機系のアルカリ溶液としては、特に、水酸化テトラメチルアンモニウム(TMAH)が好適である。
 土壌等から採取した分析試料は、酸又はアルカリ抽出した液体状の場合、ネブライザで霧化してから質量分析する。水素ガス又は窒素ガスの添加は、液体試料をネブライザで霧化した後に行うことが好ましい。ネブライザによる霧化前に水素ガス又は窒素ガスを添加すると、その添加量により霧化効率が変化し、分析試料を好適な測定状態としにくくなるためである。尚、土壌等を燃焼してヨウ素を気化させた場合は、気体状の分析試料を、そのままICP-MSに導入することもできる。
 水素ガス又は窒素ガスは、30~100mL/min添加することが好ましい。30mL/min未満であると、ヨウ素129のイオン化が充分に進行しにくい傾向となり、100mL/minを超えると、質量分析器の感度が低下しやすい。IHの発生による検出感度低下を考慮すると、添加ガスは窒素ガスとすることが、より好ましい。
 本発明の分析方法においては、イオンレンズで選択的に収束させたイオンを、質量分析のためのリアクションセルに導入し、リアクションセルのパラメータ設定により、検出感度がヨウ素127に関しては相対的に低く、ヨウ素129に関しては相対的に高い状態で質量分析を行うことが好ましい。IHの干渉がないヨウ素分析が実現でき、ヨウ素127の測定が連続しても検出器の劣化を抑制することが可能となる。
 以上の分析方法において、使用する分析装置としては、分析試料をプラズマ化する誘導結合プラズマ発生器と、プラズマ化した分析試料を吸入するサンプリングコーン及びスキマーコーンと、吸入した分析試料中の正イオンを選択的に収束させるイオンレンズと、収束させた正イオンを選択するマスフィルタと、正イオンを検出する検出器と、を備えた分析装置において、イオンレンズは3枚以上の電極を備えるとともに、更に、スキマーコーンに向かって鋭利な先端を有する1枚の電極をスキマーコーン側に備え、イオンレンズとマスフィルタとの間に、分析を妨害するイオンの干渉を除去するリアクションセルを備えるヨウ素129の分析装置が好ましい。
 従来、ヨウ素129の分析においては、Eレンズ(E-lens)等のイオンレンズが用いられており、サンプリングコーンやスキマーコーン中に含まれる不純物(Na、K等)に起因してバックグラウンドが増加するという問題を考慮し、不純物由来のイオンを除去し、バックグラウンドを低減することが重視されていた。これに対し、本発明の装置では、従来のイオンレンズのように、不純物由来のイオンを除去できるものではないものの、他方、分析試料由来のイオンを選択的に収束し、分析感度を向上できるイオンレンズを採用している。本発明者等によれば、10-10レベルのように特に微量なヨウ素129を分析する場合においては、不純物イオンによるバックグラウンド増加の問題を敢えて無視してでも、本発明のように分析感度を向上できるイオンレンズを採用した方が、ヨウ素129の微量分析を、より正確に行えることが判明したためである。
 従来のイオンレンズと、本発明のイオンレンズについて、具体的な構造の相違点を説明する。従来用いられていたEレンズ(E-lens)等では、真空紫外域の光等が質量分析器に到達することを防ぐため、遮蔽板を回り込むようにイオンレンズが配置された構造となっている。プラズマによりイオン化された分析試料のイオンの運動エネルギーに対し、サンプリングコーン又はスキマーコーンから生成された不純物のイオンの運動エネルギーは低いため、このイオンレンズに正電圧をかけると、不純物のイオンをイオンレンズで弾くことができ、バックグラウンドが低減される。しかしながら、これら従来のイオンレンズを用いた場合、不純物のイオンを弾く際に、分析試料のイオンの一部も除かれてしまう場合がある、という問題を有していた。一方、本発明の分析装置のイオンレンズは、3枚以上の電極を備えるとともに、更に、スキマーコーンに向かって鋭利な先端を有する1枚の電極をスキマーコーン側に備えるものである。これらイオンレンズに負電圧をかけることで、分析試料由来のイオンを効率的に収束し、高感度な分析が可能となる。
 具体的には、本発明の分析装置を用いてヨウ素129の分析を行う際には、イオンレンズの電極に、いずれも負の電位を与えるとともに、各電極の電位を、隣接する電極の電位とは異なるものとすることが好ましい。電極にこのような電位を与えることで、正イオンであるヨウ素129が効率的に収束される。電位の具体的な与え方としては、スキマーコーンに向かって鋭利な先端を有する1枚の電極(引き出し(Extraction)レンズ)に-100~-300V程度の負電圧をかけ、その他の3枚以上の電極には引き出しレンズよりも正に近い負電圧をかけることが好ましい。先端が鋭利な引き出しレンズで分析試料由来の正イオンを引き込むことにより、正イオンが加速され、引き出しレンズに正イオンが吸い付くことを防止できる。3枚以上の電極は、スキマーコーン側より(引き出しレンズを除いて)奇数枚目の電極には、相互に等しい電圧をかけることが好ましい。また、分析試料の吸入側より偶数枚目の電極には、当該奇数枚目の電極よりも正に近い負電圧をかけることが好ましい。例えば、引き出しレンズの他に、4枚の電極を備える場合、分析試料の吸入側より1枚目及び3枚目の電極には、互いに等しい電圧をかける。そして、2枚目の電極には1枚目よりも正に近い負電圧をかけ、4枚目の電極には3枚目よりも正に近い負電圧をかけることが好ましい。以上のような電位の与え方により、分析試料の正イオンを効率的に収束できる。
 本発明によれば、誘導結合プラズマ質量分析装置(ICP-MS)によって、ヨウ素129が微量(例えば10-10レベル)の分析試料を、良好な感度で分析できる。
ヨウ素129分析装置の概略図 イオンレンズの断面図 実施例1及び比較例におけるヨウ素127の検量線 実施例1におけるヨウ素129/ヨウ素127の検量線 実施例2におけるヨウ素129/ヨウ素127の検量線
 以下、本発明における最良の実施形態について説明する。
[実施例1]
 図1に示すヨウ素129の分析装置を用いて分析を行った。測定対象である土壌10gを、5%TMAH100mlに投入し、常温で攪拌してヨウ素を抽出し、分析試料とした。ネブライザ200に、この分析試料を0.2mL/minで導入し、1L/minのアルゴンガスで霧化させた後、50mL/minの流量でNガスを添加した。Nガスを添加した分析試料を、アルゴンガスを用いた誘導結合プラズマ発生器(ICP)300に導入してイオン化し、誘導結合プラズマ質量分析装置(ICP-MS)500に導入した。
 ICP-MS 500において、プラズマ化した分析試料は、サンプリングコーン510より吸入され、イオンレンズ520で正イオンが選択的に収束される。イオンレンズ520としては、図2に示すように、4枚の電極522、523、524、525と、更に、分析試料の吸入側にスキマーコーン511に向かって鋭利な先端を有する1枚の電極(引き出しレンズ)521を備える構成とした。引き出しレンズ521には、-100~-300の電位を与えた。4枚の電極は、分析試料の吸入側から順に、第一レンズ522、第二レンズ523、第三レンズ524、フォーカス(Focus)レンズ525であり、第一レンズには-100~―150V、第二レンズには-30~―60V、第三レンズには-100~―150V、フォーカスレンズには-10~―50Vの電位を与えた。
 そして、イオンレンズ520にて収束させた分析試料の正イオンは、リアクションセル530で同位体等の干渉や、バックグラウンドを低減した後、マスフィルタ541及び検出器542を備える質量分析器540にて分析した。以上の実施例1について、ヨウ素127の濃度を変化させて作成した検量線の結果を、図3に示す。また、ヨウ素127の含有量を1mg/mlで一定として、ヨウ素129の濃度を変化させて作成した検量線の結果を図4に示す。
 以上の結果、Nガスを添加した実施例1の分析方法では、図3より、直線性の高いヨウ素127の検量線を得ることができた。また図4より、ヨウ素127/129の検量線も直線性が高く、10-9レベルのヨウ素129も分析可能であることが示された。また、実施例1について、ヨウ素127の含有量を10mg/mlで一定として、ヨウ素129の濃度を変化させて検量線を作成したところ、上記と同様に、直線性が高く、10-9レベルのヨウ素129も分析可能であることが示された。
[比較例]
 実施例1と同じ分析装置を用いて、Nガスを添加せずに分析を行った。分析条件は、実施例1と同様とした。比較例1についてのヨウ素127の検量線の結果を図3に示す。
 図3より、Nガスを添加していない比較例の方法では、ヨウ素127の検量線が湾曲したものとなった。以上の結果、Nガスの添加により、より正確なヨウ素129の分析が可能になったことが示された。
[実施例2]
 Nガスに代えて、Hガスを用いたこと以外、実施例1と同様に分析した。Hガスは65mL/minの流量で添加した。その他の分析条件は、実施例1と同様とした。実施例2について、ヨウ素127の含有量を1mg/mlで一定として、ヨウ素129の濃度を変化させて作成した検量線の結果を図5に示す。
 図5より、Hガスを添加した実施例2の分析方法でも、直線性の高いヨウ素127の検量線を得ることができ、10-9レベルのヨウ素129も分析可能であることが示された。一方、Nガスを添加した実施例1の結果(図4)と比較すると、Hガスを添加した実施例2(図5)では、バックグラウンドが高くなった。以上より、添加ガスとしては、Nガスがより好適であると考えられる。
100 分析試料
200 ネブライザ
300 ICP
500 ICP‐MS
510 サンプリングコーン
511 スキマーコーン
512 仕切り弁
520 イオンレンズ
521 引き出しレンズ
522 第一レンズ
523 第二レンズ
524 第三レンズ
525 フォーカスレンズ
526 フォトンストップ
527 絶縁体
530 リアクションセル
541 マスフィルタ
542 検出器

Claims (6)

  1. 分析試料を誘導結合プラズマによりイオン化し、当該イオンをイオンレンズで選択的に収束させて、質量分析することにより、ヨウ素129/ヨウ素127の同位体比を決定するヨウ素129の分析方法において、
    イオン化の際、キャリアガスであるアルゴンガスとともに、水素ガス又は窒素ガスを添加することを特徴とするヨウ素129の分析方法。
  2. 分析試料は、土壌試料よりアルカリ溶液で抽出した液体状であり、
    該分析試料をネブライザで霧化した後、水素ガス又は窒素ガスを添加する請求項1に記載のヨウ素129の分析方法。
  3. 水素ガス又は窒素ガスを30~100mL/min添加する請求項1又は請求項2に記載のヨウ素129の分析方法。
  4.  イオンレンズで選択的に収束させたイオンを、質量分析のためのリアクションセルに導入し、
    リアクションセルのパラメータ設定により、検出感度がヨウ素127に関しては相対的に低く、ヨウ素129に関しては相対的に高い状態で質量分析を行う請求項1~請求項3いずれかに記載のヨウ素129の分析方法。
  5. 分析試料をプラズマ化する誘導結合プラズマ発生器と、
    プラズマ化した分析試料を吸入するサンプリングコーン及びスキマーコーンと、
    吸入した分析試料中の正イオンを選択的に収束させるイオンレンズと、
    収束させた正イオンを選択するマスフィルタと、
    正イオンを検出する検出器と、を備えた請求項1~請求項4のいずれかの分析方法に用いるヨウ素129の分析装置において、
    イオンレンズは3枚以上の電極を備えるとともに、更に、スキマーコーンに向かって鋭利な先端を有する1枚の電極をスキマーコーン側に備え、
    イオンレンズとマスフィルタとの間に、分析を妨害するイオンの干渉を除去するリアクションセルを備えるヨウ素129の分析装置。
  6. 請求項5に記載の分析装置を用いてヨウ素129を分析する方法において、
    イオンレンズの電極には、いずれも負の電位を与えるとともに、
    各電極の電位を、隣接する電極の電位とは異なるものとするヨウ素129の分析方法。
PCT/JP2012/069420 2011-08-15 2012-07-31 ヨウ素129の分析方法及び装置 WO2013024696A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011177445A JP2014206378A (ja) 2011-08-15 2011-08-15 ヨウ素129の分析方法及び装置
JP2011-177445 2011-08-15

Publications (1)

Publication Number Publication Date
WO2013024696A1 true WO2013024696A1 (ja) 2013-02-21

Family

ID=47715018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069420 WO2013024696A1 (ja) 2011-08-15 2012-07-31 ヨウ素129の分析方法及び装置

Country Status (2)

Country Link
JP (1) JP2014206378A (ja)
WO (1) WO2013024696A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113856586A (zh) * 2021-08-20 2021-12-31 中国原子能科学研究院 一种用于碘的气液转化及气液两相在线取样的装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249056A (ja) * 1991-02-04 1992-09-04 Seiko Instr Inc 加熱気化誘導結合プラズマ質量分析装置
JP2001110352A (ja) * 1999-10-04 2001-04-20 Seiko Instruments Inc 四重極型プラズマイオン源質量分析装置
JP2008134135A (ja) * 2006-11-28 2008-06-12 National Institute For Agro-Environmental Science ヨウ素分析方法および装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249056A (ja) * 1991-02-04 1992-09-04 Seiko Instr Inc 加熱気化誘導結合プラズマ質量分析装置
JP2001110352A (ja) * 1999-10-04 2001-04-20 Seiko Instruments Inc 四重極型プラズマイオン源質量分析装置
JP2008134135A (ja) * 2006-11-28 2008-06-12 National Institute For Agro-Environmental Science ヨウ素分析方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YASUHIRO UEZU ET AL.: "Shitsuryo Bunsekiho o Mochiita Dojo Shiryochu no 1291 Teiryoho", JNC TECHNICAL REVIEW, no. 10, March 2001 (2001-03-01), pages 77 - 80 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113856586A (zh) * 2021-08-20 2021-12-31 中国原子能科学研究院 一种用于碘的气液转化及气液两相在线取样的装置
CN113856586B (zh) * 2021-08-20 2022-12-13 中国原子能科学研究院 一种用于碘的气液转化及气液两相在线取样的装置

Also Published As

Publication number Publication date
JP2014206378A (ja) 2014-10-30

Similar Documents

Publication Publication Date Title
Ohno et al. Determination of ultratrace 129 I in soil samples by Triple Quadrupole ICP-MS and its application to Fukushima soil samples
Nudnova et al. Active capillary plasma source for ambient mass spectrometry
Zaytsev et al. Using collision-induced dissociation to constrain sensitivity of ammonia chemical ionization mass spectrometry (NH 4+ CIMS) to oxygenated volatile organic compounds
JP2013115047A5 (ja) 分光分析用の電子ビーム源としてのプラズマ源
JP5900631B2 (ja) 質量分析装置
Schilling et al. Detection of positive and negative ions from a flowing atmospheric pressure afterglow using a Mattauch-Herzog mass spectrograph equipped with a Faraday-strip array detector
US20120211651A1 (en) Mass Spectrometer and Method for Direct Measurement of Isotope Ratios
Asai et al. LA-ICP-MS of rare earth elements concentrated in cation-exchange resin particles for origin attribution of uranium ore concentrate
WO2015092862A1 (ja) 質量分析装置及び質量分析方法
CN102854240A (zh) 真空紫外光电离有机气溶胶离子阱质谱仪
Pollington et al. Polyatomic interferences on high precision uranium isotope ratio measurements by MC-ICP-MS: applications to environmental sampling for nuclear safeguards
JP6028874B2 (ja) ガス状試料の分析装置
CN108461377A (zh) 一种膜进样质子转移反应质谱
Guo-Bin et al. Vacuum ultraviolet single-photon ionization time-of-flight mass spectrometer
WO2013024696A1 (ja) ヨウ素129の分析方法及び装置
US8969832B2 (en) Electrothermal vaporization atomic fluorescence spectroscopy and spectrometer for determination of cadmium
Liezers et al. The production of ultra-high purity single isotopes or tailored isotope mixtures by ICP-MS
Elwaer et al. Comparing the precision of selenium isotope ratio measurements using collision cell and sector field inductively coupled plasma mass spectrometry
JP2008191134A (ja) レーザーアブレーション質量分析装置
Chen et al. Improved performance of a shielded torch using ethanol in inductively coupled plasma–sector field mass spectrometry
JP4925797B2 (ja) ヨウ素分析方法および装置
Zhang et al. Determination of trace selenium in Ca-rich groundwater samples by ion molecule reaction ICP-MS and CH4 plasma modifier
Komorek et al. Enabling liquid vapor analysis using synchrotron VUV single photon ionization mass spectrometry with a microfluidic interface
JP2006071492A (ja) ガス中の微粒子成分計測装置及び方法
Lesniewski et al. Atmospheric pressure plasma assisted reaction chemical ionization for analysis of chlorinated compounds separated by liquid chromatography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP